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Abstract: Iterative learning control (ILC) is a control design method that can improve the
tracking performance for systems working in a repetitive manner by learning from the previous
iterations. Norm optimal ILC is a well known ILC design with appealing convergence properties,
e.g. monotonic error norm convergence. However, it requires an explicit system model in the
design, which can be difficult or expensive to obtain in practice. To address this problem, this
paper proposes a data-driven norm optimal ILC design exploiting recent development in data-
driven control. A receding horizon implementation of the design is further developed to relax
the requirement on data. Convergence properties of the design are analysed rigorously and
simulation examples are presented to demonstrate the effectiveness of the method.
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1. INTRODUCTION

Many practical applications require the system to have
high tracking performance and to work in a repetitive
manner. Iterative learning control (ILC) can learn from
data (i.e., input and error) generated in past iterations
to achieve high tracking performance even if there is no
accurate model available. Originating from Arimoto et al.
(1984), it now has attracted intensive research in different
applications such as robotics (Armstrong et al. (2021)),
stroke rehabilitation (Freeman et al. (2012)), additive
manufacturing (Lim et al. (2017)) and broiler production
(Johansen et al. (2021)).

Generally, ILC designs can be divided into model-free
methods and model-based methods according to whether
the model information is used. Model-free ILC designs,
such as proportional-integral-derivative (PID)-type ILC
(Arimoto et al. (1984)), adaptive ILC (Tayebi (2004)),
phase-lead ILC (Wang and Longman (1996)) do not re-
quire the system model, but the parameters needed to be
carefully tuned to ensure good convergence. On the other
hand, model-based ILC algorithms, for example, inverse-
based ILC (Harte et al. (2005)), gradient ILC (Owens et al.
(2009)), norm optimal ILC (Amann et al. (1996)), use the
system model in the input updating law. Generally, model-
based methods tend to have better performance. However,
the system model can be difficult or very expensive to
obtain in practice. For more comprehensive review of ILC,
please refer to Owens (2016), Bristow et al. (2006).

There have been various attempts to relax/remove the
model information requirement in model-based ILC design
while still maintaining the good convergence properties.
As examples, in Janssens et al. (2012), the input and
output data are used to estimate the system impulse
response which is then used in model-based ILC design.

Blanken et al. (2020) proposes a basis function method to
iteratively learn the inverse system which can be used in
the norm optimal ILC design. Bolder et al. (2018) utilises
an online experiment on the plant to get the response
of the adjoint system which replaces the model based
calculation. However, the preceding algorithms need to
explicitly or implicitly identify the system model which can
be non-trivial, or extra experiments on the plant between
trials that may not be desirable in practice.

To address these limitations, this paper develops a model-
free norm optimal ILC (NOILC) framework based on
the recently developments in data-driven control theory
(Markovsky and Rapisarda (2008); De Persis and Tesi
(2019)). We first develop a model-free data-driven NOILC
algorithm using a well-known result in data-driven control
called the Willems’ fundamental lemma (Willems et al.
(2005)). We show that the proposed algorithm can achieve
the same tracking performance as model-based NOILC
design with rigorous proof. This data-driven NOILC al-
gorithm has a persistently exciting requirement of the
input signal which may be difficult to satisfy in some real
applications. To further relax the requirement, a novel
data-driven ILC algorithm in a receding horizon manner is
then proposed and the convergence properties are analysed
rigorously.

The rest of the paper is organized as follows. The sys-
tem dynamics are described and norm optimal iterative
learning control algorithm is introduced in Section 2. A
data-driven NOILC framework is presented in Section 3.
The further developed data-driven receding horizon based
NOILC is given in Section 4. Simulation examples based on
the gantry robot system are provided to demonstrate the
algorithms’ performance in Section 5. Finally, conclusions
and future work are given in Section 6.
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2. PROBLEM FORMULATION

In this section, the system dynamics are first described.
Then the NOILC design problem is introduced.

2.1 System Dynamics

Consider the following single-input single-output (SISO)
discrete time linear time-invariant (LTI) system

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0

yk(t) = Cxk(t),
(1)

where k is the iteration (or trial) number, t ∈ [0, N ]
is the time index, N is the trial length, xk(t) ∈ Rn,
uk(t) ∈ R and yk(t) ∈ R are the system state (n is the
system order), input and output respectively. A, B and
C are system matrices of proper dimensions. This system
works repetitively to track a reference sequence r(t). After
t reaches N , a new iteration begins: t will be reset to 0 and
the system state will be reset to the same initial condition,
i.e., xk(0) = x0.

Assume that the relative degree is unity (CB ̸= 0), the
lifted form input and output relationship of (1) at iteration
k can be described as (Hätönen et al. (2004))

yk = Guk + dk (2)

where the input and output sequence uk and yk are defined
as

uk = [uk(0), uk(1), · · · , uk(N − 1)]
T

yk = [yk(1), yk(2), · · · , yk(N)]
T
.

(3)

The input sequence uk and output sequence yk are defined
in the Hilbert space U = RN and Y = RN respectively
with the inner products

⟨u, v⟩R = uTRv, ⟨y, v⟩Q = yTQv, (4)

and the associated norms

∥u∥R =
√
uTRu, ∥y∥Q =


yTQy, (5)

where R ∈ RN×N and Q ∈ RN×N are positive definite
weighting matrices.

The system model G in matrix form can be represented as

G =




CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B · · · CB


 , (6)

and d is the system initial response given by

d = Ox0, (7)

where the observability matrix O(A,C) is defined as

O(A,C) = col(CA,CA2, · · · , CAN ), (8)

in which col(a, b) :=


a
b


. Besides, the reference r in vector

form can be defined as

r = [r(1), r(2), · · · , r(N)]
T

(9)

and the tracking error ek at iteration k is given by

ek = r − yk = r −Guk − d. (10)

2.2 Norm Optimal Iterative Learning Control

ILC Design Problem: The ILC design problem is to find
a control updating law

uk+1 = f(uk, ek) (11)

such that the system tracking error can asymptotically
converge to 0, i.e.

lim
k→∞

ek = 0. (12)

Note that in the model-based ILC design, the system
model information, i.e. G, is involved in the control up-
dating law (11). With the system model, these designs
could have appealing tracking performance. For example,
the well-known NOILC algorithm (Amann et al. (1996)),
which can guarantee monotonic convergence of the track-
ing error norm, is introduced next.

The NOILC algorithm minimises the following cost func-
tion to update the input uk+1 for iteration k + 1

uk+1 =arg min
uk+1

∥ek+1∥2Q + ∥uk+1 − uk∥2R ,

s.t. ek+1 = r −Guk+1 − d.
(13)

By calculating the derivative of (13) and setting it to zero,
the optimal solution is

uk+1 = uk + (GTQG+R)−1GTQek. (14)

The algorithm has nice convergence properties, as shown
in the following theorem.

Theorem 1. (Amann et al. (1996)) The NOILC algorithm
can achieve monotonic convergence in the tracking error
norm to zero, i.e.

∥ek+1∥Q ≤ ∥ek∥Q , lim
k→∞

ek = 0. (15)

By utilizing system model information G, NOILC can
achieve monotonic convergence of the tracking error norm.
However, the model information is not always easy to ob-
tain in practice. In what follows, we will develop a model-
free data-driven control law that does not require a system
model but still has appealing convergence properties as
model-based NOILC algorithm.

3. DATA-DRIVEN NORM OPTIMAL ITERATIVE
LEARNING CONTROL

In this section, some preliminary results from the data-
driven control are first introduced. Then the data-driven
NOILC algorithm is developed with the convergence rig-
orously analysed.

3.1 Preliminary Results on Data-Driven Control

In this subsection, we review a key result in data-
driven control, namely, the Willems’ fundamental lemma
(Willems et al. (2005)) which is the foundation of our
data-driven NOILC algorithm. We first introduce some
necessary definitions.

Given T length system input u and output y, the trajec-
tory w is defined as

w :=


u
y


. (16)

All the T length trajectories w := col(u, y) generated by
G form a subspace GT of W, and is given below

GT :=


u
y


∈ R2T |∃x(t) ∈ Rn,

such that x(t+ 1) = Ax(t) +Bu(t)

and y(t) = Cx(t) }

(17)



484 Zheng Jiang  et al. / IFAC PapersOnLine 55-12 (2022) 482–487

Hankel matrix Ht1(x) of a signal x ∈ RT is defined as

Ht1(x) =




x(0) x(1) · · · x(T − t1)
x(1) x(2) · · · x(T − t1 + 1)
...

...
. . .

...
x(t1 − 1) x(t1) · · · x(T − 1)


 . (18)

The signal x is called persistently exciting of order t1 if
the Hankel matrix (18) has full row rank.

With the above definitions, we can define the following the
input and output Hankel matrices and partitions

U = HTini+N (u) =


Up

Uf


,

Y = HTini+N (y) =


Yp

Yf


,

(19)

where Tini is an integer representing the length of the ini-
tial input/output response (defining the initial condition
of the system). The blocks Up, Yp ∈ RTini×(T−Tini−N+1) (p
denotes ‘past’) are used to calculate the initial conditions
while the blocks Uf , Yf ∈ RN×(T−Tini−N+1) (f denotes
‘future’) are used to calculate the system response.

We can now present the Willems’ fundamental lemma:

Theorem 2. (Willems et al. (2005)) Consider the system (1)
and assume it is controllable. Given a T sample long data
trajectory wd := col(ud, yd) generated by (1). If the system
input ud is persistently exciting of order t + n, then any
t samples long trajectory w of G can be written as a
linear combination of the columns ofHt(wd) and any linear
combination Ht(wd)g, where g ∈ RT−t+1, is a trajectory
of Gt, i.e.

col span(HN (wd)) = Gt, (20)

in which col span(·) denotes the column span of the matrix
and Gt is defined a similar way as in (17).

Using the Willems’ fundamental lemma, data-driven sim-
ulation and control design are proposed in Markovsky and
Rapisarda (2008) without using system model. Based on
these results, we develop a data-driven NOILC algorithm
to remove requirement on the system model which will be
introduced next.

3.2 Algorithm Description

The proposed data-driven NOILC algorithm is described
as follows:

Algorithm 1. Given T samples long trajectory data wd for
system (1). Assume ud is persistently exciting of order N+
n, and Tini is no smaller than the observability index of (1).
Then the input uk+1 can be calculated by minimising the
following cost function

uk+1 =arg min
uk+1

∥ek+1∥2Q + ∥uk+1 − uk∥2R

s.t.



Up

Yp

Uf

Yf


 g =




0Tini,1

0Tini,1

uk+1 − uk

yk+1 − yk


 ,

(21)

where 0m,n denotes m × n zero matrix. Compare to the
model based NOILC (13), the system model is represented
by a data-driven representation (21) using Theorem 2 as
a linear combination of the existing data.

The data-driven NOILC solution is given by

uk+1 = uk +


I

0N,N

T
W0(W

T
0 SW0)

†WT
0 S


0N,1

ek


, (22)

where the superscription † denotes the pseudo-inverse and
W0 is calculated as follows.

(1) Calculate the solution gr of the following equation

Up

Yp

Uf


gr =


0Tini,T−N+1

0Tini,T−N+1

HN (ud)


(23)

(2) The result obtained is then used to calculate

Yfgr = Y0 (24)

(3) Combine the input Hankel matrix and the above
equation to get the initial condition response matrix

W0 =


HN (ud)

Y0


(25)

The detailed derivations of (22) to (25) use results from
Markovsky and Rapisarda (2008) and can be found in
Appendix A (in the proof of Theorem 3 ).

3.3 Convergence Analysis

The performance of the proposed data-driven NOILC can
be described as the following theorem:

Theorem 3. The tracking performance of data-driven
NOILC is identical to the model-based NOILC (i.e., so-
lution uk+1 in (22) is identical to solution (14)). Conse-
quently, the proposed algorithm can guarantee monotonic
convergence of the tracking error norm.

Proof. See the Appendix A.

From the above theorem, it can be seen that the pro-
posed algorithm has the nice convergence properties of
the model-based NOILC since their tracking performance
are identical. Moreover, the proposed algorithm does not
need the system model information which is required in the
model-based NOILC. Instead, it needs the past trajectory
data. It is worth noting that for the assumption of Algo-
rithm 1 to hold, the length of data has to be sufficiently
long, i.e., T ≥ 2(Tini+N+n)−1. When the trial length is
long, the assumption of persistently exciting of the system
input may not easily to satisfied. To further relax this
requirement, we proposed the receding horizon based data-
driven NOILC in the next section.

4. RECEDING HORIZON BASED DATA-DRIVEN
NOILC

In this section, we developed a data-driven ILC algorithm
in a receding horizon manner. The convergence analysis
with rigorous proof is presented.

4.1 Algorithm Description

Algorithm 2. Given T samples long trajectory wd for sys-
tem (1). Assume ud is persistently exciting of order h+ n
(where h is the prediction horizon) and Tini is no smaller
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Hankel matrix Ht1(x) of a signal x ∈ RT is defined as

Ht1(x) =




x(0) x(1) · · · x(T − t1)
x(1) x(2) · · · x(T − t1 + 1)
...

...
. . .

...
x(t1 − 1) x(t1) · · · x(T − 1)


 . (18)

The signal x is called persistently exciting of order t1 if
the Hankel matrix (18) has full row rank.

With the above definitions, we can define the following the
input and output Hankel matrices and partitions

U = HTini+N (u) =


Up

Uf


,

Y = HTini+N (y) =


Yp

Yf


,

(19)

where Tini is an integer representing the length of the ini-
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while the blocks Uf , Yf ∈ RN×(T−Tini−N+1) (f denotes
‘future’) are used to calculate the system response.
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Rapisarda (2008) without using system model. Based on
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where 0m,n denotes m × n zero matrix. Compare to the
model based NOILC (13), the system model is represented
by a data-driven representation (21) using Theorem 2 as
a linear combination of the existing data.

The data-driven NOILC solution is given by
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0 SW0)
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(2) The result obtained is then used to calculate
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The detailed derivations of (22) to (25) use results from
Markovsky and Rapisarda (2008) and can be found in
Appendix A (in the proof of Theorem 3 ).

3.3 Convergence Analysis

The performance of the proposed data-driven NOILC can
be described as the following theorem:

Theorem 3. The tracking performance of data-driven
NOILC is identical to the model-based NOILC (i.e., so-
lution uk+1 in (22) is identical to solution (14)). Conse-
quently, the proposed algorithm can guarantee monotonic
convergence of the tracking error norm.

Proof. See the Appendix A.

From the above theorem, it can be seen that the pro-
posed algorithm has the nice convergence properties of
the model-based NOILC since their tracking performance
are identical. Moreover, the proposed algorithm does not
need the system model information which is required in the
model-based NOILC. Instead, it needs the past trajectory
data. It is worth noting that for the assumption of Algo-
rithm 1 to hold, the length of data has to be sufficiently
long, i.e., T ≥ 2(Tini+N+n)−1. When the trial length is
long, the assumption of persistently exciting of the system
input may not easily to satisfied. To further relax this
requirement, we proposed the receding horizon based data-
driven NOILC in the next section.

4. RECEDING HORIZON BASED DATA-DRIVEN
NOILC

In this section, we developed a data-driven ILC algorithm
in a receding horizon manner. The convergence analysis
with rigorous proof is presented.

4.1 Algorithm Description

Algorithm 2. Given T samples long trajectory wd for sys-
tem (1). Assume ud is persistently exciting of order h+ n
(where h is the prediction horizon) and Tini is no smaller

than the observability index of (1). Then the input uk+1,t

can be calculated by minimising the following cost function

uk+1,t =arg min
uk+1,t

∥ek+1,t∥2Q + ∥uk+1,t − uk,t∥2R

s.t.



Up

Yp

Uf

Yf


 g =



uini
k+1,t

yinik+1,t

uk+1,t

yk+1,t


 ,

(26)

where
uini
k+1,t = [uk+1(t− Tini) uk+1(t− Tini + 1) · · ·

· · · uk+1(t− 1)]T ∈ RTini

yinik+1,t = [yk+1(t− Tini + 1) yk+1(t− Tini + 2) · · ·
· · · yk+1(t)]

T ∈ RTini

(27)

are initial input and initial output at iteration k+1, time
t, and their associated norms are defined in (5).

uk+1,t =[uk+1(t) uk+1(t+ 1) · · · uk+1(t+ h− 1)]T ∈ Rh

yk+1,t =[yk+1(t+ 1) yk+1(t+ 2) · · · yk+1(t+ h)]T ∈ Rh

ek+1,t =[ek+1(t+ 1) ek+1(t+ 2) · · · ek+1(t+ h)]T ∈ Rh

(28)
are input sequence, output sequence and error sequence at
iteration k + 1, time t respectively, and their associated
norms are defined a similar way as in (5).

The data-driven receding horizon based NOILC solution
is given by

uk+1,t =uk,t +


I

0h,h

T
W0h(W

T
0hSW0h)

†WT
0h

× S


0h,1

ek,t + dk,t − dk+1,t


,

(29)

where S =


R

Q


is the positive definite weighting matrix.

W0h is calculated by the same steps as (23) to (25) , dk+1,t

is the system free response at iteration k+1, time t which
is calculated as follows (by Theorem 2 ) .

(1) At iteration k, time t, solve the equation

Up

Yp

Uf


gr =



uini
k+1,t

yinik+1,t

0h,1


 (30)

(2) Compute the free response by

dk+1,t = Yfgr (31)

Note that if the horizon needs to be shrunk (i.e., hr ̸= 0
where hr = N mod h), the data-driven receding horizon
based NOILC solution at time N − hr is given by

uk+1,N−hr
=uk,N−hr

+


I

0hr,hr

T
W0r(W

T
0rSW0r)

†

×WT
0rS


0hr,1

ek,N−hr
+ dk,N−hr

− dk+1,N−hr


,

(32)
where W0r is calculated by the same steps as (23) to (25),
dk+1,N−hr is calculated by the same steps as (30) to (31).

Remark 1. In Algorithm 2, the input ud is assumed to be
persistently exciting of order h+n, which has significantly
relax the assumption in Algorithm 1 (which is N + n as
the trial length N is usually much bigger compared to the
system order n).

Remark 2. Note that (26) is slightly different from the
traditional receding horizon control where the optimisa-
tion problem is solved at each time step. In the proposed
algorithm, the optimisation problem is solved every h time
steps and the obtained input (over these h time steps) then
applied to the system (instead of just the first one).

4.2 Convergence Analysis

The convergence performance of the proposed data-driven
receding horizon based NOILC algorithm is shown in the
below theorem.

Theorem 4. The proposed data-driven receding horizon
based NOILC can guarantee the tracking error norm
asymptotically converges to zero, i.e.limk→∞ ek = 0. More-
over, if the weighting matrices Q and R are scalar weight-
ings, i.e., Q = qI, R = rI, where q and r are real positive
numbers, the proposed algorithm can achieve monotonic
convergence (i.e., ∥ek+1∥ ≤ ∥ek∥ and limk→∞ ek = 0) iff

σ((I +
q

r
GG̃T )−1) < 1, (33)

for which a sufficient condition is given by
q

r
>

2

σ(GG̃T )
, (34)

where σ(·) denotes the minimum singular value, σ(·)
denotes the maximum singular value, G̃ is defined as

G̃ =




Gh

Gh

. . .
Gh

Ghr



, (35)

where Gh and Ghr
are defined in a similar way as in (6).

Proof. The proof is omitted here due to the space reason.

This theorem shows that the proposed Algorithm 2 can
achieve asymptotic convergence. It also provides the mono-
tonic convergence condition: by increasing the ratio of Q
to R, the monotonic convergence can be achieved. It is also
worth noting that when h = N , the data-driven NOILC
Algorithm 1 proposed in Section 3 is recovered.

Remark 3. The monotonic convergence condition requires
the minimum singular values of GG̃ which can be link to
the H∞ norm of G−1 and G̃−1. The H∞ norm of a system
can be estimated from data, e.g., using the results from
van Heusden et al. (2007) or Oomen et al. (2014) which is
omitted here for brevity.

5. SIMULATION EXAMPLES

In this section, the proposed algorithms are verified by
numerical simulations.

The system used in this paper comes from a gantry
robot (Ratcliffe et al. (2006)) which is shown in Fig. 1.
The gantry robot contains three independently controlled
perpendicular axes: the X-axis and the Y-axis moves
horizontally while the Z-axis moves vertically and placed
on the top of other axes. The Z-axis is modelled as a 3rd
order SISO LTI system whose transfer function is given by

H(s) =
15.8869(s+ 850.3)

s(s2 + 707.6s+ 3.377× 105)
. (36)
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Fig. 1. Three-axis gantry robot

The system is sampled by a zero-order hold with a sam-
pling time of TS = 0.01s and the initial state is assumed
to be zero. The trial length is N = 200. To verify the ef-
fectiveness of proposed algorithms, we simulate them over
60 iterations for different horizons to track the reference
signal

r = 0.005 sin(2πt− π

2
) + 0.005 (37)

This reference represents a typical pick and place control
task of the Z-axis in a gantry robot.

The effect of different horizons is investigated which is
shown in Fig. 2. The weightings are chosen to be Q = I
and R = 8 × 10−6I and the horizon h is chosen to be
1, 2, 3, 5, 10, 20, 60, 120, 200 respectively. Fig. 2 shows that
different choices of the horizon can achieve the perfect
tracking which verifies the Theorem 4. When the horizon
and the trial length are the same (i.e., h = 200 in
this simulation), the data-driven receding horizon based
NOILC can recover the data-driven NOILC Algorithm 1.
We also compared the model-based NOILC (which is
denoted by the black dashed line) with the data-driven
algorithms. The tracking performance of the model-based
NOILC and Algorithm 1 are identical which verify the
Theorem 3. Besides, using a larger horizon tends to have
a faster convergence speed.

The reference and the output of the proposed Algorithm 2
for different iterations k are shown in Fig. 3. The weight-
ings are chosen to be Q = I, R = 8× 10−6I and h = 5.

The effect of weighting matrices Q and R is also inves-
tigated. Any choice of Q and R can achieve the desired
tracking mission and a larger ratio of Q to R can lead to
a faster convergence speed. The result is omitted here due
to the space reason.

6. CONCLUSION

The well-known NOILC algorithm has appealing conver-
gence properties. However it requires the system model
in the control updating law which can be difficult or
expensive to obtain in practice. In this paper, a data-
driven NOILC framework has been proposed to remove
the model requirement based on the recent developments
in data-driven control. Our algorithm solves the NOILC
design problem without using the system model. The
tracking performance of the proposed algorithm has shown
to be identical to the model-based NOILC. A novel data-

Fig. 2. Root mean square error (RMSE) for different
horizon h

Fig. 3. Reference and output for different iterations

driven ILC algorithm based on the receding horizon con-
trol has been further proposed to relax the requirement on
the data. Numerical examples based on the gantry robot
system have been presented to illustrate two proposed
algorithms’ performance. Future work will consider the
model uncertainty including the effect of noise and the
constraint handling problem, as well as their experimental
verifications.
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Appendix A. PROOF OF THEOREM 3

To prove the Theorem 3, we need to show the trajectories
of two algorithms at k + 1, k = 1, 2, · · · are same, i.e.

col(uk+1, yk+1) = wD
k+1 = wM

k+1, (A.1)

where wD
k+1 denotes the data-driven algorithm solution

trajectory and wM
k+1 denotes the model-based solution

trajectory.

First rewrite the control objective (21) as

uk+1 =arg min
uk+1



uk+1

yk+1


−


uk

yk + ek


2

S

s.t.



Up

Yp

Uf

Yf


 g =




0Tini,1

0Tini,1

uk+1 − uk

yk+1 − yk


 ,

(A.2)

where S =


R

Q


is the positive definite weighting matrix.

The zero initial condition response matrix W0 obtain by
Step (1) combined with Theorem 2 has following property
(Proposition 3, Markovsky and Rapisarda (2008))

col span(W0) = col span(


Uf

Yf


) = G = col span(


I
G


),

(A.3)
thus there exist gr such that

Uf

Yf


g = W0gr =


uk+1

yk+1


=


I
G


uk+1. (A.4)

Hence, (A.2) can be written as
uk+1

yk+1


= W0 argmin

gr

W0gr −


uk

yk + ek


2

S

. (A.5)

Calculate the derivative of

W0gr −


uk

yk + ek


2

S

respect

to gr and set it equal to zero, it follows that

wD
k+1 = W0gr = W0(W

T
0 SW0)

†WT
0 S


uk

yk + ek


, (A.6)

which is the data-driven analytic solution trajectory
of (21). Note that (A.5) can be written into (using (A.4))

uk+1

yk+1


=


I
G


arg min

uk+1



I
G


uk+1 −


uk

yk + ek


2

S

, (A.7)

which is exactly the model-based NOILC algorithm. Thus
uk+1

yk+1


= W0(W

T
0 SW0)

†WT
0 S


uk

yk + ek


= wD

k+1

=


I
G


(


I
G

T
S


I
G


)−1


I
G

T
S


uk

yk + ek


= wM

k+1

.

(A.8)
The last equation comes from (14). Therefore the tracking
performance of data-driven NOILC is identical to the
model-based NOILC and hence the monotonic conver-
gence property is obvious. That completes the proof.


