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Advanced quantum information protocols rely on the operation of multi-nodal quantum networks where 
entanglement is distributed across the nodes. Existing protocols of entanglement generation are 
probabilistic, with the efficiency dropping exponentially with the size of the system. We formulate an 
approach for the deterministic generation of entangled states of a multi-nodal quantum network of arbitrary 
size by coupling a single photon standing wave with the nodes of the network. We show experimentally how 
this can be implemented in a simple bi-nodal system. Since this approach relies on collective excitation of 
the network – not on local interaction with individual nodes, it allows generation of entanglement with 
unitary efficiency, independent of the size and the nature of the network. 

 
INTRODUCTION 
Quantum technology promises to deliver powerful calculations, unbreakable secure communication, 
and highly sensitive measurements [1]. The key component of quantum systems is a quantum network 
– a system consisting of multiple nodes, able to store and process quantum information, and quantum 
channels connecting them [2,3]. Nodes of the quantum network are built using matter-based 
platforms (atoms, ions, superconducting and plasmonic systems, etc.), which may provide high 
precision quantum states control, long-term storage, enhanced interaction strength between 
quantum subsystems, and miniaturization. 

To perform quantum operations, such as communication and computation, quantum 
entanglement should be distributed across the quantum network. For instance, entanglement can be 
generated in the ‘read-out’ approach where, at the first step, entanglement between a quantum light 
pulse and a node of the network is generated either in the Fock [4,5] or polarization-spin [6,7] basis 
through the read-out process. Next, by interfering light pulses generated from two different nodes 
and performing detection in the maximally entangled basis [8-10], the entanglement is swapped 
between the corresponding nodes. In general, the ‘read-out’ approaches are probabilistic and suffer 
from the low rate of entanglement generation. Thus, entanglement generation in multi-nodal 
networks using these schemes [11,12] is a challenging task. Another way of entanglement generation 
is through the ‘write-in’ approach: a single photon coming from the external single-photon source is 
coherently distributed and written into the nodes of the quantum network [2,13,14]. Resulting single-
photon entangled state of the network, 

 ! 𝑐!#0⟩"!#0⟩"" … |1⟩"# … |0⟩"$

#
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, (1) 

where a single excitation is coherently distributed between M nodes (𝑐! is a probability amplitude of 
a single excitation to be presented in node 𝐵!), forms a basis for quantum information protocols (see 
discussion in the section “Quantum information with multi-nodal quantum networks”). To create this 
state, a single photon may be split into superposition state of the multiple spatiotemporal modes on 
a series of beamsplitters, Fig. 1(a). Each optical mode is then coupled to one of the nodes of the 
network independently. The probability of generation of state (1) in this ‘parallel’ scheme is defined 
by a product of probabilities of light absorption by each node, and it decays exponentially with an 
increasing number of nodes: considering a hardly achievable light-matter coupling efficiency of 90% 
[15] in atomic nodes, a small system composed of 10 nodes will be excited in symmetric Dicke state 
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(𝑐! = 1/√𝑀 in (1)) with a probability of ~0.35, while a network of 100 nodes will be excited in this 
state with a probability of ~2.5⋅10-5. The coupling efficiency in other systems, such as plasmonic 
structures, is significantly lower [16]. Despite these limitations, the entangled state (1) is of great 
interest for both fundamental research and the practical realization of quantum information protocols 
(see details below). 

To improve the efficiency of entanglement generation in a multi-nodal network, we propose a  
‘series’ scheme where the entire network interacts with a single optical mode in the form of a standing 
wave, which drastically increases light-matter coupling efficiency. In this case, a single photon standing 
wave, interacting with an array of weakly absorbing nodes, Fig. 1(b), may be coupled to the system 
deterministically: while individual nodes absorb light probabilistically, under certain conditions they 
may act together as an ideal coherent absorber. Based on this analysis, we fabricate a bi-nodal system 
consisting of remote metallic layers of nanometer thickness that possess the required optical response 
and demonstrate absorption of heralded single photons by the structure with efficiency close to 90%, 
against the expected 20% for the ‘parallel’ scheme. Assuming unitary light-matter exchange 
interaction, we show that the photon is absorbed non-locally and the multi-nodal quantum network 
is excited into an entangled quantum state (1). 
 
RESULTS 
Coupling of a single photon standing wave into a multi-nodal quantum network (Theory) 
We consider a quantum network (QN) consisting of 𝑀 nodes (quantum network nodes, QNNs), Fig. 2. 
The nodes could comprise any absorbing system, such as atoms, ions, quantum dots, color centers, 
plasmonic or polaritonic systems. A single photon to be coupled to the QN propagates in the 
interferometer, where it is converted into a superposition of the left |1⟩&|0⟩'  and right |0⟩&|1⟩'  
propagating photons with a controllable phase delay 𝜑, 

Figure 1. Generation of non-classical states of multi-nodal network by single 
photon coupling. (a) ‘Parallel’ scheme: photon is split on a series of beamsplitters 
and each ‘part’ of the photon is independently coupled to corresponding nodes of 
the network. (b) ‘Series’ scheme: photon is converted into a standing wave in the 
interferometer configuration and coherently coupled to the multi-nodal network. 
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In the middle of the interferometer, the symmetric state excites a standing wave[17] with cos 𝑘𝑧 
spatial profile, %

√+
(|1⟩&|0⟩' + |0⟩&|1⟩') → |1⟩,-., while the anti-symmetric state excites a standing 

wave with sin 𝑘𝑧 spatial profile, %
√+
(|1⟩&|0⟩' − |0⟩&|1⟩') → |1⟩.(/. The unitary evolution of the light-

QN system can be described as  
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Here 𝑎G&(𝑎G') are the amplitudes of the light modes propagating to the left (right) (Fig. 2) and 𝑏I! is the 
bosonic amplitude of the mth QNN. The upper index defines the amplitudes before ‘(in)’ and after 
‘(out)’ interaction. Matrix S is a square unitary matrix with components 𝑆(4 	(𝑖, 𝑗 = 1,2, … ,𝑀 + 2) 
where the components 𝑆%% and 𝑆++ (𝑆%+ and 𝑆+%) represent the total amplitude transmission 
(reflection) coefficients of the network defined under a single side illumination. Under the reciprocity 
principle, we set 𝑆%% = 𝑆++ ≡ 𝑡 and we assume 𝑆%+ = 𝑆+% ≡ 𝑟. Practically, the unitarity of the 
evolution (3) means that the light temporal modes are much shorter than the characteristic decay 
time of the QNNs excitations. We note that some protocols of quantum information, such as quantum 
key distribution, do not require storage of quantum information in the QNNs for a long time [3], and 
unitarity is a valid assumption for these protocols. We emphasize that the S-matrix differs from the 
scattering matrix discussed in the literature on coherent absorption of quantum light. For instance, in 
[17-20] the source of absorption was dissipation, and only the dynamics of light was considered. As a 
result, the scattering matrix was non-unitary. Here, we include the absorbing nodes of the QN into 
consideration, that is excitations do not leave the entire system preserving unitarity of the S matrix. 

As shown in Note A of Supplementary Material, the deterministic coupling of a single photon into 
the QN, that is 

Figure 2. Model of quantum light and multi-nodal network interaction. At initial time, system is 
described by amplitudes 𝑎"!

(#$) and 𝑎"&
(#$) of two coherent light modes propagating in opposite 

directions and carrying a single excitation and by input amplitudes 𝑏$'
(#$) of the corresponding nodes 

in a vacuum state. At final time, system is characterized by two outgoing light modes, 𝑎"!
(()*) and 

𝑎"&
(()*), and output amplitudes 𝑏$'

(()*) of the nodes. The transformation is described by the scattering 
matrix S. 
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〈𝑎G&
(-12)5𝑎G&

(-12)〉 = 〈𝑎G'
(-12)5𝑎G'

(-12)〉 = 0, 

can be achieved under the following two conditions: 1) QNNs are placed at anti-nodes of the standing 
wave (cosine or sine) excited by the input single photon, and 2) the amplitude transmission 𝑡 and 
reflection 𝑟 coefficients of the entire network are equal and in-phase (for the cosine wave) or out-of-
phase (for the sine wave): 𝑟 = ±𝑡. For the general input state (2) and 𝑟 = +𝑡 the photon can be found 
on the left side or the right side of the QN with an equal probability: 

 〈𝑎G&
(-12)5𝑎G&

(-12)〉 = 〈𝑎G'
(-12)5𝑎G'

(-12)〉 = |𝑡|+(1 − cos𝜑). (4) 

In the extreme case of 𝑟 = ±𝑡 = −1/2, the photon coupling efficiency (1 − 〈𝑎G&
(-12)5𝑎G&

(-12)〉 −
〈𝑎G'
(-12)5𝑎G'

(-12)〉) varies between 0 and 1, allowing to couple-in or transmit the photon on demand for 
in-line operation and feed-forward protocols. Full transmission occurs when the QNNs are placed at 
the nodes of the standing wave where, assuming subwavelength dimensions, they do not interact with 
the electric field (see Note B in Supplementary Material).  

 
Building a multi-nodal network for efficient photon coupling 
The components of the scattering matrix S will depend on the particular realization of the QN and the 
type of light-QNN interaction. As we have shown, even without knowledge of the entire S-matrix, we 
still may achieve perfect single-photon coupling just defining the total transmission and total 
reflection coefficients of the entire QN, or 𝑆%%,	𝑆%+,	𝑆+% and 𝑆++ components of the S-matrix. 
Moreover, from a practical point of view, all we need to know is the optical response of individual 
QNNs. For instance, for the basic bi-nodal network with subwavelength nodes, transmission (𝑡% and 
𝑡+) and reflection (𝑟% and 𝑟+) coefficients of individual nodes are linked as (see  Note B in 
Supplementary Material) 

 𝑟% = 𝑡% − 1,							𝑟+ = 𝑡+ − 1,							𝑡+ =
𝑡%

3𝑡% − 1
	, (5) 

where the first two equations are fulfilled automatically [18] and the last one matches transmission 
coefficients of the nodes. Here 𝑡% is considered as a free parameter. If placed at the anti-nodes of the 
standing wave, the QNNs (5) guarantee the total QN response of 𝑟 = +𝑡 = −1/2. For a multi-
component system with 𝑀 > 2, relations similar to (5) become more complicated with a number of 
free parameters. The solution can be simplified for the important case of 𝑀 identical nodes: 

𝑡! =
𝑀

𝑀 + 1
, 

𝑟! = 𝑡! − 1 = −
1

𝑀 + 1
, 

 𝑎!+ ≡ 1 − 𝑡!+ − 𝑟!+ =
2𝑀

(𝑀 + 1)+
, (6) 

where 𝑡! and 𝑟! are the amplitude transmission and reflection coefficients of the mth node, and 𝑎!+  
defines intensity absorption coefficient (or probability of photon absorption) of each node. For 
instance, the total transmission and reflection coefficients of the QN consisting of 100 nodes with 
transmission and reflection coefficients of 100/101	 and −1/101, respectively, spaced by an integer 
number of 𝜆, equal to −1/2. Such a network will absorb a single photon standing wave 
deterministically despite the fact that the intensity absorption coefficient of each node is less than 2%.  
 
Coupling of a single photon standing wave into a bi-nodal system (Experiment) 
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As a proof of principle, we experimentally demonstrated efficient coupling of a single photon standing 
wave in an elementary bi-nodal system represented by ultrathin metallic layers. Two chromium layers 
were deposited on opposite sides of a transparent substrate (SiN) by thermal evaporation. The 
thickness of the chromium layers was adjusted around the nominal value of 5 nm to obtain 
transmission of 𝑡% ≈ 2/3 and reflection of 𝑟% ≈ −1/3 and 𝑎!+ ≈ 4/9  in accordance with (6). The 
thickness of the substrate, Dsub=200 nm, was chosen to be ~𝜆/2𝑛.16 at 810 nm (based on the 
refractive index 𝑛.16 ≈ 2.02) so that the two chromium layers could be placed at neighboring nodes 
of the standing wave. The optical response of such sample fulfills the condition of 𝑟 = 𝑡 = −1/2. 

Degenerate spontaneous parametric down-conversion in a BBO crystal, induced by a 405 nm laser, 
was used to generate pairs of time-correlated signal and idler photons at the wavelength of 810 nm, 
Fig. 3(a). Detection of the idler photon by a single-photon avalanche photodiode SPAD-h heralds the 
presence of the correlated signal photon. The signal photon was prepared in the state (2) by sending 
it through a 50:50 beamsplitter and repeatedly varying the interferometer phase 𝜑 by a fiber 

Fig. 3. Coherent absorption of heralded single photons by a bi-nodal system. (a) Schematic of the 
setup with a bi-nodal absorber placed in the middle of the interferometer. Dark blue lines 
correspond to the optical fiber and red lines to the free space paths of the photons.  (b) Measured 
probabilities of heralded signal photon detection by SPAD-1 (blue circles and fitting line) and SPAD-
2 (red diamonds and fitting line), total transmission (purple triangles and fitting line) and total 
coupling (black line) probabilities as a function of phase delay 𝜑 between the two arms of the 
interferometer. The error bars represent the Poisson noise of randomly arriving photons. The 
highest photon absorption probability of 0.88 is marked by the white star. 
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stretcher. The fiber stretcher was controlled by a ramp voltage at 1 Hz modulation frequency and 
amplitude 9 Vpp, which ensured fiber length modulation greater than 2𝜆 in every cycle. The coherence 
length of the heralded photons (~100 µm) was much greater than Dsub. Beamsplitters were used to 
direct the outgoing photons to SPAD-1 and SPAD-2. Coincidence counts between detectors SPAD-
1/SPAD-h (𝑁%) and SPAD-2/SPAD-h (𝑁+) were measured by time-to-digital converter ID800 (IDQ) as a 
function of the phase	𝜑. Acquisition time was set to 20 ms and data were averaged over more than 
50 phase cycles. To evaluate the probability of single-photon detection by SPAD-1 (𝑃%) and SPAD-2 
(𝑃+), we used the average total input photon flux as a reference: 

 

𝑃%,+(𝜑) =
8!,"())[:(2;	=6.->6?>]

8![:(2;-12	=6.->6?>]A8"[:(2;-12	=6.->6?>]
. 

The slow operation rate of the detectors and relatively low coincidence count rates did not allow 
to perform measurements faster than the characteristic time of the phase noise (thermal and 
mechanical noise of the interferometer, which has a bandwidth of ~1 Hz). To implement averaging of 
subsequent phase cycles, a reference-based post-selection technique was used [19]. 

The measured single-channel probabilities 𝑃%(𝜑) and 𝑃+(𝜑) are shown by blue circles and red 
diamonds in Fig. 3(b). Both probabilities are in a good agreement with the expected behavior (4) and 
the corresponding fitting curves exhibit visibilities of 87%. The probabilities 𝑃%(𝜑) and 𝑃+(𝜑) oscillate 
almost in phase with a small shift of less than 0.3𝜋. This shift is attributed to slight discrepancies 
between nominal and effective optical path length of the silicon nitride membrane: spectral 
measurement of the bare membrane of nominal thickness 200 nm revealed a transmission peak at 
861 nm, which corresponds to an optical path length of  ≈431 nm rather than its nominal value of 
𝑛.16 ⋅ 𝐷.16 = 2.02⋅200 nm=404 nm. Visibility of the total transmission probability, 𝑃%(𝜑) + 𝑃+(𝜑), 
shown by the purple triangles and the fitting line is around 78%, demonstrating high contrast 
modulation between the regimes of coherent transmission and coherent coupling of the photon. 
Probability, 1 − 𝑃%(𝜑) − 𝑃+(𝜑), of a single photon coupling to the structure is shown by the black line 
in Fig. 3(b). The maximum achieved probability of single-photon coupling was 88% (shown by the 
white star in Fig. 3(b)). This probability far exceeds the maximum probability of a single photon 
coupling in a conventional ‘parallel’ scheme. In the latter case, coupling efficiency to each node, 1 −
|𝑡%|+ − |𝑟%|+, equals to 4/9, assuming total coupling efficiency into two nodes of 20%. The advantage 
of coherent illumination becomes even more pronounced with the increase of the number of QNNs: 
the coupling efficiency does not change under coherent illumination and may still reach 100% for high-
dimensional systems, while it decays exponentially with the nodes number increased for ‘parallel’ 
scheme. Note that the ‘series’ approach has no limitations on the number of nodes constituting the 
quantum network. Moreover, the higher the node number, the weaker coupling of light to a single 
QNN is required. We emphasize that collective interaction of QNNs with a single photon allows 
achieving deterministic photon absorption without optical cavities [21].  

 
Quantum state of a multi-nodal network 
Coupling of a single photon standing wave into the QN could result in deterministic generation of 
entanglement if nodes maintaining quantum coherence (e.g. atoms, ions, plasmons etc.) are used. 
Here, we assume that light coupling into QNNs happens due to a light-matter exchange interaction of 
the form 𝑏I5𝑎G, where annihilation of a light quantum followed by excitation of a node quantum. To 
retrieve the quantum state of the system after photon coupling, we use the reverse to (3) 
transformation: 
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By substituting the matrix components 𝑆%% 	= 𝑆++ = ±𝑆%+ = ±𝑆+% = 𝑡, defined above, we find 
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Now, for instance, for 𝑆%% 	= 𝑆++ = 𝑆%+ = 𝑆+% = 𝑡, the sine standing wave carrying a single photon, 

|1⟩.(/ =
%
√+
(|1⟩&|0⟩' − |0⟩&|1⟩') =

%
√+
d𝑎G&

((/)5 − 𝑎G'
((/)5e |𝑣𝑎𝑐⟩, 

is transformed into the output superposition state of the multi-nodal QN of the form 
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State (7) is exactly the state of interest (1), where 𝑐! = 3𝑆(!A+)% − 𝑆(!A+)+6/√2. This state ensures 
that the single-photon is distributed coherently among spatially separated nodes. Similarly, it can be 
shown that for 𝑆%% 	= 𝑆++ = −𝑆%+ = −𝑆+% = 𝑡, the cosine standing wave carrying a single photon will 
be coupled to the network creating state similar to (7). The probability amplitude of photon absorption 
by the 𝑚2; node is defined by the corresponding elements of the first two columns of the S-matrix 
which, in turn, depend on the coupling strength between light and the node. To change the resulting 
quantum state of the system it is sufficient to change the optical response of individual nodes while 
keeping the total system response constant. Since the wave function (7) is normalized, the larger the 
network the smaller the absolute values of S-matrix components may be and, correspondingly, the 
smaller coupling efficiency between light and individual nodes is required. As a result, quantum light 
may be perfectly coupled to an array of weakly absorbing nodes exciting the QN entangled state.  

Quantum information with multi-nodal quantum networks 
As practical applications require multi-particle entanglement, the use of single-particle entangled 
state (1) is somewhat limited. Nevertheless, as shown in the following, it is possible to obtain a system 
with multi-particle entanglement by stacking subsystems carrying the state (1). As an example, we 
consider a scheme suitable for multi-party quantum cryptography, or Bell inequality detection, 
Fig.4(a). The scheme can be considered as an extension of the corresponding two-party Duan-Lukin-
Cirac-Zoller (DLCZ) scheme [22]. The whole network consists of two subsystems, B and C, each 
prepared in a symmetric state of the form of the Eq. (1): %

√#
3𝑏I%

5 + 𝑏I+
5+	. . .		+𝑏I#

5 6|𝑣𝑎𝑐⟩ and 
%
√#
3�̂�%

5 + �̂�+
5+	. . .		+�̂�#

5 6|𝑣𝑎𝑐⟩,	respectively, where |𝑣𝑎𝑐⟩ stands for the vacuum state of the network. 

Each party holds one node of each subsystem: party 1 (Alice) holds (conjugate) nodes B1 and C1, party 
2 (Bob) holds B2 and C2, party 3 (Charlie) holds  B3 and C3 and so on as shown by dashed boxes in Fig. 
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4(a). Next, each party reads the state of the conjugate nodes as it is shown in Fig. 4(a), where the 
detector 𝐷!± performs measurement of 𝐷i!±

5 𝐷i!± with 𝐷i!± = 3𝑏I! ± �̂�!6/√2. The coincidence 
between counts of the detectors belonging to different parties will be registered with probability 1-
1/M, and we are interested in these events. For instance, the coincidence between Alice’s and Bob’s 
detectors reduces the network wave function to %

√+
3𝑏I%

5�̂�+
5 + 𝑏I+

5�̂�%
56|𝑣𝑎𝑐⟩, or %

√+
3𝐷i%A

5 𝐷i+A
5 −

𝐷i%D
5 𝐷i+D

5 6|𝑣𝑎𝑐⟩, where detectors’ counts of different parties are correlated. From this point on, the 
protocols will be exactly equivalent to the two-party DLCZ scheme. For instance, to generate a 
common key, each party applies a phase shift 𝜑!, chosen randomly from the basis {0, 𝜋/2}, to one of 
the optical paths, Fig. 4(a). If the applied phase shifts coincide, the whole wave function just acquires 
a common phase, and correlations are preserved. If the phase shifts are opposite, the state changes 
to %

√+
3𝑏I%

5�̂�+
5 − 𝑏I+

5�̂�%
56|𝑣𝑎𝑐⟩, or %

√+
3𝐷i%A

5 𝐷i+D
5 − 𝐷i%D

5 𝐷i+A
5 6|𝑣𝑎𝑐⟩, where detectors’ counts of different 

parties are, again, correlated. Since the applied phase shifts are later shared using an open 
communication channel, the parties know the type of correlations between the detector counts, and 
these trials are used to generate a common key. The rate of key generation between different parties 
in the network can be altered by changing the coefficients 𝑐! in the initial states, Eq. (1), of the 
subsystems B and C. Similarly, other quantum information protocols can be realized; for instance, 
quantum teleportation can be implemented either in a similar probabilistic one-to-one way or from 
one party to collective state of the rest of the network, where the teleported state is coherently 

Figure 4. Quantum information protocols with entangled multi-nodal networks. (a) Multi-party quantum 
key distribution. Two subsystems, B and C, compose the network, where the mth party holds one node of 
each subsystem, Bm and Cm (m=1,2,…,M). The protocol starts with coherent distribution of a single photon 
in each subsystem, so that two excitations are present in the whole network. Next, each party performs 
measurement of conjugated nodes Bm and Cm by transferring their states to light modes, applying the 
phase shift 𝜑'  (randomly chosen either 0 or 𝜋) to one of them and mixing them on a beamsplitter (for 
simplicity, measurement setups are shown only for the first (Alice) and last parties). Quantum key 
distribution is based on correlation measurement between detectors’ counts belonging to different 
parties. (b) Efficient excitation of entangled states of a system composed of two weakly absorbing nodes. 
First, single photon is deterministically coupled to a multi-nodal network of a higher dimension creating 
its entangled state. By measuring the state of nodes B3, B4,…, BM, the wave function is reduced to the 
entangled state of two nodes B1 and B2. Ratio 𝑃+/𝑃, of probabilities of entanglement generation for ‘series’ 
scheme (𝑃+) compared to ‘parallel’ scheme (𝑃,), is shown in the graph as a function of the photon coupling 
probability 𝑝-  in each node. 
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distributed between parties. More sophisticated protocols can also be implemented by adding more 
subsystems, and cluster (graph) states [23,24] and quantum circuit architectures [25] could possibly 
benefit from using this approach. 

Multi-nodal networks can be also used to speed up the preparation of quantum states of smaller 
networks. Let us consider the case in which the entangled state 

 
1
√2

3|1〉"!|0〉"" + |0〉"!|1〉""6, (8) 

between nodes B1 and B2 is created using a single photon source and weakly absorbing samples. The 
probability of photon absorption 𝑝= by each node is less or significantly less than 1. In the ‘parallel’ 
scheme based on splitting of the photon and coupling light to each node, Fig. 1(a), the required state 
is created with probability 𝑃% = 𝑝=+. This probability can be increased by using the ‘series’ scheme, Fig. 
1(b). First, single-photon is coherently coupled to a system composed of 𝑀 weakly absorbing nodes 
generating the state (1) with 𝑐! = 1/√𝑀. The number of nodes 𝑀 is chosen so that photon is coupled 
deterministically to the system despite the low photon absorption probability 𝑝= in each node. Next, 
the state of the 𝑀2; node is read out, where with probability 1 − 1/𝑀 (for ideal detectors) no 
excitation is detected with the following projection of the state of the rest of the network to 

1
√𝑀 − 1

!#0⟩"!#0⟩"" … |1⟩"# … |0⟩"$&!

#

!$%

. 

By repeating this procedure 𝑀 − 2 times (for nodes 𝑀 − 1,𝑀 − 2,… , 3), the state of the system is 
reduced to (8) with overall success probability 𝑃+ = 2/𝑀 (all 𝑀 − 2 nodes can be read out 
simultaneously). The ratio 𝑃+/𝑃% as a function of a single node absorption probability 𝑝= is shown in 
the graph in Fig. 4(b), where 𝑝= is set as 2𝑀/(𝑀 + 1)+ (𝑝= = 𝑎!+  from Eq. (6)x). The speed-up 
advantage of using the ‘series’ scheme is clearly seen in the graph. 

The quantum information protocols discussed here could be used to experimentally verify the 
excitation of state (1) or (7). These experiments would require manipulation of the atomic ensembles 
[13,14], plasmons [16,26], phonons [27] or other systems where absorbed excitation of a single-
photon can be stored and reversed back to the optical fields for further detection.  
 
DISCUSSION 
We demonstrated theoretically that the quantum regime of deterministic coherent single-photon 
absorption may be achieved in multi-nodal quantum networks. As a proof-of-principle demonstration, 
we conducted an experiment where single photons are absorbed in a bi-nodal system with efficiency 
close to unity. While the existing approaches do not allow efficient generation of entanglement in 
multi-nodal QNs, the efficiency of the approach developed here is independent of the number of 
nodes constituting the network. Remarkably, requirements on the coupling of light to each node of 
the network are loosened in larger networks for the standing wave excitation, allowing to 
deterministically absorb photons in QNs composed of weakly absorbing nodes. To exploit the 
advantage of the standing wave coupling, the physical dimension of the network (the distance 
between the first and the last nodes of the network) should be within the coherence length of a single 
photon. Therefore, the proposed method can be directly applied using a narrowband single-photon 
sources [28] or in miniaturized (integrated) quantum networks [29,30], while quantum repeater 
protocols [31] may be necessary to swap entanglement between remote multi-nodal coherent 
networks. 

As we have shown, efficient coupling of a single photon standing wave generates entangled states 
of the multi-nodal QN assuming unitary light-matter exchange interaction in the nodes of the network. 
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The resulting quantum state, where single excitation is coherently spread between spatially separated 
QNNs, may be controlled by adjusting the optical parameters of the network components while 
keeping the overall optical response of the network constant. Despite being useful for the generation 
of entanglement in quantum networks, the developed here approach may be also applied to the 
protocols of quantum memory [32-35] and to excitation of quantum states of periodic systems such 
as arrays of atoms [36,37] and ions [38,39] which are promising platforms for quantum computation 
[40-42] and quantum simulations [43,44] as well as for the study of the fundamental effects [27,45]. 
Also, periodic structures may be used for coherent schemes [46] of classical [47-50] and quantum 
[18,51-59] light manipulation in free space and in integrated platforms [19,60-62]. 

In conclusion, multi-nodal quantum networks are the foundation of quantum information 
protocols, including quantum computation and quantum communication, and the ability to 
manipulate quantum states of such networks is a necessary requirement for the development of 
quantum technology. Single-photon standing wave coupling discussed here provides a robust and 
efficient way to generate and control quantum entanglement in multi-nodal quantum networks. 
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APPENDIX A. General model of deterministic coupling of a single photon to multi-nodal quantum 
network 
In this section, we derive the conditions for deterministic coupling of a single photon to a multi-nodal 
quantum network based on the model shown in Fig. 2 of the main text. We consider two counter-
propagating coherent light modes with quantized amplitudes 𝑎G&

((/) and 𝑎G'
((/)which illuminate a 

medium consisting of M spatially separated nodes. The size of the whole structure is supposed to be 
much smaller than the coherence length of light. For the 𝑚2; node, we define a bosonic amplitude 

𝑏I!
((/) and initial vacuum state |0⟩"#. After the interaction, the system is characterized by the output 

light (𝑎G&
(-12) and 𝑎G'

(-12)) and node (𝑏I!
(-12)) amplitudes, where a linear transformation is described by 

the S-matrix with components {𝑆(4}	(𝑖, 𝑗 = 1,2, … ,𝑀 + 2): 

 

⎝

⎜⎜
⎜
⎛
𝑎G%
(-12)

𝑎G+
(-12)

𝑏I%
(-12)

⋮
𝑏I#
(-12)⎠

⎟⎟
⎟
⎞
= 𝑺

⎝

⎜⎜
⎜
⎛
𝑎G%
((/)

𝑎G+
((/)

𝑏I%
((/)

⋮
𝑏I#
((/)⎠

⎟⎟
⎟
⎞
+

⎝

⎜⎜
⎛
𝑓n=%
𝑓n=+
𝑓n6%
⋮
𝑓n6#⎠

⎟⎟
⎞
. (S1) 

For generality, we also include here column vector containing Langevin noise operators 𝑓n. This column 
is responsible for the conservation of commutation relations in the presence of dissipation processes 
(such as the decay of the excited states of the nodes). Standard boson commutation relations are valid 

for light and media amplitudes: for instance, o𝑎G&
((/), 𝑎G&

((/)5p = o𝑏I!
((/), 𝑏I!

((/)5p = o𝑎G&
(-12), 𝑎G&

(-12)5p =

o𝑏I!
(-12), 𝑏I!

(-12)5p = 1 and o𝑎G&
((/), 𝑎G'

((/)5p = o𝑎G&
((/), 𝑏I!

((/)5p = o𝑏I!
(-12), 𝑏I/

(-12)5p
!E/	

= 0 and so on. 

Deterministic absorption of the input light requires no excitation in the outgoing light modes,  
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 〈𝑎G&
(-12)5𝑎G&

(-12)〉 = 〈𝑎G'
(-12)5𝑎G'

(-12)〉 = 0, (S2) 

where, accounting for transformation (S1),  

〈𝑎G&
(-12)5𝑎G&

(-12)〉 = |𝑆%%|+ 〈𝑎G&
((/)5𝑎G&

((/)〉 + |𝑆%+|+ 〈𝑎G'
((/)5𝑎G'

((/)〉 +	𝑆%%∗ 𝑆%+ 〈𝑎G&
((/)5𝑎G'

((/)〉 + 

 𝑆%%𝑆%+∗ 〈𝑎G'
((/)5𝑎G&

((/)〉 + …, (S3) 

〈𝑎G'
(-12)5𝑎G'

(-12)〉 = |𝑆+%|+ 〈𝑎G&
((/)5𝑎G&

((/)〉 + |𝑆++|+ 〈𝑎G'
((/)5𝑎G'

((/)〉 +	𝑆+%∗ 𝑆++ 〈𝑎G&
((/)5𝑎G'

((/)〉 + 

 𝑆+%𝑆++∗ 〈𝑎G'
((/)5𝑎G&

((/)〉 + …. (S4) 

Here the matrix components 𝑆%% and 𝑆++ (𝑆%+ and 𝑆+%) represent the total amplitude transmission 
(reflection) coefficients of the network. Under the reciprocity principle, we set 𝑆%% = 𝑆++ ≡ 𝑡. All 
contributions in (S3) and (S4), containing amplitudes 𝑏I!

((/) and noise operators  𝑓n, are denoted as “…”, 
and they average to zero since the corresponding modes are in a vacuum state. 

In order to fulfil (S2), a combination of a quantum state of light and optical response of the 
structure should be matched. From now on, we consider the coupling of a single photon coherently 
distributed between two counter-propagating modes. The path-entangled wave function of the 
photon is 

 |Ψ⟩F; = 𝛼|1⟩&|0⟩' + 𝛽|0⟩&|1⟩' , (S5) 

where 𝛼 and 𝛽 (|𝛼|+ + |𝛽|+ = 1) are probability amplitudes of the photon to propagate from the left 
(term |1⟩&|0⟩') and right (term |0⟩&|1⟩') sides, Fig. 2 of the main text. By substituting (S5) into (S3) 
and (S4), we obtain two conditions for deterministic light coupling,  

𝑡𝛼 + 𝑆%+𝛽 = 0, 

𝑆+%𝛼 + 𝑡𝛽 = 0. 

If 𝛼 or 𝛽 equals zero, i.e. the photon is coming from the one side only, a trivial solution follows: 
transmission and reflection coefficients should be equal to zero. Now, if 𝛼 ≠ 0 and 𝛽 ≠ 0, 

𝑆%+ = −
𝛼
𝛽
𝑡, 

𝑆+% = −
𝛽
𝛼
𝑡, 

These relations are simplified if we consider a system with a symmetric optical response,  

𝑆%+ = 𝑆+% ≡ 𝑟. 

Taking this into account, the following two conditions should be satisfied in order to deterministically 
couple a single photon into a multi-nodal network:  

1) The photon should be equally distributed between counter-propagating modes with 
opposite or equal phase relation between the wave function components, 

 |Ψ⟩F; =
%
√+
(|1⟩&|0⟩' ∓ |0⟩&|1⟩'), (S6) 

2) The network, as a whole, should be characterized by optical parameters such that 
transmission and reflection coefficients satisfy opposite to (S6) phase relation, 
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 𝑡 = ±𝑟, (S7) 

where equal reflection coefficients from both sides are assumed. Interference of arbitrary photon 
state of the form, 

 |Ψ⟩F; =
1
√2

(|1⟩&|0⟩' − 𝑒()|0⟩&|1⟩'),  

on the absorber characterized by (S7) results in phase-dependent probabilities of the photon 
detection: 

 〈𝑎G&
(-12)5𝑎G&

(-12)〉 = 〈𝑎G'
(-12)5𝑎G'

(-12)〉 = |𝑡|+(1 − cos𝜑),  

for 𝑡 = +𝑟 and similar for 𝑡 = −𝑟. Since total photon detection probability should not exceed unity, 
the transmission coefficient must be limited by: 

 |𝑡| ≤ %
+
.  

We note, that similar properties were derived earlier for a single layer subwavelength coherent 
perfect absorber[18]. Here, in contrast, we consider dissipation-free systems (if noise operators are 
omitted and S-matrix  is unitary) and a photon is coupled to the multi-nodal system. We note that the 
solution does not depend on the dimension of the S-matrix (i.e. on the number of nodes) nor the 
nature of light-matter interaction.  

The results obtained in this section are valid for classical optical fields as well. To verify this, one 
may substitute coherent (classical) input states with complex amplitudes 𝛼 and 𝛽, 

|Ψ⟩F; = |𝛼⟩&|𝛽⟩' , 

in (S3) and (S4) instead of the single-photon wave function (S5). Similar conditions, 𝛽 = ∓𝛼 and 𝑡 =
±𝑟, should be fulfilled in this case. 

APPENDIX B. Quantum network with nodes of a subwavelength thickness  
In this section, we consider the special case of QNNs of the subwavelength thickness. Despite its 
practicality (many practical realizations of QNNS are of a subwavelength thickness), this type of node 
allows us to clearly present the standing wave argument standing behind our approach. For instance, 
the standing wave picture simplifies the problem of creation of the state described by Eq. (1) of the 
main text: when QNNs of the network are placed at the anti-nodes of the standing wave, all of them 
‘see’ the same field (interact with the same optical mode), and photon distribution between the nodes 
is defined by the mutual relation between optical responses of individual nodes. Thus, establishing 
conditions for deterministic photon coupling does not require knowledge of the entire S-matrix, rather 
a determination of the optical response of individual nodes that fulfil simpler requirements for 
transmission and reflection of the whole structure. At the same time, such QN would be transparent 
for the standing wave of the opposite symmetry (or shifted standing wave), since all the QNNs now 
are at the nodes of the standing wave where the electric field is zero and interaction does not happen.  

To be specific, we assume that a single photon interacts with plasmonic structures (layers) as it 
was demonstrated in multiple experiments [16,18,19,26,63]. By tailoring the optical properties of a 
single layer, it is possible to achieve the required optical response [18] 

 𝑟 = −𝑡 = −1/2. (S8) 

Now, let us, first, consider a bi-nodal (bi-layered) structure with M=2. Each layer is characterized by 
its transmission, 𝑡% and 𝑡+, and reflection, 𝑟% and 𝑟+, coefficients, and for any thin absorber it is 
valid[18]: 
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 𝑟% = 𝑡% − 1,							𝑟+ = 𝑡+ − 1. (S9) 

Optical properties of the whole structure are defined as 

 𝑡 =
𝑡%𝑡+𝑒(GH

1 − 𝑟%𝑟+𝑒+(GH
, (S10) 

 𝑟I = 𝑟% +
𝑟+𝑡%+𝑒+(GH

1 − 𝑟%𝑟+𝑒+(GH
,			 (S11) 

 𝑟II = 𝑟+ +
𝑟%𝑡++𝑒+(GH

1 − 𝑟%𝑟+𝑒+(GH
, (S12) 

where 𝐷 is the distance between the layers, 𝑡, 	𝑟Iand 𝑟II are the total amplitude transmission and 
reflection (for illumination from left and right sides) coefficients. Setting 𝐷 = 0 should bring us back 
to (S9), providing additional relations between the optical properties of the layers, namely, 

 𝑡 = 1/2,				𝑟I = 𝑟II = −1/2. (S13) 

Therefore, combining (S8)-(S13) we obtain:  

 𝑡+ =
𝑡%

3𝑡% − 1
	. (S14) 

Letting 𝑡% vary as a free parameter and assuming that the layers are identical, Fig. 5(a), we get  

Figure 5. Optical response of a bi-nodal system. (a) Model: two identical layers with 𝑡, = 2/3 
and 𝑟, = −1/3 spaced by variable distance 𝐷. Input monochromatic field with amplitude E0 is 
partially transmitted (tE0) and partially reflected (rE0). (b) Intensity transmssion |𝑡|+, reflection 
|𝑟|+ and absorption |𝑎|+ = 1− |𝑡|+ − |𝑟|+coefficients of the structure as a function of the 
distance D. (c) Phases of transmission and reflection coefficients of the strutcure as a function 
of the distance D. Distance is expressed in units of the wavelength 𝜆. Diamonds correspond to 
the regime with 𝑟 = −𝑡 = −1/2, while circles correspond to 𝑟 = +𝑡 = −1/2. 
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 𝑡% = 𝑡+ = 2/3 and 𝑟% = 𝑟+ = −1/3. (S15) 

The optical response of such system is shown in Figs. 5(b)  and 5(c) as a function of the distance	𝐷 
between the layers expressed in units of the wavelength 𝜆. From (S10)-(S12) it follows that relations 
(S13) and (S14) hold unchanged if the layers are spaced by an integer number of wavelengths, that is 
for   

 𝐷 = 𝜆 ⋅ 𝑁, (S16) 

where 𝑁 = 0,1,2, …. As expected, this system absorbs a photon in the symmetric superposition state 
(𝛽 = 𝛼 = 1/√2) while it is transparent for the anti-symmetric superposition state (𝛽 = −𝛼 = 1/√2). 
Conversely, when the distance between absorbing layers is  

 𝐷 = J
+
⋅ (2𝑁 + 1), (S17) 

the structure is characterized by 𝑟 = +𝑡 = −1/2 and has an opposite functionality (it absorbs a 
photon in the anti-symmetric superposition state).  

To generalize to the case when the two absorbing layers are separated by a transparent spacer 
with refractive index 𝑛.F, (S16) and (S17) should be replaced by  

 𝐷 = J
+/'(

⋅ 𝑁, (S18) 

where (S18) is valid for both types of absorbers. Even though we did not discuss the S-matrix 
components, we still may establish an ‘empirical’ connection between the optical response of 
individual layers and the resulting quantum state of Eq. (1) of the main text. For instance, the 
distribution of the absorbed photon between two identical nodes (S15) will be, obviously, equal. To 
change the photon distribution between the nodes, one may decrease absorption in one node while 
increasing it in the other one so that the total response of the system is not changed. Because of the 
relations (S13) and (S14) only one parameter of the system (𝑡%) defines the resulting state of Eq. (1) of 
the main text.  
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