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Abstract: We make a detailed comparison between two attempts in recent years to con-

struct hydrodynamic effective actions: we compare our work [1–7] with that of Crossley-

Glorioso-Liu [8] and Glorioso-Liu [9]. The general philosophy espoused by the two approaches

has a degree of overlap, despite various differences. We will try to outline the similarities to

eke out the general lessons that have been uncovered, hoping that it will ease the access to

the subject for interested readers.
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1 Hydrodynamic actions in the current decade

In the past few years we have written several papers outlining a general framework for the

effective low energy field theory in local equilibrium [1–7]. In the same period, Crossley-

Glorioso-Liu [8] and Glorioso-Liu [9] have written two papers on the subject which have a

reasonable amount of overlap with our considerations. They also wrote an earlier paper [10]

which attempts to make contact with the gravitational description of fluids a la fluid/gravity

[11, 12], with partial success. A similar analysis from the gravity side was also carried out

concurrently in [13]. The following is an attempt to compare the two approaches by us (HLR)

and that by the MIT groups (CGL and GL, respectively).

Much of our analysis builds on our first work together on anomalous effective actions [1].

This analysis which focused on flavour anomaly contributions, was the first to reveal inter-

esting surprises about what we should expect for hydrodynamic effective field theories. Two

main physical issues were made apparent: an intrinsic doubling of degrees of freedom (even

in the absence of dissipation)1 which was reminiscent of the Schwinger-Keldysh construction,

and a rigid constraint on couplings between these copies. The field theory analysis also gave

a nice heuristic picture in the gravitational context, as explained in Fig. 1 of [1].2

1 It would be fair to say that the standard lore till this publication would have suggested that non-dissipative

transport would be obtained from a conventional action principle without any doubling. This intuition is

spectacularly untrue, as we now know based on the analysis of [1–3].
2 A similar picture was subsequently advocated in [10].
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It is worth emphasizing the earlier work of Nickel and Son [14] which suggested an in-

teresting way to write down hydrodynamic variables inspired by holographic considerations.

Likewise, the work of Dubovsky et.al. [15], was the first to construct anomalous effective

actions, for abelian flavour anomalies in two dimensions. This turns out to be a special case,

where one can eschew the doubling. The analysis carried out in [1] uses the hydrodynamic

variables described in [15, 16], which have also been examined systematically for action prin-

ciples in the non-dissipative sector in [17–20]. The way of thinking about the hydrodynamic

fields as living on the black hole horizon and viewing the maps therefrom to the boundary is

inspired in large part by [14].

Whilst the anomaly story was interesting, it was clear from the rich phenomenology of

hydrodynamics that there was more structure to be unearthed. Naive implementations of the

formalism failed to capture Lorentz anomalies (mixed flavour/gravitational anomalies), and

there were puzzles about the inclusion of some known forms of non-dissipative transport such

as Hall viscosity [17–20]. These issues therefore spurred us to consider the following question:

Can we, given the basic axioms of hydrodynamics as the theory of conserved currents, sub-

ject to the local form of second law of thermodynamics, give a complete classification of the

structural form of hydrodynamic currents?

This question was answered by us in the affirmative in [3] (a brief summary of results

appears in [2]). The basic theorem proved here states that hydrodynamic transport has an

eightfold classification, with seven distinct adiabatic classes and a single class of dissipa-

tive transport.3 The proof was essentially constructive in the sense that it gave explicitly

the general form of all possible constitutive relations {Tµν , Jµ, JµS} consistent with the phe-

nomenological axioms of hydrodynamics. The latter state that the dynamics of the fluid is

encoded in conservation laws for the stress tensor Tµν and flavour current Jµ, subject to the

existence of an entropy current JµS , which satisfies a local version of the second law:

∇νTµν = Jν · Fµν + Tµ⊥
H , DνJ

ν = J⊥H , ∇µJµS ≥ 0 , (1.1)

where Hall currents (with subscript H) denote the non-conservation due to anomalies. Our

classification of solutions to this set of equations relied heavily on the intuition derived from

the hydrostatic partition function analysis of [21, 22], and more crucially on some the results

derived by S. Bhattacharyya in a series of papers [23, 24].4

A few things became apparent in the discussion of the eightfold classification which are

worth highlighting:

• The space of adiabatic transport is far richer than hitherto appreciated (it makes up 7 of

the 8 classes). The word adiabatic connotes in a technical sense the off-shell conservation

of the entropy current JµS in (1.1). Thus adiabatic transport here refers to transport

with vanishing entropy production.

3 The classes were named A (anomalies), B (Berry-like), C (conserved entropy), D(dissipative), HS (hydro-

static scalars), HS (hydrodynamic scalars), HV (hydrostatic vectors), and HV (hydrodynamic vectors).
4 An important precursor work which proved influential in these developments was the first comprehensive

analysis of second law constraints on hydrodynamic transport [25] (see [26] for earlier results).
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• The choice of hydrodynamic variables is best encoded in a thermal vector βµ = uµ/T

(which encodes fluid velocity and temperature) and a thermal twist Λβ = µ
T − βµAµ

(which encodes the flavour chemical potential).5

• A naive single copy effective action (of a Landau-Ginzburg form) only captures 2 of the

7 adiabatic classes. In this sector entropy current is a Noether current associated with

thermal translations/gauge transformations along {βµ,Λβ}.

• The Landau-Ginzburg action for two of the classes (called HS and HS) can be viewed

as the worldvolume action of a space filling fluid/Brownian brane. The basic degrees

of freedom are the maps from a reference worldvolume equipped with a rigid thermal

vector �a and twist Λ�, which get pushed-forward to the physical fluid spacetime under

the embedding map.

Given our experience with anomalies, it was apparent that one should attempt to write

down an effective action which involves two sets of degrees of freedom to obtain the remaining

5 adiabatic and 1 dissipative sector. Focusing on the adiabatic sector, we argued in [2, 3]

that:

• We should look for a formulation that takes the Schwinger-Keldysh construction seri-

ously, as presaged in [1]. As a first step in the effective theory of hydrodynamics, this

means a doubling of degrees of freedom.

• A naive implementation of Schwinger-Keldysh however would be in tension with mi-

croscopic unitarity, for it would involve couplings between the two sets of degrees of

freedom. These influence functionals in the language of [30] ought to be constrained

by demanding that they respect the unitarity constraints, and also respect the ther-

mal KMS constraints (suitably applied to near-equilibrium for almost Gibbsian density

matrices).6

• We found empirically that these constraints would be upheld in the hydrodynamic effec-

tive action, should we postulate an emergent low energy symmetry, called the thermal

KMS U(1)T symmetry, to constrain the set of low energy couplings [2, 3]. The trans-

formation of fields under this symmetry can roughly be described as follows:7

1. On ‘retarded’ fields: a thermal diffeomorphism/gauge transformation along {βµ,Λβ}
2. On ‘advanced’ fields: a similar thermal shift by their associated ‘retarded’ partner

• With this inspired guess we were able to construct an adiabatic action for the 7 classes

of transport (called Class LT in [3]). Whilst no derivation was provided for the U(1)T
symmetry, we showed that

5 This was very much inspired by the structure of hydrostatic equilibrium as described initially in [21, 22]

and analysis of anomalous transport in that formalism [27–29].
6 The reader is invited to consult Sections 13 and 18 of [3] for our detailed reasoning.
7 For details, we refer to [3, 5].
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1. The symmetry closes on the set of low energy fields (satisfies desired Wess-Zumino

conditions).

2. Entropy is a Noether current for this U(1)T symmetry, and is conserved due to

our restriction to the adiabatic sector.

The hydrodynamic effective Lagrangian took the following simple form:

LT = Nµ[Ψ]A(T)
µ +

1

2
Tµν [Ψ] g̃µν + Jµ[Ψ] · Ãµ (1.2)

with A(T)
µ being the gauge potential for the U(1)T symmetry, g̃µν and Ãµ being the Schwinger-

Keldysh inspired partners for the background metric gµν and gauge field Aµ sources. The

collection of hydrodynamic fields and sources is Ψ = {βµ,Λβ; gµν , Aµ}. Further,

Nµ = JµS + βνT
µν + (Λβ + βνAν) · Jµ , (1.3)

is the Noether current for thermal translations (also often referred to as non-canonical part

of the entropy current, or as free energy current up to a rescaling by temperature). The

Lagrangian (1.2) summarizes the entire adiabatic sector of our classification of transport in a

simple and efficient way: a given set of currents {Nµ, Tµν , Jµ} describes adiabatic transport

if and only if the associated action (1.2) is invariant under U(1)T. According to the standard

rules of effective field theory, this statement proves that at least for adiabatic hydrodynamics

U(1)T exists as an emergent symmetry.

Following the publication of the eightfold classification, the two papers [10, 13] appeared,

which take further steps towards a holographic realization of related ideas. Both of these

works attempt to generalize [14] and get the ideal fluid part of the action (which is equivalent

to the hydrostatic partition function to leading order in gradients) accurately. The group CGL

[10] also attempted to get the second order hydrostatic partition function, but for a reason

unknown to us encountered obstructions. To be specific, the hydrostatic partition function for

a neutral fluid at second order in gradients comprises of three potential contributions. Only

two were recovered from the holographic analysis – we recall that the hydrostatic partition

function has three second order contributions, cf.,8 Eq. (1.6)[21] – the term proportional

to fluid vorticity squared was not obtained. Eq. (14.35)[3] gives the correct expression for

the hydrostatic partition function that reproduces the transport coefficients derived from

holography.

Given the success in explaining the phenomenological axioms of adiabatic hydrodynamics

under the assertion of an emergent U(1)T symmetry via (1.2), for us the key question was how

to justify U(1)T in a quantum field theoretic way and whether this would suffice to capture

the dissipative sector. Earlier work of Kovtun et.al. [31] whose dissipative action was broadly

speaking of the form (1.2) (without U(1)T gauge field) lent strength to our conjecture. Their

analysis was reminiscent of older work on dissipative systems in statistical mechanics [32]

8 We will refer to equation numbers of papers mentioned in the text with suitable subscripts to indicate

the reference in question.
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and stochastic dynamics [33]. The effective actions derived by these papers incorporates a

topological (BRST) supersymmetry. This brought these set of questions close to the studies

of topological field theory defined over the moduli space of solutions of certain equations. The

work by Vafa-Witten [35] over the moduli space of instantons was paradigmatic in this regard

and so was the subsequent explication by Dijkgraaf -Moore [36] and others [37] on the NT = 2

structure that correctly counts the solutions without signs. Understanding this proved key

to our subsequent explorations.

Inspired by these statements, we outlined a general philosophy, which takes microscopic

unitarity and KMS condition as the central guiding principles for deriving the correct low

energy symmetries governing hydrodynamic transport. This was explained in two talks at

Strings 2015 [38, 39]. The basic ideas were explained in broad terms, laying out a framework

for the construction of hydrodynamic effective actions in the Fluid Manifesto [4]. The funda-

mental statement was that there should exist an NT = 2 equivariant supersymmetry algebra

of thermal translations, which completely determines consistent hydrodynamic transport.

Shortly afterward we received [8], whose intent was to construct actions for dissipative

hydrodynamics; we described our version of an action principle in [5] closely afterward. The

two papers identify a set of symmetries which should govern the low energy dynamics. The

thrust of the two approaches appears to be rather different in their phrasing and notation,

but there are more similarities than superficially visible. To be clear, our [5] follows strongly

on the lessons learnt in the eightfold classification in [3]. A first principles explanation of

some of the statements and underlying symmetries was provided more recently in [6, 7]. A

short while ago we received a second paper from the GL, linking entropy production with

microscopic unitarity [9]. The hydrodynamic action of this paper has been translated into

a form that makes comparison more seamless; indeed we shall see that the current picture

hews more closely to the philosophy of [3, 5]. We hope that the current discussion will serve

to bring out some of these similarities.

Note added: As this note was nearing completion, we became aware of further work on the

subject: the ideas of CGL are further developed in [40, 41], and [42] also deals with the same

problem by taking some inspiration from both our formalism and that of CGL.

2 Effective actions for hydrodynamics

Let us take stock of the constructions in the two approaches, comparing first the basic vari-

ables, the symmetries, and the form of the action.

2.1 Hydrodynamic variables

The standard current algebra formulation of hydrodynamics, by which we mean the process

whereby we write down the constitutive relations {Tµν , Jµ, JµS} in terms of the hydrodynamic

variables and background sources, identifies as variables the fluid velocity and intensive pa-

rameters corresponding to local thermal equilibrium. While early discussions on the subject

[1, 14–16, 18–20] attempted to use Lagrangian fluid variables, it was found in [4] that these
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variables do not work well outside the entropy frame. In particular, the Lagrangian variables

of [16], which are best viewed as spatial positions of fluid cells at an instant of time, involve an

additional volume preserving diffeomorphism symmetry, which one views as responsible for

entropy conservation. While this is true for part of the adiabatic sector, there exist adiabatic

fluid constitutive relations wherein there is a non-trivial entropy current, which nevertheless

leads to no dissipation.9

The more natural variables for the current algebraic formulation of hydrodynamics, are

the thermal vector and twist βµ and Λβ introduced in [3]. These allow for a covariant

presentations. One can show that the Lagrangian variables alluded to above, can be obtained

by a suitable gauge fixing – the explicit argument can be found in Appendix B of [3].

The true dynamical degrees of freedom for an off-shell effective action are not the entirety

of the thermal vector and twist, but the part of them which is orthogonal to a constraint

surface. These physical modes turn out to be Goldstone modes Xµ(σ) and c(σ) which are

maps from some reference worldvolume geometry onto the physical fluid. Put simply, the fluid

dynamical effective field theory, is a sigma model of a space filling brane, with the physical

fluid thermal vector and twist being push-forwards of a reference thermal vector βa and twist

Λβ that live on a fiducial worldvolume (with intrinsic coordinates σa). Initially we viewed the

maps as running from the physical spacetime to the reference configuration; cf., Eq. (7.5)[3]

and (7.6)[3] (see Fig. 3 of [3] which also uses blackboard bold font to pick out reference

fields, e.g., �a and twist Λ�). In our subsequent works we realized that the sigma model

interpretation is more natural, which prompts the introduction of Xµ, c variables introduced

in Section 3 of [5]; this rationale is explained explicitly in Footnote 7 of [5].

In contrast, the authors of [8] continue to use a variant of the Lagrangian variables in

the following sense. They recognize that the Goldstone modes Xµ(σ), c(σ) are the physical

degrees of freedom. However, rather than pick a reference thermal vector and twist on the

worldvolume, they choose to work in a non-covariant spacetime where the background Lorentz

structure has been deformed to allow spatial diffeomorphisms and space dependent time

reparametrizations (cf., Eqs. (1.27)[8] and (1.28)[8]). This is akin to the story of foliation

preserving diffeomorphisms described in [43]. In addition they identify the fluid variables in

terms of the Goldstone modes in Eq. (5.1)[8] and introduce a scalar field τ to capture the

local temperature, see Eq. (5.9)[8]. This is an over-complete set, which they then constrain.

Let us first see that the two sets of variables can be mapped onto each other; the choice

made in [8] can be obtained from [3] by picking a suitable gauge for the reference fields.

The argument is a mild generalization of the one given in Section 7.5 of [3]. In particular,

Eq. (7.23)[3] picks a gauge where the reference thermal twist is made to vanish and the

reference thermal vector is fixed to a constant vector along the time direction. With this

choice, the residual symmetries are as in Eq. (7.24)[3], viz., transverse spatial diffeomorphisms,

chemical shift, and a general spacetime dependent time reparameterization (thermal shift).

9 This issue was of import in addressing the contribution of mixed flavour/gravitational anomalies to

transport.
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To connect with [8] we want to reduce the time reparameterization part to depend only on

the spatial coordinates. This is achieved by demanding that we fix �a=I = 0, but pick �a=0

to be an arbitrary function.10

2.2 Hydrodynamics as a theory of non-linear response

Both groups realize that usual hydrodynamics does not retain information about all the

correlation functions of the system, but only cares about response correlators. The most

general response functions are best described by the Schwinger-Keldysh formalism, where

one is able to compute correlation functions with a specified amount of time-ordering.11

The microscopic computation of correlation functions in the Schwinger-Keldysh formal-

ism entails a doubling of degrees of freedom as is well known (see [46] for a review). This

perspective was first applied to hydrodynamics in the context of anomalies in [1]. An inspira-

tional paper that was helpful in further development was [31] which in turn took inspiration

from the Martin-Sigga-Rose construction [32]. The naive issues with directly upgrading it to

the hydrodynamic effective field theory were explained in [3], which then prompted a more

comprehensive analysis of the symmetry structure of the Schwinger-Keldysh formalism. We

will describe the latter below, noting for now that the hydrodynamic description should in-

volve both the classical macroscopic variables Xµ introduced above, as well as the fluctuation

fields X̃µ, a feature emphasized in [4, 5, 8].

The hydrodynamic currents are given in the Schwinger-Keldysh formalism as the variation

of the effective action with respect to the advanced/difference fields (called ‘Adv’ in [4–6] in

thermal states, while [8] refer to them as ‘a’ fields.) The expression for the currents appears

in Eq. (6.6)[1], Eq. (13.12)[3] and Eq. (3.12)[8], which can all be seen to be in agreement.

2.3 BRST symmetries of the Schwinger-Keldysh formalism

The BRST symmetries are the first point of divergence between the formalism of HLR and

that of CGL. Both groups use as their starting point the fact that correlation functions

of difference operators vanish in the Schwinger-Keldysh construction. This is explained in

Section 2.2 of [4], Eq. (2.15)[8] and Eq. (2.2)[5], and in Section I.D of [47], Eq. (1.41)[8]. Note

that this does not capture all the structure that is inherent in Schwinger-Keldysh construction.

For one, there is the largest time equation for the difference operators which is not captured

by demanding that the correlation functions of difference operators vanish. These statements

have been reviewed in greater detail more recently in [6].

HLR make the argument that the field redefinition redundancies owing to the Schwinger-

Keldysh doubling can be understood as a pair of BRST charges {QSK ,QSK} with the dif-

ference/advanced operator being BRST exact with respect to both. This can be viewed in

10 We note that the more recent paper [9] GL switch to the thermal vector and twist variables.
11 It is perhaps better to phrase the Schwinger-Keldysh formalism as being the right framework to com-

pute singly out-of-time order correlation functions, amongst which appear the response functions of interest.

Fluid dynamics correlators which are more out-of-time-order than Schwinger-Keldysh correlators are largely

unexplored; though see the recent works of [6, 44, 45].
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terms of two directions of descent from the average operator as first depicted in Eq. (2.8)[4]:

Oav

OG O
G

Odif

Q
SK Q

SK

Q
SK

−Q
SK

(2.1)

As explained in Section 7.5 of [6], if we view QSK as a BRST charge for field redefinitions,

then QSK is the corresponding anti-BRST charge. In other words, we choose to work in the

framework where both the symmetries are manifest (which is true at the level of the effective

action). HLR also advocate a superspace built on two Grassmann odd variables, demanding

a quadrupling of the operator algebra, as an efficient way to encode the BRST action (the

QSK and QSK act as superderivations). As Vafa-Witten [35] explain in their Section 2.3, the

correct way to count the solutions without signs involves working with two supercharges, in

a formalism which later came to be known as NT = 2 topological supersymmetry [36]. As

explained in [35], the formalism only one topological supersymmetry counts solutions with

signs and hence computes something more akin to an index.

On the other hand CGL decide to impose a single BRST charge δ to enforce the vanishing

of Dif/Adv (‘a’ in their notation) operator correlators. This indeed suffices to ensure the

topological limit.

However, there is more to be said. At a practical level, the most efficient way to implement

the Schwinger-Keldysh BRST symmetry is by working in superspace which makes it manifest,

as was first appreciated in [4, 5]. Let us now describe this superspace more explicitly. Even

the presence of a single BRST charge still demands that we quadruple the operator content.

While the Av/Ret and correspondingly Dif/Adv fields are Grassmann even, the BRST action

demands that they have corresponding Grassmann odd partners (the ghost fields). HLR

encode this in a single superfield, cf., Eq. (2.3)[5] or Eq. (6.19)[6]:

O̊ = Oret + θ̄OG + θO
G

+ θ̄ θOadv , (2.2)

such that QSK , QSK act as ∂θ̄, ∂θ, respectively. Extrapolating the analysis of CGL to super-

space, it will involve a single super-direction (parameterized say by θ̄) and one would have two

superfields with opposite Grassmann statistics. More specifically, we can reinterpret CGL’s

Eq. (1.45)[8] in superspace as

O̊a = Oret + θ̄OG , O̊d = O
G

+ θ̄Oadv . (2.3)

We now wish to give a few arguments in favour of having two supercharges instead of

one, and correspondingly a superspace representation as in (2.2) instead of (2.3).

There is a natural pairing in the Schwinger-Keldysh formalism between the forward (R)

and backward contours (L). We find it reasonable to encode both into a single superfield.
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Moreover, the effective action of CGL, Eq. (1.53)[8] has not only the BRST symmetry dis-

played in Eq.(1.54)[8], but also an anti-BRST symmetry, obtained by exchanging their ghosts

and anti-ghosts, and reversing the sign of their Adv (‘a’) field.

The Vafa-Witten argument for counting without signs via NT = 2 topological supersym-

metry also demands two supercharges [35]. Apart from this, perhaps the strongest argument

in favour of two Schwinger-Keldysh supercharges is the following: effective actions for dissi-

pative hydrodynamics have been constructed in [8] and [5]. As we observed in [5], the action

does posses both symmetries without violating any phenomenological principles that we are

aware of. The logic of standard effective field theory suggests that if the desired effective

action has a symmetry, then there is no question about its existence, but merely one about

its motivation from microscopics. The latter task was our undertaking in [4, 6, 7].12

Finally, we note some of the advantages of working with a larger symmetry which un-

surprisingly constrains more correlators and reduces many of the ambiguities in the ghost

dynamics. HLR have shown that correlation functions involving ghosts can be fixed (up to

certain ambiguities) in terms of the Av/Dif or Ret/Adv correlators. The ambiguities can be

systematically classified as we explain in Section 9 of [6]. This is not without its subtleties

(suitable background ghost insertions are needed) and two supercharges were crucial to con-

trol the ambiguities. It seems to us that an analogous analysis with only one supercharge

would greatly multiply ambiguities and would be practically intractable. We see no clear

countervailing advantage in ignoring the symmetry and adopting a less symmetric formalism.

2.4 KMS symmetries

The second major difference in the two formalisms relies on how the KMS condition which

arises in thermal (Gibbsian) states is implemented. We will later see that when the dust

settles the two approaches will be quite similar.

HLR note that the KMS condition implies a set of thermal sum rules, which are over and

above the Schwinger-Keldysh sum rules. These were clearly derived for instance in [48], and

this argument was reviewed in Section (2.3) of [4] (see the discussion following Eq. (2.13)[4]),

and in Eq. (4.20)[6].

In order to enable the reader to draw a quick conclusion it was pointed out in [4, 6, 7]

that one can ensure this thermal Ward identity by positing a new set of KMS symmetry

generators {QKMS ,QKMS}. We realize that this leads to an interpretation where we have

four BRST charges when the initial state is the thermal density matrix. However, as already

noted in Section 2.4 of [4] it is erroneous to view all four of these Grassmann odd generators

as BRST differentials that pick out a cohomology. The SK-charges are true BRST differen-

tials while the KMS-charges are interior contractions. Loosely speaking, the SK-charges are

12 The only caveat here is that the complete action for eightfold hydrodynamic transport has not been written

down yet. However, given our knowledge about adiabatic Lagrangians from [2], and since the dissipative class

is the one that is most sensitive to symmetry arguments, we would be rather surprised if other classes will

eventually be inconsistent with Q
SK

symmetry.
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Weil differentials in the language of equivariant cohomology, while the KMS-charges are two

particular contractions. The precise interpretation is explained in detail in Section 6 of [7].

The implementation of KMS symmetry by the CGL is different. As is common practice

they combine the action of KMS and CPT, to obtain a statement in terms of the generating

functional, cf., Eq. (1.69)[8].
13 Since the action involves conjugation with CPT, the resulting

symmetry is viewed as a Z2 discrete symmetry. In Section I.G they posit that a useful way

to encode the KMS conditions at low energies is in terms of an emergent fermionic symmetry

Eq. (1.75)[8]. They are clear that the symmetry operates only on the low energy action and

make no statements at the microscopic level.

HLR have a different take on the low energy symmetries: they conjecture that the macro-

scopic manifestation of KMS is U(1)T discovered in [2, 3]. As indicated earlier, CPT is im-

plemented as a Z2 involution (an R-parity acting anti-unitarily on the superspace), which

furthermore is spontaneously broken in the fluid phase. This is explained in Eq. (2.5)[5] and

elaborated upon in Eqs. (8.6)[6] and (8.7)[6]. We will be slightly more detailed in Section 3

below.

2.5 The superalgebra underlying hydrodynamics

While the underlying intuition for dealing with thermal states in the two approaches in

different, there is a surprising amount of concordance in the final superalgebra. CGL state that

the superalgebra which constrains the low energy theory is given by Eq. (1.77)[8], reproduced

here for convenience:

δ2 = 0 , δ̄2 = 0 , [δ, δ̄] = 2 ε̄ ε tanh

(
i

2
β∂t

)
≈ ε̄ ε iβ∂t . (2.4)

It is argued that δ̄ is emergent at low energies and arises from the KMS condition. We will now

demonstrate that at high temperatures this algebra can be precisely identified with a gauge

fixed version of the superalgebra of HLR, first written down in [4]. The high temperature

limit of this algebra has also been noted earlier in the context of Langevin dynamics; cf., [34].

The story in HLR is a-priori more detailed as necessitated by a full implementation

of the NT = 2 balanced equivariant formalism of Vafa-Witten [35] and Digkgraaf-Moore

[36]. Their SK-KMS superalgebra is characterized by a total of six generators denoted as

{QSK ,QSK ,QKMS ,QKMS ,Q0
KMS

,LKMS}. It is first argued that the low energy (equivalently

β → 0 limit) is characterized by an emergent thermal translational symmetry U(1)T, as phe-

nomenologically motivated by [2, 3]. In this limit, the six generators are argued to generate

an NT = 2 equivariant cohomology algebra with the gauge symmetry being thermal transla-

tions. There are several ways to simplify the discussion, which are explained in some detail

in Appendix A of [4] and this formalism is heavily employed in its superspace version in

[5]. It is useful to directly invoke the Cartan model for equivariant cohomology, undertake a

partial gauge-fixing to the Wess-Zumino gauge, and show that the theory can be described

13 A discussion disentangling various issues can be found in [49, 50].
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by working with two gauge covariant Cartan charges Q and Q. Being gauge covariant, they

are not nilpotent, but rather square to a gauge transformation, which in the present case is

captured by LKMS . One finds by manipulating Eq. (A.14)[4]:
14

Q2 = (F̊θ̄θ̄|θ̄=θ=0
)LKMS , Q2

= (F̊θθ|θ̄=θ=0
)LKMS ,

[
Q,Q

]
±

= (F̊θθ̄|θ̄=θ=0
)LKMS (2.5)

As a differential operator LKMS is realized as the operation ∆
β

= −i(1− e−i δβ ) ≈ δ
β
, which

implements a translation in the thermal direction, introduced in [4]. The super-field strength

F̊IJ is the one associated with the gauge field of U(1)T.

We can now compare the two algebras: suppose we identify Q and Q of HLR in [4, 7]

with δ̄ and δ, respectively of [8]. The disadvantage of the equivariant cohomology presentation

is that there are a whole slew of extra ghost fields (the Vafa-Witten quintet of [7]). It has

been argued in [4, 7] that most of the covariant ghost of ghost fields which include F̊θ̄θ̄| and

F̊θθ| can be gauge fixed to zero, insofar as the macroscopic dynamics of the hydrodynamic

fields is concerned. The only field that plays a non-trivial role is the ghost number zero field

F̊θθ̄|, which picks up a non-trivial vacuum expectation value in the thermal state, owing to

spontaneous CPT symmetry breaking in a dissipative system. Note that it is an important

ingredient of our approach to recognize the emergent second law and arrow of time in the fluid

system as a consequence of the spontaneous breaking of the microscopic CPT symmetry (see

[51, 52] for a detailed discussion). The U(1)T symmetry provides a dynamical mechanism for

this: we choose the CPT breaking value 〈F̊θθ̄|〉 = −i for the order parameter of dissipation.15

With this understanding, we can simplify (2.5) to16

Q2 = 0 , Q2
= 0 ,

[
Q,Q

]
±

= −iLKMS 7→ i£β (2.6)

In general £β Lie drags operators along the thermal circle17, but on scalars it acts as βa∂a.

In the static gauge, where βa=0 = β, βa=I = 0 this is indeed β ∂t, which then gives a precise

correspondence between the two algebras (2.4) and (2.6).

To put it in a nutshell, despite the differing motivations, the superalgebras used by the

two groups to constrain hydrodynamic effective actions is the same in the high temperature

limit. The main distinction is that (2.4) extends to beyond the high temperature limit and

thus is aware of the detailed quantum statistics.18 HLR have not made a conjecture about the

quantum algebra, though it is easy to speculate that the structure is closely connected to that

obtained by exponentiating the U(1)T algebra introduced in [3] to figure out the finite action

of U(1)T as a group. While we have not been as yet able to prove it, we would be willing to

speculate that the requisite group is the Virasoro-Bott group obtained by exponentiating the

14 The relevant arguments are explained in some detail in Sections 5 and 6 of [7].
15 See, e.g., [5] for a motivation of this choice.
16 There are algebraic subtleties with the interpretation of signs, which are explained in [7].
17 The operator £β refers to the Lie drag operation on worldvolume along the background vector βa.
18 The high temperature limit, as the reader can immediately appreciate is equivalent to the classical limit,

since the quantum statistical distributions, Bose-Einstein or Fermi-Dirac, degenerate to the classical Maxwell-

Boltzmann distribution.
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central extension of Vect(S1) (the algebra associated with the group of diffeomorphisms on

the circle Diff(S1)).

The basic common lesson learnt from the two approaches for constructing effective field

theories in local thermal equilibrium then crystallizes as follows: the dynamics should be

constrained by a superalgebra of the forms given above. We believe that the most efficient

way to do this is by working with a superfield representation of the quadrupled space of low

energy degrees of freedom, similar to the microscopic version given in (2.2). The difference to

the latter is that KMS condition now needs to be implemented on top of generic SK unitarity.

This translates to a covariantization of the superfields and the super-derivatives with respect

to thermal translations. The mathematical framework for this was described in detail in [7].

We note that in the high temperature regime the representation on fields of the derivations

{δ, δ̄} of CGL is precisely the same as the covariant super-derivatives {D̊θ̄, D̊θ} implementing

{Q,Q} in the HLR formalism, for example (2.12)[5]. Again, this statement holds after gauge

fixing to zero all U(1)T gauge field components apart from the flux condensate 〈F̊θθ̄|〉.

3 Is there a KMS U(1)T symmetry?

Having argued that the algebras are for all intents and purposes the same, let us ask the

only remaining question. Is there really an equivariant gauge symmetry, enshrined in the

KMS U(1)T symmetry? The arguments of HLR for this range from their initial discussion

in [2, 3] (see Section 15 of the latter, especially Eqs. (15.2)[4] and (15.3)[4]) and it is crucially

embodied in their basic philosophy espoused in [4]. The formal arguments in favour of this

are explained in some detail in [7], but the real proof of its viability is in its constraining

of the hydrodynamic effective action [5]. As explained after (1.2), in the adiabatic sector of

hydrodynamics the emergence of a U(1)T symmetry is a phenomenological fact. The question

we want to address here is whether or not it should be gauged, and what is its fate in the

dissipative sector of hydrodynamics.

At first sight, the action for dissipation presented in [8] appears to be rather different

from that in [5]. Of course, much of this is cosmetic owing to a different choice of variables

etc. Fortunately, rather than work out the precise map, we can take the recent attempt to

understand the second law and entropy current by GL [9] as our starting point.

3.1 Of accidental symmetries

Let us start with an examination of the hydrodynamic effective action presented in Appendix

D.2 of [9]. They examine the transformation of the ‘a’ type field (what we call X̃µ here)

under the KMS symmetry; in particular, the symmetry they impose, Eq. (D23)[9], reads in

our language:

∂aX̃µ(−σ)→ ∂aX̃µ(σ) + i ∂aβµ(σ) . (3.1)

Consider repackaging X̃µ into an auxiliary object g̃µν via ∂µX̃ν + ∂νX̃µ = g̃µν , which is

pretty much enforced by demanding the correct derivative counting and having a symmetric
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2-tensor, and physically motivated by the considerations of Section 15 of [3]. In fact, as

explained there g̃µν is designed for precisely the purpose of capturing the hydrodynamical

‘a’-modes. With this identification of X̃µ, the KMS transformation (3.1) translates into a

statement for transformation of g̃µν :

g̃µν(−x)→ g̃µν(x) + i£βgµν(x) (3.2)

where gµν is the background metric and £β denotes Lie derivative as above. Up to the sign

flip of the coordinates in (3.1) this is in fact precisely the U(1)T part of Eq. (15.4)[3] with

the particular identification of U(1)T gauge parameters ξ̄µ = 0, Λ̄(T) = i. Thus, somewhat

crucially [9] employ a close relative of the U(1)T transformation. They refer to it as a ‘dynam-

ical KMS transformation’ and as we will see momentarily it can be thought of as a discrete

version of HLR’s U(1)T combined with standard CPT.

Let us see this a different way: consider Eqs. (5.1)[5] which display the U(1)T transforma-

tion on the worldvolume superfields. Working out the transformation of the θ̄θ-component,

we find Eq. (5.2)[5], where the pullback metric gab’s Adv/Dif-partner is g̃ab, and its transfor-

mation is exactly as indicated in (3.2). As explained in some detail in [5] the θ̄θ-component

of a given superfield transforms through a shift involving the bottom component (which is

the Ret/Av or ‘r’ component).

We can summarize the philosophies regarding the implementation of KMS condition as

follows:

• CGL impose a ‘dynamical KMS transformation’ as in (3.1), which is a suitable discrete

combination of a KMS time translation with PT reversal.

• HLR impose standard CPT and a continuous U(1)T symmetry. There is however an

interplay between these two symmetries: CPT is spontaneously broken in the dissipative

fluid phase and the order parameter for this symmetry breaking is argued to be a

particular flux condensate of the U(1)T field strength component, viz., 〈F̊θθ̄|〉.19

We note that the second approach also entails a discrete Z2 symmetry, which is a combina-

tion of U(1)T and CPT:20 in order to derive the second law, HLR employ a Z2 transformation,

which can be described as a particular U(1)T transformation combined with CPT, see Section

7.5[7] for a detailed discussion that also applies to hydrodynamics [5]. For instance, one of the

θ̄θ-components of the superfield transformations (7.54)[7] with (7.53)[7] made explicit, reads

as

X̃(t) 7→ X̃(−t)− (F̊θθ̄|) ∆
β
X(−t) . (3.3)

To account for dissipation in the effective theory we choose a CPT breaking expectation

value 〈F̊θθ̄|〉 = −i and find precise agreement with GL’s dynamical KMS symmetry (3.1) or

(2.12)[9]. It is gratifying to see that GL’s guiding principle for constructing an entropy current

19 The phenomenology of such a symmetry breaking is briefly discussed in Section 5 of [5].
20 We thank Hong Liu for a discussion on this point, which helped us to see this connection more clearly.
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consistent with the second law (i.e., the dynamical KMS Z2 symmetry) can be put in precise

correspondence with the transformation that can be used within the HLR formalism to prove

the second law using the mechanism of spontaneous CPT breaking in the language of U(1)T
emergent gauge theory.21

There is a final similarity of the formalisms that is worth indicating. It is appreciated by

CGL in [8, 9] that there is in fact an additional continuous symmetry (at least at linear order

in ‘a’ type fields), cf., Eq. (3.15)[9]. While its origin lies in the discrete transformation (3.1), it

is clear that the transformation Eq. (3.15)[9] corresponds accurately with the U(1)T symmetry

of HLR, c.f., Eq. (5.2)[5]. Note that the hydrodynamic effective action with background U(1)T
flux does not manifest the full symmetry. We believe this to be responsible for CGL and GL

noting that there is a continuous accidental symmetry at ideal fluid level, but not at higher

orders. The analysis of HLR goes beyond the appreciation of this symmetry in three respects:

(i) It shows that the symmetry extends beyond ideal fluids to 7 out of 8 classes of hydro-

dynamic transport, and gives a dynamical symmetry breaking mechanism to explain

dissipation.

(ii) HLR introduce a gauge field associated with this symmetry. In our eyes this has many

useful consequences, the most prominent one being that the characterization of entropy

as a Noether current becomes both manifest and easy to implement.

(iii) We argue that the U(1)T symmetry is in fact gauged. Arguments in favour of gauging

and the issues associated with it were already noted in Appendix B of [4]. Perhaps

the simplest argument for gauging is the use of the machinery of extended equivariant

cohomology. To date, we are not aware of any issue with the symmetry being gauged,

though not all details have as yet been worked out. As indicated in the aforementioned

references, there is likely to be a non-trivial BF type topological theory for the U(1)T
gauge field.

3.2 Of entropy current and KMS shifts

The cleanest identification of the accidental symmetry postulated in [9] with HLR’s U(1)T
follows from GL’s identification of the entropy current as the Noether current associated with

a continuous symmetry that shifts ‘a’-fields by ‘r’-fields. This is the primary reason behind

the introduction of U(1)T in [3]. A crucial insight of that work was indeed that that entropy

current is the Noether current for U(1)T. The analysis there was inspired by adiabaticity

equation mentioned earlier, Eq. (2.12)[3], and how the free energy current in the Landau-

Ginzburg sector of hydrodynamics is a Noether current associated with thermal translations,

see (6.18)[3].
22

21 Note that in the HLR construction, while (3.3) can be used to derive the second law, it is perhaps more

natural to consider their implementation of CPT as the discrete symmetry whose involution with U(1)T gives

the desired (equivalent) results. This has been done in version 2 of [7], see eq. (7.46)[7].
22 Historically, S. Bhattacharyya’s papers [23, 24] on hydrostatic partition functions were crucial for the

development of these ideas by HLR.
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In addition to the action on fields, one would hope that the KMS symmetry action of

GL and U(1)T transformation of HLR would produce the same effect on the effective action.

Indeed, this is true, as can be seen by comparing Eq. (3.3)[9] with the U(1)T transformation

probing spontaneous CPT breaking in a dissipative fluid, Eqs. (5.4)[5] and (5.5)[5]. To be

explicit, the operator Wµ
[9] is what we call the (negative of) the free energy current Na

[5],

defined in (1.3). The agreement appears to be exact in both the total derivative terms, and

in the terms obtained by expanding the effective action to quadratic order in the Adv or ‘a’

type fields (modulo the fact that [9] do not have the U(1)T gauge field).

One can take the similarities between the analyses further. Eq. (3.12)[9] is a slight gen-

eralization of HLR’s adiabaticity equation, as can be seen by comparing it to the free energy

version given in Eq. (2.21)[3] (we recall that this has been the guiding principle behind the

analysis):23

∇σNσ =
1

2
Tµν£βgµν + Jµ · (£βAµ + ∂µΛβ) + ∆ , (3.4)

where ∆ denotes the total (off-shell) entropy production. The structural form of the dissipa-

tive class is governed by a four tensor, T abdiss = 1
2η

(ab)(cd)£βgcd, which defines a positive definite

inner product on maps from the space of symmetric two-tensors to symmetric two-tensors.24

The dissipation then takes the form

∆ =
1

4
η(ab)(cd)£βgab £βgcd . (3.5)

This has been uncovered in Eq. (5.7)[3], first derived in this form from an effective action in

[5], and now been confirmed by GL in Eq. (D26)[9] – all in mutual agreement.

3.3 Of dissipative hydrodynamic action

Thus far we have seen that the underlying symmetries can be shown to match and the basic

results of [9] relating to the entropy current can be matched to the analysis of [3]. Let us

then finally check that the effective actions agree, as it is clear they must at this point.

The hydrodynamic effective actions which we compare are the ones given by GL in

Eq. (D24)[9] and by us in Eq. (4.4)[5]. To guide the eye, let us reproduce the dissipative part

of the latter here:

Swv =
1

4

ˆ
ddσ
√
−g

1 + βeAe

{
− η(ab)(cd) (iFθθ̄|, gcd)β g̃ab + iη((ab)|(cd)) g̃ab g̃cd + . . .

}
, (3.6)

where Grassmann-odd directions of the worldvolume thermal superspace have already been

integrated out, and Ae denotes the U(1)T gauge field in this context. A similar form for the

action has already been advocated in [31]. We can almost immediately see that it is of the

same form as Eq. (D24)[9]:

23 We drop here contributions from anomalies and only account for Abelian flavour charges for simplicity.
24 We are not writing the most general form of ∆ here. See [3] for details.
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• By suitably symmetrizing their first term as described below (3.1), we can convert

X̃µ into g̃µν . This term then is indeed the one expect from the analysis of the eight-

fold Lagrangian (1.2) (second term there). We can be more explicit: the first term

of Eq. (D24)[9], or the second term in Eq. (2.9)[9] are the same as the second term of

Eq. (15.25)[3], which was reproduced from the thermal equivariant cohomology perspec-

tive in Eq. (4.4)[5] (first term there). The only real difference between the action of [9]

and the Class LT Lagrangian are the additional couplings to the U(1)T gauge field (and

the fact that the said gauge field is present in the first place).

• The second term of Eq. (D24)[9] is needed to capture dissipation and corresponds to the

second term in (3.6). Hydrodynamic dissipation is governed by η(ab)(cd) which couples

to a bilinear of the Adv fields g̃ab g̃cd. We can identify the dissipative tensor η(ab)(cd)
[5]

with Wµν,MN
[9].

25 The statements about entropy production Eq. (D31)[9] are then

identified with the previous expressions appearing in Eq. (5.15)[3], or Eq. (5.8)[5].

• Concerning symmetries, in the dissipative phase (characterized by 〈Fθθ̄|〉 6= 0) the con-

tinuous U(1)T symmetry of the action (3.6) is not manifest anymore, as advertised. As

reviewed in Section 3.1, there is a particular Z2 combination of U(1)T transformation

and CPT which probes the breaking of time reversal invariance and can be identified

with CGL’s dynamical KMS symmetry. This is the symmetry which CGL use to derive

(3.6), whereas HLR derive the same action from a covariant superspace approach using

U(1)T equivariance. Both approaches invoke the same Z2 to derive the second law.

In summary, while the approaches are slightly different, the result (D24)[9] is exactly the

same as the central result Eq. (4.4)[5] quoted above, after setting (iF̊θθ̄|, gab)β = £βgab (as

explained in [5]), and dropping the contribution from the U(1)T gauge field Ae.

The physics lesson to be taken from both approaches which recover this result, is the

structure of the couplings between Ret/Av- and Adv/Dif-fields in the SK doubled theory.

Further, the factor i in the second term in (3.6) links convergence of the path integral to

positivity of the dissipative tensor (and hence of entropy production). Note that HLR’s

result (4.4)[5] has more structure on top of the simple matching given above: the presence of

the U(1)T gauge field has useful consequences such as an immediate realization of dissipative

entropy current as being obtainable from a variation with respect to Aa.

4 Conclusion

At a basic level it is gratifying to see the commonalities between the two distinct formalisms

which have in the past few years been developed to tackle the problem of constructing hy-

drodynamic effective actions. There remains more to be done, but we hope that this short

discussion serves to inform interested readers of the current status quo.

25 The tensor Wµν,MN
[9] has two type of indices because it at the same time captures dissipation through

flavour charges. Analogous parametrizations can be found in §5 of [3].
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