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Abstract

Many organisations are composed of multiple departments connected either in series or in parallel,

which may be further decomposed into a number of functions arranged in a hierarchical structure. Several

researchers have successfully used appropriate Data Envelopment Analysis (DEA) modelling techniques

to assess complex structures. However, to our knowledge, no-one has yet examined the case of measuring

and evaluating a parallel network structure combined with a hierarchical one. This paper discusses the

development of a multi-function parallel system with embedded hierarchical network structures. A linear

additive decomposition DEA model and a non-linear multiplicative aggregation DEA model are proposed

as alternatives to evaluate the operating performance of such a structure. The system, the sub-systems,

and the efficiencies of their internal units, as well as their relationships, are identified. The system

efficiency of the additive model is shown to be greater than or equal to that of the multiplicative model.

To verify the applicability of our proposed models, we consider a hypothetical example of the measurement

and evaluation of the performances of several Business Schools across a number of universities. Other

envisaged areas of application of our structure could include supporting the evaluation of the supply chain

management of a firm, or the determination of the most desirable ship design considering maintenance

issues.

∗Corresponding author E-mail address: marios.kremantzis@bristol.ac.uk
†p.beullens@soton.ac.uk
‡lkyrgiakos@uth.gr
§J.H.Klein@soton.ac.uk

1

Manuscript File Click here to view linked References

https://www.editorialmanager.com/seps/viewRCResults.aspx?pdf=1&docID=4252&rev=2&fileID=68268&msid=e5e45a42-73d9-4fe9-9bdf-7fc2fe647572
https://www.editorialmanager.com/seps/viewRCResults.aspx?pdf=1&docID=4252&rev=2&fileID=68268&msid=e5e45a42-73d9-4fe9-9bdf-7fc2fe647572


Keywords Data Envelopment Analysis; network; hierarchical structure; parallel systems; shared inputs

1 Introduction

The purpose of this article is to extend the current literature on the network hierarchical DEA structures.

Our study particularly considers the measurement and evaluation of the performance of several parallel pro-

cesses, wherein each process integrates a multi-function hierarchical structure. Additive decomposition and

multiplicative aggregation DEA models are presented and used in a higher education context to investigate

the areas of weakness of the considered Business Schools.

Data envelopment analysis (DEA) has been extensively exploited as an effective performance evaluation

technique to gain insight into the past accomplishments and future developments of a decision-making unit

(DMU) (Emrouznejad and Yang, 2018). Since the seminal work of Charnes et al. (1978), DEA has

been widely used in various applications, including energy and environment (Zhai et al., 2019), agriculture

(Kyrgiakos et al., 2021), water resource efficiency (Liang et al., 2021), local governments (Amatatsu

et al., 2012), research and development departments (Wang et al., 2013), financial services and banking

(Paradi and Zhu, 2013; Tan et al., 2021; Shi et al., 2021; Li et al., 2022; Kremantzis et al.,

2022b), insurance services (Omrani et al., 2022b), supply chain management (Azadi et al., 2014),

sports (Moreno and Lozano, 2014), international shipping (Gan et al., 2019), inland transportation

(Stefaniec et al., 2020; Wang et al., 2022), hospital efficiency (Dehnokhalaji et al., 2022; Omrani

et al., 2022a), higher education (Ekiz and Tuncer Şakar, 2020; Lee and Johnes, 2021), and many

more. See also Liu et al. (2013) for a review of applications.

Traditional DEA approaches put emphasis on evaluating the most favourable efficiency measure of a

DMU, only by considering its exogenous inputs and outputs. This is referred to as black-box analysis (Kao

and Hwang, 2008). The internal structure of a unit usually consists of several divisions with similar

and/or different functions; they may be interrelated, independent, or a mixture of these, depending on the

objective of the system (Kao, 2014). To enable the study of internal operations, research has extended

DEA models to consider network structures (Färe and Grosskopf, 2000; Kao, 2014; Cook and Zhu,

2014; Zhu, 2020).

The network system differs from the black-box in that it involves more complex structures, thereby

leading to a less systematic illustration (Kao, 2017). In the two-stage tandem system, all inputs used by

a DMU feed into a first stage, producing intermediate outputs that all feed into a second stage, producing

the final outputs of the entire system. Kao and Hwang (2008) proposed that this system efficiency is

decomposed into the product of the efficiencies of the two stages. Real-world cases, however, may extend
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the former structure to a general one, in which the first stage additionally generates final outputs and the

second stage also produces exogenous inputs (Yu and Shi, 2014; Jianfeng, 2015). Extensive research

has explored two-stage network DEA structures, see for example Chen et al. (2012), Despotis et al.

(2016), Guo et al. (2017), and Kremantzis et al. (2022a).

The above-mentioned systems have a series structure, in that they operate interdependently. In other

types of networks, the internal divisions are placed in parallel without impacting one another (Kao, 2012).

There are two classes of parallel systems, based on their functions. Multi-component systems involve the

assessment of DMUs with multiple divisions of the same function (Kao, 2009b). The second class focuses

on the multi-function systems, in which the internal divisions separate their operations by consuming their

own inputs, although it is a common practice to also share resources (Kao, 2017). Extensive research

has examined such systems in various applications, including the performance evaluation of physics and

chemistry departments in UK universities (Beasley, 1995), the assessment of commercial banks in Iran

(Jahanshahloo et al., 2004), the maximisation of sales of Portuguese retail stores (Vaz et al., 2010),

the evaluation of the operational efficiencies of multiple railway firms in China (Bian et al., 2015), and

the impact of coal-fired power plants on pollution-generating processes (Lozano, 2015).

The investigation of the internal composition of a production system enables the improved use of the

DEA approach (Gan et al., 2019). However, treating the internal components of a system as black-boxes,

continues to be widespread. This paper highlights this issue, considering the context of a parallel system.

For example, the department of marketing at university X has two independent functions, teaching and

research. If their internal operations are neglected, it cannot identify the potential sources of inefficiency,

the way the inputs are further shared, and those layers with a beneficial impact on the respective section. To

remedy these issues, each sub-system could be further split into sub-subsystems, and so on, to a reasonable

level of detail. In a university department, one may want to identify sources of (in)efficiency down to the

level of teaching programmes, for example.

The hierarchical structure has an eminent position in contemporary organisations. It can, inter alia,

signify the organisational culture and dynamics, and coordinate the responsibilities of people across several

departments and levels. Nevertheless, such a structure has to our knowledge not paid significant attention to

exploring the internal operations of a network system, and in particular of a parallel system. In a university,

a faculty typically operates as multiple parallel departments, each of which can be further hierarchically

structured across research, teaching, and enterprise.

Some approaches in DEA have systematically examined the hierarchical structures. Kao (2015), for

instance, developed a relational model for a single-stage hierarchical structure to measure both the overall

system and its divisions’ efficiencies at the same time. He argued that this structure is identical to a parallel

system (Kao, 2009b), in that the system efficiency is decomposed into the weighted arithmetic average
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of the efficiencies of the units at the bottom level. Kao (2015) optimised the efficiency of the overall

production system, considering only the constraints corresponding to the terminal divisions. Li et al.

(2020) focused on the same hierarchical structure by additionally optimising the efficiencies of the terminal

divisions as opposed to Kao (2015). Zhang and Chen (2019) extended the concept of Kao (2015) to a

generalised single-stage hierarchical structure wherein all internal units across the different levels can reflect

a two-stage tandem system. Gan et al. (2019) suggested a general two-stage series process, in which

each stage is no longer treated as a black-box, but is further elaborated into a hierarchical structure with

multiple layers. They argued that a single-stage hierarchy cannot really correspond to complex production

processes. A number of studies have been reported in this direction, such as Castelli et al. (2004), Cook

and Green (2005), Meng et al. (2008), Bod’a et al. (2020), and Yu et al. (2021). We summarize

the core literature, relevant to network-hierarchical DEA structures, in Table 1.

A real-life organisation is likely to consist of several departments that could be further extended into a

number of distinctive tasks, arranged either in sequence or in parallel. To better reflect the reality, we claim

that these tasks can be then ordered as multi-layer hierarchical structures. These structures demonstrate

that the strategic, tactical, and operational decisions cannot be made across the same level, by the same

resources. The above case contributes to a more complex network system with embedded hierarchical

structures. Gan et al. (2019) adopted such a structure, enabling the initial tasks to be interdependent

(i.e., to be connected in series). The primary difference between our proposed system herein, against that

of the earlier work of Gan et al. (2019) is that we seek to optimise the performance score of a system,

in which the departments operate in parallel (i.e., they act independently from one another) incorporating

as well a multi-function hierarchical structure. In the current study, we propose an additive decomposition

DEA model and a multiplicative aggregation DEA model to measure and evaluate the operating performance

of DMUs with a parallel multi-layer multi-function hierarchical structure. The proposed structure seeks to

address the weaknesses of the traditional black-box DEA model and the parallel system of Kao (2012).

The black-box model evaluates the system while ignoring its internal operations. Although in Kao (2012)

the efficiency scores of the internal parallel sub-systems are obtained, there are no computations on the

efficiencies of the units within the internal parallel sub-systems. For the aforementioned reasons, this study

contributes on the following points: a) it enhances the discriminatory power due to the increasing number

of restrictions in the proposed DEA models (Kao and Liu, 2019), and b) provides the methodology for

estimating performance scores for the overall system, parallel sub-systems and their internal units arranged

into a hierarchical format. Therefore, our proposed structure is shown to be a more accurate reflection of

the entire production/operating process of several large scale organisations.

The remainder of the paper is organised as follows. Section 2 briefly describes the methodological back-

ground. Section 3 proposes new models to evaluate DMUs with multi-function parallel network hierarchical
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structure. Several properties of such a system are also analysed. Section 4 validates the proposed models

with a hypothetical application in the higher education sector. Finally, Section 5 presents conclusions and

further research.

Table 1: Related literature on network-hierarchical DEA systems.

Type of network Efficiency measurement Area of application

Black-box DEA model SS n/a n/a
Kao (2012) MCP D higher-education
Kao (2015) SSH D higher-education

Lozano (2015) MFP SBM pollution generation
Lu et al. (2016) G2 D investment trust corporations

Gan et al. (2019) G2H D international shipping industry
Zhang and Chen (2019) SSHMS D & A high-technology

Li et al. (2020) 2LH × electric power generation
This Paper MFPH D & A higher-education

D: decomposition, A: aggregation, SBM: slacks-based measure, SS: single-stage system, MCP: multi-component

parallel system, SSH: single-stage hierarchical system, MFP: multi-function parallel system, G2: general two-stage

system, G2H: general two-stage system with integrated hierarchies, SSHMS: single-stage hierarchical system with

integrated multi-stage series processes, 2LH: two-level hierarchical system, MFPH: multi-function parallel system

with integrated hierarchies

2 Methodological Background

In this section, we explore the network nature of two established systems: the parallel with shared inputs,

and the single-stage hierarchical structure. These will ease the presentation of the advanced structure and

its mathematical models proposed in Section 3.

2.1 A parallel system with shared inputs

In a real-life application, the core of a production system may be composed of multiple divisions with

distinctive functions, operating independently among themselves. Such a system tends to be a more accurate

picture of the reality, once joint inputs, shared by a number of divisions, are involved, other than their own

inputs. Beasley (1995) and Molinero (1996) proposed a system with p parallel processes or divisions.

In this system, see also Figure 1, the Xij , X
S
lj and Yrj are the ith dedicated input value, the lth shared

input value, and the rth final output value, respectively, of DMUj (j = 1, 2, ..., n). Let M = {1, 2, ...,m},

Q = {1, 2, ..., q}, and S = {1, 2, ..., s} be the index sets associated with the dedicated inputs, the shared

inputs, and the final outputs, respectively. The division k (k = 1, 2, ..., p) of DMUj utilises the division-

dedicated input i with value X
(k)
ij , i ∈ I(k), M =

⋃
k∈P I

(k) such that I(k) ∩ I(i) = ∅, ∀ k, i ∈ P , and a
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proportion α
(k)
l of the shared input l ∈ Q with value XS

lj , to produce the final output r with value Y
(k)
rj ,

r ∈ O(k), S =
⋃

k∈P O
(k) such that O(k) ∩ O(o) = ∅, ∀ k, o ∈ P . In such a system, the total division-

specific and shared inputs consumed, and the total outputs produced by the p divisions of DMUj are

Xij =
∑p
k=1X

(k)
ij , XS

lj =
∑p
k=1 α

(k)
l XS

lj , and Yrj =
∑p
k=1 Y

(k)
rj , respectively.

Figure 1: Parallel system with shared inputs

To measure the performance of the overall system of the target DMUo, Beasley (1995) introduced and

later Kao (2012) and Kao (2017) validated the following model under constant returns to scale:

Eo = Max

s∑
r=1

µroYro

subject to

m∑
i=1

νioXio +

q∑
l=1

tloX
S
lo = 1,

∑
r∈O(k)

µroY
(k)
rj − (

∑
i∈I(k)

νioX
(k)
ij +

q∑
l=1

tloα
(k)
l XS

lj) ≤ 0, ∀ j, k,

tlo, νio, µro ≥ ε, ∀ l, i, r,

(1)

where tlo, νio, and µro are the positive optimal multipliers, and ε is an infinitesimal non-Archimedean

number. According to the relational model (1), the overall performance score of the evaluated DMU to be
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maximised is the ratio of the total outputs to that of inputs. It is also required that the aggregation of

outputs should not exceed the aggregation of inputs, for every internal division. In such a model, α
(k)
l is a

parameter that is objectively designated by the decision maker (possibly based on historical data) prior to

solving the corresponding mathematical model. It is also ensured that the sum of the proportions of the lth

shared input is 1. However, if it is treated as the most favourable value, reflected from the data, then it is

additionally essential to involve the following constraints: L(k)
lo ≤ α

(k)
l ≤ U (k)

lo ,
∑p
k=1 α

(k)
l = 1, and α

(k)
l ≥ 0, ∀ l, k.

At optimality, the system efficiency is calculated as Eo =
∑s
r=1 µ

∗
roYro/(

∑m
i=1 ν

∗
ioXio +

∑q
l=1 t

∗
loX

S
lo), and the

division efficiencies as E(k)
o =

∑
r∈O(k) µ∗roY

(k)
ro /(

∑
i∈I(k) ν∗ioX

(k)
io +

∑q
l=1 t

∗
loα

(k)
l XS

lj). A property of this structure

is that the system efficiency equals to the weighted average of its division efficiencies (Kao, 2009b).

To the best of our knowledge, the internal divisions of such a commonly used structure are still treated

as black-boxes. This may hinder our efforts to gain further insight on more complex and realistic cases,

regarding the activities of a department and the mechanisms behind a core business task.

2.2 A single-stage hierarchical structure

A relatively recent network system is that of a hierarchical structure, embedded either in a single-stage or

in a general two-stage series network. Its adoption may help the investigation of the operational procedures.

As discussed in Section 1, Kao (2015) proposed a relational model to evaluate the performance of the

overall system and its internal units, reflecting a single-stage hierarchical structure with three levels.

Consider a system with the general hierarchical structure shown in Figure 2 (Kao, 2017). The system

has q levels and is an extension of the three-level system of Kao (2015). The first level, for example,

consists of p(1) divisions, each of which is decomposed into several divisions at the follower level. The kth

level (k = 2, 3, ..., q) has a total of p(k) − p(k−1) divisions subordinated to the p(k−1)− p(k−2) divisions at the

(k − 1)th level. Denote P [1] = {1, 2, ..., p(1)} and P [k] = {p(k−1) + 1, ..., p(k)}, as the sets of the divisions in

the first and the kth level (k = 2, 3, ..., q), respectively. Moreover, let S(l) be the set of divisions viewed as

subordinates to division l. If S(l) = ∅, then l is referred to as terminal. Let T denote the set of the terminal

divisions. They are enabled to generate the outputs, while receiving inputs allocated from their parent unit

(the immediate predecessor). On the other hand, the intermediate units i.e. the non-terminal divisions

cannot produce outputs themselves, but they can distribute their inputs to their subordinate divisions at

the next level.

In such a single-stage system, let Xij and Yrj be the ith input (i = 1, 2, ...,m) and rth output (r =

1, 2, ..., s) for the DMUj (j = 1, 2, ..., n). Division l distributes its inputs X
(l)
ij , i ∈ I(l), received by its

parent unit, to its subordinate divisions ξ ∈ S(l), and collects the outputs Y
(l)
rj , r ∈ O(l) received from its

subordinate divisions. Hence, in mathematical terms we have X(l)
ij =

∑
ξ∈S(l)X

(ξ)
ij and Y

(l)
rj =

∑
ξ∈S(l) Y

(ξ)
rj .

Kao (2015) developed the relational input-oriented model (4.2) to optimise the efficiency score of the
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target DMUo arranged as a multi-layer hierarchical structure within a single-stage system.

E′o = Max

s∑
r=1

µroYro

subject to

m∑
i=1

νioXio = 1,

∑
r∈O(l)

µroY
(l)
rj −

∑
i∈I(l)

νioX
(l)
ij ≤ 0, l ∈ T, ∀ j,

νio, µro ≥ ε, ∀ i, r.

(2)

To avoid redundancy, Kao highlighted that only the terminal divisions need to be taken into account. In

mathematical symbols, l ∈ T . One of the properties of the system is that its overall efficiency is decomposed

into the weighted average of those of the terminal divisions. To apply model (2), we should ensure that all

DMUs have the same hierarchical structure. In particular, for every DMU, a unit at the leader level should

have the same number of subordinate units at the follower level, operating different functions.

In Section 3.1, the scenario of the integration of such a hierarchical structure into the internal divisions

of a parallel system with shared inputs will be thoroughly discussed. This direction can successfully enhance

the performance measurement in more complex systems within the production and operations management.

Figure 2: General single-stage hierarchical structure
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3 Models Development

Real-life companies can have a complex corporate structure. The complexity corresponds to their numerous

(tangible and intangible) resources, either being interactive or entirely independent, in any department. The

utilities of such a structure are to successfully adapt to the constant changes of the internal and external

environment, to comply with customers’ requirements, and to minimise fixed and variable costs.

There are at least three separate (traditional single-stage and network) production systems, proposed in

the DEA-literature, that have intertwined with multi-layer hierarchical structures: (i) a three-level multi-

function hierarchical structure embedded in the core of a single-stage system (Kao, 2015), (ii) a three-level

with two-stage processes hierarchical structure embedded in a single-stage system (Zhang and Chen,

2019), and (iii) a multi-level hierarchical structure integrated into an operating stage of a general two-stage

series system (Gan et al., 2019). In the current study, we extend the above list by considering the case of

several parallel processes, wherein each sub-system integrates a multi-function hierarchical structure. The

new system is introduced in Figure 3.

3.1 Parallel-hierarchical network DEA model

Based on the consolidated idea of Kao (2015), the evaluated DMUs should have the same network-

hierarchical structure; this can set the basis for a less demanding comparison amongst them. We have

combined the ideas developed in Sections 2.1 and 2.2 into a situation like in Figure 3. From the perspective

of Figure 3, the sub-systems of a system (DMU) must execute different operations, and each sub-system is

obliged to have the same function with its counterpart in each of the other DMUs. In addition, the hierarchi-

cal structures of the different sub-systems of a DMU may vary in terms of the number and the arrangement

of their internal units. However, the hierarchical structure of a certain sub-system of DMUj (j = 1, 2, ..., n)

should be identical with the counterpart structure of the sub-system in each of the remaining DMUs.

On a macro level, the proposed system consists of two successive layers. The external one is associated

with the action of retrieving managerial data from the entire system. This examines the overall performance

of the DMU under consideration. The system applies m sub-system specific inputs and q shared inputs to

generate s final outputs. Subsequently, in the interior part of the system, we detect p sub-systems connected

in parallel, that is they are independent among each other and they cannot typically exchange information.

A sub-system k (k = 1, 2, ..., p) consumes the dedicated inputs X
(k)
ij , i ∈ I(k) ⊆ {1, 2, ...,m}, and the shared

inputs α
(k)
l XS

lj (l = 1, 2, ..., q) to generate the final outputs Y
(k)
rj , r ∈ O(k) ⊆ {1, 2, ..., s}. The internal

parallel divisions neither utilise endogenous inputs nor produce endogenous outputs. This layer evaluates

the performance of each department/task, which is an integral part of the whole system.

On a micro level, in the interior of a sub-system, we identify a three-level multi-function hierarchical
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structure. The top level 0 (sub-system k) has two subordinate units, labelled (1) and (2), performing

distinctive functions, at level 1. Functions (1) and (2) have in rotation three subordinate units (1.1), (1.2),

and (1.3), and two subordinate units, (2.1) and (2.2), respectively, at level 2. Only unit (2.2) has two sub-

units (2.2.1) and (2.2.2) at the bottom level 3. The internal units (1.1), (1.2), (1.3), (2.1), (2.2.1), and (2.2.2)

are characterised as terminal, since they cannot be further broken down into several subordinate units. Note

that the hierarchical structure presented herein is indicative and may be subject to modifications, reflecting

the respective business environment. The internal unit u (u = 1, 2, 1.1, 1.2, 1.3, 2.1, 2.2, 2.2.1, 2.2.2) of sub-

system k of DMUj allocates the sub-system specific inputs X
(k)u
ij , i ∈ I(k), and a proportion θ

(k)u
l of the lth

shared input XS
lj , received by its parent unit, to its subordinate units at the follower level, and collects the

outputs Y
(k)u
rj , r ∈ O(k), received from its subordinate units.

Taking the structure of the above system into account, we obtain the following equalities:

(i) Xij =
∑p
k=1X

(k)
ij =

∑p
k=1(X

(k)1
ij +X

(k)2
ij ) =

∑p
k=1(X

(k)1.1
ij +X

(k)1.2
ij +X

(k)1.3
ij +X

(k)2.1
ij +X

(k)2.2
ij ) =∑p

k=1(X
(k)1.1
ij +X

(k)1.2
ij +X

(k)1.3
ij +X

(k)2.1
ij +X

(k)2.2.1
ij +X

(k)2.2.2
ij ), ∀ i, j,

(ii) XS
lj =

∑p
k=1 α

(k)0
l XS

lj =
∑p
k=1(

∑2
k1=1 β

(k)k1

l α
(k)0
l XS

lj) =∑p
k=1(

∑1.3
k2=1.1 γ

(k)k2

l β
(k)1
l α

(k)0
l XS

lj +
∑2.2
k3=2.1 γ

(k)k3

l β
(k)2
l α

(k)0
l XS

lj) =∑p
k=1(

∑1.3
k2=1.1 γ

(k)k2

l β
(k)1
l α

(k)0
l XS

lj + γ
(k)2.1
l β

(k)2
l α

(k)0
l XS

lj +
∑2.2.2
k4=2.2.1 δ

(k)k4

l γ
(k)2.2
l β

(k)2
l α

(k)0
l XS

lj), ∀ l, k, j,

(iii) Yrj =
∑p
k=1 Y

(k)
rj =

∑p
k=1(Y

(k)1
rj + Y

(k)2
rj ) =

∑p
k=1(Y

(k)1.1
rj + Y

(k)1.2
rj + Y

(k)1.3
rj + Y

(k)2.1
rj + Y

(k)2.2
rj ) =∑p

k=1(Y
(k)1.1
rj + Y

(k)1.2
rj + Y

(k)1.3
rj + Y

(k)2.1
rj + Y

(k)2.2.1
rj + Y

(k)2.2.2
rj ), ∀ r, j.
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Figure 3: An embedded hierarchical network structure within a multi-function parallel system

To model the proposed network-hierarchical structure, we adopt two main properties relevant to the
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network relational model conceptualised by Kao (2009a) and Kao (2015). We, firstly, assume that the

same factor, either the sub-system dedicated inputs Xij , the shared inputs XS
lj or the outputs Yrj , has the

same weight νio, tlo, and µro, respectively, no matter which process (system, sub-system or internal unit of the

integrated hierarchy) it corresponds to. This is a common assumption of a relational model within network

DEA (Kao, 2009a). Furthermore, the system cannot be handled anymore as a whole unit, but rather

as a network with three successive layers, whose operations should be taken into consideration. Therefore,

the aggregate output should be less than or equal to the aggregate input for each internal (sub-system or

hierarchy) or external (system) process, for each DMU. Our objective function aims to maximise the ratio of

the aggregated amount of final outputs to that of the inputs (both the sub-system dedicated and the shared

inputs) for the system, visible from the outside.

The typical ratio-form input-oriented network-hierarchical DEA model under constant returns to scale

for DMUo can be described as follows:

EHNo = Max

∑s
r=1 µroYro∑m

i=1 νioXio +
∑q
l=1 tloX

S
lo

subject to

s∑
r=1

µroYrj − (

m∑
i=1

νioXij +

q∑
l=1

tloX
S
lj) ≤ 0, ∀j,

∑
r∈O(k)

µroY
(k)
rj − (

∑
i∈I(k)

νioX
(k)
ij +

q∑
l=1

tloα
(k)0
l XS

lj) ≤ 0, ∀j, k,

∑
r∈O(k)

µroY
(k)k1
rj − (

∑
i∈I(k)

νioX
(k)k1
ij +

q∑
l=1

tloβ
(k)k1

l α
(k)0
l XS

lj) ≤ 0, ∀j, k, k1 = 1, 2,

∑
r∈O(k)

µroY
(k)k2
rj − (

∑
i∈I(k)

νioX
(k)k2
ij +

q∑
l=1

tloγ
(k)k2

l β
(k)1
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k2 = 1.1, 1.2, 1.3,

∑
r∈O(k)

µroY
(k)k3
rj − (

∑
i∈I(k)

νioX
(k)k3
ij +

q∑
l=1

tloγ
(k)k3

l β
(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k3 = 2.1, 2.2, (3)

∑
r∈O(k)

µroY
(k)k4
rj − (

∑
i∈I(k)

νioX
(k)k4
ij +

q∑
l=1

tloδ
(k)k4

l γ
(k)2.2
l β

(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k4 = 2.2.1, 2.2.2,

p∑
k=1

α
(k)0
l = 1,

2∑
k1=1

β
(k)k1

l = 1,

1.3∑
k2=1.1

γ
(k)k2

l = 1,

2.2∑
k3=2.1

γ
(k)k3

l = 1,

2.2.2∑
k4=2.2.1

δ
(k)k4

l = 1, ∀ l, k,

L
(k,n)
l ≤ α(k)0

l /α
(n)0
l ≤ U (k,n)

l , ∀ l, k = 1, ..., p, n = 1, ..., p, k 6= n,

L
(k)1,2
l ≤ β(k)1

l /β
(k)2
l ≤ U (k)1,2

l , ∀ l, k,

L
(k)2.1,2.2
l ≤ γ(k)2.1l /γ

(k)2.2
l ≤ U (k)2.1,2.2

l , ∀ l, k,

L
(k)k2,n2

l ≤ γ(k)k2

l /γ
(k)n2

l ≤ U (k)k2,n2

l , ∀ l, k2 = 1.1, 1.2, 1.3, n2 = 1.1, 1.2, 1.3, k2 6= n2,

L
(k)2.2.1,2.2.2
l ≤ δ(k)2.2.1l /δ

(k)2.2.2
l ≤ U (k)2.2.1,2.2.2

l , ∀ l, k,

α
(k)0
l , β

(k)k1

l , γ
(k)k2

l , γ
(k)k3

l , δ
(k)k4

l ≥ 0, tlo, νio, µro ≥ ε, ∀ r, i, l, k, k1, k2, k3, k4,
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where νio, tlo, and µro are ensured to be positive, by integrating the small non-Archimedean parameter

ε. In model (3), there are four groups of constraint sets. The first group (first constraint set) reflects

the entire system. The second group (second constraint set) is pertinent to the performance of each sub-

system k. The third group (from third to sixth constraints sets) illustrates the operations of each of the

internal units of the hierarchical structure embedded into sub-system k. For a unit at a certain level,

the aggregation of outputs produced by its subordinate units at the follower level should not exceed the

aggregation of inputs allocated to it by its parent unit. For example, regarding the unit (2.2) of level 2, it

ought to satisfy the constraint
∑
r∈O(k) µroY

(k)2.2
rj − (

∑
i∈I(k) νioX

(k)2.2
ij +

∑q
l=1 tloγ

(k)2.2
l β

(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k.

The final group (remaining constraints sets) indicates that the proportion of the shared input allocated

to the respective internal unit of sub-system k should be treated as a variable. In other words, it seeks

for the optimal most favourable value. For instance, with respect to the proportion variable δ
(k)k4
l , two

constraint sets are formulated to reflect its dynamics: (i) the
∑2.2.2
k4=2.2.1 δ

(k)k4

l = 1, ∀ l, k, denotes that the

total sum of the proportions of shared resources allocated to the internal units of the third level should be

1, and (ii) the L(k)2.2.1,2.2.2
l ≤ δ

(k)2.2.1
l /δ

(k)2.2.2
l ≤ U

(k)2.2.1,2.2.2
l , ∀ l, k, illustrates that the ratio of the proportions

of shared resources in that level is bounded from below by L
(k)2.2.1,2.2.2
l and above by U

(k)2.2.1,2.2.2
l . These are

user-specified parameters and typically reflect the requirements of the production.

Model (3) is nonlinear due to its nonlinear objective function and several nonlinear terms, such as

tloα
(k)0
l , tloβ

(k)k1

l α
(k)0
l , and tloγ

(k)k2

l β
(k)1
l α

(k)0
l . With respect to the objective function, we can assign a value

of 1 to the denominator as a constraint, and maximise the value of the numerator. The other nonlinear

terms can be linearised by variable transformations as set out below: tloα
(k)0
l = ν

(k)0
lo , tloβ

(k)k1

l α
(k)0
l = b

(k)k1

lo ,

tloγ
(k)k2

l β
(k)1
l α

(k)0
l = c

(k)k2

lo , tloγ
(k)k3

l β
(k)2
l α

(k)0
l = c

(k)k3

lo , and tloδ
(k)k4

l γ
(k)2.2
l β

(k)2
l α

(k)0
l = d

(k)k4

lo , ∀ l, k, k1, k2, k3, k4.

Thus, we obtain the following linear model (4):

EHNo = Max

s∑
r=1

µroYro

subject to

m∑
i=1

νioXio +

q∑
l=1

tloX
S
lo = 1,

s∑
r=1

µroYrj − (

m∑
i=1

νioXij +

q∑
l=1

tloX
S
lj) ≤ 0, ∀j,

∑
r∈O(k)

µroY
(k)
rj − (

∑
i∈I(k)

νioX
(k)
ij +

q∑
l=1

ν
(k)0
lo XS

lj) ≤ 0, ∀j, k,

∑
r∈O(k)

µroY
(k)k1
rj − (

∑
i∈I(k)

νioX
(k)k1
ij +

q∑
l=1

b
(k)k1

lo XS
lj) ≤ 0, ∀j, k, k1 = 1, 2,

∑
r∈O(k)

µroY
(k)k2
rj − (

∑
i∈I(k)

νioX
(k)k2
ij +

q∑
l=1

c
(k)k2

lo XS
lj) ≤ 0, ∀j, k, k2 = 1.1, 1.2, 1.3,
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∑
r∈O(k)

µroY
(k)k3
rj − (

∑
i∈I(k)

νioX
(k)k3
ij +

q∑
l=1

c
(k)k3

lo XS
lj) ≤ 0, ∀j, k, k3 = 2.1, 2.2, (4)

∑
r∈O(k)

µroY
(k)k4
rj − (

∑
i∈I(k)

νioX
(k)k4
ij +

q∑
l=1

d
(k)k4

lo XS
lj) ≤ 0, ∀j, k, k4 = 2.2.1, 2.2.2,

p∑
k=1

ν
(k)0
lo = tlo,

2∑
k1=1

b
(k)k1

lo = ν
(k)0
lo ,

1.3∑
k2=1.1

c
(k)k2

lo = b
(k)1
lo ,∀ l, k,

2.2∑
k3=2.1

c
(k)k3

lo = b
(k)2
lo ,

2.2.2∑
k4=2.2.1

d
(k)k4

lo = c
(k)2.2
lo ,∀ l, k,

ν
(n)0
lo L

(k,n)
l ≤ ν(k)0lo ≤ ν(n)0lo U

(k,n)
l , ∀ l, k = 1, ..., p, n = 1, ..., p, k 6= n,

b
(k)2
lo L

(k)1,2
l ≤ b(k)1lo ≤ b(k)2lo U

(k)1,2
l , ∀ l, k,

c
(k)2.2
lo L

(k)2.1,2.2
l ≤ c(k)2.1lo ≤ c(k)2.2lo U

(k)2.1,2.2
l , ∀ l, k,

c
(k)n2

lo L
(k)k2,n2

l ≤ c(k)k2

lo ≤ c(k)n2

lo U
(k)k2,n2

l , ∀ l, k2 = 1.1, 1.2, 1.3, n2 = 1.1, 1.2, 1.3, k2 6= n2,

d
(k)2.2.2
lo L

(k)2.2.1,2.2.2
l ≤ d(k)2.2.1lo ≤ d(k)2.2.2lo U

(k)2.2.1,2.2.2
l , ∀ l, k,

tlo, νio, µro, ν
(k)0
lo , b

(k)k1

lo , c
(k)k2

lo , c
(k)k3

lo , d
(k)k4

lo ≥ ε ∀ r, i, l, k, k1, k2, k3, k4.

After an optimal solution (tlo∗ , νio∗ , µro∗ , ν
(k)0∗
lo , b

(k)k1∗
lo , c

(k)k2∗
lo , c

(k)k3∗
lo , d

(k)k4∗
lo ) is obtained for DMUo under the

linear model (4), the efficiencies of the overall system, its sub-systems, and its internal units at all levels of the

hierarchical structure within each sub-system are calculated as follows: (i) EHNo =
∑s
r=1 µro∗Yro/(

∑m
i=1 νio∗Xio+∑q

l=1 tlo∗X
S
lo) (overall system efficiency), (ii) E

(k)
o =

∑
r∈O(k) µro∗Y

(k)
ro /(

∑
i∈I(k) νio∗X

(k)
io +

∑q
l=1 ν

(k)0
lo∗ X

S
lo), ∀ k

(sub-system k efficiency), (iii) E(k1,k)
o =

∑
r∈O(k) µro∗Y

(k)k1
ro /(

∑
i∈I(k) νio∗X

(k)k1
io +

∑q
l=1 b

(k)k1∗
lo XS

lo), ∀ k, k1 (unit

k1 of level 1 efficiency), (iv) E(k2,k)
o =

∑
r∈O(k) µro∗Y

(k)k2
ro /(

∑
i∈I(k) νio∗X

(k)k2
io +

∑q
l=1 c

(k)k2∗
lo XS

lo), ∀ k, k2 (unit k2

of level 2 efficiency), (v) E(k3,k)
o =

∑
r∈O(k) µro∗Y

(k)k3
ro /(

∑
i∈I(k) νio∗X

(k)k3
io +

∑q
l=1 c

(k)k3∗
lo XS

lo), ∀ k, k3 (unit k3 of

level 2 efficiency), (vi) E(k4,k)
o =

∑
r∈O(k) µro∗Y

(k)k4
ro /(

∑
i∈I(k) νio∗X

(k)k4
io +

∑q
l=1 d

(k)k4∗
lo XS

lo), ∀ k, k4 (unit k4 of

level 3 efficiency).

3.2 Efficiency decomposition

While developing a network DEA model such as the one proposed in this paper, it could be essential to

consider the concept of the efficiency decomposition. According to Kao (2017), efficiency decomposition is

an approach to measure the system efficiency that utilises exogenous inputs to produce exogenous outputs.

It measures system-division efficiencies and then identifies a mathematical relationship that associates them.

As denoted in Kao (2015), when the internal divisions of a system share the available resources, then they

are indispensable parts of a parallel structure. In this paper, there is a parallel hierarchical structure within

each operating sub-system and a typical parallel structure among the sub-systems of such a network DEA

system. From the perspective of the entire system, its efficiency is decomposed into the weighted arithmetic
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average of those of the sub-systems, where the weight of the sub-system k is defined as the proportion of

the aggregate input consumed by this sub-system in that consumed by all sub-systems (whole system), and∑p
k=1 ω

(k) = 1:

EHNo =

p∑
k=1

ω(k)E(k)
o =

p∑
k=1

(

∑
i∈I(k) νioX

(k)
io +

∑q
l=1 ν

(k)0
lo XS

lo∑m
i=1 νioXio +

∑q
l=1 tloX

S
lo

·
∑
r∈O(k) µroY

(k)
ro∑

i∈I(k) νioX
(k)
io +

∑q
l=1 ν

(k)0
lo XS

lo

) =

∑p
k=1

∑
r∈O(k) µroY

(k)
ro∑m

i=1 νioXio +
∑q
l=1 tloX

S
lo

=

∑s
r=1 µroYro∑m

i=1 νioXio +
∑q
l=1 tloX

S
lo

. (5)

From the perspective of the hierarchical structure embedded into a sub-system, the efficiency of a unit

at level ξ is a weighted average of the ones of the subordinates at level ξ + 1, where the respective weight is

formulated in a similar approach, as before. Hence, the efficiencies of sub-system k, and the internal units

(1), (2), and (2.2) are decomposed as follows:

E(k)
o =

2∑
k1=1

ω(k1,k)E(k1,k)
o =

2∑
k1=1

(

∑
i∈I(k) νioX

(k)k1
io +

∑q
l=1 b

(k)k1

lo XS
lo∑

i∈I(k) νioX
(k)
io +

∑q
l=1 ν

(k)0
lo XS

lo

·
∑
r∈O(k) µroY

(k)k1
ro∑

i∈I(k) νioX
(k)k1
io +

∑q
l=1 b

(k)k1

lo XS
lo

) =

∑
r∈O(k) µroY

(k)
ro∑

i∈I(k) νioX
(k)
io +

∑q
l=1 ν

(k)0
lo XS

lo

, (6)

E(1,k)
o =

1.3∑
k2=1.1

ω(k2,k)E(k2,k)
o =

1.3∑
k2=1.1

(

∑
i∈I(k) νioX

(k)k2
io +

∑q
l=1 c

(k)k2

lo XS
lo∑

i∈I(k) νioX
(k)1
io +

∑q
l=1 b

(k)1
lo XS

lo

·
∑
r∈O(k) µroY

(k)k2
ro∑

i∈I(k) νioX
(k)k2
io +

∑q
l=1 c

(k)k2

lo XS
lo

) =

∑
r∈O(k) µroY

(k)1
ro∑

i∈I(k) νioX
(k)1
io +

∑q
l=1 b

(k)1
lo XS

lo

,

(7)

E(2,k)
o =

2.2∑
k3=2.1

ω(k3,k)E(k3,k)
o =

2.2∑
k3=2.1

(

∑
i∈I(k) νioX

(k)k3
io +

∑q
l=1 c

(k)k3

lo XS
lo∑

i∈I(k) νioX
(k)2
io +

∑q
l=1 b

(k)2
lo XS

lo

·
∑
r∈O(k) µroY

(k)k3
ro∑

i∈I(k) νioX
(k)k3
io +

∑q
l=1 c

(k)k3

lo XS
lo

) =

∑
r∈O(k) µroY

(k)2
ro∑

i∈I(k) νioX
(k)2
io +

∑q
l=1 b

(k)2
lo XS

lo

,

(8)
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E(2.2,k)
o =

2.2.2∑
k4=2.2.1

ω(k4,k)E(k4,k)
o =

2.2.2∑
k4=2.2.1

(

∑
i∈I(k) νioX

(k)k4
io +

∑q
l=1 d

(k)k4

lo XS
lo∑

i∈I(k) νioX
(k)2.2
io +

∑q
l=1 c

(k)2.2
lo XS

lo

·
∑
r∈O(k) µroY

(k)k4
ro∑

i∈I(k) νioX
(k)k4
io +

∑q
l=1 d

(k)k4

lo XS
lo

) =

∑
r∈O(k) µroY

(k)2.2
ro∑

i∈I(k) νioX
(k)2.2
io +

∑q
l=1 c

(k)2.2
lo XS

lo

,

(9)

where
∑2
k1=1 ω

(k1,k) = 1,
∑1.3
k2=1.1 ω

(k2,k) = 1,
∑2.2
k3=2.1 ω

(k3,k) = 1, and
∑2.2.2
k4=2.2.1 ω

(k4,k) = 1.

Based on the above decompositions, the network-hierarchical system efficiency, EHN
o , can in effect be de-

composed as the weighted average of the ones of the terminal units, belonging to the hierarchical structure

of sub-system k:

EHNo =

p∑
k=1

ω(k)E(k)
o =

p∑
k=1

ω(k)(

2∑
k1=1

ω(k1,k)E(k1,k)
o ) =

p∑
k=1

ω(k)(ω(1,k)
1.3∑

k2=1.1

ω(k2,k)E(k2,k)
o + ω(2,k)

2.2∑
k3=2.1

ω(k3,k)E(k3,k)
o ) =

p∑
k=1

ω(k)[(ω(1,k)
1.3∑

k2=1.1

ω(k2,k)E(k2,k)
o ) + (ω(2,k)(ω(2.1,k)E(2.1,k)

o + ω(2.2,k)
2.2.2∑

k4=2.2.1

ω(k4,k)E(k4,k)
o ))] =

p∑
k=1

1.3∑
k2=1.1

w(k2,k)E(k2,k)
o +

p∑
k=1

w(2.1,k)E(2.1,k)
o +

p∑
k=1

2.2.2∑
k4=2.2.1

w(k4,k)E(k4,k)
o ,

(10)

where w(k2,k) = ω(k)ω(1,k)ω(k2,k), w(2.1,k) = ω(k)ω(2,k)ω(2.1,k), w(k4,k) = ω(k)ω(2,k)ω(2.2,k)ω(k4,k),∑p
k=1

∑1.3
k2=1.1 w

(k2,k) +
∑p
k=1 w

(2.1,k) +
∑p
k=1

∑2.2.2
k4=2.2.1 w

(k4,k) = 1.

According to (Cook et al., 2010), such an additive efficiency decomposition approach enables the mea-

surement of the performance of the system under the assumptions of both constant returns to scale and

variable returns to scale.

3.3 Efficiency aggregation

Since the proposed model (4) firstly measures the system and its constituent processes’ efficiencies and then

seeks for a mathematical relationship (the additive form) that links them, it can be classified as an additive

efficiency decomposition model (Kao, 2018). Another known approach for measuring the performance

score of a network DEA system is the efficiency aggregation (Kao, 2017; Zhang and Chen, 2019). In

such an approach, the internal processes are initially aggregated (either in additive or in multiplicative form)

to establish the system efficiency and subsequently to address its performance measurement.

From the perspective of the additive form towards our parallel-hierarchical system, we can observe that

the efficiency decomposition is identical with the concept of the efficiency aggregation. This occurs when

the overall efficiency is defined as the weighted aggregation of the p parallel divisional efficiencies, where

the weight is DMU-specific (Kao, 2016). If the decision-maker selects to build the system efficiency by
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aggregating the sub-system efficiencies in a multiplicative way, then the following multiplicative efficiency

aggregation model (11) is proposed to measure the performance of the structure in Figure 3:

EHN
′

o = Max

p∏
k=1

E(k)
o =

p∏
k=1

(

∑
r∈O(k) µroY

(k)
ro∑

i∈I(k) νioX
(k)
io +

∑q
l=1 ν

(k)0
lo XS

lo

) (11)

subject to the transformed constraints of model (3).

Model (11) differs from model (4) only in terms of its objective function. This illustrates the system

efficiency as the product of those of its sub-systems.

We can additionally determine the relationship of the system efficiencies between the additive decom-

position model (4) and the multiplicative aggregation model (11), based on the inspirational ideas of Kao

(2018) and Zhang and Chen (2019):

EHNo =

∑s
r=1 µroYro∑m

i=1 νioXio +
∑q
l=1 tloX

S
lo

=

p∑
k=1

ω(k)E(k)
o ≥

p∏
k=1

(E(k)
o )ω

(k)

≥
p∏
k=1

E(k)
o (12)

The first inequality from the left holds, since the weighted arithmetic mean is greater than or equal to

the weighted geometric mean. The other inequality is in effect, given that E(k)
o ≤ 1, ∀ k ∈ {1, 2, ..., p} and∑p

k=1 ω
(k) = 1. Hence, the system efficiency of model (4) is always greater than or equal to that of the

multiplicative model (11), and this is also confirmed by the numerical application in Section 4.

4 An illustrative application to higher education

The performance evaluation of the higher education sector has been widely discussed in the literature

(Casu and Thanassoulis, 2006; Kao and Hung, 2008; Kao, 2012; Witte et al., 2013; Kao, 2015;

Moncayo–Mart́ınez et al., 2020; Ghasemi et al., 2020). Kao (2012), for instance, explored the

case of a chemistry and physics university department in UK that consists of two major parallel functions,

the teaching and the research. It was said that each university department has a different proportion of

resources at its disposal to allocate to teaching and research tasks. In such a parallel production system, the

internal parallel divisions are still treated as black-boxes, without enabling the decision-maker to understand

and identify the main sources of inefficiency within teaching and research. Kao (2015) suggested the

measurement and evaluation of a university department in the form of a single-stage hierarchical structure.

In their example, the university department under consideration is decomposed into three major functions:

the enterprise, the research, and the teaching activities. The latter are further divided into work at the

undergraduate and graduate levels. Although Kao’s (2015) study successfully examined the performance
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of such a university department with a single-stage hierarchical structure, it did not pay attention to more

complicated (parallel) network structures. In reality, a university department (e.g., Business School) could

contain multiple parallel sub-departments each of which may consist of a number of internal functions

arranged in a multi-layer hierarchical form. To illustrate the effectiveness of our proposed multi-function

parallel network hierarchical DEA system, we expand the illustrative application presented in Kao (2015)

by looking more closely at multiple parallel academic departments with distinctive functions, each of which

is further viewed as a hierarchical form, see also Section 3.1. An embedded hierarchical structure within

a multi-function parallel system has, to our knowledge, not yet been considered in the existing literature,

particularly to examine the relative efficiency of the different departments and tasks of a Business School.

This study illustrates the proposed models by measuring the operating performance of several Business

Schools across a number of hypothetical universities.

Since our target is to better correspond to a real-life scenario, we assume that a Business School can

be viewed as a more complicated network system; that is, it contains various departments (Accounting,

Banking and Finance, Digital Marketing, Decision Analytics and Risk, Human Resource Management and

Organisational Behaviour, Strategy Innovation and Entrepreneurship), that operate independently without

affecting each other. Each of those departments performs various academic and managerial functions. For

the sake of simplicity, we presume that the Business Schools to be evaluated and compared in this study,

have only three departments: Accounting (A), Banking and Finance (B), and Decision Analytics and Risk

(D). The internal composition of each department is no longer treated as a black-box but takes into account

three main functions: teaching, research, and enterprise. Teaching is further divided into undergraduate

and postgraduate teaching activities. These functions are arranged into a multi-layer hierarchical structure.

Figure 4 illustrates the structure of this parallel network hierarchical system.

In determining departments’ and their internal units’ efficiencies for the considered Business School,

the following two inputs are used: personnel (X1) and expenses (X2). The former represents the number

of academic and administrative staff and the latter, the general expenditure (e.g., staff salaries, capital

investment) and equipment expenditures. With regard to outputs, the following are generated: the number

of students (at an undergraduate and postgraduate level) graduating within a year, the credit-hours taught

(at an undergraduate and postgraduate level) which are derived by the total number of students attending

the unit over all units taught by the department, the total number of publications published by the academic

faculty of the particular department within a year, the grants received from government funding councils,

and the enterprise income obtained from contractual agreements made between the department and the local

businesses with respect to service provision. As for the grants and enterprise income, there is a discussion on

Cook and Zhu (2007) which suggests that they might be either inputs or outputs. Implicitly, this paper

is measuring the Business School performance from the point of view of the University. The University
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identifies these kinds of income as outputs produced by the Business School. Certainly, they may plough

some of that income back into the Business School in the form of salaries and capital investment. However,

salaries and investment are already inputs in this example. All the aforementioned outputs are dedicated,

that is they are related to different functions within a specific department. In particular, students and credits

are associated with teaching, publications and grants with research, and income with enterprise.

Note that the purpose of this application is to showcase whether and how the measurement and evaluation

of DMUs arranged into a parallel multi-layer multi-function hierarchical structure is attained. The data

follows the example of Kao’s (2015) in spirit, and arguably still is a simplification of most real Business

Schools. The study is not intended to represent real Business Schools but instead can help to illustrate how

the application of this methodology may help them to identify areas that may benefit from further attention

towards improving their performance.

Personnel and expenses are shared among the departments and their different functions. They can be

distributed using either pre-determined (fixed) proportions or variable proportions. In our scenario, the

proportions are treated as variables rather than parameters, as it is difficult to specify instances such as, the

amount of time a lecturer dedicates to each function or the amount of money being collected by each of the

departments.

In the spirit of Kao’s (2015) study, we assume that each Business School allocates similar amounts of

resources to its three departments; that is, α(1)0
l
∼= α

(2)0
l
∼= α

(3)0
l , and

∑3
k=1 α

(k)0
l = 1, l = 1, 2, where α

(k)0
l is

the proportion of each resource l allocated to department k (k = 1, 2, 3). The proportions are expressed in

ranges in the form of 0.5 ≤ α(1)0
l /α

(2)0
l ≤ 2, 0.5 ≤ α(1)0

l /α
(3)0
l ≤ 2, and 0.5 ≤ α(2)0

l /α
(3)0
l ≤ 2. Furthermore, every

department allocates approximately 40%, 40%, and 20% of each input to the three major functions; that

is, β(k)1
l
∼= β

(k)2
l
∼= 2β

(k)3
l , and

∑3
k1=1 β

(k)k1

l = 1, l = 1, 2, and k = 1, 2, 3, where β
(k)k1

l is the proportion of each

resource l of department k allocated to each of these functions (k1 = 1, 2, 3). The proportions are expressed

in ranges in the form of 0.5 ≤ β
(k)1
l /β

(k)2
l ≤ 2, 1 ≤ β

(k)2
l /β

(k)3
l ≤ 4, and 1 ≤ β

(k)1
l /β

(k)3
l ≤ 4. We also assume

that the teaching function at each department allocates similar amounts of resources to both undergraduate

and postgraduate levels; that is, γ(k)1.1l
∼= γ

(k)1.2
l , and

∑1.2
k2=1.1 γ

(k)k2

l = 1, l = 1, 2, and k = 1, 2, 3, where γ
(k)k2

l

is the proportion of each resource l of department k allocated to each of these levels (k2 = 1.1, 1.2). The

proportions are expressed in ranges in the form of 0.5 ≤ γ
(k)1.1
l /γ

(k)1.2
l ≤ 2. The values of the shared inputs

and the dedicated outputs for the evaluation of the Business Schools in twenty hypothetic universities are

depicted in Table 2.
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Figure 4: Embedded hierarchical network structure within a multi-function parallel system - The structure
of the hypothetical Business School
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Table 2: Data of the Business School in twenty hypothetic universities

DMU X1 X2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21
1 20 40 35 60 55 25 25 15 70 4 2 15 70 50 5 80 30 50 25 30 50 95 65
2 55 120 40 85 60 35 35 20 15 2 1 45 110 140 15 100 65 120 80 40 65 110 20
3 25 80 25 50 50 25 10 10 15 1 2 20 70 55 5 45 25 15 20 20 30 40 20
4 70 55 30 65 40 25 20 20 25 5 1 25 90 60 5 100 50 95 100 25 30 30 25
5 80 60 45 95 50 35 25 20 65 75 3 35 110 90 10 120 65 30 30 30 75 120 55
6 75 45 30 100 55 65 20 20 50 35 10 30 85 50 5 75 30 20 25 185 70 80 50
7 75 75 15 60 35 20 5 20 10 30 25 25 120 65 10 105 55 30 40 15 60 45 5
8 20 30 20 70 50 30 10 15 15 10 10 20 65 45 5 45 20 30 15 20 60 60 15
9 30 110 55 140 140 315 20 95 90 80 30 60 90 50 5 115 60 70 100 55 95 55 80
10 85 80 60 180 170 250 20 180 160 145 45 20 65 50 5 45 20 35 25 85 115 60 130
11 12 74 10 28 55 55 34 19 90 101 79 24 5 28 25 20 118 122 20 62 53 64 103
12 125 86 37 40 45 91 20 106 92 43 35 77 72 81 50 72 115 65 113 29 72 103 121
13 113 66 88 101 105 128 42 88 109 81 118 128 14 9 100 107 89 19 123 51 104 123 9
14 74 10 126 5 83 20 22 130 25 116 98 74 57 75 57 111 45 85 119 72 83 32 19
15 121 127 40 127 48 20 123 130 106 91 67 65 130 29 109 81 85 5 19 8 46 55 45
16 23 86 125 70 81 130 83 100 14 61 122 93 112 112 75 22 5 33 36 119 47 85 24
17 32 69 83 56 105 34 56 46 104 100 91 25 25 82 99 81 58 82 34 97 28 119 98
18 118 30 81 110 56 12 15 72 85 87 17 36 122 100 126 72 110 74 44 87 34 126 24
19 72 57 130 77 27 115 30 81 27 89 106 40 23 20 12 43 49 68 76 121 100 30 64
20 17 91 105 6 92 105 47 30 85 51 42 45 26 15 24 36 5 53 44 15 112 6 10

4.1 Models from literature

The traditional black-box model has been initially applied to evaluate the operating performance of the

Business Schools, as shown in the second column of Table 3. This model is simply the typical input-oriented

constant returns-to-scale DEA model (Charnes et al., 1978) that makes use of the two exogenous shared

inputs to produce the twenty-one exogenous dedicated outputs. In other words, it entirely ignores all the

internal operations and mechanisms of the system (parallel sub-systems and integrated hierarchies).

According to the second column of Table 3, we can easily notice that there are in total 14 efficient DMUs

and 6 inefficient ones. The efficient DMUs cannot be readily discriminated and this especially matters, when

we consider the problem as a multi-criteria decision-making case. Besides, we are not able to obtain the

efficiencies of the constituent departments of the respective Business School.

The model (1) of Kao (2012), see Section 2.1, has also been implemented to evaluate the performance of

the Business Schools, as illustrated in columns 3-9 of Table 3. The simplification of such a model compared to

the proposed models of this paper is that the parallel sub-divisions of the system are treated as black-boxes.

According to column 3 of Table 3, there are now 8 DMUs with a perfect efficiency score of one, that

is their respective components (departments) are absolutely efficient. There is still, however, the problem

with the lack of discrimination of the efficient DMUs that cannot lead us to a unique ranking order. The

efficiency scores of the three departments (A, B, D) are given in columns 4, 6, and 8, respectively. The

numbers next to each of the efficiency scores (in columns 5, 7, and 9) are the respective weights in the

efficiency decomposition. Using the Business School 15 as an example, its efficiency scores for A (0.9997),
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B (0.5541), and D (0.3353) multiplied by their respective weights of 0.443, 0.309, and 0.248, will obtain the

efficiency score of the whole system, 0.6973. Using the information of the efficiency score, we can conclude

that DMU’s 15 relatively low performance is owed to its weak Decision Analytics and Risk department,

whose operations should be improved. Nevertheless, it is not clear to us which constituent functions of that

department have the millstone of a heavy burden round their necks.

4.2 Results from the parallel-hierarchical network model

To obtain the information regarding the performance of the functions of each department within the consid-

ered Business School, we implement the additive decomposition model (4) and the multiplicative aggregation

model (11). For modelling, running, and analysing our data, we have utilised the programming language

Python 3.7.6 and in particular the version 2.1 of PuLP as the free linear programming library for model (4).

As for the non-linear model (11), we have implemented the GEKKO which is a Python package for machine

learning and optimisation. It is combined with large-scale solvers for non-linear programming models as

well. To define the type of the problem, we have used a non-dynamic mode that sets all differential terms

to zero to calculate the steady-state conditions. The experiments ran on a computer with 16GB RAM.

These models do not only allow us to discriminate the efficient DMUs, but also to simultaneously calculate

the efficiencies of the Business School of interest, its constituent departments, and the functions within the

respective department. The results obtained by models (4) and (11) are respectively illustrated in Tables 4

and 5. The second column in each table shows the efficiency of the respective overall system along with its

rank. The remaining columns provide the efficiency scores with their respective weights of each sub-system

and sub-unit within the sub-system.
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Table 3: Efficiency scores of black-box model and Kao (2012)

Kao’s (2012) Model

DMU Black-box [Rank] Eo [Rank] E
(A)
o ω(A) E

(B)
o ω(B) E

(D)
o ω(D)

1 1 [1] 1 [1] 1 0.429 1 0.215 1 0.356

2 0.9556 [15] 0.7247 [15] 0.4532 0.237 0.8412 0.433 0.7665 0.330

3 0.7124 [20] 0.5499 [19] 0.4551 0.250 0.6689 0.500 0.4065 0.250

4 0.8845 [17] 0.6596 [17] 0.5015 0.320 0.6915 0.320 0.7715 0.360

5 0.8620 [18] 0.7599 [14] 0.7383 0.337 0.7654 0.283 0.7750 0.380

6 1 [1] 0.9077 [11] 0.9247 0.356 0.6951 0.215 1 0.430

7 0.7200 [19] 0.5339 [20] 0.3111 0.250 0.6903 0.500 0.4441 0.250

8 1 [1] 1 [1] 1 0.252 1 0.499 1 0.249

9 1 [1] 1 [1] 1 0.240 1 0.480 1 0.279

10 1 [1] 0.8961 [12] 1 0.400 0.7496 0.297 0.9026 0.303

11 1 [1] 1 [1] 1 0.496 1 0.248 1 0.255

12 0.8869 [16] 0.6282 [18] 0.5249 0.249 0.3353 0.296 0.8752 0.455

13 1 [1] 0.8415 [13] 0.8911 0.373 0.8199 0.355 0.8016 0.272

14 1 [1] 1 [1] 1 0.403 1 0.202 1 0.395

15 1 [1] 0.6973 [16] 0.9997 0.443 0.5541 0.309 0.3353 0.248

16 1 [1] 1 [1] 1 0.454 1 0.250 1 0.296

17 1 [1] 1 [1] 1 0.250 1 0.250 1 0.500

18 1 [1] 1 [1] 1 0.283 1 0.467 1 0.250

19 1 [1] 0.9197 [10] 0.9973 0.354 0.7184 0.225 0.9623 0.421

20 1 [1] 0.9823 [9] 1 0.400 0.9116 0.200 1 0.400

The ranks of the efficiency scores of the overall system obtained via our proposed model (4) are also

compared with the overall systems’ ranks of black-box and Kao’s (2012) models. It can be statistically

inferred that the ranks are quite similar, and this is verified by the Spearman rank-order correlation test

with values 0.678 and 0.924, respectively. These are significant at the 0.01 level (two-tailed). The same

situation holds even for our proposed model (11). The results of the correlation analysis further validate

the underpinning of our model in some way.

Using the Business School 18 as an example, its efficiency score for the Accounting (0.4553) is decomposed

into the efficiencies of the teaching (0.7690), research (0.3263), and enterprise (0.2707) multiplied by their

respective weights of 0.333, 0.333, and 0.333. Note that teaching efficiency is further decomposed into the

efficiencies of the undergraduate (0.3069) and postgraduate (1) levels multiplied by their respective weights,

0.333 and 0.667. By the same token, the efficiency scores of the other two departments, Banking and Finance

(0.8045) and Decision Analytics and Risk (0.5141), are identified. Hence, the efficiency scores of the three
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departments multiplied by their respective weights provide the efficiency of DMU 18, which is 0.6446.

The unsatisfactory performance of Business School 18 is mainly due to the Accounting and secondly

to the Decision Analytics and Risk department. If this Business School desires to significantly improve its

efficiency, then it should strengthen its contribution to society (enterprise) along with its research activities,

as far as the A department is concerned. With regard to D department, particular emphasis should be

placed on the enterprise. In summary, this Business School should genuinely pursue constant and long-

term synergies with representatives from the public and private sector towards more impactful and effective

research and educational actions.

As discussed in Section 3.3, the system efficiency of model (4) should be greater than or equal to the

respective one in model (11). By comparing the second columns of Table 4 and Table 5, we validate our

initial assumption. This is further bolstered by the fact that the Business School’s efficiency is the product

of the ones of the three internal departments. For example, DMU’s 18 efficiency (0.1946) is obtained by

multiplying A’s (0.4622), B’s (0.8131), and D’s efficiency (0.5178). With regard to DMU 18, the promising

performance of its B department still has considerable potential for further improvements, through the

upgrade of the teaching methods and the training of the teaching staff, to better support postgraduate

taught modules. The root cause of the problem, however, is located to the A department that should

better adhere to the following guidelines: (i) strengthen its contributions to society, and (ii) provide greater

(financial) incentives to the academic faculty to ensure grants via more powerful research proposals.

5 Conclusions & Future Research

In the current study, we have proposed a new multi-function parallel (network) hierarchical structure to more

accurately reflect the complex internal mechanisms and procedures of large organisations. These typically

consist of multiple departments that could, in turn, be extended into a number of distinctive operational

functions, arranged either in series or in parallel or in a hierarchical structure. These components consume

and generate resources that can be interactive and/or independent.

The conventional black-box model evaluates a company (system), while ignoring its internal operations.

Kao’s (2012) model evaluates the constituent departments (sub-systems) of a company, which are inde-

pendent amongst them. However, it still handles the internal structure of each department as a black-box

case. Kao’s (2015) model has successfully considered the internal processes of a single-stage system as a

multi-layer hierarchical structure, yet it ignores that each department may have its own complex structure.

The above models did not recognise the necessity of assessing a company, in which the network scheme might

intertwine with a hierarchical structure. Gan et al. (2019) are one of the first to adopt such a notion,

enabling the sub-systems to be interdependent. The current study presents an alternative to Gan et al.
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(2019), by proposing an embedded hierarchical network structure within a multi-function parallel system.

In our proposed scheme, the constituent sub-systems act independently from one another accommodating

another class of problems.

In the current study, DMUs have a parallel (network) hierarchical structure. On a macro level, the

external layer is associated with the action of retrieving data from the entire system, whereas the internal

layer from each of the sub-systems connected in parallel. On a micro level, that is the interior part of a

sub-system, we evaluate the constituent units that form a multi-level multi-function hierarchical structure.

To measure and evaluate the performance of DMUs with such a structure, we propose an additive

decomposition model (4) and a multiplicative aggregation model (11). In both models, we obtain the system,

the sub-systems, and their internal units’ efficiencies as well as identify their relationship. In particular, the

efficiency of a unit at a higher level is the weighted average of those of the subordinates at the immediate

lower level; the weight of that unit is the proportion of the input consumed by that subordinate in that

consumed by all subordinates. For the additive model (4), the overall efficiency is decomposed into the

weighted arithmetic average of those of the parallel sub-systems. It can also be expressed as the weighted

average of the efficiencies of the terminal units that belong to the hierarchical structure of each sub-system.

For the multiplicative model (11), the system efficiency is defined as the product of the efficiencies of the

constituent sub-systems. We have also proven that the system efficiency of model (4) is always greater than

or equal to the respective one in model (11).

The performance measurement and evaluation of several Business Schools across a number of universities

illustrates the proposed models. These models allow us to not only discriminate the efficient units, but also

to simultaneously calculate the efficiencies of the Business School of interest, its departments, and the

functions within the respective department. Hence, decision-makers will be enabled to take certain actions

by improving the areas of weakness.

Other areas of application of the proposed structure may include performance evaluation of business

functions such as human resources, accounting and finance, marketing, and supply chain. The supply

chain management of an organisation, for instance, ensures that goods and services get to customers in the

easiest way possible. Such a department could be decomposed into several independent operations such as

production, procurement, logistics, and customer service. These operations could be hierarchically divided

into people’s responsibilities, tasks, and values. The main target is to meaningfully compare the efficiency

of several parallel (network) hierarchical supply chains of different factory branches inside and outside the

country. Identifying and improving the areas of weakness of the most ineffective supply chains, could reduce

operating costs, increase the quality of products, and meet customers’ needs.

Another promising area could be the evaluation of the operating performance of a commercial ship.

Stakeholders from the shipping industry might be interested in, for instance, exploring the most desirable
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ship design associated with a valid scenario, in which the maintenance policy is an integral part. The

corresponding maintenance policy could be operationalised through the various input and output factors.

A ship cannot operate without the effective management of its constituent sub-systems (electrical, diesel

propulsion, lube oil, heavy fuel oil, deck) incorporated within its hull and deck. Because of the complex

layout of the ship, its overall management system can integrate both the multi-function parallel network

and the multi-layer hierarchical structures.

Our methodology could have also supported the assessment of the agricultural sector either in local

or international level. For instance, the extended efforts for increased environmental protection as well

as sustainable resources use, could be achieved through inputs allocation due to the fact that the current

methodology does not assume that the production procedure is a black-box but assesses the internal mecha-

nisms of the process at various levels. However, due to the fact that the proposed model assumes a constant

returns to scale relationship between inputs and outputs, it is not immediately applicable in the agricultural

sector, where variable returns to scale is the most common practice (Theodoridis and Psychoudakis,

2008; Bournaris et al., 2019). In other words, if the amount of the fertiliser used is tripled, the final

production does not increase proportionally. Modifications for embodying variable returns to scale should

be made, to acquire results of greater value for agriculture related professionals (farmers, agromanagers,

agriculturists) and policy makers. The aforementioned example with fertiliser provides another dimension

about the resources overuse, where the amount of unused fertiliser will result in leaching, creating negative

impacts for environment and local communities. By this means, unused fertilisers should be treated as

undesirable outputs of the whole process.

It is also worthwhile to point out that the dataset used in Section 4 was based in part on Kao (2015),

and has been extended by taking random samples for each of the additional output factors that include

integer values in the range of [1 to 330]. The goal of this dataset was to indicate how the theoretical

network hierarchical DEA structure is applied to an illustrative example in the higher education sector.

Other methods used in the literature aim to develop multiple input-output production frontiers and bring

more structure and accuracy in the generation of instances, such as the piecewise Cobb-Douglas and the

cubic polynomial production functions (Banker et al., 1993; Giraleas et al., 2012; Khezrimotlagh,

2022).

Among the models proposed in this study to measure the performance of the multi-function parallel

network hierarchical system, the multiplicative efficiency aggregation model is the only non-linear network

DEA formulation due to its non-linear objective function. Although the majority of non-linear solvers can run

flexibly (Kao, 2018), the model is still considered computationally complex and a global optimal solution

cannot be easily guaranteed. Alternative algorithms can be used by transforming the model into either a

second order cone programming or a semi-definite programming problem, following the spirit of Chen and
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Zhu (2017) and Kuo et al. (2020) or Zhang and Chen (2019), respectively. The aforementioned

techniques lie in the field of convex optimization, see also Boyd et al. (2004) and Zhu (2020).

The discussion of both modelling approaches in this paper is under the constant returns to scale assump-

tion. This can be expanded to variable returns to scale situation for the additive model. Another challenge

for future research could be the evaluation of a system that requires the integration of a hierarchical structure

into other more complex network processes, such as assembly and disassembly, mixed, and dynamic systems

(Cook et al., 2010; Kao, 2016; Kao, 2017). It would also be interesting to develop appropriate DEA

modelling techniques, which will acknowledge that not all competing DMUs have exactly the same internal

structure.

Finally, current research studies the evaluation of the performance of DMUs with a multi-function parallel

network hierarchical structure, only when the data are positive real numbers, and the DEA models are

based on this condition. Future research could relax this assumption by allowing the data points (inputs,

intermediate measures, and outputs) to be imprecise and lie in an interval. Other cases to be investigated

concern missing data or intervals, where some values are more likely to occur over other values. In the

latter case, since there is no information of the probability distributions, fuzzy numbers and mathematical

operations (Zimmermann, 2011) could be used as an alternative option.
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