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In this paper, we study mid-cap companies, i.e. publicly traded companies with less than US$10 billion in 

market capitalisation. Using a large dataset of US mid-cap companies observed over 30 years, we look to 

predict the default probability term structure over the short to medium term and understand which data 

sources (i.e. fundamental, market or pricing data) contribute most to the default risk. Whereas existing 

methods typically require that data from different time periods are first aggregated and turned into cross- 

sectional features, we frame the problem as a multi-label panel data classification problem. To tackle it, 

we then employ transformer models, a state-of-the-art deep learning model emanating from the natural 

language processing domain. To make this approach suitable to the given credit risk setting, we use a 

loss function for multi-label classification, to deal with the term structure, and propose a multi-channel 

architecture with differential training that allows the model to use all input data efficiently. Our results 

show that the proposed deep learning architecture produces superior performance, resulting in a sizeable 

improvement in AUC (Area Under the receiver operating characteristic Curve) over traditional models. 

In order to interpret the model, we also demonstrate how to produce an importance ranking for the 

different data sources and their temporal relationships, using a Shapley approach for feature groups. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Traditional credit risk models cater to individual consumers 

ith empirical models (built by applying statistical or machine 

earning methods to large datasets). In contrast, corporate credit 

isk models are often theory-driven or may include a qualitative 

omponent. Rating agencies play an important role in determining 

orporate credit risk. That rating process is costly, and it also has a 

trong subjective component ( Frost, 2007; Rona-Tas & Hiss, 2010 ), 

hich is often needed because, unlike with consumer credit risk 

odels, the small number of firms may affect the quality of statis- 

ical models. The subjective component typically involves experts 

eciding how many notches to downgrade or upgrade a model- 

enerated rating based on market conditions, recent events, and 

ther criteria they seek to take into account. Although this ap- 

roach is appropriate for large companies, such a qualitative as- 
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essment would not be scalable for the much larger population 

f small to medium-sized companies. Neither could we reapply 

he same quantitative approaches developed for consumer credit 

isk, as the default signal in the corporate setting comes from a 

omplex combination of internal and external market conditions. 

n our work, we seek to remove the subjective component of the 

ating process by incorporating the additional data sources (such 

s market conditions), that would have previously required further 

ualitative assessment, directly into our quantitative deep learn- 

ng models. As more data is collected over time, covering a wider 

ange of market circumstances, the relationships learnt by these 

odels will also evolve. As a result, rating decisions made based 

n these models will be further fine-tuned as well. We use three 

ata sources, i.e. accounting data, pricing data and general market 

ata, as part of a multi-channel deep learning model that predicts 

he default risk of mid-cap companies that are active in debt (bond 

r loan) markets. 

Mid-cap firms (in short ‘mid-caps’) are defined in the US as 

rms with USD 1 to 10 billion market capitalisation and are possi- 

le constituents of the Dow Jones Wilshire Mid-cap index or S&P 

00 Mid-cap index. Their debt has a relatively short legal maturity 
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eriod of around 5 to 10 years (compared to over 20 years for 

arge-caps). The effective maturity of the debt can be as short as 

alf the legal maturity, after considering embedded options and 

oupon rates that tend to be higher than those for large-caps. 

id-caps also tend to differ from large caps in terms of the 

elative credit risk they pose. In corporate debt markets, the mid- 

aps typically hold a non-investment grade credit rating, implying 

igher credit risk. Given that the listed mid-cap companies provide 

ublic data about their financial accounts, stock exchanges publish 

tock prices, and default history is available, lenders have all the 

ata required to construct sophisticated credit risk models for 

hem. 

Despite the availability of such data, building these models 

resents several challenges. First, the credit spreads or prices im- 

lied by the models often differ from what is empirically observed 

termed the ‘credit spread puzzle’ by Amato & Remolona (2003) . 

his means that mid-cap credit risk is not accurately priced, which 

an lead to underestimation of potential losses. A second chal- 

enge is the difficulty in separating credit risk and market risk for 

id-cap firms ( Jarrow & Turnbull, 20 0 0 ). Finally, the covenants in

ebt offerings and embedded options make the maturity and cap- 

tal structure dependent on market conditions ( Liu, Dai, & Wang, 

016 ). All these issues make it difficult for lenders or investors 

o assess risk on a large scale, thus limiting access to credit for 

he companies involved. To address this, governments have es- 

ablished supporting institutions providing financing to mid-caps 

nd small and medium-sized enterprises, such as the European In- 

estment Bank (EIB) in Europe and the British Business Bank in 

he UK. 

Another challenge in building corporate default prediction mod- 

ls lies in the time horizon of the prediction models. Most credit 

isk models study the probability of default over a one-year time 

orizon, due to business practices and regulatory frameworks such 

s the Basel Accords ( Basel Committee on Banking Supervision, 

003 ). However, the time from financial distress to an actual de- 

ault could easily be longer. In the capital requirement models 

ited above, this is reflected by the maturity component of debt, 

ut this is not usually captured by the probability of default (PD) 

odels themselves. Several methods have been proposed to ex- 

end the models to longer horizons ( Altman, Iwanicz-Drozdowska, 

aitinen, & Suvas, 2020; du Jardin, 2015; Duffie, Saita, & Wang, 

007 ). Still, multi-horizon models are not widely implemented due 

o the lack of sufficient historical data under different macroeco- 

omic conditions, changes in distribution of the variables, relation- 

hip drift between explanatory variables over time and changes 

n relationship with the dependent variable ( du Jardin & Séverin, 

012 ). Instead, different models tend to be developed for differ- 

nt respective time horizons, and generally, ensemble models are 

sed for better performance, making the modelling complex. We 

re interested in predicting the probability of default from a short- 

erm horizon of several months to a medium-term horizon of one 

o three years, using a unified model. This is close to the effective 

aturity of these instruments and considers most lenders’ invest- 

ent horizons in this area of the market. 

The techniques used for default prediction modelling have 

volved over time and remain an active area of research ( Dastile, 

elik, & Potsane, 2020 ). Traditionally, popular linear models such 

s the logit model or discriminant analysis require making a large 

umber of discretionary decisions when handcrafting a set of pre- 

ictive features (such as the choice of lookback period and aggre- 

ation functions), as well as making some restrictive assumptions 

bout the distribution of the data or the functional form of the 

elationship between those features and default risk (such as lin- 

arity). In addition, large datasets may also require further feature 

election ( Jones, Johnstone, & Wilson, 2017 ). On the other hand, 

achine learning models allow for a large set of features and can 
2 
andle non-linear relationships, which can produce predictive per- 

ormance gains over linear models. However, integrating these dif- 

erent kinds of (often diverse) data sources remains challenging as 

he process to represent data becomes complex ( Mai, Tian, Lee, 

 Ma, 2019 ). Such data could include non-structured data (such 

s text or audio) and may contain a mix of high-frequency and 

ow-frequency data. Deep learning models ( LeCun, Bengio, & Hin- 

on, 2015 ) can cope not only with large amounts of data, but, us- 

ng techniques such as multimodal learning, they can also han- 

le different types of data effectively ( Ngiam et al., 2011 ). Further- 

ore, they are able to identify non-linear correlations over longer 

ime frames, which other methods could overlook. These proper- 

ies make deep learning a promising approach for the mid-cap de- 

ault prediction setting, as they allow us to use different forms of 

ata alongside each other and capture how they affect default risk 

ithout the need for manual feature creation. 

Within the deep learning community, a variety of model types 

ave emerged. Among these, the transformer-based deep learn- 

ng models have recently produced state-of-the-art results in tasks 

nvolving other sequential data such as text, audio and video 

ata ( Vaswani et al., 2017 ). Unlike earlier deep learning mod- 

ls, transformers do not incorporate the position of a data point 

n a time series as relevant, which is a different design com- 

ared to Long Short-Term Memory (LSTM)-based models. Those 

mploy recurrence as a key feature, using the present input and 

elected past information to arrive at a prediction. Instead, trans- 

ormers use the whole past information along with the present 

o produce their predictions. LSTM models, originally developed 

y Hochreiter & Schmidhuber (1997) , have for some time been 

he common method of choice for time series or sequential 

ata. Therefore, we also include LSTMs in our study as a bench- 

ark against which to compare our proposed transformer-based 

rchitecture. 

Although deep learning can help increase the accuracy of 

odel predictions, interpreting how these predictions are derived 

resents an added challenge. We address this issue in two ways. 

irstly, transformer models allow us to visually interpret the tem- 

oral relationships extracted from the data using attention heat- 

aps. In this paper, however, we put forward a second method 

nd apply a Shapley approach ( Shapley, 1953 ) to quantify the rel- 

tive importance of groups of variables and different lookback pe- 

iods. This will allow us to gain deeper insights into the mid-cap 

isk structure. 

Therefore, the three key research questions addressed in the pa- 

er are: 

1. Can an effective transformer-based model be developed that 

uses accounting, pricing and market data for mid-cap default 

prediction? 

2. Can this architecture accurately predict a term structure for 

the probability of default over a short to medium-term hori- 

zon (3 months to 3 years)? 

3. Which data sources and past time periods contribute most 

to the default risk estimates? 

The remainder of the paper is organised as follows. 

ection 2 presents a literature review on corporate default 

isk modelling, discussing the popular models, studies on spe- 

ific mid-cap issues and relevant machine learning research. 

ection 3 describes the data used in the paper. The proposed mod- 

ls and the benchmark models against which they are compared 

re described in Section 4 . Section 5 discusses the experimental 

esign, performance metrics, the Shapley group method and 

yper-parameter tuning strategies. Section 6 presents the results 

nd highlights some discussion points relevant to mid-cap compa- 

ies. Finally, Section 7 summarises the contributions and suggests 

uture work. 
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. Literature review 

Corporate default prediction research has thus far focused on 

hree types of approaches. All of these have also seen commer- 

ial implementations by rating agencies such as Standard & Poor’s 

S&P), Moody’s and Fitch Ratings. 

The first approach is to build statistical models for default 

rediction, using accounting information from financial state- 

ents and applying econometric techniques. These models initially 

sed univariate analysis ( Beaver, 1966 ), later multivariate analysis 

 Altman, 1968 ), and they continue to be developed to the present 

ay ( Altman et al., 2020 ). S&P and Fitch use this approach commer-

ially and augment the models with expert opinions and industry- 

pecific metrics. There are, however, limitations to these mod- 

ls. Accounting information could be restated by management and 

iscretionary changes limit the predictive power of these models 

hen companies are under financial stress ( Beaver, Correia, & Mc- 

ichols, 2012 ). 

The second set of models are structural models, which use 

 combination of accounting and pricing information, within an 

ption-theoretic framework. Merton (1974) developed the first 

uch model using Black–Scholes option theory. Structural models 

re also used in commercial applications such as Moody’s KMV 

odel ( Crosbie & Bohn, 2003 ). Despite their ability to use current 

arket price information to predict default, there are some lim- 

tations to these models as well. Assumptions on asset volatility 

eed to be made as they are not observable and the firm capital 

tructure needs to be simplified to quantify the value of debt as 

n option on the firm value. Also, default of the firm is endoge- 

ous to the model and occurs when the asset value drops below 

utstanding debt ( Jarrow & Turnbull, 20 0 0 ). 

The third type of models are reduced-form models. They use 

ainly market information and especially credit spread informa- 

ion of public companies, applying arbitrage-free valuation tech- 

iques. Jarrow & Turnbull (1995) were the first to propose such 

odels in which both the interest rate term structure and credit 

pread term structure are stochastic, unlike in previous models 

hat assumed interest rates as fixed. Their main use has been in 

he pricing of credit derivatives of large firms. However, as they 

ely on public trading information and bond prices, they cannot 

e applied to private companies or companies with illiquid trading 

atterns or non-tradeable debt, which makes them unsuitable for 

id-cap companies. 

Mid-cap companies present their own specific challenges to 

ny of these credit risk models. Amato & Remolona (2003) first 

eported the phenomenon of the credit spread puzzle; i.e., they 

ound that the difference between the model-based credit risk esti- 

ates and the empirical risk increases as credit ratings drop below 

nvestment grade, which is where most mid-cap companies are 

ated. De Jong & Driessen (2012) and Lin, Wang, & Wu (2011) have 

uggested the existence of a liquidity premium as one possible 

actor impacting the credit risk estimates for these companies. 

eckworth, Moon, & Toles (2010) found monetary policy shocks to 

e another factor determining credit spreads, together with eco- 

omic conditions. Acharya, Amihud, & Bharath (2013) further ex- 

lain the puzzle by adding shocks to economic conditions through 

iquidity, especially for mid-cap companies with non-investment 

rade ratings. Later studies by Feldhutter & Schaefer (2018) found 

he credit spread puzzle to be more pronounced for high yield or 

id-cap companies, while large firms were less affected. Du, Elka- 

hi, & Ericsson (2019) reduced the difference between model and 

mpirical credit spreads by further improving the structural mod- 

ls, including uncertainty from asset risk. Bai, Goldstein, & Yang 

2020) reject the existence of the credit spread puzzle, but their re- 

ort uses credit default swap spreads, which is a different market 

o the bond market used in previous research. The latter is more 
3

elevant to mid-cap firms as they are much more dependent for 

heir capital on bond and loan markets, compared to equity mar- 

ets. 

The second set of challenges that complicate mid-cap credit 

isk modelling arises from market risk factors. For any firm whose 

ebt is traded, credit risk is not easily separable from market risk. 

his holds even more for mid-cap companies, whose debt is more 

orrelated with equity indices than with treasury rates ( Jarrow & 

urnbull, 20 0 0 ). Credit risk models hence need to incorporate a 

umber of market-related factors and condense that information 

o an effective market representation which can be used to help 

etermine probability of default. 

As the aforementioned studies show, modelling mid-cap credit 

isk is complex and different approaches consider a variety of fac- 

ors. In this paper, we aim to bring together some of these strands 

y looking at accounting factors, general market factors and firm 

quity performance to estimate the probability of default or credit 

isk. We propose to tackle this problem with deep learning models 

nd make a case for why they are more suitable for this task. 

In default or bankruptcy prediction, Tam & Kiang (1992) were 

ne of the first to use (shallow) neural networks, showing they 

ave better performance compared to linear models such as those 

uilt using logistic regression. Also, Zhang, Hu, Patuwo, & Indro 

1999) demonstrated that neural networks are sufficiently robust 

o deal with unseen data. Kim & Sohn (2010) applied Support Vec- 

or Machines (SVMs) to small and medium scale enterprise default 

rediction and reported greater accuracy. Later research continued 

ith ensembles of model predictions. Alaka et al. (2018) reviewed 

ifferent predictive models such as multi-layer neural networks, 

upport vector machines, rough sets, case-based reasoning, deci- 

ion trees, genetic algorithms, logistic regression and discriminant 

nalysis models in the domain of bankruptcy or default prediction. 

hey found that an ensemble of these models performed better but 

hey noted that combining all of these models into a hybrid model 

eeds informed study of the individual models. Apart from ensem- 

les of classifiers, a recent meta-analysis of the literature by Dastile 

t al. (2020) identified another class of techniques that showed 

romising results — deep learning models. 

Compared to the former machine learning techniques, the num- 

er of papers in the area of credit risk modelling that have applied 

eep learning models, such as LSTMs, convolutional neural net- 

orks, and, most recently, transformers, is much smaller but grow- 

ng. Kim, Cho, & Ryu (2022) applied LSTM models to bankruptcy 

rediction for listed US firms between 2007 and 2019, and found 

hat LSTM and ensemble models outperformed other techniques 

n accurately predicting bankruptcies. Since LSTMs are commonly 

sed in other domains as well, we have, therefore, included them 

s one of the benchmark models in our work. Mai et al. (2019) ap-

lied convolutional neural networks to a large dataset containing 

extual data (from the 10-K reports on financial performance and 

isks submitted by company management), along with other ac- 

ounting data, and found that deep learning models performed 

etter. Stevenson, Mues, & Bravo (2021) applied BERT (Bidirectional 

ncoder Representations from Transformers) to predict default in 

icro enterprises. They found textual data provided by a loan ex- 

ert to be predictive of default but that similar information could 

lso be captured by structured data. 

Our approach differs from the above works by considering 

anel data and employing the encoder part of a transformer model 

o analyse such data (as opposed to the textual data to which they 

re more often applied). Vaswani et al. (2017) first developed the 

ransformer model, which introduces a multi-headed self-attention 

echanism. This mechanism eschews recurrence so that the whole 

ata input can be used. Also, it allows interactions between inputs 

hen extracting relationships. Multiple heads also allow different 

elationships to be learnt. Transformer-based models have since 
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ignificantly outperformed LSTM-based models in natural language 

asks ( Lakew, Cettolo, & Federico, 2018 ) and speech-related prob- 

ems ( Karita et al., 2019 ). Furthermore, Wen et al. (2022) reviewed

ecent developments in applying transformers to time series mod- 

lling, where they achieved similar levels of performance in multi- 

ariate time series forecasting and classification tasks. In our prob- 

em setting, the data input is panel data, which is commonly en- 

ountered in the credit risk literature, both in the consumer risk 

omain ( Leow & Crook, 2016 ) or for corporate risk ( Delis, Iosifidi,

 Tsionas, 2020; Mai et al., 2019 ). By applying transformers to such 

ata, this study fills a gap in the literature. 

Hence, the first contribution of our paper is that we are the first 

o propose a transformer-encoder model architecture to accurately 

stimate corporate default risk. Second, we select a framework for 

ultimodal learning that can combine the different data sources 

nd allows for a differential training approach where we can train 

ach model separately. 

Compared to traditional linear models, machine learning mod- 

ls tend to improve predictions but can come at the cost of re- 

uced interpretability, which hinders their application in highly 

egulated areas such as credit risk ( Alaka et al., 2018 ). Transformer 

odels, even though they are complex, are arguably more in- 

erpretable than some other deep learning methods. For exam- 

le, Wiegreffe & Pinter (2019) studied the attention weights af- 

er training the model and found them useful for explaining the 

odel’s predictions. Although these weights can help us under- 

tand the impact of certain variables, we are also interested in 

nderstanding the relative importance of each of the three data 

hannels. For that purpose, we adopt a suitable method based on 

hapley values. Several such methods have been proposed to in- 

erpret a model ( Lundberg & Lee, 2017 ), but as we aim to quan-

ify the importance of a group of (rather than individual) variables, 

e follow the approach by Nandlall & Millard (2019) . In so do- 

ng, we are able to make a third contribution, which is to answer 

uestions about the relative importance of different data sources 

nd study how the strength of these relationships varies over 

ime. 

Our fourth and final contribution is to the credit risk literature, 

s we show how multi-horizon probability of default estimates can 

e produced using a single deep learning model, and how this 

odel produces good results not just in the short term but over 

 medium term of up to three years. 

To benchmark the predictive performance of our proposed 

ransformer model against other methods, we consider a series 

f methods including logistic regression, shallow neural networks, 

achine learning classifiers such as XGBoost, and other deep 

earning alternatives such as LSTMs and Temporal Convolutional 

etworks (TCN). XGBoost, a scalable decision tree-based ensem- 

le learning algorithm developed by Chen & Guestrin (2016) has 

chieved state-of-the-art results in many machine learning com- 

etitions, especially in classification tasks using structured data. 

he same technique applied to bankruptcy prediction also pro- 

uced good results ( Zi ̧e ba, Tomczak, & Tomczak, 2016 ). Second, 

emporal Convolutional Networks (TCN) are another deep learning 

odel that combines a series of techniques used in both sequence 

nd image processing models. TCNs have been successfully used to 

lassify time series data in health ( Lea, Flynn, Vidal, Reiter, & Hager, 

017; Sun, Jia, Yeung, & Shi, 2015 ) and other domains ( Pelletier, 

ebb, & Petitjean, 2019 ). We use the version of TCN developed 

y Bai, Kolter, & Koltun (2018) — a generic architecture that can 

e applied to our task (see Section 4.2 ). Similarly to transformer 

odels, TCNs have not yet been applied to default prediction in 

onsumer or corporate credit risk either, as far as we are aware. 

ence, by comparing our proposed transformer model to several 

owerful benchmark models, we add the necessary robustness to 

he findings of our study. 
4 
. Data 

We collected 30 years of data related to mid-cap companies 

isted in the US from 1990 to 2020, from the following sources: 

RSP/Compustat for accounting data and pricing data, Bloomberg 

nd CRSP for default information, and Datastream for market per- 

ormance data. We exclude financial firms as their leverage and ac- 

ounting measures are different from non-financial firms, following 

he standard practice in the corporate default prediction literature 

 Shumway, 2001 ). To be included in the sample, mid-cap compa- 

ies are required to have a minimum of three years of financial 

ccounting history. For details on how the data is processed, we 

efer to Fig. 1 . 

.1. Data channels 

We distinguish between three different data sources (channels): 

(i) Fundamental channel: This provides quarterly accounting 

data expressed as ratios observed at different time points. 

Sampling is done quarterly instead of over yearly intervals, 

as the latter would miss the accounting periods’ seasonal 

volatility. The quarterly data is annualised using the last 

twelve months’ metric such that all data is comparable. This 

data source is useful in capturing the firm’s state at a spe- 

cific time period or understanding how changes in those ra- 

tios may affect default risk. We refer to Mai et al. (2019) for 

the financial ratios included. 

(ii) Market channel: Quarterly market performance is collected 

over the same time period as the fundamental channel data. 

This data captures general market conditions and includes 

any financial ratios derived by combining accounting and 

market data. We included: the S&P 500 Composite Price In- 

dex; 10-year US Treasury yield index; All corporate bonds 

(ICE Bank of America Corporate Index) and High yield bond 

index (ICE BofA US High Yield index). 

(iii) Pricing channel: Daily high, low and close history of each 

firm’s equity prices. It consists of very few features, but they 

are collected at a much higher frequency than the other two 

channels, providing a detailed record of each firm’s recent 

market valuation history. 

.2. Default definition and reporting event dates 

We define that a firm is in default if any one of the following 

riteria is satisfied: the firm filed for bankruptcy; the company is 

nder liquidation; a credit event has been declared as defined by 

he International Swaps and Derivatives Association (ISDA) which 

ed to the triggering of Credit Default Swaps (CDS); or the firm has 

ailed to pay interest or principal on any of its debt instruments. 

This is a broader default definition than simply identifying de- 

ault on the basis of a bankruptcy filing. It is intended to capture 

ost default scenarios at the earliest opportunity. For example, 

ailure to pay interest or principal is an early indicator of default, 

hich predates a subsequent bankruptcy filing (if any). CDS events 

lso sometimes capture defaults earlier, as the market participants 

ndependently determine them. A CDS trigger might not push a 

ompany towards bankruptcy, but it could mean losses to its debt 

olders. This definition makes the predictive modelling more chal- 

enging as the firm’s financial data might not yet have deteriorated 

o the same extent as with the traditional bankruptcy or liquida- 

ion filing approach. This is a more useful approach as it replicates 

he real-world scenario. 

The timestamp that we record for each reporting event is also 

mportant to note. Here we take a different approach to the lit- 

rature, by using the actual reporting date on which the financial 
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Fig. 1. Data processing. 
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esults are published, which may differ from company to company. 

his approach avoids having to add an extra lag to the financial 

nformation as it is typically done. 

.3. Target vector and data structure 

To be able to predict default over a short to medium-term hori- 

on, we create a multi-label target vector, Y , consisting of binary 

ariables, of the form 

 = [ d e fault 3 m 

, d e fault 6 m 

, d e fault 9 m 

, d e fault 1 y , d e fault 2 y , d e fault 3 y ] , 

ith 1 denoting a default event, or 0 otherwise. We code all sub- 

equent periods as a default from when the default occurred. For 

xample, if default occurred 10 months after the timestamp, the 

ector would hold the values [0 , 0 , 0 , 1 , 1 , 1] . This creates an in-

remental multi-label classification problem, where, as the time 

orizon increases, the class imbalance decreases, but the event be- 

omes harder to predict. 

The observed inputs, X , for each firm are a matrix of dimen- 

ions w × f , where w is the maximum number of historical time 
5 
eriods and f denotes the number of features (input variables) 

n the data. The input variables collected from the three channels 

re further preprocessed using standardisation and by treating out- 

iers and missing data. We normalise the data using median and 

nterquartile values and winsorise the data for values beyond six 

imes the interquartile ranges. This limits the impact of severe out- 

iers on the model parameters. We replace missing values with the 

edian and add dummies to mark those replacements, since re- 

orting gaps more frequently occur when firms are under financial 

tress and, thus, these data might not be missing at random. 

. Models 

In this section, we describe our novel Transformer Encoder 

odel for Panel data (TEP), as well as another recent deep learning 

odel against which it will be benchmarked, i.e. Temporal Con- 

olutional Networks (TCN). We omit describing our other mod- 

ls for brevity. For further information on logistic regression, shal- 

ow neural networks and XGBoost models, we refer the reader to 



K. Korangi, C. Mues and C. Bravo European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 4, 2022;16:51 ] 

H

i

4

u

a

q

l

f

c

n

i

b

f

t

t

s

p

o

c

D

o

o

c

t

a

o

f

s

p

N

l

o

t

i

d

a

g

f

p

t

p

d

t

2

o

a

t

s

s  

o

a

i

o

i

T

f

a

t

l

l

d

r

f

v

i

t

v  

F

d

a

fi

r

l

s

d

A

m

l

astie, Friedman, & Tibshirani (2001) ; LSTM models are explained 

n Goodfellow, Bengio, & Courville (2016) . 

.1. Transformer encoder for panel-data classification (TEP) 

Transformers have thus far been used mainly in the field of Nat- 

ral Language Processing (NLP). These models incorporate a self- 

ttention mechanism to store learnt patterns. When looking at se- 

uential data, this mechanism ensures that each data point is re- 

ated to every other data point in the sequence. The architecture 

urther allows for multiple attention heads, each of which can fo- 

us on a different aspect of the input, thereby extracting complex 

on-linear relationships. This ability makes Transformers different 

n how they handle sequence data. Unlike earlier sequence models 

ased on Recurrent Neural Networks (RNNs), such as LSTMs, trans- 

ormers take the whole sequence as an input and focus on mul- 

iple disjoint sequences to generate patterns. Whereas with NLP 

asks where, depending on the document word count, the input 

equence can be rather long, the sequence here is restricted to 

anel data, which is shorter and so does not face the same mem- 

ry or computation costs. The standard model consists of an en- 

oder and a decoder, as is typical in sequence-to-sequence models. 

uring training, the encoder takes the numerical input and each 

f its heads learns different input aspects, thus creating a higher- 

rder representation. The encoder output is transferred to the de- 

oder. The decoder applies a similar self-attention mechanism to 

he output sequence to generate a representation and another self- 

ttention layer to combine the encoder representation and earlier 

utput sequence representation. This is passed through a dense 

eed-forward network to produce the final representation. 

The type of data that transformers are designed to handle, i.e. 

equence data, makes them suitable not just for natural language 

roblems but also for time-series data and signal processing. In the 

LP setting, the output could be a translated text in a different 

anguage (multi-output) or a sentiment analysis prediction (single 

utput), for example. The language input has a sequence-like struc- 

ure due to the grammar and context of the sentence. Each word 

n a sentence can be seen as analogous to a time period in our 

ata. In natural language applications, each word is converted to 

 vector of integers based on spelling, meaning, and other lan- 

uage attributes. Similarly, for each time period, we have many 

eatures that represent the financial state of the firm. When ap- 
Fig. 2. Transformer encoder archi

6

lied to language tasks, transformers apply multi-headed attention 

o each sentence and learn the sentence’s relationship to the out- 

ut. Here we apply a similar process over time series (sequence) 

ata to learn how to predict default probability. 

Further advances are being made regarding the application of 

ransformers to time series forecasting ( Li et al., 2019; Wu et al., 

020 ). In this paper, we modify the original Transformer, by using 

nly the encoder part to form a representation of the input data 

s shown in Fig. 2 . The encoder representation is a more useful 

ransformation of input data as the representation uses relation- 

hips across different times and also reshapes the data for it to be 

uitable for the task. In Fig. 2 (b), an example with four time peri-

ds of panel data and f features is transformed to a representation 

t each time period with size H, which is the model size parameter 

n the transformer model. 

For natural language tasks, using the encoder representation 

nly has been quite successful as the BERT class of models orig- 

nally developed by Devlin, Chang, Lee, & Toutanova (2018) shows. 

hey use a similar architecture using the encoder part of a trans- 

ormer and a few other deep learning layers specific to a task they 

re being trained for. As our problem is a multi-label classification 

ask, we use the encoder output combined with a max-pooling 

ayer and a dense layer. The max-pooling layer works as a filter 

eaving only those variables that maximise the signals found. The 

ense layer is a feed forward layer which modifies the encoder 

epresentations to suit our prediction target. This way, our trans- 

ormer model encodes our set of time series into several feature 

ectors, which provide a detailed description of the company and 

ts market context. From the original transformer, we also modify 

he initial layer by replacing the embedding layer with a 1D con- 

olutional layer as shown in Fig. 2 (a). This helps us in two ways.

irstly, unlike textual data that needs to be converted to numerical 

ata accessible to the model, the time series data is already avail- 

ble in a numerical format. Secondly, transformer models have a 

xed model size, which ensures a constant size flow of the input 

epresentation through each layer of the model. The initial convo- 

utional layer modifies the time-series input to match the model 

ize of the transformer model. This makes it possible to combine 

ifferent data sources and model outputs, as we will show later. 

s the performance of the transformer proved sensitive only to the 

odel size and number of layers, other aspects of the encoder are 

eft unchanged. 
tecture and representation. 
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Fig. 3. TCN model and multimodal architecture. 
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As we suggested previously, the attention mechanism brings 

ore interpretability to deep learning models. Self-attention in 

ransformers is a more general form of attention, which is particu- 

arly applicable in our case, where we must extract the relationship 

etween tokens in the same sequence. Compared with attention 

n RNNs, where the attention mechanism is generally global, it is 

laced between an encoder and a decoder to weight the encoder 

epresentation against the decoder output. In this paper, we are in- 

erested in the self-attention mechanism within the encoder. The 

rchitecture of RNN models is such that they build up a sequen- 

ial data representation using the gated mechanism and are chal- 

enging to track over the entire period. In contrast, using the self- 

ttention mechanism, transformers are designed to use the com- 

lete input sequence, making them more interpretable. The multi- 

eaded attention mechanism allows different relations to be learnt 

rom the same sequence, as shown in Appendix A . Therefore, we 

elieve transformers are suited to our task or any panel data clas- 

ification tasks. 

.2. Temporal convolutional network (TCN) 

A temporal convolutional network is a generic architecture for 

equence data ( Bai et al., 2018 ) which was found to give better

esults over benchmark models such as LSTMs and provides a good 

rade-off between model complexity and performance. TCNs can 

tore a longer memory than LSTMs and are able to perform better 

hen there are long-term persistencies in the data, as is the case 

or the financial performance of a company where losses or weak 

erformance could persist over time. 

TCNs build up a hierarchical memory over a sequence of data, 

s shown in Fig. 3 (a). Each row is made up of a number of residual

locks. Each residual block is made up of two dilated convolutional 

ayers with weight normalisation and dropout. A dilated convolu- 

ion is a convolution where the filter is applied over an area larger 

han its length by skipping input values with a certain step (d) 

 van den Oord et al., 2016 ). Initially at the input, the TCN looks

t nearby relationships for data points and builds up a representa- 

ion of the data. This process is repeated until we end up with one 

igher-level representation. Unlike transformers that focus on all 

ata simultaneously, TCNs build their representation in a sequen- 

ial manner. This makes them closer to image recognition models 
7 
uch as Convolutional Neural Networks (CNNs) but applicable to 

equential data, including time-series data. 

.3. Multimodal architecture 

One of our paper’s contributions is that we develop a frame- 

ork to add multiple data sources and combine them. To enable 

his, a multimodal approach is proposed, the architecture of which 

s given in Fig. 3 (b). 

We could train this multimodal model in three different ways: 

rain one data channel at a time; or train each model to its in- 

ut but simultaneously; and finally, by using a differential train- 

ng regime. In the first regime, we iterate over each data channel 

nd train the relevant model. Once all the channels are processed, 

he multimodal model is ready for inference. Here the parameters 

f each model should converge closer to their global optima but 

e miss the interactions between data channels. In the second ap- 

roach, we use all data channels so the models learn the interac- 

ions but could converge to local optima as all parameters of all the 

odels are being learnt together. Thirdly, in the differential train- 

ng approach, we combine the earlier two training methods. This 

ind of training approach is used in multi-task training setups ( Liu, 

e, Chen, & Gao, 2019 ), where a single model is trained on dif- 

erent tasks so the model improves its generalisation capabilities. 

ere we have one task but different models and different data. We 

nitially train using the first approach and later train again so the 

odels learn the interactions between different data channels. In- 

tead of allowing all parameters to update, we only update the pa- 

ameters of one or two channels to learn the effect of interactions. 

e chose to freeze the model where there is higher complexity of 

nding a relationship, i.e. the pricing channel, followed by the mar- 

et channel. For the fundamental channel, it is relatively easier to 

nd a relation to the probability of default term structure. Also, up- 

ating only selected parts of the multimodal model improves the 

raining time ( Lu et al., 2015 ). 

The arrows in Fig. 3 (b) highlight the general data flow structure 

rom inputs to outputs. The dotted lines around inputs or mod- 

ls mean they could be combined or run individually based on the 

nalysis that we are looking to run. For example, if we are looking 

o use the fundamental channel data only, the other inputs will be 

isabled, and only one model will be used. The specific model that 

ill be used for this data could be either TEP, TCN or LSTM, but the
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etup is easy to extend to other forms of data and models as well.

he model layer in the architecture generates individual represen- 

ations of its inputs which are processed further with three deep 

earning layers — Concat, Max pooling and Dense layers. These are 

sed in all three approaches of training. The Concat layer combines 

ultiple representations, and the Max layer selects the represen- 

ation with the highest values. The Dense layer uses these values 

o find interactions between these data sources. Among these only 

he Dense layer has parameters that need to be trained. The Dense 

ayer outputs logits which are modified to predictions and are also 

sed to calculate the loss for each batch of data. 

. Model training and experiments 

This section describes the loss function, the Shapley method 

e used for the interpretation of the models, the hyper-parameter 

uning strategy, the optimisation measures used during training, 

nd the two testing strategies used. 

.1. Loss function 

For model training, as we are dealing with an incremental 

ulti-label classification problem, we need to define an appropri- 

te loss metric. We chose to base ours on cross-entropy loss. With 

he last layer of the network outputting the logits ( ̂  y t ) for our re-

pective time horizons (i.e. 3 months to 3 years), we enter each 

f those outputs into a sigmoid cross-entropy with logits function, 

efined as follows: 

 (y t , ̂  y t ) = −(y t ∗ log ( sigmoid ( ̂  y t )) + (1 − y t ) ∗ log (1 − sigmoid ( ̂  y t ))) 

(1) 

here y t denotes the true default outcome (0 or 1) for that out- 

ome period, t . To obtain a loss value for the entire observation, we 

um the loss values over all those time horizons. This loss function 

s different from the typical cross-entropy loss function for multi- 

lass classification, as, instead of only one class having a positive 

utcome, we often observe multiple such outcomes depending on 

hen the default occurred. Note that we do not have strict inde- 

endence among the binary target vector variables as some combi- 

ations are not possible by definition. While we have not enforced 

hat limitation in our current models (which could be done, e.g., 

y penalising the weights), it did not lead to incorrectly specified 

robabilities in our results. 

.2. Shapley variable group importance 

We use Shapley values, a solution concept from game theory, to 

xplain the relative importance of channels and the models’ tem- 

oral dependence ( Nandlall & Millard, 2019 ). Shapley values are 

alculated for the multimodal case by framing the problem in the 

orm of a cooperative game. Playing a game is analogous to using 

he model to predict. Maximising the prediction metric is the ob- 

ective, called the score function. 

The players in the game are the data channels defined earlier. 

f a channel is selected, it is denoted by 1, and 0 otherwise. For 

 channels, the universe of possible combinations is denoted by 

where | U| = 2 G , and each combination is a profile p i where i =
 , 2 , . . . , 2 G . | p i | is the number of channels selected. When | p i | is 1,

he profile is denoted by e i , implying only one channel among the 

 channels is selected. The Shapley set ( Q g ) of a channel g is all

he sets in U in which channel g is not selected ( g th element is 0).

The score function is a characteristic function taking only val- 

es between 0 and 1, a higher score indicating a more favourable 

utcome. While accuracy is often used as a score, in our setting, 

odel performance is more often measured using the Area Under 

he ROC Curve (AUC). A higher AUC value suggests better ability 
8 
o discriminate between defaults and non-default, but unlike accu- 

acy, AUC does not take a zero value (but rather a value between 

.5 and 1), so to turn it into a valid score function, we need to

escale it into the so-called Gini coefficient (equal to 2 ∗AUC-1) and 

se this as our score function. 

The marginal contribution of the i th channel is dependent on 

he profile. For a profile p n where the i th channel is not included, 

he marginal contribution is the difference in score when the chan- 

el is added: 

 (p n , e i ) = s (p n + e i ) − s (p n ) (2)

The Shapley value for channel i , S(i ) , is now defined as 

(i ) = 

∑ 

p n ∈ Q i 
m (p n , e i ) ∗ (| p n | )!(| G | − | p n | − 1)! / (| G | )! (3)

In other words, S(i ) is the (weighted) average contribution of 

he i th channel to the game, weighing all possible combinations to 

hich the channel can be added. A higher score implies a higher 

ontribution of the channel’s data towards the predictive power of 

he model. 

.3. Hyper-parameter tuning 

We used a grid search to tune the hyper-parameters for each 

odel, using a validation dataset covering 20% of the total data. To 

peed up the search, we used parallel processing techniques. 

For logistic regression, we used the saga solver with L2 penalty, 

s it is easier to optimise than the L1 penalty but performed simi- 

arly in our experiments in terms of predictive performance. 

The XGBoost model hyper-parameters were tuned with a grid 

earch for the learning rate {0.001, 0.01, 0.1}, maximum depth {2, 3, 

}, number of estimators {50, 10 0, 250, 50 0} and alpha {0.1,...,0.9}. 

hese were found to be an appropriate choice of parameter ranges 

fter trialling them on the different data channels. 

For the deep learning models, we found the batch size and 

umber of epochs to be less important as we trained the mod- 

ls with early stopping, as explained later in Section 5.4 . The 

hallow neural network consisted of two hidden layers and 

ne output layer. The first two layers were tuned over a dif- 

erent number of units in the range of {50,100,150,200} and 

10,20,30,40,50}, respectively. In the LSTMs, we tuned the num- 

er of units, over the range {16,32,64,96,128,150}, the dropout 

ate {0.1,0.2,0.3} and the optimiser {‘adam’,‘sgd’}. The TCN’s hyper- 

arameters are different as it is a convolutional network-based 

odel. There, we conducted a grid search on the number of 

lters {16,32,64,128}, kernel size {1,3,6}, the activation function 

‘tanh’,‘relu’} and dropout {0.1,0.2,0.3}. Finally, in the proposed TEP, 

he model size and number of layers are the key parameters 

hat need to be determined. We tuned the model size ( M) over 

6,12,18,24,36,48,54,72,84,96,102} and based on validation data per- 

ormance set it to 72. The number of layers ( l) was tuned over 

1,2,3,4,6,12}. Once the layers and model size are fixed, h or the 

umber of heads is defined as M/l. All the other hyper-parameters 

n the model were unchanged from their defaults as the impact of 

urther tuning them proved marginal. 

To select the window size for the accounting input data, we ex- 

erimented by training LSTM and TCN models with different win- 

ow sizes of 4, 8 and 12. These represent lookback periods of 1, 

 and 3 years, respectively, as each year has four quarters of ac- 

ounting data. Both models performed better with larger window 

izes, implying that using a longer time span of financial data ben- 

fits deep learning, and that these methods have the capacity to 

rocess it. The same window size was applied across all models 

nd combinations later on. 

As for the pricing channel, it has daily prices covering the pre- 

ious two years, making the potential lookback period quite deep. 
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Table 2 

Pricing channel; AUC model performance for different lookback window 

sizes. 

Window size 

Model 3m 6m 9m 1y 2y 

TEP 0.698 0.710 0.711 0.716 0.736 

TCN 0.702 0.715 0.726 0.701 0.731 

LSTM 0.588 0.654 0.626 0.570 0.657 

NN 0.702 0.703 0.702 0.705 0.708 

XGB 0.681 0.693 0.701 0.707 0.715 
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e used a grid search for the appropriate window size for each 

odel, trying window sizes of 3, 6, 9, 12 and 24 months. In the 

esults section, we will report how the performance of each model 

hanges with the choice of window size. 

.4. Model training and testing 

To prevent overfitting the data, we trained the models with 

arly stopping, whereby training is stopped when the validation set 

oss metric no longer decreases. To avoid local minima, a patience 

etting of five (eight) was selected for the multimodal (single- 

hannel) model setup, respectively. We apply more patience to sin- 

le channel training as it is expected to take a larger number of 

pochs compared to the multimodal model whose parameters have 

lready been tuned. This is especially true for the pricing channel 

here single-channel training ran for 30–40 epochs in our analy- 

es, while the multimodal training only required 3 to 5 epochs. 

All models were first assessed on an independent test set (20% 

f the data), using AUC as the performance criterion. Furthermore, 

o assess the robustness of the model performance estimates, we 

lso carried out a stratified 10-fold cross-validation procedure. This 

nsures the model is subjected to various changes in variable dis- 

ributions and relationship or concept drift over time. Instead of 

he traditional procedure which would simply divide the train- 

ng observations into 10 folds, we define the folds by assign- 

ng different companies to different folds; this ensures that ob- 

ervations linked to the same company appear in the same fold. 

e will report the average performance and variance across all 

olds. 

. Results and discussion 

In this section, we present three sets of results. We start by 

omparing models built using only one data channel at a time, to 

tudy their performance independently of the other channels, and 

o fix the pricing channel lookback window size. This also identi- 

es the best set of models to apply in the multimodal architecture 

hich uses all channels. Secondly, the next subsection shows the 

esults of our multimodal training and robustness checks for the 

ifferent architectures. Thirdly, we compare the importance of the 

hree channels using the Shapley approach. 

.1. Model performance results 

.1.1. Single-channel models 

First, we consider each individual data channel as input and 

ook to identify the best model for each channel. Table 1 contains 

he AUC of each model, for each data channel, averaged over all 

he forecasting horizons. Fig. 4 shows how the AUC performance 

or these models varies over the different horizons. This further 

ells us how the models perform over the short to medium term. 

o explain how the models for the pricing channel were affected 

y the choice of lookback window, Table 2 shows the performance 

or different window sizes. The best score for each window size 

s shown in bold and the best overall model and window size is 
Table 1 

AUC model performance (averaged over all forecast horizons) for each 

data channel. 

Model Fundamental Market Pricing 

TEP 0.785 0.767 0.736 

TCN 0.780 0.767 0.731 

LSTM 0.777 0.770 0.657 

NN 0.756 0.772 0.708 

XGB 0.715 0.752 0.715 

Logistic 0.702 0.741 0.535 
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9 
nderlined. Note that we dropped the logistic regression from this 

able as the AUC scores were not meaningful. 

Overall, the models for the fundamental data channel (see the 

eft-most results column in Table 1 ) tend to perform better than 

hose built for the other two channels, signalling the value of ac- 

ounting data in predicting probability of default for mid-caps. Lo- 

istic regression (bottom row) was consistently the weakest per- 

ormer among the models, especially with the pricing channel 

ata. Other models were able to extract relationships that logistic 

egression could not, which suggests complex non-linear relation- 

hips between inputs and default risk that are not exploitable by 

eneral linear models. 

The fundamental channel consists of quarterly accounting 

ata, which is entirely firm-specific. The second column of 

able 1 presents these results. With an average AUC of 0.785, the 

ransformer (TEP) model gives the best performance for this data, 

ut it is closely followed by the sequential deep learning models 

CN and LSTM. Any of these models outperforms a shallow neu- 

al network model (NN), which has an AUC of 0.756. A potential 

xplanation could lie in emerging complex structures that deeper 

odels can better capture and local structures that are better rep- 

esented in deep learning models (as opposed to global patterns 

hat are equally captured by dense neural networks and logistic 

egression). Furthermore, in the leftmost graph of Fig. 4 , we can 

ee that the deep learning models for the fundamental channel 

erform well over all forecast horizons. Interestingly, the perfor- 

ance gap between the different methods narrows the farther out 

he model has to predict default. This may point to a small num- 

er of features being more critical for longer-term default risk than 

ny complex, temporal patterns. 

The market data channel contains general market prices of sev- 

ral indices, as well as some company-specific data derived using 

hem. For this channel, the NN model performs well, with an AUC 

f 0.772. The fact that, here, the sequential models do not outper- 

orm the NN suggests that there are not many temporal relations 

o learn in this data source. In other words, the deep learning mod- 

ls likely rely on other features useful for prediction. This result is 

ntuitive as most of the temporal data in this channel is related 

o the general market environment, which does not impact a firm 

irectly every day. Nonetheless, the data contains relevant infor- 

ation, as all models perform well in terms of AUC. These results 

how that, whereas complex networks are most useful when there 

s a large amount of firm-specific data from which complex rela- 

ionships can be extracted (as was the case for the fundamental 

hannel), embeddings derived from simpler networks are sufficient 

hen considering varied data sources. 

Thirdly, the pricing channel contains just three features but has 

ore frequent data points than the fundamental or market chan- 

els. The first question here was which look-back period or win- 

ow size of past input data to select. To answer this, Table 2 lists

he AUC scores of each model (averaged again over all forecast 

orizons), for a series of alternative time windows. 
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Fig. 4. AUC performance over different forecast horizons, for each data channel. 
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Table 3 

AUC model performance with all data sources combined. 

Input: All Quarterly data 

Model AUC 

TEP 0.801 

TCN 0.780 

LSTM 0.800 

NN 0.793 

XGB 0.808 

Logistic 0.724 
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The results show that, as the pricing data’s window size in- 

reases, the transformer model’s AUC consistently improves, from 

.698 to 0.736. TCN, LSTM and, to a lesser extent, NN, also tend 

o improve with larger window sizes. Based on this, a two-year 

indow was selected to produce all performance results. With an 

UC of 0.736 and 0.731, respectively, it is the TEP and TCN mod- 

ls that are able to extract the most information from each such 

aily equity price window. As can be seen from the rightmost chart 

n Fig. 4 , the performance differences between the various mod- 

ls persist regardless of the prediction horizon. Notably the LSTM 

odel could not extract long-term relationships similar to those 

hat TCN and TEP were able to extract, and underperforms even 

hen compared to other, simpler models. Overall, the performance 

or this channel remains lower compared to the other two chan- 

els, indicating that there is less predictive value in this type of 

ata, or that the high level of noise in the pricing data cannot be

ltered effectively by most methodologies. 

As far as the term structure is concerned, Fig. 4 confirms how, 

cross all channels, prediction tends to become more difficult over 

onger time horizons. The only exception to this were the logistic 

egression models for the fundamental channel, which actually im- 

rove the farther out they are meant to predict. As we suggested 

arlier, the small set of accounting ratios on which those models 

ely may be more useful for longer term prediction. For the mar- 

et channel, there is comparatively less of a drop-off in predictive 

ower over a longer time horizon. This result shows the value of 

he general market environment for default prediction, especially 

ver the medium to long term. Finally, the pricing channel results 

rovide the clearest example of how model choice is crucial, as 

here are consistent performance differences between the different 

ethods, regardless of the prediction horizon. 

Although our main focus is on predictive performance, not 

omputation time, we note that the training times of tuned mod- 

ls are relatively short compared to the hyper-parameter tuning 

f the models. The models for the fundamental and markets data 

hannels converged in 8 to 10 epochs (training time of approxi- 

ately 20 minutes on two V100 GPUs), whereas the pricing data 

ook around 30 to 40 epochs (training time of 40 minutes on two 

100 GPUs). Again, as there is much more noise in daily pricing, 

t needs a more complex model to find a useful signal for default 

rediction, thus increasing training times. 

Next we look to integrate all sources of data into the mod- 

lling. However, combining high-frequency pricing data with low- 

requency accounting data is not straightforward. Directly combin- 

ng such data would require resizing the input matrices (e.g. by 

urning quarterly data into daily values). Instead, deep learning 

rovides several alternatives for building multi-channel models, as 
10 
iscussed next for the best performing model types identified thus 

ar, i.e. the TEP model and the TCN model. 

.1.2. Multi-channel, all data 

The multi-channel model is designed to use data from all three 

hannels, using the architecture proposed in Fig. 3 (b). As this al- 

ows the three sets of inputs to be fed to the multimodal model 

eparately, they can have different dimensions. We consider the 

ifferent training approaches described in Section 4.3 . In the pre- 

ious section, we have already presented the results for the first 

raining regime that evaluates individual data channels. Here, we 

rst discuss how the models perform when we combine all data 

nto one single input (see Table 3 ). Later, we present the results of 

he remaining training regimes. 

Table 3 shows that, when we merge all data channels, XGBoost 

erforms best. We merge by converting the daily pricing channel 

nto a quarterly channel, thereby dropping a large number of data 

oints. This confirms some of the results in the literature where 

GBoost performed well in classification tasks, including default 

rediction. The advantage of using a more sophisticated approach 

uch as deep learning models, is that they would allow us to use 

eparate channels, in their original form and thus reach an even 

igher accuracy. This advantage is not easily apparent if using data 

n a traditional way (as we do in Table 3 ). Instead, it requires pro-

iding the data in a manner that allows the feature engineering 

apabilities of these models to extract patterns that are not easily 

eproducible, as we show next. 

The results for the remaining two training regimes are pre- 

ented in Table 4 , with the first column describing the training 

trategy applied to the data channels and the next column iden- 

ifying the training regime, as described in Section 4.3 , to which 

t corresponds. The third column shows the average performance 

over the different time horizons) of the multimodal architecture, 

sing either TCN or TEP models. We chose to compare the TEP 

esults with TCN, to understand whether the TEP model can out- 



K. Korangi, C. Mues and C. Bravo European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 4, 2022;16:51 ] 

Table 4 

AUC performance of multi-channel TCN & TEP models, for different training methods. 

Input: Quarterly and daily data channnels AUC 

Method Regime Average d_3m d_6m d_9m d_1y d_2y d_3y 

TCN 

Training together 2 0.812 0.829 0.821 0.813 0.808 0.802 0.799 

Pricing channel freeze 3 0.817 0.828 0.833 0.822 0.812 0.805 0.802 

Market and pricing channel freeze 3 0.821 0.839 0.814 0.820 0.814 0.826 0.812 

TEP 

Training together 2 0.835 0.858 0.848 0.843 0.832 0.820 0.812 

Pricing channel freeze 3 0.841 0.860 0.852 0.846 0.841 0.824 0.822 

Market and pricing channel freeze 3 0.847 0.867 0.860 0.850 0.847 0.833 0.824 

Table 5 

Stratified k -fold cross validation: mean AUC (standard deviation). 

Stratified 10-fold cross validation AUC 

Average d_3m d_6m d_9m d_1y d_2y d_3y 

0.869 (0.011) 0.881 (0.025) 0.884 (0.016) 0.880 (0.013) 0.871 (0.010) 0.854 (0.008) 0.846 (0.010) 
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erform what was the next best model in the individual channel 

etup. 

The prediction models clearly benefit from including all three 

hannels in full, as the AUC values in Table 4 are larger than for

ll previously trained models. This shows how long time frames, 

aried data, and a complex data flow can lead to better results. 

he first table row tells us that the second training regime, for the 

CN model, results in an AUC of 0.812. With this regime, we train 

ll models together, so there is simultaneous updating of all model 

arameters. The third training regime further improves the model, 

o an AUC of 0.821 (see third data row), while for the TEP-based 

ultimodal model, this regime produces an AUC as high as 0.847 

see bottom row) — the best overall performance. With this ap- 

roach, we train each model separately, thus enabling better op- 

ima to be found. We do so sequentially, first training the pricing 

hannel as it performed the weakest among the three channels. 

hen we freeze the pricing channel model and train with both 

he pricing and market channel, allowing the interactions between 

oth channels to be learnt. The same procedure is repeated later 

ith fundamental channel data, allowing the fundamental channel 

o be trainable while we freeze the other two channels. We did 

ot consider the direct interaction between fundamental and pric- 

ng channels here, as there was little improvement, but we tested 

ll combinations as part of the Shapley interpretability experiment 

resented in Section 6.3 . Also, the architecture still allows for the 

nteractions among all channels to be learnt through the final set 

f layers that combine these representations. Interestingly, as can 

e seen from right-hand side of the table, AUC improved with this 

egime over the (harder to predict) longer term as well, showing 

hat long-term signals are being learnt. This suggests that the dif- 

erential training approach is better at handling the structural dif- 

erences between the three input channels and consistently learns 

o derive relationships to predict over the complete term structure. 

From Table 4 , we also see that TEP consistently outperforms 

CN, in all time horizons. It is particularly able to learn relation- 

hips for short-term default prediction, much more so than the 

CN model. Long-term prediction is where the TCN model perfor- 

ance is relatively closer to that of the TEP model. 

Hence, an avenue for further research could be to use differ- 

nt models for data channels based on the complexity of the data. 

hose could include applying TCN for the longer term, as it is less 

omputationally intensive than TEP, or customised loss functions 

ith different weights for the respective horizons. 
d

11
.2. Robustness check 

To test the robustness of our findings, we performed a 10-fold 

tratified cross-validation check for the multi-channel model, train- 

ng sequentially using the previously described strategy, and as- 

igning firms to different folds as described in Section 5.4 . 

Table 5 confirms that the proposed multimodal architecture 

roduces excellent and stable default predictions, regardless of the 

ime horizon. These results support the idea that the learning is 

ble to detect true patterns as opposed to noise, as it successfully 

eneralises to previously unobserved companies. Furthermore, the 

eep learning model can efficiently combine multiple information 

hannels with limited preprocessing, even in the presence of sig- 

ificant noise. 

.3. Interpretability of the architecture 

Although the TEP was shown to produce accurate predictions, 

ne challenge lies in providing a suitable interpretation of the 

actors that led to these predictions. To better understand the 

ransformer model, one option is to interpret its multi-head at- 

ention weights. This analysis is provided in Appendix A rather 

han the main paper, as such visual interpretations have been well 

tudied. In this section, we instead chose to discuss the insights 

ained from the Shapley approach outlined earlier. Using this 

ethod, we can establish each data channel’s relative importance 

nd see how each combination of inputs has affected the AUC 

core. 

As seen from Fig. 5 (a), the fundamental channel has the high- 

st relative contribution. On average, the inclusion of fundamen- 

al data into the model improves the model’s AUC metric by 30 

ercentage points. Fig. 5 (b) reports the AUC values for different 

ombinations of data. For example, using only the fundamental 

hannel, we achieve an AUC of 0.791. Adding the pricing channel 

lightly improves the performance to 0.807, while the market chan- 

el improves the AUC metric by 5.3%, to 0.833. From both of these, 

t is clear that the market channel makes a larger contribution than 

he pricing channel. 

To examine the impact of each channel more closely, we ob- 

erve how the relative importance of channels varies over each 

rediction horizon in Fig. 5 (c). To predict default in the short term, 

he pricing channel plays a role with a contribution of 16.2%, which 

ecreases to just 5% for the three-year horizon. From this, we infer 
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Fig. 5. Shapley analysis of channel importance. 

Table 6 

Shapley contribution of each channel over time (%). 

Shapley values 

Channel Past year Previous 2 years 

Fundamental 52.3 12.4 

Market 35.1 20.0 

Pricing 38.4 9.3 
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hat the pricing channel provides some signal in the short term. 

n contrast, over the medium term, fundamentals and the general 

arket environment play a larger role in determining the proba- 

ility of default. This follows intuition and somewhat aligns with 

he weak market efficiency hypothesis: prices reflect the market’s 

urrent belief, taking into account short-term fluctuations, but true 

ong-term estimation ignores these blips caused by events that 

ay prove meaningless in hindsight. 

Another temporal factor is which past time periods of input 

ata contribute most to the model performance. To assess this, we 

ivide the variables into two groups. Specifically, we group each 

welve quarters of input data according to whether they belong to 

he most recent year, or the two years prior to that. Each chan- 

el is then evaluated on the test data to determine their relative 

mportance. 

The results in Table 6 highlight the importance of the latest 

ime period, across all channels. In the fundamental channel, over 

2% of the performance comes from the financial performance re- 

orted in the most recent year. The time periods before that con- 

ribute positively to the model’s predictions as well, but to a lesser 
12 
xtent (12.4%). For the market channel, considering a longer time 

eriod becomes more important as, here, 20% of the contribution 

omes from prior data. This could be expected as it takes some 

ime for uncertainty in the macroeconomic environment to im- 

act firms. In the pricing channel, the most recent data is con- 

ributing most towards performance. This implies that recent eq- 

ity price trends are more informative in predicting (short-term) 

efault rates. 

In summary, the fundamental data contributes the most to pre- 

ict overall default, while the extensive amount of historical mar- 

et data and historical price data further complement it, for exam- 

le, to improve short-term default predictions. 

. Conclusion 

The paper has shown that deep learning techniques, when care- 

ully engineered, can predict complete term structures for credit 

isk, going beyond the one-year predictions hitherto common in 

he area. Seeing they outperform other methods on real-life mid- 

ap data, we find that the greater complexity of these models does 

ncrease predictive power. To achieve these performance gains, 

ew strategies were needed. Specifically, we put forward a com- 

ined multimodal architecture, as this proved to be better than a 

ingle large model. This architecture simultaneously leverages mar- 

et data alongside equity prices and the companies’ fundamental 

ata. It also gave us the flexibility to treat each data source differ- 

ntly and take advantage of selective learning mechanisms. 

Suitable learning methods had to be devised for the problem at 

and. For example, we used a loss metric for training purposes that 

s relevant to the incremental multi-label classification problem. 
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e suggested this loss function could be further tweaked with a 

ore intricate weighing mechanism for different horizons. Also, an 

fficient setup proved important as several models with different 

ata combinations and different hyper-parameter choices had to be 

uned. 

While the training strategy and suitable loss function can be 

pplied in conjunction with any deep learning model, such as 

CN or LSTM, we deployed a transformer-based model (TEP) and 

howed how to apply it to handle time-series-like structured data. 

he superior performance of this model over our data shows 

ts promise in handling complex non-linear relationships over 

ong time frames. TEP was able to handle lower-frequency data 

ith many related features alongside high-frequency data, whereas 

ther models experienced significant drops in performance when 

aced with such different data structures. 

As for our contribution towards advancing financial analysis, 

ur results show that deep learning models can be successfully 

pplied to mid-cap company default prediction, integrating differ- 

nt sources of data in a manner that traditional approaches could 

ot. Mid-caps are often companies for which data could be missing 

r not be as widely available. Their prices could be more volatile, 

nd they have a higher default rate compared to large-cap com- 

anies. Nevertheless, we were also able to show that accounting 

ata still are the largest contributor to predicting default. The re- 

ults also showed that market data are the second largest contrib- 

tor and that pricing data can provide valuable additional signals 

n the short-term provided that we develop a differential training 

pproach to handle this source of information. 

An often heard criticism of deep learning models is that they 

ack interpretability. To counteract this, we applied a method to 

nterpret them using Shapley values for groups of variables; this 

ethod differs from other common SHAP-like approaches that pro- 

uce an individual variable ranking instead. Using this approach, 

e could infer that pricing information is of some, albeit limited, 

ime-decaying usefulness in the model, while the market context is 

uch more important. Furthermore, we are able to visually infer 

he differences between defaulted firms and non-defaulting firms 

rom the activation heatmaps derived from the TEP model, which 

aturally arise from attention-based layers. Added to the perfor- 

ance gains observed for them, being able to interpret TEP models 

n this manner also makes them a highly attractive deep learning 

ethod for a variety of credit risk settings like mortgage or credit 

ard default predictions, where large-scale panel data is readily 

vailable as well. 

An interesting avenue for further research is to extend the mul- 

imodal learning architecture put forward in our paper, by incor- 

orating additional data channels, such as data related to the com- 

any’s management, news feed data documenting relevant events 
Fig. A1. Attention weights mapped to time p

13 
r media coverage, etc. Although previous research has suggested 

here is value in such unstructured (e.g. textual) data, little work 

as been undertaken yet to combine these alternative data sources 

long with the rich structured data used in this paper for the pur- 

ose of better understanding mid-cap default risk. 
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ppendix A. Interpreting attention heat maps 

We present a detailed interpretation of the attention weights to 

isually understand what kind of relationships are being learnt for 

id-cap default prediction by transformer models. This kind of in- 

erpretation has been previously used in the NLP domain for trans- 

ation tasks. To illustrate this, we select the fundamental channel 

ata only. This gives a direct interpretation of the relationship be- 

ween the TEP output and the input. 

Each plot in Fig. A.6 visualises the attention weights for one of 

he four heads (see the figure columns) in one of the two layers 

rows) of the transformer model trained earlier. The horizontal axis 

n each plot divides the input data according to time quarter; the 

ertical axis is the output representation. This mapping thus shows 

hich time period is given a higher weight by the head; the high- 

st weights are shown in yellow, the lowest are in dark blue. To 

nderstand how the model distinguishes between default and non- 

efault outcomes, we compare the average weights for firms that 

efault (left panel) with those that do not (right panel). 

The first layer (top row) exhibits few differences between de- 

aults and non-defaults. However, the second layer shows differ- 

nces: the second head in the second layer, for defaulted firms, 

ocuses on data from the t − 5 th period and t − 2 nd period, while

he same head, for non-defaulted firms, looks at the t − 1 th pe- 

iod. This can be interpreted as follows: if a firm has certain finan- 

ial ratios in the last quarter of accounting data ( t − 1 ), it will be

ore likely to be classified as a non-default. If it does not satisfy 

his, the model looks at the previous financial year’s data ( t − 5 )

o check for specific patterns to classify the firm as a default. This 

hows the model extracting complex temporal relationships. Other 

eads mainly use the present time period ( t − 4 to t) to extract 

elationships. 
eriods, over default and non-defaults. 
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In future work, those features highlighted in an attention heat 

ap could be trialled as explanatory variables in a logistic regres- 

ion, similarly to how one might employ other feature reduction 

echniques such as Principal Component Analysis. If this method 

mproves the logistic regression model performance compared to 

sing other techniques, this could be a value-add but it would be 

ut of scope for this paper. 
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