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Abstract

Statistical calibration using regression is a useful statistical tool with many ap-
plications. For confidence sets for x-values associated with infinitely many future
y-values, there is a consensus in the statistical literature that the confidence sets con-
structed should guarantee a key property. While it is well known that the confidence
sets based on the simultaneous tolerance intervals (STI’s) guarantee this key property
conservatively, it is desirable to construct confidence sets that satisfy this property
exactly. Also, there is a misconception that the confidence sets based on the point-
wise tolerance intervals (PTI’s) also guarantee this property. This paper constructs
the weighted simultaneous tolerance intervals (WSTI’s) so that the confidence sets
based on the WSTI’s satisfy this property exactly if the future observations have the
x-values distributed according to a known specific distribution F (·). Through the lens
of the WSTI’s, convincing counter examples are also provided to demonstrate that
the confidence sets based on the PTI’s do not guarantee the key property in general
and so should not be used. The WSTI’s have been applied to real data examples
to show that the WSTI’s can produce more accurate calibration intervals than STI’s
and PTI’s.

Keywords: Confidence level; Confidence sets; Linear regression; Pointwise tolerance inter-
vals; Simultaneous tolerance intervals; Statistical calibration.
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1 Introduction

Statistical calibration using linear regression is a useful statistical tool, having a rich history

going back to Eisenhart (1939). The problem involves a quantity of primary interest x

which is expensive or difficult to measure, a surrogate quantity y which is cheaper or easy

to measure, and the assumption that y and x are related by a linear regression model; we

are more interested in the inference for covariate x instead of response variable y.

For example, radon (222Rn) is an important hazardous radioactive gas emitted from geo-

logical materials. The decay of 222Rn is one of the most important causes of lung cancer in

underground mining population (Dudney et al., 1995) and also has potential toxic effects to

other human populations. The alpha particles and other radioactive solid decay products

(polonium, bismuth, lead, etc.) emitted cause lung cancer by high energetic disintegration.

In order to ensure the safety of environment, the alpha track detector (ATD) is often used

to measure the intensity of 222Rn with the ultimate aim of measuring the concentration of

222Rn. Suppose x is the true concentration of 222Rn, while y is the reading on an ATD, at a

location. Since ATD has measurement errors, we should calibrate to obtain the confidence

set for the true concentration of 222Rn, and so determine whether the indoor environment

is safe by comparing the confidence set with the proposed standard.

A calibration problem often involves only two quantities y and x (or their suitable transfor-

mations), and polynomial regression model is a simple yet the most frequently used model

to relate two quantities. Hence, in this paper, we focus on polynomial regression as in Han

et al. (2016). Problems involving several y’s and so multivariate polynomial regression will

be studied and reported separately in future.

As another example, cadmium (Cd) is a naturally occurring toxic heavy metal. Excessive

intake of Cd will cause Cd poisoning, and so cause kidney, bone, lung and other organ
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lesions (Stephens, 1920). Even with its low permissible exposure in humans, long-term

exposure will cause health issues. Hence, it is necessary to measure the concentration of

Cd in the environment, such as in drinking water. Graphite Furnace Atomic Absorption

Spectroscopy (GFAAS) is a commonly used elemental analysis technique to measure the

concentration of almost all types of samples. When the sample is atomized, an absorbance

signal is measured from which the sample concentration is determined. Suppose that x

is the cadmium (Cd) concentration in drinking water while y is the absorbency signal

measurement obtained on a stripchart recorder. While Beer’s Law states that there is a

linear relationship between absorbance y and concentration x (Ingle and Crouch, 1988), the

calibrated regression line from the training data for most metals are not linear, therefore,

we use polynomial regression to fit the training data, and then use statistical calibration to

get the confidence set of the true concentration of x given y, and so evaluate the quality of

drinking water by comparing the confidence sets of true Cd concentration with its threshold.

In order to use an observed y to infer the corresponding but unobserved x, a calibration

experiment is carried out to measure y0i corresponding to a known x0i for i = 1, · · · , n.

A regression model of y on x is then fitted by using the training data E = {(x0i, y0i), i =

1, · · · , n} and used to infer the x-values corresponding to infinitely many y-values to be

observed in future. The inference of the x-value corresponding to one single future y-value

is considered by Eisenhart (1939), Seber (1977), Brown (1982) and Smith and Corbett

(1987) among many others, and the relevant literature is reviewed in Osborne (1991),

Brown (1993) and Parker et al. (2010).

This paper focuses on inference for infinitely many future y-values. Specifically, a confidence

set C(yx) for the unknown x corresponding to each yx observed in future is constructed in

such a way that the infinite sequence of confidence sets C(yx) corresponding to an infinite
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sequence of future yx-values has the following property: with respect to the randomness

in the training data E , we can state with confidence γ that the proportion of confidence

sets C(yx) containing the corresponding true x-values is at least β, where 0 < γ, β < 1 are

pre-specified constants. This property can be expressed as

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{xi∈C(yxi )} ≥ β

}
= γ (1)

where yxi, i=1,··· ,N are a sequence of future observations, xi, i=1,··· ,N are the true but un-

known x-values, N is a very large number approaching infinity, IA denotes the indicator

function of the set A and hence 1
N

∑N
i=1 I{xi∈C(yxi )} is the proportion of the N confidence

sets that contain the true x-values. It is argued by Lieberman et al. (1967), Scheffé (1973),

Aitchison (1982), Mee et al. (1991), Mee and Eberhardt (1996), Mathew and Zha (1997),

Mathew et al. (1998), Krishnamoorthy and Mathew (2009, Chapter 3), Han et al. (2016)

and Chvosteková (2019) among others that this property is highly desirable in many ap-

plications. For example, a company that sells ATD’s would require this property to be

satisfied for values of γ and β close to one. Similar properties have been used in counting

by weighing by Liu et al. (2016) and in classification by Liu et al. (2019a,b).

One standard way to construct the confidence sets C(yx) having the property (1) is to use the

(β, γ)-simultaneous tolerance intervals (STI’s). Construction of (β, γ)-STI’s is considered

first by Lieberman and Miller (1963) for simultaneous predictions. Most construction

methods available in the literature, including Scheffé (1973), are conservative, that is, the

left-hand-side probability in property (1) is larger than γ; see Han (2014) for a review. Stride

has been made on the construction of exact (β, γ)-STI’s by Odeh and Mee (1990) for one-

sided case and Mee et al. (1991) for two-sided case. Note, however, that the (β, γ)-STI’s of

Odeh and Mee (1990) and Mee et al. (1991) are for a multiple linear regression model, where

the covariates are assumed to have no functional relationships, over a special ellipsoidal
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covariate region only. These STI’s become conservative when applied to a polynomial

regression model of order two (i.e. quadratic regression) or higher, in which the covariates

are x, x2, etc. Even for the simple linear regression (i.e. polynomial regression of order

one), these STI’s are only over a covariate set that is symmetric about x̄0, the mean of the

observed covariate values x0i in E . Hence these STI’s are also conservative when applied

to a simple linear regression model with the covariate interval [a, b] not symmetric about

x̄0. Exact one-sided (β, γ)-STI’s for a polynomial regression model of any order and over

any given interval [a, b] are constructed in Han et al. (2016). Exact two-sided (β, γ)-STI’s

for the same situation are still not available in the statistical literature.

The first purpose of this paper is to introduce new tolerance intervals [Lw(x; E), Uw(x; E)]

over [a, b], called weighted simultaneous tolerance intervals (WSTI’s). Under an assumption

that the future x-values follow a specific distribution over the interval [a, b], the correspond-

ing confidence sets Cw(yx) defined as

Cw(yx) = {x ∈ [a, b] : Lw(x; E) ≤ yx ≤ Uw(x; E) } (2)

satisfy the property in (1) exactly. The second purpose is to show, through the lens of

the WSTI’s, why the confidence sets Cs(yx) based on the STI’s satisfy the property in (1)

conservatively, and that the confidence sets C0(yx) based on the PTI’s do not guarantee

the property in (1) in general.

The layout of this paper is as follows. In Section 2, the STI’s, PTI’s and the associated

confidence sets C(yx) are reviewed briefly. Section 3 deals with the construction of exact

(β, γ)-WSTI’s for a polynomial regression model over a given covariate interval [a, b]. It is

also shown why the exact (β, γ)-STI’s produce conservative confidence sets Cs(yx). Section

4 provides several examples to illustrate and compare the WSTI’s, STI’s and PTI’s. In

particular, counter examples are provided to demonstrate that the confidence sets C0(yx)
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based on the PTI’s do not guarantee the property in (1). Section 5 contains some concluding

remarks.

2 PTI’s and STI’s

Assume that the unknown x-values corresponding to all the future yx’s are in a given

interval [a, b]. For example, the true concentration of radon cannot be lower than a = 0 or

higher than some upper threshold b. The (β, γ)-STI’s [Ls(x; E), Us(x; E)] over the interval

x ∈ [a, b] satisfy

PE {Pyx {Ls(x; E) < yx < Us(x; E)|E } ≥ β for all x ∈ [a, b] } = γ (3)

where yx denotes a future y-value corresponding to x and is independent of the training

data E , the probability Pyx { · |E } is with respect to yx and conditional on E , and the

probability PE { · } is with respect to E . Then for each future yx the confidence set for the

corresponding x, taking into consideration that x ∈ [a, b], is defined as

Cs(yx) = {x ∈ [a, b] : Ls(x; E) ≤ yx ≤ Us(x; E) } . (4)

It is shown in Scheffé (1973) that these confidence sets Cs(yx) satisfy (1) conservatively,

that is, the probability on the left side is at least γ. Note, however, no one has shown that

confidence sets C(yx) have to been constructed via the (β, γ)-STI’s [Ls(x; E), Us(x; E)] in

order to satisfy the property in (1) at least conservatively.

The one-sided upper (β, γ)-STI’s have Ls(x; E) = −∞ in (3), and the one-sided lower

(β, γ)-STI’s have Us(x; E) = ∞ in (3). The confidence set Cs(yx) corresponding to the

lower STI’s often takes the form of an upper confidence limit, which is most relevant for

the example of ATD since the company wants to monitor that the radon concentrations are
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not above the safety threshold set by a government agency by using the upper confidence

limits. The confidence set Cs(yx) corresponding to the upper STI’s often takes the form of a

lower confidence limit for the simple linear regression when covariate x increases, response

variable y also increases.

The (β, γ)-pointwise tolerance intervals (PTI’s) [L0(x; E), U0(x; E)] over the interval x ∈

[a, b] satisfy

PE {Pyx {L0(x; E) < yx < U0(x; E)|E } ≥ β } = γ for each x ∈ [a, b]. (5)

Then for each future yx the confidence set C0(yx) for the corresponding x based on the

PTI’s is defined as

C0(yx) = {x ∈ [a, b] : L0(x; E) ≤ yx ≤ U0(x; E) } . (6)

The upper (β, γ)-PTI’s have L0(x; E) = −∞ in (5), and the lower (β, γ)-PTI’s have

U0(x; E) = ∞ in (5). The numerical results in Mee and Eberhardt (1996) and Lee (1999)

lead to the conjecture that the property in (1) is satisfied conservatively by the PTI’s based

confidence sets C0(yx) in (6). It is pointed out, however, in Han et al. (2016) that this is

not true in general.

3 WSTI’s for polynomial regression

Assume that y and the only covariate x are related by a polynomial regression model of

order p− 1 (≥ 1):

y = α0 + α1x+ · · ·+ αp−1x
p−1 + ε = xTα+ ε
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where x = (1, x, · · · , xp−1)T , α = (α0, · · · , αp−1)T is the vector of unknown regression

coefficients, and the ε’s are independent N(0, σ2) errors with unknown variance σ2 > 0.

The observed training data E can be represented in the usual matrix form y = Xα + ε,

where the n × p design matrix X is assumed to be of full column-rank without loss of

generality. The usual estimators of α and σ are denoted by α̂ and σ̂, respectively.

Exact WSTI’s of the form

Lw(x; E) = xT α̂− λwσ̂
(
zβ +

√
(p+ 2)xT (XTX)−1x

)
(7)

Uw(x; E) = xT α̂+ λwσ̂
(
zβ +

√
(p+ 2)xT (XTX)−1x

)
(8)

will be constructed, where λw > 0 is a critical constant chosen so that the corresponding

confidence sets Cw(yx) defined in (2) satisfy the property in (1), and zβ is the β quantile of

the standard normal distribution N(0, 1). Note that Lw(x; E) and Uw(x; E) are of the same

form as the Ls(x; E) and Us(x; E) in Odeh and Mee (1990), Mee et al. (1991) and Han et

al. (2016) except the critical constant λw.

Now we assume that the x-values of all the future observations actually follow a specific

probability distribution on the interval x ∈ [a, b], either discrete or continuous, with cdf

F (·). Under this assumption, it can be proved in a similar way as in Liu et al. (2019b,

Appendix A) that, conditional on E (through α̂ and σ̂ only), we have

lim inf
N→∞

1

N

N∑
i=1

I{xi∈Cw(yxi )} =

∫ b

a

Pyx {Lw(x; E) ≤ yx ≤ Uw(x; E)|E } dF (x). (9)

Hence the property in (1) is satisfied if the critical constant λw solves the equation

PE

{∫ b

a

Pyx {Lw(x; E) ≤ yx ≤ Uw(x; E)|E } dF (x) ≥ β

}
= γ. (10)
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The rudiments of this idea have appeared in Chvosteková (2019) for calibration based on

the uniform distribution of x on [a, b], and in Liu et al. (2019b) for classification.

From the WSTI’s, one can see why the confidence sets Cs(yx) based on the STI’s satisfy

the property in (1) conservatively. Note that equation (9) also holds with Cw(yxi) replaced

by Cs(yxi) from equation (4) and [Lw(x; E), Uw(x; E)] replaced by [Ls(x; E), Us(x; E)]. It is

also clear that, for any F (·),

∫ b

a

Pyx {Ls(x; E) ≤ yx ≤ Us(x; E)|E } dF (x) ≥ min
x∈[a, b]

Pyx {Ls(x; E) ≤ yx ≤ Us(x; E)|E } .

It follows therefore immediately that

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{xi∈Cs(yxi )} ≥ β

}

= PE

{∫ b

a

Pyx {Ls(x; E) ≤ yx ≤ Us(x; E)|E } dF (x) ≥ β

}
≥ PE

{
min
x∈[a, b]

Pyx {Ls(x; E) ≤ yx ≤ Us(x; E)|E } ≥ β

}
= γ

where the last equality follows directly from the construction of STI’s in (3).

One can also see why the confidence sets C0(yx) based on the PTI’s may not guaran-

tee the property in (1). Note that equation (9) also holds with Cw(yxi) replaced by

C0(yxi) and [Lw(x; E), Uw(x; E)] replaced by [L0(x; E), U0(x; E)]. Hence if the interval

[L0(x; E), U0(x; E)] is contained strictly inside the interval [Lw(x; E), Uw(x; E)] for each

x ∈ [a, b] and E such that

∫ b

a

Pyx {L0(x; E) ≤ yx ≤ U0(x; E)|E } dF (x) <

∫ b

a

Pyx {Lw(x; E) ≤ yx ≤ Uw(x; E)|E } dF (x)
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then

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{xi∈C0(yxi )} ≥ β

}

= PE

{∫ b

a

Pyx {L0(x; E) ≤ yx ≤ U0(x; E)|E } dF (x) ≥ β

}
< PE

{∫ b

a

Pyx {Lw(x; E) ≤ yx ≤ Uw(x; E)|E } dF (x) ≥ β

}
= γ

where the last equality follows directly from the construction of WSTI’s in (10). Examples

4.1 and 4.3 in Section 4 below are two examples in which the PTI’s are strictly narrower

than the WSTI’s for each x ∈ [a, b] and E and so the PTI’s based confidence sets do not

guarantee the property in (1).

From here on, we focus on the one-sided case since exact two-sided (β, γ)-STI’s on any

interval [a, b] are still not available yet in the statistical literature as pointed out in the

Introduction section. First we consider the computation of λw from equation (10) for the

one-sided upper WSTI’s with Lw(x; E) = −∞, while the one-sided lower WSTI’s with

Uw(x; E) =∞ uses the same critical constant λw. In this case, we have

PE

{∫ b

a

Pyx {Lw(x; E) ≤ yx ≤ Uw(x; E)|E } dF (x) ≥ β

}
= PE

{∫ b

a

Pyx

{
yx ≤ xT α̂+ λwσ̂

(
zβ +

√
(p+ 2)xT (XTX)−1x

)
|E
}
dF (x) ≥ β

}
= Pα̂,σ̂

{∫ b

a

Φ
{
xT (α̂−α)/σ + λw(σ̂/σ)

(
zβ +

√
(p+ 2)xT (XTX)−1x

)}
dF (x) ≥ β

}
= PZ,u

{∫ b

a

Φ
{
xTZ + λwu

(
zβ +

√
(p+ 2)xT (XTX)−1x

)}
dF (x) ≥ β

}
(11)

where Z = (α− α̂)/σ ∼ N (0, (XTX)−1), u = σ̂/σ ∼
√
χ2
ν/ν with ν = n− p, and Z and

u are independent.

It is clear that the probability in (11) has nothing to do with the unknown parameters
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α and σ. Furthermore, λw solving equation (10) depends only on p, ν, (XTX)−1, β, γ, the

interval [a, b] and the distribution F (·).

For a general p ≥ 2 the following simple simulation-based method for finding λw fast and

accurately is used in our R code, similar to what is used in Liu et al. (2019b). From the

expression in (11), in the s-th repeat of simulation, s = 1, . . . , S, generate independent

Zs ∼N (0, (XTX)−1) and us ∼
√
χ2
ν/ν, and find the λw = λw,s so that

∫ b

a

Φ
{
xTZs + λw,sus

(
zβ +

√
(p+ 2)xT (XTX)−1x

)}
dF (x) = β. (12)

Repeat this S times to get λw,1, . . . , λw,S, order these as λw,[1] ≤ . . . ≤ λw,[S], and use λw,[γS]

as λw. It is well known that λw,[γS] converges to the required critical constant λw with

probability one as S →∞ (cf. Serfling, 1980). This approach of using a sample quantile to

approximate the population quantile has been used successfully in solving many difficult

problems; see, for example, Edwards and Berry (1987) and Liu et al. (2004, 2005).

To find the λw,s that solves the equation in (12) for each s, we use numerical quadrature,

e.g. the R function integrate, to compute the expression on the left side of (12) for each

given value of λw,s > 0, which is clearly strictly increasing in λw,s. We then find λw,s by

using a suitable search algorithm. It is noteworthy that only one-dimensional numerical

quadrature is involved for a general p(≥ 2).

Each λw in Examples 4.1 - 4.3 of Section 4 below was computed using S = 1, 000, 000

simulations and took about 2000 seconds on an ordinary Window’s PC (Core(TM2)Due

CPU P8400@2.26GHz). These critical constants are expected to be accurate to at least

two decimal places from our experiments with different random seeds.
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For the upper (β, γ)-STI’s Us(x; E) of the form

Us(x; E) = xT α̂+ λsσ̂
[
zβ +

√
(p+ 2)xT (XTX)−1x

]
, (13)

a simulation based method for computing the critical constant λs that solves the equation in

(3) with Ls(x; E) = −∞ is given in Han et al. (2016) (coded in Matlab), and re-coded in R.

Each λs in Examples 4.1 - 4.3 of Section 4 was computed using S = 1, 000, 000 simulations

and took about 150 seconds on the same Window’s PC. Again these critical constants are

expected to be accurate to at least two decimal places from our experiments with different

random seeds. For example, when β = 0.95 and γ = 0.99, the critical value λs = 1.2557

for Example 4.2 below given in Han et al. (2016) using Matlab is computed to be 1.2552

using our R code.

For the upper (β, γ)-PTI’s U0(x; E) of the form

U0(x; E) = xT α̂+ λ0σ̂
[
zβ +

√
(p+ 2)xT (XTX)−1x

]
, (14)

it follows directly from the equation in (5) with L0(x; E) = −∞, after a few lines of algebraic

manipulation, that λ0 is given by

λ0 = λ0(x) =

√
xT (XTX)−1x(

zβ +
√

(p+ 2)xT (XTX)−1x
) t

γ,ν,zβ/
√
xT (XTX)−1x

where tγ,ν,δ denotes the γ-quantile of a t distribution with degrees of freedom ν and non-

centrality parameter δ and can be computed directly by using the R function qt. It is

noteworthy that the λ0 of the PTI’s varies with x ∈ [a, b], while the λw of the WSTI’s and

λs of the STI’s are constants, and the PTI’s, STI’s and WSTI’s differ only in their critical

constants.
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Figure 1: λ0(x) of PTI’s (solid line), λw = 1.085 of the WSTI’s (dash-dot line), and
λs = 1.214 of the STI’s (dash line)

4 Examples

4.1 The PTI’s based confidence sets do not guarantee the prop-

erty in (1)

In this example it is shown that the confidence sets C0(yx) in (6), based on the PTI’s, do

not guarantee the property in (1).

Assume that y and x follow a simple linear regression model (i.e., p = 2), the covariate

interval of interest is [a, b] = [−1, 1], the training dataset contains 11 observations with

the x-values given by equally-spaced −1,−0.8, · · · , 0.8, 1 (and so ν = 9), β = 0.95 and

γ = 0.90. Hence λ0(x) in (14) can be computed and is plotted by the solid line in Figure

1 over x ∈ [a, b] = [−1, 1]. As expected, λ0(x) varies with x, but only slightly around 0.75

in this example. For STIs, the value of λs in (13) is computed to be 1.215. The value of λs

is also computed using ten different ransom seeds, and the standard deviation of these ten

λs’s is 0.00068. Hence λs = 1.215 is expected to be accurate to at least two decimal places

according to the 3-σ rule. The λs is plotted by the dash line in Figure 1. As expected, λs
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is strictly larger than λ0(x) for any x ∈ [a, b].

Now assume the x-values of all the future observations actually follow a uniform distribution

on the interval [a, b] = [−1, 1]. The λw of the WSTI’s is computed to be 1.085. The standard

deviation of the ten λw-values based on ten random seeds is 0.00047 and so λw = 1.085

is expected to be accurate to the two decimal place at least. Then the λw is plotted by

the dash-dot line in Figure 1. Note that the confidence sets Cw(yx) in (2), based on the

WSTI’s, satisfy the property in (1) exactly. Since λ0(x) is substantially smaller than λw

for each x ∈ [a, b], the upper PTI’s U0(x; E) are also substantially smaller than the upper

WSTI’s Uw(x; E) for each x ∈ [a, b]. Consequently the PTI’s based confidence sets will not

guarantee the property in (1). This demonstrates that the confidence sets C0(yx) based on

the PTI’s do not satisfy the property in (1) in general and so should not be used.

Finally it is noteworthy that the assumed x-values in the training data of this example is

not at all extreme since equally spaced x-values on any interval [a, b] can be transformed

into equally spaced new x-values on the interval [−1, 1] under a simple linear transformation

of the original covariate. Also the regression coefficients α and error variance σ2 do not

need to be specified.

4.2 Radon Example

Mee and Eberhardt (1996, Table 3) provides data from a calibration experiment of ATD’s

which are used to measure indoor concentrations of radon. In the experiment, the ATD’s

were exposed to known levels of radon x in a laboratory. The response variable y is an

optical count of number of damage tracks, caused by alpha radioactive decays, over a

specific area of the film. After the usual model diagnosis, the n = 40 observations are

fitted by a simple linear regression model in Mee and Eberhardt (1996), with the fitted

least squares line y = 124.4 + .789x, σ̂ = 41.26 and R2 = 0.93.
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Figure 2: The four beta density functions on the interval [a, b]: B(20, 1) – solid line; B(1, 1)
(i.e., uniform distribution) – dash line; B(40, 40) – dot line; B(1, 20) – dash-dot line.

In order to construct upper confidence bounds on the level of radon exposures x corre-

sponding to future observed ATD readings y, lower STI’s are required:

Ls(x; E) = xT α̂− λsσ̂
[
zβ +

√
(p+ 2)xT (XTX)−1x

]
for all x ∈ [a, b]. (15)

Set β = 0.95, γ = 0.99, [a, b] = [0, 3074] as in Mee and Eberhardt (1996), with p = 2

and ν = 38, the critical constant λs is computed to be 1.255 using our R code. The upper

confidence bounds Cs(yx) can then be constructed by using (4), with Us(x; E) = ∞; see

Han et al. (2016, Fig. 1) for how to get Cs(yx) from Ls(x; E).

To what extent the STI’s based upper confidence bounds Cs(yx) above could be improved

if we know that the x-values of all the future observations actually follow a particular

distribution F (·) on the interval [a, b]? For this, we have tried four beta distributions on

[a, b] with the two shape parameters given respectively by: (20, 1), (1, 1), (40, 40), (1, 20).

The probability density functions of these four beta distributions are plotted in Figure 2.

Here, B(20, 1) represents the scenario that the x-values of most future observations are close

to the upper limit b of the interval [a, b]; for B(1, 1), the x-values of future observations are

assumed to be uniformly distributed on the interval [a, b]; for B(40, 40), the x-values are
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mostly scattered around the middle of the interval [a, b]; and for B(1, 20), the x-values of

most future observations are close to the lower limit a of the interval [a, b].

With each of the four beta distributions as F (·), the critical constant λw of the lower

WSTI’s in (7) can be computed using our R code. These are given by 1.173, 1.176, 1.197,

1.203 for the beta distributions B(20, 1), B(1, 1), B(40, 40), B(1, 20), respectively. The

upper confidence bounds Cw(yx) in (2) can then be constructed, with Uw(x; E) = ∞. As

expected, λw is strictly smaller than λs = 1.255 and hence the upper confidence bounds

Cw(yx) are slightly smaller than the upper confidence bounds Cs(yx).

4.3 Cadmium Example

As mentioned in Section 1, Cd concentration in drinking water is important for environmen-

tal health, and graphite furnace atomic absorption spectroscopy (GFAAS) is an analytical

technique for the determination of Cd concentrations in different types of samples. In this

example, the variation of (peak) absorbency y (in mm) with Cd concentration x (parts per

billion) is established by atomizing samples of known concentrations and the obtained cal-

ibration curve from the training data is used to infer the concentrations of future observed

absorbances.

Lundberg and De Maré (1980, Table 1) provides data from a calibration experiment

of GFAAS which contain n = 21 pairs of observations at four different concentrations

x = 0, 5, 15 and 20. After the usual model diagnosis, a quadratic regression model is rec-

ommended in Lundberg and De Maré (1980) which fits the data very well with R2 = 0.999.

Now suppose that one wants to construct lower confidence bounds on x for future observed

y’s. For this one can use the upper STI’s in (13). For β = 0.95, γ = 0.99, [a, b] = [0, 20],

p = 3 and ν = 18, the critical constant λs is computed to be 1.422 using our R code. The

lower confidence bounds Cs(yx) in (4) can then be constructed, with Ls(x; E) = −∞; see
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Han et al. (2016, Fig. 2) for how to get Cs(yx) from Us(x; E).

To get some idea on the extent to which the STI’s based lower confidence bounds Cs(yx)

above could be improved if we know that the x-values of all the future observations actually

follow a particular distribution F (·) on the interval [a, b], we have also tried the four beta

distributions B(20, 1), B(1, 1), B(40, 40), B(1, 20) on the interval [a, b] = [0, 20] in this

example.

With each of the four beta distributions as F (·), the critical constant λw of the upper

WSTI’s in (8) can be computed using our R code, and these are given by 1.265, 1.229, 1.247

and 1.258 for the beta distributions B(20, 1), B(1, 1), B(40, 40), B(1, 20), respectively. The

lower confidence bounds Cw(yx) in (2) can then be constructed, with Lw(x; E) = −∞. As

expected, each λw is strictly smaller than λs = 1.422 and hence the lower confidence bounds

Cw(yx) are larger than the lower confidence bounds Cs(yx).

It is noteworthy that the value of λ0(x) for this example is about 1.14 for any x ∈ [a, b],

which is smaller than λw when F (·) is any one of the four beta distributions. Hence the

lower confidence bounds C0(yx) based on the PTI’s do not guarantee the property in (1)

when the x-values of the future observations follow any one of the four beta distributions.

5 Conclusion

Statistical calibration using regression is a useful statistical tool with many applications.

For inference related to infinitely many future y-values, there is a clear consensus in the

statistical literature that the confidence sets constructed should satisfy the property in (1)

at least conservatively. While it is well-known that the confidence sets based on the STI’s

satisfy this property conservatively, it is highly desirable to construct confidence sets that

satisfy this property exactly. Also, there is a misconception that the confidence sets based
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on the PTI’s also guarantee the property in (1).

In this paper, the WSTI’s are constructed so that the confidence sets based on the WSTI’s

satisfy the property in (1) exactly if the future observations have the x-values distributed

according to a known specific distribution F (·) on the covariate interval [a, b]. Through

the WSTI’s, convincing counter examples are provided to demonstrate that the confidence

sets based on the PTI’s do not guarantee the property in (1) in general and so should not

be used.

If the distribution F (·) exists and is known then the confidence sets based on the WSTI’s

should clearly be used. But how to solicit the distribution F (·) warrants further research. It

can be envisaged that in many real applications, it is difficult to solicit the distribution F (·).

In such a case, one can fall back on the confidence sets based on the STI’s, which guarantee

the property in (1). Hence STI’s still play a key role in calibration for infinitely many future

observations. Exact two-sided STI’s are still not available in the statistical literature even

for univariate polynomial regression of order p− 1 ≥ 2 over an arbitrary interval [a, b]. For

many interesting and challenging calibration problems involving multivariate polynomial

regression (cf. Mathew et al., 1997 and 1998), only PTI’s are available. All these warrant

further research.

We have also compared the WSTI’s proposed in this paper to the WSTI’s with the form

of prediction intervals, that is, xT α̂ ± λ∗wσ̂
√

1 + xT (XTX)−1x, though the details are

not reported here due to page limit. Based on our results, the average shifts of one-sided

WSTI’s proposed in this paper is only about 0.60% larger than the average shifts of WSTI’s

in the form of prediction intervals. Hence, the difference between these two forms is very

small. In addition, we found that, the WSTI’s proposed in our paper are narrower than

the WSTI’s in the form of prediction intervals when covariate x is close to the mean x̄;

while the WSTI’s in the form of prediction intervals are narrower when x is near two ends
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of the covariate range [a, b].
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