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Abstract

We propose a novel risk matrix to characterize the optimal portfolio choice of an in-

vestor with tail concerns. The diagonal of the matrix contains the Value-at-Risk of each

asset in the portfolio and the off-diagonal the pairwise ∆CoVaR measures reflecting tail

connections between assets. First, we derive the conditions under which the associated

quadratic risk function has a closed-form solution. Second, we examine the relationship

between portfolio risk and eigenvector centrality. Third, we show that portfolio risk is

not necessarily increasing with respect to stock centrality. Forth, we demonstrate under

certain conditions that asset centrality increases the optimal weight allocation of the asset

to the portfolio. Overall, our empirical study indicates that a network topology which ex-

hibits low connectivity is outperformed by high connectivity based on a Sharpe ratio test.
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1 Introduction

The traditional portfolio allocation problem has been extensively studied in the literature the

past decades, providing a way of finding efficient allocations among expected return and risk.

However, considering the traditional trade-off as a stand alone dilemma is not a sufficient

decision mechanism as the 2008 global financial crisis revealed. In this paper, building on

the optimal portfolio optimization problem of Markowitz (1956) (see, also Sharpe (1964))

we propose a novel framework within which the network topology is incorporated into a

graph-based portfolio selection mechanism. Therefore, our main goal in this paper is the

introduction of a novel measure of centrality when the objective function characterizing the

portfolio weights is a tail risk measure instead of the traditional variance and covariance.

Following our main objective, we aim to address two main research questions. First,

what is the mechanism of optimally allocating assets based on a graph representation of

the portfolio? Specifically, we propose conditions under which a network based risk matrix

permits to construct an equivalent quadratic loss function that corresponds to the variance-

covariance matrix. Second, given the construction of our tail-based risk matrix, what is the

role of stock centrality in the optimal weight allocation and how does it affect estimated

portfolio risk based on the network tail risk matrix?

To answer the aforementioned research questions and provide theoretical and empirical

evidence related to these aspects, we explore the relationship between stock centrality and

portfolio risk with focus on eigenvector centrality (see, Bonacich (1972)). Specifically, we

investigate the role of stock centrality on portfolio risk estimated based on our novel risk

matrix which is designed to capture tail events. Moreover, the proposed risk matrix provides

a simple way to construct an adjacency matrix which gives a mathematical representation

of the network topology. A related study is presented by Peralta and Zareei (2016) who

examine the role of eigenvector centrality on the optimal portfolio vector of weights based on

the correlation matrix, however our approach and conclusions provide a different perspective.

Our framework considers the measurement of financial connectedness in the estimation

of optimal exposures to stocks for an investment portfolio. More specifically, by considering

the quadratic loss function based on the network topology we can decompose the elements

generated by the network tail risk matrix shedding light on how the diversification effect

occurs within our setting. The associated quadratic risk function characterizes the optimal

portfolio and consists of a sum of idiosyncratic risks, defined as the VaR risk measures located

in the main diagonal of the risk matrix, and the pairwise connections between the assets in

the tails, defined as the ∆CoVaR risk measures, located in the off-diagonal of the risk matrix.

Some important results emerge from our theoretical derivations such that the portfolio risk

does not necessarily increase with asset centrality (see, also Olmo (2021). Then, by imposing

further optimization constraints such as portfolios only taking long positions on the assets and

centrality measures only taking positive values, then we can show that portfolio risk increases

with asset centrality. To provide theoretical evidence we examine the relationship between
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the centrality of an asset and the magnitude of its associated optimal portfolio allocation.

We find that under general conditions the higher the centrality of an asset, as explained by

eigenvector centrality, the larger its optimal allocation to the investment portfolio.

This result clearly contrasts the findings presented by Pozzi et al. (2013) and Peralta and Zareei

(2016). Specifically, the particular studies establish that optimal portfolio strategies require

to overweight stocks with low eigenvector centrality and underweight stocks with high cen-

trality in the network. Based on the estimation frameworks of these studies, optimal investors

attempt to benefit from diversification by avoiding the allocation of wealth towards assets

that are central in the correlation-based network. On the other hand, based on the proposed

estimation framework of this paper, using a more general network driven tail risk matrix we

find evidence of the opposite result to hold. In particular, we find theoretical and empirical

evidence that is optimal to overweight central assets when investors allocate wealth using a

quadratic loss function characterized by our tail risk matrix.

To align these seemingly contradictory findings, regarding the relationship between port-

folio risk and asset centrality we illustrate that these are not specific to our novel risk matrix.

To demonstrate this, we show the role of asset centrality in a standard minimum variance

framework in which the risk matrix represents the conventional variance-covariance matrix.

In this traditional setting the main results in the paper establishing the relationship between

portfolio risk, optimal asset allocation and asset centrality hold, under general regulatory

conditions which can be directly applied to the proposed graph based procedure.

The contributions of this paper are as follows. We propose a novel risk matrix given by

the VaR and ∆CoVaR of the assets in a portfolio. This risk matrix aims to capture tail events

given by idiosyncratic tail risk and connectivity between assets in the tails. In this setting,

investors minimize a loss function similar to the minimum variance portfolio introduced by

Markowitz (1952) in which the variance-covariance matrix is replaced by the tail-based risk

matrix. We derive the conditions under which the associated quadratic form has a single

solution that is interpreted as the optimal portfolio allocation of an investor with portfolio

tail concerns. To the best of our knowledge the examination of these components within a

unified framework consist of a novel contribution to the literature. For example, Olmo (2021)

proves that the relationship between eigenvector centrality and optimal portfolio weight is

not monotonic as previously thought in the literature (see Peralta and Zareei (2016)).

The rest of the paper is organized as follows. Section 2 introduces the optimal portfolio

allocation framework under tail risk events including network tail dependencies. Section 3

presents the main result of the paper, namely, the existence of a positive relationship between

asset centrality and its optimal asset allocation. Section 4 studies the role of asset centrality

across portfolios of different size and explores the effect of the centrality of an asset on the

centrality of the remaining assets. Section 5 presents the numerical implementations of our

framework. Section 7 concludes. Technical proofs can be found in the Appendix.
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Related Literature A large steam of literature propose various statistical methods for the

measurement of financial connectedness and systemic risk. For instance, related studies in-

clude Hong et al. (2009), Billio et al. (2012), Diebold and Yilmaz (2012); Diebold and Yılmaz

(2014), Corsi et al. (2018) who consider the construction of Granger causality networks as

well as Härdle et al. (2016) who propose a nonlinear network based tail risk matrix. More-

over, Anufriev and Panchenko (2015) and Hale and Lopez (2019) consider the effect of the

network topology in the monitoring of systemic risk in the banking sector (see, also Huber

(2018)). According to Mitchener and Richardson (2019), the investigation of the causality of

shock propagation, amplification of systemic risk and potentially the magnitude of economic

downturns within a network remains an open economic question. Calvo-Pardo et al. (2021)

propose a novel framework to identify Granger causality using neural network models which

can be utilized for explaining the propagation of systemic risk in high-dimensional settings.

Firstly, quantile measures are commonly used as risk measures in optimal portfolio al-

location problems, see among others, Duffie and Pan (1997), Jorion (2007) and White et al.

(2015) for a comprehensive review of VaR models in parametric settings. In an optimal

asset allocation context, VaR quantiles usually act as an optimization constraint rather

than as a target variable to be optimized. The mean-risk models discussed by Fishburn

(1977) can be considered as an extension of the standard mean-variance formulations of

Markowitz. Further relevant literature includes Basak and Shapiro (2001), Krokhmal et al.

(2001), Campbell et al. (2001). In addition, the studies of Wu and Xiao (2002), Bassett et al.

(2004) as well as the paper of Engle and Manganelli (2004) and Ibragimov and Walden

(2007), among others, shed an interesting light on the properties of VaR-optimal portfo-

lios while acknowledging considerable computational difficulties (see, Gaivoronski and Pflug

(2005)).

Secondly, a commonly used methodology for the analysis of mean-variance portfolios

employs the multivariate dynamic conditional correlation GARCH model proposed by Engle

(2002) which is based on the well documented GARCH(p,q) model of Bollerslev (1986). The

particular class of dynamic conditional volatility matrices provide a way for constructing

robust dynamic optimal portfolios using an out-of-sample forecasting scheme. Furthermore,

in high dimensional settings such dynamic covariance matrices can suffer from the curse

of dimensionality which can affect the estimation accuracy of the portfolio allocation. For

instance, Abadir et al. (2014) propose a sample splitting procedure to combine estimates for

the eigenvalues and the eigenvectors of the covariance matrix. Specifically, in the case of

high dimensional portfolios, to overcome the related accuracy issues Ledoit et al. (2020) and

Engle et al. (2019) propose shrinkage and non-linear estimators of the dynamic covariance

matrix (see also Avella-Medina et al. (2018)). Lastly, it is worth mentioning in this stream of

literature Bollerslev et al. (2020) who propose a novel risk matrix based on semi-covariances.

Thirdly, centrality measures are commonly used to provide a statistical representation

of the level of connectedness of a node and to access spillover effects within the network.
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Ballester et al. (2006) propose a framework in which node centrality can employed to examine

equilibrium relations in a graph. Furthermore, the aspects of financial contagion have been

examined in the literature as an equilibrium phenomenon, such as in Allen and Gale (2000).

Additionally, Duffie et al. (2009) propose modelling correlated defaults in financial markets

with correlated hazard rates based on a cross-sectional dataset of firms.

Lastly, a framework for the role of correlation risk in the optimal portfolio choice problem

is presented by Buraschi et al. (2010) (see, Moreira and Muir (2017)). The particular invest-

ment interdependence is reported in the literature and goes beyond portfolio optimization

(see, Lamont (1997) and Stein (1997)). Nevertheless, if one aims to understand the structure

of the market and use it for, say, financial stability analysis or optimal policy design, then

our proposed tail risk matrix provides an analytically tractable way of examining the effect

of asset centrality and portfolio risk. Our approach considers single index specification mod-

els to model tail risk, that is, VaR and CoVaR among financial institutions, focusing this

way on the relation between optimal portfolio allocation problem and asset centrality via the

proposed novel risk matrix. Therefore, our framework which focus on the network tail-risk

matrix rather that optimizing portfolio performance measures when those are expressed in

terms of systemic risk measures as in Bergk et al. (2021) and Weidong et al. (2021).

Throughout the paper, we denote with ∂
∂xf(x) and

∂2

∂x2 f(x) the first and second partial

derivatives of a continuous function for some x within the support of the function. Moreover,

‖ . ‖2 denotes the Euclidean norm, we denote with 1 = (1, 1, ..., 1)′ the unit vector with length

N and IN to be N × N identity matrix. Furthermore, for a real-valued matrix A = (Aij)

such that A ∈ RN×N , we denote with A−1 its inverse matrix, and define the spectral norm

to be ‖A‖2 = [λmax (A
′A)]1/2, where λmax and λmin the largest and smallest eigenvalue

respectively, the matrix ℓ1 norm to be ‖A‖1 = maxj
∑

i |Aij | and the entrywise ℓ∞ norm to

be |A|∞ = maxi,j |Aij |.

2 Optimal Portfolio Choice

We begin with the traditional optimal portfolio allocation problem. We extend this framework

by proposing a novel risk matrix that captures tail events. We present regularity conditions

which ensure the existence of a closed-form solution for the associated quadratic risk function.

2.1 Minimum-Variance Portfolio Optimization

The Markowitz portfolio optimization theory considers the minimization of the portfolio

variance without any further restriction on the corresponding expected return. More formally,

we denote with Rt = (R1,t, ..., RN,t)
′ the N−dimensional vector of stock returns at time t,

assumed to be a set of strictly stationary time series. We denote with µ := E (Rt) =

(E (R1,t) , ...,E (RN,t))
′ where µ ∈ RN×1 the vector of expected returns at time t and the

corresponding variance-covariance matrix defined as Σ := Cov (Rt) = E (RtR
′
t)− µµ

′.
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Let rpt = w′
iRt denote the return on a portfolio of N assets, with wi = (w1, ..., wN )′

the vector of portfolio weights representing the financial position of the investor as a weight

allocation1 of assets to the portfolio. A common practise in optimal portfolio choice problems

is to use the sample moments (i.e., sample mean and covariance, e.g., see Fan et al. (2015)).

The usual sample estimates are given by µ̂ and Σ̂ respectively.

µ̂ :=

[
1

T

T∑

t=1

R1,t, ...,
1

T

T∑

t=1

RN,t

]
(1)

Σ̂ :=
1

T

T∑

t=1

(Rt − R̄)(Rt − R̄)′, where R̄ =
1

T

T∑

t=1

Rt (2)

where Σ̂ := (σ̂ij)N×N is the sample covariance matrix. Then, the variance of this portfolio

is defined as V (rpt ) = w′Σw. Therefore, we can now introduce the Markowitz’s minimum

variance optimization problem which is expressed as below

arg min
w∈RN

{
w′Σw

}
subject to w′1 = 1. (3)

The first order conditions to the minimization problem yield the following vector of weights

w∗ =
Σ−11

1′Σ−11
. (4)

Moreover, Markowitz (1952) considers the extension of this portfolio allocation problem to a

mean-variance efficient frontier. Let Rf,t be the risk-free return such that the excess return of

the assets in the portfolio is now Re
t = Ri,t−Rf,t and the vector of expected excess returns is

µ
e := E (Rt −Rf,t). The optimal mean-variance portfolio occurs by minimizing the portfolio

variance for a given level of expected excess return R̄.

2.2 Optimal Portfolio Allocation with a Graph-based Tail Risk Matrix

In this section, we refer to centrality as the eigenvector centrality and thus distinguish it

explicitly from different types of centrality. The aim is to introduce the framework in which

we can explore the optimal asset allocation problem when investors penalize tail risk measures.

To do this, we focus on the VaR and ∆CoVaR tail measures and propose a novel network

based risk matrix which incorporates these risk measures. Our starting point in this direction

is to consider a more general structure than the traditional variance-covariance matrix as the

risk matrix used in portfolio optimization problems.

1Note that we use the notation,w ∈ RN×1 to represent the vector of unknown weights and w
∗ ∈ RN×1 to

represent the optimal vector of weights estimated via the optimization problem. For the empirical application
of the paper, we assume that the vector of optimal weights is consistently estimated by ŵ

∗ ∈ R
N×1 which

implies that since we are using an optimization routine to ensure convergence within the unit ball, in the
L1-norm we have that ||ŵ∗ −w

∗||1 = op(1).
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To do this, we replace the variance of an asset return by its Value-at-Risk (VaR) and

the cross-correlation measures between asset returns by the Delta Conditional VaR, denoted

with ∆CoVaR, as proposed by Adrian and Brunnermeier (2016) to model systemic risk.

The Value-at-Risk (VaR) of asset i with coverage probability τ is defined by the condition

P

(
Ri,t+1 ≤ VaRi,t(τ)

∣∣ Ft

)
= τ with τ ∈ (0, 1), (5)

where Ft denotes the sigma-algebra containing all the information relevant at time t. This

quantity captures idiosyncratic tail risk, which implies that VaRi,t(τ) can be interpreted as the

quantile τ of the underline conditional distribution of the return Ri,t+1 given the information

available at time t. Then, the Conditional Value at Risk (CoVaR) is defined as

P

(
Ri,t+1 ≤ CoVaRi|C(Rj,t+1)(τ)

∣∣ Ft

)
= τ. (6)

Various authors have proposed suitable expressions for the conditioning set C (Rj,t+1), which

can be used to define a distress event for firm j. For instance, according to Adrian and Brunnermeier

(2016) such a financial distress event is interpreted as the institution’s loss which is equal to

the firm’s VaR, capturing this way conditional tail risk. In the original definition of CoVaR

the return Ri,t is replaced by a market return Rm,t such that the CoVaR measure captures

systemic risk. In what follows, we use the notation VaRi,t and CoVaR(i,j),t while omitting

the quantile τ for the sake of notation brevity.

Then, the CoVaR is a quantile risk measure defined as below

P

(
Ri,t+1 ≤ CoVaR(i,j),t(τ)

∣∣ Rj,t+1 = VaRj,t(τ),Ft

)
= τ. (7)

Therefore, the Delta Conditional VaR for a coverage probability τ ∈ (0, 1) is defined as

∆CoVaR(i,j),t(τ) = CoVaR(i,j),t(τ)−VaRi,t(τ). (8)

Intuitively, the absence of tail dependence between the assets entails the condition that

∆CoVaR(i,j),t(τ) = 0. Moreover, in line with the literature on risk management and tail

portfolio risk, we restrict the quantile tail set into a small region of the underline distribution,

such that τ ∈ (0, ǫ], where ǫ < 0.15. In this region the VaRi,t(τ) and CoVaR(i,j),t(τ) quantile

measures are negative since the distribution of asset returns is centred at zero. In particular,

these risk measures can be positive or negative, thus, a negative value of ∆CoVaR(i,j),t(τ)

reflects the presence of positive spillovers from asset j to asset i in the tail of the distribution

implying a shift on the VaRi,t quantile measure to the left of the distribution when the

return on asset j is at its VaRj,t(τ) level. Similarly, a positive value of ∆CoVaR(i,j),t(τ)

reflects negative spillovers from asset j to asset i in the tail of the distribution implying a

shift on the VaRi,t quantile measure to the right of the distribution.
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Throughout the paper we consider the corresponding quantities −VaR, −CoVaR as the

relevant risk measures which appear in the proposed risk matrix. Thus, under the parameter

restriction ǫ < 0.15, it holds that2 0 < −VaR,−CoVaR < 1. We proceed by introducing

the portfolio choice problem under tail risk events. Thus, we construct a portfolio that is

analytically tractable and minimizes the dependence between the assets under distress events.

The main motivation behind the specification of a risk matrix with tail risk measures, is

to examine how the investor’s loss function is affected by co-movements in the tails of the

underline stock return distributions. As a second objective, we aim to propose an algorithm

to eliminate sequentially the stocks from the portfolio to reduce risk given a certain level of

returns. Therefore, in contrast to the mean-variance framework, minimization of this objec-

tive function does not correspond to minimization of second or higher order moments of the

underline distribution of portfolio returns. Our proposed risk matrix is a quadratic form that

minimizes the contributions of the idiosyncratic quantile tail risk measures given by the VaR

measures and the contributions of the tail dependencies between pairs of assets captured by

the ∆CoVaR measures which represent the effects of interactions within a financial network.

In this context, the investor’s minimization problem (4) at a given time t is replaced by

w∗ = arg min
w∈RN

{
w′Γtw

}
subject to w′1 = 1, (9)

such that Γt =




γ1,t γ(1,2),t . . . γ(1,N),t
...

...
...

...
. . .

...

γ(N,1),t . . . γN,t




(10)

with γi,t = VaR+
i,t and γ(i,j),t = (VaR+

i,tVaR
+
j,t)

1/2∆CoVaR(i,j),t, ∀ i, j ∈ {1, ..., N} (11)

The asymmetry in spillover effects in the tails of the distributions of stocks i and j imply that

the risk matrix Γt ∈ RN×N is a non-symmetric square matrix. To apply standard results

in portfolio choice problems and to be able to establish a parallelism with the conventional

Markowitz’s setting, we transform the minimization problem (9) into an optimization problem

characterized by the symmetric counterpart of Γt, that is denoted as Γ̃t hereafter. The

symmetrization of the off-diagonal elements of the original matrix Γ, guarantees the positive

definitiness of the Γ̃ matrix. In particular, the symmetization of our proposed risk matrix

provides a simple way for the estimation of the concentration matrix avoiding methods such

as the use of the adaptive thresholding estimator (see, Avella-Medina et al. (2018)) which is

commonly used in estimation of high dimensional covariance matrices.

2This property holds due to the construction of these risk measures based on distribution quantiles, such
as q+τ (X) = inf {t ∈ R|P (X ≤ t) > τ}, where τ ∈ (0, 1).
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Our proposed risk matrix is a regression based matrix with tail forecasts under parametric

assumptions. More specifically, the (i, j)th row of Γ̃ are estimated via the tail risk measures

of VaR+ and CoVaR+ based on quantile regression specifications of single index models. The

specific methodology requires parametric assumptions. For instance, in the case of covariance

matrices, other distribution-free techniques are proposed in the literature, see for instance

the study of Browne (1984). Furthermore, our approach considers tail dependence using

conditional quantiles and therefore captures tail risk which are not exchangeable and have

causal effects which are not symmetric (see, Bernard and Czado (2015) and Zhang (2008)).

For this reason, within the framework of optimal asset allocation, the risk matrix has to be

symmetrized. Therefore, we transform the asymmetric bilinear form Q(Γt,w) = w′Γtw, into

a symmetric bilinear form (see, Csaki (1970)) defined as following

Q(Γ̃t,w) = w′Γ̃tw, (12)

where

Γ̃t :=




γ1,t γ̃(1,2),t . . . γ̃(1,N),t
...

. . .
...

γ̃(N,1),t . . . γN,t


 with γ̃(i,j),t :=

γ(i,j),t + γ(j,i),t

2
. (13)

such that Γ̃t is the corresponding the symmetrized risk matrix. In other words, the symmetric

risk matrix Γ̃t given in (13) indicates a matrix structure in which the diagonal elements

correspond to the VaR+ measure of each asset while the off-diagonal entries represent the

weighted pairwise ∆CoVaR measures across the set of assets standardized with the term

(γi,tγj,t)
1/2 for all i, j ∈ {1, ..., N} as defined in expression (10).

The intuition behind the particular construction of the risk matrix is to capture Granger

causality at the tail of the distributions among pairs of stocks. More specifically, the tail

dependence is modelled by the risk measures of VaR and CoVaR which are estimated as

tail forecasts based on quantile regression specifications and therefore represent population

parameters generated by a cumulative distribution function F (.). The elements on the off-

diagonal of the matrix, i.e., γ̃(i,j),t are defined to be as γ̃(i,j),t :=
γ(i,j),t+γ(j,i),t

2 , for i 6= j, which

provide a way to symmetrize the original risk matrix, Γt. Therefore, these elements represent

averaged spillover effects for pair of nodes in the graph. Furthermore, it is not difficult to

realize that we are actually proposing a risk matrix with dependence structure that captures

simultaneous causality (e.g., see Huemer and Kovitz (2003)) due to the regression based

estimation procedure we propose to obtain the elements of the Γt matrix. Next, we focus on

the utilization of the proposed risk matric in portfolio choice problems.

Proposition 1 The minimization problem given by (9) is equivalent to minimizing w′Γ̃tw

subject to the full investment constraint w′1 = 1.

9



Proof. The proof of this result follows from noting that w′Γtw = w′Γ̃tw. The particular

result corresponding to the covariance matrix is proved by Csaki (1970). Furthermore,

the symmetry3 of Γ̃t entails the spectral decomposition Γ̃t = UtDγ,tU
′
t, with Ut an N ×N

orthonormal matrix such that U′
t = U−1

t which includes as columns the linearly independent

eigenvectors of Γ̃t, andDγ,t anN×N diagonal matrix with the corresponding real eigenvalues,

defined as Dγ = diag
{
λγ̃
1 , ..., λ

γ̃
N

}
. To simplify the notation, we omit the time subscript such

that the diagonal matrix and rearrange the diagonal eigenvalue matrix as Dγ = U′Γ̃U. Since,

in our framework we assume that N remains fixed while T → ∞, then the sample eigenvalues

and eigenvectors are consistent estimators of their population counterparts.

Then, the eigenvalues of the risk matrix Γ̃ can be decomposed as a function of the proposed

tail risk measures as following

λγ̃
k =

N∑

i=1

u2ikγk +

N∑

i=1

N∑

j=1
j 6=i

uikujkγ̃(i,j), (14)

where {uij}i,j=1,...,N denotes the elements of the eigenvectors of the risk matrix Γ̃ ∈ RN×N .

Assumption 1 below formalize the regulatory condition so that the positive definitiness

property of the risk matrix holds based on expression (14). Therefore, under the condition

provided by Assumption 1 it holds that λγ̃
k > 0 ∀ k ∈ {1, ..., N},

Assumption 1 The positive definite property of the risk matrix is ensured by the conditions

(i) The eigenvectors {uij}i,j=1,...,N of the risk matrix Γ̃ satisfy that

N∑

i=1

u2ik > −
N∑

i=1

N∑

j=1
j 6=i

uikujk
γ̃(i,j)

γk
, ∀ k ∈ {1, ..., N} . (15)

(ii) The eigenvalues of the matrix Γ̃ are bounded uniformly above and away from zero such

that 0 < λmin(Γ̃) ≤ λmax(Γ̃).

(iii) The spectral radius of the matrix is bounded such that ρ(Γ̃) < 1.

Remark 1 The condition (i) and (iii) given by Assumption 1 guarantees that the risk matrix

Γ̃ is positive definite, which implies that the corresponding quadratic form w′Γ̃w has certain

desirable properties for portfolio optimization problems (See, Proposition 2 and 3). Notice

also condition (iii) gives a bound for the spectral radius of the matrix that corresponds to the

largest eigenvalue of the matrix, which is another restriction that ensures positive definiteness.

3Chen et al. (2021) study the eigendecomposition for nonsymmetric square matrices. Since we consider the
symmetrized version of the risk matrix, thus the estimation procedure for the eigendecomposition is simplified.
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Furthermore, condition (ii) ensures that the smallest eigenvalue does not move toward

zero, to avoid ill-conditioning4 (i.e., the existence of a singular concentration matrix).

Remark 2 Notice that by definition the risk matrix (Γ̃ij) has elements with a certain form of

dependence due to the estimation procedure we follow to obtain estimates for the risk measures

of VaR and CoVaR as well as the standardization we apply to ensure the positive definiteness

of the risk matrix. Therefore, the elements exhibit heavy tails and tail dependence.

Next, we focus on the properties of the portfolio risk since within our framework we study

an investor who is concerned with tail events, as captured by the tail risk measures of the Γ̃

risk matrix. Therefore, the portfolio risk denoted with Q(Γ̃,w) shall satisfy the conditions

given by Proposition 2 below.

Proposition 2 Let Q(Γ̃,w) = w′Γ̃w denote the portfolio risk, where the risk matrix Γ̃

satisfies Assumption 1. Then, the following conditions hold

(i) Q(Γ̃,w) = 0 if and only if w = 0.

(ii) Q(Γ̃,w) > 0 for w 6= 0.

(iii) The associated quadratic form defined by the Lagrangian of the objective function (9)

given by Q(Γ̃,w) + ζ(w′1− 1), for some ζ > 0, has a global minimum on w.

Proof. The proof of these properties follows from standard results on quadratic forms.

Importantly, under the above conditions, the risk matrix Γ̃ is invertible and ensures that

a closed-form solution to the portfolio optimization problem given by expression (9) exists.

Proposition 3 The solution to the optimal portfolio allocation problem (9) with associated

matrix Γ̃ satisfying Assumption 1 is

w∗ =
Γ̃−11

1′Γ̃−11
. (16)

Proof. The proof of this proposition is immediate from the first order conditions of the

maximization problem (9).

Notice that Proposition 3 ensures that using our proposed risk matrix in optimal portfolio

choice problems a corresponding closed form solution to the traditional Markowitz portfolio

optimization problem exists. Furthermore, in this paper we are interested to obtain some

further insights regarding the network topology and how the tail connectedness of nodes

affects the optimal portfolio allocation as well as the portfolio risk function of the investor.

4See for example Yu (1991). Notice that a rule of thumb of the occurrence of an ill-conditioned inverse is
to have a large value of the ratio κ = λmax

/
λmin (see, Anufriev and Panchenko (2015), Chen et al. (2021)).
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In summary, in this section we introduce a novel risk matrix which is constructed based

on tail risk measures. We showed that the proposed risk matrix has a suitable specification

for optimal portfolio allocation problems. In Section 3, we assume that the stocks in the

portfolio represent nodes in a network and proposed a more formal framework which can be

utilized as a mechanism for portfolio selection based on graphs under tail events.

Another important aspect is the consistent estimation of the risk matrix Γ̃. Even though

we do not formally examine this in this paper, and leave this for a future study, our proposed

risk matrix is suitable for high dimensional settings as well. However, the computation

time for estimation of the inverse of the risk matrix, that is, Γ̃−1, can be affected by the

number of stocks in the portfolio. In that case, we recommend the use of a pseudoinverse

estimation procedure such as the implementation of the Moore–Penrose matrix. Other more

sophisticated estimation procedures include for example the constrained ℓ1−minimization for

inverse matrix estimation (CLIME) proposed in Cai et al. (2011) (see also Cai et al. (2020)).

Furthermore, the dependence structure of our risk matrix is a further aspect worth examining

in future research (e.g., see the framework proposed by Shu et al. (2019)).

Notice that in the literature of large covariance matrices as well as in graph based mod-

elling approaches, (e.g., as in Anufriev and Panchenko (2015)), the partial correlation be-

tween random variables Xi and Xj given {Xk, k 6= i, j} is equal to −ωij/
√
ωiiωjj. Therefore,

zero partial correlation means conditional independence between Gaussian random variables.

Within our framework, zero tail dependence or tail connectivity due to the underline graph

structure we impose, implies that there is a common level of Value-at-Risk which affects the

nodes. Next, we focus on the relationship between the vector of optimal weights, that is,

the optimal portfolio allocation given by expression (16), and the dependence in the tails be-

tween the stocks of the portfolio. In particular, we utilize the notion of eigenvector centrality

and by applying the spectral vector decomposition we derive an analytical expression for the

eigenvalues of the risk matrix with respect to the risk measures of VaR and CoVaR.

Example 1 Consider a portfolio with N = 3 stocks. An investor who has tail concerns

he invests in the portfolio based on the tail dependence across the underline distribution of

returns represented as nodes in the graph, as captured by the VaR-CoVaR risk matrix defined

Γ̃ =




γ1 γ̃(1,2) γ̃(1,3)

γ̃(2,1) γ2 γ̃(2,3)

γ̃(3,1) γ̃(3,2) γ3


 (17)

Therefore, the optimal decision problem entails to find the optimal portfolio weight based on

the full investment constraint and a positive weight vector constraint. Denote with k̃ij the

elements of the precision matrix of VaR-∆CoVaR, where K̃ ∈ RN×N such that K̃ = Γ̃−1.

This implies that Γ̃−1.1 ≡ K̃.1 represents a vector with the same dimensions as the optimal

portfolio weight, which has elements the row-sums of the precision matrix K̃.
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In vector form is expressed as below

Γ̃−1.1 =




N∑

j=1

k̃1j ,

N∑

j=1

k̃2j ,

N∑

j=1

k̃3j




′

(18)

Moreover, the denominator of the optimal portfolio vector is 1′.K̃.1 which gives the sum of

the elements of the precision matrix. We find that the optimal weight vector is expressed

w∗ =
1

N∑

j=1

k̃1j +

N∑

j=1

k̃2j +

N∑

j=1

k̃3j




N∑

j=1

k̃1j ,

N∑

j=1

k̃2j ,

N∑

j=1

k̃3j




′

(19)

Notice that Example 1 above provides some useful insights regarding the key ideas of our

framework. The dependence of the optimal portfolio weights to the tail risk measures of VaR

and CoVaR indicate that diversification occurs by balancing-out the tail dependence across

the nodes of the graph. In particular, by diversifying based on tail connectivity allows us to

consider the optimal portfolio allocation problem5 under further constraints such as the target

expected returns as the mean-variance portfolio. Taking into consideration the co-movements

of the market during extreme events by incorporating the tail dependence structure across

the graph extends the traditional variance-covariance diversification strategy.

Next, we impose an additional assumption to control the sparsity of the precision matrix

(see, Callot et al. (2021)). Denote with Si :=
{
j such that k̃ij 6= 0

}
to be the set of nonzero

parameter estimates of the precision matrix for the i−th row, k̃i, and denote with si := |Si|
to be its cardinality (the number of elements of the particular set). Let s̄ := max

1≤i≤p
si, where

si represents the number of nonzero parameters in the i−th row.

Assumption 2 The following condition holds

s̄
√

log (N/T ) = o(1). (20)

Assumption 2 provides a sparsity condition for the inverse of the risk matrix of VaR-

∆CoVaR. However, notice that the sparsity of the precision matrix does not necessarily

imply sparsity of the VaR-∆CoVaR matrix. In particular, the weakly dependence structure

with possibly temporally or correlated parameter estimates produce a risk matrix which is

not necessarily sparse even though the entries of the risk matrix from a data-based estimation

can include near-zero terms, especially for certain nodes in the graph. For simulation-based

parameter estimation the entries of the matrix is likely to have a larger s̄ value.

5Notice that in contrast to other framework such as the naive equal-weighted scheme examined by
Nguyen et al. (2020), in the context of tail-risk dependence, we consider the minimum variance portfolio
optimization which permits to study the relation optimal asset allocation and stock centrality.
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3 Portfolio Choice under Tail Dependence in Graphs

In this Section we examine the mechanism of optimal portfolio choice under the assumption

of network tail dependence. Related studies to tail dependence measures and assumptions are

Escanciano and Hualde (2019), Zhang (2021) while Callot et al. (2019) consider the portfolio

choice problem. Firstly, we examine the relationship between tail connectivity and stock

centrality, focusing on two aspects: (i) relation between stock centrality and portfolio risk;

and (ii) relation between stock centrality and optimal portfolio allocation. Secondly, we show

how the procedure can be applied to affine transformation of the proposed tail risk matrix.

3.1 Tail Connectivity and Stock Centrality

We denote with G = {V, E} a graph structure, representing a network that consists of a

set of nodes, V ∈ {1, ..., N}, and a set of edges, E , connecting the pairs of nodes. A full

characterization of the information in the network is provided by the N × N adjacency

matrix Ω whose element {Ωij}Ni,j=1 determine the existence of a link connecting node i and

j for the graph G. The link between two elements can be characterized by a binary variable

which determines the existence of a connection or by a real value that corresponds to the

pairwise weight between nodes. We propose the following adjacency matrix Ω = Γ̃−diag(Γ̃),

where diag(·) is an N ×N diagonal matrix, implying that diag(Γ̃) := diag{γ1, . . . , γN}.
Therefore, within our framework we consider a weighted closed network, where the links

between stocks are determined by the γ̃(i,j) measures as defined by the off-diagonal elements

of the Γ̃ matrix. The adjacency matrix Ω is symmetric by definition, since the main diagonal

has a vector of zeros and the off-diagonal terms are the elements of the symmetric risk matrix

Γ̃, that is, Ωij ≡ γ̃(i,j) for i 6= j. Furthermore, the symmetry of the adjacency matrix entails

the spectral decomposition Ω = ZΩDΩZ
′
Ω, with ZΩ an N ×N orthonormal matrix such that

Z′
Ω = Z−1

Ω that contains the linearly independent eigenvectors of Ω, and DΩ is an N × N

diagonal matrix with the corresponding eigenvalues. Thus, expressing the eigenvalues of the

adjacency matrix Ω using the spectral vector decomposition we obtain

λΩ
k =

N∑

i=1

N∑

j=1
j 6=i

zikzjkγ̃(i,j), (21)

with zij the eigenvectors of the matrix Ω ∈ RN×N .

We decompose the loss function Q(Γ̃,w) = w′Γ̃w as the sum of a quadratic loss function

given by the adjacency matrix and a quadratic loss function given by a diagonal risk matrix

with elements given by γi. More formally, an equivalent expression for the quadratic form is

Q(Γ̃,w) := w′Γ̃w =

{
w′Ωw+

N∑

i=1

w2
i γi

}
. (22)
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Proposition 4 below provides a theoretical result regarding the relation between the asset

allocation and the stock centrality within the financial network.

Proposition 4 For a given vector w, a sufficient condition to guarantee that the portfolio

risk Q(Ω,w) = w′Ωw is increasing on the magnitude of the tail risk measure γi|j is that the

derivative of λΩ
k with respect to γ̃i|j is greater than zero for all i, j, k ∈ {1, . . . , N}.

We begin our analysis, by studying the contribution of stock centrality to the portfolio risk

given by Q(Γ̃,w). Therefore, by considering expression (22) as well as the decomposition of

the quadratic form Q(Ω,w) = w′Ωw we can express the eigenvector centrality measure with

respect to the spectral vector decomposition of the adjacency matrix Ω. A centrality measure

quantifies the influence of certain nodes in a given graph. Several centrality measures have

been proposed in the literature which consider different features of the network topology.

In this paper, we focus on the measure of eigenvector centrality which is closely related to

the definition of Katz centrality (see, Katz (1953) and Bonacich (1972)). In particular, the

eigenvector centrality of stock i is proportional to the weighted sum of its neighbors’ central-

ities. Therefore, it captures the idea that central nodes are those with stronger connections

to other central nodes (see, the definition given by Elliott and Golub (2019)).

More formally, for the adjacency matrix Ω, the eigenvector vi is given by the expression

vi =
(
λΩ
(1)

)−1
N∑

j=1

Ωij vj, (23)

is a centrality measure associated to node i by the Perron-Frobenius theorem (Appendix C),

where λΩ
(1) is the largest eigenvalue of Ω (or the spectrum radius of the adjacency matrix).

Next we investigate the relation between stock centrality and portfolio risk as this aspect

can be useful in portfolio choice problems for tail risk events. Theorem 1 shows that, in

general, no monotonic relationship between stock centrality and portfolio risk exists.

Theorem 1 The portfolio risk given by the quadratic form Q(Γ̃,w) is not monotonically

increasing or decreasing with respect to the centrality measure vi.

The result given by Theorem 1 indicates that the quadratic form which characterize the

optimal investment decision is not monotonic on the centrality of an asset. In other words,

investors who optimize using the proposed risk matrix constructed with tail risk measures

based on exogenous variables affecting the network topology in the graph, cannot for certain

know a priori whether the network topology of assets can directly affect the performance of

the portfolio risk, especially when there are no further restrictions regarding short and long

positions as reflected by positive and negative signs of the weight allocation.
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For instance, as shown by the proof of Theorem 1 (see Appendix A), the opposite result

would follow, that is, we can conclude that a monotonic relation for the portfolio risk holds

with respect to the corresponding centrality measure vi if and only if we allow the investment

portfolio to take negative positions on some stocks, i.e. wi < 0 for some i ∈ {1, . . . , N}, since
the maximum eigenvalue of the adjacency matrix Ω cannot be negative. Therefore, with the

additional investment constraint of long positions and by ensuring that the adjacency matrix

Ω to be positive definite such that the eigenvector centrality satisfies v = (v1, . . . , vN ) ≥
0, then the result given by Theorem 1 can be refined. We introduce more formally these

conditions with the following assumption.

Assumption 3 Let Ω be positive definite and such that the eigenvector centrality given by

(79) satisfies v ≥ 0.

Next, Corollary 1 below gives the condition for a monotonic relation between portfolio

risk function which is almost surely positive-definite and the stock centrality measure cor-

responding to the symmetrized risk matrix. Notice that Corollary 1 only holds under the

additional condition we impose by Assumption 3.

Corollary 1 Under Assumption 3, the portfolio risk defined by Q(Γ̃,w) is increasing on the

centrality measure vi if the portfolio weights are all non-negative, i.e. w ≥ 0.

Proof. The proof of this result is immediate from expression (58) given in Appendix A.

Remark 3 Notice that Corollary 1 implies that a simple heuristic for having a portfolio risk

that is kept in low levels is to have a centrality vector with lower values in comparison to a

portfolio with high centrality, which implies a high level of tail connectedness among the nodes

in the network. Moreover, the particular result holds under the assumption that the investor

chooses to invest in all stocks in the portfolio.

Therefore, when the investor with tail risk concerns decides to exclude central stocks from

the portfolio with graph representation sequentially with a short-selling investment constraint

only, then the portfolio risk function can be maintained in lower levels than investing to all

stocks without considering separately the effect of the network topology. Moreover, in this

paper we avoid to examine further the relationship between optimal portfolio allocation

and stock centrality as the literature currently has mixed results on the particular aspect.

More specifically, Peralta and Zareei (2016) concludes that optimal portfolio strategies should

underweight the allocation to high central assets and overweight the allocation to low central

assets. A similar finding is demonstrated by Huttner et al. (2016). On the other hand, the

study of Olmo (2021) concludes that higher asset centrality implies a larger allocation on the

risky assets. Notice that both these results correspond to the case of the correlation matrix as

an adjacency matrix, therefore a further investigation is necessary to examine whether similar

findings can be established for our proposed risk matrix, which captures tail dependence.
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3.1.1 Optimal Asset Allocation and Stock Centrality

In this subsection, we examine the relation between optimal asset allocation and stock cen-

trality for the optimal portfolio choice problem under tail risk events. To do so, we express

the risk matrix as below

Γ̃ ≡
(
IN − Ω̃

)
, where Ω̃ = − (B+Ω) , (24)

such that B := diag(Γ̃)− IN .

The above trick allow us to express the vector of optimal portfolio weight vector w∗ as

a function of the eigenvector centrality measure. Notice that, the matrix Ω̃ inherits the

properties of the adjacency matrix Ω, hence, it is symmetric. The diagonal elements of Ω

are equal to (1− γk) for all k ∈ {1, . . . , N}.
Then, by applying the spectral vector decomposition, we obtain Ω̃ = SD

Ω̃
S′, with S an

orthonormal matrix comprised by the eigenvectors of the matrix Ω̃, andD
Ω̃
a diagonal matrix

with elements given by the corresponding eigenvalues λΩ̃
k . Thus, the centrality measure that

corresponds to the matrix Ω̃ is given in Corollary 2 below.

Corollary 2 The eigenvector centrality measure ṽi associated to the matrix Ω̃ is defined as

ṽi =
(
λΩ̃
(1)

)−1
N∑

j=1

Ω̃ij ṽj, (25)

where λΩ̃
(1) is the largest eigenvalue of the adjacency matrix Ω̃, such that the eigenvalues follow

the ordering λΩ̃
max

≡ λΩ̃
(1) ≥ . . . ≥ λΩ̃

(N) ≡ λΩ̃
min

.

We are now ready to introduce the main result of this section, namely, that under general

conditions higher asset centrality implies a larger allocation on the risky asset. This result

contrasts with recent insights in the related literature, see Peralta and Zareei (2016), showing

that optimal strategies should underweigh the allocation to high central assets and overweigh

the allocation to low central assets within a optimal portfolio choice problem under tail events.

Intuitively speaking, we find analytical evidence that for investors who are concern with tail

risk and the level of connectivity in the network as it is captured by tail dependence across the

nodes, it is optimal to invest more in higher centrality stocks rather than low centrality stocks.

The particular heuristic obviously refer to the minimum-variance portfolio optimization where

the variance-covariance matrix is replaced with the VaR-∆CoVaR matrix, and therefore it

does not necessarily reflect what is the effect of stock centrality within the given network

topology to portfolio risk captured again through the tail risk measures we consider in this

paper. Specifically, we examine the latter aspect via our empirical implementation and in the

particular our proposed algorithm for determining the optimal number of stocks based on

the tail centrality measure. Nevertheless, in this subsection we provide the related analytical

results for the relation between optimal asset allocation and stock centrality.
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To formally present our analytical results in propositions we additionally impose the

conditions given by Assumption 4 and 5.

Assumption 4 Let {λΩ̃
i }i=1,...,N be the eigenvalues of the adjacency matrix Ω̃. Then, we

assume that 0 < λΩ̃
i < 1 for all i ∈ {1, . . . , N}.

The condition given by Assumption 4 guarantees that the matrix Ω̃ is positive definite and

with spectral radius less than one. Under this condition, we obtain the following expression

for the optimal portfolio weights.

Proposition 5 Under Assumption 1 - 4, the optimal portfolio allocation w∗
i in (16) can be

expressed as a function of stock centrality as below

w∗
i =

ṽi

1− λΩ̃
(1)




N∑

j=1

ṽj


+

N∑

k=2

sik

1− λΩ̃
k




N∑

j=1

sjk




1

1− λΩ̃
(1)




N∑

j=1

ṽj




2

+

N∑

k=2

1

1− λΩ̃
k




N∑

j=1

sjk




2 , (26)

with λΩ̃
(1) the largest eigenvalue of Ω̃ and ṽ the corresponding eigenvector centrality vector

of the particular adjacency matrix.

The result in Proposition 5 allows us to explore further the relationship between an asset’s

centrality position in a portfolio and its optimal portfolio allocation. The following result

provides sufficient conditions for the existence of a positive relationship between the optimal

asset allocation and its centrality in the portfolio. To show this, we need the following

technical conditions that we present as an additional assumption.

Assumption 5 Let {sjk}j,k=1,...,N be the elements of the eigenvectors of the adjacency matrix

Ω̃, and let {ṽj}j=1,...,N be the corresponding eigenvector centrality measures. Then, we impose

the following conditions:

i)
N∑
j=1

sjk > 2sik, for i, k = 1, . . . , N ;

ii)
N∑
j=1

ṽj > 1;

iii) ṽi

(
N∑
j=1

sjk

)
>

sik

1− λΩ̃
(1)

, for i, k ∈ {1, . . . , N}.

The conditions given by Assumption 5 are sufficient but not necessary conditions, and

can be relaxed at the expense of more algebra as explained in the proof of the result in the

mathematical appendix.

18



Theorem 2 Under Assumptions 4-5, the optimal portfolio allocation w∗
i in (26) increases

as the corresponding eigenvector centrality ṽi increases.

The above result can be illustrated in more detail if we assume that the VaR measures

are common across assets, that is, γi = γ, for all i ∈ {1, . . . , N}. In this scenario, we can

refine the result in Theorem 1 and show the existence of a positive relationship between the

allocation to the risky asset and the centrality measure vi defined in (79). More formally,

this implication of Theorem 2 is presented by Proposition 6 below, which holds in the case

we assume that same Value-at-Risk corresponds to all assets in the financial network.

Proposition 6 Under Assumptions 4-5 and a common γ across risky assets, the optimal

portfolio vector w∗
i in (16) increases as the corresponding eigenvector centrality vi increases.

The proof of Proposition 6 can be found in Appendix A of the paper. Moreover, using

previous arguments, it is straightforward to see that when γi = γ for all i ∈ {1, . . . , N} then

λΩ̃
i =

(
1− γ − λΩ

i

)
such that the optimal portfolio allocation becomes

w∗
i =

vi

γ + λΩ
(1)




N∑

j=1

vj


+

N∑

k=2

sik
γ + λΩ

k




N∑

j=1

sjk




1

γ + λΩ
(1)




N∑

j=1

vj




2

+

N∑

k=2

1

γ + λΩ
k




N∑

j=1

sjk




2 , (27)

with λΩ
i the eigenvalues of the adjacency matrix Ω.

In particular expression (27) provides a suitable parametrization of the optimal weight

vector for proving the relation between optimal portfolio allocation and stock centrality.

Similarly to the above analysis one can obtain the corresponding optimal allocation vector

for the mean VaR-∆CoVaR portfolio6 problem. We omit the particular derivations from

this section, however the dependence of the optimal weight vector to both the eigenvector

centrality and the common VaR measure across assets, still holds. In summary, the main

result and novel contribution to the literature as demonstrated with our analysis in Section 3

is that within the optimal portfolio choice problem for an investor who is concerned with tail

risk, higher stock centrality, as measured by eigenvector centrality implies larger allocation

on the risky asset. More specifically, due to the structure of our novel risk matrix, the

optimal portfolio allocation can be interpreted with respect to the tail risk measures while

stock centrality can be interpreted as a tail risk eigenvector centrality, capturing this way the

induced centrality of stocks due to comovements in higher-order moments of the underline

distributions that occur since our framework considers the effect of tail dependence.
6To construct the particular portfolio optimization problem, one needs to consider the objective function

along with the target expected mean constraint and show that there is an equivalent closed-form solution to
the case of the covariance matrix. A lot of applications of this framework can be found in the literature.
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4 Node Exclusion and Portfolio Risk

The analysis in Section 3 provides conditions under which stock centrality increases the

overall risk in the portfolio. The particular measure is directly related to the magnitude

of the ∆CoVaR measures and, hence, to the presence of network tail dependence across

the nodes. In this context, it may be important to assess the effect of stock centrality to

the centrality of other stocks in the graph. Furthermore, even though we do not explicitly

examine the effect of stock centrality on optimal portfolio allocation, our main concern in this

section is to examine the effect of stock centrality on portfolio risk. The scope of Section 4 is

to propose a suitable algorithm which can eliminate the central assets based on a stopping

rule. This technique allows for example to measure the effects of interventions in networks

(e.g., see Elliott and Golub (2019), Galeotti et al. (2020) and Badev (2021)).

An initial step towards this direction is to compare stock centrality between two portfolios.

The first portfolio is constructed from N assets and characterized by the risk matrix Γ̃. The

second construction is given by a reduced portfolio in which the most central asset has been

removed and is characterized by the risk matrix Γ̃\{k}. To construct this matrix we remove

the k−th row and k−th column, where k denotes the node with the largest eigenvector

centrality, that is, vk is the largest element of the centrality vector v = (v1, . . . , vN ). Using

the matrix decomposition given by (22) to the reduced risk matrix Γ̃\{k}, we obtain the

following expression for the quadratic form of the portfolio risk induced after removing the

k−th node from the graph

Q(Γ̃\{k},w
∗
\{k}) = w∗′

\{k}Ω\{k}w
∗
\{k} +

N∑

i=1
i6=k

w∗2
i\{k}γi, (28)

where Ω\{k} is the adjacency matrix associated to the reduced risk matrix Γ̃\{k} and w∗
\{k}

are the optimal portfolio weights of the reduced portfolio. Therefore, an expression for the

difference of the two loss functions defined as Q(Γ̃,w∗)−Q(Γ̃\{k},w
∗
\{k}) is given by

Q(Γ̃,w∗)−Q(Γ̃\{k},w
∗
\{k}) = w∗′Ωw∗ −w∗′

\{k}Ω\{k}w
∗
\{k} +

N∑

i=1
i6=k

(
w∗2
i − w∗2

i\{k}

)
γi + w∗2

k γk.

The above quantity due to the difference of the loss functions occurs due to the effect of node

removal from the graph and thus the level of connectivity in the induced network topology.

Then, by expression (52) in Appendix A we obtain that the middle term above becomes

w∗′
\{k}Ω\{k}w

∗
\{k} = w∗′

\{k}Z\{k}DΩ\{k}
Z′
\{k}w

∗
\{k} =

N∑

i=1
i6=k

λi\{k}




N∑

j=1

w∗
j\{k}

zji\{k}




2

(29)
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Then, by substituting expression (29) we obtain that

w∗′Ωw∗ −w∗′
\{k}Ω\{k}w

∗
\{k} =

N∑

i=1
i6=k

(
λΩ
i − λΩ

i\{k}

)



N∑

j=1
j 6=k

w∗
j zji




2

+

N∑

i=1
i6=k

λΩ
i\{k}








N∑

j=1
j 6=k

w∗
j zji




2

−




N∑

j=1
j 6=k

w∗
j\{k}zji\{k}




2


+
N∑

i=1
i6=k

λΩ
i

{
(w∗

kzki)
2 + 2

N∑

j=1
j 6=k

w∗
kw

∗
j zkizji

}

+ λΩ
k




N∑

j=1

w∗
j zjk




2

.

(30)

The first and second terms of expression (30) reflect differences in eigenvalues and eigen-

vectors between the two adjacency matrices. That is, the same stock can take different values

of the centrality statistic across the two portfolios. However, as Van Mieghem (2014) empha-

sizes the removal of a node k from the graph has a dominant effect on the λΩ
\{k} rather on the

eigenvectors of the sub-graph. Nevertheless, this effect is weighted by the gap between the

eigenvalue of the full matrix, λΩ and the eigenvalue of the reduced matrix, λΩ
\{k}. The last

two terms capture the contribution of the most central node k to the full adjacency matrix.

Moreover, expression (30) allows us to disentangle the effect of stock k from the remaining

stocks based on the difference of these two quadratic forms. This is done by removing the

last two terms in the above expression. Thus, the net difference after discounting the effect

of stock k, where k ∈ {1, ..., N} is denoted by ∆ and defined as

∆ =
N∑

i=1
i6=k

(
λΩ
i − λΩ

i\{k}

)



N∑

j=1
j 6=k

w∗
j zji




2

+
n∑

i=1
i6=k

λΩ
i\{k}








N∑

j=1
j 6=k

w∗
j zji




2

−




N∑

j=1
j 6=k

w∗
j\{k}zji\{k}




2


.

(31)

A positive value of ∆ signals a larger contribution of the adjacency matrix Ω to the

loss function Q(Γ̃,w∗) than of Ω\{k} to the loss function Q(Γ̃\{k},w
∗
\{k}). In contrast, a

negative value indicates a larger contribution of the reduced adjacency matrix. Intuitively, a

positive ∆ implies that the (N − 1) remaining assets are more connected in the full matrix

configuration than in the reduced matrix configuration. In contrast, if ∆ is negative then the

(N − 1) assets exhibit low connectivity once we remove asset k from the portfolio. Notice

also that all the eigenvalues of the adjacency matrix Ω\{k} for each i ∈ {1, ..., N} are lying

in between the eigenvalues of Ω (see, (Van Mieghem, 2014, p. 6)).
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This implies that λΩ
i − λΩ

i\{k} ≥ 0. In order to obtain a better insight into this result, we

compute the difference of eigenvalues between the two risk matrices. Using expression (21),

we obtain that

λΩ
s =

N∑

i=1
i6=k

N∑

j=1
j 6=k

ziszjsγ̃(i,j) +
N∑

j=1

zkszjsγ̃(k,j) +
N∑

i=1

ziszksγ̃(k,i).

The corresponding eigenvalue of the reduced adjacency matrix Ω\{k} is

λΩ
s\{k} =

N∑

i=1
i6=k

N∑

j=1
j 6=k

zis\{k}zjs\{k}γ̃(i,j). (32)

Simple algebra shows that

λΩ
s − λΩ

s\{k} =
N∑

i=1
i6=k

N∑

j=1
j 6=k

(
ziszjs − zis\{k}zjs\{k}

)
γ̃(i,j) +

N∑

j=1

zkszjsγ̃(k,j) +
N∑

i=1

ziszksγ̃(k,i). (33)

Expression (33) shows that the difference in eigenvalues is determined by differences in the

eigenvectors of the adjacency matrices Ω and Ω\{k} and the contribution of the off-diagonal

terms of the removed asset k. The latter two terms associated to asset k are expected to be

of positive sign entailing an increase in connectivity for the full portfolio compared to the

reduced portfolio. There is, however, another effect given by the difference of eigenvectors

between the matrices Z and Z\{k}. The difference in eigenvectors can be sufficiently sizeable

to offset the effect of removing node k, and such that expression (33) is negative. In this case

∆ is likely to be negative.

As a final exercise we consider the case when the eigenvalues of the remaining (N − 1)

assets, once asset k is removed, are very similar. This is possibly the case for large portfolios.

Let us assume that λΩ
s = λΩ

s\{k} for s ∈ {1, . . . , k − 1, k + 1, . . . , N}. Then, using (31), we

can derive an equivalent expression for the ∆ function as it is shown by Proposition 7.

Proposition 7 Let ∆ be the net difference function of the loss functions. Then, we can

prove that an equivalent expression for ∆ is given by the following expression

∆ =

N∑

i=1
i6=k

λΩ
i\{k}




N∑

j=1
j 6=k

(
w∗
j + w∗

j\{k}

)
zji







N∑

j=1
j 6=k

(
w∗
j − w∗

j\{k}

)
zji




+
N∑

i=1
i6=k

λΩ
i\{k}




N∑

j=1
j 6=k

w∗
j\{k}

(
zji + zji\{k}

)






N∑

j=1
j 6=k

w∗
j\{k}

(
zji − zji\{k}

)

 .

(34)
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Remark 4 Proposition 7 demonstrates that differences in connectivity between the stocks

across the full portfolio vis-a-vis the reduced by one central stock portfolio are driven by

differences in portfolio weights and eigenvectors of the adjacency matrices Ω and Ω\{k}.

Next, we find the level of eigenvector centrality that minimizes the portfolio risk when this

is expressed with respect to the adjacency matrix.

Proposition 8 Let Q(Ω,w) = w′Ωw the portfolio risk function with respect to the adjacency

matrix. Then, the eigenvector centrality measure which minimizes the portfolio risk is

vi = −2wi

/


N∑

j=1

wjvj


 (35)

Proof. Notice that, by the proof of Theorem 1 in Appendix A we have that

∂2w′Ωw

∂2vi
= λΩ

(1)




N∑

j=1

wjvj




2

> 0. (36)

which is always a positive quantity since we assume that λΩ
(1) > 0. Thus, we can conclude

that the eigenvector centrality which minimizes, the portfolio risk w′Ωw, is given by (35).

Remark 5 Notice that Proposition 8 provides the optimal eigenvector centrality measure

which minimizes the portfolio risk based for the GMVP strategy. However, practically obtain-

ing the particular vector is not an easy task, which it would require to have a certain network

topology which ensures that the eigenvector centrality can be expressed in that form.

Our procedure proposes a technique for dimensionality reduction in graphs. In particular,

we remove central nodes based on the eigenvector centrality measure. The criterion for

the removal of central stocks in our setting is determined by the ∆ function as given by

Proposition 7. Furthermore, we have derived an analytical expression for the eigenvector

centrality given by expression (35) which minimizes the portfolio risk and it holds regardless

we employ the portfolio risk function with respect to the risk matrix or the adjacency matrix.

For instance, when the vector of eigenvector centrality has the particular form then the

portfolio risk is achieved its minimum and no further node exclusions is necessary.

In summary, via our theoretical analysis in Section 3 and 4 we utilize the spectral vector

decomposition applied to the risk matrix and the adjacency matrix as well as the eigendecom-

position which corresponds to the leading eigenvalue and eigenvector to derive useful insights

regarding the relationship between optimal portfolio allocation and stock centrality as well as

the relationship between portfolio risk and stock centrality. We aim to illustrate that indeed

the relationship between portfolio risk and the tail centrality measure holds based on an em-

pirical application of the proposed procedure. Therefore, in Section 5 we provide empirical

evidence of the proposed methodology within an out-of-sample estimation framework.
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5 Empirical Application

The goal of our empirical study is to investigate the main research questions we tackle within

our framework such as the relation between optimal portfolio allocation and stock centrality

as well as portfolio risk and stock centrality using real data. These empirical finance relations

are studied from the perspective of an investor with tail events concerns, therefore assessing

the statistical properties of the novel risk matrix is important to verify the robustness of the

proposed portfolio choice methodology. In particular, we assess the sensitivity of portfolio

performance measures to the network topology using the VaR-∆CoVaR matrix. We focus

on the period before and after the financial crisis of 2008 during which financial markets

exhibited increased levels of financial connectedness increasing the likelihood of systemic risk

effects and financial contagion across the economy (Billio et al. (2012), Härdle et al. (2016)).

5.1 Data Description

In particular, our empirical study employs the dataset of Härdle et al. (2016) and includes

a panel of the top 100 publicly traded financial institutions by market capitalization. More

precisely, these are categorized into four groups: (i) depositories, (ii) insurance companies,

(iii) broker-dealers, and (iv) others; which allows us to construct a financial network and apply

the proposed graph based optimal portfolio allocation methodology. The dataset contains the

stock returns of these firms along with a set of macroeconomic variables both corresponding

to the same period (between 5, January 2007 and 4, January 2013) based on weekly time

series observations. Furthermore, the dataset includes a set of firm variables which we use as

the observable firm factors. In particular, these include balance sheet information such as:

(i) total assets/total equity to capture firm leverage, (ii) short term debt-cash/total liabilities

to capture maturity mismatch, (iii) ratio of the market to the book value of the total equity

to capture the market-to-book firm characteristics and (iv) log of the total book equity to

capture the size of the firm (see, Table 3).

The stock returns are estimated from the historical sequences of stock prices Pt across

the cross-section of firms. Moreover, we transform both macroeconomic and firm variables

into stationary time series before fitting to the econometric specifications, by taking first dif-

ferences. On the one hand, the macroeconomic variables allow us to capture the credit and

liquidity channel of systemic risk and financial interconnectedness in the network. On the

other hand, the inclusion of firm variables captures their individual behavioural characteris-

tics and reflect changes in idiosyncratic risk across time (e.g., see Duffie et al. (2009)). The

information set is identical for both the estimation and the forecasting of the VaR-∆CoVaR

risk matrix, which is suitable for an out-of-sample optimal asset allocation study. Our empir-

ical study contributes to the literature of systemic risk monitoring and graph based optimal

portfolio allocation using our proposed risk matrix constructed with tail-risk forecasts.
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The macroeconomic state variables consist of the following set: (i) implied volatility index,

VIX; (ii) short-term liquidity spread calculated as the difference between the three-month

repo rate and the three-month bill rate to measure short-term liquidity risk; (iii) changes in

the three-month Treasury bill rate; (iv) changes in the slope of the yield curve corresponding

to the yield spread between the ten year Treasury rate and the three-month bill rate from

the Federal Reserve Board; (v) changes in the credit spread between BAA rated bonds and

the Treasury rate; (vi) the weekly S&P500 index returns, and (vii) the weekly Dow Jones US

Real Estate index returns (see, Härdle et al. (2016) for detailed summary statistics and Table

3 in Appendix B for variable definitions). For the empirical application of the procedure in

our paper, we examine the use of both stationary and nonstationary data.

5.2 Dynamic Quantile Regression Model

Our proposed risk matrix belongs to the family of dynamic high dimensional covariance

matrices, and captures network tail risk dependence, since is based on tail risk measures. We

estimate the time-varying VaRs and CoVaRs conditional on a vector of lagged state variables

Mt−1. Both VaR and CoVaR risk measures represent quantiles of the distribution of returns

under different conditioning sets; hence, to predict these quantities we employ the quantile

regression specifications proposed by the seminal study of Koenker and Bassett (1978) (see,

also Koenker and Xiao (2002)).

Consider the conditional quantile function estimated via Qyi (τ |xi) = F−1
yi (τ |xi). Then,

the optimization function to obtain the model estimates is expressed as below

Qτ (yi|xi) = arg min
q(x)

E
[
ρτ (yi − q(xi))

]
(37)

where τ ∈ (0, 1) is a specific quantile level, and ρτ (u) = u
(
τ − 1{u<0}

)
is the check function

(see, Newey and Powell (1987)). Suppose 1 ≤ t ≤ T , then based on the estimation method

given by (37) the VaR and CoVaR are generated by the following econometric specifications

R(i),t = ν(i) + ξ′(i)Mt−1 + u(i),t (38)

R(j),t = ν(j) + ξ′(j)Mt−1 + β(j)R(i),t + v(j),t (39)

where {R(i),t} for i ∈ {1, ..., N} is the vector of portfolio returns at time t, and Mt−1 is

a vector of exogenous regressors containing macroeconomic characteristics common across

assets and Θ = {ν(i), ξ(i), ν(j), ξ(j), β(j)} is a compact parameter space.

Let Qτ (· | Ft−1) denote the quantile operator for τ ∈ (0, 1) conditional on an information

set Ft−1. Then, the error terms satisfy Qτ

(
u(i),t | Mt−1

)
= 0 for the quantile regression

model (38), and Qτ

(
v(j),t | R(j),t,Mt−1

)
= 0 for the quantile regression model given by (39).

Moreover, denote with θ(1) =
(
ν(i), ξ

′
(i)

)
and X̃

(1)
t−1 =

(
1,M′

t−1

)′
for model (38), and with

θ(2) =
(
ν(j), ξ

′
(j), β(j)

)
and X̃

(2)
t−1 =

(
1,M′

t−1, R(i),t

)′
for model (39).
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Then, the model estimate

θ̂(1) (τ) = arg min
θ(1)∈Rp+2

T∑

t=1

ρτ

(
R(i),t − θ′(1)X̃

(1)
t−1

)
(40)

Similarly, the quantile estimator of (39) is obtained via the optimization function below

θ̂(2) (τ) = arg min
θ(2)∈Rp+1

T∑

t=1

ρτ

(
R(j),t − θ′(2)X̃

(2)
t−1

)
(41)

The state variables, that is, the macroeconomic and financial variables, included in the econo-

metric model, capture time variation in the conditional moments of asset returns. Therefore,

the VaR and CoVaR of each financial institution are estimated as vectors from a time-varying

distribution. This approach allows to explain the optimal portfolio allocation in terms of

changes in the systemic risk and financial connectedness in the network. To implement this,

we use a rolling window, within which the quantile regressions given by (38) and (39) are

fitted and the Γ̃ risk matrix is constructed based on one-period ahead forecasts.

Specifically, the one-period ahead VaRt+1 for a coverage probability τ ∈ (0, 1) is obtained

by regressingR(i),t onMt−1 as given by the first step regression (38) which gives the parameter

estimates ν̂(i) and ξ̂(i). The forecasted one-period ahead VaR is computed as below

V̂aR(i),t+1(τ) = ν̂(i) + ξ̂(i)Mt. (42)

Similarly, the one-period ahead forecast of CoVaRt+1 is obtained by regressing R(j),t on

Mt−1 and R(i),t as shown in the second step regression (39) using the quantile estimation as

defined by (37). To do this, we collect the parameter estimates ν̂(j), ξ̂(j), β̂(j) from the second

regression, and construct the forecasted one-period ahead CoVaR measure with

ĈoVaR(j),t+1(τ) = ν̂(j) + ξ̂(j)Mt + β̂(j)V̂ aRi,t+1(τ), (43)

where V̂ aRi,t+1(τ) replaces the actual V aRi,t+1(τ) measure. Then, the ∆CoVaR measure is

computed as the difference of the two risk measures

∆CoVaR = ĈoVaR(j),t+1(τ)− V̂aR(j),t+1(τ), (44)

An important aspect of our proposed estimation methodology is the assumption of a graph

representation with nodes being the stock returns and edges being pairwise tail forecasts,

which can be thought as the level of simultaneous Granger causality due to the existence of

tail and graph dependence. Therefore, these tail forecasts are estimated using the aforemen-

tioned predictive regression models based on the bipartite graph structure, which implies an

estimation implementation for each pair (i, j) of nodes for the graph G = (V, E).
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The construction of one-period ahead forecasts for the dynamic portfolio allocation, based

on a graph representation, consists one of the main contributions of the empirical application

of the paper. The particular estimation procedure is employed for each of the pairwise

predictive regressions, to obtain the elements of the VaR-∆CoVaR matrix. Next, we examine

the model fit and specification of the proposed risk matrix Γ̃.

5.3 Analysis of Model Fit and Specification

In Section 5.2 we described the procedure for jointly estimating and forecasting the VaR and

CoVaR for the financial institutions in the network. The estimation procedure is straight-

forward to implement, however there is now a growing statistical literature which studies

the statistical conditions for joint elicitability of these risk measures, that permit to em-

ploy the aforementioned econometric specifications. Related studies include Ziegel (2016),

Fissler et al. (2016), Patton et al. (2019) and Frongillo and Kash (2020). Therefore, here we

implement various robustness checks focusing on the out-of-sample accuracy of the procedure,

and the robustness of the model fit via alternative specifications of the quantile regression

models, using formal statistical tools such as quantile specification tests (see Yang et al.

(2021)).

5.3.1 Factors: Firm Characteristics

Our starting point for the model fit evaluation, is to account for the effects of unobserved

heterogeneity due to differences under the presence of latent factors such as firm specific

variables. To do this, we examine the goodness-of-fit for the quantile risk measures in the case

of no firm characteristics vis-a-vis the case with the additional observable firm characteristics

as predictors. In particular, we evaluate the performance of the quantile models when the firm

variables of firm i are included in the specification of the two quantile predictive regressions

corresponding to the VaR and CoVaR risk measures. The purpose of distinguishing this

particular aspect is to reduce any potential biased tail forecasts due to possible misspecified

pairwise predictive models. Furthermore, we can examine whether our theoretical results are

still valid in the case we obtain the optimal asset allocation conditional on firm characteristics.

The addition of firm variables can provide additional predictive accuracy in the out-

of-sample estimation of the risk matrix resulting to improve accuracy when obtaining an

estimate for the sharpe ratio. On the other hand, considering firm characteristics to the

optimal portfolio choice problem we contribute to the related literature which is in favour of

incorporating such variables (see, McGee and Olmo (2020)). More precisely, the particular

approach of constructing the optimal portfolio choice problem using firm characteristics is

quite recent and provides a methodology for reduced model uncertainty when fitting asset

pricing models. Specifically, using data on firm factors can employed to reduce the uncer-

tainty induced in the estimation procedure which occurs from the presence of any further

unobservable factors.
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Therefore, since we consider the optimal portfolio choice problem in graphs the inclusion

of firm characteristics can also provide a tractable way of improving the information set and as

a result modelling more formally the network tail dependence induced by the underline node

specific distributions. This is certainly an aspect which has not been examined before in the

literature of portfolio choice problems under graph dependence. Furthermore, when obtaining

the optimal number of stocks based on eigenvector centrality, capturing correctly the tail

connectivity of stocks by the corresponding centrality measure, robustifies the estimation of

the eigendecomposition and reduces the likelihood of obtaining a low-rank risk matrix.

5.4 Dynamic Optimal Portfolio Allocation under Tail Risk

The dynamic optimal portfolio allocation for an investor concerned with tail risk can be

constructed using the VaR-∆CoVaR matrix. We implement the dynamic optimization with

a rolling window forecasting scheme of a fixed length. Within this setting, the investor’s

objective function is expressed as below

w∗
t = arg min

wt∈RN

{
w⊤

t Γ̃t+1|twt

}
subject to w⊤

t 1 = 1, (45)

where the dynamic risk matrix Γ̃t+1|t replaces the static matrix Γ̃ discussed in (10).

The full sample contains 314 weekly observations spanning the period between 5, January

2007 and 4, January 2013, covering a period before and after the 2008 financial crisis. Due

to the rapid development of the events that led to the market crashdown in September 2008,

the weekly frequency is a suitable sampling frequency to capture the dynamic systemic risk

and increased interconnectedness as documented in the literature (see, Härdle et al. (2016)).

The forecasting scheme which is based on a rolling window with sample size κ = 250 time

series observations, spans the period between 5, January 2007 and 14, October 2011. We

find this sampling period to provide a good approximation of a highly connected network

topology, that allows to apply our theoretical framework. Using this sample, we obtain

a forecast of the risk matrix Γ̃t+1|t corresponding to 21 October 2011, and construct the

corresponding optimal portfolio weights. This procedure is repeated until 03 January 2013

such that we reestimate the risk matrix weekly using the rolling window and compute the

vector of optimal portfolio weights in each period. The out-of-sample distribution of portfolio

returns is calculated as rpt+1 = w′
tRt+1, where w′

t is the estimated vector of optimal weights

and Rt+1 the stock return of the assets included in the portfolio at time t+ 1.
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5.4.1 Portfolio performance measures

Portfolio performance is assessed using standard performance metrics. We consider the out-

of-sample Sharpe Ratio obtained over the out-of-sample evaluation period:

ŜR =
R̄p

σ̂Rp

(46)

where R̄p and σ̂Rp are the out-of-sample mean and variance of the returns. Thus,

R̄p =
1

N − κ

T∑

t=κ+1

rpt and σ̂2
Rp

=
1

N − κ− 1

T∑

t=κ+1

(rpt − R̄)2. (47)

5.4.2 Optimal number of stocks based on eigenvector centrality

The next aspect we examine is the determination of a possible optimal number of stocks

based on the eigenvector centrality measure and utilizing a sequential procedure for exclud-

ing central nodes from the graph, as described by Algorithm 1. Firstly, we apply the dynamic

optimal portfolio problem for all rolling windows of the full sample with 314 weekly obser-

vations and κ = 250 being the length of each rolling window as explained in details in the

previous section. Secondly, we investigate the sensitivity of the portfolio performance mea-

sures to the network topology which allows to investigate empirically the relationship between

stock centrality and portfolio risk. In particular, we examine the effect of network topology

on the portfolio mean and variance under based on the proposed risk function which accom-

modates tail connectivity. To do this, we design a procedure in which in each rolling window,

we modify the network topology (by excluding central nodes). Thus, the particular sequential

procedure based on the portfolio choice closed form solution is applied, after removing the

most central asset from the network estimated in each replication step.

Furthermore, notice that our procedure chooses the optimal number of stocks based on

eigenvector centrality since we propose a graph-based portfolio selection mechanism by being

agnostic about the industry specific characteristics of stocks, which would require a different

construction of the portfolio investment strategy. For instance, the framework of Chen et al.

(2020) propose a procedure for optimal portfolio choice problems using sparse-group lasso

regularization techniques allowing for both asset allocation and sector selection. A different

approach is to follow an efficient sorting algorithmic procedure for obtaining the optimal asset

allocation as in the framework proposed by Ledoit et al. (2019). Therefore, our framework

consider tail connectivity across the nodes taking into consideration the network topology

rather than any clustering effects among stocks.
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In summary, to evaluate the sensitivity of assets to the network topology in the tails in

each rolling window, we estimate the VaR-∆CoVaR matrix for the full sample of N = 100

assets and then re-estimate the risk matrix to derive the optimal number of assets in the

portfolio for each period by applying Algorithm 17. Our proposed Algorithm determines the

optimal number of assets in the portfolio. The procedure is based on eigenvector centrality

and excludes central stocks from the portfolio based using the criterion function ∆ that checks

the difference for the corresponding quadratic loss functions before and after one additional

exclusion8 of a node from the network.

Algorithm 1 Let rpt =
n∑

i=1
w∗
iRi,t be a portfolio with associated risk matrix Γ̃, where w∗ is

the solution to the objective function (9).

Step 1. Solve the optimization problem for this portfolio and obtain

w∗ =
Γ̃−11

1′Γ̃−11
. (48)

Step 2. Construct the adjacency matrix Ω, obtain the eigenvalues and let λ = max(λ1, . . . , λN ).

The eigenvalue centrality measure (79) is

vi = λ−1
n∑

j=1

Ωij vj . (49)

Step 3. Let vk = max(v1, . . . , vn). Then, asset k exhibits the largest eigenvector centrality statis-

tic. We construct the reduced portfolio r
p
t\(k) =

N∑
i=1
i6=k

w∗
i\{k}Ri,t obtained from removing

asset k, and obtain the associated risk matrix Γ̃\{k}.

Step 4. Solve the optimization problem (9) for this portfolio and obtain

w∗
\{k} =

Γ̃−1
\{k}1

1′Γ̃−1
\{k}1

. (50)

Step 5. Compute the condition given by the function ∆. Remove asset k if this condition is

negative. The Alogirthm stops the first time ∆ becomes positive.

Step 6. If the asset is removed repeat the procedure from Step 2 for the portfolio with N − 1

assets. Otherwise, we retain the portfolio with N assets.

7We ensure that the optimal weight vector is always positive using the constrained optimization routine
proposed in the R package of Scrucca et al. (2013). The particular package in R provides a set of Genetic
Optimization Algorithms commonly used in portfolio optimization and other linear programming settings.

8For the interested reader Algorithm 1 in Calvo-Pardo et al. (2021) proposes a procedure for excluding
nodes within a neural network which can increase the predictive accuracy within a high dimensional setting.
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5.5 Empirical results

To begin with, for the empirical application of this paper we focus on the quantile level of

τ = 5%, which is a commonly used level of risk at the tails of the underline distributions

considered for financial risk management purposes. Moreover, we consider the minimum-

variance portfolio strategy for the full sample of all financial institutions as well as for the

cases of the low versus high network inteconnectedness. In particular, to represent these two

scenarios we consider removing the most central nodes from the financial network for the

first scenario, while we exclude the nodes with low centrality in the second scenario, based

on the eigenvalue centrality. As a robustness check of our proposed methodology we also use

alternative centrality measures. Our empirical results indicate that the network topology has

a direct impact on the portfolio performance when an investor is concerned with tail events.

As we demonstrate on Table 1 below, when testing for differences in the Sharpe ratios of the

two network topologies that correspond to the high versus the low interconnectedness, the

null hypothesis of no differences is rejected at significance level 0.05 with bootstrap p-values

indistinguishable from zero. To provide evidence of statistical difference of the distribution

of portfolio returns from the different network topologies we apply the Sharpe ratio test of

Ledoit and Wolf (2008) (see, the R package of Ardia et al. (2017)).

Table 1:LW robust hypothesis testing for the Sharpe ratio

X Y X Z Y Z

Sharpe ratios 0.1461 0.2039 0.1461 0.2076 0.2039 0.2076

Sharpe ratios difference (∆̂) -0.0578 -0.0615 -0.0037

Asymptotic

t-Statistic -1.9984 -1.8545 -0.2810
p-value 0.0457∗∗ 0.0637 0.7787

Asymptotic (HAC)

t-Statistic -1.8852 -1.7027 -0.2687
p-value 0.0594 0.0886 0.7881

i.i.d Bootstrap

t-Statistic -1.9984 -1.8545 -0.2810
p-value 0.0484∗∗ 0.0686 0.7886

Circular Bootstrap

t-Statistic -2.2534 -2.0923 -0.3452
p-value 0.0480∗∗ 0.0639 0.7872

Table 1 corresponds to an out-of-sample estimation window of size T = 250 with n = 64. Both

the i.i.d and the circular Bootstrap are computed based on B = 10, 000 replications. Statistical

significance for the tests is based on estimated p-values and indicated with (∗) for α = 10%, (∗∗) for

α = 5% and (∗∗∗) for α = 1%.
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Our empirical results as summarized on Table 1 demonstrate the Sharpe ratio test pro-

posed by Ledoit and Wolf (2008)) for robust portfolio performance evaluation, applied to

an out-of-sample estimation window with 250 time observations. We observe that both the

asymptotic t-statistic as well as the iid and circular bootstrapped t-statistics indicate that

statistical significant evidence of differences in the Sharpe ratios of two distributions of port-

folio returns which correspond to the network topology of high interconnectedness versus low

interconnectedness respectively, that is, the pair {Xj , Yj}T0

j=1 above. Furthermore, when we

compare each of these generated portfolio return distributions separately against the portfolio

return distribution of the full sample we find no statistical evidence of differences between

the two. The latter verifies that by having nodes of high centrality in the network mixed

with nodes of low centrality is practically equivalent to the full sample. Therefore statistical

significant differences appear only in the case we compare the portfolio return distributions

after trimming the most central assets versus the case of trimming the low centrality assets

in the network. Notice that these results correspond to the macroeconomic covariates after

taking the first difference which ensures stationary time series properties.

In summary Tabel 1 above demonstrates that the portfolio where we remove the most

central assets Y and the portfolio with all assets Z are the best performing portfolios compared

to X. However, there are no statistical differences between the portfolios Y and Z in terms of

Sharpe ratio as indicated by the large p-value. In contrast the portfolio where we remove the

low centrality assets, inducing a high centrality topology, is outperformed by the low centrality

network topology. Therefore, based on these results it may be reasonable to conjugate that

the distribution of portfolio returns that corresponds to high centrality is outperformed from

the distribution of portfolio returns that corresponds to a low centrality topology. In other

words, the low centrality assets have an important role for portfolio diversification. This

finding constitutes one of the main theoretical and empirical contributions of this paper.

5.5.1 Bootstrap Sharpe Ratio Testing

To provide statistical evidence of differences among the estimated distributions of portfolio

returns that corresponds to the high centrality versus low centrality network topologies we

utilize the Sharpe ratio test of Ledoit and Wolf (2008). Assume that we have two investment

strategies A and B whose excess returns over a given benchmark at time t are rtA and rtB ,

respectively. For instance, this could be the risk-free rate however within our framework,

we consider the benchmark to be the out-of-sample distribution of portfolio returns that

corresponds to the the full sample, that is, when no nodes have been excluded within each

moving window. Then, since our aim is to compare the distribution of portfolio returns of

the two network topologies, we denote with rtA and rtB the network topology with high

interconnectedness and the network topology with the low interconnectedness respectively

and follow the bootstrap procedure proposed by Ledoit and Wolf (2008).
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6 Simulation Evidence

In this Section, we provide simulation evidence to support the theoretical and empirical

findings of the paper. To simulate both stock returns and economic shocks via the presence of

exogenous macroeconomic variables we consider a data generating process which is standard

in the stock predictability literature9. After obtaining a vector with the simulated data, we

fit the econometric models for the VaR and CoVaR and then obtain an estimate for the risk

matrix Γ̃, based on the simulated data.

Notice that Corollary 1 provides theoretical evidence that the portfolio risk defined by

Q(Γ̃,w) is increasing on the centrality measure vi. In practise, this conjecture implies that the

higher the centrality vector the higher is the expected value of the portfolio risk as measured

by the tail risk matrix (not the volatility matrix), therefore is an empirical finance result

which corresponds to tail dependent events. Therefore, when we remove central nodes from

the graph based on the eigenvector centrality vector we suppose that the reduced graph has

low interconnectivity and therefore the tail dependence is kept at low levels. However, this

fact does not necessarily provide evidence regarding the effect of the centrality vector induced

from the full model in comparison to the centrality vector induced by the reduced model after

excluding one central node. Clearly the particular issue requires further investigation and a

more sophisticated algorithm which is designed to select those combinations of nodes based

on their centrality in relation to expected portfolio return and risk.

Furthermore, Table 2 provides simulation evidence about the performance of the portfolio

mean, portfolio risk as well as the ∆ function when excluding sequentially one central stock

at a time, based on the eigenvector centrality measure for an in-sample exercise.

Table 2: Simulation Evidence

Exclusions rp Q(Γ̃,w) ∆

1 3.202 2.268 -5.475
2 7.511 3.636 1.445
3 8.316 3.683 -0.145
4 9.264 4.066 -0.891
5 13.105 6.567 -5.277
6 11.988 8.007 -4.956
7 14.804 8.406 -0.929
8 14.476 8.499 -0.208
9 13.553 9.264 -1.788
10 13.950 9.420 -0.816

Table 2 corresponds to a data generating process with N = 40 nodes, k = 7 predictors and

t ∈ {1, ..., T } where T = 500.

9Notice that we avoid to simulate a factor return model (such as in Maillet et al. (2015)) which commonly
used for estimating asset pricing models due to the structure of the VaR-∆CoVaR risk matrix.
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7 Conclusion

In this study we have proposed a new risk matrix given by the VaRs and ∆CoVaR of the assets

in a portfolio which can be considered as an alternative way of parametrizing volatility under

uncertainty. VaR measures replace the variance and (VaRi,tVaRj,t)
1/2∆CoVaRi|j,t replace

the covariance terms. This risk matrix aims to capture tail events given by idiosyncratic

tail risks and connectivity between assets in the tails. In this way, we focus on higher-order

dependence structures across the distributions of stock returns. Furthermore, we derive the

conditions under which the corresponding quadratic form has a single closed-form solution.

This solution is interpreted as the optimal portfolio allocation of an investor that minimizes a

loss function given by the quadratic form associated to the novel risk matrix. The particular,

optimal vector of weights is similar in spirit to Markowitz (1952)’s minimum variance and

mean-variance optimal portfolios. The proposed optimal portfolio allocation procedure can

be helpful when removing stocks iteratively from a portfolio in order to obtain efficient asset

allocations by taking into consideration the stock centrality.
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Appendix

A Technical Proofs

Proof of Proposition 4:

Proof. We deduce from expression (21) that the eigenvalue λΩ
k is increasing on the magnitude

of the tail connectivity measure γ(i,j) if and only if zikzjk > 0 for each i, j ∈ {1, . . . , N}. The
proof of this result is immediate by noting that the first derivative of λΩ

k with respect to γ(i,j)

is positive if and only if zikzjk > 0 for each i, j ∈ {1, . . . , N}. To show this, note that

∂λΩ
k

∂γ(i,j)
=

∂λΩ
k

∂γ̃(i,j)

∂γ̃(i,j)

∂γ(i,j)
+

∂λΩ
k

∂γ̃(j,i)

∂γ̃(j,i)

∂γ(j,i)
(51)

given that γ̃(j,i) = γ̃(i,j) by construction of the risk matrix.

Note also that
∂λΩ

k

∂γ̃(i,j)
= zikzjk and

∂γ̃(i,j)
∂γ(i,j)

=
∂γ̃(j,i)
∂γ(j,i)

= 1
2 . Then,

∂λΩ
k

∂γ(i,j)
= zikzjk, that is

positive under the condition that zikzjk > 0 for all i, j ∈ {1, . . . , N}. Now, using the above

definitions, the quadratic form w′Ωw satisfies the following expression

Q(Ω,w) := w′Ωw = w′
(
ZΩDΩZ

′
Ω

)
w =

N∑

k=1

λΩ
k




N∑

j=1

wjzjk




2

, (52)

such that

∂w′Ωw

∂γ(i,j)
=

N∑

k=1

∂λΩ
k

∂γ(i,j)




N∑

j=1

wjzjk




2

=

N∑

k=1

zikzjk




N∑

j=1

wjzjk




2

. (53)

Then, under the condition zikzjk > 0 it follows that ∂w′
Ωw

∂γ(i,j)
is strictly positive, hence, the

quadratic form induced by the adjacency matrix Ω is increasing on the risk measure γ(i,j).

Proof of Theorem 1:

Proof. To show the result proposed by Theorem 1 note that from expression (22)

Q(Γ̃,w) =

{
w′Ωw +

N∑

i=1

w2
i γi

}
, (54)

since Ω := Γ̃− diag(Γ̃). Then, the first term of (54) can be expressed as below

w′Ωw =

N∑

i=1

λΩ
i




N∑

j=1

wjzji




2

. (55)

such that the decomposition for w′Ωw follows from Proposition 4.
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Notice that the term w2
i γi 6= 0 because γi represents the diagonal elements of the risk

matrix, that is, the VaR of firms. Then, we obtain that

Q(Ω,w) := w′Ωw = λΩ
(1)




N∑

j=1

wjvj




2

+

N∑

i=2

λΩ
i




N∑

j=1

wjzji




2

. (56)

where λΩ
(1) is the Frobenius eigenvalue. Therefore, expression (56) follows by utilizing

the notation for the eigenvector that corresponds to the Frobenius eigenvalue, which is the

centrality measure vi. Then, we consider the first derivative of this loss function with respect

to vi we obtain the following expression

∂w′Ωw

∂vi
=

∂λΩ
(1)

∂vi




N∑

j=1

wjvj




2

+ 2λΩ
(1)wi




N∑

j=1

wjvj


 . (57)

From the decomposition in (21) we have that λΩ
(1) =

N∑
i=1

N∑
j=1
j 6=i

vivj γ̃i|j. By construction of the

adjacency matrix we have that γ̃i|j = Ωij for i 6= j and such that the first derivative of the

eigenvalue λΩ
(1) w.r.t vi satisfies that

∂λΩ
(1)

∂vi
=

N∑
j=1
j 6=i

Ωijvj . By definition of eigenvector centrality

in (23), we have
N∑
j=1
j 6=i

Ωijvj = λΩ
(1)vi, such that

∂w′Ωw

∂vi
= λΩ

(1)vi




N∑

j=1

wjvj




2

+ 2λΩ
(1)wi




N∑

j=1

wjvj


 . (58)

Notice that as we explain above the term
∂λΩ

(1)

∂vi
is equivalent to λΩ

(1)vi. Therefore, for the

analytical expression given by (58) we can conclude that the first derivative of w′Ωw with

respect to vi can be positive or negative depending on the combination of the magnitude and

size of the quantities λΩ
(1), wi and vi for i = {1, . . . , N} in the above expression. Hence, in

general, no monotonic relationship prevails between asset centrality and the quadratic form

w′Ωw. Moreover, since ∂
∂vi

∑N
i=1w

2
i γi = 0 for all i ∈ {1, ..., N}, then we can determine

whether there exists an increasing or decreasing relation of the portfolio risk Q(Γ̃,w) w.r.t

to the centrality measure vi by determining the behaviour of w′Ωw.

Thus, we can only conclude that a monotonic (i.e., increasing) relation exists between

the portfolio risk Q(Γ̃,w) and stock centrality, measured by the eigenvector centrality, if and

only if the quantity



vi

(
N∑
j=1

wjvj

)2

+ 2wi

(
N∑
j=1

wjvj

)
 > 0, which is indeed always positive

since we assume that wi > 0 and vi > 0 ∀ i ∈ {1, ..., N}.
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Proof of Proposition 5:

Proof. We use the closed-form solution proved by Proposition 3 given as below

w∗ =
Γ̃−11

1′Γ̃−11
(59)

To begin with, we express the matrix Γ̃ as the sum of the following matrices

Γ̃ ≡
[
IN −

{(
IN − diag(Γ̃)

)
+
(
diag(Γ̃)− Γ̃

)}]
(60)

We denote

Γ̃ ≡
(
IN − Ω̃

)
(61)

where Ω̃ = − (B+Ω) such that B =
(
diag(Γ̃)− IN

)
and Ω =

(
Γ̃− diag(Γ̃)

)
.

Furthermore,

Γ̃−1 =
(
IN − Ω̃

)−1
=

∞∑

j=0

(
Ω̃
)j

. (62)

for a sequence of real-valued matrices Ω̃ ∈ RN×N . We have also used previously the SVD of

the Ω̃ matrix, such that Ω̃ = SD
Γ̃
S′. Therefore, we obtain

Γ̃−1 =
(
IN − Ω̃

)−1
=

∞∑

j=0

(
Ω̃
)j

=

∞∑

j=0

(
SD

Ω̃
S′
)j

(63)

Notice that due to the orthogonal eigenvectors S and S′, when the SVD is raised to a power

j we obtain the following result10, since S′S = I,

∞∑

j=0

(
SD

Ω̃
S′
)j

= S





∞∑

j=0

D
Ω̃





j

S′ (64)

Therefore, we can conclude that Γ̃−1 ≡ SD
λ̃
S′ where we denote with D

λ̃
the following matrix

D
λ̃
:= diag




∞∑

j=0

(
λΩ̃
1

)j
, ...,

∞∑

j=0

(
λΩ̃
N

)j

 . (65)

That is, D
λ̃
∈ RN×N is a diagonal matrix with diagonal elements

∞∑
j=0

(
λΩ̃
k

)j
, where λΩ̃

k is an

eigenvalue of the matrix Ω̃. The particular result holds if and only if these eigenvalues are

bounded, such that 0 < λΩ̃
k < 1 for all k ∈ {1, ..., N} where N the number of stocks.

10For example, Ω̃2 =
(
SD

Ω̃
S
′
) (

SD
Ω̃
S
′
)
=

(
SD

2
Ω̃
S
′
)
. In a similar manner, we can show that this result

holds for an infinite sum, due to the fact that S′
S = I.
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Remark 6 From the last expression, we basically proved that an eigenvalue of the matrix

Γ̃−1 is related to an eigenvalue of the matrix
(
IN − Ω̃

)−1
in the following way

λΓ̃−1

k ≡
∞∑

j=0

(
λΩ̃
k

)j
=

1

1− λΩ̃
k

(66)

The absolute convergence of the infinite series sum holds if and only if the eigenvalues of the

matrix Ω̃ are bounded between 0 and 1 (see, Assumption 4). Then, we can conclude that the

elements of D
λ̃
are given by 1

/(
1− λΩ̃

k

)
for k ∈ {1, . . . , N}.

By employing the expression we proved above, Γ̃−1 ≡ SD
λ̃
S′, we can now express the

optimal portfolio weights of the minimum variance portfolio problem as below

w∗ =
SD

λ̃
S′1

1′SD
λ̃
S′1

. (67)

Furthermore, by expanding the closed-form solution given by (67) we can express each

optimal portfolio weight w∗
i as a function of the eigenvector centrality ṽi. The trick for

obtaining an expression with the eigenvector centrality is to decompose the SVD into two

terms, such as the first term corresponds to the largest eigenvalue and the second term

corresponding to the remaining (N − 1) eigenvalues given by expression (66). By simple

matrix algebra, we obtain the following expression

w∗
i =

ṽi

1− λΩ̃
(1)




N∑

j=1

ṽj


+

N∑

k=2

sik

1− λΩ̃
k




N∑

j=1

sjk




1

1− λΩ̃
(1)




N∑

j=1

ṽj




2

+

N∑

k=2

1

1− λΩ̃
k




N∑

j=1

sjk




2 , (68)

where λΩ̃
(1) the largest eigenvalue of Ω̃ and ṽi the corresponding centrality measure based on

the adjacency matrix Ω̃ where sik denotes the (i, k)−element of the matrix S.

Remark 7 The diagonal matrix D
λ̃
contains the leading eigenvalue of the symmetrized risk

matrix Γ̃. The particular leading eigenvalue which is an important quantity within our frame-

work might suffer from larger bias than the leading eigenvalue of Γ which is the asymmetric

matrix (see, Chen et al. (2021) for a discussion about this aspect). However, the symmetriza-

tion approach we follow avoids the need for complex estimation procedure when obtaining

sample estimates of other quantities such as the inverse of the risk matrix, Γ̃−1. We aim to

investigate related aspects to bias of the leading eigenvalue in a further study.
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Proof of Theorem 2:

Proof. Applying the decomposition given by (21) to the adjacency matrix Ω̃ we obtain that

λΩ̃
(1) =

N∑

i=1

s2i1 (1− γi) +
N∑

i=1

N∑

j=1
j 6=i

si1sj1Ω̃ij. (69)

where λΩ̃
(1) is the Frobenius eigenvalue of the matrix Ω̃. Notice that expression (69) decom-

poses the largest eigenvalue into two terms, with the first term showing clearly the dependence

of the largest eigenvalue to the tail risk measure of the main diagonal of the matrix.

Replacing by the eigenvector centrality measures in (25), we obtain that

λΩ̃
(1) =

n∑

i=1

ṽ2i (1− γi) +

N∑

i=1

N∑

j=1
j 6=i

ṽiṽjΩ̃ij. (70)

Then, the first derivative with respect to the eigenvector centrality measure ṽi is

∂λΩ̃
(1)

∂ṽi
= 2ṽi (1− γi) +

N∑

j=1
j 6=i

Ω̃ṽj . (71)

By definition of eigenvector centrality in (25), we obtain that

(1− γi) ṽi +

N∑

j=1
j 6=i

Ω̃ij ṽj = λΩ̃
(1)ṽi (72)

such that

∂λΩ̃
(1)

∂ṽi
=
(
1− γi + λΩ̃

(1)

)
ṽi (73)

To prove the result of Theorem 2 we need to show that the numerator of the first derivative

of the quantity w∗
i as a function of ṽi is positive. Furthermore, notice that due to the

construction of the original adjacency matrix Ω as a weighted adjacency matrix, we avoid

the need to impose additional assumptions regarding the sparsity of the matrix. Therefore,

the eigenvalues and eigenvectors of both Ω and Ω̃ matrices are well-behaved.

Remark 8 Notice that for the result of Theorem 2 to hold an important assumption is that

all the elements of the centrality vector ṽi are positive in sign. In practise, in empirical

applications this might not always hold, if one uses the eigenvector which corresponds to the

largest eigenvalue as the centrality measure. Therefore, by using the graph package in R we

can obtain a positive eigenvector centrality vector based on an adjacency matrix.
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These conditions are given as following

(i)
N∑
j=1

sjk − 2sik > 0 for i, k ∈ {1, . . . , N};

(ii)
N∑
j=1

ṽj > 1;

(iii) ṽi

(
N∑
j=1

sjk

)
− sjk

1− λΩ̃
(1)

> 0 for i, k ∈ {1, . . . , N}.

Thus, Assumption 5 guarantees that these conditions are satisfied. Notice that these

conditions are sufficient but not necessary to obtain a positive relationship between stock

centrality and the optimal allocation to the risky asset, under the assumption of short selling.

Proof of Proposition 6:

Proof. To prove this result we first show that sk = zk for k ∈ {1, . . . , N}, with sk and zk

the eigenvectors associated to the adjacency matrices Ω̃ = − (B+Ω) and Ω, respectively.

This is equivalent to showing that the vectors zk are also eigenvectors of Ω̃, implying that

Ω̃zk = λΩ̃
k zk is satisfied. Thus, we focus on proving that this condition holds. We have that

diag(Γ̃) = γ⊗ IN when the VaR measures γi are common across assets. Then, the adjacency

matrix is written as Ω̃ = (1− γ) IN −Ω. Moreover by construction, Ωzk = λΩ
k zk, such that

Ω̃zk = (1− γ) INzk −Ωzk = (1− γ) zk − λΩ
k zk = λΩ

(1)zk. (74)

Therefore, it follows that the eigenvectors of Ω are also the eigenvectors of Ω̃. Due to

this result we also have that the eigenvector centrality measures associated to the adjacency

matrices Ω and Ω̃ satisfy that vk = ṽk for k ∈ {1, . . . , N}. Notice that the eigenvalues

satisfy that λΩ̃
k =

(
1− γ − λΩ

k

)
for k ∈ {1, . . . , N}. Then, 1−λΩ̃

k = γ+λΩ
k , and replacing the

eigenvectors and eigenvalues in (27), we obtain the expression for the optimal asset allocation

w∗
i =

vi

γ + λΩ
(1)




N∑

j=1

vj


+

N∑

k=2

zik
γ + λΩ

k




N∑

j=1

zjk




1

γ + λΩ
(1)




N∑

j=1

vj




2

+

N∑

k=2

1

γ + λΩ
k




N∑

j=1

zjk




2 , (75)

such that
∂w∗

i

∂vi
=

∂w∗
i

∂ṽi
, and, hence, applying Theorem 2, we find that the optimal allocation

to asset i is increasing on stock centrality vi, proving the statement of Proposition 6.
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B Estimation Results

Table 3:Variable Definitions
Firm Level Financial Variable Definition

Leverage Total Assets / Total Equity

Maturity Mismatch Short term Debt / Total liabilities

Size Log of Total Book Equity

Market-to-book Market Value of Total Equity / Book Value of Total Equity

Macroeconomic Financial Variable Definition

Variable 1 the implied volatility index (VIX)

Variable 2
the short term liquidity spread calculated as the difference between the
three-month repo rate and the three-month bill rate

Variable 3 the changes in the three-month Treasury bill rate.

Variable 4
the changes in the slope of the yield curve corresponding to the yield spread
between the ten year Treasury rate and the three-month bill rate from FRB

Variable 5 the changes in the credit spread between BAA rated bonds and
the Treasury rate.

Variable 6 the weekly S&P500 index returns.

Variable 7 the weekly Dow Jones US Real Estate index returns.

Table 3 gives a summary of the financial and macroeconomic variables included in the dataset of

Härdle et al. (2016) which we utilize for our empirical application. Notice that we assume stationarity

which avoids existence of structural breaks in certain macroeconomic variables such as the VIX11.

Table 4:Main Statistics
T Mean SD SR Min Q1 Median Q3 Max

X 63 0.0032 0.0041 0.7780 -0.0732 -0.0142 0.0042 0.0212 0.0967
Y 63 0.0038 0.0033 1.1476 -0.0621 -0.0099 0.0047 0.0214 0.0866
Z 63 0.0036 0.0036 0.9867 -0.0684 -0.0112 0.0036 0.0223 0.0896

Table 4 presents the summary statistics for the distribution of portfolio returns for the stationary

macroeconomic variables based on taking first differences on the full sample.

We denote with X to denote the out-of-sample distribution of portfolio returns for the

network topology with 25 less central assets removed (i.e., high interconnectedness); and Y

represents the out-of-sample distribution of portfolio returns for the network topology with

25 most central assets removed (i.e., low interconnectedness). The results presented on Table

4 corresponds to the optimal portfolio allocation problem (GMVP) using the proposed risk

matrix (and corresponding adjacency matrix) under the assumption of stationary regressors.

11Note that the VIX is considered a robust financial variable which can capture financial conditions and
time-varying volatility effects across the US financial markets. A detailed study on risk premia and stock
characteristics can be found in Martin and Wagner (2019).
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We ensure that stationarity holds by taking the first difference of the macro variables

within each out-of-sample period separately. Moreover, the vector of optimal weights is

reestimated in each iteration following the dynamic portfolio optimization framework. The

particular statistics which correspond to the moments of the distributions of portfolio returns,

indicate that the less interconnected is the network topology the higher is the Sharpe ratio.

More precisely, these estimates correspond to N = 100 nodes, for a rolling window of size

n = 250, resulting to an out-of-sample period of T = 63 time observations. Furthermore, in

each out-of-sample period we exclude 25 more central assets to obtain a network topology

of low inteconnectedness (Y distribution of portfolio returns) and similarly we apply the

same forecasting scheme but excluding 25 less central assets to obtain a network topology of

high inteconnectedness (X distribution of portfolio returns). Additionally, the estimates that

correspond to the full network of each rolling window are obtained for comparability purposes.

Lastly, the aforementioned methodology is implemented for estimation windows of different

window size to evaluate its effect to the robustness of the estimates. The corresponding

moments from the out-of-sample distributions of portfolio returns are reported on Table 4.

Table 5:Out-of-sample Portfolio Returns Distribution Estimates
T Mean SD SR Min Q1 Median Q3 Max

X 63 0.0032 0.0227 0.1422 -0.0576 -0.0101 0.0034 0.0177 0.0698
Y 63 0.0038 0.0207 0.1824 -0.0486 -0.0082 0.0051 0.0163 0.0614
Z 63 0.0036 0.0196 0.1856 -0.0446 -0.0088 0.0052 0.0154 0.0559

Table 5 presents main moment estimates for the distribution of portfolio returns for 10% exclusion

of central nodes based on stationary regressors within each out-of-sample period.

Table 6:Out-of-sample Portfolio Returns Distribution Estimates
T Mean SD SR Min Q1 Median Q3 Max

X 63 0.0030 0.0270 0.1108 -0.0599 -0.0125 0.0026 0.0214 0.0830
Y 63 0.0038 0.0214 0.1767 -0.0506 -0.0096 0.0057 0.0164 0.0634
Z 63 0.0036 0.0196 0.1856 -0.0446 -0.0088 0.0052 0.0154 0.0559

Table 6 presents main moment estimates for the distribution of portfolio returns for 25% exclusion

of central nodes based on stationary regressors within each out-of-sample period.
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C Additional Results

Using the Leibniz’ rule, the n−th derivative of both sides of Av(λ) = λv(λ), with respect to

λ is given by the expression below

A
dnv(λ)

dλn
=

n∑

k=0

(
n

k

)
dk

dλk
(λ) = λ

dnv(λ)

dλn
+ n

dn−1v(λ)

dλn−1
(76)

Thus, for n ≤ 1 we obtain that

(A− λI)
dnv(λ)

dλn
= n

dn−1v(λ)

dλn−1
(77)

Notice that further details regarding the theoretical proofs on differentiating eigenvalues and

eigenvectors can be found in the paper of Magnus (1985) (see, also Phillips (1982)). Moreover,

further background on related mathematical theorems can be found in Van Mieghem (2010).

In terms of the estimation procedure for the spectral radius of a positive definite matrix (see,

Theorem 3), a relevant procedure is proposed by Ibragimov (2001).

Theorem 3 (Perron Frobenius) (Van Mieghem, 2010) An irreducible non-negative n×n

matrix A always has a real, positive eigenvalue λ1 = λmax (A) and the modules of any other

eigenvalue does not exceed λmax, that is, |λk (A) | ≤ λmax for k = 2, ..., n. Moreover, λ1 is

a simple zero of the characteristic polynomial det(A− λI). The eigenvector belonging to λ1

has positive components.

Remark 9 Notice that by the Perron Frobenius theorem, the spectral radius of a matrix A

is its nonnegative eigenvalue, to which a positive eigenvector corresponds. Furthermore, the

spectrum of a matrix A is a sorted sequence of eigenvalues. For instance, we can denote the

spectrum of a matrix A in terms of a descending sequence such that λA
1 ≥ λA

2 ≥ ... ≥ λA
n .

C.1 Properties of Perturbation Matrix

Another useful result is presented by Corollary 1 below. In particular, we show that the

eigenvector centrality measure for a node i is the same for all adjacency matrices obtained

from parallel shifts of Ω. Therefore, we consider the following affine transformation

Ω⋆ := Ω+ ηIN (78)

with IN the N ×N identity matrix and η ∈ R some positive constant.

Corollary 3 The centrality measure vi for stock i with adjacency matrix Ω⋆ := Ω + ηIN

is equivalent to the corresponding centrality measure for the adjacency matrix Ω, where η

represents the perturbation parameter.
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Proof. By definition, the centrality of stock i given by vi is defined by expression (23)

v⋆i =
(
λΩ⋆

(1)

)−1
N∑

j=1

Ω⋆
ij v

⋆
j , (79)

where λΩ⋆

(1) := max
(
λΩ⋆

1 , . . . , λΩ⋆

N

)
is the largest eigenvalue of the adjacency matrix Ω⋆.

This result follows immediately by considering that expressions (23) and (79) are equal

for the centrality measures based on the adjacency matrices Ω and Ω⋆ respectively. To show

this, note from (79) we obtain that

λΩ⋆

(1)v
⋆
i = η +

N∑

j=1
i6=j

Ω⋆
ij v

⋆
j . (80)

Furthermore, the eigenvalues of the adjacency matrices Ω⋆ and Ω are related such that

λΩ⋆

i = λΩ
i +η, for all i ∈ {1, . . . , N}. This is an important result which provides an equivalence

relation of the corresponding set of eigenvalues, which is similar to the affine transformation

of the adjacency matrix Ω. To see this, we denote with ZΩ⋆ =
[
zΩ

⋆

1 , . . . , zΩ
⋆

N

]
the matrix of

eigenvectors of Ω⋆ and similarly we denote with ZΩ =
[
zΩ1 , . . . , z

Ω
N

]
be the eigenvector matrix

of the adjacency matrix Ω. Then, by the definition of the eigenvalue problem we have that

λΩ⋆

i zΩ
⋆

i = ΩzΩi . Therefore, by substituting the expression for Ω⋆, we obtain that

λΩ⋆

i zΩ
⋆

i = (Ω+ ηIN ) zΩ
⋆

i = (λΩ
i + η)zΩ

⋆

i (81)

which gives that λΩ⋆

i = λΩ
i + η, relating the eigenvalues of the two adjacency matrices.

Notice that by construction the off-diagonal elements of both adjacency matrices are also

equal such that Ω⋆
ij = Ωij for all i 6= j. Therefore, it follows that

λΩ
i vi =

N∑

j=1
i 6=j

Ωij vj (82)

which proves that condition (79) is satisfied.
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