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Abstract

We revisit classical asymptotics when testing for a structural break in linear regression models by

obtaining the limit theory of residual-based and Wald-type processes. First, we establish the Brownian

bridge limiting distribution of these test statistics. Second, we study the asymptotic behaviour of the

partial-sum processes in nonstationary (linear) time series regression models. Although, the particular

comparisons of these two different modelling environments is done from the perspective of the partial-sum

processes, it emphasizes that the presence of nuisance parameters can change the asymptotic behaviour

of the functionals under consideration. Simulation experiments verify size distortions when testing for

a break in nonstationary time series regressions which indicates that the normalized Brownian bridge

limit cannot provide a suitable asymptotic approximation in this case. Further research is required to

establish the cause of size distortions under the null hypothesis of parameter stability.

Keywords: Structural break tests, Wald-type statistic, OLS-CUSUM statistic, Brownian bridge.

1 INTRODUCTION

Severe time series fluctuations manifesting as market exuberance are considered by econometricians as

early warning signs of upcoming economic recessions which are not usually explained by common boom

and bust cycles (see, Greenwood et al. (2020), Baron et al. (2021) and Katsouris (2021)). Furthermore,

the economic aspects of prolonged economic policy uncertainty as well as as more recently pandemics can

impact the robustness of parameter estimates due to increased model uncertainty. More precisely, such

economic phenomena can appear in specification functions as structural breaks to parameter coefficients.

Therefore, the identification and estimation of the true break-points can improve forecasts and reduce

model uncertainty. Specifically, in the literature there is a plethora of statistical methodologies for struc-

tural break detection under different modelling environments (see, Bai (1997), Bai and Perron (1998) and

Pitarakis (2004) among others). In this paper we focus on the properties of the partial sum processes

when constructing test statistics for testing the null hypothesis of no parameter instability in time series

regression models under the assumption of stationary regressors vis-a-vis nonstationary regressors.
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Although we do not introduce any new testing methodologies we review some important asymptotic theory

results related to testing for structural breaks in time series regression models. More precisely, we study

the asymptotic behaviour of partial-sum processes when these are employed to construct residual-based

and Wald-type statistics in time series regression models. Our motivation for revisiting some of these

aspects is to add on the discussion regarding the adequacy of finite-distribution approximations to large-

sample theory of statistics. In particular, a common misconception when deriving asymptotic theory of test

statistics and estimators is the fact that the large sample theory certainly provides good approximations

to finite-sample results (see, Chernoff and Savage (1958)). Lastly, we consider two different modelling

frameworks that is a stationary time series regression model and a nonstationary time series regression.

In terms of the structural break testing framework, we consider various examples which cover both the

case of a known break-point as well as an unknown break-point, under parametric assumptions regarding

the distribution of the innovations. Specifically, throughout this paper we assume that the innovations

driving the error terms of both the stationary and nonstationary time series models are i.i.d, with a known

distribution, that is, are Gaussian distributed which implies that we are within the realm of parametric

methods. Moreover, relaxing the particular assumption by assuming that distribution function of these

innovations is considered as a nuisance parameter, requires to consider a semiparametric framework for

estimation and inference purposes which is beyond the scope of this paper. Therefore, we have that the

sequence of innovations, {ǫt}∞
t=1 to be ǫt ∼i.i.d N (0, σ2) which implies independence and homoscedasticity1.

Furthermore, the assumption of stationary innovation sequences is also imposed to facilitate the limit theory

and this property holds regardless of the time series properties of the regressors and regressand.

In particular, we are interested in obtaining limit results of the following form

sup
0≤s≤1

|CT (s)| d→ sup
0≤s≤1

|W (s)| (1.1)

where CT (s) is the test statistic and W (s) is the standard Wiener process for some s ∈ [0, 1]. However, the

emphasis in this paper is the investigation of the main asymptotic theory aspects based of the regression

model under consideration in terms of the properties of regressors. Therefore, the specific comparison allow

us to focus on the implementation of the partial-sum processes when deriving asymptotic theory results for

test statistics for these two classes of time series regression models, that is, the classical linear regression

versus nonstationary time series regression. The investigation of the properties of partial-sum processes for

the residuals of non-linear regression models such as ARMA, ARMAX, ARCH or GARCH models can be

indeed quite fruitful, but we leave the particular considerations for future research. Related studies include

the papers of Kulperger et al. (2005), Aue et al. (2006) and Gronneberg and Holcblat (2019).

All limits are taken as T → ∞ where T is the sample size. The symbol ” ⇒ ” is used to denote the

weak convergence of the associated probability measures as T → ∞ (as defined in Billingsley (2013))

which implies convergence of sequences of random vectors of continuous cadlag functions on [0, 1] within

a Skorokhod topology. The symbol
d→ denotes convergence in distribution and

p→ denotes convergence

in probability. The remainder of the paper is organized as follows. Section 2 discusses some examples

related to the use of partial-sum processes for residual-based statistics in linear regression models. Section

3 discusses Wald-type statistics in linear regression models. Section 4 discusses some aspects related to

the asymptotic theory for the structural break testing framework in nonstationary time series regressions.

Section 5 concludes and discusses further aspects for research.

1Notice that these two assumptions can indeed be quite strong. For example weakly dependent and heteroscedastic
innovations can reflect more accurately the properties of aggregate time series and therefore such assumptions can be also
included via appropriate modifications.
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2 RESIDUAL-BASED STATISTICS

The use of partial-sum processes for model residuals when testing the null hypothesis of no structural

break using residual-based statistics appears in various applications in the literature (Katsouris, 2021).

Firstly, Brown et al. (1975) proposed the OLS-CUSUM test constructed based on cumulated sums of

recursive residuals for testing for the presence of a single structural break in coefficients of the linear

regression model (see, also Krämer et al. (1988) and Ploberger and Krämer (1992)). Other residual-based

statistics found in the literature include the OLS-MOSUM test proposed by Chu et al. (1995a) which is

constructed as sums of a fixed number of residuals that move across the whole sample. Therefore, in this

case the statistic can be more sensitive in detecting parameter changes in comparison to the cumulated

sums of recursive residuals. Furthermore, the literature evolved towards the construction of structural

break statistics within an online monitoring framework which includes a window of fixed size (historical

period) and an out-of-sample estimation window (monitoring period). In particular, Chu et al. (1995b) and

Kuan and Chen (1994) proposed the Moving Estimates and Recursive Estimates statistics for parameter

stability respectively. A unified framework has been then proposed by the seminal study of Chu et al.

(1996) and also further examined by Leisch et al. (2000) for the case of the generalized fluctuation test.

Some additional considerations include the study of the characteristics of structural change which in-

cludes the frequency of breaks in time series such as single vis-a-vis multiple break points (e.g., Bai

(1997) and Bai and Perron (1998)) as well as the nature of structural change, which implies detecting

structural breaks in the conditional mean vis-a-vis the conditional variance or higher moments of partial

sum processes (e.g., Horváth et al. (2001), Kulperger et al. (2005), Pitarakis (2004), Andreou and Ghysels

(2006, 2009)). Furthermore, an alternative asymptotic analysis of residual-based statistics is proposed by

Andreou and Werker (2012). The current literature extensively studies structural changes in the mean and

variance of regression coefficients, however less attention is given to the study of structural break testing

due to smooth changes in the persistence properties of regressors as it is defined within the framework of

local-to-unity for autoregressive models. Specifically, smooth transitions of stochastic processes from I(0)

to I(1) and other non-stationarities can be employed for the detection of bubbles in financial markets (see,

Horváth et al. (2020)). In this paper, our aim is to provide a discussion of the use of partial sum processes

of residual-based and Wald-type statistics for these two different modelling environments.

2.1 OLS-CUSUM test

The OLS-CUSUM test statistic (see, Krämer et al. (1988)) belongs to the class of residual based statistics

(see, e.g., Stock (1994)) and it involves the partial sum processes of regression residuals based on the model

under consideration. Following the literature we define a general class of regression residuals based on the

partial sum process as proposed by Kulperger et al. (2005) given by Definition 1 and Theorem 1 below.

Definition 1. The partial sum process of residuals is given by

ÛT (s) =

⌊T s⌋∑

t=1

ût, for some s ∈ [0, 1].

with the partial sum process of the corresponding innovations is similarly defined as

UT (s) =

⌊T s⌋∑

t=1

ut, for some s ∈ [0, 1].

3



Theorem 1. Suppose that
√

T
∣∣θ̂T − θ

∣∣ = Op(1) where θ̂T is the set of estimated model parameters and θ

is in the interior of Θ. If E (|u0|) < ∞, then

sup
s∈[0,1]

1√
T

∣∣∣∣
(

ÛT (s) − sÛT (s)

)
−
(

UT (s) − sUT (s)

)∣∣∣∣ = op(1). (2.1)

Then, the invariance principle for partial sums for an i.i.d sequence
{
ut
}

such that

{
MT (s) :=

UT (s) − sUT (s)

σu

√
T

, s ∈ [0, 1]

}
and

{
M̂T (s) :=

ÛT (s) − sÛT (s)

σu

√
T

, s ∈ [0, 1]

}
(2.2)

where σ2
u = E

(
u2 − µu

)2
and µu = E (u0), implies that the functionals MT (s) and M̂T (s) both converge

weakly in the Skorokhod topology D[0, 1], to a Brownian bridge

{
BB(s) = W (s) − sW (1), s ∈ [0, 1]

}
.

Remark 1. The functional MT (s) represents a partial-sum process and W (s) is the corresponding standard

Wiener process on the interval [0, 1] which preserves the continuous mapping theorem and convergence in a

suitable functional space for any continuous function g(.), such that g (MT (s))
D→ g (W (s)). Furthermore,

both Definition 1 and Theorem 1 corresponds to partial-sum process of the residual sequence of a time series

regression model with a general specification form, under the assumption of stationarity and ergodicity.

Similarly, we can generalize these limit results to second order partial-sum processes for square residual

sequences. More precisely, the first and second order partial-sum processes represent functionals of the

OLS-CUSUM and OLS-CUSUM squared (see, Deng and Perron (2008)).

The proof of Theorem 1 is omitted which demonstrates a weak invariance principle; a stronger version of

Donsker’s classical functional central limit theorem (see, Kulperger et al. (2005) and (Csörgő et al., 2003)).

In particular, the weakly convergence of the asymptotic distribution of the OLS-CUSUM statistic for the

classical regression model is studied by Aue and Horváth (2013). Related limit results can be found in

the book of Csorgo and Horvath (1997). The development of the asymptotic theory for the residual-based

and Wald-type statistics when testing for structural breaks is based on the validity of Theorem 1. For the

remaining of this section we consider some standard examples from the literature to demonstrate the use

of the residual-based statistics and their corresponding limit results when conducting statistical inference.

Example 1. Consider the location model formulated as below

yt = µ11{t ≤ k} + µ21{t > k} + ǫt, t = 1, ..., T (2.3)

where µ1 and µ2 are both deterministic and the break point k = ⌊T s⌋ for some s ∈ [0, 1] is an unknown

fixed fraction of the full sample. Suppose a parametric assumption on the error term holds, such that

ǫt ∼i.i.d N (0, 1) for t = 1, ..., T and the following moment conditions apply

(i). E (ǫt|Ft−1) = 0 (ii). E

(
ǫ2
t |Ft−1

)
= σ2

ǫ (iii). E (|ǫt|)2+d < ∞, d > 0. (2.4)

Then, the OLS estimator µ̂ = T −1∑T
t=1 yt of µ is a

√
T −consistent estimator and asymptotically normal.

Furthermore, based on the location model formulation given by (2.3) the objective is to conduct a two-sided

test of the testing hypothesis H0 : µ1 = µ2. Under the null hypothesis we obtain a consistent estimator σ̂2
ǫ

of σ2
ǫ < ∞ such that σ̂2

ǫ
p→ σ2

ǫ as T → ∞ as well as the OLS-residuals defined as ǫ̂t =
(
yt − µ̂

)
.
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Thus, we have that

ǫ̂t ≡ (
yt − ȳT

)
= µ + ǫt − 1

T

T∑

t=1

(µ + ǫt) (2.5)

Based on Example 1, we consider that the following functional central limit theorem (FCLT) holds

1√
T

[T s]∑

t=1

ǫt ⇒ σǫW (s), s ∈ [0, 1]. (2.6)

which applies to the unobservable innovation terms of the above time series model that includes only a

model intercept, where W (.) is the standard Brownian motion such that W (s) ∼ N(0, s). For notational

convenience we also denote with σǫW (s) ≡ B(s) for some s ∈ [0, 1].

Consider the standardized innovations defined as ǫo
t =

(
ǫt − 1

T

T∑

t=1

ǫt

)
≡ (

ǫt − ǭ
)

and suppose that ǫt is an

i.i.d sequence of innovations. Then the centered partial sum process is defined as below

MT (s) =
1√
T

[T s]∑

t=1

(
ǫt − ǭ

)
, s ∈ [0, 1]. (2.7)

and the corresponding residual centered partial sum process is defined as below

M̂T (s) =
1√
T

[T s]∑

t=1

(
ǫ̂t − ¯̂ǫ

)
, s ∈ [0, 1]. (2.8)

Moreover, let σ̂2
m = M̂2

T (1)/T to be the sample variance estimator of the above partial sum process. Then,

sup
0≤s≤1

1√
T

∣∣∣∣∣
M̂T (s)

σ̂2
m

− MT (s)

σ2
m

∣∣∣∣∣ = op(1) (2.9)

which shows that the self-normalized centered partial sum process
{
M̂T (s)/σ̂2

m, 0 ≤ s ≤ 1
}

behaves as the

residuals {ǫ̂t}T
t=1 are asymptotically the same as the unobservable innovations {ǫt}T

t=1.

Therefore, the OLS-CUSUM statistic based on the standardized residuals is expressed as below

CT (k) = max
0≤k≤T





k∑

t=1

ǫ̂t − k

T

T∑

t=1

ǫ̂t

σ̂ǫ

√
T





≡ sup
0≤s≤1





1

σ̂ǫ


 1√

T

⌊T s⌋∑

t=1

ǫ̂t − s√
T

T∑

t=1

ǫ̂t





 (2.10)

Then, it can be shown that CT (k) ⇒ [
W (s) − sW (1)

]
which is Brownian bridge. In particular, the weakly

convergence of the OLS-CUSUM statistic is based on max
0≤k≤T

CT (k) ⇒ sup
0≤s≤1

[
W (s) − sW (1)

]
.

Remark 2. Notice that Example 1 considers a linear time series model with no covariates, thus the

structural break statistic can be considered as a difference in means for the two sub-samples, under the null

hypothesis. The partial sum process for the innovation sequences of the model follows standard Brownian

motion limit results. Furthermore, in Example 2 we consider the OLS-CUSUM statistic for the classical

regression model as proposed by the seminal study of Ploberger and Krämer (1992).
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Example 2. Consider the following time series model

yt = x′
tβ11{t ≤ k} + x′

tβ21{t > k} + ǫt, t = 1, ..., T (2.11)

where yt is the dependent variable, xt =
[
1, x2,t, ..., xp,t

]′
=
[
1, x̃′

t

]′
is a (p + 1)−dimensional vector and

the error term ǫt are assumed to be i.i.d (0, σ2
ǫ ). We define x1,t ≡ x′

t1{t ≤ k} and x2,t ≡ x′
t1{t > k}

for k = [T s] with s ∈ [0, 1]. Under the null hypothesis of no structural break H0 : β1 = β2 with β̂T the√
T -consistent estimator for β such that

√
T
(
β̂T − β

)
= Op(1) is bounded in probability.

Based on Example 2 the OLS-CUSUM statistic, CT (k), is obtained using the OLS residuals under the null

hypothesis, defined as ǫ̂t = yt − β̂T xt = ǫt − x′
t

(
β̂T − β

)
. Then, we obtain that

CT (k) =
1

σ̂ǫ


 1√

T

⌊T s⌋∑

t=1

ǫ̂t − ⌊T s⌋
T

1√
T

T∑

t=1

ǫ̂t


 (2.12)

In particular, we aim to show that CT (k)⇒[
W (s)−sW (1)

]
, which shows weakly convergence of the statistic

to the Brownian bridge process. To do this, we consider the OLS residuals which can be expressed as below

1√
T

⌊T s⌋∑

t=1

ǫ̂t =
1√
T

⌊T s⌋∑

t=1

ǫt − 1√
T

⌊T s⌋∑

t=1

x′
t

(
β̂T − β

)
(2.13)

Furthermore, the following result holds

1√
T

⌊T s⌋∑

t=1

x′
t

(
β̂T − β

)
=

r√
T

T∑

t=1

ǫt + op(1). (2.14)

A short proof on the asymptotic result above is provided here. We can express the left side of (2.14) as an

inner product since our framework allows such representation


 1√

T

⌊T s⌋∑

t=1

x′
t

(
β̂T − β

)

 =


 1

T

⌊T s⌋∑

t=1

x′
t


 .
[√

T
(
β̂T − β

)]
(2.15)

Notice that it holds that

 1

T

⌊T s⌋∑

t=1

x′
t


 p→ [s, 0, ..., 0], since lim

T →∞
1

T

⌊T s⌋∑

t=1

x̃t = 0 and lim
T →∞

1

T

⌊T s⌋∑

t=1

1 = s (2.16)

Then, the second term with a matrix decomposition for Q =
(

1
T

∑T
t=1 xtx

′
t

)
where xt =

[
1, x̃′

t

]′
can be

expressed as below

√
T
(
β̂T − β

)
=

(
1

T

T∑

t=1

xtx
′
t

)−1(
1√
T

T∑

t=1

xtǫt

)
≡ 1√

T




1 0

0 Q̃




−1




T∑

t=1

ǫt

T∑

t=1

x̃tǫt




+ op(1) (2.17)

since lim
T →∞

1
T

∑⌊T s⌋
t=1 x̃tx̃

′
t = Q̃. Also, note that

[
1 0

0 Q̃

]−1

=

[
1 0

0 Q̃−1

]
.
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Therefore, we obtain


 1√

T

⌊T s⌋∑

t=1

x′
t

(
β̂T − β

)

 p→ [s 0]

1√
T




1 0

0 Q̃−1







T∑

t=1

ǫt

T∑

t=1

x̃tǫt




=
s√
T

T∑

t=1

ǫt + op(1) (2.18)

where 0 is (p − 1) dimensional column vectors of zeros. Then, using the asymptotic result given by (2.14)

as well as the expression for the OLS residuals as in (2.13) the OLS-CUSUM statistic can be expressed as

CT (k) =
1

σ̂ǫ

1√
T

{(
k∑

t=1

ǫt −
k∑

t=1

x′
t

(
β̂T − β

))
− s

(
T∑

t=1

ǫt −
T∑

t=1

x′
t

(
β̂T − β

))}

=
1

σ̂ǫ

1√
T

{(
k∑

t=1

ǫt − s
T∑

t=1

ǫt

)
−
(

k∑

t=1

x′
t

(
β̂T − β

)
− s

T∑

t=1

x′
t

(
β̂T − β

))}

Notice that the second term above converges to zero in probability such that

s

(
T∑

t=1

ǫt −
T∑

t=1

ǫ̂t

)
= op(1) (2.19)

then the limit result follows as given below

CT (k) = sup
s∈[0,1]

{
1

σ̂ǫ

(
k∑

t=1

ǫt√
T

− s
T∑

t=1

ǫt√
T

)}
⇒ [

W (s) − sW (1)
]
, s ∈ [0, 1]. (2.20)

Thus, the OLS-CUSUM statistic weakly converges to the Brownian bridge limit uniformly for s ∈ [0, 1].

Example 3. Similarly to Examples 1 and 2 we can derive limit theory results for the OLS-CUSUM

squared test (see detailed proofs in Deng and Perron (2008)). Following Definition 1 and Theorem 1 the

corresponding test statistic is defined as below

C(2)
T (k) = max

0≤k≤T




k∑

t=1

ǫ̂2
t − k

T

T∑

t=1

ǫ̂2
t

σ̂ǫ

√
T




= sup
0≤s≤1





1

σ̂ǫ


 1√

T

⌊T s⌋∑

t=1

ǫ̂2
t − s√

T

T∑

t=1

ǫ̂2
t





 (2.21)

Furthermore, the following two sufficient conditions hold

max
1≤j≤n

∣∣∣∣∣∣
1√
T

j∑

t=1

ǫtx
′
t

(
β̂T − β

)
∣∣∣∣∣∣

p→ 0 (2.22)

max
1≤j≤n

1√
T

(
β̂T − β

)′ j∑

t=1

xtx
′
t

(
β̂T − β

)
p→ 0 (2.23)

Therefore, it can be proved that the weakly convergence result to a Brownian bridge follows

C(2)
T (k) ⇒ sup

0≤s≤T

[
W (s) − sW (1)

]
. (2.24)
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3 WALD TYPE STATISTICS

In this section we examine the implementation of Wald-type statistics when constructing an equivalent

structural break test for the conditional mean of a regression model. The particular methodology has been

advanced by the seminal work of Hawkins (1987) and Andrews (1993).

Definition 2. We define the following p−dimensional limiting distribution for some π ∈ (0, 1) such that

Qp(π) :=

[
Wp(π) − πWp(1)

]′[
Wp(π) − πWp(1)

]

π(1 − π)
(3.1)

where Wp(.) is p × 1 vector of independent standard Brownian motions for some p ≥ 1, where p represents

the number of parameters that the null hypothesis is testing for stability.

Remark 3. The limit process Qp(π) is referred to as the square of a standardized tied-down Bessel process

of order p (see, Andrews (1993)). In particular, the limit process given by Definition 2 a is employed when

deriving the asymptotic distribution of sup-Wald statistics, such that sup
π∈(0,1)

WT (π)
d→ sup

π∈(0,1)
Qp(π).

We mainly consider univariate regression models but the framework can be also generalized to time series

regressions with multiple regressors. Furthermore, when applying the supremum functional to Wald-type

statistics we assume that the unknown break-point π ∈ (0, 1) lies in a symmetric subset of the particular

unit set, to ensure that inference is not at the boundary of the parameter space (see, Andrews (2001)).

3.1 Unconditional Mean test

Consider the following time series regression model

yt = θ11{t ≤ k} + θ21{t > k} + ǫt, t = 1, ..., T (3.2)

where θ1 and θ2 are both deterministic and the break point k = ⌊T s⌋ for some s ∈ (0, 1) is an unknown

fixed fraction of the full sample period. The following assumption hold:

Assumption 1. Let ǫt be a sequence of random variables. Then, the following moment conditions hold.

A1. E (ǫt|Ft−1) = 0 with an asymptotic variance as T → ∞ given as below

var


T −1/2

⌊T s⌋∑

t=1

ǫt


 =

⌊T s⌋
T

σ2
ǫ

p→ sσ2
ǫ , σ2

ǫ = lim
T →∞

1

T
E



(

T∑

t=1

ǫt

)2

 (3.3)

A2. supt E (|ǫt|)2+d < ∞ for some d > 2.

A3. {ǫt}T
t=1 satisfies the following Functional Central Limit Theorem (FCLT),

1√
T

⌊T s⌋∑

t=1

ǫt
D→ σǫW (s) ≡ B(s) (3.4)
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Remark 4. Assumption A1 gives the moment conditions of the classical regression model with only inter-

cept. In particular, Var
(
T −1/2∑⌊T s⌋

t=1 ǫt

)
gives the asymptotic variance of the partial-sum of innovations.

Since the limiting variance is bounded then convergence in distribution follows.

The null and alternative hypothesis are as below

H0 : θ1 = θ2 versus HA : θ1 6= θ2 (3.5)

and we consider the following test statistic for detecting structural change in the unconditional mean of

the simple linear regression with only intercept.

ZT (s) = max
0≤k≤T

{
T

(ȳ1 − ȳ2)2

σ̂2
z

}
≡ sup

s∈(0,1)

{
T

(ȳ1 − ȳ2)2

σ̂2
z

}
+ op(1) (3.6)

ȳ1 =
1

k

k∑

t=1

yt and ȳ2 =
1

T − k

T∑

t=k+1

yt where σ̂2
z =

σ̂2
ǫ

k
T

(
1 − k

T

) p→ σ2
ǫ

s(1 − s)
(3.7)

We can show that the asymptotic variance of the normalized statistical distance measure
√

T (ȳ1 − ȳ2)

is given by Avar
[√

T (ȳ1 − ȳ2)
]

= σ2
ǫ

s(1−s) ≡ σ2
z by noting that lim

T →∞
T

⌊T s⌋ = 1
s and lim

T →∞
T

T −⌊T s⌋ = 1
s(1−s) .

According to Aue and Horváth (2013) testing the null hypothesis of equal means across a p-dimensional

multivariate time series is equivalent to constructing a p−dimensional CUSUM process and testing for a

structural break at an unknown break point k. Due to the fact that the partial-sum process representing the

CUSUM statistic has a weak convergence to a p−dimensional Brownian Motion process, then the quadratic

form of the partial-sum process weakly convergence to the sum of squared independent Brownian bridges.

The specific property permits to establish an equivalence between a supremum Wald-type statistic and

a CUSUM-type statistic. In particular, we show that the asymptotic distribution of the OLS-CUSUM

statistic can be deduced from the asymptotic distribution of ZT and vice-versa.

Theorem 2. Let ZT (s) be the test statistic for testing the null hypothesis H0 : θ1 = θ2 of no structural

change in the unconditional mean as defined by (3.6) for some 0 ≤ k ≤ T . Assume the conditions A1 to A3

given by Assumption 2 hold and let Zo
T (s) be an OLS-CUSUM type statistic. Then, both statistics weakly

converge in the Skorokhod space D[0, 1] to functionals of a Brownian bridge such as {BB(s) : s ∈ [0, 1]}
where BB(s) =

[
W (s) − sW (1)

]
.

ZT (r) = sup
s∈[ν,1−ν]

{
T

(ȳ1 − ȳ2)2

σ̂2
z

}
⇒ sup

s∈[ν,1−ν]

[
W (s) − sW (1)

]2

s(1 − s)
(3.8)

Zo
T (s) = sup

s∈[ν,1−ν]





1√
T

1√
σ̂ǫ




⌊T s⌋∑

t=1

yt − s
T∑

t=1

yt





 ⇒ sup

s∈[ν,1−ν]

[
W (s) − sW (1)

]
(3.9)

Remark 5. Theorem 2 implies that the ZT (s) statistic of equality of means in a SLR model with only

intercept across the unknown break point has an equivalent weak convergence to the CUSUM statistic of

the time series under consideration using a suitable normalization constant.

Next, we consider the corresponding supremum Wald-type statistic for testing for structural change in the

unconditional mean of the classical regression model with only intercept. The test is formulated as below

WT =
1

σ̂2
ǫ

(RΘ)′
[
R
(
Z ′Z

)−1
R′
]−1

(RΘ) (3.10)
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where σ̂2
ǫ = 1

T

∑T
t=1 ǫ̂2

t (k) the residual variance under the null hypothesis and is a consistent estimator of

σǫ such that σ̂2
ǫ

p→ σ2
ǫ . Thus, by substituting the restriction matrix R =

[
I − I

]
, Z =

[
X1 X2

]′
and the

estimator Θ̂ =
[
θ̂1 θ̂2

]′
of Θ into the above formulation of the Wald statistic we obtain the expression

WT (s) =
1

σ̂2
ǫ

(
θ̂1 − θ̂1

)′ [(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

]−1 (
θ̂1 − θ̂1

)
(3.11)

We observe that for the unconditional mean model it holds that

(
X ′

1X1
)

=
T∑

t=1

1{t ≤ k} = k and
(
X ′

2X2
)

=
T∑

t=1

1{t > k} = T − k

Since in this section we consider mean shifts, X1 stacks the elements of xt for which t ≤ k, that is, 1{t ≤ k}
and X2 stacks the elements of xt for which t > k, that is, 1{t ≤ k}. Therefore, using the corresponding

matrix notation the OLS estimators can be written as below

θ̂1 =
(
X ′

1X1
)−1

X ′
1y =

1

k

k∑

t=1

yt, θ̂2 =
(
X ′

2X2
)−1

X ′
2y =

1

T − k

T∑

t=1

yt

Thus, the Wald statistic can be expressed as

WT (s) =
1

σ̂2
ǫ

(ȳ1 − ȳ2)2
[

1

k
+

1

T − k

]−1

=
k(T − k)

T σ̂2
ǫ

(ȳ1 − ȳ2)2

Under the null hypothesis H0 : θ1 = θ2, we have that since (ȳ1 − ȳ2) ≡
(
θ̂1 − θ̂2

)
we obtain the expression

(
θ̂1 − θ̂2

)
=

T

k(T − k)

(
k∑

t=1

ǫt − k

T

T∑

t=1

ǫt

)
=

T
√

T

k(T − k)

(
k∑

t=1

ǫt√
T

− k

T

T∑

t=1

ǫt√
T

)

Therefore, the Wald test is equivalently written as below

WT (s) =
k(T − k)

T σ̂2
ǫ

{
T

√
T

k(T − k)

(
k∑

t=1

ǫt√
T

− k

T

T∑

t=1

ǫt√
nT

)}2

=
T

k
T

(
1 − k

T

) 1

σ̂2
ǫ

(
k∑

t=1

ǫt√
T

− k

T

T∑

t=1

ǫt√
T

)2

.

A simple application of the WLLN for the variance of the OLS estimator implies that σ̂2
ǫ

p→ σǫ as T → ∞.

Moreover since it holds that k
T

T −k
T

p→ s(1 − s), we obtain the weak convergence for the sup-Wald statistic

W∗
T (s) := sup

s∈[ν,1−ν]
WT (s) ⇒ sup

s∈[ν,1−ν]

[W (s) − sW (1)]′ [W (s) − sW (1)]

s(1 − s)
. (3.12)

The above asymptotic result indeed verifies the weakly convergence of the sup-Wald statistic into the

supremum of a normalized squared Brownian bridge, specifically for the unconditional mean specification

of the regression model. Then, sstatistical inference is conducted based on the null hypothesis, H0 : θ1 = θ2,

which is rejected for large values of the sup-Wald statistic with a significance level α ∈ (0, 1). Thus, the

exact form of the limiting distribution of the statistic is employed to obtain associated critical values,

denoted with cα such that P (W∗
T (s) > cα) > 0 with lim

T →∞
P (W∗

T (s) > cα) = 1.
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3.2 Conditional Mean test

Consider the following model

yt = x′
tθ11{t ≤ k} + x′

tθ21{t > k} + ǫt, t = 1, ..., T (3.13)

where yt is the dependent variable, xt is a p × 1 vector of regressors, ǫt is an unobservable disturbance

term with E (ǫt|xt) = 0 almost surely and θ1 and θ2 the regression coefficients formulated under the null

hypothesis of no structural break. Define with x1,t ≡ x′
t1{t ≤ k} and x2,t ≡ x′

t1{t > k} where k = ⌊T s⌋
for some s ∈ (0, 1). Furthermore, notice that the regressor vector xt can contain exogenous regressors

and lagged dependent variables with unknown integration order. Moreover, under suitable regularity

assumptions one can consider a static, a dynamic time series regression model as well as models with

integrated regressors or cointegrated regressors.

The null hypothesis of interest is

H0 : θ1 = θ2 ≡ θ0 ∈ R
p×1 for all t. (3.14)

The alternative hypothesis HA is that H0 is false, which implies that the regression coefficient has a

structural break at some unknown break point in the sample. Under H0, the unknown constant parameter

vector θ can be consistently estimated using the OLS estimator such that

θ̂ = arg min
θ∈Rp×1

T∑

t=1

(
yt − x′

tθ0
)2

(3.15)

Under the alternative HA, θ0 ≡ θt can be considered as a time-varying parameter vector, which implies,

θt ≡ θ1 for 1 ≤ t ≤ k and θt ≡ θ2 for k + 1 ≤ t ≤ T . To facilitate the estimation and inference based on

the above regression model we impose the following regularity conditions.

Assumption 2. Let ǫt be a sequence of random variables. Then the following moment conditions and

FCLT hold, which allow xt and ǫt to be weakly dependent.

B1. {ǫt}T
t=1 is a homoskedastic martingale difference sequence (m.d.s) such that E (ǫt|Ft−1) = 0 and

E
(
ǫ2
t

)
= σ2, where Ft−1 =

{
x′

t, x′
t−1, ..., ǫt−1, ǫt−2, ...

}
.

B2. {xt}T
t=1 has at least a finite second moment, that is, supt

∑T
t=1 ||xt||2+d < ∞ where d > 0 and the

following weak law of large numbers (WLLN) holds

1

T

T∑

t=1

xtx
′
t

p→ QT as T → ∞ such that sup
s∈[0,1]

∣∣∣∣
1

T

⌊T s⌋∑

t=1

xtx
′
t − sQT

∣∣∣∣ = op(1) (3.16)

where QT is a (p × p) non-stochastic finite and positive definite matrix.

B3. {xtǫt}T
t=1 satisfies the following Functional Central Limit Theorem2(FCLT),

ST (s) =


T −1/2Ω

−1/2
T

⌊T s⌋∑

t=1

xtǫt


 ⇒ W p(s), s ∈ (0, 1) and ΩT = E

(
xtx

′
tǫ

2
t

)
> 0. (3.17)

2The multivariate FCLT is examined in the studies of Phillips and Durlauf (1986) and Wooldridge and White (1988).
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In other words, the general moment conditions given by Assumption 2 permits to consider both residual-

based statistics as well as Wald-type statistics as suitable detectors when testing for a break-point within

the full sample. In particular, Chen and Hong (2012) consider the implementation of generalized Hausman-

type tests using nonparametric estimation and inference techniques.

3.2.1 Asymptotic Convergence of sup-Wald test

Next, we derive the asymptotic convergence of the Wald test when detecting a single structural break

in the regression for the classical regression model with a conditional mean specification form, under

Assumptions B1 to B3. Furthermore, under the null hypothesis the break-point is unidentified, thus to

facilitate statistical inference we consider the corresponding supremum Wald-type statistic based on the

OLS estimator which is expressed as W∗
T (s) := sup

s∈[ν,1−ν]
WT (s) for some ν ∈ (0, 1).

Using the null hypothesis H0 : θ1 = θ2 of no structural break we obtain an equivalent representation using

the linear restriction matrix R of rank q, which implies that H0 : RΘ = 0. We define Θ =
[
θ1 θ2

]′
,

Z =
[
X1 X2

]′
and R =

[
I −I

]
and prove that the asymptotic distribution of the corresponding sup-Wald

statistic weakly convergences to the supremum of a normalized squared Brownian bridge.

Theorem 3. Under the null hypothesis H0 : θ1 = θ2 with 0 < ν < 1 we define W∗
T (s)

W∗
T (s) := sup

s∈[ν,1−ν]
WT (s) ⇒ sup

s∈[ν,1−ν]

[
W p(s) − sW p(1)

]′
Q−1

T

[
W p(s) − sW p(1)

]

s(1 − s)
. (3.18)

where WT (s) denotes the Wald statistic for testing the null hypothesis H0 : θ1 = θ2 and is expressed as

WT =
1

σ̂2
ǫ

(RΘ)′
[
R
(
Z ′Z

)−1
R′
]−1

(RΘ) (3.19)

with σ̂2
ǫ =

1

T

T∑

t=1

(
yt − x′

tθ̂T

)
a consistent estimate of σ2

ǫ the OLS variance under the null hypothesis.

Remark 6. The above asymptotic theory analysis demonstrates that CUSUM-type statistics for detecting a

structural break in the classical regression model with a single unknown break-point typically weakly converge

to Brownian bridge functionals, such that BB(s) :=
[
Wp(s) − sWp(1)

]
while the corresponding Wald-type

tests weakly converge to a normalized version of the CUSUM test with a normalized constant given by

kT :=
{

k
T

(
1 − k

T

)}1/2
where k = ⌊T s⌋ for some s ∈ [0, 1].

Monte Carlo simulation experiments can be used to compare the asymptotic validity and performance of

OLS-CUSUM type statistics and Wald-type tests by obtaining associated empirical size and power results.

An important criticism of CUSUM-type statistics is that these tests are based on residuals under the

null hypothesis which implies that the test is not designed with a specific alternative under consideration.

Therefore, although the use of these tests can lead to a monotonically increasing power, in practise it can be

stochastically dominated by the power of a Wald type test (see, also Andreou (2008)). On the other hand

the advantage of using a Wald-type statistic when testing for a structural break, is that the construction of

the test allows to incorporate residuals obtained either under the null or under the alternative hypothesis,

providing this way superior power performance. Intuitively, using the residual variance of the unrestricted

model leads to better finite-sample power since the Wald-type statistic contains information from the

alternative model (alternative hypothesis).
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4 STRUCTURAL BREAK TESTING UNDER NONSTATIONARITY

Although the purpose of this paper is to explain the main challenges one faces when testing for a structural

break in nonstandard econometric problems we discuss the main intuition when developing associated

asymptotic theory using some examples. More specifically, in order to accommodate the nonstationary

aspect in time series models3 we need to consider a suitable probability space in which weakly convergence

arguments holds. Due to the fact that the asymptotic terms of sample moments of nonstationary time

series models often involve non-standard limit results such as convergence to stochastic integrals, care is

needed when applying related convergence arguments. In particular, the stochastic integrals of the form∫ 1
0 W dW (s) can be shown to converge weakly, under the null hypothesis, to the associated stochastic

integral with the limiting Brownian motions, under the assumption of the existence of cadlag functionals

in the unit interval equipped with the Skorokhod topology (see, Müller (2011)).

4.1 Linear Restrictions Testing

We begin our analysis by discussing the main limit theory which is employed in nonstationary time series

models, by providing two examples: (i) a time series regression with integrated regressors and (ii) a

predictive regression with persistent regressors. Although, such asymptotics are commonly used when

considering the asymptotic behaviour of t-tests and Wald-type tests based on linear restrictions on the

parameter coefficients, these are applicable when constructing the corresponding structural break statistics.

4.1.1 Time Series Regression with Integrated Regressors

A class of nonstationary time series models include the linear regressions with integrated regressors as

proposed by the studies of Cavanagh et al. (1995) and Jansson and Moreira (2006) among others.

Example 4. (Cointegrating Regression, Banerjee et al. (1993))

Consider the following bivariate system of co-integrated variables {yt}∞
t=1 and {xt}∞

t=1 such that

yt = βxt + ut (4.1)

xt = xt−1 + ǫt (4.2)

with ut ∼ N(0, σ2
u), ǫt ∼ N(0, σ2

ǫ ) and E(utǫs) = σuǫ ∀ t 6= s.

The OLS estimator of β is given by β̂ =
(∑T

t=1 x2
t

)−1 (∑T
t=1 ytxt

)
which implies

T
(
β̂ − β

)
=

(
T −2

T∑

t=1

x2
t

)−1(
T −1

T∑

t=1

xtut

)
(4.3)

Thus, for this regression model due to the presence of the integrated regressor the limit is expressed as

(
1

T 2

T∑

t=1

x2
t

)
⇒ σ2

ǫ

∫ 1

0
Wǫ(r)2dr. (4.4)

3Standard regularity conditions for estimation and inference in nonstationarity time series models, is the asymptotic theory
developed for nearly unstable autoregressive processes. The limit theory of time series models such as the asymptotic inference
of AR(1) processes first examined by Mann and Wald (1943) has been extended to the non-stationary asymptotic case as it
captured via the local to unity framework which allows for the autoregressive coefficient of a univariate AR(1) to be expressed
in the form ρ = 1 + c/n, where n the sample size and c the unknown degree of persistence of the data generating process.
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Next, in order to derive the limiting distribution of the model parameter for the case of integrated regressors,

we first consider the limiting distribution of the sample moment
(
T −1∑T

t=1 xtut

)
. To do this, we assume

the existence of a conditional distribution for ut given ǫt, which implies the conditional mean form

ut = φǫt + vt, φ =
σuǫ

σ2
ǫ

and σ2
v = σ2

u − σ2
uǫ

σ2
ǫ

(4.5)

Furthermore, we define with Wǫ(r) and Wv(r) to be two independent Wiener processes on C[0, 1]. Therefore,

(
T −1

T∑

t=1

xtut

)
= T −1

T∑

t=1

xt (φǫt + vt) = φ

(
T −1

T∑

t=1

xtǫt

)
+

(
T −1

T∑

t=1

xtvt

)
(4.6)

Substituting xt = xt−1 + ǫt into the above expression we obtain

(
T −1

T∑

t=1

xtut

)
= φ

(
T −1

T∑

t=1

(xt−1 + ǫt)ǫt

)
+

(
T −1

T∑

t=1

(xt−1 + ǫt)vt

)

= φ

(
T −1

T∑

t=1

xt−1ǫt

)
+ φ

(
T −1

T∑

t=1

ǫ2
t

)

+

(
T −1

T∑

t=1

xt−1vt

)
+

(
T −1

T∑

t=1

ǫtvt

)

Most importantly, within this setting the following asymptotic results hold

T −1
T∑

t=1

ǫ2
t

p→ σ2
ǫ , T −1

T∑

t=1

ǫtvt
p→ 0 (4.7)

and it has been also proved in the seminal study of Phillips (1987) (see, also Phillips and Durlauf (1986))

T −1
T∑

t=1

xt−1vt ⇒ σǫσv

∫ 1

0
Wǫ(r)dWv(r) ≡

∫ 1

0
Bǫ(r)dBv(r) (4.8)

T −1
T∑

t=1

xt−1ǫt ⇒ σ2
ǫ

2

[
W 2

ǫ (1) − 1

]
(4.9)

Putting the above together we obtain that

T −1
T∑

t=1

xtut ⇒
{

φ

(
σ2

ǫ

2

[
W 2

ǫ (1) − 1

])
+ φσ2

ǫ + σǫσv

∫ 1

0
Wǫ(r)dWv(r)

}
(4.10)

Furthermore, Phillips and Park (1988) proved the following limit result

∫ 1

0
Wǫ(r)dWv(r) ⇒ N

(
0,

∫ 1

0
Wǫ(r)dr

)
(4.11)

Therefore, under the null hypothesis H0 : β = 0, it follows that

T β̂ ⇒
{

φ
σ2

ǫ

2

[
W 2

ǫ (1) + 1

]
+ σǫσv

[ ∫ 1

0
Wǫ(r)dWv(r)

]}(
σ2

ǫ

∫ 1

0
Wǫ(r)2dr

)−1

. (4.12)
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Thus, the t−statistic, denoted as Tβ=0 for testing the null hypothesis, H0 : β = 0, is written as

Tβ=0 =
β̂

σ̂2
u

(
T∑

t=1

x2
t

)− 1
2

= T
β̂

σ̂2
u

(
T −2

T∑

t=1

x2
t

)− 1
2

(4.13)

has the following asymptotic distribution

Tβ=0 ⇒
{

φ
σ2

ǫ

2

[
W 2

ǫ (1) + 1

]
+ σǫσv

[ ∫ 1

0
Wǫ(r)dWv(r)

]}(
σ2

ǫ

∫ 1

0
Wǫ(r)2dr

)− 1
2

× 1

σ2
u

(4.14)

≡ φ

2

σǫ

σu

[
W 2

ǫ (1) + 1

](∫ 1

0
Wǫ(r)2dr

)− 1
2

+
σv

σu
N (0, 1). (4.15)

Remark 7. Notice that the derived limiting distribution of the Student-t statistic indicates that the t−ratio

of β̂ does not follow a standard normal distribution unless φ = 0; in which case the structure of the

model implies that the regressor xt is exogenous for the estimation of the model parameter β which is the

main parameter of interest for inference purposes. In particular, when φ 6= 0 then the first term of the

above limiting distribution gives rise to second-order or endogeneity bias, which although asymptotically

negligible in estimating β due to super consistency, can appear in finite-samples causing size distortions

when obtaining the empirical size of the test.

4.1.2 Predictive Regression Model

Predictive regression models are extensively used in time series econometrics and the empirical finance

literature for examining the stock return predictability puzzle as proposed by Campbell and Yogo (2006).

A standard predictive regression has the following econometric specification (see, Kostakis et al. (2015))

yt = µ + βxt−1 + ǫt, t = 1, ..., T (4.16)

xt = ρxt−1 + ut (4.17)

The innovation sequence (ǫt, ut) is generated such that (ǫt, ut) ∼i.i.d N (0, Σ) where Σ =

[
σ2

ǫ σǫu

σǫu σ2
u

]
.

Similarly to the previous example, the null hypothesis of interest using linear restrictions on the model

parameter β, is formulated such that H0 : β = 0. The main econometric challenges when conducting

statistical inference using the predictive regression model includes the problem of embedded endogeneity

due to the innovation structure of the system as well as the nuisance parameter of persistence, c, when

the autocorrelation coefficient of the model is expressed with the local-to-unity specification. As a result,

depending on the value of the autocorrelation coefficient, the asymptotics for the parameter of the predictive

regression model take a different form which makes statistical inference challenging. Specifically, when

|ρ| < 1, then xt is known to be stationary, when ρ = 1 then xt is unit root or integrated and when

c < 0 is assumed to follow a local-to-unity or nearly integrated process. The literature has proposed

various methodologies for conducting statistical inference robust to the nuisance parameter of persistence.

For instance, Phillips and Magdalinos (2007) study the limit theory of time series models which includes

regressors that are close to the unit root boundary4.

4The authors consider the limit distribution theory in both the near-stationary (c < 0) and the near-explosive cases (c > 0).
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In terms of the asymptotic theory that correspond to the predictive regression model, we consider the

partial-sum process for the integrated regressor. The particular aspect is important especially in comparison

to when constructing residual-based statistics in which case the main quantity of interest is the partial-

sum process of the residuals corresponding to stationary innovations. Denote with FT,t−1 the σ−algebra

generated by the random variables and with X⌊T r⌋ the partial-sum process of interest. Then, under the

assumption that the xt is generated as a local-unit-root process the weakly convergence of the partial-sum

functional corresponds to a uniform convergence to an Ornstein-Uhlenbeck (OU) process5 rather to the

standard Wiener process (see, Phillips (1987) and related limit theory in Durrett and Resnick (1978)) as

1√
T

X⌊T r⌋ ⇒ Jc(r) :=

∫ r

0
e(r−s)cdBc(s), r ∈ [0, 1]. (4.18)

In other words, the assumptions we impose regarding the parametrization of the autocorrelation coefficient

ρ can change the asymptotic behaviour of the stochastic difference equation. Generally, statistical inference

is nonstandard in the sense that when ρT =
(
1 + c

T

)
for some nuisance parameter c, then the testing problem

concerning the parameter β exhibit nonstandard large-sample properties under local-to-unity asymptotics.

4.1.3 Predictive tests

To provide some further clarity regarding the effect of expressing the autocorrelation coefficient in terms

of moderate deviations from unity, to the validity of conventional inference methods, we consider as an

example the stationary autoregressive model AR(1), yt = ρT yt−1 + ut where ut
i.i.d∼ (0, σ2) and |ρ| < 1.

In this case, it is a well-known fact that the limit distribution of the t-test for testing the null hypothesis

H0 : ρT = 0 with TT (ρT ) =
ρ̂T − ρ

σ̂
⇒ N (0, 1) converges to a standard normal distribution. In addition, the

asymptotic distribution of TT (ρT ) is invariant even under the assumption of conditional heteroscedasticity

which implies E
(
u2

t |Ft−1
)

= σ2
t and sup

t∈Z

|σ̂2
t − σ2

t | = op(1), a condition for consistent estimation.

On the other hand, the limiting distribution of the model parameter β of the predictive regression model as

well as the associated t-test for testing the null hypothesis, H0 : β = 0, appears to be challenging due to the

fact that it is found to be nonstandard and the corresponding t-test is non-pivotal since it depends on the

nuisance parameter c (see, Cavanagh et al. (1995) and Campbell and Yogo (2006)). Consequently, given

the focus of our study to the asymptotic behaviour of partial-sum processes when constructing test statistics

in nonstationary time series models, we illustrate the related asymptotic theory with some examples.

It is worth mentioning that the partial-sum processes, X⌊T r⌋(r), are considered to be (maximally) invariant

with respect to the presence of the model intercept µ. Therefore under the null hypothesis, H0 : β = 0,

joint weak convergence of observation processes to their Brownian motion counterparts holds. Specifically,

an application of the invariance principle proposed by Phillips (1987) such that
x⌊T r⌋√

T
⇒ Jc(r), where

Jc(r) =
∫ r

0 e(r−s)cdBc(s) is a standard Ornstein-Uhlenbeck process, implies that

1

T
√

T

⌊T r⌋∑

t=1

xt ⇒
∫ r

0
Jc(s)ds, (4.19)

1

T

⌊T r⌋∑

t=1

xtǫt ⇒
∫ r

0
Jc(s)dBǫ(s). (4.20)

5The continuous time OU diffusion process given by dyt = θytdt + σdwt, y0 = b, t > 0, where θ and σ > 0 are unknown
parameters and wt is the standard Wiener process, has a unique solution to {yt} which is expressed as yt = exp (θt) b +

σ
∫ t

0
exp [θ(t − s)] dws ≡ exp (θt) + σJθ (t) (see, e.g., (Perron, 1991)).
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Since T
(
β̂T − β

)
= Op(1) is bounded in probability, then we can establish the usual mode of converges in

distribution in the same probability space such that

T
(
β̂T − β

)
=

1

T

T∑

t=1

xt−1ǫt

1

T 2

T∑

t=1

x2
t−1

⇒

∫ 1

0
Jc(s)dBǫ(s)

∫ 1

0
J2

x(s)ds

. (4.21)

Consider the stationary case such that |ρ| < 1, then by partitioning the covariance matrix Σ similar to the

regression model with the integrated regressor, we use the decomposition ǫ1.2t = ǫt − σǫu

σǫ
ut which implies

T
(
β̂T − β

)
=

1

T

T∑

t=1

xt−1ǫt

1

T 2

T∑

t=1

x2
t−1

=

1

T

T∑

t=1

xt−1ǫ1.2t

1

T 2

T∑

t=1

x2
t−1

+
σǫu

σǫ

1

T

T∑

t=1

xt−1ut

1

T 2

T∑

t=1

x2
t−1

(4.22)

The first term of expression (4.22) since in includes a conditional error term then the corresponding

limit distribution converges to a mixed normal limit. Moreover, we consider the joint convergence of the

martingale sequences {∑n
t=1 xt−1ǫt} and {∑n

t=1 ut} are defined on the same probability space

ξT t =

(
1

T
xt−1ǫt,

1√
T

ut

)′
(4.23)

Thus, the conditional covariance matrix of the martingale vector ξT t is given by

T∑

t=1

E

(
ξT tξ

′
T t|Ft−1

)
=




(
1

T 2

T∑

t=1

x2
t−1

)
σ2

ǫ

(
1

T
√

T

T∑

t=1

xt−1

)
σǫu

(
1

T
√

T

T∑

t=1

xt−1

)
σuǫ σuu




(4.24)

Using the partition matrix identity, Σ1.2 = Σ11 − Σ12Σ−1
22 Σ21, to the predictive regression model we obtain

the relation σ1.2

σ2
ǫ

= 1 − σ2
uǫ

σ2
ǫ σ2

u

. Therefore, the following mixed normal limit convergence holds

1

T

T∑

t=1

xt−1ǫ1.2t

1

T 2

T∑

t=1

x2
t−1

⇒ MN
(

0, σ1.2

(∫ 1

0
Jc(r)dr

)−1
)

(4.25)

Hence, using expressions (4.22) and (4.25) and the limit result below

T σ̂β = σ̂ǫ

(
1

T 2

T∑

t=1

x2
t−1

)−1/2

⇒ σǫ

(∫ 1

0
J2

c (r)dr

)−1

(4.26)

for some r ∈ (0, 1), we obtain an analytical expression for the asymptotic distribution of the t-statistic

TT (βT ) = β̂T −β
σ̂β

⇒ φM̂(c) + (1 − φ2)1/2Z, where Z ∼ N (0, 1) is independent of the random quantity M̂(c)

and c denotes the nuisance parameter of persistence.
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More precisely, it holds that

TT (βT ) =
β̂T − β

σ̂β
⇒ 1

σǫ

(∫ 1

0
J2

x(r)dr

)−1





MN
(

0, σ1.2

(∫ 1

0
Jc(r)dr

)−1
)

+
σǫu

σǫ

∫ 1

0
Jc(s)dBx(s)
∫ 1

0
J2

c (s)ds





,

where φ = σǫu
σǫσu

, and M̂(c) =

∫ 1

0
Jc(s)dBx(s)

σ2
u

∫ 1

0
J2

c (s)ds
.

In summary, the t-statistic for the predictive regression coefficient has been proved to have a non-standard

limiting distribution which implies that normal or chi-square based inference is not available in practise,

due to the endogeneity problem as well as the existence of persistence regressors. Therefore, the particular

non-standard testing problem makes it difficult to conduct inference without prior knowledge regarding

the exact value of the coefficient of persistence and in practise cannot be consistently estimated. Suggested

solutions to overcome this problem include the Bonferroni confidence interval proposed by Cavanagh et al.

(1995) and Elliott et al. (1996), the conditional likelihood approach that uses sufficient statistics proposed

by Jansson and Moreira (2006) and the control function approach proposed by Elliott (2011).

4.2 Structural Break Testing

Setting against the background described in details in Section 4.1 we now discuss the main challenges for

the development of the structural break testing framework.

4.2.1 Asymptotic Distributions of Test Statistics

In this section we consider the implementation of OLS-CUSUM and Wald-type statistics within the local-

to-unity framework when detecting instabilities in the parameters of a predictive regression model with

persistent regressors. Although in this paper we consider an in-sample monitoring scheme, under suitable

modifications an on-line (sequential) monitoring scheme as proposed by Chu et al. (1996) can provide an

early warning mechanism for risk management purposes based on macroeconomic and financial conditions.

The implementation of such a framework can be interpreted as a dynamic methodology for testing for

parameter instability under the assumption of time-varying persistence properties.

Therefore, we are interested in proposing suitable testing methodologies for detecting structural change in

the vector of regression coefficients θ of the following time series regression model

yt = x′
t−1β11{t ≤ k} + x′

t−1β21{t > k} + ǫt, t = 1, ..., T, (4.27)

where xt = RT xt−1 + ut with RT =
(
1 − C

T

)
and C = diag {c1, ..., cp} (see, Kostakis et al. (2015)). Un-

der the null hypothesis of no structural break H0 : β1 = β2. Our proposition aims to incorporate ne-

glected non-linearities such as structural breaks to the current LUR framework. For example, certain

non-linear functions6 of I(1) processes can wrongly behave like stationary long memory processes (see,

e.g., Kasparis et al. (2014)). A recent approach which considers structural breaks under such conditions is

presented by Berenguer-Rico and Nielsen (2020). In this paper, we consider the weak dependence assump-

tion.
6For example, Wang et al. (2012) consider a specification test for nonlinear nonstationary models within the LUR framework

of cointegrating regression system.
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4.2.2 OLS-CUSUM test statistic

Next, we focus on the limit theory of the residual-based statistic, CUSUM test, constructed using the

OLS residuals of the predictive regression under the null hypothesis, H0 : β1 = β2. The OLS residuals of

the predictive regression are given by ǫ̂ols
t = yt − x′

tβ̂
ols and the corresponding OLS-CUSUM statistic is

expressed in the usual way as below for s ∈ [0, 1]

C̃T (k) = max
0≤k≤T

k∑

t=1

ǫ̂ols
t − k

T

T∑

t=1

ǫ̂ols
t

σ̂ǫ

√
T

= sup
0≤r≤1

1√
T

⌊T r⌋∑

t=1

ǫ̂ols
t − r√

T

T∑

t=1

ǫ̂ols
t

σ̂ǫ

√
T

(4.28)

The OLS residuals of the predictive regression can be expressed as ǫ̂ols
t = yt − x′

tβ̂
ols ≡ ǫt − x′

t

(
β̂T − β

)

1√
T

⌊T r⌋∑

t=1

ǫ̂t =
1√
T

⌊T r⌋∑

t=1

ǫt − T
(
β̂T − β

) 1

T
√

T

⌊T r⌋∑

t=1

xt (4.29)

1√
T

⌊T r⌋∑

t=1

ǫ̂t ⇒d Bǫ(r) −





∫ r

0
Jc(s)dBu(s)

∫ 1

0
J2

c (s)ds





×
∫ r

0
Jc(s)ds. (4.30)

Therefore, using expression (4.28) the OLS-CUSUM statistic within the LUR framework becomes

CT (k) =
1

σ̂ǫ






Bu(r) −

∫ r

0
Jc(s)dBu(s)
∫ 1

0
J2

c (s)ds

∫ r

0
Jc(s)ds


− r


Bu(1) −

∫ r

0
Jc(s)dBu(s)
∫ 1

0
J2

c (s)ds

∫ 1

0
Jc(s)ds








CT (k) =
1

σ̂ǫ





[
Bu(r) − rBu(1)

]
−

∫ r

0
Jc(s)dBu(s)

∫ 1

0
J2

c (s)ds

×
(∫ r

0
Jc(s)ds − r

∫ 1

0
Jc(s)ds

)




. (4.31)

As we can clearly observe from the second term of the above expression that corresponds to the limiting

distribution of the OLS-CUSUM statistic in a predictive regression model with persistent regressors the

dependence on the nuisance parameter of persistence, c, makes the limit result non-standard and non-

pivotal. In other words, the implementation of a residual-based statistic in a predictive regression model

using OLS residuals is considered to be problematic in the derivation of the asymptotic distribution due

to its dependence on the nuisance degree of persistence of the autoregressive specification of the model.

Furthermore, for k = ⌊T r⌋ we define the following term for notation simplicity

J̃∞(c; r) :=

∫ r

0
Jc(s)dBu(s)
∫ 1

0
J2

c (s)ds

×
∫ r

0
Jc(s)ds. (4.32)

Then, the weakly convergence result can be written as below

CT (k) ⇒
([

W (r) − rW (1)

]
−
[
J̃(c; r) − rJ̃(c, 1)

])
. (4.33)
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In summary, the weakly convergence of the in-sample OLS-CUSUM statistic includes the component

J̃∞(c, r) which depends on the nuisance parameter c and thus can affect the true size of the test under

the null hypothesis of no parameter instability given the fact that we cannot consistently estimate the

coefficient of persistence. However, for example the term
∫ r

0 Jc(s)ds − r
∫ 1

0 Jc(s)ds it is likely to be quite

small and therefore can be considered not to be contributing to huge size distortions. An extensive Monte

Carlo study can shed light on the particular aspect of the proposed test for detecting structural change

in predictive regression models with persistent regressors. Thus, we have demonstrated that when testing

for a structural break in linear time series regression models, the partial-sum processes of conventional

test such as those of residual-based and Wald-type statistics have different properties when information

regarding the integration order of regressors is available in the form of the LUR specification form.

5 CONCLUSION

In this paper we establish the Brownin Bridge limiting distributions in a fairly standard settings, that is

linear regression models under the assumption of stationarity and ergodicity when constructing residual-

based and Wald-type statistics for testing the null hypothesis of no parameter instability. In particular,

in all those cases we have demonstrated that the normalized Brownian bridge limit holds for both test

statistics. Additionally, we investigate whether this property also holds for nonstationary time series re-

gression models with integrated or persistent regressors. Our asymptotic theory analysis has demonstrated

that while in the classical linear regression model with stationary regressors the convergence of the test

statistics to brownian bridge limit results hold, in the case of the nonstationary time series model it appears

to be the case that the limiting distribution is non-standard and non-pivotal due to the dependence of the

distribution to the nuisance parameter of persistence.

Based on the general assumption that the underline stochastic processes are mean-reverting, then we can

establish adequate approximations to finite-sample moments for the model under consideration regardless

of the econometric environment operates under the assumption of stationarity or we consider the settings of

a nonstationary time series model. On the other hand, since the main feature of nonstationary time series

models is the parametrization of the autocorrelation coefficient with respect to the nuisance parameter of

persistence, this implies that limiting distributions are non-standard and non-pivotal which makes inference

difficult. In particular, despite the large availability of macroeconomic and financial variables which can be

included as regressors in predictive regressions (such as financial ratios, diffusion indices, fundamentals),

practitioners have no prior knowledge regarding the persistence properties of predictors so conventional

estimation and inference methods for model parameters, such as predictability tests, forecast evaluation

tests as well as structural break testing require to handle the nuisance parameter of persistent.

Therefore, further research is needed to propose suitable statistical methodologies that take into consid-

eration these challenges, especially when testing for the presence of a structural break in nonstationary

time series models. Practically, the extension of structural break tests in nonstationary time series models,

such as predictive regressions, which are particularly useful when information regarding the time series

properties of regressors is not lost by taking the first difference for instance, is crucial for both theoretical

and empirical studies. In a subsequent paper, we propose a formal econometric framework and develop

the associated asymptotic theory for Wald-type statistics under regressors nonstationarity.
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6 APPENDIX

6.1 Appendix A: Technical Proofs

Proof of Theorem 2

Proof. Consider the functional σ̂2
zZT (s) given by

σ̂2
zZT (s) = T (ȳ1 − ȳ2)2 = T


 1

⌊T s⌋

⌊T s⌋∑

t=1

yt − 1

T − ⌊T s⌋
T∑

t=⌊T s⌋+1

yt




2

.

Under the null hypothesis H0 : θ1 = θ2, we have that the following expression holds

(ȳ1 − ȳ2) =


1

k

k∑

t=1

ǫt − 1

T − k

T∑

t=k+1

ǫt


 =

1

k

k∑

t=1

ǫt − 1

T − k

(
T∑

t=1

ǫt −
k∑

t=1

ǫt

)

=
T

√
T

k(T − k)

(
k∑

t=1

ǫt√
T

− k

T

T∑

t=1

ǫt√
T

)

Therefore we obtain that

σ̂2
zZT (s) = T (ȳ1 − ȳ2)2 =

1
(

k
T

)2 (
1 − k

T

)2

(
k∑

t=1

ǫt√
T

− k

T

T∑

t=1

ǫt√
T

)2

. (6.1)

Thus, equality (6.1) shows that σ̂2
zZT (s)

plim
= 1

s2(1−s)2 σ̂2
ǫ [Zo

T (s)]2, due to the continuous mapping theorem.

Since σ̂2
ǫ = σ̂2

z × s(1 − s) and using the weakly convergence result for Zo
T (s) deduced in Example 2 (see,

Aue and Horváth (2013)), which implies that Zo
T (s) ⇒ sup

s∈[ν,1−ν]
BB(s) gives the following asymptotic result

for the test statistic ZT (s) provided that 0 < ν < 1

ZT (s) ⇒ sup
s∈[ν,1−ν]

[
W (s) − sW (1)

]2

s(1 − s)
. (6.2)

Proof of Theorem 3

Proof. Let θ̂1 and θ̂2 be the OLS estimator for {1, ..., k} and {k + 1, ..., T } respectively, then it follows that

θ̂1 =

(
1

T

k∑

t=1

x1,tx
′
1,t

)−1 (
1

T

k∑

t=1

x1,tyt

)

θ̂2 =


 1

T

T∑

t=k+1

x2,tx2,t




−1
 1

T

T∑

t=k+1

x′
2,tyt



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Using the restriction matrix and the coefficient matrix we formulate the Wald statistic as below

WT (s) =
1

σ̂2
ǫ

(
θ̂1 − θ̂1

)′ [(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

]−1 (
θ̂1 − θ̂1

)

Let A and B be matrices whose dimensions are such that the addition (A + B) is well-defined, we can use

the binomial matrix identity

(A + B)−1 = A−1 − A−1
(
B−1 + A−1

)−1
A−1

and since the following property holds due to the orthogonality condition (and no model intercept)

(
X ′X

)
=
(
X ′

1X1
)

+
(
X ′

2X2
)

then we get that

[(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

]
=
[
X ′

1X1 − X ′
1X1

(
X ′X

)−1
X ′

1X1

]

Therefore, keeping the matrix notation for simplicity the Wald test is expressed as below

WT (s) =
1

σ̂2
ǫ

(
θ̂1 − θ̂1

)′ [
X ′

1X1 − X ′
1X1

(
X ′X

)−1
X ′

1X1

]−1 (
θ̂1 − θ̂1

)

which according to Pitarakis (2008) has an equivalent representation given by

WT (s) =
1

σ̂2
ǫ

[
ǫ′X1 − ǫ′X(X ′X)−1X ′

1X1

] [
X ′

1X1 − X ′
1X1

(
X ′X

)−1
X ′

1X1

]−1 [
X ′

1ǫ − X ′
1X1

(
X ′X

)−1
X ′ǫ

]

Then, the econometric specification of the model with when testing for a single structural break at an

unknown break- point k = ⌊T s⌋, s ∈ (0, 1) is given by

y = X1θ1 + X2θ2 + ǫ
H0= Xθ1 + ǫ (6.3)

Then, the OLS estimators are expressed in matrix form as below

θ̂1 =
(
X ′

1X1
)−1

X ′
1y and θ̂2 =

(
X ′

2X2
)−1

X ′
2y

Under H0 : θ1 = θ2, we have that y = X1θ1 + X2θ1 + ǫ = Xθ1, where X = X1 + X2 since X1 ⊥ X2. Thus,

X ′
1X = X ′

1X1 and X ′
1X2 = X ′

2X1 = 0 due to the orthogonality property. Therefore, the OLS estimators

are written in the following form

θ̂1 =
(
X ′

1X1
)−1

X ′
1 (Xθ1 + ǫ) = θ1 +

(
X ′

1X1
)−1 (

X ′
1X2

)
θ1 +

(
X ′

1X1
)−1

X ′
1ǫ

θ̂2 =
(
X ′

2X2
)−1

X ′
2 (Xθ1 + ǫ) = θ1 +

(
X ′

2X2
)−1 (

X ′
2X1

)
θ1 +

(
X ′

2X2
)−1

X ′
2ǫ

Consider the expression

√
T
(
θ̂1 − θ̂2

)
=
[(

X ′
1X1

)−1
X ′

1ǫ − (
X ′

2X2
)−1

X ′
2ǫ
]

≡





(
1

T

k∑

t=1

x1,tx
′
1,t

)−1
1√
T

k∑

t=1

x1,tǫt −

 1

T

T∑

t=k+1

x2,tx
′
2,t




−1

1√
T

T∑

t=k+1

x2,tǫt




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Furthermore, the following probability limits hold uniformly for s ∈ (0, 1),


 1

T

⌊T s⌋∑

t=1

x1,tx
′
1,t


 p→ sQT ,


 1

T

T∑

t=⌊T s⌋+1

x2,tx
′
2,t


 p→ (1 − s)QT ,

(
X ′X

T

)
p→ QT (6.4)

which holds due to moment homogeneity. Furthermore, using the following two limit results

Result A:

[(
X ′

1X1

T

)−1

+

(
X ′

2X2

T

)−1
]−1

plim
=

[
1

s
Q−1

T +
1

1 − s
Q−1

T

]−1

=

[
Q−1

T

s(1 − s)

]−1

(6.5)

Result B:

1

σ̂2
ǫ

(
X ′

1ǫ√
T

− s
X ′ǫ√

T

)2

=


 1

σ̂ǫ

√
T

⌊T s⌋∑

t=1

xtǫt − s
1

σ̂ǫ

√
T

T∑

t=1

xtǫt




2

⇒ [
W p(s) − sW p(1)

]2
(6.6)

using the fact that X ′
2ǫ = (X ′ǫ − X ′

1ǫ).

Therefore, we obtain the following limit result

√
T
(
θ̂1 − θ̂2

)
plim
=

{
1

s
Q−1

T σǫW p(s) − 1

s(1 − s)
Q−1

T σǫ
[
W p(1) − W p(s)

]}

= σǫQ
−1
T

{
1

s
W p(s) − 1

s(1 − s)

[
W p(1) − W p(s)

]}

= σǫQ
−1
T

1

s(1 − s)

{
W p(s) − sW p(1)

}

Then, the limiting distribution of the Wald statistic can be expressed as below

WT (s) ⇒ 1

σ2
ǫ

σǫ

s(1 − s)

{
W p(s) − sW p(1)

}′
Q−1

T

[
Q−1

T

s(1 − s)

]−1
σǫ

s(1 − s)
Q−1

T

{
W p(s) − sW p(1)

}

WT (s) ⇒

[
W p(s) − sW p(1)

]′
Q−1

T

[
W p(s) − sW p(1)

]

s(1 − s)

Therefore, the limiting distribution of the sup-Wald test follows

W∗
T (s) := sup

s∈[ν,1−ν]
WT (s) ⇒ sup

s∈[ν,1−ν]

[
W p(s) − sW p(1)

]′
Q−1

T

[
W p(s) − sW p(1)

]

s(1 − s)
(6.7)

which verifies a weakly convergence to a normalized squared Brownian bridge process.
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