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Abstract

We establish the asymptotic theory in quantile autoregression when the model parameter is

specified with respect to moderate deviations from the unit boundary such that ρn =
(

1 + c

kn

)

where (kn)
n∈N

is a nonrandom sequence that diverges at a rate slower than the sample size n. Then,

extending the framework proposed by Phillips and Magdalinos (2007), we consider the limit theory

for the near-stationary and the near-explosive cases when the model is estimated with a condi-

tional quantile specification function and model parameters are quantile-dependent. Additionally,

a Bahadur-type representation and limiting distributions based on the M-estimators of the model

parameters are derived. Specifically, we show that the serial correlation coefficient converges in

distribution to a ratio of two independent random variables. Monte Carlo simulations illustrate the

finite-sample performance of the estimation procedure under investigation.

Keywords: Quantile autoregressive model, moderate deviations, local-to-unity, near-integrated

processes, explosive processes, bahadur representation.

1. Introduction

Moderate deviation principles from the unit boundary for quantile regression models are commonly

employed when considering the limit distribution of quantile-dependent parameters under regres-

sors nonstationarity. In particular, the development of asymptotic theory for nonstationary quantile

time series models has been pioneered by the studies of Koenker and Xiao (2004, 2006) as well as

Koenker and Xiao (2002) who investigate estimation and inference aspects for regression quantile

models (see, also Hasan and Koenker (1997)). On the contrary, studies for quantile autoregressive

time series models that consider moderate deviations within a unified framework allowing to inves-

tigate the asymptotic behaviour of estimators with respect to different modes of stability such as

stable, unstable and explosive processes has seen less attention in the literature. Therefore, our main

objective is to use the moderate deviation principles in order to derive the limiting distribution of

the serial correlation coefficient when considering deviations from the unit boundary in the quan-

tile autoregressive model. More precisely, the present paper builds on the framework proposed by

Phillips and Magdalinos (2007) (see, also Giraitis and Phillips (2006) and Huang et al. (2014)) that

corresponds to the linear autoregressive model under nonstationarity as well as the study of Kong

(2015) who develops related limit results for moderate deviations in autoregressive models based on

M-estimators.
∗Article history: February 2022.
†Ph.D. Candidate, Department of Economics, University of Southampton, Highfield Campus, Southampton, SO17

1BJ, UK. E-mail Address: C.Katsouris@soton.ac.uk.
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Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

According to Chan et al. (2006): "The study of the unit root AR(1) model has been actively pursued

by statisticians and econometricians alike, and a related question that needs to be addressed is what

happens to the limiting distribution of the test statistics when the autoregressive parameter θn is close

to the unit boundary? Consequently, when the autocorrelation coefficient is expressed with respect to

the local unit root specification, what kind of approximation should be used for the distribution of the

test statistics?. To answer this question, Chan and Wei (1987) as well as Phillips (1987a,b) proposed

the triangular array framework, so-called nearly nonstationary AR(1) model, and established the

limiting distributions of the least squares estimator for θn under the assumption that the conditional

variance of the model εt is finite. Further results of the least squares estimate for the near-integrated

AR(1) model are presented by Chan (1988, 1990), Chan and Tran (1989), Knight (1987), Rao (1978),

Lai and Wei (1982), Cox and Llatas (1991), Larsson (1995) as well as by Cavaliere (2002).

Additionally, the study of Hui et al. (2022) establishes the asymptotic theory of the ordinary least

squares estimator in the explosive first-order Gaussian autoregressive process. Specifically, using a set

of deviation inequalities the authors obtain the limit theory of Cramér-type moderate deviations for the

explosive and mildly explosive autoregressive processes. Thus, in this paper we focus on establishing

the limit theory for moderate deviations from the unit boundary for both the near-stationary and

near-explosive cases. Although, White (1958) obtained the limiting distribution of an explosive serial

correlation coefficient (see, also Mann and Wald (1943)), limit results for moderate deviations on the

explosive side of unity (e.g., mildly explosive case) were only recently established by the studies of

Phillips and Magdalinos (2007), Buchmann and Chan (2007) and Aue and Horváth (2007).

Under the Cramér-type moderate deviations framework, there exists positive sequences νn and λn
tending to infinity such that for every ℓ > 0 as n → ∞ it holds that (e.g., see Hui et al. (2022))

sup
0≤x≤ℓλn

∣∣∣∣
1

1 − Fn(x)
P

(
νn
(
θ̂n − θn

)
≥ x

)
− 1

∣∣∣∣ → 0,(1.1)

where Fn(x) is the distribution function, satisfying for all x ∈ R

P

(
νn
(
θ̂n − θn

)
≥ x

)
− Fn(x)

p→ 0, as n → ∞.(1.2)

Therefore, we consider the neighbourhood near the unit boundary, which can be approaching unity

from below (near-stationary or near-integrated) or approaching unity from above (near-explosive).

Specifically, due to the form of the nonrandom sequence such that, kn ≡ nγ , the convergence rate

towards to unit boundary is slower than the sample size n. In this case the autocorrelation coefficient

approaches 1 at a rate slower than the usual local alternative as n goes to infinity. On the other

hand, as γ → 1 then kn → n which encompasses the conventional local to unit root specification. An

alternative form, for the convergence rate include for example the case when kn =
√
n.

Furthermore to obtain limit results for model parameters based on the M-estimators, we employ the

Bahadur representation (see, Bahadur (1966)) that provides a mechanism to facilitate the asymptotic

theory analysis since it allows to obtain analytic expressions for quantile-dependent estimators by

approximating them with linear forms. Thus, when applied to the quantile autoregressive model

it permits to obtain joint convergence results. The limit theory for an autoregressive model which

includes a intercept and an autocorrelation coefficient expressed using the local unit root specification

is studied by Liu and Liu (2018), however their framework differs from our setting since we consider

quantile-dependent parameters. Therefore, this paper builds on and contributes to both the quantile

autoregression literature as well as to the literature of moderate deviations from the unit boundary.
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Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

1.1. Preliminary Theory

The asymptotic theory for moderate deviations from a unit root in autoregressive models is examined

in various studies such as by Fountis and Dickey (1989), Jiang et al. (2015) who focus on the aspect

of dependent errors in AR(1) models and Yabe (2012) who obtain limit results for MA(1) time series

models1. Furthermore, limit results for moderate deviations for M-estimators and quantile processes2

in autoregressive models are investigated in several studies such as by Jurečková et al. (1988), Knight

(1998), Mao and Guo (2019) as well as Kato (2009) where the author develops asymptotics for Lasso

quantile-dependent estimators. On the other hand, within the context of quantile autoregressive

models related studies which consider moderate deviations from the unit boundary include Lucas

(1995), Abadir and Lucas (2000), Ling and McAleer (2004), Chan et al. (2006) and Kong (2015).

Regression asymptotics with roots at or near unity are typically carried out by using autoregressive

models with fixed coefficients and then testing for the autoregressive parameter being equal to 1, as

pointed out by Dickey and Fuller (1979) (see, also Dickey and Fuller (1981)). More precisely, the idea

of developing asymptotics using the near-unit root specification is due to the studies of Cavanagh

(1985), Phillips (1987a), Chan and Wei (1987). In particular, Phillips and Magdalinos (2007) showed

that θ̂n − θn has a
√
nkn rate of convergence and a limit normal distribution when c < 0,

√
nκn

(
θ̂n − θn

)
d→ N (0,−2c

)
(1.3)

Thus, we are interested to establish a martingale central limit theorem for a normalized version of∑n
t=1 yt−1ut which can give rise to a Gaussian asymptotic distribution for the normalized and centered

least squares estimator specifically for the quantile autoregressive model.

A different stream of literature considers a representation of the autoregressive model based on the

exponential family with specific canonical parameter. Therefore, by expressing the AR(1) model with

respect to the canonical parameters of an exponential family we can obtain insights regarding the

asymptotic behaviour of related minimal sufficient statistics. The particular literature is developed

under the assumption of a stationary autocorrelation coefficient such that |θ| < 1 for yt = θyt−1 + ut.

Furthermore, it has been argued that the Efron curvature depends heavily on the AR parameter,

especially near the boundary of the parameter space, and increasingly so with increasing sample size3

(see, Garderen (1999)). In addition, Jansson and Moreira (2006) using the local-unit-root specifica-

tion of the autocorrelation coefficient, study the properties of predictive regression models under the

assumption of persistence regressors using differential geometry and sufficient statistics arguments to

establish the asymptotic theory of estimators and test statistics. Lastly, an important aspect worth

mentioning is the fact that several studies have demonstrated that the nuisance parameter of persis-

tence cannot be consistently estimated (see, Phillips et al. (2001), Mikusheva (2012) among others).

Similarly when considering the quantile autoregressive model, the availability of a consistent estimator

for the unknown coefficient of persistence, c, still remains a challenging issue. However, our asymp-

totic theory analysis which focus on the asymptotic behaviour of the quantile-dependent parameter

remains valid despite the absence of such a desirable statistical property.

1The MA(1) process is considered to be invertible if and only if the root is away from the unit boundary. Moreover,
estimators and test statistics for non-invertible processes behave quite differently from an invertible MA(1) time series
model. In particular, the CLT holds for the maximum likelihood estimator for an invertible process while for a non-
invertible process the CLT does not hold because the maximum likelihood estimator has a probability mass at unity.

2Related theoretical aspects can be found in the book of Csörgő (1983) (see, also Csorgo et al. (1986)).
3In other words, when the autocorrelation coefficient is expressed using the moderate deviations form then unit

boundary then this can enable the analysis of unit roots and explosive processes, which is necessary to link problems in
inference for unit roots to the statistical curvature.
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Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

The main research objective of our paper is the asymptotic behaviour of the quantile-dependent

estimators. More precisely, we establish the asymptotic theory of estimators in possibly nonstationary

quantile autoregressive models for the general near-integrated case assuming that θn → 1 with a

rate slower than 1/n. In particular, Aue and Horváth (2007) develop the limit theory for the serial

correlation coefficient in the mildly explosive case with moderate deviations from the unit boundary.

Thus, the model parameter satisfies θn → 1 and n (θn − 1) → ∞, as n → ∞, while for large n, θn > 1

diverges away from unity but not with the usual convergence rate O(1/n).

The rest of the paper is organized as follows. Section 2, introduces the framework of moderate deviation

principles from the unit boundary in quantile autoregressive processes as well as the main estimation

methodology. Section 3, demonstrates the main results of the paper, that is, the limit theory for the

near-integrated and near-explosive cases for the quantile autoregression. Section 4 presents a short

Monte Carlo simulation study while Section 5 an empirical application. Section 6 concludes.

2. Quantile Autoregression under the Moderate Deviations Framework

Consider the autoregressive AR(1) time series model with an intercept expressed as below

yt = µn + ρn,cyt−1 + εt, for t = 1, ..., n,(2.1)

with

ρn,c =

(
1 +

c

kn

)
, with c ∈ R and γ ∈ (0, 1).(2.2)

with innovations (εt)t∈N
an i.i.d sequence of random variables from a common distribution function

Fε that satisfies regularity conditions for Lipschitz continuity with zero mean and finite variance σε.

Moreover, we denote by Ft the natural filtration σ
(
εt, εt−1, ...

)
and with EFt

[
.
]

the corresponding

conditional expectation. Furthermore, the convergence rate of the autocorrelation coefficient ρn,c is

such that kn := nγ where the exponent rate is defined such that γ ∈ (0, 1). Specifically, the given

convergence rate implies that the (kn)n∈N
sequence increases to infinity at a slower rate than the

sample size such that kn = o(n) as n → ∞.

Assumption 2.1. Denote with y0n = 0, almost surely, for all n ∈ N. Then, the innovations (εt)t∈N

forms a sequence of martingale differences such that as n → ∞

1

n

n∑

t=1

E

[
ε2
t

∣∣Ft−1

]
= 1 + op(1),(2.3)

1

n

n∑

t=1

E

[
ε2
t1
{

|εt
∣∣ > n1/2m

} ∣∣Ft−1

]
= op(1), for all m > 0,(2.4)

where Ft := σ
(
εs : 0 ≤ s ≤ t

)
.

Assumption 2.1 provides moment conditions and a uniform integrability condition which induces a

restriction on the tail behaviour of the underline distribution of innovations. Furthermore, for the

development of the asymptotic theory related conditions are imposed to the noise sequences εt such

that the corresponding partial sum processes lie in the domain of attraction of functionals of Brownian

motions. Then, asymptotic approximations are obtained based on the Ornstein-Uhlenbeck processes.
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Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

Assumption 2.2. The distribution Fε is in the domain of attraction of a stable law indexed with

α ∈ (0, 2), which has a strictly positive density. When α = 2 then it corresponds to the case of

innovation sequences from a distribution function with finite variance. Furthermore,

E (ε1) = 0, Var (ε1) = σ2
ε , and E |ε1|2+m < ∞, for some m > 0.(2.5)

When c = 0 then the AR(1) model is a random walk model with stable innovations. Therefore, under

the assumption that c = 0, which implies the presence of an integrated process the asymptotic be-

haviour of the ordinary least squares estimator can be obtained based on Brownian motion functionals.

Define with Uα(r) and Vα(r) to be Lévy processes on the space of functions D[0, 1].

Lemma 2.1. Suppose that εt satisfies Assumption 2.2. Then as n → ∞ it holds that


 1

νn

⌊nr⌋∑

t=1

εt,
1

ν2
n

⌊nr⌋∑

t=1

ε2
t


 ⇒

(
Uα(r), Vα(r)

)
(2.6)

where
(
Uα(r), Vα(r)

)
is a Levy process in D[0, 1]2 with index α ∈ (0, 2).

Remark 2.1. A general class of one-dimensional stochastic processes, are the so-called Lévy processes.

Similar to Wiener processes, Lévy processes have right continuous paths with left limits, are initiated

from the origin and both have stationary and independent increments (Kyprianou (2014)). Under

the i.i.d innovation assumption it can be shown that Vα(r) =
∫ r

0 (dUα(s))2 =
[
Uα, Uα

]
r∈[0,1]

which is

the quadratic variation of the Levy process Uα(r). Furthermore, Vα(r) is a stochastic integral. More

precisely, when α = 2, which corresponds to the finite variance case, it holds that Uα(r) ≡ W (r) for

some 0 ≤ r ≤ 1, the standard Brownian motion, and Vα(r) =
[
W,W

]
r

= r (see, also Cramér (1951)).

Therefore, any asymptotic results followed by Lemma 2.1 coincide with the standard random walk

asymptotics for finite variance models. Specifically, in this paper we focus in the case α = 2. Then as

n → ∞ the following limit result holds

n (ρ̂n,c − 1) ⇒

∫ 1

0
W (r)dW (r)

∫ 1

0
W 2(r)dr

.(2.7)

Notice that since ρn =
(
1 + c

nγ

)
under the stationary condition which implies that 0 < ρn < 1 then

it holds that −nγ < c < 0. Therefore, the OLS estimate ρ̂ is n−consistent, that is, n (ρ̂− ρ) has a

nondegenerate limit distribution depending on c, while µ̂ is
√
n−asymptotically normal. As a result,

ĉ = −n(1 − ρ̂) is a natural OLS estimate of the coefficient of persistence c, which is not consistent.

Furthermore, Mikusheva (2012) shows that

(ĉ− c) =

∫ 1

0
Jc(r)dW (r)
∫ 1

0
J2
c (r)dr

.(2.8)

The particular asymptotic result demonstrates the well-known conjecture that the OLS estimate of

the nuisance parameter of persistence, c, is not consistent. In fact, ĉ is asymptotically highly biased

to the left, thus the estimated model looks more stationary that it actually is.
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In general, the assumption regarding the dependence structure for the disturbance term can affect

the limit theory of estimators. In particular, serial correlation in the errors induces an asymptotic

bias for ρ̂n and contributes to the bias of the Gaussian limiting distribution. For the asymptotic

theory results of the paper we assume that D[0, 1] is endowed with the Skorokhod topology such that

any partial sum processes are measurable for the associated Borel σ−algebra under the absence of

serial correlation. Furthermore, imposing assumptions regarding the properties of the disturbance

term εt can imply different asymptotic behaviour for estimators given certain modelling conditions.

According to Werker and Zhou (2022) the usual procedures established in the literature thus far are

based on the assumption of Gaussian innovations and, while their validity has been established under

weak assumptions, the asymptotic power of all these procedures cannot go beyond the Gaussian power

envelope. Therefore, the asymptotic theory of this paper is established based on optimal test statistics

due to the Gaussianity assumption of the innovation processes. Relaxing the Gaussianity assumption

requires to apply semiparametric estimation methodologies that is beyond the scope of our study.

Thus, the i.i.d innovation sequence assumption with finite variance, simplifies the representation of the

necessary regularity conditions. Considering the limit theory based on the innovation sequence being

a stationary time series under weak dependence, requires further regularity conditions especially when

the aim is to derive bounds and corresponding convergence rates based on Berry-Esseen theorems (see,

Jirak (2016) and Lahiri and Sun (2009)). Further studies of the proposed econometric environment

with the use of moderate deviation principles are presented by Penda et al. (2014) and Proïa (2020).

2.1. Quantile Conditional Estimation Methodology

In this Section we present a more detailed review of the estimation procedure for the quantile autore-

gressive time series that accommodates the specification of the autocorrelation coefficient with respect

to moderate deviations from the unit boundary. We first introduce the quantile estimation method4

to obtain parameter estimates and then establish the asymptotic theory of this estimator. Denote

with µ(τ) and ρn(τ) to be the τ−quantile dependent parameters, which are determined based on a

conditional quantile specification function

Qyt
(τ|Ft−1) := F−1

yt|xt−1
(τ) ≡ µ(τ) + ρc(τ)yt−1.(2.9)

such that

Fyt|xt−1
(τ) := P

(
yt ≤ Qyt

(τ|Ft−1)
∣∣Ft−1

)
≡ τ.(2.10)

for some τ ∈ (0, 1), where τ denotes the quantile level within a compact set (0, 1).

Denote the parameter vector with ϑ(τ) =
(
µ(τ), ρc(τ)

)⊤
and X t = D−1

n

(
1, yt−1

)
, where Dn is the

normalization matrix which includes the different convergence rates for the model intercept vis-a-vis

the slope coefficient. Then, from Koenker and Bassett (1978) and Koenker and Portnoy (1987) the

quantile regression estimator is obtained via the following optimization function

ϑ̂n
(
τ

)
:= arg min

ϑ(τ)

n∑

t=1

̺τ

(
yt − ϑ(τ)⊤Xt

)
.(2.11)

such that ϑ̂n
(
τ

) ≡ Dn (µ̂n(τ) − µ(τ), ρ̂n,c(τ) − ρc(τ)).

4A complete treatment of limit results for quantile regressions can be found in the book of Koenker (2005).
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Moreover, we denote with ψ(u) to be the left derivative of ̺(u). In particular, when ψ(u) := u is the

identity function then the ϑ̂n corresponds to the least squares estimator, while when ψ(u) := (1 − τ)

for u ≤ 0 and ψ(u) = τ for u > 0, then it corresponds to the quantile regression optimization function

and ϑ̂n is the quantile-dependent estimator, the main focus of our paper.

Assumption 2.3. Suppose that E
[
ψ(ut(τ))

]
= 0 and consider the random variable which corresponds

to the first derivative around some parameter θ ∈ R such that

ξ :=

∣∣∣∣
∂

∂θ
E

[
ψ

(
u1(τ) − θ

)]∣∣∣∣
θ=0

, where ξ 6= 0.(2.12)

where E|ψ (u1(τ)) |2+m < ∞, for some m > 0.

Assumption 2.3 ensures that the first derivative is Lipschitz continuous and bounded which corresponds

to the first derivative for the expectation of the check function as a random variable evaluated within

the neighbourhood of the true parameter vector θ = 0. Furthermore, due to the fact that the quantile

autoregressive model we consider in this paper corresponds to a possibly nonstationary time series

model, then the asymptotic theory of estimators and corresponding test statistics depends on Brownian

motion functionals as introduced with Assumption 2.4 below.

Assumption 2.4. The following conditions for the innovation sequence hold:

(i) The sequence of stationary conditional probability distribution functions denoted with
{
fεt(τ),t−1(.)

}

evaluated at zero with a non-degenerate mean function such that fεt(τ)(0) := E

[
fεt(τ),t−1(0)

]
> 0

satisfies a Functional Central Limit Theorem (FCLT) expressed as below

1√
n

⌊nr⌋∑

t=1

(
fεt(τ),t−1(0) − E

[
fεt(τ),t−1(0)

])
⇒ Bfεt(τ)

(r), with r ∈ (0, 1).(2.13)

(ii) For each t and τ ∈ (0, 1), fεt(τ),t−1(.) is uniformly bounded away from zero with a corresponding

conditional distribution function Ft(.) which is absolutely continuous with respect to Lebesgue

measure on R (see, Neocleous and Portnoy (2008), Goh and Knight (2009) and Lee (2016)).

Assumption 2.4 gives necessary and sufficient conditions for a functional central limit theorem to

hold for the corresponding innovation sequence based on the conditional quantile functional form

specification, which is instrumental for deriving the asymptotic behaviour of the quantile-dependent

estimators under nonstationarity based on Brownian motion functionals. Therefore, to obtain the

model estimates based on the optimization problem (2.11) we apply the Taylor expansion to the check

function, such that for a given parameter δ(τ) it holds that

̺τ

(
εt − δ(τ)⊤Xt

)
= ̺τ(εt) − δ(τ)⊤ψ(εt) + ϕt

(
δ(τ)

)
.(2.14)

Remark 2.2. Notice that for instance the t-ratio for ρn,c is defined by
√∑n

t=1 y
2
t−1 (ρ̂n,c − ρc), thus

to obtain the limiting distribution of the t−test we need to obtain an asymptotic expression for the

normalized centered estimator (ρ̂n,c − ρc). Furthermore, for sequences such that lim
n→∞

n (1 − ρn) = 0,

the nearly unstable model behaves asymptotically like the strictly unstable model in which case ρ = 1.
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3. Asymptotic Theory

In this section we present the main asymptotic theory results while detailed proofs can be found in

the Appendix of the paper. Some important aspects worth emphasizing again is that while the case

of near-integrated (NI) processes, such that c < 0 and γ = 1, has been considered before in quantile

autoregressive time series (see, Chan et al. (2006)) as well as the case of mildly integrated (MI) such

that c < 0 and γ ∈ (0, 1), the mildly explosive (ME) such that c > 0 and γ ∈ (0, 1) and the explosive

case, such that c > 0 and γ = 1 has not been widely explored before. In particular, all aforementioned

cases which correspond to different regions of the parameter space, overcome the singularity problem;

the region that the underline stochastic process does not have a solution. More specifically, using the

local-to-unity specification in autoregressive processes helps to overcome this gap by considering the

limiting distribution for the whole parameter space regardless of the existence of a limit singularity.

Firstly, using the local-to-unity asymptotics our aim is to derive a nuisance-parameter-free limiting

distribution which can facilitate statistical inference. In particular, the form of the noncentrality

parameter of the χ2−distribution which is the limiting distribution of test statistics can depend on

the initial condition5 and the form of the autoregressive parameter of the model (see, Theorem 2.2. of

Hui et al. (2022)). Secondly, by decomposing the underline stochastic processes into components which

include a predictable quadratic variation (see, Magdalinos and Phillips (2009)), allows us to obtain a

self-normalized martingale sequence, which is especially useful when deriving the limiting distribution

of Wald-type statistics. In other words, Wald statistics constructed with a variance estimator which

induced by the predictable quadratic variation ensures that the self-normalization property holds.

Theorem 3.1 (Chan et al. (2006)). Assume that Assumption 2.1-2.4 hold and that the autocorrelation

coefficient is expressed as ρn,c =
(
1 + c

kn

)
. Then, the following limit result hold

Dn

(
ϑ̂n(τ) − ϑ(τ)

)
d→ 1

fε
(
F−1
ε (εt(τ))

)Σ−1
(
W (τ; 1),

∫ 1

0
J(s)dW (τ, s)

)′
,(3.1)

where Dn = diag (
√
n, n) and ϑ(τ) =

(
µ(τ), ρn,c(τ)

)
such that

Σ :=

∫ 1

0

(
1, J1(s)

)′(
1, J1(s)

)
ds ≡




1

∫ 1

0
J1(s)ds

∫ 1

0
J1(s)′ds

∫ 1

0
J1(s)J1(s)′ds


 .(3.2)

Furthermore, it holds that

n

(
ρ̂n,c(τ) − ρn,c(τ)

)
d→ 1

fε
(
F−1
ε (εt(τ))

)

∫ 1

0
J1(s)dW (τ, s) −W (τ, 1)

∫ 1

0
J1(s)ds

∫ 1

0
J2

1 (s)ds −
(∫ 1

0
J1(s)ds

)2(3.3)

and with a suitable normalization it follows that





n∑

t=1

y2
t−1 −

(
n∑

t=1

yt−1

)2




1/2 (
ρ̂n,c(τ) − ρn,c(τ)

)
d→ N

(
0,

τ(1 − τ)

f2
ε

(
F−1
ε (εt(τ))

)
)
.(3.4)

5Notice that since the initial condition of the autoregressive process corresponds to the boundary condition of an
ordinary differential equation problem, then the stochastic solution, that is, the limiting distribution under equilibrium
conditions will depend on the initial condition (see, Saxena and Alam (1982)).
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3.1. Limit theory for near-stationary case

In a similar spirit as in the framework proposed by Phillips and Magdalinos (2007), in order to estab-

lish the limit theory of the autocorrelation coefficient within our modelling environment, we consider

the asymptotic behaviour of the sample moments that appear in the quantile-dependent estimator

separately. However, in contrast to the ordinary least squares estimation, when the model parameters

are estimated using the conditional quantile specification function, we employ standard approxima-

tion methods (such as the Bahadur representation) from the quantile regression literature to obtain

analytical expressions for the quantities of interest. Specifically, in the near-stationary case, which

implies that c < 0, the limit to the unit boundary is approached from the left of the triangular array.

Furthermore, due to the different convergences rate of the model intercept versus the slope parameter

we employ the normalization matrices Dn and B as defined below

Dn =

(√
n 0

0
√
nkn

)
, B =

(
1 0

0 σ2/(−2c)

)
(3.5)

where kn = nγ and γ ∈ (0, 1).

Remark 3.1. The n−1/2 convergence rate corresponds to the model intercept while when kn = nγ, then

the autocorrelation parameter of the model has a convergence rate of n− 1+γ

2 which is also the rate of

convergence that corresponds to a mildly integrated process. Furthermore, in empirical applications in

practise we do not know a prior whether the expression
√
n (ρ̂n − ρ) is positive or negative. However,

since we do not partition the parameter space accordingly, the asymptotic theory mainly focus on the

near-integrated case and does not cover the mildly explosive or pure explosive since c < 0.

Theorem 3.2. Under Assumptions 2.2-2.4,

(
µ̂n, ρ̂n,c

)⊤
=
(
µ, ρn,c

)⊤
+

(BDn)−1

ξ

n∑

t=1

ψ
(
εt
)
X⊤

t + op(1).(3.6)

In particular, when ψ(u) =
(
τ − 1 {u ≤ 0} ) corresponds to the quantile regression and therefore the

above expression reduces to

(
µ̂n(τ)

ρ̂c,n(τ)

)
=

(
µn(τ)

ρc,n(τ)

)
+

(BDn)−1

fε
(
F−1
ε (τ)

)
n∑

t=1

(
τ − 1

{
εt ≤ F−1

ε (τ)
})




1√
n

yt−1√
nkn




+ oP (1).(3.7)

where fε(x) and Fε(x) denote the probability and cumulative density functions of ε1, respectively.

Theorem 3.2 provides a Bahadur representation for the parameter vector of the quantile autoregressive

time series which includes a model intercept and a slope. In particular for M-regressions a necessary

requirement for the functional form is to include a model intercept which can be different than zero.

Moreover, the given limit results are employed to derive the asymptotic behaviour of model parameters

based on moderate deviations from the unit boundary on the stationary region as summarized by the

next theorem. Then, the robust estimation of the sparsity coefficient which depends on the kernel

density function can be improve the accuracy of the quantile-dependent model estimates.

9
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Theorem 3.3. Under Assumptions 2.2-2.4,

Dn

((
µ̂n, ρ̂n,c

)− (
µn, ρn,c

)) d→ N
(

0,
B−1 × E

[
ψ2(ε1)

]

ξ

)
.(3.8)

In particular, it follows that

(i) If ψ(u) =
(
τ − 1 {u ≤ 0} ), and the pdf f(u) of ε1 exists and satisfies fε

(
F−1
ε (τ)

)
> 0, then

ρ̂n,c(τ) − ρc(τ)√
nkn

d→ N
(

0,
−2c

σ2

τ(1 − τ)

f2
ε

(
F−1
ε (τ)

)
)
.(3.9)

(ii) If ψ(u) = u, then

ρ̂n,c(τ) − ρc(τ)√
nkn

d→ N (0,−2c) .(3.10)

Remark 3.2. The limit results given by Theorem 3.2 summarize the joint asymptotic behaviour of the

model intercept and slope from moderate deviations from the unit boundary on the stationary region.

In order to prove the above asymptotic results, we employ standard arguments introduced by Pollard

(1991) for optimization of convex function relevant to quantile processes. Specifically, by the convexity

lemma, if the finite-dimensional distributions of Ωn(v) converge weakly to those of Ω(v), and Ω(v)

has a unique minimum, then the convexity of Ωn(v) implies that v̂ converges in distribution to the

minimizer of Ω(v). In other words, ρ̂n(τ) is shown to be weakly consistent, thus to prove that the

estimator is asymptotically normally distributed we restrict the spaces B to shrinking neighbourhoods

around the true value of the parameter ρ(τ) in order to avoid possible local minima. To do this, we

can define the restricted space Ba =
{
ρn ∈ B : ‖β − β(τ)‖ ≤ an

}
where an some positive sequence.

3.2. Limit theory for near-explosive case

The near-explosive case corresponds to the nuisance parameters of persistence c > 0 and the exponent

rate γ ∈ (0, 1) or γ = 1. In particular for the linear autoregressive process yt = θyt−1 + εt and an

explosive root such that |θ| > 1, a Cauchy limit theory can be derived for the OLS estimator θ̂ as

θn

θ2 − 1

(
θ̂n − θ

)
⇒ C, as n → ∞.(3.11)

More precisely, the seminal study of Anderson (1959) provides examples demonstrating that central

limit theory does not apply and the asymptotic distribution of the least squares estimator depends by

the distributional assumptions imposed on the innovations which makes inference procedures specifi-

cally for purely explosive autoregressions more challenging (see, Magdalinos (2012)). Furthermore, in

this direction, Phillips and Magdalinos (2007) consider autoregressive processes under the moderate

deviations framework by employing the local-to-unity specification for the autoregression coefficient

such that θn =
(
1 + c

nγ

)
, γ ∈ (0, 1). Therefore, in this case under the assumption of i.i.d innovations

with finite second moments the following least squares regression theory was proved

1

2c
nγθnn

(
θ̂n − θ

)
⇒ C, as n → ∞.(3.12)

10



Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

On the other hand, for the pure explosive root case such that |θ| > 1 then, the limit distribution

of
(
θ̂ − θ

)
is standard Cauchy if it is normalized with θn/(1 − θ2). However, the limit distribution

depends on the distribution of the noise, as was pointed out by Anderson (1959), and hence no central

limit theorem applies on the explosive side. Moreover, from empirical data financial applications

it can be observed that the parameter θ tends to 1 with increasing sample size. To accommodate

this observation, θ = θn is allowed to depend on n, the number of observations, such that θn → 1

as n → ∞. The process is then referred to as near-integrated. Depending on whether θn < 1 or

θn > 1, it is called near-stationary or mildly explosive. Furthermore, Phillips and Magdalinos (2007)

investigated the general parameter case in the near-integrated setting assuming that θn → 1 with a

rate slower than 1/n, the so-called moderate deviations from unity. All aforementioned approaches

operate under the assumption of a finite variance along with independent, identically distributed or

weakly dependent errors. However, it can be proved that the serial coefficient θ̂n − θn has, under a

suitable normalization, a limit that consists of a fraction of two independent strictly stable random

variables. Therefore, specifically for the quantile autoregressive time series model we consider in our

study we employ the following normalization matrices.

Dn =

(√
n 0

0 ρnn,ckn

)
, B =

(
1 0

0 Z2
3/(2c)

)
(3.13)

where Z3 is some normal random variable to be defined below.

Theorem 3.4. Under the Assumptions 2.1-2.4 it holds that,

(µ̂, ρ̂n,c)
⊤ = (µ, ρn,c)

⊤ +

(∑n
t=1 XtX

⊤
t Dn

)−1

ξ

n∑

t=1

ψ
(
εt
)
X⊤

t + op(1).(3.14)

Theorem 3.5. Under Assumptions 2.1-2.4 it holds that,

Dn
(

(µ̂, ρ̂n,c) − (µ, ρn,c)
)⊤ d→ 1

ξ
B−1
n

(Z1,Z2Z3
)⊤
.(3.15)

In particular, it follows that

(i) If ψ(u) =
(
τ − 1 {u ≤ 0} ), and the pdf f(u) of ε1 exists and satisfies fε

(
F−1
ε (τ)

)
> 0, then

ρ̂n,c(τ) − ρc(τ)

ρnkn

d→ 2c

fε
(
F−1
ε (τ)

) Z2

Z3
.(3.16)

(ii) If ψ(u) = u, then

ρ̂n,c(τ) − ρc(τ)

2cρnnkn

d→ Z∗
2

Z∗
3

.(3.17)

Therefore, Theorem 3.5 verifies that we indeed obtain the equivalent asymptotic theory results in

comparison to the linear autoregressive time series model. Specifically, the autocorrelation coefficient

of the nonstationary quantile autoregressive time series model converge into a Cauchy random variate

in the case of mildly explosive processes (see, also Aue and Horváth (2007), Phillips and Magdalinos

(2007), Magdalinos (2012) and Lee (2018)).

11
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Remark 3.3. As we see from Theorem 3.5, part 2, the limiting distribution of the normalized and

centered estimator is Cauchy, similar to Theorem 4.3 of Phillips and Magdalinos (2007). As a matter

of fact when we replace ρn by ρn,c =
(
1 + c

kn

)
we obtain that

(
ρ2 − 1

)
= 2c

kn

[
1 + o(1)

]
. Hence, we

see that the normalizations in the Theorem above and the expression derived by White (1958) are

asymptotically equivalent as n → ∞. Furthermore, the asymptotic theory for the case of moderate

deviations from the unity boundary is not restricted to Gaussian processes. More specifically, the

Cauchy limit result applied for ρn,c =
(
1 + c

kn

)
and innovations εt with finite second moment (e.g.,

innovations with stable law of attraction). On the other hand, the main difference between the mildly

explosive processes given by Theorem 3.5 above and explosive autoregressions with |ρ| > 1, occurs due

to the different convergence rates of these two cases. In particular, in the case of mildly explosive

processes we define the convergence rate such that kn = nγ for some γ ∈ (0, 1) while for the case of

moderately explosive processes we define with kn = nγ for some γ > 1.

3.3. Testing Linear Hypotheses

Consider the autoregressive model

yt = ρyt−1 + εt, t = 1, ..., n,(3.18)

such that ρ ∈ [−1, 1], is within the stationary region. Then, the usual testing hypothesis of interest

is such that, H0 : ρ = ρ0. In particular, Dickey and Fuller (1979) showed that the finite sample

distribution for ρ in the neighbourhood of unity is very close to the asymptotic unit root case, under

the assumption that the error term ǫt is normally distributed with finite variance.

Statistical inference for M-estimators of possibly nonstationary time series models (local-to-unit root)

is a nonstandard problem due to the presence of nuisance parameters in the limiting distributions of test

statistics. However, indeed one of the advantages of M-estimators is that are considered to be robust

to outliers since they have a bounded influence function (see, Abadir and Lucas (2000)). Considering

now specifically the case of unit root such that |ρ| = 1, the asymptotic distribution of the t-statistic

denoted by Tn(ρ̂) can be represented by functionals of Wiener processes (see, Dickey and Fuller (1979)

and Buchmann and Chan (2007)). Furthermore, the asymptotic distribution of the t−statistic based

on M−estimators, denoted by Tψ(τ)(ρ̂) depends on the nuisance parameter δ, that is, the correla-

tion between the innovations {ǫt} and the pseudo-score function ψ(ǫt) that is employed to define

the M−estimator. On the other hand, t−statistics based on M−estimators lead to a reduction in

asymptotic MSE relative to LSE for local alternatives to the unit-root null hypothesis6.

The t-statistic for the null hypothesis H0 : ρ = ρ0 is given by

tψ =

(
ρ̂n(τ) − ρn(τ)

)





(
n−1

n∑

t=1

ψτ

(
yt − ρ̂n(τ)yt−1

)2
)/(

n−1
n∑

t=1

ψ′
τ

(
yt − ρ̂n(τ)yt−1

)
)2




1/2
.(3.19)

where ψ′
τ
(.) denotes the first derivative of the function ψτ(.).

6Specifically, Magdalinos (2007) consider the approximate Bahadur slopes of test statistics by examining their asymp-
totic behaviour under the alternative hypothesis.
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4. Monte Carlo Simulations

In this section we investigate the finite-sample performance in terms of standard deviations and cov-

erage probabilities of the quantile estimate and the least squares estimate are computed. We consider

the autoregressive time series model

yt = µ+ ρnyt−1 + εt, t = 1, ..., n(4.1)

where εt
i.i.d∼ N (0, 1) and µ and ρ the model parameters to be estimated. In particular, since the

autocorrelation coefficient is defined as ρn,c =
(
1 + c

n

)
, by definition of the nonstationary autoregressive

time series models, we begin by comparing the the performance of the OLS-based estimator and the

QR-based estimator for τ = 0.5. The least squares estimate is given by

ρ̂olsn,c =

n∑

t=1

ytyt−1

n∑

t=1

y2
t

(4.2)

Therefore, we verify the simulation results presented in the study of Chan et al. (2006) who show

that the sample averages of the estimates and the corresponding standard deviations of ρ̂qrn,c(τ) in

comparison to ρ̂olsn,c indicate to perform better in terms of precision and standard errors. In particular,

this improvement is shown to be more apparent for finite-samples. To demonstrate this through

simulations, we estimate the empirical size of the t−test; the size of the test statistic obtained from

the simulated finite sample distribution and then compare with the nominal size; the size that would

be expected if the finite sample distribution is perfectly approximated by the limiting distribution

(significance level α = 0.05). The empirical size under the null hypothesis is presented below.

Table goes here.
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5. An Empirical Application

We employ the R package developed by Koenker (2012) in order to obtain estimates for the quantile

autoregressive model. Furthermore, we compare the time series behaviour of two cryptocurrencies

which are considered to be among the 10 largest cryptocurrencies with respect to market capitaliza-

tion. We focus on the sampling period 01 January 2018 to 20 March 2022. In particular, several papers

in the literature employ the framework proposed by Phillips et al. (2015) to detect bubbles in cryp-

tocurrencies which verify that the bubble periods coincide with major events that affected the Bitcoin

market. In this paper we focus on comparing the performance of the quantile autoregressive model

with respect to the linear autoregressive time series model as well as the testing for predictability

using the Student’s t−statistic applied to the autocorrelation coefficient of the model.

0 200 400 600 800 1,000 1,200 1,400 1,600

0

2

4

6

·104

time

E
B

Figure 1 above shows the adjusted closing price (in US dollars) of the cryptocurrencies Bitcoin and Ethereum

for 1603 trading days between 01 January 2018 to 20 March 2022.

Table 1 shows the model estimates for the two time series of cryptocurrencies Etherum and Bitcoin

that we implement the quantile autoregressive model. To begin with, the linear autoregressive model

when with no model intercept has a statistical significant and explosive autocorrelation coefficient

while similar results are obtained when we consider the quantile autoregressive model around the

median (τ = 0.5), which under the Gaussian innovation assumption should be equivalent to the linear

autoregressive model. On the other hand, when considering the quantile autoregressive model at

the upper and lower tails of the underline distribution (e.g., τ = 0.05 or τ = 0.95) then moderate

deviations from the unit root on the explosive side are more apparent especially when the model is

fitted at the τ = 0.95 of the distribution. Therefore, overall there are statistical significant evidence

of explosive behaviour in the time series of cryptocurrencies at the tails of the distribution.
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Table 1: Estimation Results

Etherum

θ̂ s.e(θ̂) t−statistic θ̂ s.e(θ̂) t−statistic

linear
µ 2.9759 2.5803 1.1530
ρ 1.0002 0.0012 813.6*** 0.9990 0.0016 623.3***

QR (τ = 0.05)
µ 0.7857 1.7359 0.4527
ρ 0.9222 0.0049 188.5*** 0.9208 0.0066 140.5***

QR (τ = 0.5)
µ -0.3981 0.6437 -0.6184
ρ 1.0023 0.0024 424.5*** 1.0029 0.0029 342.5***

QR (τ = 0.95)
µ 0.7496 2.4964 0.3003
ρ 1.0845 0.0054 200.9*** 1.0840 0.0071 153.5***

Bitcoin

θ̂ s.e(θ̂) t−statistic θ̂ s.e(θ̂) t−statistic

linear
µ 45.8416 38.1999 1.2000
ρ 1.0002 0.0010 1021*** 0.9989 0.0014 689.2***

QR (τ = 0.5)
µ 29.6022 41.0729 0.7207
ρ 0.9372 0.0035 270.6*** 0.9350 0.0050 186.6***

QR (τ = 0.5)
µ 9.9114 13.6279 0.7273
ρ 1.0012 0.0014 741.9*** 1.0002 0.0020 495.5***

QR (τ = 0.5)
µ 45.4248 66.6845 0.6812
ρ 1.0707 0.0041 260.1*** 1.0679 0.0059 181.4***

Table 1 shows the model estimates for both the linear and quantile autoregressive time series model given by

yt = µ+ ρyt−1 + εt, with t = 1, ..., n, based on the adjusted closing price (in US dollars) of the cryptocurrencies

Bitcoin and Ethereum for 1603 trading days between 01 January 2018 to 20 March 2022.

Remark 5.1. Notice that for the quantile autoregressive time series the model estimates are obtained

using a bootstrap estimation procedure implemented as a build-in option of the R package quantreg.

tau <- 0.05

### Model 1: Etherum

model.QR_etherum <- rq( e_t ~ e_lag, tau = tau )

model.summary <- summary( model.QR_etherum, se = "boot", bsmethod= "xy" )

### Model 2: Bitcoin

model.QR_bitcoin <- rq( b_t ~ b_lag, tau = tau )

model.summary <- summary( model.QR_bitcoin, se = "boot", bsmethod= "xy" )
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6. Conclusion

In this paper we consider the asymptotic theory for moderate deviation from the unit boundary in

quantile autoregressive time series models. The moderate deviation principles provide a framework

for unifying the asymptotic theory by investigating the limiting distribution discontinuities at certain

regions of the parameter space. Specifically, in this study we verify the limit results obtained by

Phillips and Magdalinos (2007) in the case of the linear autoregressive time series model. In particular,

for both the case of near-stationary and near-explosive roots we establish the asymptotic theory of the

quantile-dependent estimator which converges into a nuisance-parameter free limiting distribution.

Furthermore, although we do not consider how the presence of serial correlation can affect the limiting

distributions under consideration, various studies in the literature consider simple implementations of

autocorrelation robust tests such as in Jansson (2004) (see, also Vogelsang (1998)). In particular, a

good example is the OLS estimator in a linear regression model with exogenous regressors and an au-

tocorrelated error term. Similar implementations can be considered within the modelling environment

of quantile regression models especially of those with possibly nonstationary autoregressive processes

with serial correlated innovation terms. In particular, Kiefer et al. (2000), (KVB), demonstrate that

the properties of Wald-type statistics can be ameliorated if an inconsistent covariance matrix estimator

is used and the critical values are adjusted to accommodate the randomness of the matrix employed

in the standardization. Using higher-order asymptotic theory, Jansson (2004) provides an analytical

explanation of the encouraging performance of the KVB procedure. An extension of our framework in

the regions which unifies all cases such as being in the unstable region with nearly stable or unstable

processes such as the explosive and pure explosive processes, is an aspect of ongoing research that the

author is actively undertaking. Further research aspects worth mentioning include the investigation

of the asymptotic behaviour of quantile autoregressive models when a structural break occurs at an

unknown break-point location. A relevant study using moderate deviations principles when testing

for structural breaks include the framework proposed by Xu and Pang (2018). Other aspects include

comparisons of the performance of t−tests with likelihood-based tests as in Nielsen (2001).
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A. Mathematical Appendix

Recall that an M−estimator
(
µ̂, ρ̂

)
of the parameter vector

(
µ, ρ

)
is a minimizer for µ ∈ R and ρ ∈ R

such that

Rn(µ, ρ) =
1

n

n∑

t=1

̺τ (yt − µ− ρcxt−1) .(A.1)

The formulation of the above expression covers the least squares regression when ρτ (u) = u/2 and the

quantile regression such that ρτ (u) = {τu1 (u > 0) − (1 − τ)u1 (u < 0)}, for some 0 < τ < 1.

A.1. Main Results

A.1.1. Near-Stationary Case (c < 0)

Lemma A.1. Under Assumption 2.2, when c < 0 then it holds that

P

(
max

1≤t≤n
y2
t ≥ λ

)
≤ E

[
y2
n

]

λ2
, for some λ > 0.(A.2)

Proof. Notice that Lemma A.1 corresponds to the Kolmogorov, Doob maximal inequality applied to

the martingale sequence
(
yn,Fn

)
n∈N

. The proof of Lemma A.1 can be easily obtained by considering

the set Ss =
{
y2
s > λ, yj ≤ λ, j ≤ s

}
and expanding the expression for the expectation E

[
y2
n

]
. The

particular result provides a probability bound for the tails of the autoregressive time series which

inherits the properties of the stochastic difference equation.

In addition to Lemma A.1, the following two properties hold:

• If c < 0, E
[
y2
n

]
= O(kn).

• max
1≤t≤n

y2
t

n
= op(1).

Lemma A.2. Under Assumptions 2.2 - 2.4, it holds that

n∑

t=1

EFt−1

[
ϕnt

(
δ(τ)

)] p→ 1

2
ξ × δ⊤(τ)Bδ(τ).(A.3)

where

ξ :=

∣∣∣∣
∂

∂θ
E

[
ψ

(
u1(τ) − θ

)]∣∣∣∣
θ=0

and B =

(
1 0

0 σ2/(−2c)

)
.(A.4)

Proof. By rearranging expression (2.14), taking the conditional expectation and sum over 1 ≤ t ≤ n,

we obtain the following expression

n∑

t=1

EFt−1

[
ϕnt(δ)

)]
=

n∑

t=1

EFt−1

[
̺τ
(
εt − δ(τ)⊤X t

)
− ̺τ (εt)

]
.(A.5)
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Using Knight (1998)’s identity we have that

̺τ(u1 − u2) − ̺τ(u1) = u2
(
τ − 1 {u1 ≤ 0} )+ u2

∫ 1

0

[
1
{
u1 ≤ u2s

}− 1
{
u1 ≤ 0

}]
ds.(A.6)

which implies that we can decompose Zn(u, τ) = Z
(1)
n (u, τ) + Z

(2)
n (u, τ). Then, it can be proved that

n∑

t=1

EFt−1

[
ϕnt(δ)

)]
=

1

2
ξ × δ⊤

(
n∑

t=1

XtX
⊤
t

)
δ + op(1).(A.7)

Furthermore, by Theorem 3.2 (a) of Phillips and Magdalinos (2007) it holds that

1

nkn

n∑

t=1

y2
t−1

p→ σ2

−2c
.(A.8)

Therefore, it suffices to show that

1

n
√
kn

n∑

t=1

yt−1 = op(1).(A.9)

To see this, we consider the left side of the expression above such that

(1 − ρn)

n
√
kn(1 − ρn)

n∑

t=1

yt−1 =
1

n
√
kn(1 − ρn)

n∑

t=1

(1 − ρn)yt−1 =
1

n
√
kn(1 − ρn)

n∑

t=1

yt−1 − ρnyt−1(A.10)

However, it holds that yt = ρnyt−1 +ut, and by rearranging we have that −ρnyt−1 = −(yt−ut). Thus,

(1 − ρn)

n
√
kn(1 − ρn)

n∑

t=1

yt−1 =
1

n
√
kn(1 − ρn)

n∑

t=1

[
yt−1 − (yt − ut)

]

=
1

n
√
kn(c/kn)

n∑

t=1

(
y0 − yn +

n∑

t=1

ut

)
= op(1).

which shows that 1
n

√
kn

∑n
t=1 yt−1

p→ 0, converges in probability to zero.

Lemma A.3. Under Assumptions 2.1-2.4, it holds that

n∑

t=1

ϕnt
(
δ(τ)

) p→ 1

2
ξ × δ(τ)⊤Bδ(τ).(A.11)

Proof. By Lemma A.2, we can show that

n∑

t=1

(
ϕnt

(
δ(τ)

)− Et−1

[
ϕnt

(
δ(τ)

)])
= op(1).(A.12)

Define the set Bt(λ) :=
{

1
ny

2
t−1 ≤ λ

}
for some positive λ ∈ R. Then, (A.12) becomes as below

n∑

t=1

(
ϕnt(δ)1

{Bt(λ)
}− Et−1

[
ϕnt(δ)1

{Bt(λ)
})])

= op(1).(A.13)
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In particular, the expression

{
ϕnt(δ)1

{Bt(λ)
}−Et−1

[
ϕnt(δ)1

{Bt(λ)
}]}n

t=1

forms a martingale differ-

ence sequence, which by the Lenglart’s inequality (see, Jacod and Shiryaev (2003)) it follows that

n∑

t=1

Et−1

[
ϕ2
nt(δ)1

{Bt(λ)
}]

= op(1).(A.14)

Therefore, by definition of ϕnt we have that

ϕnt(δ) = δ⊤Xt

∫ 1

0

(
ψ(ε̃t) − ψ

(
ε̃t − εtδ

⊤Xt

))
dε.(A.15)

Furthermore, by the non-decreasing property of ψ(x) it holds that

n∑

t=1

Et−1

[
ϕ2
nt(δ)1

{Bt(λ)
}] ≤ max

1≤t≤n
Et−1

[
ϕ2
nt(δ)1

{Bt(λ)
}]×

(
n∑

t=1

δ⊤XtX
⊤
t δ

)
= op(1).(A.16)

Corollary A.1.

n∑

t=1

(
ρτ
(
ε̃t − δ⊤Xt

)
− ρτ (εt)

)
= −δ⊤

n∑

t=1

X tψ (εt) +
1

2
ξδ⊤Bδ +Rn (δ)(A.17)

with Rn(δ) = op(1) for a fixed parameter vector δ and max
‖δ‖≤C

Rn(δ) = op(1).

Proof. Notice that the function ̺(u) is convex, therefore we can apply the same argument as that in

the proof of Theorem 1 in Pollard (1991) and show that an equivalent solution to the optimization

problem is given by the following expression

γ̂ =
n∑

t=1

1

ξ
B−1ψ(εt)X

⊤
t + op(1).(A.18)

A.1.2. Near-Explosive Case (c > 0)

Lemma A.4. Consider that y1, ..., yn are random variables generated from the autoregressive process.

Then, when c > 0 it holds that

E
[
y2
n

]
= o

(
ρ2n
n k

2
n

)
(A.19)

In addition to Lemma A.4 the following two results hold

max
1≤t≤n

{
y2
t

ρ2n
n,ck

2
n

}
= op(1)(A.20)

1√
nρnn,ckn

n∑

t=1

yt−1 = op(1).(A.21)

19



Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

Lemma A.5. We consider the following two joint convergence results

(i). Under Assumptions 2.1-2.4 it holds that

(
1√
n

n∑

t=1

ψτ

(
εt
)
,

1√
kn

n∑

t=1

ρt−(n−1)
n ψτ

(
εt
)
,

1√
n

n∑

t=1

ρ−t
n εt

)⊤
d→
(

Z1,Z2,Z3

)⊤
.(A.22)

where

(
Z1,Z2,Z3

)
is a Gaussian random vector with independent components and the finite

variance terms given by E
[
ψ2
τ
(ε1)

]
, 1

2cE
[
ψ2
τ
(ε1)

]
and σ2

/
(2c), respectively.

(ii). Under Assumptions 2.1-2.4 it holds that

(
1√
n

n∑

t=1

ψτ

(
εt
)
,

1

ρnn,ckn

n∑

t=1

yt−1ψτ

(
εt
)
,

1

ρ2n
n,ck

2
n

n∑

t=1

y2
t−1

)⊤
d→
(

Z1,Z2Z3,
Z2

3

2c

)⊤
.(A.23)

Proof. Recall that the difference equation with no model intercept, that is, yt = ρn,cyt−1 + ε̃t has a

general solution of the form yt = ρtn,cy0 +
∑t
j=1 ρ

t−j
n,c ε̃j . Similarly, for yt−1 by shifting the time index

such that t 7→ t− 1, then the equivalent general solution is given by the following expression

yt−1 = ρt−1
n,c y0 +

t−1∑

j=1

ρt−1−j
n,c ε̃j(A.24)

Thus, by substituting the above expression to the sample moment
∑n
t=1 yt−1ψτ

(
εt
)

we obtain that

1

ρnn,ckn

n∑

t=1

yt−1ψτ

(
εt
)

=
y0

ρnn,ckn

n∑

t=1

ρt−1
n,c ψτ

(
εt
)

+
1

ρnn,ckn

n∑

t=1



t−1∑

j=1

ρt−j−1
n,c ε̃j


ψτ

(
εt
)

(A.25)

Then, since the first term of the above expression is asymptotically negligible by splitting the inner

summation of the last term we obtain that

1

ρnn,ckn

n∑

t=1

yt−1ψτ

(
εt
)

=
1

ρnn,ckn

n∑

t=1




n∑

j=1

ρt−1−j
n,c ε̃j −

n∑

j=t

ρt−1−j
n,c ε̃j


ψτ

(
εt
)

+ op(1).

Since,
∑n
j=t ρ

t−1−1
n,c ε̃j

p→ 0, then it follows that

1

ρnn,ckn

n∑

t=1

yt−1ψτ

(
εt
)

=
1

ρnn,ckn

n∑

t=1




n∑

j=1

ρt−1−j
n,c ε̃j


ψτ

(
εt
)

+ op(1)

=

(
1√
kn

n∑

t=1

ρt−(n+1)
n,c ψτ

(
εt
)
)(

1√
kn

n∑

t=1

ρ−t
n,cε̃t

)
+ op(1).

Similarly, it holds that

1

ρ2n
n,ck

2
n

n∑

t=1

y2
t−1 =

1

2c

(
1√
kn

n∑

t=1

ρ−t
n,cε̃t

)
+ op(1).(A.26)
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Lemma A.6. The following joint convergence results hold

(i). Under Assumptions above we have that

−ϑn(τ)⊤
n∑

t=1

Xtψτ

(
εt
)

+
ξ

2
ϑn(τ)⊤

(
n∑

t=1

XtX
⊤
t

)
ϑn(τ)

d→ −ϑn(τ)
(Z1,Z2Z3

)⊤
+
ξ

2
ϑn(τ)⊤Bϑn(τ)

(ii). Under Assumptions above we have that

n∑

t=1

[
̺τ

(
yt − ϑn(τ)⊤X t

)
− ̺τ (εt)

]
= −ϑn(τ)⊤

n∑

t=1

Xtψτ

(
εt
)

+
ξ

2
ϑn(τ)⊤

(
n∑

t=1

XtX
⊤
t

)
ϑn(τ) +Rn

(
ϑn(τ)

)
.

with Rn

(
ϑn(τ)

)
= op(1) for fixed ϑn(τ) and further

Proof. In order to prove the uniformity condition we denote with

ϕ
(
ϑn(τ)

)
=

1

2
ξ × ϑn(τ)⊤

(
n∑

t=1

XtX
⊤
t

)
ϑn(τ).(A.27)

Furthermore, we need to show that

sup
‖ϑn(τ)‖≤C

∣∣∣∣∣

n∑

t=1

ϕnt
(
ϑn(τ)

)− ϕ
(
ϑ(τ)

)
∣∣∣∣∣ = oP (1).(A.28)

Since
∑n
t=1 XtX

⊤
t converges in distribution, for any λ > 0 there exists M large enough, such that,

P

(
sup

‖ϑn(τ)‖≤C

∣∣∣∣∣

n∑

t=1

ϕnt
(
ϑn(τ)

)− ϕ
(
ϑ(τ)

)
∣∣∣∣∣1
{∥∥∥∥∥

n∑

t=1

XtX
⊤
t

∥∥∥∥∥ > M

}
> λ/2

)
< λ∗/2.(A.29)

On the other hand, on
{∥∥∥
∑n
t=1 XtX

⊤
t

∥∥∥
}

, for any λ > 0, there exists δ > 0, such that,

sup
‖ϑ‖≤C

∣∣∣∣ϕ(γ + ϑ) − ϕ(γ)

∣∣∣∣ ≤ λ.(A.30)

Moreover, following the convexity Lemma of Pollard (1991), one can show that

P

(
sup

‖ϑn(τ)‖≤C

∣∣∣∣∣

n∑

t=1

ϕnt
(
ϑn(τ)

)− ϕ
(
ϑ(τ)

)
∣∣∣∣∣1
{∥∥∥∥∥

n∑

t=1

XtX
⊤
t

∥∥∥∥∥ ≤ M

}
> λ/2

)
< λ∗/2.(A.31)

Therefore, the combination of the above yields the uniformity result of interest.
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A.2. Supplementary Results

Following Koenker (2005), we consider that all parameters share the same monotone behaviour with

respect to the quantile level τ ∈ (0, 1). Then the consistency of quantile dependent parameter can

be deduced from the monotonicity of the subgradient as well as a direct consequence of the uniform

convergence of the empirical distribution function and the Glivenko-Cantelli Theorem. Therefore, the

asymptotic behaviour of
√
n
(
β̂(τ) − β(τ)

)
follows by considering the following objective function

Zn(δ) =
1

n

n∑

t=1

̺τ
(
εt − X⊤

t δ/
√
n
)

− ̺τ
(
εt
)

(A.32)

where εt(τ) = yt−X⊤
t β(τ). The function Zn(δ) is convex, and is minimized at δ̂n =

√
n
(
β̂(τ) − β(τ)

)
.

Therefore, we can show that the limit distribution of δ̂n can be determined by the asymptotic distri-

bution of the objective function Zn(δ). Furthermore, it follows from the Lindeberg-Feller central limit

theorem that Z(1)
n

d→ −δ′W, where W d→ N (0, τ(1 − τ)D0
)
. Then, following the proof of Theorem

4.1 of Koenker (2005) it holds that (see also derivations in Knight (1998) and Kato (2009))

n∑

t=1

E

[
Z(2)
nt (δ)

]
d→ 1

2
δ⊤D1δ.(A.33)

Therefore, it can be proved that

Zn(δ)
d→ Z0(δ) ≡ −δ⊤W +

1

2
δ⊤D1δ.(A.34)

The convexity of the limiting distribution of Z0(δ) ensures that the uniqueness of the minimizer

δ̂n := arg min
δ

Zn(δ) 7→ δ̂0 := arg min
δ

Z0(δ)(A.35)

where Zn(δ) = Z(1)
n (δ) + Z(2)

n (δ) and Z0(δ) = −δ⊤W + 1
2δ⊤D1δ such that δ̂n =

√
n
(
β̂(τ) − β(τ)

)
.

A similar approach is followed in the study of Mao and Guo (2019) who prove that for any τ ∈ (0, 1)

the solution of the following expression is obtained by
√
n

λ(n)

(
β̂(τ) − β(τ)

)
∈ arg min

u∈Rp

Zn(u, τ).

Then, it follows that

∣∣∣∣Zn(u, τ) −Gn(u, τ)

∣∣∣∣ =

∣∣∣∣∣Z
(2)
n (u, τ) − u⊤Du

2
f
(
F−1(τ)

)∣∣∣∣∣

≤
∣∣∣∣∣E
[
Z(2)
n (u, τ)

]
− u⊤Du

2
fε
(
F−1
ε (τ)

)∣∣∣∣∣+
∣∣∣∣Z(2)

n (u, τ) − E

[
Z(2)
n (u, τ)

] ∣∣∣∣

where

Z(2)
n (u, τ) =

1√
nλ(n)

n∑

i=1

∫ 1

0

(
1

{
εi ≤ F−1

ε (τ) +
λ(n)σ−1

in x
⊤
inus√

n

}
− 1

{
εi ≤ F−1

ε (τ)
})

ds.(A.36)

Therefore, it can be shown that

sup
τ∈[α,1−α]

∣∣∣∣∣E
[
Z(2)
n (u, τ)

]
− u⊤Du

2
fε
(
F−1
ε (τ)

)∣∣∣∣∣ → 0, as n → ∞(A.37)

22



Asymptotic Theory for Moderate Deviations from the Unit Boundary in Quantile Autoregression

Thus, for large n, we further have that

P

(
sup

τ∈[α,1−α]

∣∣∣∣Zn(u, τ) −Gn(u, τ)

∣∣∣∣ ≥ λ

)
≤ P

(
sup

τ∈[α,1−α]

∣∣∣∣Z(2)
n (u, τ) − E

[
Z(2)
n (u, τ)

] ∣∣∣∣ ≥ λ

2

)
(A.38)

The following step is to prove that

lim sup
n→∞

1

λ2(n)
log

{
P

(
sup

τ∈[α,1−α]

∣∣∣∣Z(2)
n (u, τ) − E

[
Z(2)
n (u, τ)

] ∣∣∣∣ ≥ λ

)}
= −∞(A.39)

From the definition of Z(2)
n (u, t), we obtain that

Z(2)
n (u, τ) − E

[
Z(2)
n (u, τ)

]
=

∫ 1

0

(
Wn(us, τ) − Wn(0, τ)

)
ds,(A.40)

where

Wn(r, τ) =

∑n
t=1 X ′

ntu√
nλ(n)

[
1

{
εi ≤ F−1

ε (τ) +
λ(n)σ−1

n X ′
ntr√

n

}
− Fε

(
F−1
ε (τ) +

λ(n)σ−1
n X ′

ntr√
n

)]

In practise we employ Theorem 1 from Knight (1998). Therefore, we have that

Z(1)
n (u) = − 1√

n

n∑

i=1

xiu

[
1
(
ǫi > 0

)− 1
(
ǫi < 0

)]
(A.41)

and

Z(2)
n (u) =

2an√
n

n∑

t=1

∫ vni

0
Xtu

[
1
(
ǫi < s

)− 1
(
ǫi < 0

)]
ds(A.42)

where vn = X⊤
t u/an. Then, by the Lindeberg-Feller central limit theorem, for each u it holds that,

Z(1)
n (u)

d→ −uW(A.43)

and the convergence in distribution holds for any finite collection of u′s. For Z(2)
n (u), we have that

Z(2)
n (u) =

n∑

t=1

E

[
Z(2)
nt (u)

]
+

n∑

t=1

[
Z(2)
nt (u) − E

[
Z(2)
nt (u)

] ]
.(A.44)

We employ the above orthogonal decomposition when proving the limit results for the estimator of

the quantile autoregressive model for moderate deviations from the unit boundary. Notice that the

implementation of the corresponding FCLT for the quantile-dependent innovation term is applicable

for the i.i.d innovation sequence assumption. An extension of the particular results to the case in

which innovations have serial correlation via the use of a linear process representation for instance is

also possible. Further applications with suitable econometric conditions we could consider within our

framework are presented in the study of Doukhan and Louhichi (1999) who consider a different type

of weak dependence condition for time series models.
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