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Abstract 

Background/Purpose of the study: There is a need to find a standardized and low-

risk diagnostic tool that can non-invasively detect non-alcoholic steatohepatitis 

(NASH). Surface enhanced Raman spectroscopy (SERS), which is a technique 

combining Raman spectroscopy (RS) with nanotechnology, has recently received 

considerable attention due to its potential for improving medical diagnostics. We 

aimed to investigate combining SERS and neural network approaches, using a liver 

biopsy dataset to develop and validate a new diagnostic model for non-invasively 

identifying NASH.  

Methods: Silver nanoparticles as the SERS-active nanostructures were mixed with 

blood serum to enhance the Raman scattering signals. The spectral data set was used 

to train the NASH classification model by a neural network primarily consisting of a 

fully connected residual module.  

Results: Data on 261 Chinese individuals with biopsy-proven NAFLD were included 

and a prediction model for NASH was built based on SERS spectra and neural 

network approaches. The model yielded an AUROC of 0.83 (95% confidence interval 

[CI] 0.70-0.92) in the validation set, which was better than AUROCs of both serum 

CK-18- M30 levels (AUROC 0.63, 95% CI 0.48-0.76, p=0.044) and the HAIR score 

(AUROC 0.65, 95% CI 0.51-0.77, p=0.040). Subgroup analyses showed that the 

model performed well in different patient subgroups.  

Conclusions: Fully connected neural network-based serum SERS analysis is a rapid 

and practical tool for the non-invasive identification of NASH. The online calculator 
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website for the estimated risk of NASH is freely available to healthcare providers and 

researchers (http://www.pan-chess.cn/calculator/RAMAN_score). 

 

Keywords: NAFLD (nonalcoholic fatty liver disease); NASH (nonalcoholic 

steatohepatitis); Raman; SERS (surface enhanced Raman spectroscopy)
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a public health threat that affects about 

one third of the global adult population.[1] Non-alcoholic steatohepatitis (NASH) is 

the progressive and inflammatory subtype of NAFLD, characterized by steatosis, 

lobular inflammation, and hepatocellular ballooning.[2] In recent years, NASH has 

become the most rapidly increasing indication for liver transplantation in the United 

States and Europe.[3] In addition, NASH is closely associated with an increased risk 

of developing important extra-hepatic diseases, such as cardiovascular disease, 

chronic kidney disease, and type 2 diabetes mellitus (T2DM).[4-7] Early lifestyle 

intervention is associated with a favorable prognosis in patients with NASH, but most 

of these patients are diagnosed late with advanced fibrosis or even hepatocellular 

carcinoma, which has a poor survival rate.[8] 

 

To date, liver biopsy (LB) remains the ‘gold standard’ for the diagnosis of NASH, but 

this is an invasive diagnostic procedure with associated risks, such as post-procedural 

bleeding.[9] In recent years, some biomarkers and imaging techniques have been 

investigated to predict NASH. Serum levels of cytokeratin-18 fragments (CK-18 

neoepitope M30), reflecting the degree of apoptosis, have been proposed as a 

differentiator between non-alcoholic fatty liver (NAFL) and NASH, though its 

performance to predict NASH is moderate.[10,11] As the pathogenesis of NASH is 

complex and involves several biological pathways, it is unlikely that a single 

biomarker could accurately discriminate between NAFL and NASH.[12] Thus, there 
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is currently a need to find a non-invasive and low-risk diagnostic tool that can 

accurately detect NASH at an early stage.[13] 

 

Surface enhanced Raman spectroscopy (SERS) is a technique combining Raman 

spectroscopy (RS) with nanotechnology that has recently received considerable 

scientific attention, due to its great potential for improving clinical diagnosis.[14] RS 

is an established technique that provides label-free fingerprinting type information on 

the vibrational and rotational modes of proteins, lipids, and nucleic acids.[15] SERS 

maintains the advantages of normal RS but enhances the signal intensity of Raman 

scattering for sensitive detection.[16] In recent years, a number of studies have tested 

the applicability and effectiveness of SERS technique in various disease diagnoses. 

For example, Feng et al. reported that SERS is a promising tool for the non-invasive 

nasopharyngeal cancer detection and screening.[17] Shin et al. reported that SERS 

could be also used to accurately identify early-stage lung cancer.[18] In addition to 

early detection of some cancers, SERS is also a promising tool for early diagnosis of 

non-cancer diseases, such as diabetic keratopathy and heparin-induced 

thrombocytopenia.[19,20] Since each molecule produces a unique “spectral 

fingerprint”, we hypothesized that different biomolecules with characteristic Raman 

signatures in NASH sera could also facilitate the non-invasive identification of 

NASH. 

 

Fully connected neural network (FCNN) is a data driven application of artificial 
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intelligence, in which systems automatically learn and improve without the need for 

explicit programming.[21] Accordingly, FCNN is able to extract useful information 

from high-dimensional and large data sets. FCNN is now widely used to develop 

prognostic and diagnostic prediction models in the field of medicine.[22,23]  

 

In this exploratory study, we aimed for the first time to investigate combining SERS 

and FCNN approaches, using a liver-biopsy dataset to develop and validate an 

improved diagnostic model for non-invasively identifying NASH and then to compare 

its diagnostic performance with existing validated non-invasive models available in 

clinical practice (Fig. 1). 

 

Patients and methods 

Study population and design 

This analysis was undertaken in a subset of our well-characterized Prospective 

Epidemic Research Specifically of the NASH (PERSONS) cohort. The entire cohort 

comprised 448 Han Chinese individuals diagnosed with suspected NAFLD (based on 

the presence of imaging-defined hepatic steatosis and/or persistently elevated serum 

transaminase levels in subjects with coexisting metabolic risk factors, such as 

overweight/obesity, T2DM or metabolic syndrome, and without significant alcohol 

consumption), who were enrolled between November 2016 and September 2019 at 

the First Affiliated Hospital of Wenzhou Medical University in Wenzhou (China). All 

these individuals underwent a diagnostic liver biopsy. Subjects with at least one of the 
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following criteria were excluded from the analysis: (i) significant alcohol 

consumption (≥140 g/week in men or ≥70 g/week in women); (ii) presence of viral 

hepatitis, autoimmune hepatitis, drug-induced liver injury, or other known chronic 

liver diseases; (iii) missing important clinical data; and (iv) hepatic fat content <5% 

on histology. As a consequence of these exclusion criteria, a total of 261 individuals 

with biopsy-proven NAFLD were included in the final analysis (as detailed in Figure 

S1). These subjects were used as a training cohort (n=209). Another sample of 52 

subjects with NAFLD who underwent liver biopsy between April 2019 and 

September 2019 were used as an independent validation cohort. 

 

The study protocol was approved by the ethics committee of the First Affiliated 

Hospital of Wenzhou Medical University and registered in the Chinese Clinical Trial 

Registry (ChiCTR-EOC-17013562). All procedures involving these participants were 

performed in accordance with the ethical standards of the institutional research 

committee and with the 1964 Helsinki declaration. Written informed consent was 

obtained from each participant after full explanation of the purpose and nature of all 

procedures. 

 

Clinical and biochemical data 

Clinical and biochemical data were obtained from all participants within 48 hours of 

the liver biopsy. Blood samples were taken after at least 8 hours of overnight fasting. 

Body mass index (BMI) was calculated using the formula weight (kilograms) divided 
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by height (meters) squared. T2DM was diagnosed as either self-reported history of 

disease, a fasting glucose level ≥7.0 mmol/L (≥126 mg/dL), hemoglobin A1c ≥48 

mmol/mol (≥6.5%), or use of any antihyperglycemic drugs. Hypertension was defined 

as systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or use of 

any anti-hypertensive drugs. Metabolic syndrome (MetS) was defined as having at 

least three of the following metabolic risk factors: central obesity (waist 

circumference ≥90 cm in men and ≥80 cm in women), increased blood pressure 

(systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or anti-

hypertensive treatment), increased fasting glucose (≥5.6 mmol/L or use of any 

antihyperglycemic agents), high triglycerides (>1.7 mmol/L or use of any lipid-

lowering drugs), and low high-density lipoprotein cholesterol levels (<1.03 mmol/L in 

men and <1.29 mmol/L in women or use of any lipid-lowering drugs).[24] 

Methodological details for measurement of serum cytokeratin-18 fragments 

(cytokeratin-18 [CK-18] neoepitope M30) concentrations have been reported 

previously.[25] The HAIR score (0–3) for each subject was calculated by adding 

hypertension =1, serum alanine aminotransferase (ALT) level >40 IU/L =1, and 

HOMA-estimated insulin resistance score >5.0 =1.[26] 

 

Liver histology 

An ultrasound-guided liver biopsy was performed under sedation using a 16-gauge 

Hepafix needle. The assessment of liver histology was undertaken by a single 

experienced liver histopathologist (who was blinded to the clinical and laboratory data 
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of participants), according to the NASH-Clinical Research Network (CRN) Scoring 

System.[27] Steatosis (0-3), ballooning (0-2), and lobular inflammation (0-3) grades 

as well as fibrosis stage (F0-F4) and NAFLD activity score (NAS) were scored using 

the NASH-Clinical Research Network (NASH-CRN) scoring system. NAS was 

calculated as the sum of three histological components, including steatosis, ballooning 

and lobular inflammation. The diagnosis of definite NASH was established by the 

presence of hepatic steatosis, lobular inflammation and ballooning with NAS ≥5.[28] 

Significant fibrosis was defined as stage F ≥2, and advanced fibrosis was defined as 

stage F ≥3.[29] 

 

Spectral acquisition 

1.5 μL of silver nanoparticles (AgNPs) were added onto the pre-cleaned aluminum 

plate, immediately the serum with the same volume was then gently added and mixed 

with AgNPs, and dried at room temperature. The SERS spectra were acquired with 

Renishaw confocal Raman spectrometer (Renishaw Invia, UK) using a 785 nm laser 

excitation, and a 1200 lines/mm grating was selected to provide a spectral resolution 

of ~2 cm-1. The excitation laser (~2.38 mW) was delivered via a ×20 objective, and 

the spectra were recorded with a 10 sec exposure time over the fingerprint region 

from 400 to 1800 cm-1. The detection of the SERS signal was carried out with a 

Peltier cooled charge-coupled device (CCD) camera. The software package WIRE 2.0 

(Renishaw) was employed for spectral acquisition and analysis. After normalization, 

the whole SERS spectrum data set was fed into the python for FCNN analysis. For 
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each serum sample, representative Raman spectra was a result of an average of three 

spectra obtained from random detection sites. More detailed information about the RS 

and SERS is presented in Supplementary Appendix. 

 

AgNPs were synthesized referring to the Leopold’s hydroxylamine hydrochloride 

reduction method. Briefly, 5 mL of the 60 mM hydroxylamine hydrochloride solution 

was added to 4.5 mL of the 0.1M sodium hydroxide solution. The mixture was then 

added to 90 mL of 10-3 M sliver nitrate solution and stirred for 15 min until the color 

turned gray. Finally, 1 mL of AgNPs was centrifuged (10,000 rpm for 10 min), and the 

supernatant was removed to obtain 100 times the original concentration of AgNPs. 

Silver nitrate and hydroxylamine hydrochloride were purchased from Shanghai 

Aladdin Co., Ltd. Sodium hydroxide was purchased from Shanghai Guoyao Group 

Chemical Reagent Co., Ltd. 

 

Statistical analysis 

Continuous variables were expressed as means ± SD or medians with interquartile 

ranges (IQRs) and compared using either the unpaired Student's t test or the Mann-

Whitney U test, as appropriate. Categorical variables were expressed as numbers (or 

percentages) and compared using the chi-squared test or the Fisher's exact test, as 

appropriate. 

 

The spectral data set from the training cohort (n=206) is used to train the predicting 
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model for binary classification by FCNN. Long et al. proposed that a FCNN performs 

pixel-level classification to efficiently solve the problem of semantic-level image 

segmentation.[30] Unlike the classic CNN that uses the fully connected layer to 

obtain fixed-length feature vectors for classification after the convolutional layer, 

FCNN can accept input images of any size, and uses the deconvolutional layer to 

sample the feature map of the last convolutional layer. It restores the output to the 

same size as the input image, so that a prediction can be generated for each pixel, 

while also retaining the spatial information in the original input image, and finally 

performs pixel-by-pixel classification on the up-sampled feature map.  

 

This neural network ( FCNN) has three layers: an input layer, a hidden layer, and an 

output layer. And the input layer has 1000 nodes, the hidden layer has 1568 nodes, 

and the output layer has 2 nodes. The input layer consists of a full connected layer, 

which mainly extracts features of input spectral data to generate a shallow feature. 

The shallow feature will further enter the hidden layer, which is composed of three 

fully connected residual modules, to generate a deep feature. Each fully connected 

residual module consists of three fully connected modules and residual structure. The 

first two fully connected modules include the fully connected layer, the batch 

normalization layer and the ReLU activation function, and the last module removes 

the activation function compared with the previous two modules. Batch normalization 

adds normalization “layer” between each fully connected layer and makes the model 

more stable by protecting against outlier weights and reducing overfitting. ReLU is a 
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piecewise linear function that will output the input directly if it is positive, otherwise, 

it will output zero. ReLU activation function helps the model account for interaction 

and non-linear effects. Each fully connected residual module can be expressed as: 

𝑥𝑥𝑚𝑚 = 𝐹𝐹(𝑥𝑥, {𝑊𝑊1,  𝑊𝑊2,  𝑊𝑊3} ) 

𝑦𝑦 = 𝐷𝐷𝐷𝐷𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑚𝑚 + 𝑥𝑥)) 

where 𝑊𝑊 means the weight of the fully connected module and 𝐹𝐹 indicates the 

combination of three fully connected modules. First, the fully connected residual 

module uses three fully connected modules to extract an input feature 𝑥𝑥 to generate 

an intermediate feature 𝑥𝑥𝑚𝑚. Then, 𝑥𝑥 is added as a residual to 𝑥𝑥𝑚𝑚, and using the 

dropout function to generate 𝑦𝑦 after ReLU activation. Dropout layer works by 

randomly setting the outgoing edges of hidden units (neurons that make up hidden 

layers) to 0 at each update of the training phase. Dropout regularization reduces 

overfitting and improves the generalization of the model. The value for dropout in the 

fully connected residual module is 0.5. Three fully connected residual modules can 

increase the depth of the model while suppressing the disappearance of the gradient, 

thus improving the performance of the model. Finally, the deep feature is sent to the 

output layer composed of a fully connected layer and a Softmax layer to generate the 

NASH classification result. 

 

The accuracy of the aforementioned model was evaluated in the validation cohort 

(n=52) by assessing its discriminatory power and calibration capability. The 

diagnostic discriminatory capability was assessed by calculating the area under the 
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receiver operating characteristic curve (AUROC), and compared using the DeLong 

test. The calibration capability was assessed by the calibration curve. Statistical 

analyses were two-sided and significance was set at P < 0.05. Origin 2017 software 

was used to plot the average spectrum and difference spectrum of the two sets of data 

(OriginLab Inc., Northampton, USA), and the R (Version 3.3.1 The R Foundation) 

was used for the heatmap, ROC, and calibration curve plot. 

 

Results 

Baseline characteristics of participants 

A total of 261 Chinese individuals with biopsy-proven NAFLD were analyzed. The 

mean age of participants was 42.6 ± 12.3 years and 70.5% of the subjects were men. 

Their mean value of BMI was 27.0 ± 3.7 kg/m2. Ninety-two subjects (35.2%) had 

established T2DM, 135 (51.7%) had hypertension and 206 (78.9%) had MetS, 

respectively. The median value of the histological NAS score of participants was 4.0 

(IQR 3-5). Presence of definite NASH (as defined in the Methods section above) was 

histologically diagnosed in 117 subjects (44.8%). By study design, 209 subjects and 

52 subjects with biopsy-confirmed NAFLD were assigned to the training and 

validation cohorts according to the time of admission, respectively. Baseline clinical 

and biochemical characteristics, as well as the NAFLD histology features of 

participants are summarized in Table 1.  

 

SERS for NASH Prediction 
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The SERS spectra obtained from the patient sera exhibited vibrational features 

reflecting the molecular composition of serum samples. All measured SERS spectra 

were normalized to the integrated area under the curve in the 400-1800 cm-1 

wavenumber range after the removal of fluorescence background from the original 

SERS data. This reduces the spectral intensity variations between different spectra 

and facilitates more accurate spectral shape analyses. Fig. 2A compares the 

normalized mean SERS spectra obtained from serum samples of both NAFL and 

NASH patients. It can be seen that while significant SERS spectral differences exist 

between NAFL and NASH serum samples, primary SERS peaks at 497, 533, 593, 

638, 726, 744, 766, 813, 887, 959, 1005, 1071, 1095, 1133, 1204, 1270, 1330, 1366, 

1395, 1443, 1500, 1580, and 1653 cm−1 can all be observed in both NAFL and NASH 

serum samples. However, the normalized intensities of SERS peaks at 726, 744, 959, 

1095, 1270, 1330, 1395, 1443, 1580, and 1653 cm−1 are greater in NAFL serum 

samples than in NASH serum samples, while SERS bands at 497, 533, 593, 638, 766, 

813, 887, 1005, 1071, 1133, 1204, 1366, and 1500 cm−1 are greater in NASH serum 

samples.  

 

The association between the presence of NASH on liver histology and these selected 

SERS bands is presented in the heatmap (Fig. 2B). To better understand the molecular 

basis for the observed SERS of patient sera, supplementary Table 1 lists tentative 

assignments for the observed SERS bands, according to literature data. 
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A prediction model for NASH was built by the FCNN. This model yielded an 

AUROC of 0.83 (95% confidence interval [CI] 0.70-0.92) in the validation cohort, 

which was significantly better than those of both serum CK-18- M30 levels (AUROC 

0.63, 95% CI 0.48-0.76, p=0.044) and the HAIR score (AUROC 0.65, 95% CI 0.51-

0.77, p=0.040) for identifying patients with NASH (Fig. 2C). The calibration curve of 

the model for the probability of having NASH showed good agreement between 

prediction and observation in the validation cohort (Fig. 2D), which suggests that 

there was a little departure from a perfect fit.  

 

Demographics (age and sex), metabolic risk factors (BMI, T2DM, hypertension, and 

MetS) and laboratory parameters (HOMA-IR, serum ALT, glucose, triglycerides, total 

cholesterol, and CK18-M30 levels) of the patients were included in the FCNN model 

containing the spectra data. However, the performance of the model in identifying 

NASH was not significantly improved by adding these additional data (AUROC: 

0.834 vs. 0.828; P>0.05). These results could be explained by the fact that each 

molecule produces a unique “spectral fingerprint” in SERS, and the different 

biomolecules with characteristic Raman signatures in sera already contain the 

information of demographics, metabolic risk factors and laboratory parameters. 

 

Since the histologic definition of NASH can vary between the published studies, we 

also tested the diagnostic performance of our model in identifying either NASH 

(defined as a NAS score ≥3 with at least each of grade 1 steatosis, ballooning, and 
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lobular inflammation) or active NASH (defined as a NAS score ≥4 with at least each 

of grade 1 steatosis, ballooning, and lobular inflammation). As shown in 

Supplementary Table 2, the discriminatory capability of the model performed well 

for diagnosing both NASH (NAS ≥3), and active NASH (NAS ≥4). Furthermore, in 

the validation set, the AUROCs of the model were 0.784 and 0.785 for diagnosing 

NASH (NAS ≥3) and active NASH (NAS ≥4), respectively.  

 

We also examined the diagnostic performance of our model according to different 

stages of liver fibrosis (Supplementary Table 3). In the validation cohort, the model 

identified significant fibrosis (stage F ≥2) and advanced fibrosis (stage F ≥3) with 

AUROCs of 0.72 and 0.96, respectively. Since only three of our patients had 

previously unknown cirrhosis (stage F4) in our cohort, we were unable to test the 

diagnostic performance of our model in identifying cirrhosis. 

 

Six traditional machine learning algorithms, convolutional neural network (CNN), 

LightGBM, XGBoost, random forest, logistic regression, and gradient boosting were 

employed to train models to predict NASH based on SERS spectra. These methods 

classified NASH with AUROCs of 0.75 (CNN), 0.74 (LightGBM), 0.73 (XGBoost), 

0.72 (random forest), 0.75 (logistic regression), and 0.74 (gradient boosting), 

respectively (Supplementary Table 4). The results suggest our machine learning 

model (FCNN) more accurately identified NASH than conventional approaches 

investigating spectroscopic data. 
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A user-friendly online calculator based on FCNN and SERS approaches is available 

freely, allowing health care providers and researches to estimate the individual 

patient’s risk of NASH at http://www.pan-chess.cn/calculator/RAMAN_score.  

 

Subgroup Analysis 

As shown in Table 2, we tested the diagnostic performance of the model in the 

validation cohort in various patient subgroups. The validation cohort was stratified by 

age, sex, presence of T2DM, hypertension, obesity or elevated serum ALT levels. 

Notably, there were no significant differences in each of these patient subgroups (with 

AUROCs for the model ranging from nearly 0.70 to 0.88).  

 

Discussion 

In our exploratory study, a surface-enhanced Raman spectroscopy (SERS) method 

was developed for serum biochemical analysis with the specific aim of developing a 

simple blood test for the non-invasive identification of NASH. In our study, AgNPs as 

the SERS-active nanostructures were mixed with blood sera to enhance the Raman 

scattering signals, while suppressing fluorescence emissions at the same time. In 

addition, the Renishaw micro-Raman system can obtain high quality SERS spectrum 

from blood serum–Ag NP mixture within 10 sec.[17] Notably, the results of our 

exploratory study suggest great potential for SERS in the non-invasive diagnosis of 

NASH. 
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The changing levels of a variety of serum biomarkers may reflect NAFLD severity. 

These biomarkers range from simple biochemical (serum aminotransferases, bilirubin 

and ferritin levels), metabolic (hemoglobin A1c, fasting insulin and HOMA-insulin 

resistance score) and lipid parameters (triglycerides and total cholesterol) to complex 

biomarkers reflecting specific molecular mechanisms underlying the pathogenesis and 

progression of NAFLD, including inflammation, oxidative stress, apoptosis, and 

glucose and lipid metabolism.[31] As the pathogenesis of NASH is complex and 

likely involves multiple biological abnormalities, it is unlikely that a single biomarker 

could accurately discriminate between NAFL and NASH. SERS typically features a 

number of peaks, and each peak corresponds to a specific molecular bond vibration, 

including individual bonds such as C-C, C=C, N-O, C-H etc. SERS can provide label-

free fingerprinting type information on vibrational and rotational modes of different 

chemical structures, including metabolites, glucose, proteins, lipids, and nucleic 

acids.[15] Therefore, it is reasonable to assume that the distinctive SERS spectral 

features and intensity differences between NASH and NAFL patient groups can 

reflect molecular and cellular changes associated with the progression from NAFL to 

NASH. 

 

Biochemical biomarkers and scoring systems derived from them generally have 

shown a relatively low sensitivity for the diagnosis and monitoring of NASH.[32] In 

addition, current serum biomarkers are usually measured by laboratory enzyme-linked 
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immunosorbent assay (ELISA) methods, whereas the SERS-based analysis is faster 

than ELISA measurements. Moreover, the SERS-based analysis also has a simpler 

analysis protocol, and requires only a drop of serum.[33] Imaging techniques, such as 

ultrasonography, computed tomography, vibration-controlled transient elastography or 

magnetic resonance elastography, are a significant breakthrough for the non-invasive 

diagnosis and staging of liver steatosis and fibrosis, but they are still of limited value 

for the diagnosis of NASH. In addition, the relatively high costs, limited availability 

or exposure to ionizing radiations can limit the use of these imaging techniques for the 

screening and monitoring of patients with NASH. Finally, patients with NAFLD and 

severe obesity always have a long skin-to-liver capsule distance, which consistently 

limits the performance of liver ultrasonography.[34] 

 

Recently, a number of studies have tested the applicability and effectiveness of the 

SERS technique for the diagnosis of different diseases. For example, Yang et al. 

reported a label-free diagnostic platform that combines SERS and machine learning 

for the rapid and accurate detection of thirteen respiratory virus species, including 

SARS-CoV-2, common human coronaviruses, influenza viruses, and others.[35] Xie 

et al. reported an artificial intelligent SERS strategy for the diagnosis of breast cancer 

and assessment of its surgical outcomes.[36] In the specific field of NAFLD, 

Minamikawa et al. have accurately visualized the distribution of intrahepatic lipid 

droplets in a NASH mouse model, by applying Raman microscopy.[37] In such study, 

the Raman imaging analysis was able to characterize NAFLD in terms of both 
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molecular species and structures. Recently, Gurian et al. recruited 67 severely obese 

women, and found that there were significant differences in the band intensity of 

SERS spectra mainly related to hypoxanthine and uric acid between patients with 

NAFL and those with NASH.[33] Urasaki et al. found that hyperspectral stimulated 

Raman scattering microscopy could quantitatively measure liver composition of 

protein, DNA and lipid without labeling, and sensitively detect early-stage hepatic 

steatosis in a few minutes.[38] Szafraniec et al. characterized lipid droplets in liver 

sinusoidal endothelial cells, where their chemical composition was analyzed along the 

progression of NAFLD at the level of single lipid droplet using Raman imaging.[39] 

Yan et al. combined Raman micro-spectroscopy and machine learning techniques to 

develop a classification model based on a well-established NASH mouse model.[40] 

The results of such study showed that the classification model was capable of 

accurately detecting NASH in these mice (AUROC: 0.85). Collectively, our study 

further validated these results in humans. To our knowledge, this is the first study that 

has applied SERS analysis to diagnose NASH in a cohort of both men and women 

with biopsy-proven NAFLD. Our subgroup analyses showed that there were no 

significant differences in the diagnostic accuracy of SERS analysis between sexes.  

 

The neural network is an important algorithm in machine learning. It connects 

multiple neurons into a network structure and mimics information analysis of 

biological nerve cells[41], and our methodology combined silver nanoparticle-based 

SERS spectroscopy with FCNN analysis to differentiate the blood serum of NASH 
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patients from that of NAFL patients with high diagnostic accuracy. That said, we 

believe that the advent of the SERS analysis allows a non-invasive, standardized and 

rapid identification of patients with NASH at regular intervals. Moreover, our 

subgroup analyses showed that the diagnostic performance of the model performed 

well in different patient subgroups.  

 

There are some limitations to our study that should be mentioned. Firstly, our patients 

with biopsy-confirmed NAFLD are from one country (China), and of a single ethnic 

group (Han people), and therefore these results are not necessarily applicable to other 

ethnic groups. Secondly, our sample size was relatively small. However, to our 

knowledge, this is the largest clinical study that has validated the use of the SERS 

analysis for the non-invasive diagnosis of NASH.  

 

In conclusion, the results of our exploratory study suggest that the SERS blood serum 

analysis provides a non-invasive, rapid and practical way for accurately identifying 

the presence of NASH. Future studies in different ethnic cohorts of individuals with 

NAFLD are needed to further validate the use of the SERS analysis in clinical 

practice, and to test whether this methodology can be also used to non-invasively 

monitor therapeutic responses to emerging pharmacotherapies for NASH. 

 

Availability of data and material 

All data included in this study are available upon request by contact with the 
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corresponding author. 
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Figure Legends 

Figure 1. Schematic illustration of combining silver nanoparticle-based SERS 

spectroscopy with fully connected neural network analysis to differentiate NASH 

from NAFL. (A) Collection of spectroscopic data of serum by SERS; (B) Collection 

of histology data by ultrasound-guided liver biopsy; (C) In the validation cohort, 

using machine learning to differentiate NAFL from NASH patients. 

Figure 2. Diagnostic performance of the SERS analysis for the non-invasive 

diagnosis of NASH. (A) comparison of the mean spectrum for NAFL blood serum 
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samples (black line) versus NASH blood serum samples (red line). (B) heat map of 

the association between NASH and selected SERS bands. (C) AUROC of the 

validation cohort, and (D) calibration curve of the validation cohort. 

Figure S1. The flowchart of the study. 
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Table 1. Baseline characteristics of participants with biopsy-proven NAFLD. 

 Overall 

population 

N=261 

Training Set 

N=209 

Validation 

Set  

N=52 

P value 

Demographics     

Age, years 42.6 ± 12.3 41.5 ± 12.2 46.9 ± 12.0 0.004 

Men, n (%) 184 (70.5%) 151 (72.2%) 33 (63.5%) 0.214 

Metabolic risk factors     

BMI, kg/m2 27.0 ± 3.7 27.1 ± 3.7 26.8 ± 3.3 0.635 

Type 2 diabetes, n 

(%) 

92 (35.2%) 74 (35.4%) 18 (34.6%) 0.915 

Hypertension, n (%) 135 (51.7%) 106 (50.7%) 29 (55.8%) 0.514 

Metabolic syndrome, 

n (%) 

206 (78.9%) 162 (77.5%) 44 (84.6%) 0.261 

Laboratory 

parameters 

    

ALT, IU/L 47 (27-82) 51 (30-888) 34 (23-68) 0.004 

Glucose, mmol/L 5.4 (4.9-6.3) 5.3 (4.9-6.2) 5.5 (5.0-6.5) 0.152 

HOMA-IR score 3.7 (2.3-5.4) 3.7 (2.3-5.6) 3.7 (2.2-5.0) 0.546 

TG, mmol/L 1.8 (1.3-2.6) 1.8 (1.3-2.6) 1.9 (1.4-2.6) 0.571 

TC, mmol/L 5.3 ± 1.1 5.3 ± 1.1 5.3 ± 1.2 0.970 

HDL-C, mmol/L 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.306 

LDL-C, mmol/L 3.1 ± 0.9 3.1 ± 0.9 2.9 ± 0.9 0.142 

CK18-M30, IU/L 135 (70-282) 150 (77-317) 87 (59-177) 0.002 

Liver histology     

  Liver biopsy length 

(cm) 

1.5 (1.5- 2.0) 1.5 (1.5- 2.0) 1.5 (1.5- 2.0) 0.712 

Significant fibrosis †, 

n (%) 

61/261 

(23.4%) 

48/209 

(23.0%) 

13/52 

(25.0%) 

0.757 
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Steatosis grade, n 

(%) 

   0.185 

S1 123 (47.1%) 93 (44.5%) 30 (57.7%)  

S2 85 (32.6%) 73 (34.9%) 12 (23.1%)  

S3 53 (20.3%) 43 (20.6%) 10 (19.2%)  

Ballooning grade, n 

(%) 

   0.422 

B0 32 (12.3%) 28 (13.4%) 4 (7.7%)  

B1 130 (49.8%) 106 (50.7%) 24 (46.2%)  

B2 98 (37.5%) 74 (35.4%) 24 (46.2%)  

Lobular 

inflammation grade, n 

(%) 

   0.472 

L0 25 (9.6%) 21 (10.0%) 4 (7.7%)  

L1 138 (52.9%) 106 (50.7%) 32 (61.5%)  

L2 95 (36.4%) 80 (38.3%) 15 (28.8%)  

L3 3 (1.1%) 2 (1.0%) 1 (1.9%)  

Histologic NAS 

score 

4 (3- 5) 4 (3-6) 4 (3-5) 0.709 

NASH†† 117 (44.8%) 97 (46.4%) 20 (38.5%) 0.302 

Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; CK-18, 

cytokeratin-18 fragments; HOMA-IR, homeostasis model assessment-insulin 

resistance; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 

lipoprotein cholesterol; NASH, nonalcoholic steatohepatitis; NAS, NAFLD activity 

score; TG, triglycerides; TC, total cholesterol. 
†Significant fibrosis was defined as F2–F4 stages.  
††NASH was defined as the presence of hepatic steatosis, lobular inflammation and 

ballooning with histologic NAS ≥5.
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Table 2. Diagnostic performance of the model for the non-invasive identification 

of NASH in different patient subgroups. 

Abbreviations: ALT, alanine aminotransferase; AUROC, area under the receiver 

operating characteristics; BMI, body mass index; CI, confidence intervals; MetS, 

metabolic syndrome; NASH, nonalcoholic steatohepatitis; T2DM, type 2 diabetes 

mellitus. 

 

 Percentage AUROC (95%CI) P value 

Sex    

Men 63.5% (33/52) 0.88 (0.76-0.99) 0.326 

Women 36.5% (19/52) 0.75 (0.53-0.98)  

Age     

< 50 years 55.8% (29/52) 0.89 (0.78-1.00) 0.216 

≥ 50 years 44.2% (23/52) 0.74 (0.53-0.95)  

T2DM    

Yes 65.4% (34/52) 0.84 (0.70-0.98) 0.682 

No 34.6% (18/52) 0.88 (0.72-1.00)  

Hypertension    

Yes 55.8% (29/52) 0.76 (0.58-0.94) 0.331 

No 44.2% (23/52) 0.87 (0.72-1.00)  

BMI    

< 28 kg/m2 69.2% (36/52) 0.84 (0.71-0.97) 0.781 

≥ 28 kg/m2 30.8% (16/52) 0.80 (0.57-1.00)  

ALT levels    

< 35 IU/L 51.9% (27/52) 0.70 (0.50-0.90) 0.261 

≥ 35 IU/L 48.1% (25/52) 0.85 (0.68-1.00)  


