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ABSTRACT

Emerging non-volatile memory devices, known as memristors, have demon-
strated remarkable perspective in neuromorphic hardware designs, particularly
in spiking neural network (SNNs) hardware implementation. Memristor-based
SNNs have been applied in solving tasks (e.g. image classification and pat-
tern recognition) traditionally solved by conventional artificial neural networks
(ANNs), and more attempts in varying disciplines are still being made to ex-
ploit the potential of this new research topic. To apply memristors in neuromor-
phic applications (strictly defined as applications using SNNs in this thesis),
two pathways can be followed. One starts by characterising and controlling
memristor devices by utilising hardware infrastructure, which is later mapped
with the application’s higher-level functions (e.g. matrix multiplications). An-
other embeds data-driven memristor models in software simulators to emulate
the application with parameters extracted from real devices.

This thesis aims to build a cohesive pipeline for bringing memristor-based SNNs
to practical use following these two pathways. To achieve this goal, three key
designs have been developed. The first one is an FPGA-based digital interface
that is part of a memristor characterisation and control system which enables
64-channel parallel read/write operations and high-speed data processing. The
control system, developed by the author and two other researchers, not only
acts as a testing tool for collecting memristor characteristics but also delivers
higher-level functions with memristor arrays in neuromorphic designs. Whilst
the thesis focuses on a usage scenario for memristors, this system includes more
powerful, versatile testing functionality for other two-terminal emerging mem-
ory devices. The FPGA-based interface was developed by the author solely, and
it achieves 64-channel level parallelism in the application aspect and complex
digital system design and organisation in the engineering aspect. The digital
interface is validated by resistor handling and current-voltage sweep experi-
ments.
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The second design is the first Python-based algorithm-level simulator, Neu-
roPack, for memristor-based SNNs with a data-driven memristor model. Neu-
roPack aims to allow users to quickly validate a neuromorphic concept in the
pre-hardware design phase. This tool provides a wide range of optional neu-
ron, plasticity, and device models for users to choose from and answers a funda-
mental question: is the design functional given the knowledge of the memristor
switching dynamics, assuming that the rest of the design is functionally perfect?
If yes, the design can move ahead towards the next step. Besides, NeuroPack
stores internal variables, including membrane voltages, neuron firing history,
and memristor states. With a built-in analysis tool, users can analyse and visu-
alise inference results, observe the evolution of weights and membrane voltages
and monitor memristor behaviours. A handwritten digit recognition task in the
MNIST dataset showcased how NeuroPack assists users in confirming system
validation and exploring sensitivity to critical design choices.

The third design tries to expand the usage of memristor-based SNNs to high-
dimensional large-scale applications. To do so, a bespoke simulation frame-
work extended from the second design is developed. The first sentiment anal-
ysis task in the IMDB movie reviews dataset is exhibited with this framework.
Two paths are taken to train spiking neural networks with memristor models:
1) by converting a pre-trained artificial neural network (ANN) to a memristor-
based SNN, or 2) by directly training a memristor-based SNN. These two paths
have two application scenarios: offline classification and online training. By
converting a pre-trained ANN to a memristor-based SNN and training the mem
ristor-based SNN directly, we achieve a classification accuracy of 85.88% and
84.86%, respectively, with the equivalent ANN achieving a baseline training ac-
curacy of 86.02%. From ANNs to SNNs and from non-memristive synapses
to data-driven memristive synapses, comparable classification accuracy can be
achieved in simulation. In addition, investigations of the neural network sen-
sitivity to global parameters such as spike train length, the read noise, and the
weight updating stop conditions have also been given. These investigations
further suggest that the simulation framework with statistic memristor models
that use experimental data for statistical fitting taking the two paths presented
in this chapter can help to exploit the potential of incorporating memristor-
based SNNs in text classification tasks.

In summary, with the aid of the designs presented in this thesis, we envis-
age the two pathways now are complete to achieve neuromorphic applications
with memristors, especially in performing text classification tasks. The thesis is
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concluded with the achieved contributions and future perspectives toward AI
hardware.
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Chapter 1

Introduction

1.1 Context

As a mainstream approach of artificial intelligence (AI), artificial neural net-
works (ANNs) have been widely employed in many disciplines, including pat-
tern recognition [1, 2, 3], data mining [4, 5], system control [6], game playing [7],
medical diagnosis [8, 9], financial data processing [10, 11], and machine trans-
lation [12], because of the generalisation ability and the computational power
of deep neural networks. Loosely similar to biological neural networks, ANNs
discard some biological properties to simplify the model. Spiking neural net-
works (SNNs), as new-generation ANNs [13], more closely mimic biological
neural networks compared with their non-spiking predecessors [14]. Unlike
traditional ANNs using continuous numerical values in computation, SNNs
use spikes discrete in the time domain to encode information. In a time win-
dow, an SNN has one or more neurons firing and transmitting binary signals
(all-or-nothing signals) called spikes through synapses. When a neuron receives
spikes from neighbours, the membrane voltage increases or decreases depend-
ing on whether the synaptic potential is excitatory [15] or inhibitory [16]. The
neuron then fires when the membrane voltage exceeds a certain threshold. Af-
ter firing, the membrane voltage returns to a quiescent value, and the neuron
cannot fire for a certain period.

There are some typical features of SNNs:

1. SNNs use binary spike trains to transmit information instead of continu-
ous numerical values.
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2. Temporal information, such as spike rates and the intervals between spikes,
is applied in SNNs, to incorporate the binary spike coding method.

3. SNNs are highly event-driven because they only start calculation when
spikes are received.

4. States of spiking neurons only depend on neurons’ local information, such
as firing states and spike timing.

5. Some SNNs involve recursion and recurrence, unlike the layer-to-layer
propagation structure in ANNs. Therefore, the inference result is not
given when propagated to the last layer as in ANNs, but when the first
spike is generated.

These features bring SNNs great potential for lower energy consumption and
better computational efficiency. Firstly, in traditional ANNs, the algorithm core
is the dot product of input vectors and weight matrices. While in SNNs, a ma-
trix multiplication turns into an addition because, in a single time step, each
input can only be 1 or 0, resulting in less computational complexity [17]. Be-
sides, conventional ANNs require computation for every input, while SNNs
reduce the number of operations by only processing received spike events. The
high sparsity of the spike trains not only further reduces energy consumption
with fewer operations [17], but also increases robustness if the stochastic rate
coding method is used [18]. To be more explicit, when using stochastic rate
coding in SNNs, multiplication can be performed implicitly by using stochas-
tic techniques. A typical case is where 2x stochastic bitstreams enter an AND
gate. The statistics of computation dictate that the probability of a ’1’ at the
output is the product of probabilities of ’1’ at the input streams, thus imple-
menting multiplication in the probability domain. Naturally, the number of
’1’s within a time window along the output bitstream can be summed up to
give an (approximate) reading of the probability number. In a similar manner,
in SNNs, multiplication can be implemented implicitly, but more importantly,
fault-tolerantly. Further, the scheme that neurons only process data from nearby
splits the whole computation into smaller tasks, and each neuron only takes a
small amount of workload. This operation scheme makes SNNs have higher
fault tolerance because the work will be taken by nearby neurons if one is dead,
though it requires re-training [19].

The typical way of implementing spiking neural networks in hardware is to
process spikes and update neurons in discrete time steps. The simulation with
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a computing time step less than 1 ms can be regarded as meeting the real-time
requirement because the biological time scale for cognition is 1 ms per infer-
ence. Some early works mapped spiking neural networks in parallel comput-
ers [20, 21, 22], clusters of multi-processor computer [23], hypercube supercom-
puter [24], or GPUs [25]. However, those designs hardly achieve the speed
requirement of real-time simulation. Reference [25] is 1.5 times slower than
real-time for a network with 100k neurons. Reference [21] can only run a real-
time simulation in a network with less than 8k neurons. Reference [22] needs
around 70 ms per time step to simulate an 8k-neuron network. Only reference
[24] and reference [23] can achieve enough performance for real-time simula-
tion of large scale spiking neural networks, with 0.1ms time step for running
64k and 100k neural network respectively [26]. For modern Von Neumann ma-
chines, given the limited computing resources, the network size and the speed
need to be traded off. Therefore, the author predicts that for tasks that only re-
quire a small size of the network, the real-time requirement might be achieved.
However, to scale up the network with a size similar to the brain, the runtime
still overheads a lot.

When implementing SNNs, conventional computers have parallelism and mem-
ory bandwidth limits. From the system level, ”neurons” are regarded as core
computation units in SNNs, and neuron states need to be computed and up-
dated concurrently within one time step [27]. The conventional sequential,
centralised computation pattern can lead to long latency. From the architec-
ture level, conventional Von Neumann architecture has separate computation
units and memory. The bandwidth of communication between computation
units and memory (’Von Neumann Bottleneck’) [28] and the performance mis-
match between them (’memory wall’) [29, 30] are bottlenecks when frequent
data movement is required. Compared with traditional ANNs, SNNs are based
on a dynamic model, which requires storing both synaptic weights and in-
ternal potential. Since the SNNs model requires frequent data movement be-
tween memory and computation units, without sufficient memory bandwidth,
large-scale SNNs implementation in conventional Von Neumann architectures
is more communication-bounded than computation-bounded [26]. Von Neu-
mann’s bottleneck and memory wall also worsen the energy efficiency. For
example, addition and multiplication of 32-bit floating-point operations take
around 0.9pJ and 3.7pJ, respectively, in a 45nm technology with the power sup-
ply of 0.9 V, while accessing 64-bit data from DRAM takes 1.3-2.6nJ [30].

Some dedicated hardware designs have been delivered with a solution to place
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computing units and memory closely. Those designs include TrueNorth from
IBM [31], Loihi from Intel [32], Neurogrid from Stanford University [33], Brain-
ScaleS from University of Heidelberg [34], SpiNNaker from University of Manch-
ester [35]. Those designs apply distributed memory, place neurons and synapses
closer to diminish the communication cost, and support massive parallelism.
With the new architecture, they show promising performance in SNN imple-
mentation. TrueNorth, Loihi, Neurogrid and SpiNNaker all achieve real-time
SNN simulation with 16M, 128k, 1M, and 460M neurons, respectively. Brain-
ScaleS even speeds up 10000 times faster than real-time with the support of
3.6M neurons. Dedicated neuromorphic hardware outperformed general-purpose
computers in both speed and energy efficiency, despite the lack of flexibility in
choosing neuron models and on-chip learning rules (if implemented) and the
inconvenience of accumulating weighted spikes. Besides, FPGAs are also used
to speed up the neural networks, for both spiking [17, 36, 37, 38, 39, 40] and
non-spiking [41, 42, 43, 44, 45, 46] versions, because of the programmability, the
sufficient resources and fine-grain parallelism.

In-memory computing (IMC) is a solution to problems caused by Von Neu-
mann architecture. In this thesis, IMC is strictly defined as the computing
method based on a 2D crossbar array. The computing method that places com-
puting units and memory closely to reduce communication costs is called ’near-
memory computing’ instead. Instead of shifting data between memory and
processing units, computations are performed where data are stored [47]. Based
on a 2D array structure, efficient matrix multiplication is realised by storing
one operand in a memory array while applying another operand to activate the
rows of memory elements. The multiplication-accumulation (MAC) results are
read from the array’s columns. IMC is more efficient considering speed and
energy than conventional Von Neumann hardware [48]. From the speed aspect,
reference [49] shows that, in theory, the latency of accessing D bits data from a√

D ×
√

D SRAM array in a conventional way is D times as long as that of in
IMC way in the worst case. From the energy aspects, reference [50] estimates
the energy consumption of 4-bit MACs and 1024 dimensional vectors with 1-
bit memory storage in 45nm technology. The total energy of memory accessing
and computation is around 550fJ in the Non-IMC case, whilst the total energy is
50fJ in the IMC case. Design [51] also reports around 450 times better energy ef-
ficiency than Google TPU [52] (∼866 TOPS/W versus∼2 TOPS/W). References
[53], [54], and [55] also successfully implement IMC in SNN hardware designs,
showing IMC a promising approach to perform SNNs.
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FIGURE 1.1: Pathways for applying memristive technologies to applications.

Memristors, firstly introduced by [56] as two-terminal circuit elements charac-
terised by a relationship between the charge and the flux-linkage, are the fourth
basic circuit element. Under this category, one important type is random-access
memory devices (RRAM), cutting-edge memory that can be used for in-me-
mory computing applications. Memristors are commonly organised in crossbar
arrays, which can serve as matrix-vector multiplication accelerators [57, 58]. By
setting one operand as input voltages from the rows and storing another ope-
rand as resistance in the array, the multiplication results can be easily calcu-
lated as currents along with the columns, directly following Ohm’s law and
Kirchhoff’s current law. References [59], [60], [48], [61], [62], and [63] have per-
formed matrix multiplication acceleration using memristor crossbar arrays in
feedforward neural networks, convolutional neural networks, and long short-
term memory. Compared with SRAM, memristors are better memory devices
for implementing IMC-style SNNs, because of multi-bit storage (∼6.5 bits [64]),
high speed (85ps [65] vs. <10ns for SRAM [66]), low power consumption (10fJ
[67] vs 50fJ in SRAM [49] and non-volatility [68]. Multi-bit storage allows a
single cell to store more information, while non-volatility can store trained pa-
rameters without external memory if on-chip training is planned. In the ex-
ample of [69], memristors have been used to accelerate SNNs. Besides, the
inherent physical characteristics of memristors show high similarity to biologi-
cal synapses to support the spike-timing-dependent-plasticity (STDP) learning
rule [70], which is a popular learning rule in SNNs. Having the ability to imple-
ment STDP in memristor arrays makes it possible to train memristive spiking
neural networks. References [71], [72], and [73] have applied on-chip learning
in memristor-based SNNs.

1.2 Motivations and Challenges

Figure 1.1 illustrates two pathways for applying memristive technologies to
neuromorphic applications. In general, neuromorphic designs can both mean
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designs that target revealing the mystery of brain functions, or that use bio-
inspired architectures to perform AI tasks. In this thesis, neuromorphic appli-
cations are strictly defined as AI tasks, and neuromorphic designs are strictly
defined as designs that use SNNs to perform AI tasks, unless stated. With mem-
ristor devices ready, we can first utilise hardware infrastructure to characterise
and control devices, then map the higher-level functions in the hardware infras-
tructure to perform neuromorphic applications in hardware. Alternatively, we
can also extract memristor parameters to model devices and embed the device
models in software simulators to predict the outcomes of the applications before
hardware efforts are dedicated. This pathway is for functionality validation and
performance prediction mainly. The vast majority of works [71, 72, 73, 74, 75, 76]
that focus on hardware implementations of the memristor-based spiking neu-
ral networks follow the first path, whilst there is also a work [77] following
the second path to predicting the system functionality and performance in the
pre-hardware design phase.

Despite multiple works successfully performing neuromorphic applications by
taking the two paths, some facilities are still missing to complete the pathways
to become mature guides for researchers to follow. Hardware infrastructure in
the first path has two primary functions: (1) it acts as a testing and control sys-
tem to handle devices, and (2) it delivers higher-level functions such as matrix
multiplications with the incorporation of a memristor array to perform a neu-
romorphic application. For one thing, memristors, usually simplified as two-
terminal tuneable resistors with non-linear switching dynamics, require spec-
ified characterisation, such as current-voltage sweep and incremental pulsing,
for researchers to gain more intuition about the intrinsic physical properties.
For another, memristors arranged in array structure further request a control
and testing system that can provide read/write parallelism and high-speed
data acquisition to match the parallelism of a neuromorphic design. Existing
memristor characterisation systems either stay in the conceptual stage without
physical experiments [78, 79] or do not provide read/write parallelism [80].

In the software simulator aspect, the software simulators in the second path
undertake the task of modelling memristor devices, validating neuromorphic
concepts, and elaborating device- and weight updating protocol-related details.
Existing simulators [81, 82] focus more on the circuit level to emulate the hard-
ware module behaviours in neuromorphic designs and to predict the perfor-
mance specifications in chip designs. A simulator that (1) incorporates statistic
device models, (2) sits at the algorithm level to validate the functionality of the
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neuromorphic concept before committing efforts in hardware design, and (3)
provides step-by-step details in performing a neuromorphic task for investiga-
tion of system sensitivity is still missing.

In the application aspect, a vast range of neuromorphic applications with mem-
ristors in different disciplines have been achieved, including pattern recogni-
tion and image classification [74, 75, 76, 83]. However, memristor-based SNNs’
usage is now limited to low-dimensional small-scale applications. This is be-
cause there are three major issues for expanding memristor-based SNNs in per-
forming high-dimensional large-scale applications: high-dimensional inputs,
costly training, and memristor non-ideality. To be specific, high-dimensional in-
puts require large memory allocation, which is costly in implementing memristor-
based SNNs. For example, text classification, a particular area in natural lan-
guage processing, often requires more than 10k dimensional inputs. Dimen-
sion reduction technology such as word embeddings, (e.g. GloVe [84] and
word2vec [85]), are commonly used to map high-dimensional inputs to dense
lower-dimensional representation for better space efficiency. However, no his-
torical work has revealed the theoretical foundation of training a dimension
reduction model such as a word embedding layer in a spiking neural network.
Besides, both local (e.g. e-prop [86]) and non-local [87] gradient-based learning
rules require accumulating the errors over a spike train window that is used to
represent a single numerical value. This computation has poor speed and space
efficiencies, especially when the spike train window is large and memristors
are involved. Lastly, memristors introduce non-idealities due to the read noise
and the write variation. These issues make training a memristor-based spiking
neural network for text classification challenging.

In conclusion, to complete the pathways to apply memristor devices in neu-
romorphic designs, more practical efforts must be committed to constructing
hardware infrastructure, software simulators, and methodology for specific ap-
plications.

1.3 Contributions

To address the above-mentioned needs, this thesis presents three designs to
complete the two pathways shown in Figure 1.1. The first one is an FPGA-based
digital interface that can be used to build a memristor characterisation and con-
trol system with 64-channel parallel read/write operations and high-speed data
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processing. The full control system not only acts as a testing tool for collect-
ing memristor characteristics but also maps higher-level functions for device
handling in neuromorphic designs. Furthermore, this system provides more
powerful, versatile testing functionality for other two-terminal emerging mem-
ory devices beyond memristors. Resistor array handling and current-voltage
sweep experiments are shown for functional validation of the digital interface.

The second design presented in this thesis is the first Python-based algorithm-
level simulator, called NeuroPack, for memristor-based neuromorphic designs
with an empirical memristor model [88]. With a wide range of selectable neu-
ron, plasticity, and device models and the compatibility with user-defined mod-
els, NeuroPack assists users to quickly validating memristor-based neuromor-
phic concepts and monitoring the devices’ behaviours during the training or the
inference phase before serious efforts are committed in hardware designs. Be-
sides, NeuroPack also stores internal variables, including membrane voltages,
firing history, and weights for every single time step during the simulation.
With a built-in result analysis tool, these data can be further used for analysis
and visualisation so that users can investigate how intimately global param-
eters and critical design choices affect system performance. A ’predict-write-
verify’ loop also is proposed as the weight updating protocol implemented in
NeuroPack to find the suitable pulsing parameter sets to trigger memristor state
changes. This approach solves the challenge of precise memristor resistance
update control due to the non-linear switching dynamics. Finally, an MNIST
handwritten digit recognition task performed in a single-layer spiking neural
network with the leaky integrated-and-fire neuron model [89] and winner-take-
all structure [90] is showcased as a usage example of NeuroPack. With the final
classification accuracy of 82.00% given the parameter settings, the accuracy de-
grades 1.55% compared with the accuracy achieved by the equivalent structure
without memristive synapses.

The third design solved the issues of high-dimensional inputs, costly train-
ing, and memristor non-ideality in expanding memristor-based SNNs in high-
dimensional large-scale applications by extending NeuroPack for a bespoke
simulation framework with [91] to enable GPU compatibility and taking two
paths to obtain trained spiking neural networks with memristor models: 1)
by converting a pre-trained artificial neural network (ANN) to a memristor-
based SNN, or 2) by directly training a memristor-based SNN. These two paths
have two application scenarios: offline classification and online training. The
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first demonstration of a text classification task has been executed in memristor-
based spiking neural networks with a data-driven memristor model [88] using
the developed simulation framework. The task is to perform sentiment analy-
sis in the IMDB movie reviews dataset [92]. By converting a pre-trained ANN
to a memristor-based SNN and training the memristor-based SNN directly, the
classification accuracy of 85.88% and 84.86% are achieved, respectively, with
the equivalent ANN achieving a baseline training accuracy of 86.02%. From
ANNs to SNNs and from non-memristive synapses to data-driven memris-
tive synapses, comparable classification accuracy is achievable in simulation.
In addition, investigations of the neural network sensitivity to global param-
eters such as spike train length, the read noise, and the weight updating stop
conditions have also been given.

The contributions of this work are summarised below:

1. Developed and benchmarked an FPGA-based digital interface that allows
channel-level parallelism and high-speed data processing for memristor
array testing and control.

2. Designed the first algorithm-level simulator for memristor-powered neuro-
inspired computing with selectable neuron, device and plasticity models,
and elaborated the neural network sensitivity to device-related parame-
ters with the demonstration of an MNIST handwritten digit recognition
task performed in the presented simulator.

3. Demonstrated the first text classification task in the IMDB movie reviews
dataset in spiking neural networks with a realistic memristor model by
taking two different approaches to obtain trained neural networks, and
explored system sensitivity to global parameters.

1.4 Thesis Outline

The thesis has six major chapters: chapter 1 presents the context of SNNs, their
main features, their advantages over traditional ANNs, and the promising po-
tential of memristor-based SNNs. Next, the current obstacles to developing
memristor-based SNNs are introduced. Later, the contributions of the works
aiming at addressing the previously mentioned issues are listed. These works
will be the focus of this thesis.
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Chapter 2 presents the theoretical background and historical designs of memris-
tor-based neuromorphic applications and their relatives. Starting from the basic
concepts of SNNs and memristors, historical efforts of neuromorphic hardware
designs, including large-scale frameworks and low-power systems in CMOS,
FPGAs, and memristors, are described. Next, research in software simulators
for both spiking neural networks and memristor-based neural networks is sum-
marised. Finally, the applications of text classification are shown as examples.
As there is no existing memristor-based solution for text classification, the the-
sis introduces the mainstream solutions of using deep learning for text classi-
fication and typical memristor-based SNN applications to find out the existing
challenges of utilising memristor-based SNNs in text classification tasks that
this thesis needs to address. The needs for conducting the research presented
in this thesis are concluded from all mentioned historical designs.

In chapter 3, an FPGA-based digital interface for memristor arrays is intro-
duced. This work addresses the need to build a control system that can provide
read/write parallelism and high-speed data processing for device characteri-
sation and functionality delivery in a board-level neuromorphic design. The
chapter starts with the introduction of the background, motivations, contribu-
tions, and objectives, followed by the design implementations of the system,
from the system overview to specified modules. A resistor array handling and
a memristor current-voltage sweep experiments are delivered to validate the
interface’s functionality. Finally, the control system built with this digital inter-
face is compared with other similar works, and the conclusion is given.

Chapter 4 presents a Python-based algorithm-level simulator for memristor-
based SNNs. This work aims at acting as a flexible tool for users to quickly val-
idate the neuromorphic concepts before efforts are made in hardware designs
and assisting users in exploring system sensitivity to specified parameters in
simulation. This work provides a range of device, neuron, and plasticity mod-
els for users to choose from. The background, motivations, and contributions
are firstly introduced to start the chapter. Next, the design implementations are
displayed with a top-down workflow. Critical parts of the design, including
the neuron models, plasticity models, memristor models, and weight updating
scheme, are described. After that, the experiments of an MNIST handwritten
digit recognition are presented to validate the simulator, and the investigation
is delivered to find out how the device- and updating protocol-related parame-
ters affect system performance.
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In chapter 5, the demonstration of a text classification task in the IMDB movie
reviews dataset is performed in a memristor-based SNN with an empirical
memristor model. This example takes two different paths to obtain a trained
memristor-based spiking neural network: one is converting a trained ANN to
its equivalent memristor-based SNN, and another is training a memristor-based
SNN directly. To do so, a simulation framework using memristor models is de-
veloped. The chapter is started with the background, motivations and contri-
butions. Next, the methodology used to perform this text classification task is
given, with critical design details elaborated. Finally, the experimental results
with standard configurations and varying parameter values are displayed, and
the result analysis is given.

Lastly, in chapter 6, the thesis is summarised, the achieved contributions of this
thesis are concluded, and future perspectives toward AI hardware are exhib-
ited.
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Chapter 2

Memristor-based Spiking Neural
Networks: A Review in Theoretical
Background and Designs

2.1 Memristor-based SNNs Theoretical Background

This section will introduce SNN and memristor basics to give a theoretical back-
ground of memristor-based SNNs.

2.1.1 Spiking Neural Network Preliminaries

When implementing an SNN, there are some aspects to think about: (1) struc-
ture of the networks, (2) coding schemes, (3) neuron models, and (4) learning
rules. In this subsection, those aspects of SNN will be introduced.

dendrites

soma
synapse

axon

axonal delay

synaptic delay

FIGURE 2.1: Biological neural network structure [17].
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2.1.1.1 Network Structure

Figure 2.1 shows the structure of biological neural networks. Biological neural
networks consist of dendrites, soma, axon, and synapses. Dendrites receive pre-
synaptic spikes, and the soma accumulates the voltage. If a spike is emitted, it
transmits through the axon and synapses to other neurons. SNNs are artificial
neural networks that mimic biological neural networks. Therefore, a complete
SNN also consists of those four parts, though the axon and dendrites sometimes
are omitted in simulation to simplify the design. At a network level, there are
also some commonly used types of SNN architectures, including winner-take-
all networks [93] and liquid state machine [94].

2.1.1.2 Coding Schemes

Unlike ANNs using continuous numerical values in computation, SNNs deliver
and process information through spike trains. Those discrete all-or-nothing bi-
nary signals with precise timing information allow SNNs to incorporate tem-
poral information into the computation. That leads to the first question when
implementing an SNN: which coding scheme to choose? There are two popular
choices: rate coding and temporal coding. Rate coding is the coding method
that only cares about the frequency of spike events, whilst temporal coding
also conveys information through the timing of spikes. For example, spike se-
quences 0001100011 and 0101010101 deliver different information in temporal
coding, whilst no difference is recognised in rate coding. Temporal coding can
deliver more information, whereas rate coding is easier to implement. The vast
majority of designs utilised rate coding because of its simplicity, whilst some
designs insisted on temporal coding to provide more biological plausibility.

2.1.1.3 Neuron Models

An SNN is formed by a group of neurons that serve as computation units in the
network. Therefore, choosing neuron models becomes a fundamental question
in implementing an SNN. Generally speaking, a spiking neuron model works
by changing membrane voltage, also called postsynaptic potential (PSP), ac-
cording to the weighted sum of the incoming spike train. Notice that the poten-
tial changes can be bidirectional: the PSP can either inhibit or excite future fir-
ing, and the corresponding PSPs in these cases are IPSP and EPSP, respectively.
Usually, IPSP can be regarded as the case of a negative weight in traditional
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FIGURE 2.2: Membrane voltage changes when pre-synaptic spikes come. The
image is from [95]. The x-axis is the time with the unit of ms, and y is the
membrane voltage with the unit of mV. The blue spikes at the bottom show
the incoming spike at time steps t1 to t4. When there is an incoming spike, the
membrane starts accumulating, reaches the peak, and then decays. If the mem-
brane voltage exceeds the threshold, a spike is generated, and the membrane

voltage is reset.

ANNs. After the PSP exceeds the threshold, the neuron fires and the PSP is re-
set to zero. Figure 2.2 depicts the tendency of membrane voltage changes when
spikes come.

Most spiking neuron models describe the relationship between input current
response and output membrane voltage. The input current response expression
is shown below:

ui(t) = ∑
j ̸=i

wijxij + bi (2.1)

Where ui is the synaptic response current, wij is the synaptic weight from neu-
ron j to i, xij is the spike input, bi is the constant bias. Among these types of
neuron models, the most biological-like one is Hodgkin & Huxley model [96],
which is based on a circuit model with resistors and capacitors shown in Figure
2.3, to mimic the effect of neurotransmitters between neurons. This model has
a very complex form, shown below:

Im = C
dVm

dt
+ Gl(Vm −Vl) + GK(Vm −VK) + GNa(Vm −VNa) (2.2)

Where Vm, and Im are the membrane voltage and current, respectively, C is
the capacitance, GK, GNa are the potassium and sodium conductance, VK, VNa
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FIGURE 2.3: Equivalent circuit of Hodgkin & Huxley model [95]. Vm is the
membrane potential. C represents the lipid bilayer. Voltage-gated potassium
and sodium ion channels are represented by resistance RK and RNa, respec-
tively. Vk and VNa are potassium and sodium reversal potentials. RI and VI are

leaky resistance and leaky reversal potential.

are reversal potentials 1 of potassium and sodium, and Gl and Vl are leak con-
ductance and leak reversal potential. Here, GK, GNa are time and voltage-
dependent with more internal variables.

Hodgkin & Huxley model successfully model the biophysical property of ion-
channel-based neuron membrane voltage changes. However, due to the com-
plex form, it is computationally expensive to apply Hodgkin & Huxley model
in SNN simulation. A neuron in Hodgkin & Huxley model takes 1200 floating
points operations per time step (typically 1 ms for real-time), and four internal
variables are required to store in memory [97, 98].

The Leaky Integrated-and-fired model (LIF) is a simple neuron model that is
computationally efficient. The mechanism of LIF can be represented as equa-
tions below [99]:

vi̇ (t) =

⎧⎨⎩− 1
τ (vi(t)− vrest) + ui(t) if not firing

0 otherwise
(2.3)

Where ui is the synaptic response current, vi is the membrane potential, vrest

is the rest voltage usually assumed to be zero, and τ is the leaky time con-
stant. The incoming spikes change the membrane voltage with the amounts
according to the synaptic weights, and the neuron fires a spike if the voltage

1Reversal potential: the membrane potential when the ion channel is open
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passes the threshold. After firing a spike, the membrane voltage resets to 0.
Notice that the integration is leaky, given by the leaky term for membrane volt-
age. If there is no incoming spike, the membrane voltage will reduce grad-
ually with the time constant τ. The integrated-and-fire neuron model is the
simplified version of the Hodgkin & Huxley model, with the spikes’ shape ne-
glected. Spikes for the integrated-and-fire neuron model are always uniform
so that only the time of appearance matters. The LIF neuron model only takes
4-5 FLOPs for one time step, and only one internal variable, the membrane
voltage, is needed to store in memory [97, 98]. Some variants of IF or LIF can
exhibit more biological attributes while keeping the computational efficiency.
Those variants includes adaptive integrated-and-fire model [100], fractional-
order leaky integrated-and-fire model [101, 102], exponential integrated-and-
fire model [103], and adaptive exponential integrated-and-fire model [104], etc.

Izhikevich neuron model is another neuron model that is a good compromise
between the biological plausibility of the Hodgkin & Huxley model and the
computational efficiency of the integrated-and-fire neuron model [105]. It is
also a simplified version of the Hodgkin & Huxley model while still keeping the
shape of spikes to produce the spiking and bursting dynamics. The equation of
the model gives below:

v
′
= 0.04v2 + 5v + 140− u + I

u
′
= a(bv− u)

(2.4)

Where v is the membrane potential, u is the membrane recovery variable which
represents K+ and Na+ ionic currents in the Hodgkin & Huxley neuron model.
The term 0.04v2 + 5v + 140 was attained by fitting the observation of neuron
dynamics. a and b are internal parameters for recovery variable u. It takes 14
FLOPs per time step, and only two variables are required to store in memory
[97, 98]. Apart from these classic models, some are based on IF with stochastic-
ity, such as the spike response model [106]. In general, if the design targets pre-
cise simulation of biological neural networks, Hodgkin & Huxley model should
be applied; if the design focuses on computational efficiency, IF or LIF neurons
should be applied; if the design trades off between computational efficiency
and biological plausibility, Izhikevich neuron model, SRM, and IF variants can
be utilised [97].
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2.1.1.4 Learning Rules

Efficient adaptation and accurate inference of a learning system depend mainly
on effective learning rules. For ANNs, the most common updating rule is gra-
dient descent [87] with error backpropagation [107]. However, spiking neurons
have internal state variables related to the sum-up of the input spikes, making
the cost function non-differentiable. Therefore, the traditional supervised learn-
ing updating rules cannot be directly used in SNNs. SNNs updating rules are
more inspired by natural neural processes and are more similar to Hebb’s rule
2[108], which attempted to explain synaptic plasticity. Synaptic plasticity refers
to the ability to adjust synaptic connections between neurons. This adjustment
can be Long-Term Potentiation (LTP)/ Long-Term Depression (LTD) if effects
last for hours or Short-Term Potentiation (STP)/ Short-Term Depression (STD)
if effects only last for seconds or minutes. One of the most popular updating
rules for SNNs is Spike-Timing Dependent Plasticity (STDP) [70], discovered in
biological research. STDP tells us that synaptic plasticity is highly sensitive to
the precise timing of the post-synaptic spikes related to pre-synaptic spikes. In
other words, if the pre-synaptic spike comes earlier than the post-synaptic one,
it will cause LTP; otherwise, LTD. The precise effect was given in [109] as below:

∆Wj =
N

∑
f=1

N

∑
n=1

W(tn
i − t f

j ) (2.5)

Here ∆Wj is the weight change of a synapse from pre-synaptic neuron j. tn
i andt f

j
give the timing of post-synaptic and pre-synaptic spikes respectively, where n, f
= 1, 2, 3 ...counts post/pre-synaptic spikes. W(x) is an STDP learning window,
of which a common choice is as below [109]:

W(x) =

⎧⎨⎩A+exp(−x/τ+) for x > 0

−A−exp(−x/τ−) otherwise
(2.6)

Parameters A+, A− are scaling factors, and τ+, τ− are time constants which
are usually ±10ms. Figure 2.4 shows this common choice of STDP window
for induction of potentiation and depression characteristics with pre- and post-
synaptic spiking timing.

STDP appears as a possible updating rule to underpin temporal Hebb’s rule in
SNNs. However, STDP is a timing-sensitive algorithm, and having timing as a

2Hebb’s rule: A neuroscientific theory that synaptic efficacy increases when receiving per-
sistent and repeated input stimuli.
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FIGURE 2.4: Asymmetric STDP learning window [70]. The plot is generated
with A+ = 50 and A− = 25.

variable also needs precise control in hardware. Besides, STDP as an unsuper-
vised learning rule requires adaptation to be explored to empower supervised
learning tasks. Insufficiently development in learning algorithms underlies the
main obstacle for making most of SNNs. It is believed that SNNs, compared
with DNNs, are more of a long-term goal for researchers in neuromorphic area
[95].

2.1.1.5 SNNs vs. ANNs

Here is a brief comparison in terms of energy consumption and speed between
ANNs and SNNs: [110] showed the estimated energy consumption ratio be-
tween ANNs and SNNs is 1.72. When running ANNs and SNNs in the same
digital platform, an inference in ANNs requires 2 FLOPs, and an inference in
LIF-based SNNs requires 4-5 FLOPs. Given the limited computing resources,
ANNs can be up to 2.5 faster than SNNs.

2.1.2 Memristor Preliminaries

2.1.2.1 Memristor Features

One critical point to emulate biologic neural networks is to use suitable devices
to represent synapses. Non-volatility [68], multi-bits storage capability [64],
low power consumption, and fast access time [111] make memristors good can-
didates [48]. First of all, the change of electric stimuli can switch the devices
between low resistive (ON state) and high resistive (OFF state) [112], while
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FIGURE 2.5: Memristor array without selectors (A) and with selectors (B).
Wordlines and bitlines are coloured in purple and orange, respectively. No-
tably, the crosspoints between wordlines and bitlines are not connected. When
running in-memory computing in a memristor array with selectors, switches

for selected devices are closed.

the resistive state will be retained after the voltage removes. Memristors’ non-
volatility can store weights with no extra power consumption, especially in a
scenario of mapping and retaining pre-trained weights. Besides, a single mem-
ristor can store more than one bit with low power consumption. Reference [64]
has reported 92 distinguishable states, which are equivalent to 6.5 bits when
using digital memory, with energy consumption in the pJ - nJ range. Refer-
ence [67] mentioned ∼10fJ/operation for IMC in memristors, comparsed to
50fJ/operation estimated by reference [49]. Reference [113] further reported
115fJ for on-switching and 13pJ for off-switching for tantalum oxide memris-
tors. Moreover, memristors also provide high-speed property, with switch time
as fast as 85ps for nitride memristors [111], compared to <10ns read access time
for SRAM [66]. Memristors are further specified into several categories: elec-
trochemical metallisation memories (ECM), valence change memories (VCM),
and thermochemical memories (TCM), based on working principles [114]: the
bipolar ECM relies on the drift of the highly mobile ions conducting, the bipo-
lar VCM switching is induced by voltage pulses, and the unipolar TCM relies
on thermochemical mechanism, the change of the stoichiometry caused by a
current-induced temperature increase. This thesis will only discuss VCM mem-
ristors.
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2.1.2.2 Memristors and In-memory Computing

As two-terminal devices, memristors are suitable for matrix integration. With
Directly applying Ohm’s law and Kirchoff’s current law, memristor crossbars
are widely used to perform dot product [58], which is the core of an SNN algo-
rithm. Figure 2.5 explains how a selectorless memristor crossbar forms a crucial
part of a spiking neural network: rows (wordlines) and columns (bitlines) rep-
resent pre-synapse and post-synapse, respectively. Incoming voltage spikes, as
one vector operand, are sent to wordlines, with synaptic weights stored as re-
sistive states in memristors. The result of the weighted sum can be attained
in bitlines as currents. Memristors are more commonly integrated into cross-
bars with selectors in series, as shown in the right figure of Figure 2.5 to get
rid of the sneak path current, though increasing the difficulty in integrating
crossbar in high density. With a crossbar structure, memristors can be used in
in-memory computing with good energy efficiency. Table 2.1 displays the com-
parison of energy efficiency remarked by numbers of Tera-operations per Watt
among Google’s tensor processing unit (TPU) [115], a SRAM-based IMC design
[116], and two memristor-based IMC designs [117, 118].

TABLE 2.1: Energy efficiency comparison of Von neumann machine, SRAM-
based in-memory computing design, and memristor-based in-memory com-

puting designs

Designs Google’s TPU[115] [116] [117] [118]
Categories Von Neuman SRAM IMC memristor IMC memristor IMC

Energy efficiency (TOPS/W) 0.24-0.31 3.12 11 28

2.1.2.3 Memristors and STDP

As mentioned in Section 2.1.1.4, STDP is a popular learning rule for SNNs, espe-
cially for unsupervised learning tasks. However, due to the complex mathemat-
ics form, this learning rule is not hardware friendly. Reference [119] has given
a CMOS-based STDP implementation with 30 transistors per plastic synapse.
Previous research has shown that memristors can implement classic STDP learn-
ing rules as memristors have intrinsic characteristics that are highly similar to
STDP [120]. Reference [71] proposed an effective approach to applying weight-
dependent STDP in neuromorphic applications. This approach uses a low-
voltage pulse below the threshold as a pre-synaptic spike (Figure 2.6 (A)). A
bipolar pulse whose negative part exceeds the threshold is applied as a post-
synaptic spike (Figure 2.6 (B)). In this way, a single pre-synaptic spike will not
switch the state of memristors, while a single post-synaptic will cause long-term
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FIGURE 2.6: Memristors implement STDP [71]. This approach has been pre-
sented by [71]. Neutral (A), LTD (B), and LTP (C) are represented by a long,
low-voltage under-threshold pre-synaptic pulse, a short bipolar post-synaptic
pulse with the negative part exceeding the threshold, and the superposition of

pre- and post-synaptic pulses, respectively.

depression (LTD). Suppose concurrent pre- and post-synaptic spikes are ap-
plied to the same memristor. In that case, the superposition will make the volt-
age exceed the positive threshold (Figure 2.6 (C)), which is equivalent to long-
term potentiation (LTP). In other words, there are three possible spiking events
to a single memristor: a pre-synaptic event, a post-synaptic event, and a com-
bined pre-and post-synaptic event. They will lead to three outcomes respec-
tively: neutral, LTD and LTP. The paper further looked into how the resistance
state changed depending on the memristor’s current state, which clearly shows
an exponential tendency aligned with STDP. Based on this weight-dependent
STDP characteristic, a general equation is summarized below:

∆g
g

= POST · [PRE · f LTP(g)− (1− PRE) · f LTD(g)]

This approach enables memristor synapses to encode conditional probability so
that inference and updating weight can be merged into one phase while training
memristor-based SNNs, further empowering memristors to perform as plastic
synapses in neuromorphic designs.
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In summary, memristors bring great potential in implementing SNN designs by
serving as synapses thanks to the low-power multi-bit storage capacity, cross-
bar structure, high-speed dynamics, non-volatility, and inherent physical char-
acteristics similar to biological synapses. Despite great potential, larger sizes
of memristor systems are still limited by device variability [67]. Besides, com-
puting accuracy is also affected by device variations. So far, memristor-based
in-computing ANN or SNN designs hardly achieve the same classification ac-
curacy as their software equivalence [72, 74, 121, 122]. More efforts and explo-
ration are still needed to make memristor-based neuromorphic become main-
stream.

2.2 Neuromorphic Designs at a Glance

2.2.1 Hardware Frameworks

2.2.1.1 General Neuromorphic Design Strategies

The main goals of developing neuromorphic systems are performing AI tasks
with the biological time scale and the power consumption, or understanding
how brains work. These designs can either be potentially used in robotics
[123], biomedical field [33, 124] and real-time online learning [125], or bene-
fit from fast and low-power-cost information processing [31, 32]. In Section
2.1, a basic structure of biological neural networks has been given in Figure
2.1, with soma, dendrites, synapses, and axon. Inspired by biological neu-
ral networks, SNNs can choose to keep some of the biological attributes to
balance design complexity and performance. In most SNN implementations,
soma and synapses must be included, while dendrites and axons are option-
ally implemented. Hodgkin-Huxley neuron model [96] and Izhikevich’s neu-
ron model [105] use relatively complex mathematical expressions to model bi-
ological neural networks accurately, while they both require more hardware
complexity. Leaky-integrate-and-fire neuron model [99] is more computational
friendly, therefore LIF is a popular choice as the neuron model in SNN system
designs [17, 38, 40, 53, 54, 71, 72, 126, 127]. Synapses are commonly represented
as memory devices [53, 54, 71, 72, 73, 74, 75, 76].

In SNNs, information is encoded as spike rates together with the precise timing
of arrival. The typical way to realise the temporal property of SNNs is to calcu-
late and update neuron states in each time step, though this method brings the
trade-off between precision and latency. Some designs [17, 31, 32, 38, 128, 129]
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FIGURE 2.7: Neuromorphic system designs in different scales. (A) Neurocore.
Neurons and synapses are placed closely to reduce communication costs. Each
core has separate control logic so that multi-cores can work concurrently. (B)
Chip. Multiple cores are integrated in this scale. Each neuroncore has an in-
dividual router, and a global NoC is used for cross-core communication. (C)

Board. The image is inspired by [130].

also support fixed-axon and/or synapse delays to reduce information loss, de-
spite the increased system complexity.

Neurons are regarded as the processing units in SNNs. In an SNN, a large
number of neurons work separately and concurrently. Therefore, massive par-
allelism is the main challenge and the design goal when demonstrating an SNN
regardless of the platform used. Memory utilisation and bandwidth are other
issues that need carefully considered due to the large number of parameters
used as synaptic weights. Some designs [53, 54, 71, 72, 73, 74, 75, 76] merge the
computational units and the memory so that the data are processed in an in-situ
manner to reduce the cost of accessing data to and from memory.

Figure 2.7 illustrates neuromorphic systems in different scale. This design hi-
erarchy shows the same methodology for neuromorphic systems: distributing
the memory storage and computation. Each neurocore contains part of neu-
rons and synapses, so multiple neurocores can cooperate to speed up and save
energy. Multiple neurocores in a chip and multiple chips on a board show par-
allelism at the chip and the board level, respectively.

Different targeted applications lead to different design choices. Large-scale neu-
romorphic systems aim at enabling and accelerating large-scale high-power
datacentric computing tasks, whereas embedded processors are designed for
mobile devices prioritising power consumption. Therefore, it is not fair to com-
pare their performance directly. In the following subsections, typical designs
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for both large-scale neuromorphic systems and small-scale low-power designs
are discussed separately.

2.2.1.2 Large-scale Neuromorphic Systems

Large-scale neuromorphic systems to be introduced in this subsection include
application-specific integrated-circuits (ASICs) and application-specific instruc-
tion set processors (ASIPs) designs: TrueNorth [31] from IBM, Neurogrid [33]
from Stanford University, Loihi [32] from Intel, SpiNNaker [35, 128] from Uni-
versity of Manchester, BrainScaleS [131] from Heidelberg University, multi-
FPGA-based design BlueHive [129], and multi memristor crossbars based de-
sign INXS [132]. Table 2.2 gives the key characteristics of those seven designs.

TABLE 2.2: A comparison among large-scale neuromorphic systems. The table
is inspired by [130, 133]

.
Platform Neurogrid[33] BrainScaleS[34, 131] TrueNorth[31] SpiNNaker[35] Loihi [32] BlueHive [129] INXS[132]

Technology analog analog digital digital digital digital mix-signal

Processor Neurocore HICANN[34] 4096 cores 18 ARM cores 128 cores FPGA 512 memristor
32k crossbars

# Neurons 65k 512 1M 16k 128k 64k 128k
# Synapses 100M 100k 256B 16M 2M 64M ∼ 226k

Power 150mW 1.3W 72mW 1W N/A N/A 2W
Power/neuron/Hz 2.3nW/Hz 0.25nW/Hz 72pW/Hz 62.5nW/Hz N/A N/A N/A

Board PCB Wafer PCB PCB Rack box
# Processor 16 352 16 48 Up to 64

Power 3W 500W 1W 80W N/A a

System 20 Wafers 600 PCBs
Power 10kW 50kW
Speed 1kHz 10MHz 1kHz 1kHz N/A 1kHz N/A

Chip Network Tree Hierarchy 2D-mesh 2D-mesh 2D-mesh High Speed 2D-mesh
multicast Unicast Multicast Unicast Serial Links Unicast

Neuron Model Adaptive Adaptive LIF Programmable Programmable Izhikevich LIFQuadratic IF Exponential IF
Synapses 13b shared 4b 4b Variable 1-64b N/A N/AResolution
Plasticity No STDP No Pogrammable Programmable No No

Feature Size 180nm 180nm 23nm 130nm 14nm 40nm 32nmFET
Applications robotic control bio simulation cognitive appl. bio simulation machine learning bio simulation cognitive appl.

a No specific power information was given in the paper, but it was mentioned that BlueHive
were more power hungry than SpiNNaker [129].

IBM’s TrueNorth is a fully functional digital chip with 1 million programmable
spiking neurons, 256 million configurable synapses in 4096 neurosynaptic cores,
and intrachip networks for communication [31]. Each core has 104,448 bits of
SRAM to store synapse states. Contrary to sequential, centralised conventional
Von-Neumann architecture, TrueNorth uses a parallel, distributed design with
a short-distance local connection and a long-distance global connection. In-
spired by sparsity and event-driven property of biological neural networks,
TrueNorth reduces power consumption by only transmitting spike events sparse
in time between cores. Also, neurons’ occasional defects do not dramatically
disrupt system functionality because of fine-grained parallelism. The training
process is not performed on-chip and needs the cooperation of specifically de-
signed software. A video multi-object detection task with the input of 400× 240
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pixels 30-frame per second was executed to prove the functionality of perform-
ing AI tasks in TrueNorth.

Stanford University’s Neurogrid is a neuromorphic system with subthreshold
analogue neurons and synapses running in biological real-time (1kHz) [33].
The real-time operation allows Neurogrid to be applied in robotic control and
biomedical applications such as controlling a prosthetic limb [133]. Each Neu-
rogrid chip contains 16 neurocores, integrating more than 65k neurons and
approximately 100M synapses. The neuron dynamics are implemented as an
adaptive quadratic integrated-and-fire neuron model. The Neurogrid system
does not use a mesh network like most other large-scale neuromorphic systems
but applies a tree network, allowing deadlock-free multicast communication to
interconnect neurocores. The system achieves 941pJ per synaptic connection.

Intel’s Loihi is a fully integrated digital SNN chip supporting spiking neuron-
based data encoding and processing with an off-chip communication interface
and programmable learning rules [32]. Loihi has 128 neuromorphic cores, and
each core contains 1024 spiking neurons. With the help of local connectivity and
network-on-chip global connectivity, Loihi executes computational tasks with
fine-grained parallelism. Loihi also has implemented several on-chip SNNs
learning rules, making it more efficient to achieve on-chip learning. Loihi has
been employed for the LASSO optimization task, showing this design is three-
order of magnitude superior to a CPU-based solver in terms of energy-delay
product.

University of Manchester’s SpiNNaker is a massively parallel digital computer
for large-scale spiking neural networks in biological real-time (1kHz) [35]. The
SpiNNaker is a general-purpose spiking neural network system aiming at large-
scale tasks and flexible implementation. This design contains 600 PCBs at the
system level, and each PCB includes 48 processors. The interconnection among
chips incorporates a 2D-mesh network with the ability to propagate the spike
to multiple destinations. At the chip level, a SpiNNaker processing chip uses 18
ARM9 cores, each containing 32kbytes instruction memory and 64kbytes data
memory. SpiNNaker does not have the best energy efficiency or the highest
latency compared with other large-scale neuromorphic designs. However, it is
the most reconfigurable because of selectable neuron models, synapse resolu-
tions and learning rules for on-chip learning.

BrainScaleS from the University of Heidelberg is designed for accelerating tasks
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that take too long to execute in biological real-time [133]. BrainScaleS neuro-
morphic system delivers 512 adaptive exponential integrated-and-fire neurons
and more than 100k synapses in one High-Count Neural Network (HiCANN),
die [34], and 352 HiCANN dies are integrated into one wafer. Having 20 wafers
in a small portable platform, BrainScale achieves massive parallelism operating
10k times biological speeds. FPGAs are used for high-speed serial communica-
tion between wafers [131]. BrainScaleS also supports the STDP learning rule.

BlueHive is a 64-FPGA spiking neural network simulator running in real-time
with 64k Izhikevich neurons in each FPGA [129]. BlueHive uses 16 FIFOs to
support 16 different synaptic delays with 1ms granularity. Parameters such as
neuron states, weights, and delays are stored in off-chip memory. When accu-
mulating neuron states, data are loaded from off-chip memory and sent back to
memory after the calculation. FPGA-to-FPGA communication uses high-speed
serial links together with PCIe connectors. The simulator of the 4-FPGA version
achieved a speed of 162 faster than the CPU-version simulation.

INXS is a mix-signal chip aiming at improving energy efficiency and computa-
tional efficiency [132]. INXS uses modular and hierarchy tiled architecture with
512 256×128 memristor crossbars in each tile. One synapse consists of several
memristors, each of which has 2-bit storage. After feeding the inputs to memris-
tor crossbars and reading the output current through ADCs in bitlines, several
bitlines are sent to a shift-and-add unit to combine the contributions of different
bits of synapses to calculate the potential increment. The potential increment is
then added to the old potential value, and the new potential is checked if ex-
ceeding the threshold. The neuron potential is retrieved/written back from/to
SRAM. All steps but the crossbar processing are completed in the digital do-
main. INXS demonstrated 10.4× energy efficiency and 3129 × computational
efficiency compared with TrueNorth.

2.2.1.3 Low-power Neuromorphic Systems

Small-scale neuromorphic systems are usually designed for mobile devices.
Therefore, achieving high energy efficiency is the main design target. In this
subsections, several small scale low power designs are discussed, including
CMOS [53, 54, 126, 127], FPGA-based [17, 36, 37, 38, 39, 40], and mix-signal
designs with memristor crossbars [71, 72, 73, 74, 75, 76].

For CMOS implementation, reference [126] designed a digital custom chip in
28nm technology, with spike schedulers, weight memory, and neurons. The
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TABLE 2.3: Comparison of four CMOS small-scale low-power designs

Designs [126] [127] [54] [53]

Technology Digital Digital Mix-signal Mix-signal
custom chip custom chip custom chip custom chip

Implementation 28nm CMOS 65nm CMOS
45nm CMOS 45nm CMOS

Digital neurons + Digital neurons +
SRAM synapse crossbar SRAM synapse crossbar

Training backpropagation weight dependent STDP on-chip offlineoff-chip STDP on-chip
Network FC FC Hopfield network Boltzmann machine

Coding scheme Rate Rate Rate Rate
Validation task MNIST MNIST Pattern recognition MNIST
Neuron model LIF LIF LIF LIF

# Neurons 1306 316 256 256
Synapse resolution 7b 24b 4b 1b

# Synapses 513M 128k 64k 256k
Latency 0.68us-10.9us N/A N/A N/A

Power ∼70mW Training: 104.12mW N/A N/AInference: 91.30mW
Accuracy 98.7 ∼90 N/A 89

input spike trains are fed into spike schedulers to decode the weight index.
The weights are sent to the neurons to be accumulated after being fetched
from the weight memory. The training is done with backpropagation in an off-
chip fashion. This design achieved high accuracy (98.7%) for the MNIST task
with around 70mW system power consumption. Reference [127] proposed a
hardware architecture to perform SNNs with on-chip learning. Similarly, local
buffers are employed to hold spike timing. The accuracy of performing clas-
sification on resized (16× 16) MNIST dataset is around 90%, with the power
consumption of 104.12mW for training and 91.30mW for inference. References
[54] and [53] are both mix-signal custom chips in 45nm technology with digital
neurons together with SRAM synapses crossbar. [54] and [53] integrated 256
neurons with 64k synapses and 256 neurons with 1024*256 synapses respec-
tively. Each synapse consists of 8 transistors SRAM. The process is split into
two phases: In the first phase, the rows of SRAM crossbar are selected when
there are incoming spikes, and the weights are read through the columns to the
neurons; in the second phase, the membrane voltages are checked if exceeding
the threshold. [54] also achieves on-chip STDP learning. [54] validated the de-
sign with a Hopfield network to perform a pattern recognition task, and [53]
employed a restricted Boltzmann machine to perform a digit classification on
resized (22 × 22) MNIST with the final accuracy of 89%. Table 2.3 gives the
comparison of four CMOS small-scale low-power neuromorphic designs men-
tioned above.

As for FPGA-based designs, references [36] and [37] proposed SNNs with the
Izhikevich neuron model. They both supported a relatively large number of
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TABLE 2.4: FPGA-based small-scale neuromorphic designs

Designs [17] [40] [38] [39] [36] [37]
Technology FPGA FPGA FPGA FPGA FPGA FPGA

Implementation
Input buffer +

Synaptic filter Event queue Spike FIFOs N/A Event queueaxon &
synaptic delays

Training N/A Backpropagation N/A N/A N/A N/Aoff-chip
Network CNN CNN FC FC FC N/A

Coding scheme Rate Temporal Rate Temporal Rate Rate

Validation task RF automatic MNIST MNIST MNIST N/A N/Amodulation
Neuron model LIF LIF LIF IF Izhikevich Izhikevich

# Neurons 1006 N/A 65k 1394 1024 64k
Synapse resolution N/A N/A 16b 8b 8b 16b

# Synapses N/A N/A 16.78M 4.7M 1M 64M
Latency N/A 0.52ms 236us N/A 0.72-1.1us N/A
Power N/A 5.4W 1.5W N/A N/A N/A

Accuracy 91.7 99.2 92 97 N/A N/A

neurons and synapses. Reference [17] developed a streaming SNN architecture
with fixed axonal and synaptic delays. Input buffers are used to store incom-
ing event-driven spikes. The membrane voltages are initialised by the previ-
ous values stored in on-chip memory by multiplying the decay factor, and the
weights are loaded if there are input spikes at that time step. After adding up all
weights sequentially, the increment is added to the initialised membrane volt-
ages, which is compared with the threshold afterwards. The design showed an
application of radio frequency (RF) automatic modulation with an accuracy of
91.7%. Reference [38] developed an SNN system supporting 65k neurons per
board with a system power consumption of 1.5W. The system is designed with
three submodels: a LIF-based neuron model, a synapse model, and a fixed-
delay axon model. Like other FPGA-based designs, the input events are stored
in a queue. This design performed an MNIST classification task with an accu-
racy of 92%. Reference [39] built an alternative SNN based on temporal coding
with 16 spike FIFOs. The system achieved an accuracy of 97% for the MNIST
digit classification task. Reference [40] proposed a network of Infinite Impulse
Responses (IIR) filters to implement SNNs with a temporal population neu-
ral coding scheme. The hardware implementation uses a layer-wise pipeline of
processing elements that receive spikes from the previous layer, update synapse
and neuron states, and send results in inter-layer buffers. Filter coefficients and
synapse weights are stored in block memory, and the delay unit is implemented
in shift registers. A digit classification task on MNIST performed in this system
achieved an accuracy of 99.2% with a latency of 0.52ms and a system power
consumption of 5.4W. Table 2.4 gives the comparison of those designs.
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TABLE 2.5: Comparison of memristor-based small-scale neuromorphic designs

Designs [71] [74] [72] [75] [76] [73]
Technology Mix-signal Mix-signal Mix-signal Mix-signal Mix-signal Mix-signal

Implementation
Neurons Software/hardware Software N/A Analog Analog Analog
Synapses Memristor Multi-memristive Memristor Memristor Memristor Memristor

Training Weight dependent STDP STDP Hebb’s rule N/A STDPSTDP learning
Network WTA FC FC FC Hopfield WTA

Coding scheme Rate Rate Rate Rate Rate Rate
Validation task Pattern recog MNIST MNIST Pattern recog Pattern recog Pattern recog
Neuron model LIF IF LIF IF IF IF

# Neurons 6 1044 834 38 12 6
Synapse resolution N/A ∼4.3b N/A N/A N/A N/A

# Synapses 8 1.96M 39k 192 144 8
Latency N/A N/A N/A N/A N/A N/A
Power N/A N/A N/A 0.577mW N/A N/A

Accuracy N/A >88.9 76.8 94.43 N/A N/A

In memristor-based designs, memristors are used as synapses, and the multi-
plication of input spikes and weights is achieved by reading current from the
post-synaptic side of the memristor crossbar as it is explained in references
[71, 72, 73, 74, 75, 76]. Among those designs, references [71], [74] and [72]
converted the synaptic current immediately to digital signals so that neurons
can be implemented in software, while references [75], [76] and [73] designed
analogue neurons. References [71], [74], [72], [75] and [73] also applied STDP
or Hebb’s rule by using the characteristics of memristors to perform on-chip
learning. Those designs were validated through pattern recognition in either
supervised or unsupervised fashion. Details can be found in table 2.5.

2.2.1.4 Summary of Hardware Frameworks

In summary, existing neuromorphic designs focus on dedicated hardware de-
signs in different platforms, including ASICs, FPGAs, and memristor arrays.
Among all, memristor-based neuromorphic systems have shown promising po-
tential in low-power consumption usage scenarios (e.g. embedded systems).
However, when utilising memristors in neuromorphic designs, another type of
hardware infrastructure that conducts parallel device handling and higher-level
function mapping from neuromorphic applications is equally important. There
is no current work addressing the need for this type of hardware infrastructure,
which motivates this thesis to fill the space for developing a digital interface for
a memristor array control and characterisation system.
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TABLE 2.6: Comparison of SNN and/or memristor-based NN Simulators
(memristor-based NN simulators are colored in gray). The table is inspired

by [134].

Simulators Programming Language training SNN support Usage
Brian [135] Python ✓ general SNN simulation

Brian2GeNN [136] C++, Python ✓ general SNN simulation
NEST [137] SLI a ✓ general SNN simulation

NEURON [138] a specified scripting language ✓ general SNN simulation
ANNarchy [139] C++, Python ✓ general SNN simulation

Nengo [140] Python ✓ neural behavior simulation
NeuCube [141] unknown ✓ neural behavior simulation
BindsNet [142] Python ✓ ✓ AI purpose

SpykeTorch [143] Python ✓ ✓ AI purpose
snnTorch [144] C++, Python ✓ ✓ AI purpose

NVMSpice [145] unknown ✓b circuit-level simulation
NVSim [146] C++, C ✓b circuit-level simulation

NVMain [147, 148] C++, Python, SystemVerilog ✓b circuit-level simulation
MNSIM [82] unknown ✓b circuit-level simulation

NeuroSim [81] C++, Python ✓ circuit-level simulation
TxSim [149] Python ✓ circuit-level simulation

memTorch [150] C++, Python AI purpose
IBM toolkit [151] C++, Python ✓ AI purpose

a SLI: a high-level scripting language b: Not naively supported

2.2.2 Software Frameworks

This subsection will introduce the software frameworks for emulating spiking
neural networks and memristor-based neural networks. A comparison of SNN
and memristor-based NN simulators is summarised in Table 2.6.

2.2.2.1 Spiking Neural Network Simulators

With the development of neuroscience and neuromorphic computing, a wide
range of SNN simulation frameworks have been developed. These simulators
are developed mainly for two purposes. One is to study brain functions and
neural dynamics, and the other is to exploit SNNs in AI tasks.

The first type includes designs such as Brian [135, 152], Brian2GeNN [136],
NEST [137], NEURON [138], ANNarchy [139], Nengo [140], NeuCube [141].
Brian [135] is a Python-based general-purpose SNN simulator providing a range
of implemented neuron models. Users can also implement their neuron dynam-
ics using the developed functions. The second version [152] adds the code gen-
eration functionality by separating the Brian core and a code generation engine
that can generate code for different programming languages. Brian2GeNN fur-
ther adds the functionality of running the Brian core in GPUs. Similarly, NEST
[137] and NEURON [138], written in specified scripting languages, also aim to
simulate individual neurons or large-scale SNNs. ANNarchy [139] is a similar
framework to Brian2GeNN with a Python interface used to generate C++ code
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for rate-coded, spiking neural network simulation. Nengo [140] and NeuCube
[141], on the contrary, focus on the simulation of neural behaviours and brain
functionalities to enhance the understanding of how biological neural networks
process information and deliver functions.

BindsNet [142], SpykeTorch [143], and snnTorch [144] belong to the second cat-
egory. These simulators commonly extend the capability of mature ANN sim-
ulation frameworks such as Tensorflow [153] and Pytorch [91] to utilise tensor
operations and allow GPU compatibility. BindsNet [142], SpykeTorch [143],
and snnTorch [144] are all based on Pytorch, but they still have some differ-
ences. BindsNet is a flexible and general machine learning-oriented SNN li-
brary with a range of learning rules and neuron models, whilst SpykeTorch
[143] focuses on restricted and optimised SNNs with time-to-first-spike coding
method and the non-leaky integrate-and-fire neuron model only, and snnTorch
utilises gradient-based learning rules to train SNNs.

2.2.2.2 Memristor-based Neural Network Simulators

Along with the research on utilising memristors to accelerate neural networks,
the development of memristor-based neural network simulators has also grown.
These simulators can also be divided into two categories: one provides circuit-
level simulation with predicted specifications, and the other focuses on the con-
ceptual simulation of architectures for AI applications with device non-ideality
modelling.

Examples of the first category include NVMSpice [145], NVSim [146], NVMain
[147, 148], MNSIM [82], NeuroSim [81], TxSim [149]. Among all, NVMSpice,
NVSim, and NVMain are SPICE-based [154] that do not natively support infer-
ence or training. MNSIM and NeuroSim are designed for parametrised designs
of memristor-based neuromorphic microchips. They collect information such as
the crossbar array size, the ON and OFF resistances of memristive devices, the
technical node, the read-out circuit module selection, etc., and then anticipate
the layout area, dynamic power dissipation, latency, leakage power, and other
performance indicators. NeuroSim supports both emerging non-volatile de-
vices such as memristors and mainstream CMOS-based memory devices. Like-
wise, MNSIM employs a hierarchical, memristor-based neuromorphic comput-
ing system architecture. Finally, TxSim [149] represents a further refinement
and includes DACs, memristor crossbars, and ADCs non-linearity when train-
ing on memristor crossbars.
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In contrast, memTorch [150] and IBM Analog Hardware Acceleration Kit [151]
(denoted as IBM toolkit for convenience) are examples of the second category.
Written in Python, they extend Pytorch by including models of memristive de-
vices. To be more explicit, memTorch enables the use of both linear and VTEAM
memristors [155], as well as the estimation of non-ideal variations based on pre-
defined distributions, and the IBM toolkit includes PCM models. In addition,
both memTorch and the IBM toolkit are open-source and can run on CUDA.
Notably, all memristor-based simulators mentioned above cover ANNs exclu-
sively without supporting SNNs.

2.2.2.3 Summary of Software Frameworks

This subsection introduced software frameworks for SNNs and memristor-based
neural networks. Notably, although many SNN simulators and memristor-
based NN simulators exist, no memristor-based SNN simulators for algorithm-
level simulation of machine learning tasks have been invented. However, this
type of simulator is of increasing significance as more research attention has
been drawn to incorporating memristor-based SNNs to improve hardware ef-
ficiency. This fact inspired the thought of inventing the first algorithm-level
memristor-based SNN simulator presented in Chapter 4 to fill the vacancy.

2.2.3 Applications

In the application aspect, we compare deep learning applications and memristor-
based SNN applications. We aim to find a reliable method for applying memris-
tors for high-dimensional large-scale applications as deep learning solutions do.
Therefore, this subsection reviews deep learning-based and memristor-based
SNN applications and attempts to find out the challenges in using memristor-
based SNNs to perform high-dimensional large-scale tasks.

2.2.3.1 Deep Learning Applications

Deep learning has been reported in applications spanning different disciplines,
from image recognition to natural language processing, from recommendation
systems to bioinformatics. This subsubsection gives a few typical examples of
deep learning application summaries in Table 2.7. Reference [156] applied a
CNN for image recognition tasks. Reference [157] adopted transformer [158],
a self-attention based [159] deep neural network that overcomes the bottleneck
of sequential data processing of RNNs by computing self-attention in parallel
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TABLE 2.7: Deep learning and Memristor-based SNN Applications.
Memristor-based SNN applications are coloured in grey.

Design Synapses Networks Learning rule Applications
[156] digital CNN BP image recognition
[157] digital transformer[158] BP natural language processing
[160] digital CNN BP recommendation system
[161] digital FC BP bioinformatics
[71] memristors WTA SNN weight-dependent STDP pattern recognition
[74] multi-memristors FC SNN STDP handwritten digit recognition
[72] memristors FC SNN STDP handwriteen digit recognition
[75] memristor SNN Hebb’s rule pattern recognition
[76] memristor Hopfield SNN N/A pattern recognition
[73] memristor WTA SNN STDP pattern recognition

[162] PCM FC SNN back-propagation language modelling, music prediction
[77] PCM model SRNN e-prop [86] sequence prediction

for every token in the inputs, for natural language processing and achieved
the state-of-art in eleven natural language processing tasks. Reference [160]
used CNN for high-dimensional feature extraction in a recommendation sys-
tem. Reference [161] used deep feed-forward NN with singular value decompo-
sition (SVD) methods for dimension reduction in bioinformatics applications.
In general, these applications usually require high-dimensional inputs and deep
and large-scale neural networks, and sometimes need the assistance of dimen-
sion reduction models.

2.2.3.2 Memristor-based SNN Applications

We summarised typical memristor-based SNN applications in Table 2.7. Among
all, references [71], [74], [72], [75], [76] and [73] employed memristor-based SNN
in performing pattern recognition tasks. Two designs have demonstrated nat-
ural language processing tasks. Reference [162] used a PCM crossbar to accel-
erate SNN for language modelling and music prediction. Reference [77] sim-
ulated a spiking RNN for performing a sequence prediction task using e-prop
[86], a newly proposed local gradient-based learning rule, with a PCM model.

2.2.3.3 Summary of Applications

This subsection introduced typical deep learning and memristor-based SNN
applications. Deep learning has shown applications spanning across differ-
ent disciplines with high-dimension inputs and large-scale networks, whilst
memristor-based SNNs focus only on applications with low-dimensional in-
puts and small-scale networks. A possible reason is the lack of effective learning
rules to train an SNN for extending the usage of memristor-based SNNs in high-
dimensional large-scale tasks. Firstly, directly processing high-dimensional vec-
tors is space- and computationally inefficient. Also, if a dimension reduction
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model, such as word embeddings (e.g. GloVe [84] and word2vec [85]), train-
ing in SNNs requires more theoretical support. So far, there is no such theo-
retical support provided by historical works. Besides, spike trains are gener-
ated to represent continuous values in SNNs. Gradient-based learning rules,
commonly used in SNN training for supervised learning, require accumulating
errors along the spike train to decide the update amounts of the continuous-
valued parameters. This process is computationally inefficient. Finally, mem-
ristor non-idealities introduced from the read noise and the write variations
make the training of the memristor-based SNNs even more difficult. These is-
sues must be addressed to exploit the potential of the low-power computation
of memristor-based SNNs for expanding the usage of memristor-based SNNs
in more applications. Chapter 5 of this thesis aims to resolve these issues.

2.3 Summary

This chapter presents the theoretical background of memristor-based spiking
neural networks from SNN preliminaries to memristor basics. Historical neu-
romorphic designs in hardware, software, and their applications have also been
introduced. We noticed three critical types of designs missing to complete the
pathways to apply memristors for neuromorphic applications: a control and
characterisation system that handles devices and maps higher-level functions,
an algorithm-level memristor-based SNN simulator, and a demonstration of
text classification task utilising memristor-based SNNs. For the last design,
there are also some theoretical challenges to overcome before the design can
be developed. This thesis focuses on addressing the existing issues and de-
veloping missing designs to complete the whole picture for memristor-based
neuromorphic applications. The following three chapters will introduce these
three designs.
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Chapter 3

An FPGA-based Digital Interface for
Memristor Arrays

3.1 Introduction

Memristors have been used to exploit the potential in a wide range of applica-
tions, such as programmable logic [163], control systems [164], radio-frequency
identification [165], signal processing [166], brain-computer interfacing [167],
and neuromorphic computing [71, 72, 73, 74, 75, 76]. Among all, neuromor-
phic computing applications are the focus of this work. Benefiting from the
intrinsic similarity to biological synapses [120] and the low-cost matrix mul-
tiplication computed by memristor arrays [57], many designs have employed
memristors in neuromorphic computing. For example, reference [168] proved
the possibility of using memristors in Bayesian inference; reference [71] ex-
plored the weight-dependent STDP and utilised this rule to train an unsuper-
vised winner-take-all network, and reference [73] applied on-chip learning with
STDP in memristors.

Meanwhile, the need for developing specified systems for testing and control-
ling memristor arrays is also increasing. For one thing, memristors are tune-
able resistors with non-linear switching dynamics. This feature makes mem-
ristors require testing systems for specific characterisation, including current-
voltage sweep and incremental pulsing, to gain more intuition of memristor
behaviours. For another, memristors are commonly arranged in arrays, hence
requiring light-weighted control systems with parallelism and high-speed data



38 Chapter 3. An FPGA-based Digital Interface for Memristor Arrays

processing. So far, only a few instrumentation systems can provide these func-
tionalities. Reference [78] reported a memristor-CMOS integrated array with
high-voltage driver and voltage sensing systems, and reference [79] presented
an on-chip characterisation system with 512×512 devices, but they both only
have been simulated without being physically tested. Reference [80] is a 64-
channel PCB-based characterisation tool for memristor arrays, but this work
only allows read/write operations in a single channel at a time. A memristor
array testing and control system that can provide both parallelism and high-
speed data acquisition is still missing.

To address this need, this chapter introduces an FPGA-based digital interface
that can be used to build a memristor array control system, which has two
primary usage scenarios: 1) it acts as a characterisation platform for general
testing, 2) and it serves as a control system allowing parallel reading and high-
speed pulse programming in a board-level neuromorphic system. Beyond the
usage for memristor devices, this control system can work as a much more pow-
erful, general-purpose testing instrument for multiple devices. Experiments,
including resistive array handling and memristor current-voltage sweep, have
also been delivered to validate the functionality of this digital interface. In the
end, the specifications of this system have been compared to similar systems,
confirming the competitive performance this work can achieve.

With the aid of the digital interface presented in this chapter, research on incor-
porating memristors in neuromorphic designs can be accelerated by

1. easy testing of memristor characteristics,

2. channel-level parallelism in the read/write operations that improve ma-
trix multiplications runtime from O(n2) to O(n), specifically, 64 channel
concurrent read and write need to be achieved,

3. flexibility of extending the system to implement a board-level neuromor-
phic architecture.

The major contribution of this work is summarised as developing and bench-
marking an FPGA-based digital interface that allows channel-level parallelism
and high-speed data processing for memristor array testing and control.

The chapter outline is as follows: in section 3.2, design objectives of the digi-
tal interface are described; section 3.3 gives design details from the high-level
overview (subsection 5.2.1) to low-level implementations (subsection 3.3.2-3.3.4);
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section 3.4 shows the experiments to validate the functionality of the digital in-
terface; and section 3.5 summarises the chapter.

This work has led to these publications [169, 170, 171].

3.2 Design Objectives
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FIGURE 3.1: The topology of a hybrid SNN with memristor arrays. The icon
in blue shows the structure of the memristor crossbar control system. The in-
puts are firstly converted to spikes through the spike encoder, and the input
spikes are sent to the software interface of the control system. The digital
interface bridges the communication between the software interface and the
analogue periphery to handle memristor devices in the crossbar. After mea-
suring the input current response from the crossbar, the voltage accumulator
and the comparator calculate the membrane voltage and decide whether the
neuron should fire an output spike. The output spike is then sent to the synap-
tic updating unit with labels to decide the weights used in the next iteration.
Notably, the diagram is an abstract illustration of how the presented design
can be used in a hybrid SNN. How the spike encoder, the voltage accumulator,
the voltage comparator, and the synaptic updating unit are designed depends

on the users’ scheme, and it is out of the scope of this work.

A hybrid SNN topology is shown as an example (Figure 3.1) to illustrate what
role the FPGA-based digital interface for memristor arrays plays in a PCB-level
memristor-based spike neural network. A complete spiking neural network
consists of several parts:

1. Encoding input spike trains;

2. Calculating the synaptic spike response current;

3. Updating internal variables such as membrane voltages;

4. Updating synaptic weights.

Firstly, the input data is converted to spike trains in software, and the software
interface issues commands accordingly to the digital interface. The digital in-
terface decodes the commands and sends input spikes as 0-or-1 binary pulses
to the wordlines of the memristor array. Next, the memristor crossbar with its
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control system (digital interface and analogue periphery circuit) calculates the
weighted sum of inputs according to the equation shown below:

u =
N

∑
i

wixi + b

Where u is the synaptic response current, wi is the weight for the synapse i, xi

is the input from the synapse i, N is the number of synapses connected to the
neuron, and b is the constant bias. In the hybrid system, calculating the synap-
tic spike response current is as simple as measuring the current flowing in the
bitlines according to Ohm’s law. After attaining the synaptic response current,
the membrane voltages are updated according to the chosen neuron model. If
the leaky integrate-and-fire neuron model is used, the new membrane voltages
are calculated by adding the synaptic response current to the decayed current
membrane voltages. After that, the magnitudes of the membrane voltages com-
pared to the threshold determine if spikes should be generated, and post-spike
membrane voltages are reset to 0 according to the comparison results. This step
usually happens in the software, whereas an FPGA can also be the alternative
if targeting more parallelism. Also, if output spikes are generated or not is re-
garded as inference results. Finally, the inference results are compared to the
ground truth for supervised learning, the new weights are calculated in either
software or an FPGA, and the digital interface sends pulses to trigger memris-
tor resistive state updates. Therefore, the digital interface is designed to achieve
the following functionality:

• Receiving, storing and decoding the commands sent from the software
interface.

• Controlling the analogue periphery circuit to read and write the memris-
tor array in a parallel fashion.

• Storing measurement results and fetching them according to commands
issued by the software interface.

The following sections will explain how the functionality is achieved.
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FIGURE 3.2: Digital interface of memristor crossbar control system shown in
the dashed box. Arrows show the data flowing directions. The USB 3.0 IP is
provided by Cesys [172]. The FIFO IP [173] and the DDR3 control IP [174] are

provided by Xilinx.

3.3 Design Implementation

3.3.1 Design Overview

The digital interface is designed for a memristor array control system. The con-
cept diagram of the memristor crossbar and its control system is shown as the
blue icon in Figure 3.1. The control system is composed of a software interface,
a digital hardware interface implemented in an FPGA, an analogue periphery
circuit, and a memristor crossbar array. This chapter only focuses on the digital
interface, which is based on Cesys EFM-03 development board [175]. The ana-
logue interface and the software interface shown in Figure 3.1 were designed
by other researchers.

The concept diagram of the hardware digital interface can be found in Fig-
ure 3.2. The software interface sends user commands to the digital interface
through USB 3.0 to send voltage pulses to or read out voltages from selected
memristor devices (in basic write/read operations). Those two basic opera-
tions are equivalent to sending pre-synaptic spikes and reading out synaptic
response current in conventional spiking neural network hardware. In a ba-
sic write operation, voltage pulse amplitudes, pulse widths and target device
IDs are encoded into commands and sent from the software interface through
a USB3.0 intellectual property (IP) core. A first-in-first-out (FIFO) buffer is con-
nected between the USB3.0 IP and the transmission layer to match the speed
of data transmission and data processing. The transmission layer in the digi-
tal interface decodes commands into control signals used in the control layer
to directly drive the analogue periphery circuit. In a basic read operation, the
software interface first sends read commands with parameters such as read-out
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FIGURE 3.3: Schematic of the analogue interface. The figure is from the au-
thor’s publication [169].

voltages and target device IDs. The transmission layer decodes the commands
and enables the control signals for the control layer to start the read-out. Read-
out results are stored in DDR3 off-chip memory. The implementation of the
FPGA interface will be explained in the next section. The digital interface is
realised in a Xilinx 7-serial FPGA. The USB 3.0 IP and the DDR3 controller IP in
the digital interface are provided by Cesys [172] and Xilinx [173, 174], respec-
tively.

3.3.2 Control Layer

The control layer drives the analogue circuit using decoded information from
the software interface. Therefore, the functionality of the control layer is de-
cided by the analogue periphery circuit. Before looking into the control layer’s
design details, understanding the analogue interface’s concept structure helps
determine what functionalities are expected in the control layer. The high-level
design of the analogue interface and the analogue circuits in each channel are
displayed in Figures 3.3 and 3.4 for clarity. Figures are exported from the paper
[169] where the author worked as a joint author. This controller is designed for
a 32× 32 memristor crossbar array with 64 channels, each of which includes an
operational amplifier (op-amp) to form a trans-impedance amplifier with differ-
ent selectable feedback resistors. Channels are grouped into 8 clusters, each of
which consists of 8 channels by using one 8-channel ADC chip, one 16-channel
DAC chip, and one 88-bit switch chain. Besides, there are also global selectors,
arbitrary DACs, current source controllers, and digital IOs to achieve flexible
control.
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FIGURE 3.4: Schematic of the channel circuit in the analogue interface. The
figure is from the author’s publication [169].
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FIGURE 3.5: Read (A) and write (B) operation in a selectorless memristor cross-
bar. Wordlines (in purple) and bitlines (in orange) are not intersected. The red
device is the selected device, the blue devices are half-selected, and the black

devices are non-selected.

In a basic read operation for a selectorless array, a low bias voltage that cannot
change memristor states is applied by DACs to the selected row. The selected
column is grounded so that the current fed through the trans-impedance am-
plifiers in the column can be calculated through the feedback resistor value and
the output voltage (Figure 3.5 (A)). There are three selectable feedback resistors
(820 Ω, 110 KΩ, and 15 MΩ) in a single trans-impedance amplifier to accurately
read back a wide range of voltages. Unselected devices will be connected to half
of the bias voltage from both terminals so that there is no voltage difference be-
tween the two terminals. However, in a selectorless array, there are half-selected
devices (which can be seen in Figure 3.5 (A)). Those in the same column with
the selected device will contribute currents in the read-out. Therefore, the cur-
rents in rows with those devices will also be measured and stored. We subtract
the measured current in half-selected devices from the measured current in the
selected devices to get the accurate current flowing in the selected device. In a
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FIGURE 3.6: Hierarchy of the transmission layer and the control layer. The
auto-range controller, the dynamic comparison, the ADC controller, the DAC
controller, and the switch chain controller are driven by the read operation
controller (shown as the red arrows). The switch chain controller can also be

driven by the channel update controller (shown as the green arrow).

selector-based array, the half-selected issue is solved by activating the selector
line of the selected device.

In a basic write operation, selected bitlines are still grounded, and selected
wordlines connect high-speed channels, which use switches to achieve short
pulses (Figure 3.5 (B)). Two DACs per channel are needed to apply bipolar
pulses. Also, arbitrary logic configures flexible voltage references, selectors,
and programmable current sources. Therefore, all components (DAC clusters,
ADC clusters, high-speed channels, control switch chains, arbitrary logic, selec-
tors, and current sources) in the analogue periphery circuit need the control of
the digital interface.

Based on the structure of the analogue periphery circuit, the design diagram
of the transmission layer and the control layer is decided as shown in Figure
3.6. One of the objectives of the digital interface is to maximise parallelism
with reduced communication costs. To achieve this objective, each module in
the control layer only controls one cluster. In the transmission layer, the data
bus is connected to the PC to transfer final data results calculated in FPGA to
benefit from the parallel computation power of FPGAs. The design uses syn-
chronous communication to reduce communication costs and avoid contention.
The design follows a bottom-up design flow: at the bottom are the lowest-level
modules, including auto-range modules, dynamic comparison modules, ADC
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controller, DAC controller, high-speed pulse timer, and switch chain controller,
for directly driving analogue periphery circuits. Among those modules, each
auto-range controller and dynamic comparison only control one channel, while
each ADC controller, DAC controller and switch chain controller control one
cluster. The lowest-level modules are directly driven by higher-level modules,
such as the read operation controller and the channel update controller, accord-
ing to commands decoded from the transmission layer.

3.3.2.1 DAC Controller

DACs used in the analogue interface are DAC81416, produced by Texas In-
struments. DAC81416 chips are 16-channel, 16-bit high voltage DACs [176].
DAC81416 chips use standard SPI protocol, with SCLK, SDI, SDO, and CS serv-
ing as the serial clock, serial data output, serial data input and serial data en-
able, respectively. Configuration registers and DAC data registers in DAC81416
chips are responsible for setting global configuration and storing voltage val-
ues. DAC register reconfigurations are needed before data are sent to DAC data
registers, as default values do not suit the working conditions of the analogue
interface. Please refer to Appendix A, section 1, for details.

According to the datasheet, the normal SPI transmission that DAC81416 chips
support is a 24-bit access cycle. It contains a read or write command bit, a
don’t-care bit, a 6-bit register address, and 16-bit data. DAC data registers have
addresses from 10h to 1Fh. There are two-stage operations to use the DAC
chips: the configuration stage and the DAC performance stage. After power-up,
DACs need to be configured properly before going into the DAC performance
stage. Transmission in the configuration stage is a normal stand-alone 24-bit
SPI communication. However, as all DACs channels will generate different
voltages (Vbias, Vbias/2, Vpulse or 0) in read or write operations, updating all 16
channels is not efficient in a normal transmission mode. Another transmission
mode, called streaming mode, is more efficient in feeding a large amount of
data. By holding the CS signal low and continuously shifting data into DACs,
streaming mode only needs a base address to shift more than one 16-bit data
package into DAC data registers.

The DAC clusters control module is designed to have a configuration stage



46 Chapter 3. An FPGA-based Digital Interface for Memristor Arrays

CLK_50M

ini_done

wvalid

ini

wvalid_done

data datadon't care

DAC stage configuration data transmissionwait wait 

CLK_50M

ini_done

wvalid

ini

wvalid_done

data

idle

don't caredon't caredatadon't care data

FIGURE 3.7: DAC control module protocol. Different colours show different
stages.

working in normal transmission mode and a data performance stage in stream-
ing mode. Figure 3.7 shows the protocol used in the control module. The con-
trol module is working under a 50MHz clock. There are four states - idle, con-
figuration, wait for data, data transmission - in the control modules. Initially the
program stays in idle state until the higher-level control module sends an ini
signal to start the configuration. After shifting configuration data into config-
uration registers in DACs, the module generates an ini done signal sent back
to the higher-level control module. Only when an ini done is received can the
higher-level module starts sending data to DAC data registers. Data sent to data
registers must be valid when a wvalid is valid. Similarly, when data transmis-
sion finishes, the module sends back a wvalid done; after that, another wvalid is
sent to start another data transmission operation. Table 3.1 summarises signals
of a DAC81416 control module and how they work.

There are two DACs used in each crossbar channel, so to configure a 32× 32
memristor crossbar, 128 DACs channels in 8 chips are needed. There are eight
control modules described in previous paragraphs. They can be tied together
to work simultaneously or independently to achieve flexible control.

3.3.2.2 ADC Controller

ADCs used in the analogue interface are LTC2358 produced by Analog Devices.
LTC2358 is a 18-bit 8-channel differential ADC with working range up to±10.24
V [177]. The LTC2358 supports SPI CMOS serial interface through SCKI, SDI,
SDO (0, ..., 7), CS serving as the clock, serial data input, serial data output, and
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TABLE 3.1: DAC81416 control modules signals

signals signal type description

ini input signal from higher-level control module
to trigger the configuration

ini done output signal to higher-level control module
to indicate the finish of configuration

wvalid input signal from higher-level control module
to trigger a data transmission operation

wvalid done output signal to higher-level control module
to indicate the finish of data transmission

data input, 128-bit bus 16-channel 16-bit data
that will be sent to DAC data registers

serial data enable. LTC2358 has a 24-bit softspan code, a code that can be sent
by users, to select the input range for all eight channels, and the softspan needs
to shift into the chip before every conversion. LTC2358 operates in two phases:
the acquisition phase and the conversion phase. During the acquisition phase,
chips simultaneously start sampling in all channels (if not disabled) by pulling
up CONVST (0, ..., 7) signals. After that, BUSY (0, ..., 7) signals go high and back
low when the sampling finishes. Holding CS signal low starts the conversion
phase when 24-bit per channel conversion results, including 18-bit conversion
results, 3-bit channel id, 3-bit softspan, shift out from SDO (0, ..., 7) signals.
Meanwhile, 24-bit softspan code (3 bits per channel) for defining input ranges
of next conversion shifts into SDI at every rising edge of SCKI. A complete
conversion contains acquisition and conversion phases, so ADCs always need
to switch between these two phases.

The analogue interface uses four of the eight data outputs lanes, meaning SDI
takes 24-bit softspan code and SDO outputs 48-bit data results for two channels.
The softspan code appears twice on SDI to match data lengths in SDI and SDO.
Another issue is that the first conversion uses the last softspan code, which may
cause some errors as the softspan may be outdated. To address this issue, an-
other operation mode which only has the conversion phase is implemented in
the module. This operation mode does nothing but starts a 24-bit data trans-
mission to update the softspan we want. After updating the softspan, the state
machine can be in the normal two-phase operation mode until the next softspan
needs to be updated.

A finite state machine is used to realise the working scheme proposed above.
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FIGURE 3.8: ADC control module state machine

Figure 3.8 shows how exactly the finite state machine of LTC2358 control mod-
ule is designed. First, let us look into the structure of the state machine. Af-
ter powering up, the state machine starts from the ’idle’ state. When a valid
conf control signal arrives, the state machine goes to the ’configuration’ state
to update softspan. After the softspan configuration, a conf done signal is sent
back to the higher-level control module, and the state machine returns to ’idle’.
When a valid rd control signal arrives, the state machine goes to a full two-
phase operation mode which will do both ’conversion’ and ’acquisition’. In
the design, this operation mode can be represented by ’wait for busy high’,
’wait for busy low’, ’transmission’, and ’read out’ four states: In the state ’wait
for busy high’, an active CONVST signal is sent out to trigger the sampling.

After a high BUSY signal is detected, the state machine goes to the ’wait for busy
low’ state, which waits for the BUSY signal to go low. The low BUSY makes the

state machine jump to the ’transmission’ state. There is a time-out counter in
the ’wait for busy low’ state to avoid the state machine being locked up. If no
valid low BUSY signal is detected when the time-out counter hits the maximum
possible value, the state machine still starts the ’transmission’ state. The ’trans-
mission’ state starts shifting conversion results from outputs, and the ’readout’
state updates the data register. After that, a rd done signal is sent back to the
higher-level control module, and the state machine goes back to ’idle’, waiting
for the next valid control signal.

Table 3.2 gives control signals in LTC2358 control module, and the whole pro-
tocol can be referred to Figure 3.9. There are four main control signals: conf,
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conf

conf_done

rd

CLK_50M

softspan don't caresoftspan

rd_done

nop nop nopconversion conversion nopacquisitionADC phases

don't care first conversion resultsdata reg

FIGURE 3.9: ADC control module protocol. different colour show different
stages.

conf done, rd, and rd done. conf and rd are input signals generated from higher-
level control modules, and conf done and rd done are outputs signals to higher-
level control modules. Signal conf triggers a update on softspan and signal
conf done indicates the end of this operation. Signal rd triggers a normal two-
phase operation including conversion and acquisition and signal rd done indi-
cates the whole operation is done. These four signals are all high-active pulses.
Data reg will only be updated when rd done is released. Another triggering sig-
nal (conf or rd) can only be sent after higher-level control module receives feed-
back signals (conf done or rd done).

TABLE 3.2: LTC2358 control module signals

signals signal types description

softspan input, 24-bit bus signal from the higher-level module
to define the working range of 8 channels

conf input signal from the higher-level control module
to trigger only conversion

conf done output signal sent to the higher-level control module to
indicate the softspan code has been updated

rd input signal from the higher-level control module
to trigger a normal full two-phase operation

rd done output signal sent to the higher-level control module to
indicate a normal two-phase operation has done

data reg output, 8 24-bit bus 8-channel conversion results
with raw data from adc serial outputs
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There are eight LTC2358 chips needed in the analogue interface. Each module
has control signals for one chip. Control signals from the higher-level mod-
ule can be tied together or generated independently depending on the usage
scenarios.

3.3.2.3 Switch Chain Controller

Switch chains reconfigure trans-impedance amplifiers and high-speed channels
in channels of the memristor crossbar. All switches shown in Figure 3.4 be-
long to switch chains. The analogue interface uses ADG1414 and ADG1439 to
connect switch chains. ADG1414 and ADG1439 have serially controlled eight
individual single-pole single-throw switches and two sets of 4-channel multi-
plexers, respectively. They both use a standard SPI serial interface with sig-
nals SCLK, SYNC, DIN and SDO serving as a serial clock, a serial interface
enable signal, serial data inputs, and serial data outputs, respectively. A stan-
dard transaction transmits 8 bits each time, whereas a daisy chain can transmit
any bits of data with every 8-bit data package decoded as control data for one
chip.

In the analogue interface, each chain controls one cluster to ensure maximised
flexibility and parallelism so that no cross-controlling is needed. A switch chain
has 11 chips with 88-bit control data. Each channel uses 11-bit control data, in-
cluding options for ’channel grounded’, ’channel grounded with a capacitor’,
’current sources’, ’high-speed driver’, ’no feedback resistor’, ’110 kΩ feedback
resistor’, ’820Ω feedback resistor’, ’array connected’, ’low-side high speed con-
nected’, ’high-side high-speed connected’ and ’ADC grounded’, as shown in
Figure 3.4.

The design for a switch chain controller is simple. Triggered by a wvalid signal
from a higher-level control module such as a read or write controller, the trans-
action starts by holding the SYNC signal low and shifting one bit into DIN per
clock cycle. A switch chain transmits 88-bit data in one transmission under the
25 MHz clock frequency.

3.3.2.4 High-speed Pulse Controller, Arbitrary Logic, Selectors, Current
Sources, and Digital Potentiometer

Apart from DAC clusters, ADC clusters and switch chains, there are other parts
in the analogue interface to make the control system more versatile. These in-
clude a high-speed pulse generator, arbitrary logic, selectors, current sources,
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FIGURE 3.10: Auto-range module state machine

and a digital potentiometer.

High-speed channels are channels controlled by MOSFETs to generate short
pulses. In the digital interface, they are directly generated via the user I/Os on
FPGA with a timer to control the pulse width according to the pulse width pa-
rameter passed from the transmission layer. Arbitrary logic uses an ADG1414
switch chip, one of the same chips used in a switch chain, to flexibly select ref-
erences for current sources, selectors, etc. by users. It can simply reuse a control
module for a switch chain with only 8-bit data. Selectors and current sources
use a single ADG1414/ADG1439 chip. Therefore, they can reuse the switch
chain controller module without a daisy chain. Digital potentiometer module
is to control the digital potentiometer chip AD5293BRUZ-20 [178]. This chip
uses SPI protocol to communicate, so the control module is similar to the DAC
controller module.

3.3.2.5 Auto-range Module

One of the memristor crossbar control circuits’ main functions is to read back
currents in crossbar bitlines. Trans-impedance amplifiers convert current to
voltages to use ADCs to measure current. However, memristor resistance states
span from kohms to Mohms, making it hard to measure the voltage accurately
with only a single fixed-value feedback resistor in a trans-impedance amplifier.
In each channel, the analogue interface has three feedback resistors with differ-
ent values - 820 Ω, 110 kΩ, and 15 MΩ - so a proper feedback resistor can be
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chosen in the current read back. Also, in LTC2358, analogue input ranges can
be altered with different softspan codes for more accurate conversion results.
Therefore, the digital interface includes a module to implement the algorithm
that can automatically select the best feedback resistor and ADC input range
according to read-out voltage results.

Figure 3.10 shows the finite state machine of the auto-range module. A differ-
ent choice of feedback resistor can make over 100x differences, whereas ADC
input range change only causes 2x differences in conversion results. Therefore,
choosing a proper feedback resistor should be the first step in every state transi-
tion. Also, as a transition condition, conversion voltage thresholds should have
certain margins to avoid misjudgement due to possible inaccurate conversion
results. Thus, thresholds were chosen as transition conditions are ±4.5 V and
±65 mV for ADC ranges and feedback resistors. The start point always uses
the maximum possible ADC range (±10 V) and the smallest feedback resistor
(820 ohms) to avoid voltage overflow. The state machine automatically selects
a larger feedback resistor if the conversion result is within the range of ±65
mV. When the feedback resistor selection process finishes, the conversion result
compares with±4.5 V to choose a better ADC input range. Once both feedback
resistor and ADC range are the best options, another conversion starts to check
if saturation happens with the new range and new feedback resistor. If yes, the
state machine changes back to the start point, and the auto-range starts again
to find the best configuration. This state will not end until the best settings are
found without saturating ADCs.

Several control signals are used between the auto-range module and its higher-
level control module. They are listed in table 3.3. Signal auto range en is used
to enable auto-range, and it will be turned off once auto-range finishes. Sig-
nal channel active is used to turn on the channel that runs an auto-range oper-
ation. Data reg passes 18-bit ADC conversion result to the auto-range module,
softspan, switch, and auto state give the updated softspan and switch configu-
ration as well as the auto-range state in this state. When the new ADC range
and switches data are applied from the higher-level module, another measure-
ment starts, and the auto-range module gives the new state according to the
measured result. If the best state has been found, the state stays, and signal
auto range done sets high to indicate the auto-range has finished.

Auto-range is automatically run in a basic read operation. Auto-range is one of
the states in the read operation state machine. After this module successfully
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signals signal type description

auto range en input signal from higher-level control module
to enable autorange

channel active input signal from higher-level control module
to turn on the channel for autorange

data reg input,
18-bit data bus adc conversion data sent to run auto range

softspan output, 3-bit updated softspan to change adc range

switch output, 2-bit updated switch configuration
to change feedback resistor

auto state output,
6-bit one hot code auto range state

auto range done output signal sent to higher-level module
to indicate the final best state has been found

TABLE 3.3: Signals in auto range module

FIGURE 3.11: Illustration of the large spike when changing states. When the
feedback resistor changes, a voltage spike up to +/- 12.5 V can appear in output
terminals of trans-impedance amplifiers. This is because the voltages at the

output terminals cannot change immediately.

picks the best combination of the feedback resistor and ADC range, the config-
uration will stay unchanged until the next round of auto-range. More details
will be shown in a later subsection for read operation controller. Auto range
function not only gets a more accurate current with the best resolution but also
can be used to derive memristor resistance states which can be important infor-
mation for testing and debugging.
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3.3.2.6 Dynamic Comparison Module

According to experiments, when the feedback resistor changes from 110 Kohms
to 15 Mohms, a voltage spike up to +/- 12.5 V appears in output terminals of
trans-impedance amplifiers. This is because the voltages at the output termi-
nals cannot change immediately. Figure 3.11 shows the spike we observed from
an oscilloscope. If ADCs sample the voltage before settling in the auto-range
process, the state machine may stay in an error state. Therefore, to guarantee
the fluctuation is within an acceptable range, the digital interface has a mod-
ule with an algorithm that can dynamically compare two successive measured
voltage values with the sampling frequency of 50MHz. Experimental results
show that if the voltage difference between two measurements is smaller than
0.04V, we assume that the voltage has settled because 0.04V is smaller than the
65mv threshold for the transition in the auto-range state machine. In the design,
the dynamic comparison module takes two successive measurements from the
same channel, and the auto range will only be enabled when the voltage meets
the requirement.

3.3.2.7 Read Operation Controller

For a basic read operation, the working scheme is as follows: firstly, set DACs
in wordlines to Vbias and in bitlines to 0 for a selected device, and Vbias/2 in
both wordlines and bitlines for unselected devices. Meanwhile, initialise switch
chains to enable trans-impedance amplifiers, and set selectors to drive transis-
tors for using a selector-based array. After waiting for DACs output voltages
to settle and switches to perform successfully, the auto-range process starts to
find the best ADCs range and feedback resistor by firstly configuring ADC soft-
span. Next, run conversion in ADCs and load ADC results. If this conversion
is not the first one after changing the auto-range state, the conversion results
will be sent to the ’dynamic comparison module’ to be compared with the last
result, which has the same ADC range and feedback resistor. If the voltage dif-
ference is smaller than 40 mV which is smaller than the auto-range threshold
of 65 mV, the voltage fluctuation is small enough to go to a correct auto-range
state. After that, the auto-range process is enabled for this conversion result. If
auto range en signal from the ’auto-range module’ is high, it indicates that the
best auto-range state is found. Now ADCs can start loading ADC conversion
data while keeping the current configuration. ADCs sample 32 times in a read
operation to get average values as final results. A read operation in an actual
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FIGURE 3.12: Flowchart of the read operation
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practice usually starts after a write operation to verify memristor conductance.
The flowchart for a read operation is shown in Figure 3.12.

3.3.3 Transmission Layer

The transmission layer receives instructions from a PC, decodes the instruc-
tions, sets the control signals for the control layer, packs the read-out results,
and sends the results to DDR3, as shown in Figure 3.6. The transmission layer
consists of a FIFO loader, an instruction decoder, and a data encoder, as illus-
trated in Figure 3.13.

When a PC sends an instruction to the FPGA, the instruction is delivered to the
FIFO via the USB3.0 IP. We design an instruction set with each instruction using
eight 32-bit data. Please refer to Appendix A, section 2, to see the instruction
set details. The FIFO loader loads the eight 32-bit data each time and sends the
full instruction package to the instruction decoder. When the execution of the
current instruction finishes, the FIFO loader loads another instruction package
unless the FIFO is empty.

The instruction decoder is used to decode instructions. Each instruction con-
tains an opcode with specialised parameters designed for this specific instruc-
tion. By checking the opcode, the instruction decoder sends the extracted pa-
rameters from the instruction and sets the control signals to enable lower-level
modules with the aid of the pre-defined instruction sets.

When a read operation is enabled, the read-out results are fetched from the
control layer to the data encoder. The data encoder packs the read-out results
and sends them to DDR3 memory with a ready flag sent to another specified
address. When the software interface in the PC detects a valid ready flag, a
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read request from the PC can be issued, and the read-out results can be loaded
from the DDR3 memory to the PC.

In this work, inter-IP communication is delivered via Advanced Microcontroller
Bus Architecture (AMBA) AXI interface [179]. AMBA AXI interface is a burst-
based transaction interface with independent read address, read data, write ad-
dress, write data, and write response channels. The address channels contain
the control information defining the transaction, and the data channels contain
transferred data between the master interface and the slave interface. In a read
transaction, the master interface sends a read request in the read address chan-
nel to the slave interface, and the slave interface transfers data to the master
interface through the read data channel as a response. In a write transaction,
the control information and data are both transferred from the master interface
to the slave interface, and the write response channel is used to signal the com-
pletion of a transaction from the slave interface to the master face. AXI slave
interfaces are integrated into the FIFO and the DDR3 controller IPs generated
by the Vivado toolkit, and AXI master interfaces are involved in the USB3.0 IP
provided by Cesys and the data encoder in the transmission layer. An AXI In-
terconnect IP [180] is used to interconnect between two master interfaces and
two slave interfaces.

3.3.4 Clock Domain Crossing Synchronisation

More than one clock is used in this work to meet the speed requirement in dif-
ferent modules. More specifically, the USB3.0 IP, the DDR3 controller IP, and
the AXI interface are running with a 100MHz clock. The ADC module and
the DAC module use a 50MHz clock. The switch chain controller uses 25MHz.
Without clock crossing domain synchronisation, the setup/hold timing require-
ment might not be met, and metastability might occur [181]. Therefore, clock
domain crossing synchronisation is implemented to ensure steady data trans-
mission across different clock domains.

A simple handshake is implemented for multi-bit data transmission across clock
domains: when the circuit in the sending domain has the data ready, it sends a
request signal to the data receiving domain and holds it until it has been suc-
cessfully received. In the receiving domain, a two-stage flip-flop is used to re-
move the metastability. When the circuit in the receiving domain successfully
receives a valid request, it sends back a ready signal to the sending domain and
passes the multi-bit data to two-stage flip-flops.
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3.4 Experiments

In this section, two commonly used functions, array read and increment puls-
ing programming, are validated through two experiments. These experiments
will show how the digital interface can handle devices and deliver advanced
functions in testing and characterisation.

3.4.1 Resistor Array handling

The objectives of the control and characterisation system built with the FPGA-
based digital interface can be summarised as three points: device characteri-
sation, device handling and higher-level function mapping. For device char-
acterisation and handling, parallel read/write operations improve the time ef-
ficiency in testing and controlling; for higher-level function mapping, parallel
read/write operations accelerate the matrix multiplication. In this subsection,
a resistor array handling experiment is illustrated to validate the system capa-
bility of conducting efficient and accurate crossbar read operations.

Figure 3.14 shows the array read results for a 32×32 resistor array. The used re-
sistor array provides known resistance values to calculate the read errors. Fig-
ure 3.14 (A) gives the actual resistance of the array. The resistance ranges from
1kΩ to 15MΩ. Line-parallel read operations were performed on each row to col-
lect read-out results (shown in Figure 3.14 (B)), and the proportional errors are
calculated as |Rmeasured − Ractual|/Ractual (shown in Figure 3.14 (C)). The read-
out performance is excellent, with 802 out of 1024 resistors having less than 5%
measured errors. The exceptional resistors are placed intentionally. The system
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selected the feedback resistors suitable during auto-range for those ‘normal’ re-
sistors but not for those exceptional ones. Therefore, the unsuitable feedback
resistors caused higher errors in those exceptional resistors.

3.4.2 Memristor Current-Voltage Sweep

Increment pulsing programming is another commonly used function for a mem-
ristor control and characterisation system to explore the device characteristics.
In this subsection, an experiment of IV-sweep for a Pt/TiOx/AlOx/Pt device
[64] is presented to validate the capability of the digital interface for conducting
increment pulsing programming.

Figure 3.15 shows the IV characteristic curve of the tested device. To conduct
the experiment, the bias voltage swept from 0V → 1.0V → 0V → -1.0V → 0V
with an increment step of 0.1V. The memristive resistance states were measured,
and the current flowing through the device was calculated and plotted in the
curve. The curve shows IV hysteresis for bipolar devices [182] that switch from
a low resistive state (LRS) to a high resistive state (HRS) and then back to LRS.
Due to the very low bias voltages and the sensitivity of the switching, the con-
trast between the HRS and the LRS is relatively small. However, the goal of
this experiment is to validate the instrument rather than prove how obvious
the switching is in this device. This experiment proved the digital interface
capability of conducting increment pulsing programming for real memristor
devices.
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3.5 Discussion

This chapter has presented an FPGA-based digital interface for memristor ar-
rays. Whilst this was explicitly designed for memristors, it can also be involved
in building a much more powerful, versatile tool for general-purpose character-
isation. This characterisation instrument allows simultaneous read/write oper-
ations to memristor arrays, making it a helpful hardware infrastructure that can
not only accelerate the testing but also be employed as a part of the board-level
memristor-based neuromorphic systems. To be more specific, When writing de-
vices, parallel write allows sending different bias voltages in different channels
to write devices in the same bitline at the same time. Without parallel write,
this procedure takes N times with N as the number of devices. Similarly, when
doing a basic read operation for MAC operations, parallel read allows biasing
devices in the same bitline at the same to make sure the measured current is the
accumulated current through all branches. Parallel read and write ensure the
functionality and efficiency of MAC operations.

TABLE 3.4: Comparison between the instrument built with this work and sim-
ilar systems. Data shown in this table has been published in the author’s work

[169]

[183] [184] [185] This work
Parallel read No No No Yes
Parallel write No No No Yes

Channel count 2R+2W+16D 32R+32W 4R+2W 64R/W+64D
Form factor Portable Desktop Benchtop Desktop

Min. chan. current N/A 1nA 10nA 100nA
Max. chan. current N/A 5mA 500mA 12mA
Current sample rate N/A 50-1000Ss−1 N/A 833Ss−1

Voltage resolution 166/665µ V 3/24mV 1 µ V 78 µ V
Voltage sample rate 100MSs−1 200kSs−1 1.25GSs−1 100kSs−1

Min. pulse width N/A 90ns 10ns 40ns
Max. chan. current N/A ±5mA ±500mA ±12mA
Pulse volt. range ±5V ±12V ±20V ±13.5V

Power 500mW 4.5W 2W 20W

The instrument built with the digital interface presented in this chapter can
achieve competitive performance compared to existing commercially available
testing instruments. The comparison between the instrument built with this
work and other similar systems is shown in Table 3.4. The results have demon-
strated that the parallelism of the digital interface presented in this chapter fa-
cilitates the high data throughput testing for emerging memory devices, though
with a relatively low sampling rate. Thus, we foresee that the control system
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built with the digital interface will play a critical role in accelerating research
regarding memristor-based neuromorphic designs where parallelism and high-
speed data acquisition are of paramount importance.
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Chapter 4

NeuroPack: A Software Simulator
for Memristor-based SNNs

4.1 Introduction

Neuromorphic computing has witnessed immense growth in the last decade,
manifested in advances, in theory, hardware, and infrastructure. Neuromorphic
computing has proposed a wide range of artificial neural networks [156] config-
urations, such as LSTMs [186] and convolutional neural networks (CNNs) with
different weights and signal quantisation [187], spanning both spiking [188]
and non-spiking approaches [189]. There is no doubt that this design process
entails multiple decision points, which results in a vast and complex design
space. Meanwhile, neuromorphic hardware is increasingly employing memris-
tors thanks to their multibit storage capability [64] and their simple architecture
that can be tessellated in large arrays [190]. Along these lines, software-based
simulation platforms designed for memristor-based neuromorphic systems be-
come significant for the fast validation of design ideas and predicting device
behaviour.

Current simulators (e.g. MNSIM [82] and NeuroSim [81]) centre more on circuit-
level designs, serving as tools either to simulate the behaviour of different hard-
ware modules or to estimate the performance of memristor-based neuromor-
phic hardware in integrated circuit designs. Sitting at a higher level of ab-
straction would be an ’algorithm-level device-model-in-the-loop’ simulator (or
’algo-simulator’ for short) designed to test functionally defined (as opposed to
explicitly designed) circuits with memristive device models at the algorithm
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level, e.g. performing specific online or offline learning tasks with memristors
as synapses in spike-based NNs. Such a tool would allow fast verification of
design concepts before serious hardware design effort is committed. It essen-
tially answers the question: Is my design likely to function given knowledge of
my memristive devices, assuming the rest of the circuit functions flawlessly? If
yes, work can proceed to the next stage.

This chapter presents NeuroPack: a simulator incorporating memristor mod-
els for neuromorphic computing at the algorithm level. NeuroPack is a com-
plete, hierarchical framework for simulating spiking-based neural networks,
supporting various neuron models, learning rules, memristor models, memris-
tor devices, neural networks, and different applications. Written in Python, it
can be easily extended and customised by users. NeuroPack also integrates an
empirical memristor model proposed by [88]. Between processing algorithms
and setting & monitoring memristor states, there is the significant step of apply-
ing a pulse of specific voltage and duration to trigger a memristor state change
corresponding to some desired weight change calculated from learning rules.
NeuroPack integrates a module to convert desired weight changes to estimated
stimulation pulse parameters for bridging this gap. Besides, NeuroPack can
also connect with commercially available instruments such as ArC 1 [191] to
use parameters extracted from real devices. In terms of applications, we use
NeuroPack to demonstrate image classification on the MNIST dataset [192] in
our ’Results’ section. We also give result analysis for systems with different val-
ues of the R tolerance, a parameter used in weight updating, and two biasing
methods as examples to showcase that NeuroPack assists users in investigat-
ing how critical design, device and architectural factors affect memristor-based
neuromorphic computing systems. Finally, NeuroPack includes a built-in anal-
ysis tool with a user-friendly graphic user interface (GUI) for visualising and
processing classification results. The main contributions of this work include:

1. Developing an algo-simulator for memristor-powered neuromorphic com-
puting with selectable neuron models, device models, and learning rules.

2. Modelling memristor state changes in neuromorphic computing tasks given
user-defined memristor parameters.

3. Converting expected weight changes prescribed by learning rules into pa-
rameters of bias pulses used for triggering memristor state changes in
weight updating.
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FIGURE 4.1: NeuroPack workflow. NeuroPack takes three input configuration
files: the connectivity matrix, the (neural) stimuli file, and the config file. The
virtual memristor array is formed by memristor models with several memris-
tor devices initialised according to instructions in the configuration and con-
nectivity matrix files. Neuron and plasticity models are included in the core
file. There are three steps in the ’updating fire history’ stage: calculating fire
states assuming neurons fire ’freely’, adding network-level constraints, and
updating firing history. Most learning rules except STDP support ’Calculat-
ing ∆W’. Users can easily employ different neuron and plasticity models by

replacing the core file. The image is from the author’s publication [193].

The rest of the chapter is organised as follows: Section 2 introduces the architec-
ture of NeuroPack with core parts and the workflow. An application of hand-
written digit recognition in the MNIST dataset is demonstrated in Section 3,
and the paper is summarised in Section 4.

This work has led to these publications [193, 194].

The source code of the work presented in this chapter can be found in the
Github repository: https://github.com/hjq310/NeuroPack

4.2 Methods

4.2.1 Design Overview

NeuroPack is designed to predict the results of online learning or offline classi-
fication tasks with selectable neuron, plasticity and memristive device models
and to monitor memristor state changes. NeuroPack’s workflow (see Figure
4.1) is divided into five parts to cover the functionality of achieving those two
tasks: input file handling, virtual memristor array, neuron core, plasticity core,
and analysis tool.
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Three input files need to be provided from users for input data handling: config-
uration file, connectivity matrix file, and stimuli file. The configuration file includes
the core parameters for setting up NN topology (e.g. neuron number in each
layer, number of layers etc.), neuron models (e.g. leakage term, read noise scale
etc.), and memristor devices (e.g. upper and lower boundaries of memristor
resistance). The connectivity matrix file defines neuron connectivity and maps
synapses to virtual memristors. The stimuli file contains input samples and la-
bels. Notably, NeuroPack only receives inputs as spike trains. Before feeding
the input to the simulator, the raw (sensor) input should be encoded indepen-
dently into spikes. User input files can be loaded through the NeuroPack main
panel, whose details can be found in Appendix B, section 4.

We now go through the steps for executing a classification task in a memristor-
based SNN. Firstly, the neuron model input samples are transformed into spikes
and stored in the stimuli file. The training and test datasets are loaded indepen-
dently. Because NeuroPack employs a framework of non-overlapping consec-
utive abstract time intervals at each time step, an input neuron is firing (1) or
non-firing (0) for precisely one time step. After that, the neuron core reads the
weights stored in the virtual memristor array and updates internal variables,
such as membrane voltages, based on the chosen neuron model. The new fir-
ing states are then computed in two steps: first, determining whether neurons
should fire by checking if the membrane voltages are above the threshold, and
second, adding network-level inhibition (e.g. winner-take-all networks). When
the training is enabled, inference results are passed to the plasticity core to up-
date weights using the selected learning rule; otherwise, plasticity updates are
skipped.

Weights are updated in the plasticity phase. For local timing-dependent learn-
ing rules such as STDP, long-term potentiation (LTP) or long-term depression
(LTD) are applied to memristor devices directly using spike timing information.
For non-local gradient-based learning rules, output errors are back-propagated.
Extra information such as input labels available to the system configuration file
is needed to calculate the output errors. Notably, there are two major concep-
tual approaches to describing plasticity events. The more straightforward way
is to define a function that transforms plasticity-related variables directly into
pulsing parameters. With the assistance of this function, the memristor switch-
ing dynamics will determine the actual resistive state (RS) change, which in
turn will be converted to a weight change. The more complex route transfers
plasticity-related variable configurations to a specified weight change and then
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searches the device model (a model is required for this technique) for a solu-
tion predicting that some collection of pulsing parameters will result in the re-
quired change. Processing every sample requires repeating the same process.
After inference results are acquired, they can be sent to the built-in analysis tool
together with internal variables and parameters, including synaptic weights,
membrane voltages and firing history, for data visualisation and analysis.

4.2.2 Neuron Models and Learning Rules

Neuron and plasticity rules models are located in the ’neuron core’ and the
’plasticity core’, respectively, as shown in Figure 4.1. The gradient calculation
depends on the neuron model in gradient-based non-local learning rules, such
as backpropagation. A straightforward way to implement this dependency
employed in NeuroPack is to pair each learning rule with one neuron model
and place them together in the same ’core’ file to allow the strong interdepen-
dences between the neuron model and the learning rules. NeuroPack offers
four example core files with different neuron and plasticity model pairs: the
rate-coded leaky integrate-and-fire neuron (LIF)[89] with STDP, the rate-coded
LIF with backpropagation (BP)[107], the temporal-coded LIF with Tempotron
[195], and Izhikevich neuron [105] with direct random target projection (DRTP)
[196]. Users can introduce their core files to include other neuron and plasticity
rules according to their needs by extending existing example cores as standard
templates. In this section, we use one specific example, the core file with the
rate-coded LIF neuron model and BP learning rule pair, to illustrate how Neu-
roPack constructs a fully-connected multi-layer spiking neural network with
winner-take-all functionality [90].

4.2.2.1 Leaky integrate-and-fire neuron and Back-propagation

The leaky integrate-and-fire neuron model is one of the simplest and most com-
putationally friendly neuron models that can still benefit from the biological
plausibility of SNNs. Most neuromorphic accelerators use LIF neurons, regard-
less if memristors are involved (e.g. [72]) or not (e.g. [53, 126]). NeuroPack
implements LIF with the equations shown below adapted from the differential
form [197] by assuming discretised time steps:

Vt = ∑ Wxt + αVt−1(1− yt−1)

yt = h(Vt −Vth)
(4.1)
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Where Vt denotes the membrane voltage at time step t, W represents the weights,
xt gives input spike to the neuron (represented as 1 or 0), α ∈ [0, 1] denotes a
leakage term, yt is the output spike at time step t, h(x) is the Heaviside step
function, and Vth is the threshold. The equations illustrate that two parts deter-
mine the neuron membrane voltage Vt at any time step: the current response
calculated by the weighted sum of incoming spikes at time step t, and the his-
tory membrane voltage at time step t − 1. An output spike is released if the
membrane voltage surpasses its threshold, and then the membrane voltage is
reset to 0. The mean-square-error (MSE) cost function E at time step t is shown
as follows:

E(t) =
1

2N

N

∑
i=0

(yi,t − ŷi,t)
2 (4.2)

where N is output neurons numbers with i denoting the output neuron index,
and ŷi,t gives the correct firing state of output neuron i at time step t. Using
the backpropagation with the chain rule (see derivation details in Appendix B,
section 1), the final expression of the weight changes is shown below:

∆Wk = −ηδk,txT
k,t

δk,t =

⎧⎨⎩ 1
N (yk,t − ŷt)⊙ h′(Vk,t −Vth) if k = K

(WT
k+1,tδk+1,t)⊙ h′(Vk,t −Vth) otherwise

(4.3)

Where η, k, and K are the learning rate, the layer index, and the total number
of layers, respectively. Wk gives the weight matrix between layer k − 1 and k.
⊙ represents element-wise multiplication. δ gives the error back-propagated
from the output neurons. Notably, gradient descent cannot directly be imple-
mented in SNNs, because of the non-differentiability of the Heaviside step func-
tion h(Vt − Vth). Using surrogate gradient descent [198] with straight through
estimators (STEs) [199, 200] is a common solution to address this issue. Neu-
roPack applies a surrogate derivative proposed by [201]. Please refer to Ap-
pendix B, section 1 for the complete derivation. The variable ŷi,t is included in
stimuli file as labels of input samples, and everything else is accessible directly
to NeuroPack.

4.2.2.2 Adding winner-take-all functionality

This subsection introduces how NeuroPack adds winner-take-all (WTA) func-
tionality to constrain at most one firing neuron in the output layer at each time
step. Adding WTA functionality is done by adding an extra softmax layer and
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only allowing the neuron with the largest firing probability to fire:

St = so f tmax(Vt ⊙ yt) (4.4)

The cost function is changed to the cross-entropy form correspondingly:

E = −
N

∑
i=0

yi,tˆ ln(Si,t) = −ln(Sj,t) (4.5)

Where j is the index of the output neuron that should fire. By calculating the
gradient of the new cost function, weight changes can be expressed as:

∆Wk = −ηδk,txT
k,t

δk,t =

⎧⎨⎩(St − yt̂)⊙ (yt + Vt ⊙ h′(Vk,t −Vth)) if k = K

(WT
k+1,tδk+1,t)⊙ h′(Vk,t −Vth) otherwise

(4.6)

All variables are accounted for before the WTA application; the freshly intro-
duced softmax function is placed in the same core file by adding network-level
constraints. For the complete derivation, please refer to Appendix B, section 2.

In summary, NeuroPack takes parameters such as learning rate, read noise
scale, the threshold and the leakage from the configuration file to set up a multi-
layer spiking neural network. Input spikes are fetched from the stimuli files and
delivered to the ’neuron core’ in the core file. The ’neuron core’ then reads the
memristor RSs from the virtual memristor array, computes membrane voltages,
and updates firing states during the inference phase. If training is enabled, in-
ference results, the correct firing states, and internal variables are loaded into
the ’plasticity core’ to calculate weight changes which are later used to trigger
memristor RS updates accordingly, as illustrated in Figure 4.1.

4.2.3 Memristor Model

In the virtual memristive device shown in Figure 4.1, a data-driven device
model is involved in predicting memristor switching dynamics as a function of
the bias voltage and the current RS responding to plasticity events. Whilst this
emulation platform has been developed to interface with any voltage-driven
memristor model from the literature, throughout this work, Neuropack was
validated with the model of [88]. This model captures how the new memristive
resistance states depend on the current states and the bias voltages, and it is an
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empirical one that matches well experimental results acquired by technologies
developed in house [202]. This model can be flexibly configured to model a
wide range of memristor devices by providing different values of parameters.
The model describes memristive RS switching rate (dR/dt) as a function of the
initial RS and the bias voltage, as reproduced here for convenience:

dR
dt

= m(R, v) =

⎧⎨⎩Ap(−1 + exp(|v|/tp))(rp(v)− R)2 if v > 0, R < rp(v)

An(−1 + exp(|v|/tn))(R− rn(v))2 if v ≤ 0, R ≥ rn(v)
(4.7)

where An and Ap are scaling factors. The (exp(|v|/tp,n) − 1) term describes
the main, exponential dependency of the switching rate on the bias voltage
with fitting parameters tn, tp retrieved from modelling. The (rp,n − R)2 term
encapsulates the ’RS saturation’ of the switching rate on the current RS with
the aid of fitting parameters a0p, a1p, a0n, a1n: the closer the RS is to the upper
(lower) limit, the harder it is to further push it up (down). Fitting parameters are
used in rp,n(v), a simple, first-order polynomial helper function that captures
the nature of the switching rate’s dependency on the current RS:

r(v) =

⎧⎨⎩rp(v) = a0p + a1pv if v > 0

rn(v) = a0n + a1nv if v ≤ 0
(4.8)

Despite various forms of models (e.g. charge-flux models [203]), the essential
condition observed is that the device model always takes time-wise discretised
voltage series and then calculates the current response and the RS change. Neu-
roPack does not support models that take current as inputs presently. dt is
a global, pre-defined parameter used throughout the simulation of memris-
tor resistance updates. d can be loaded from the configuration file. Memris-
tor models are organised in the virtual array in NeuroPack by using a class
ParametricDevice(*args) that takes user-defined parameters as inputs to create
a device object. Methods initialise(R) and step dt(V, dt) in the same class are
used to initialise the memristor device with specific resistance and update the
memristor RS by applying a pulse with magnitude of V and pulse-width of dt
correspondingly. The ’virtual memristor array’ class also includes methods to
read the device RS with the wordline w and the bitline b (read(w,b)), and to
apply a pulse with magnitude of v and pulse-width pw to the device at said
address correspondingly (pulse(w, b, v, pw)). When we apply a ’write’ oper-
ation, the pulse(w, b, v, pw) method is called. The pulse(w, b, v, pw) method
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is called for a ’write’ operation, which takes pw to split it into multiple succes-
sive sub-pulses with the duration of dt to be applied to memristors. For a ’read’
operation, by default, NeuroPack ignores the effect of the read-out voltages on
memristor RSs to reduce simulation runtime, but it provides an open option
for users to determine whether to consider the read-out voltages. It is these
functions that the core file calls to access and update memristor RS, required by
the neuron models and learning rules. By changing model parameter sets cor-
responding to different types of devices with different stacks, technologies, or
even underlying electrochemical mechanisms, NeuorPack can serve as a great
tool to understand how different memristive devices can influence the training
and the inference of basic machine learning algorithms. The Memristor model
mainly captures the non-linear switching dynamics, and the read variations are
added in method read(w, b).

4.2.4 Weight Mapping and Updating

The basic operating principle of most memristor-based neuromorphic designs
(e.g. [57] and [204]) is analogue signal processing to accelerate matrix multi-
plications. By mapping synaptic weights to memristor conductance and ap-
plying voltage pulses to wordlines of the memristor arrays, the weighted sum
of the inputs is represented as the current in the bitlines, according to Ohms’
law. To do so, Neuropack maps weights linearly to memristor conductance to
restrict weight within range [0, 1] by default, but other mapping methods can
also be chosen if needed. The linear mapping represents weights using a map-
ping function: W = αG + β. Here, α and β are coefficient and offset. Negative
weights are not used because they can be simply converted to positive weights
with different α and β. Hence, differential pair mapping is not applied by de-
fault. However, achieving well-controlled RS changes in nonlinear devices like
memristors is challenging because the resulting RS depends on both the current
RS and pulsing parameters (typ. magnitude and pulse-width). To address this
issue, a module for predicting the expected pulsing parameters that can pro-
duce the desired memristor RS changes is included in NeuroPack. This module
uses memristor model parameters for creating a virtual memristor device ob-
ject, takes the current memristive RS, the target RS, a user-defined time step
dt, and a list of different pulsing parameter sets as inputs, and returns the best
pulsing parameters in the options list that can produce the memristor RS closest
to the target.
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FIGURE 4.2: Two usage scenarios of NeuroPack. Different targeted parts in
two scenarios are coloured in pink. (A) In the first scenario, users can explore
the system sensitivity to a global parameter defined in the ’config file’. (B)
In the second scenario, users can verify the system-level concepts by changing
neuron and plasticity models. The image is from the author’s publication [193].

Inside the module, firstly, a ParametericDevice object is created using user-
provided memristor model parameters. Next, the step dt(V, dt) method is called
to compute all resulting resistance by taking the pulsing parameters in the op-
tions list. After that, the module calculates the differences between the resulting
resistance and the target one and returns the parameter set with the minimum
difference. Finally, the pulse with the chosen parameters is applied to the vir-
tual memristor device. The pseudocode of this module can be found in Ap-
pendix B, section 3.

The complete weight update procedure taking ’prediction-write-verify’ loops
with the use of the pulse parameter selection module is as follows: to begin
with, two stop conditions are set by taking two user-defined parameters, the R
tolerance and the MaxN. The R tolerance is defined as the maximum (Rnew −
Rexpected)/Rexpected. When the current (Rnew−Rexpected)/Rexpected is smaller than
the R tolerance, the new RS is assumed to be converged with an error in an ac-
ceptable margin. This parameter captures the maximum acceptable write error
during weight updating. Another parameter MaxN is used to restrict the max-
imum number of ’prediction-write-verify’ iterations to avoid the exceptional
endless weight updating iterations. After obtaining the targeted RS, the current
resistance is read and used as the initial state of the virtual device in the pulse
parameter selection module. The module then returns the best parameter set
among all provided options and applies a pulse to trigger the RS change. A
read operation is taken to verify the new RS. The same procedure repeats until
the stop conditions set by the R tolerance or the MaxN are met.
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4.2.5 Customisation, usage scenarios and interface

With Python as the programming language, NeuroPack allows flexible, cus-
tomised configurations at both algorithm and device levels and is engaged in-
timately with the community to encourage further evolution of the tool. Neu-
roPack can apply user-defined neuron models and learning rules at the algo-
rithm level. At the algorithm level, NeuroPack is compatible with user-defined
neuron models and learning rules: users can easily customise the neuron and
the plasticity models by replacing the example core files with user-defined ones.
At the device level, the flexible, empirical memristor model employed by Neu-
roPack can be reconfigured to model any type of memristor device with a sim-
ple set/change of parameters.

NeuroPack can assist users in two main scenarios. One is to serve as a support-
ing tool to investigate the sensitivity of the neuromorphic system performance
to a particular parameter in neuromorphic computing tasks (Figure 4.2 (A)). In
this scenario, users monitor how the behaviours of memristor devices change
and explore how the classification accuracy and the loss are influenced, cor-
responding to different parameter values loaded from the configuration file.
Another usage scenario is to test and verify system-level algorithms, mainly
neuron and plasticity models (Figure 4.2 (B)). In this scenario, users configure
the neural network topology by setting a user-defined core file or an example
template that involves the targeted algorithm to be validated. Users can quickly
visualise the results and check the changes in memristor device states and other
internal variables for every single time step.

The embedded visualisation and analysis tool in NeuroPack contains a user-
friendly GUI (can be seen in Appendix B, section 5) to display extracted key
features and visualised data. Separated from the main panel of NeuroPack,
this tool can work independently. When performing a classification task, Neu-
roPack stores internal variables for every single time step, including synaptic
weights, membrane voltages, input spikes, output firing states, output errors,
etc., in a Numpy (.npz) file. The analysis tool displays array-related variables
such as synaptic weights in a colour map and neuron-related variables, includ-
ing membrane voltages and output firing states, in line curves to show the time-
dependent evolutions.
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FIGURE 4.3: Simulation of a handwritten digit recognition task with a TiOx
memristor-based neural network in NeuroPack. (A) Handwritten digits from
the MNIST dataset cropped to 22 × 22 and binarised. Pixels 0 and 1 are
coloured dark blue and yellow, respectively. (B) - (D) Memristor conductance
sets before training (B), after training for 2000 time steps (C) and after train-
ing for 10000 time steps (D) Memristor conductance spans from 86.9 uS to
0.442 mS, equivalent to the final memristor RSs after training ranging from
around 2.26 kohms to 11.5 kohms.(E) Data processing procedure of the spik-
ing neural network used to perform this handwritten digit recognition task.
The neural network is a single-layer fully-connected SNN with a LIF neuron
model. 22× 22 -pixel input images are unrolled to 484-bit and represented as
input spikes to be sent to 484 input neurons. This task incorporates a single-
layer spiking neural network with 484 input and 10 output neurons. (F) Accu-
racy evolution curves during the training process with or without memristors.
Curves are plotted every 100 samples for clarity. The memristor and the non-
memristor version achieved the accuracy of 82.00% and 83.55%, respectively,
in a separate 2000-sample test set. The image is from the author’s publication

[193].
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4.3 Experiments

4.3.1 Demonstration: NeuroPack Simulation of a Handwritten

Digit Recognition Task in the MNIST

This section showcases a handwritten digit classification task in the MNIST data
set to validate NeuroPack.The original MNIST dataset images are cropped to
22× 22 pixels and binarised (see example digits in Figure 4.3 (A)). The pixels
used for background and digits are 0 and 1, respectively. Input neurons re-
ceive a 484-dimensional vector containing only 0 and 1 by unrolling a single
image. For the input neurons, there is a spike when receiving 1 and no spike
when receiving 0. To perform this classification task, a single-layer 484-input
10-output fully-connected winner-take-all spiking neural network with a leaky
integrate-and-fire neuron model and gradient descent learning rule (see Figure
4.3 (E)) is employed. A total of 484×10 synapses are mapped to a 100×100
memristor array. 10000 samples were used to train the network. A balanced
2000 subset from the original MNIST test set was used to evaluate the training
effect quickly (please see Appendix B, section 6 for more details). We use the
abstract time step index rather than the actual time step as the x-axis to simu-
late and display the inference and the training. Upgrading the simulation with
a volatility model is under planning due to the challenges in precisely control-
ling timing in software, though this functionality can better model the volatility
characteristics of devices so that real-time dynamics are accounted for. Table 4.1
listed all NeuroPack parametric configurations used in the MNIST handwritten
digit classification task. Memristor parameters used in this table are extracted
using the method proposed by [202] on TiOx devices presented in [64], with the
bias voltage from ±0.9V to ±1.2V and devices initialised around 11kΩ. There-
fore, pulse options used for memristor RS updating are determined to be within
those ranges. Estimated memristor operating ranges yielded by the model is
between 2.23-12.8kΩ, with the bias voltage of ±1.2V and 12.5-18.9kΩ, with
the bias voltage of ±0.9V. The resulting conductance is 5.3× 10−5-4.48× 10−4S,
given the bias voltages ranging from±0.9V-± 1.2V. The linear conversion from
the memristor conductance to the synaptic weights can be expressed by the
equation below to restrict the weights to be within [0, 1]

W = 2.53× 103 × G− 0.1337

Memristors are initialised to have the resistance on 11kΩ with a variation no
more than ±500 Ω before training. Memristor initial RSs correspond to small
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weights near the lower boundary of the device operating range, with the lin-
ear conversion of conductance into synaptic weights. Conductance sets before
training, after training for 2000 time steps, and after training for 10000 time
steps are displayed in Figure 4.3 (B)-(D). During the training process, synapses
connected between the digit pixels and labelled output neurons will increase
the weights progressively, whereas the rest of the synaptic weights remain rel-
atively small. As a result, targeted digits appear gradually in the conductance
sets as the training continues. Linked by the linear mapping, the weight sets
show the same tendency. Figure 4.3 (F) gives the accuracy evolution curves
plotted for every 100 time steps. The network was fed with a separate test set
with 2000 images after training, and 1640 out of 2000 gave correct inference re-
sults, counting a total classification accuracy of 82.00%. The baseline without
using memristor models to store weights achieved a test accuracy of 83.55%.
Therefore, the memristor model is not the accuracy bottleneck. Further investi-
gation of improving the accuracy is given in Appendix B, section 7.

4.3.2 R tolerance Sensitivity Exploration

This subsection illustrates how to use NeuroPack to explore the relationships
between the classification accuracy and the appropriately chosen values of the
R tolerance, which is an issue that is intimately related to devices and program-
ming protocols. Figure 4.4 (A) and (B) display the training accuracy revolution
curves and the test accuracy results with different R tolerance values. The im-
pact on the accuracy is trivial when the R tolerance value is small (within 1%).
The training accuracy with respect to training sample numbers increases ini-
tially, reaches the peak, and then drops, with a larger R tolerance value. The
corresponding test set accuracy also reflects this up-and-down tendency. The
resistance changes of memristors driven by both stimulated and non-stimulated
inputs with different R tolerance values are displayed in Figure 4.4 (C) to in-
vestigate what causes this accuracy evolution tendency. The baseline of virtual
resistance values computed by the weight mapping scheme for a stimulated
synapse (the one between input neuron 250 and output neuron 6 used as an
example) as yielded by a non-memristor software synapse is given by the red
line. The baseline displays a progressive decrease throughout the entire train-
ing with 10000 samples. In contrast, resistance updates are cut off increasingly
early as the R tolerance increases. When the R tolerance is 0.1%, 1%, 2%, and
3%, the saturation occurs approximately after training ∼ 9000, 7000, 1000, and
100 time steps, respectively. The intuition is that if we fit the baseline trace with
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FIGURE 4.4: R tolerance sensitivity exploration. (A) and (B) Classification ac-
curacy in the training and the test phases with different R tolerance values,
respectively. (C) Resistance changes in an example memristor that represents
a stimulated synapse (connected between the input neuron 250 and the output
neuron 6) along the training process with different R tolerance values. Notably,
virtual resistance values are used for the baseline. (D)-(H) Memristor RSs be-
fore training (D), after 1000 time steps for the R tolerance of 2% (E) or 0.1%(F),
and after 10000 time steps for the R tolerance of 2%(G) or 0.1%(H). Memristor
RSs range from 2.26kΩ to 11.5kΩ, which corresponds to the weights from 0.98

to 0.086. The image is from the author’s publication [193].

a smooth, continuous curve, its gradient continuously decreases because of the
decreasing cost function gradient during the training process. That is to say,
the required RS changes between two time steps reduce as training processes.
Meanwhile, the R tolerance defined as (Rnew − Rexpected)/Rexpected can be re-
garded as the cut-off ratio of memristor RS change. In other words, when the
resistance change between two time steps is less than the R tolerance, the RS
updates stop. Therefore, the memristor RSs stop updating earlier as the R toler-
ance value becomes larger. Figure 4.4 (D) - (H) displays the memristor RS sets
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before training (D), after training 1000 time steps (with the R tolerance of 2%
(E) and 0.1% (F)), and after 10000 time steps (with the R tolerance of 2% (G) and
0.1% (H)). The memristor RS sets before training (D), after training 1000 time
steps (with the R tolerance of 2% (E) and 0.1% (F)), and after 10000 time steps
(with the R tolerance of 2% (G) and 0.1% (H)) are displayed by Figure 4.4 (D)
- (H). Three colour regions are clearly shown in the figures: blue for the high
resistive range, white for the middle resistive range, and red for the low resis-
tive range. Initial memristor RSs are in the high resistive range before training.
Both versions with the R tolerance of 2% and 0.1% show distinguishable high
and middle resistive regions after 1000 time steps, explaining the increasing
tendency of the training accuracy before 1000 time steps in Figure 4.4 (A). After
10000 time steps, the version with the R tolerance of 0.1% displays the distin-
guishable high, middle, and low resistive regions. In contrast, the low and the
middle resistive regions are not distinguishable when the R tolerance is 2% be-
cause the resistance updates are cut off by a too-large R tolerance value. When
the middle grows larger, the version with the R tolerance of 2% cannot accu-
rately classify images because weights are all assigned with moderate values,
regardless of the stimuli from different digits. As a result, the accuracy curves
with large R tolerance values drop after certain points, as shown in Figure 4.4
(A).

4.3.3 Bias Method Comparison for Selector-based arrays and

Selectorless Arrays

Finally, a comparison between two biasing methods: a) that selected devices
are applied with biasing voltages, which is commonly used in selector-based
crossbar arrays), and b) that unselected devices in the same bitlines and word-
lines are also applied with half-biasing voltages, as in selectorless crossbars, is
presented. Figure 4.5 (A) shows the accuracy using these two different bias-
ing methods. The training accuracy evolution curves show the same tendency
with a ∼20% gap in between, which is further shown in the test accuracy bar
chart. The resistance evolution curves of memristors representing a stimulated
(connected between the input neuron 250 and the output neuron 6) and a non-
stimulated synapse (connected between the input neuron 10 and the output
neuron 6) are plotted to explore the cause of the performance gap. The base-
line in red uses fully-software non-memristive synapses to store weights. The
version using the biasing method of the selector-based arrays (in dark blue) ex-
hibits the same decreasing trend in resistance changes as the baseline (in red). In
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FIGURE 4.5: Classification with different biasing methods used in selector-
based and selectorless memristor arrays. (A) Accuracy of different biasing
methods for selector-based and selectorless arrays. (B) RS changes in mem-
ristors driven by mostly stimulative inputs (the one between the input neu-
ron 250 and the output 6 as an example) and non-stimulative inputs (the one
between the input neuron 10 and the output neuron 6 as an example). (C) -
(E) give memristor RSs before training (C), after training for biasing methods
in selector-based (D) and selectorless (E) arrays. The colour bar indicates the
memristor RSs ranging from 2.26k-25kΩ, which represents weights from 0.98

to 0.01 correspondingly. The image is from the author’s publication [193].

contrast, the version with the biasing method of the selectorless arrays exhibits
an increasing trend. Zooming into time steps 0 to 200, we notice unexpected re-
sistance increases the selectorless scenario when there should be no resistance
update. Unexpected resistance increases occur because devices connecting to
silent neurons have been subjected to half-biasing voltages when the weights
stored in the devices sharing the same wordlines/bitlines get updated. A sin-
gle cycle of half-voltage bias does not cause a significant resistance increment.
However, the effects of the single half-voltage biasing accumulate when many
cycles are applied in the same time step as multiple devices share the same
wordlines/bitlines. As a result, the accumulated errors eventually cause a large
gap to the baseline. Non-stimulated synapses, both with the biasing method
in the selector-based arrays (in purple) and without memristors (in green), stay
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around the initial values throughout the entire training process, whereas un-
expected weight updates occur when using the half-voltage biasing method
(shown in the trace coloured in light blue). However, in the given example of
using the biasing method of a selectorless array, the resistance in memristors
representing the stimulated synapse is still marginally lower than that of the
non-stimulated synapse. Therefore, the NN with the biasing method used in
a selectorless array can still learn the features of the input signals and do the
classification correctly in some cases. Figure 4.5 (C) - (E) display the memristor
RSs before and after training for both biasing methods. Due to the half-voltage
biasing, the memristor operation range extends to 2.23k-28kΩ, corresponding
to the new conductance ranging from 3.57× 10−5S to 4.48× 10−4S. The linear
conversion of conductance into weights now has to be modified to be:

W = 2.42× 103 × G− 0.0866

Memristor RSs are initialised as ∼11kΩ before the training starts. After train-
ing for 10000 time steps, the RSs of stimulated memristors with the biasing
method of a selector-based array (Figure 4.5 (D)) drop to the low resistive range
(∼2.26kΩ), whilst the non-stimulated stay in the high resistive range (∼11kΩ).
The stimulated memristor RSs increase to a very high resistive range (∼18kΩ)
with the biasing method of a selectorless array; meanwhile, non-stimulated
ones increase even higher to (∼22kΩ). Thus, NeuroPack has assisted us in
uncovering the perhaps surprising fact that the NN is still capable of distin-
guishing different handwritten digits in the MNIST substantially better than
chance, even in the presence of unexpected invasive weights update, albeit with
a very different weight distribution than that with the biasing method used in
a selector-based network.

4.4 Discussion

This chapter presents NeuroPack, a versatile, Python-based fully-software algo-
rithm-level simulator for memristor-empowered neuromorphic architectures.
NeuroPack allows reconfiguring with user-defined settings at both the system
and device levels. This framework can work as an independent tool to emu-
late neuromorphic architectures with different neuron, plasticity, and memris-
tor models, different numbers or types of memristor devices, different neural
network topologies, and different applications. Notably, Neuropack addressed
the need for employing memristive technologies/models in developing SNN
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TABLE 4.1: Parameters used in NeuroPack for MNIST handwritten digit clas-
sification task.

Global settings
array size 100×100
array type with selectors
read noise 0.1%

Neuron model
threshold 25.16 or 24.16(for biasing method comparison only)
leakage -0.3

Learning rule
learning rate 3.5× 10−6

noise scale 10−6

Memristor model
Ap 0.21389
An -0.81302
tp 1.6591
tn 1.5148
a0p 37087
a0n 43430
a1p -20193
a1n 34333

Weights updating
voltage ±0.9, ±1.1, ±1.2, ±1.2, ±1.2, ±1.2

pulsewidth 10−6, 10−6, 10−6, 5× 10−6, 10−5, 5× 10−5

R tolerance 0.1%
max update steps 5

topologies. The platform has been established and validated with a PC work-
station (specs). Therefore, the absolute runtime depends on the hardware plat-
form. However, the abstract runtime can be analysed. The simulation time scale
is proportional to the number of synaptic connections rather than the neuron
size. If the number of the synaptic connection increases by n orders of magni-
tude, the abstract runtime will also increase by n orders of magnitude, given
there is unlimited memory to allocate. We further demonstrated an example of
performing a handwritten digit classification task in the MNIST dataset with a
single-layer SNN simulated in NeuroPack. We explored how the system clas-
sification accuracy is sensitive to the device- or programming protocol-related
parameters such as the R tolerance in weight updating and the biasing meth-
ods employed in different array structures. We concluded: a) That the suffi-
cient training efficiency to closely match the performance of an ideal model for
this architecture and dataset is allowed even with a surprisingly max 1% toler-
ance in the RS, which indicates the potential competitive performance can be
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achieved by memristor-based systems without expensive precision circuits, at
least in some scenarios. b) That it may be possible to retrieve meaningful in-
formation from the trained system even with unexpected weight updates due
to the half-voltage biasing scheme employed in selectorless arrays. These ex-
plorations showcased how NeuroPack can assist users in designing and val-
idating neuromorphic architectures and exploiting the potential of emerging
nanoscale memory technologies in improving system performance. We envis-
age that users from the community can benefit from this tool to attain results
that fit their needs quickly and efficiently by reconfiguring datasets, biasing
methods, experimental parameters, device technologies and neuron connectiv-
ities.
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Chapter 5

Text Classification in
Memristor-based SNNs

5.1 Introduction

SNNs [188], referred to as the third generation of ANNs [205], have recently
become an actively researched topic. Compared to traditional ANNs, SNNs
feature a spike-based nature and temporal information coding scheme, which
further bring the benefits of biological plausibility [206, 207], sparsity [208], and
stochasticity [18]. All these features make SNNs more power-efficient than tra-
ditional ANNs. As a result, SNNs have been widely employed to perform dif-
ferent applications in different areas, including hand gesture detection [209,
210], gait detection [211], financial time series prediction [212], music com-
poser classification [213], real-time signal processing [214], disease detection
[215], and robotics [216, 217, 218]. Memristor further provides low-power solu-
tions for SNNs implemention. Therefore, memristor-based SNNs have success-
fully demonstrated applications in pattern recognition and image classification
[74, 75, 76, 83].

However, current usage of memristor-based SNNs still focuses on low-dimen-
sional small-scale applications. For example, for text classification tasks, only a
few works have performed text processing in memristor-based spiking neural
networks: Design [162] used phase-change memory (PCM) to accelerate spik-
ing neural network for language modelling, and Design [77] demonstrated a
pattern generation task in recurrent spiking neural networks with PCM mod-
els using e-prop learning rule [86]. This is because expanding the usage of
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memristor-based SNNs to high-dimensional large-scale tasks is facing three
major issues: high-dimensional inputs, costly training, and memristor no-ideality.
To be more explicit, dealing with high-dimensional inputs requires allocating
large memory, which is very costly in space efficiency. One solution would be
using dimensional reduction technology. For example, word embeddings (e.g.
GloVe [84] and Word2vec [85]), are commonly employed dimensional reduc-
tion models to represent words than one-hot vectors in text classification tasks
to improve space efficiency and extract semantic relationships between words.
A word embedding layer is used as a lookup table in traditional ANNs to pro-
duce a dense representation of the input texts. Pre-trained word embeddings
are typically fine-tuned later in training along with other network parameters
to achieve better performance. They are treated as linear layers utilising back-
propagation (BP) [107] in training. However, the dense word representation is
supposed to be transformed into spike trains as the network’s inputs in SNNs
[219, 220]. So far, previous publications provide no theoretical foundation for
training word embeddings in spiking neural networks. This brings the first
issue of expanding the usage of memristor-based SNNs: how to efficiently em-
ploy dimensional reduction technologies in memristor-based SNNs? Secondly,
The expensive training of memristor-based spiking neural networks is another
major obstacle. To begin, gradient-based learning procedures, regardless of lo-
cal (e-prop) or non-local (e.g. surrogate gradient descent [198, 221]) learning
rules are used, necessitating averaging of the accumulated errors over the spike
train window used to represent a single numerical value. This requires consid-
ering the impact of every single spike on updating weights. It is inefficient in
processing speed and space efficiency, particularly when the spike trains used
to represent a single numerical value are lengthy and memristors are included
in the design. Finally, basic read and write operations on memristor arrays can
also introduce variances due to read noise and write variation. One possible so-
lution to avoid these obstacles is to execute the training in a software simulator
using accurate memristor models. This solution provides a faster data process
and intuition for system performance than direct training in hardware. Refer-
ence [193] developed an algorithm-level simulator for memristor-based spiking
neural networks in memristor models, and Design [83] also utilised this solu-
tion to simulate recurrent spiking neural networks in PCM models.

This chapter tries to expand the usage of memristor-based SNNs to high-dimen-
sional large-scale applications by solving the issues of high-dimensional inputs,
costly training, and memristor non-ideality. To do so, NeuroPack in Chapter 5
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has been extended with Pytorch [91] to a bespoke simulation framework with
GPU acceleration support. We first take two paths to train memristor-based
spiking neural networks to leverage this framework in text classification tasks.
One is converting a pre-trained ANN to its equivalent SNN, and another is di-
rectly training an SNN using an ANN-based learning rule. Both paths train the
network using gradient descent-based learning rules, only taking the spike rate
into account to improve the computational speed and the space efficiency. In
this method, we can also add a dimension reduction model and train a word
embedding layer as a linear layer as it is in a standard ANN. Then, we demon-
strate the first sentiment analysis task in the IMDB movie reviews dataset [92]
to validate both approaches. From what we are aware of, this is the first demon-
stration of a text classification task completed in a spiking neural network us-
ing a realistic memristor model. Finally, we summarise systems classification
accuracy taking both paths and explore how global factors impact system per-
formance.

The contributions of this work are summarised below:

1. Developing a simulation framework with an empirical memristor model
to demonstrate the first text classification task in spiking neural networks
with a realistic memristor model.

2. Presenting and benchmarking two approaches to obtain trained memristor-
based spiking neural networks for text classification tasks.

3. Investigating system sensitivity to global parameters.

To achieve these goals, in this chapter, we first introduce the overview of the
two paths we take to obtain a trained memristor-based SNN in subsection 5.2.1
with details shown in subsection 5.2.2 and 5.2.3. The method to add the mem-
ristor model to the simulation framework is introduced in subsection 5.2.4 and
the weight updating scheme in subsection 5.2.5. Section 5.3 displays all experi-
mental results for the text classification task in the simulation framework with
memristor models, and section 5.4 summarises the paper.

This work has led to the publication of a pre-printed paper [222].

The source code of the work presented in this chapter can be found in the
Github repository:
https://github.com/hjq310/text-classification-in-memristorsnn
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FIGURE 5.1: Two approaches to obtaining trained SNNs: approach 1 starts by
training ANNs (coloured orange), transforming the trained ANNs to equiva-
lent SNNs (coloured green), and then mapping SNN weights to memristors
(coloured red); approach 2 firstly converts untrained ANNs to their equiva-
lents (coloured green), adds a memristor model (coloured red), and then trains
memristor-based SNNs directly using ANN-based learning rules (coloured or-

ange). The image is from the author’s publication [222].

5.2 Methods

5.2.1 Methodology Overview

The fundamental difference between ANNs and SNNs is the way of conveying
information: ANNs use continuous values, whereas SNNs use 0-or-1 spikes.
Therefore, it is natural to try to find the relations to map continuous values
to spikes to bridge the gap between two neural network architectures. Refer-
ence [223] revealed that the spike rates of an SNN are proportional to the ReLU
[224] activation outputs of the equivalent ANN with an error term that can be
ignored in shallow networks. The ReLU activation outputs in the equivalent
ANN are always non-negative in a memristor because inputs and weights are
restricted within [0, 1] in a memristor-based SNN. As a result, an SNN’s spike
rates are proportional to the input currents. Reference [225] further proved that
the larger the membrane voltage threshold, the smaller the error term when
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FIGURE 5.2: Simulation framework workflow for performing the sentiment
analysis task in the IMDB review dataset. Inputs, ANN structure, SNN-
specified structure, and memristor-related modules are coloured blue, orange,
green and red, respectively. b, s, e, and o represent batch size, sentence length,
word embedding dimensions, and output dimensions, respectively. To demon-
strate input pre-processing steps, we use a movie review, ’A wonderful little
production,’ as an example: firstly, tokenising input sentences to lists of words
(’[’A’, ’wonderful’, ’little’, ’production’]’ in the example); secondly, converting
the word lists to lists of word IDs (’[6, 385, 120, 370]’ in the example); finally,
padding the sentences in the same batch to have the same length, transform-
ing the lists of words to a one-hot vector, and packing sentence vectors into
an input representation tensor with the size of (b× s× v) to represent the in-
put sentence. Notably, transforming word ID lists to one-hot representation is
skipped if Pytorch is used. The image is from the author’s publication [222].

’reset by subtraction’ 1 is applied for spiking neurons. In addition, weight nor-
malisation [226] and adaptive threshold [227] are also widely utilised in ANN-
to-SNN conversion to match the accuracy. These previous works form the theo-
retical basis for the two paths to obtaining trained memristor-based SNNs pro-
posed taken by this work.

Figure 5.1 shows the two paths taken by this work to obtain a trained memristor-
based SNN. With an untrained ANN, approach 1 firstly trains the ANN using
standard ANN-based learning rules, then transforms the trained ANN to an
equivalent SNN; approach 2 starts from the conversion of an untrained ANN
into an SNN before training with (appropriately modified/selected) ANN-based
learning rules. Memristor models are added to represent synapses after the

1’reset by subtraction’: subtracting a fixed number from the membrane voltage when reset-
ting it after firing.
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trained SNN is ready. This step is as simple as mapping the weights in memris-
tor arrays as conductance in approach 1, whereas approach 2 requires memris-
tor resistance states (RSs) to be trained alongside the entire SNN.

Now we walk through the simulation framework workflow for performing the
sentiment analysis task to explain how the two paths are implemented. Figure
5.2 displays the diagram-level structure of the network we used in the senti-
ment analysis task in the IMDB reviews dataset. After being tokenised using
the basic English tokeniser and converted to word IDs, sentence one-hot vec-
tors are padded to have the same length and packed into an input one-hot
representation tensor with the size of (b × s × v) (where b, s, v are batch size,
sentence length, and vocabulary size, respectively) is used to generate a dense
word representation with the size of (b× s× e) (where e is the word embedding
dimension) by being fed to a word embedding layer, followed by an average
pooling layer that squeezes the sentence dimension to obtain an averaged sen-
tence representation across the entire sentence with the size of (b× e).

In approach 1, the averaged sentence representation with the size of (b × e) is
fed straight to a linear layer whose input and output neuron numbers are e and
o, respectively. Specifically, only one output neuron is used in the sentiment
analysis task because this is a binary classification task with two categories:
’positive’ or ’negative’. Once the inference results are obtained, the binary cross-
entropy loss is computed, and the errors are transmitted backwards to update
weights in the linear and word embedding layers. The conversion to an SNN
starts after the training of the ANN completes. Firstly, Poisson spike trains
are generated by using the averaged sentence representation and delivered to
the single-layer spiking neural network. The leaky integrate-and-fire neuron
model [89] is used in this task. Next, the weights in the SNN are mapped as the
conductance of memristor devices and loaded from the memristor arrays when
inferences are executed. The output neuron membrane voltages are computed
using the neuron model’s mathematical expression, and the firing states are
updated by comparing the voltage to the threshold. The final inference results
are given by the spike rates within a time window: ’positive’ if the spike rate is
higher than 50%; ’negative’ otherwise.

Approach 2 also transforms the averaged sentence representation to Poisson
spike trains, and memristor arrays are randomly initialised before the training
starts. During the training, the errors are back-propagated with the same ANN-
based learning rule used in approach 1, and the expected weight changes are
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converted to the memristive RSs to be updated. The errors are further back-
propagated to the word embedding layer to generate new spike representations
for the following inferences.

In the next two subsections, more details on the implementations of the two
approaches in the simulation framework will be revealed.

5.2.2 Approach 1: Converting a Pre-trained ANN to an SNN

When training the ANN using approach 1, weights in the linear and word
embedding layers must be restricted in the range [0, 1]. With this constraint,
weights can be expressed using the following equation when converting the
ANN to the SNN:

w =
G− Gmin

Gmax − Gmin
(5.1)

Where G, Gmin, Gmax represent the current, the minimum, and the maximum
memristor conductance, respectively. The averaged sentence representation is
also constrained to be within [0, 1]. Therefore, the continuous values in the
averaged sentence representation can be used as firing rates to generate spike
trains when the ANN is transformed into the SNN. Reference [219] presented a
strategy using the following equation to determine whether a spike should be
released when generating a Poisson spike train:

Pt =

⎧⎨⎩1 if xc > xrandom,t

0 otherwise
, 0 ≤ t ≤ T (5.2)

Where Pt denotes the spiking state determined by the averaged sentence repre-
sentation in the given time step t in the spike train with T time steps to encode
a single continuous value, xc is the continuous value being encoded in the av-
eraged sentence representation, and xrandom,t is the random value generated in
the time step t within [0, 1]. Before the binary word embedding conversion, an
initialised random-value matrix with the size of (e× T) is created. Poisson spike
trains stored in a matrix with the size of (e× T) used as the inputs to the single-
layer SNN are generated by comparing the averaged sentence representation to
the random-value matrix.

The outputs of the linear layer derived by the equation y = ∑ Wsxc are always
positive because the weights in the linear layer Ws and the averaged sentence
representation xc are both non-negative while training the ANN. When using
the sigmoid function to convert the continuous-valued outputs to probabilities,
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a negative constant offset C needs to be introduced to the ANN outputs. With-
out the negative offset C, the input of the sigmoid function is never negative.
Therefore, the output of the sigmoid function will always give a probability not
less than 50%. To make the probability transform functional, the term passed
to the sigmoid function is now (y + C) rather than y. The inference result lies
in the decision boundary that separates two categories when (y + C) = 0. By
solving this equation, C = −∑ Ws¯ xc̄ = −0.5 × 0.5 × e where Ws¯ and xc̄ are
both the theoretical averaged values (−0.5 and −0.5, respectively). However,
when converted to the SNN, the criterion for dividing categories is the output
spike rates. Therefore, an offset is not required to be added to the SNN because
the output neuron spike rates are already probabilities and can be used directly
as the criterion for dividing categories without being connected to a sigmoid
function.

The membrane voltage threshold is an SNN-exclusive parameter that needs to
be chosen when converting an ANN to an SNN to match the classification ac-
curacy. Information is lost when membrane voltages are much higher or lower
than the threshold [227]. Therefore, choosing a threshold value when the mem-
brane voltage is at half its theoretical maximum value is a good start to avoid
catastrophic information loss. The membrane voltage range in converted SNNs
is known since both the weights and the word embeddings are restricted to
the range [0, 1]. Without considering the clipping caused by the threshold, the
output neuron has the maximum theoretical membrane voltage when all in-
puts and weights are set to ”1” along the entire spike train. Therefore, we can
express the estimated threshold as 0.5× e. Using this value as the threshold en-
sures that the maximised inputs can result in the maximum firing rate and that
the output neuron accumulates membrane potential in a way proportional to
the intensity of the inputs without being saturated or clipped under any initial
conditions. Better performance could be achieved by fine-tuning the threshold
from the estimated value.

5.2.3 Approach 2: Training an SNN directly

Due to the non-differentiable nature of membrane voltages, training SNNs us-
ing ANN-based gradient descent learning algorithms [87] can be challenging.
Employing surrogate derivatives [198, 221] with straight-through estimators
[199, 200, 201] is a common solution to solve this issue. This work presented
an alternate method derived from the ANN-based gradient descent mecha-
nism without taking the derivative of the non-differentiable function. A leaky
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integrate-and-fire (LIF) neuron model with reset by subtraction is employed in
this work using the equation below:

Vt = Vt−1 + ∑ Wsxt − Zt−1Vth

Zt = h(Vt −Vth)
(5.3)

Where Vt, xt, and Zt correspond to membrane voltages, input spikes and output
spikes at time step t, respectively. Vth denotes the membrane voltage threshold,
Ws is the weights in the single-layer SNN, and h(x) is the Heaviside step func-
tion. We employ the binary cross-entropy cost function with a sigmoid layer for
this binary classification task:

E = −(ŷ log y + (1− ŷ)(1− log y)) (5.4)

Where E denotes the binary cross-entropy loss, ŷ and y represent output labels
and the probabilities predicted by the network that the current sample belongs
to the labelled category, respectively.

In this work, the Adaptive Gradient Algorithm (Adagrad) [228], a gradient-
based algorithm with an adaptive learning rate dependent on the past gradi-
ent, is chosen as the learning rule. The mathematical expression of Adagrad is
shown as follows:

s← s + g2

θ ← θ − η
g√

s + ϵ

(5.5)

Where g is the gradient of the cost function over the parameter θ, s is a state
variable equals to the sum of the square of the past gradients, and ϵ is a small
value to avoid dividing by 0.

Now we walk through the process to obtain the final expression of the weight
updates. The output firing rate is always non-negative, as explained in subsec-
tion 5.2.2. Therefore, an offset equal to -0.5 must be added to the output firing
rate before being delivered to a sigmoid function. Passing the output firing rate
with a negative offset to a sigmoid function yields the output probabilities of
two categories:

a = r + C (5.6)

y =
1

1 + e−a (5.7)
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Where r is the output neuron firing rate, C is the negative offset, and a is a
temporary variable used to transform the firing state.

As proven in [225], the output firing rates of an SNN are proportional to the
equivalent ANN activation outputs in the equivalent ANN. We further proved
that the output firing rates in a memristor-based SNN are proportional to the
corresponding ANN outputs as expressed in the equation below (please see
the derivation in Appendix C, section 1), provided that the outputs are always
non-negative:

r =
Vc

Vth
− Vt −V0

Vth · T
(5.8)

Suppose the equivalent ANN is expressed with the equation shown below:

Vc = ∑ Wsxc (5.9)

Where V0 is the initial membrane voltage of a spiking neuron when a new in-
ference starts, and Vc and xc are continuous-valued ANN outputs and inputs,
respectively. V0 equals 0 in this work because the membrane voltage accumu-
lator is reset before processing a new sample. In Equation 5.8, the error term
Vt/(Vth · T) depends on the final membrane voltage Vt at the end of the spike
window T, and Vc is the continuous value that the spike train within the spike
window T represents. Intuitively speaking, Vt implicitly depends on Vc. There-
fore, the error term Vt/(Vth · T) is somehow weakly related to Vc, and this weak
relation can potentially introduce an error in the ANN-to-SNN conversion. This
error can be accumulated in a deep neural network, but it can be ignored in a
shallow network [225]. By ignoring the weak dependency of the error term to
Vc, we can rewrite the function of the output firing rate if we use two constants
α and β to replace the error term and the constant coefficient:

r = αVc + β (5.10)

The derivative of rt over Vc is dr/dVc = α. The gradient of the cost function
over the weights in the single-layer SNN can be computed by using the chain
rule:

dE
dWs

=
dE
da
· da

dVc
· dVc

dWs

= (y− ŷ) · α · xc (5.11)
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Likewise, by further propagating the errors backwards, the word embedding
matrix can be updated:

dE
dWe

=
dE
da
· da

dVc
· dVc

dxc
· dxc

dWe

= (y− ŷ) · α ·Wsxe (5.12)

Where Ws gives the parameters in the word embedding matrix, and xe is the
one-hot representation of input words.

The weight change is proportional to g/(
√

s + ϵ) in Adagrad. g and
√

s share
the same scaling factor α. Therefore, the final expression used to update weights
can be simplified by cancelling out the α:

gs = (y− ŷ) · xc (5.13)

ge = (y− ŷ) ·Wsxe (5.14)

Our solution skips the step of accumulating errors across the spike window
and increases the computing speed and space efficiency compared to collect-
ing errors across the entire spike train via surrogate gradient descent, which is
represented by the equation below:

dE
dWs

=
dE
da
· da

dZt
· dZt

dyt
· dVt

dWs

= (y− ŷ) · 1
T

T

∑ h′(Vt −Vth)xt (5.15)

The gradient computed with surrogate derivative (Equation 5.15) can be sim-
plified to (y− ŷ) · xc/(2Vth), if a binary activation [201] shown in Equation 5.16
is employed to replace the non-differentiable Heaviside step function and a
threshold equal or larger than the half of the maximum membrane accumu-
lator capacity is ensured to avoid information loss. The simplified gradient
expression is shown in Equation 5.13 and 5.14 by cancelling out the constant
coefficient 1/(2Vth).

h′(Vt −Vth) =

⎧⎨⎩ 1
2Vth

if 0 < Vt < 2Vth

0 otherwise
(5.16)



94 Chapter 5. Text Classification in Memristor-based SNNs

5.2.4 Adding Memristor Models

The statistical memristor model presented by [88] is used in this study to predict
how memristors behave during the training or inference phases of memristor-
based SNNs. The memristive switching rates are expressed by the equation
reproduced from [88] below for convenience:

dR
dt

=

⎧⎨⎩Ap(−1 + exp(|v|/tp))h(rp(v)− R)(rp(v)− R)2 if v > 0

An(−1 + exp(|v|/tp))h(R− rn(v))(R− rn(v))2 otherwise
(5.17)

Where Ap,n is the scaling factor, the expression (−1 + exp(|v|/tp,n)) illustrates
the exponential growth between the switching rate and the bias voltage v. The
rest of the equation illustrates the dependency on the current memristive RSs
and the dynamic upper/lower boundaries rp,n expressed as the equation below
with fitting parameters a0p,n and a1p,n:

rp,n = a0p,n + a1p,nv (5.18)

All parameters can be extracted using characterisation instrumentations [80,
169] with the method presented by [202] in practice. Knowing the current
memristive RSs and the bias voltages, this framework uses these parameters
to predict the memristor RSs. Implemented in Pytorch, all memristor RSs are
pulsed and read simultaneously. Provided the pulse voltage v and the pulse-
width pw, the duration is transformed to iteration times using the equation N =

int(pw/dt) to update and memristive RSs with the changes ∆R =
N
∑(dR/dt)

in loops.

5.2.5 Weight Updating Scheme

A critical step is to convert the expected weights to the expected memristive
RSs after acquiring the expected weights. Equation 5.2 can be rewritten to the
expression of the expected memristive RSs based on the expected weights:

R =
1

w( 1
Rmin
− 1

Rmax
) + 1

Rmax

(5.19)

Where R, Rmin and Rmax are the expected memristive RS, the lower and the
upper RS boundaries, respectively. Bias voltages and the current memristive



5.3. Experiments 95

RSs govern the non-linear memristive switching dynamics, as shown in Equa-
tion 5.17. As a result, it is challenging for pulsing memristors to be in specific
RSs. Chapter 4 suggested a ”predict-write-verify” cycle to efficiently find the
parameter set (typically including bias voltages and pulse-width) that can pro-
duce memristive RSs close to the expected [193]. With multiple sets of pulsing
parameters provided, all resulting memristor RSs are firstly predicted, and the
one that contributes to the shortest distance to the expected RSs is selected.
Next, memristors are pulsed with the selected parameter set, and the actual
new RSs are verified. Repeat this process until the distance between the ex-
pected and actual RSs falls within the acceptable margin specified by the param-
eter R tolerance defined as (|Rexpected − Ractual|)/Rexpected. Another parameter
maxN restricting the maximum iteration times is also used as a stop condition
to avoid possible infinite loops.

When applying this weight updating scheme, selecting pulsing parameter sets
is a critical design decision. Assume only the pulsing parameter sets that can
lead to small RSs changes are provided. The steps may be too small for the
memristors to reach the expected values before meeting the stop condition set
by the maxN if the distances between the actual and the expected RSs are large.
In another extreme condition that only parameter sets that allow significant RS
changes are available, the targeted RSs may never be reached. Matching the
estimated RS changes that the selected parameter sets can result in with the re-
quired RS changes is, therefore, a viable solution. The needed RS changes for
approach 1 are often rather large. Therefore, parameter sets that can result in
significant and tiny RS changes are both necessary: the former makes RSs con-
verge to the expected states quickly, whereas the latter finely tunes the RSs. Pa-
rameter sets that lead to relatively tiny RS changes are only needed in approach
2 because the required RS changes in each training step are relatively small. For
both approaches, parameter sets that can result in RS updates smaller than the
R tolerance range are required to ensure that the weight updating can fulfil the
stop condition set by the R tolerance.

5.3 Experiments

UNIVERSITY OF SOUTHAMPTON Faculty of Engineering and Physical Sci-
ence Optoelectronics Research Center Memristor-based Spiking Neural Net-
works by Jinqi Huang ORCiD: 0000-0003-3913-0067 A thesis for the degree of
Doctor of Philosophy October 2022



96 Chapter 5. Text Classification in Memristor-based SNNs

A

'A wonderful little production'

'Probably my all-time favorite'

..
.

'one of my top 10 most awful 

movies'

'the'

'.'

','

'covington'

'crumpet'

335746

327192

276280

1

1

..
.

'the'

'.'

','

'devotee'

'hanger'

335746

327192

276280

10

10

..
.

[6, 385, 120, 370]

[35, 7, 64, 423, 311, 98, 383, 

109]

[244, 64, 3897, 508]

..
.

step 1

step 2

step 3

step 3

B

epochs

a
c
c
u

ra
c
y
 %

82

84

86

88

90

92

94

1 2 3 4 5

FIGURE 5.3: (A) Creating a vocabulary using the training samples. Step 1:
Build a look-up table to store word frequency. Step 2: Delete the words whose
frequency is smaller than 10 to reduce the vocabulary size. Step 3: Transform
all samples to lists of word IDs with the aid of the vocabulary. If the word can-
not be found in the vocabulary, tag it as ’[unk]’. Lists of word IDs are padded
with the ’[pad]’ token to ensure the same length when packed into the same
batches. (B) Training and validation accuracy evolution curves in the ANN
(approach 1), the SNN (approach 2), and the SNN with memristor models (ap-

proach 2). The image is from the author’s publication [222].

5.3.1 Experiment Overview

In this section, we showcase a sentiment analysis task with the IMDB movie
reviews dataset by taking the presented two approaches to obtain a trained
memristor-based SNN. There are 25k highly polar movie reviews training sam-
ples and 25k test samples in the dataset. Inspired by a GitHub project [229],
training examples are used to construct a vocabulary to pre-process the input
samples (Figure 5.3 (A)). The word frequency in the training samples is counted,
and those words that occur over 10x times are put into the vocabulary. This pro-
cedure constructs a vocabulary with 20473 words. Next, the original training set
is split into a sub-training set with 17.5k samples and a validation set with 7.5k
samples. An input review is then tokenised with the basic English tokeniser and
transformed into a word ID vector. The neural network is then fed with the one-
hot representation of the word ID vector to start an inference. The word embed-
ding layer loads pre-trained GloVe word embeddings [84] with 100 dimensions.
Please refer to Section ’Methods’ for the training and inference procedures. The
network is trained for 5 epochs in this experiment. After training with 17.5k
samples from the training set for an epoch, the training is turned off, and 7.5k
samples from the validation set are fed into the network to validate the train-
ing effect for this epoch. Before starting another epoch, samples in the training
and validation set are shuffled. Notably, shuffling only breaks the dependency
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between training samples but not introduces variations in testing with different
neural network architectures, because (1) the test set was not shuffled; (2) the
random seed for shuffling is fixed. After training, the trainable network param-
eters that result in the smallest validation loss are reloaded to the network for
testing. The network then receives 25k samples from an independent test set.
Table 5.2 summarises the experiment settings for the two approaches, Figure
5.3 (B) shows the accuracy evolutions during the training procedure, and Table
5.1 shows the final test accuracy. The ANN in approach 1 provides a baseline
test accuracy of 86.02%. According to [229], more complicated models, such as
transformers [158], need to be employed to improve the classification accuracy.
Table 5.1 shows that in Approach 1, the test accuracy degrades from an ANN to
an SNN by 0.13% and from SNN to memristor-based SNN by 0.01%. In method
2, the test accuracy deterioration from ANN to SNN is 0.1 %, whereas adding
memristor models further reduces the test accuracy by 1.06%.

TABLE 5.1: Test accuracy for approach 1 and 2.

ANN SNN SNN with memristors SNN SNN with memristors
approach 1 1 1 2 2

accuracy (%) 86.02 85.89 85.88 85.92 84.86

5.3.2 Results Analysis of Approach 1

This subsection analyses the results from approach 1. Figure 5.4 (A) displays
the classification accuracy dependency on the length of a spike train to repre-
sent a single numerical value. An ’increased-and-saturated’ trend can be ob-
served along with the increase of the spike train length because of the stochas-
ticity of spike trains. Theoretically speaking, longer spike trains can represent
the numerical values more accurately. However, increasing the length stops
improving the spike representation accuracy when the length is long enough.
Therefore, the classification accuracy saturates. Longer spike trains also sacri-
fice more runtime to process over the entire spike train for a single numerical
value. T=1k is chosen for the standard configuration to balance the system per-
formance and the computation efficiency.

Figure 5.4 (B) depicts the system sensitivity to the R tolerance when approach
1 is taken. In theory, larger R tolerance values increase the maximum possible
errors between the expected memristor RSs and the actual values when export-
ing trained weights as memristor RSs, causing potential performance degrada-
tions. However, the system taking approach 1 is robust to large R tolerance
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TABLE 5.2: Parameters used in the sentiment analysis tasks baseline configura-
tion for Approach 1 and 2. Different parameter values for different approaches

are highlighted in light grey.

Parameters Approach 1 Approach 2
Training set size 17.5k 17.5k

Validation set size 7.5k 7.5k
Test set size 25k 25k

Vocabulary size 20473 20473
Embedding dimension 100 100

Output dimension 1 1
Batch size 1 1

Offset -25 -0.5
T 1k 1k

Vth 50 56.75
η 0.05 0.05
ϵ 1× 10−8 1× 10−8

Array size 10 × 10 10 × 10
Ap 0.21389 0.21389
An -0.81302 -0.81302
a0p 37087 37087
a0n 43430 43430
a1p -20193 -20193
a1n 34333 34333
tp 1.6591 1.6591
tn 1.5148 1.5148

Positive pulse magnitude (V) 0.9 0.9
Positive pulse duration (us) 1, 2, 10, 20, 50, 100 1, 2, 10, 20, 50

Negative pulse magnitude (V) -1.2 -1.2
Negative pulse duration (us) 1, 2, 10, 20, 100, 1000, 2000, 5000 1, 2, 10, 20, 100

dt (ms) 1 1
R tolerance 0.05% 0.05%

MaxN 5 5

values, as shown in the bar chart. To investigate the reasons, the weight er-
ror standard deviation with different R tolerance values is plotted as shown in
Figure 5.4 (C). The weight error standard deviation is no more than 0.06 even
with the R tolerance of 20%. This shows that the system can accept variations
when exporting weights into memristor arrays in converting a trained ANN to
a memristor-based SNN.

Similarly, approach 1 also shows tolerance to the read noise introduced by in-
strumentation during the read operation for memristor arrays (Figure 5.4 (E)).
This framework simulates the read noise by adding a random value within a
certain scale to the memristor RSs. For example, the read noise is 10% means
that the RS read errors are within ±10% of the actual memristor RSs (Figure 5.4
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FIGURE 5.4: Result analysis for converting an ANN into a memristor-based
SNN.(A) Test accuracy vs spike train length, where the spike train represents
a single numerical value. (B) Test accuracy vs the R tolerance values when ex-
porting weights as memristor RSs. (C) Weight standard deviations along with
the increase of the R tolerance when exporting weights as memristor RSs. (D)
The measured weights along with the actual weights with 10% read noise. (E)
The test accuracy dependency on the read noise. (F) Weight standard devia-
tions along with the increase of the read noise. The image is from the author’s

publication [222].

(D)). Both the prediction stage of the weight updating scheme and the inference
phase are affected by the read noise. Even with 20% read noise, which implies
the discrepancy between the measured and the actual memristor RSs is up to
20% in the worst scenario, the system can still achieve 81.79% classification ac-
curacy. Figure 5.4 (F) shows the weight errors standard deviation along with
the increase of the read noise. The weight error standard deviation introduced
at 20% read noise is around 0.105 (Figure 5.4 (F)).

5.3.3 Results Analysis of Approach 2

Now we investigate how the weight updating process is affected by the R tol-
erance when utilising approach 2. Figure 5.5 (A) depicts the evolution of the
expected weight values in synapse 0 for epoch 1 when training the memristor-
based SNN directly (in blue) and the actual weights written in memristors (as
orange dots). The curves are plotted every 175 samples. The expected weight
(in blue) gradually approaches the optima. However, the actual weights repre-
sented by memristor conductance stop updating at a certain point because the
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FIGURE 5.5: Result analysis for directly training the memristor-based SNN. (A)
Weight evolution in synapse 0 in the single-layer SNN during training epoch
1. The curve is plotted every 175 samples. The calculated expected weights
and the actual weights mapped into memristor arrays are plotted in blue and
orange, respectively. Notably, memristive devices stop updating when the ex-
pected updates are below the R tolerance. (B)-(C) Training/validation and test
accuracy with different R tolerance values. (D)-(E) Measured weight evolution
for synapse 0 in the training epoch 1 with different read noise values when the
R tolerance is 0.5% and 3.0%. The baseline without the read noise is the blue
curve. Weights are plotted every 175 samples. (F) Shmoo plot for the test ac-
curacy (%) with different R tolerance values (y axis) and read noise values (x
axis). Positive and negative results are shown in blue and yellow, respectively.

The image is from the author’s publication [222].

weight updating is cut off by the R tolerance when the weight change is within
the accepted region defined by the R tolerance. We predict that the greater the R
tolerance value, the quicker the weight update ceases. The training/validation
accuracy curves and final test accuracy with different R tolerance values are
shown in 5.2.3 (B) and (C). The accuracy shows no noticeable difference when
the R tolerance is less than 4.0%. However, when the R tolerance is increased to
5%, the network cannot make classification predictions due to the early cut-off.

Unlike the system built by converting a trained ANN, training the memristor-
based SNN is sensitive to read noise. The weight evolution in synapse 0 during
training epoch 1 with different read noise values when the R tolerance is 0.5%
is shown in Figure 5.5 (D). Measured weights are plotted every 175 samples.
The baseline in blue represents the ideal situation without the read noise. The
baseline weight converges to an optimal state with the value of around 0.328,
and the weight curve with 0.1% read noise converges to around 0.330 due to
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the small read-out error. However, the weights during epoch 1 fail to converge
when the read noise is higher than the R tolerance (specifically, with 0.5% and
1.0% read noise). When the R tolerance is 3.0%, which is higher than all read
noise values chosen in this experiment, measured weights all converge (shown
in Figure 5.5 (E)). A possible reason is that when the read noise is higher than the
R tolerance, the relatively large measured errors mislead the algorithm in de-
termining the weight changing magnitudes or even directions, introduce fluc-
tuations, and make the R tolerance unable to be used as an effective stop condi-
tion. In contrast, the R tolerance is the primary source of errors when updating
weights with the R tolerance higher than the read noise. Therefore, the impact
of the read noise can be ignored. There are two features shown in Figure 5.5 (E).
Firstly, the more significant the noise, the larger the fluctuations; secondly, the
larger the noise, the further the measured weight convergent state is away from
the baseline. However, both the fluctuations and the distances away from the
baseline seem to be within acceptable ranges, with the maximum fluctuation of
∼ ±0.005 and the largest distance of 0.03. The test accuracy with different read
noise values and R tolerance is shown in 5.5 (F). We conclude that when the
R tolerance is more than the read noise, the weights converge, and similar test
accuracy can be achieved with the baseline accuracy. Otherwise, the weights
fail to converge, and the final test accuracy shows negative results.

5.4 Conclusion

This chapter presents a simulation framework that employs an empirical mem-
ristor model to showcase the first text classification task using memristor-based
spiking neural networks in the IMDB movie reviews dataset. Two approaches
are taken to acquire trained memristor-based spiking neural networks: convert-
ing trained ANNs to memristor-based SNNs and training the memristor-based
SNNs directly. Specific details of estimating the critical parameters are elabo-
rated to guide users to achieve comparable performance when taking the pre-
sented approaches. Notably, hardware specification estimation requires more
information including CMOS and memristor technology. Therefore, as an algo-
rithm-level simulation framework, this design does not provide hardware spec-
ification estimation. Given the baseline accuracy of 86.02% from the equivalent
ANN, we achieved the test accuracy of 85.88% and 84.86% with just 0.14% and
1.16% degradations, respectively. Lastly, system sensitivity to SNN stochasticity
and memristor non-idealities are investigated. We concluded that similar per-
formance is achievable in simulation, from ANNs to memristor-based SNNs,
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and from non-memristive synapses to data-driven virtual memristive synapses.
We summarise that the simulation framework can speed up the research of
memristor-based SNNs in text classification tasks and overcome the imperfec-
tion of the existing learning rules and memristor non-idealities by demonstrat-
ing a sentiment analysis task.
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Chapter 6

Conclusions and Future Perspectives

6.1 Summary and Conclusions

Memristor-based SNNs exhibit new approaches toward power-efficient low-
cost implementations for neuromorphic applications. Two pathways, one purely
hardware and one purely software, for applying memristive technologies to ap-
plications can potentially become a standard guide for researchers in this com-
munity to follow. This thesis tries to complete the whole picture of these two
pathways by adding the missing puzzle pieces to enable broader possibilities
for using memristor-based SNNs in varying disciplines. Three necessary puz-
zle pieces for completing the picture lie in hardware infrastructure, software
simulators, and application theory.

In this thesis, three individual designs have been presented in hardware in-
frastructure, software simulations, and application theory aspects. In chapter
2, the review of the theoretical background and the historical designs utilising
memristor-based SNNs have been displayed. These further confirmed the need
to construct new frameworks as hardware infrastructure and software simula-
tors and indicate the efforts required to lay theoretical foundations for exploit-
ing the potential of incorporating memristor-based SNNs in text classification
tasks.

In chapter 3, an FPGA-based digital interface for memristor array has been pre-
sented. This interface can be used to form a 64-channel control and character-
isation system for memristor arrays with parallel read/write operations and
high-speed data acquisition. The digital interface has been validated by resistor
handling and current-voltage sweep experiments. Although the examples are
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for memristors, the control system built with the presented digital interface pro-
vides more general-purpose testing functionality for other emerging memory
devices. The system has been compared to existing works that deliver similar
functions, and it has been shown that our system can achieve comparable high
data throughput with channel-level parallelism despite the low sampling rate.
The system has also been proven capable of conducting advanced testing and
characterisation, such as increment pulsing programming.

Chapter 4 displayed NeuroPack, a Python-based simulator with a data-driven
memristor model for neuromorphic designs. Sitting at the algorithm level, Neu-
roPack has been designed to assist users in fast validating neuromorphic con-
cepts with memristors. NeuroPack includes a wide range of selectable neuron,
plasticity, and device models and is compatible with user-defined models to
achieve flexibility and versatility. Besides, NeuroPack also monitors device be-
haviours and stores internal variables for result analysis. With the aid of the
embedded analysis tool, users can visualise weight evolution, memristor states,
membrane voltage changes, and neuron firing history. The result visualisation
further allows users to explore how intimately device- and weight updating
protocol-related parameters are associated with the system performance. Neu-
roPack also has implemented a ’predict-write-verify’ loop as the weight updat-
ing scheme to overcome the challenge of precise memristor state control due to
the non-linear switching dynamics. An MNIST handwritten digit recognition
task showcased how NeuroPack assists users with memristor-based neuromor-
phic designs.

Chapter 5 demonstrated the first text classification tasks in a memristor-based
SNN. A simulation framework employing a statistic memristor model has been
developed to perform this task. Two paths have been taken to obtain a trained
memristor-based SNN given the absence of an efficient learning rule: one is
converting a trained ANN to its equivalent memristor-based SNN, and another
is training a memristor-based SNN directly. A sentiment analysis task in the
IMDB movie reviews dataset took two different paths with the developed sim-
ulation framework. Specific details of estimating the critical parameters were
elaborated to guide users to achieve comparable performance when utilising
the presented approaches. We achieved the final test accuracy of 85.88% and
84.86% with just 0.14% and 1.16% degradations, respectively, provided the base-
line accuracy of the equivalent ANN is 86.02%. We concluded that it is possible
to achieve comparable accuracy in simulation, from ANNs to memristor-based
SNNs, and from non-memristive synapses to data-driven virtual memristive
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synapses. System sensitivity to global parameters has also been investigated
and illustrated when taking two different approaches. We envisage the poten-
tial of using the simulation framework with the presented two approaches to
accelerate the research of incorporating memristor-based SNNs in text classifi-
cation tasks.

This thesis aims to complete the whole picture of the two pathways toward
memristor-based neuromorphic applications by developing three different works
to add the missing puzzle pieces. The recommended way of utilising the works
presented in this thesis is as follows. To begin with, researchers should gain
enough knowledge of the device’s characteristics. This step can be done by
running necessary testing in the control and characterisation system built with
the FPGA-based digital interface presented in this thesis. Next, construct the
neuromorphic system from the concept and consider the details of the neural
network, including the neuron model, the plasticity rule, the encoding method,
the structure of the neural networks, etc. If the target application is a text classi-
fication task, the demonstration of a sentiment analysis task with two different
approaches presented in chapter 5 can be referred to. Validate the conceptual
design in performing the target application in an algorithm-level software sim-
ulator (e.g. NeuroPack) with extracted device parameters for a memristor be-
haviour model. After confirming the design functionality for the application,
the design can proceed to the hardware design stage. If the goal is to imple-
ment a PCB-based neuromorphic system, the control and characterisation plat-
form presented in chapter 3 can be utilised to map higher-level functions (e.g.
matrix multiplication) with the aid of extra circuits delivering other necessary
functions to complete the neuromorphic system.

Considering the limitations, for the digital interface in the memristor control
system, the goal of the design is to develop an instrument that provides all nec-
essary functions for memristor handling. Therefore, it does not have the best
power consumption and speed efficiency, compared to ASIC designs. Neu-
roPack supports different applications and different neural network architec-
tures. As it was developed in Numpy, it does not support GPU acceleration.
Therefore, it requires long runtime to simulate a network with a large neuron
size. The design in chapter 6 is bespoke for text classification. If other appli-
cations with a larger dataset, for example, machine translation, are the target
tasks, the design might not work due to unsatisfying space and runtime effi-
ciencies.
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6.2 Future Perspectives towards AI Hardware

Several things can be done to extend the usage of the presented works. Firstly,
the control and characterisation system can be integrated into a chip to achieve
higher data processing speed. Secondly, the device volatility model, the line
resistance, and the sneak path in a memristor array can be involved in the sim-
ulators to give more realistic system performance prediction. Lastly, the meth-
ods applied in the text classification demonstration can migrate to a more com-
plex SNNs structure to achieve comparable performance to the state-of-the-art
and to solve more challenging tasks. For example, building a memristor-based
spiking transformer for text classification or machine translation is a worthy
attempt.

In summary, from gaining device intuition to device handling, from system con-
ceptual validation to parameter tuning, from theoretical application analysis to
practical design, we believe the presented designs can leverage the potential
of utilising memristor-based SNNs in different neuromorphic applications. We
also believe these works will inspire researchers in the same community to ap-
proach future application-driven AI hardware designs.
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Appendix A

Implementation Details of An
FPGA-based Digital Interface for
Memristor Arrays

A.1 DAC81416 registers reconfigurations

TABLE A.1: DAC81416 configuration registers that need to be reconfigured
according to the datasheet[176].

Register name Address Description

SPI configuration register 03h Default = 0AA4h; set 0A88h
to activate DACs and turn off SDO

General configuration register 04h Default = 7F00h; set 3F00h
to activate the internal reference

Broadcast configuration register 05h Default = FFFFh; set 0000h
to turn off broadcast mode

DAC power-down register 09h Default = FFFFh; set 0000h
to turn off power-down mode

DAC[15:12] range register 0Ah Default = 0000h; set AAAAh
to select -10 V to +10 V range

DAC[11:8] range register 0Bh Default = 0000h; set AAAAh
to select -10 V to +10 V range

DAC[7:4] range register 0Ch Default = 0000h; set AAAAh
to select -10 V to +10 V range

DAC[3:0] range register 0Dh Default = 0000h; set AAAAh
to select -10 V to +10 V range
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Memristor Arrays

A.2 Instruction Set

Each instruction has eight 32-bit data. the data format is as follows:
{instr0[31 : 0], instr1[31 : 0], instr2[31 : 0], instr3[31 : 0], instr4[31 : 0], instr5[31 :
0], instr6[31 : 0], instr7[31 : 0]}

Instruction sets are shown below:

TABLE A.2: Instruction sets

instruction opcode description
LD VOLT 32’h00001 Load volatage data for DACs
UP DAC 32’h00002 Enable control signal to Update DAC voltages
C READ 32’h00004 Set related switches and start a current read
V READ 32’h00008 Set related switches and start a voltage read
UP SEL 32’h00010 Update selectors
UP LGC 32’h00020 Update logic
UP CH 32’h00040 Update channel switches
CLEAR 32’h00080 Set all DACs to 0V and open all switches

HS CON 32’h00100 Set the timer for high-speed pulse generation
HS PLS 32’h00200 Generate high-speed pulses

MOD CH 32’h00400 Modify control bits for switch chains
LD OFF 32’h01000 Set DAC offset registers
DELAY 32’h02000 Halt the execution for a specified time

DAC RNG 32’h04000 Set DAC ranges
HS PAT 32’h08000 Generate patterned high-speed pulses

AMP PRP 32’h10000 Connect the feedback resistors in a controlled manner



109

Appendix B

Implementation Details of
NeuroPack

B.1 Derivation of back propagation for the leaky integrate-

and-fire neuron models (without winner-take-all)

Leaky integrate-and-fire neuron model in matrix form:

Vt = Wxt + αVt−1 ⊙ (1− yt−1)

yt = h(Vt −Vth)

E =
1

2N

N

∑
i=0

(yi,t − yi,tˆ )2

∆W = −η
∂E
∂W

Where Vt is membrane voltage vector in the selected layer at time t with the size
of n× 1 (n is the total number of neurons in this layer), xt is the input signals
fed to the selected layer at time t with the size of m× 1 (m is the total number of
neurons in the last layer), W represents the weight matrix between the current
current layer and the last layer with the size of n × m, α is the leakage factor,
⊙ denotes the element-wise product, Vth is the membrane voltage threshold, yt

is the output vector for the selected layer with only 0 and 1 to indicate if there
is a spike generated with the size of n× 1, and yt̂ is the correct output state for
output layer with the same size of that of the output layer, E is the cost function
calculating the distance between yt in the output layer and yt̂, N is the number
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of output neurons, and ∆W gives the weight update matrix with the same size
as that of W.

According to the chain rule, ∂E
∂wl,t

for the output layer can be derived as below:

∂E
∂Wl,t

=
∂E

∂yl,t
· ∂yl,t

∂Vl,t
· ∂Vl,t

∂Wl,t

= (yl,t − yt̂)⊙ h′(Vl,t −Vth) · xT
l,t

= δl,txT
l,t let δl,t = (yl,t − yt̂)⊙ h′(Vl,t −Vth)

After that, we can back-propagate the error from the output layer:

∂E
∂Wl−1,t

=
∂E

∂yl,t
· ∂yl,t

∂Vl,t
· ∂Vl,t

∂Wl−1,t

= (yl,t − yt̂)⊙ h′(Vl,t −Vth) ·
∂Vl,t

∂Wl−1,t

= (WT
l,tδl,t ⊙ h′(Vl−1,t −Vth))xT

l−1,t

= δl−1,txT
l−1,t let δl−1,t = WT

l,tδl,t ⊙ h′(Vl−1,t −Vth)

Therefore, the weight update matrix ∆W can be expressed as follow:

∆Wk = −ηδk,txT
k,t

δk,t =

⎧⎨⎩ 1
N (yk,t − ŷt)⊙ h′(Vk,t −Vth) if k = K

(WT
k+1,tδk+1,t)⊙ h′(Vk,t −Vth) otherwise

Where K is the index of the output layer.

The step function h(Vt − Vth) is non-differentiable, therefore we use a straight-
through estimator proposed by this work [201] shown as follow:

h′(Vt −Vth) =

⎧⎨⎩ 1
2Vth

if 0 < Vt < 2Vth

0 otherwise
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B.2 Derivation of back propagation for Leaky integrate-

and-fire neuron models (with winner-take-all)

A softmax layer is added to the previous output layer to have a winner-take-all
network-level restriction to only allow at most one neuron to fire at each time
step:

St = so f tmax(Vt ⊙ yt)

Where St is a vector with the size of N × 1. With the new output representa-
tion becoming continuous values, we apply the cross-entropy loss as the cost
function:

E = −
N

∑
i=0

yi,tˆ ln(Si,t) = −ln(Sj,t)

Where j is the index of the output neuron that should fire according to the
ground truth.

Therefore, the derivation of the gradient for the output layer is as below:

∂E
∂Wl,t

=
∂E
∂St
· ∂St

∂Vl,t
· ∂Vl,t

∂Wl,t

=
∂E
∂St
· ∂St

∂Zl,t
· ∂Zl,t

∂Vl,t
· ∂Vl,t

∂Wl,t
let Zl,t = Vl,t ⊙ yl,t

= (St − yt̂)⊙ (yl,t + Vl,t ⊙ h′(Vl,t −Vth)xT
l,t

= δl,txT
l,t let δl,t = (St − yt̂)⊙ (yl,t + Vl,t ⊙ h′(Vl,t −Vth))

From the output layer results, we can backpropagate the errors and get the
expression for other layers as follow:

∂E
∂Wl−1,t

=
∂E
∂St
· ∂St

∂Vl,t
· ∂Vl,t

∂Wl−1,t

=
∂E
∂St
· ∂St

∂Zl,t
· ∂Zl,t

∂Vl,t
· ∂Vl,t

∂Wl−1,t
let Zl,t = Vl,t ⊙ yl,t

= (WT
l,tδl,t ⊙ h′(Vl−1,t −Vth))xT

l−1,t

= δl−1,txT
l−1,t let δl,t = (WT

l,tδl,t ⊙ h′(Vl−1,t −Vth)
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Therefore, the final weight update matrix expression is as below:

∆Wk = −ηδk,txT
k,t

δk,t =

⎧⎨⎩(St − yt̂)⊙ (yt + Vt ⊙ h′(Vk,t −Vth)) if k = K

(WT
k+1,tδk+1,t)⊙ h′(Vk,t −Vth) otherwise
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B.3 Pseudo code for pulse parameter selection mod-

ule

procedure PULSE PARAMETERS SELECTION ACCORDING TO ∆W
memristor = ParametericDevice(*args) ▷ Create a ParametericDevice

object
res = [] ▷ Create an empty list to store resulting R
for pulse in pulseList do ▷ Loop over all options of pulse parameters

memristor.initialise(R) ▷ Set current R to R
for timestep in range(pulse[1] / dt) do ▷ pulse[1] stores pulsewidth

step dt(pulse[0], dt) ▷ pulse[0] stores magnitude
end for
res.append(memristor.Rmem) ▷ Append resulting R to the list

end for
resDist = abs(res - R expected) ▷ Calculate distance between expected R

and calculated R
selectedPulseIndex = argmin(resDist) ▷ Find the index of minimal

distance
selectedPulse = res[selectedPulseIndex] ▷ Find parameters of the pulse

option
end procedure
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B.4 Main Panel GUI

FIGURE B.1: Screenshot of the main panel.

Figure B.1 shows the screenshot of the main panel. Users can load input files
through the main panel, select the core file (the neuron model and the learning
rule), and set memristor parameters. ’Network cores’ gives a drop-down list
showing all examples and user-defined core files. Selecting one of them sets the
neuron model and the learning rule for the simulation. To execute the run, press
the ”Train Network” button. This action will generate a ”run file” containing a
log of membrane voltages, weights, etc., generated during the run and can later
be opened by the analysis tool for further investigation. The ’Start analysis tool’
button boots the data analysis tool.
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B.5 Analysis Tool GUI

FIGURE B.2: Screenshot of the analysis tool.

Figure B.2 shows the screenshot of the analysis tool. It runs in a separate panel
(from the main panel) but is invoked from the main panel, as shown in Figure
B.1. To run the analysis tool, users need to enable ’Save to’ with a given file
name to store inference and training results in the main panel. The analysis
tool selects the desired ”run file” file, and parameters such as training & test
epochs and memristor parameters are automatically extracted and displayed.
By clicking the ’Add’ button, an analysis window is added. Users can then se-
lect a variable to plot from the drop-down list (in this example, the weight map
for a particular neuron), which will display the corresponding images for a se-
lected time step. Selectable variables include weight mappings, stimuli inputs,
membrane voltages, fire history, etc. This figure shows the weight mapping for
neuron 484 in layer 1 (the output layer), displayed as a rectangle with 22 pixels
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in a row. A weight distribution summary is also displayed to the right of the
image (weights are shown in units of Siemens in the current implementation).
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B.6 Dataset
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FIGURE B.3: Proportions of digits in the whole MINST training set (A - 10k
samples), and our chosen test set (B - reduced to 2k samples)

The calculated euclidean distance between the used 2k and the original 10k test
sets is 0.019 using the equation below:

Euclidean distance =
√︂

∑ ( foriginal MNIST − f2k test set)2

Where f represents the statistic frequency of a digit in the whole dataset.
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B.7 Accuracy improvement

We investigated why the baseline accuracy given in the ’Results’ part is rela-
tively low. We tried three mitigation methods: increasing test data samples,
training samples, and fine-tuning parameters. Figure B.4 summarises what we
found:

0

20

40

60

80

83.95
87.19 87.78

84.80 85.2583.55

FIGURE B.4: Accuracy comparison between using 10k test data and 2k test
data for different methods.

We found a slight difference between 10k test data and 2k test data. We attribute
this to the fact that the 2k test dataset is relatively small, and the slight unbal-
ance of test data creates the difference in test accuracy for each class (shown in
Figure B.5) to the total test accuracy.
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FIGURE B.5: Test accuracy for each class.

We also found that training for longer epochs and fine-tuning parameters help
bring ∼ 4% improvement in accuracy. Figure B.6 shows the training accuracy
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evolution for the versions that give test accuracy of 87.19% (before parameter
fine-tuning) and 87.78% (after parameter fine-tuning).

FIGURE B.6: Training accuracy for running 50k epochs. The figure is plotted
every 500 samples for clarity.
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Appendix C

Mathematical Derivation for Text
Classification in Memristor-based
Spiking Neural Networks

C.1 Relation between the memristor-based SNN fir-

ing rates and the equivalent-ANN outputs

Inspired by the derivation given by this work [225], now we derive the relation
between the memristor-based SNN output firing rates and the equivalent-ANN
outputs.

Assume we have an SNN with an integrate-and-fire neuron model described as
follows:

Vt = Vt−1 + ∑ Wsxt − Zt−1Vth (C.1)

Zt = h(Vt −Vth) (C.2)

Where Vt, xt, and Zt denote the membrane voltages, input spikes, and output
spikes at time step t, Vth is the membrane voltage threshold, Ws represents the
weights in the single-layer SNN, and h(x) is the Heaviside step function. We
also have its equivalent ANN described using the equation below:

Vc = ∑ Wsxc (C.3)
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Where Vc and xc are the continuous-valued ANN outputs and inputs. xt is the
spike train representation of xc, and their relation can be expressed using the
equation below:

xc =
1
T

T

∑ xt (C.4)

Where T is the length of the spike train to represent a single continuous value.

Now we accumulate the membrane voltage Vt over the time window T using
Equation C.1, rearrange it and use Equation C.3 and C.4 to simplify it, we can
write the expression of the output firing state Zt−1:

T

∑ Vt =
T

∑ Vt−1 +
T

∑ ∑ Wsxt −
T

∑ Zt−1Vth

Vt −V0 = ∑ Ws

T

∑ xt −Vth

T

∑ Zt−1

Vt −V0 = T ∑ Wsxc −Vth

T

∑ Zt−1

Vt −V0 = T ·Vc −Vth

T

∑ Zt−1

T

∑ Zt−1 =
T ·Vc

Vth
− Vt −V0

Vth

By dividing by T on both sides, we can get the approximation of the firing rate
as follow:

r =

T
∑ Zt

T
≈

T
∑ Zt−1

T
=

Vc

Vth
− Vt −V0

Vth · T
(C.5)

Where V0 denotes the initial membrane voltage of a spiking neuron when start-
ing a new inference. From the equation, we can see that the memristor-based
SNN output firing rates are proportional to the equivalent ANN continuous-
valued outputs Vc, with a constant coefficient Vc/Vth and an error term (Vt −
V0)/(Vth · T).
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[103] N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and N. Brunel, “How
spike generation mechanisms determine the neuronal response to fluctu-
ating inputs,” The Journal of neuroscience : the official journal of the Society
for Neuroscience, vol. 23, pp. 11628–40, 01 2004.

[104] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” Journal of neuro-
physiology, vol. 94, pp. 3637–42, 12 2005.

[105] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[106] W. Gerstner, “Time structure of the activity in neural network models,”
Phys. Rev. E, vol. 51, pp. 738–758, Jan 1995.

[107] D. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[108] “Hebb, d. o. the organization of behavior: A neuropsychological theory.
new york: John wiley and sons, inc., 1949. 335 p. $4.00,” Science Education,
vol. 34, no. 5, pp. 336–337, 1950.
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