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Bootstrapping string theory on AdS; x S°
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We make an ansatz for the Mellin representation of the four-point amplitude of half-BPS operators

of arbitrary charges at order A~3 inan expansion around the supergravity limit. Crossing symmetry
and a set of constraints on the form of the spectrum uniquely fix the amplitude and double-trace
anomalous dimensions at this order. The results exhibit a number of natural patterns which suggest
that the bootstrap approach outlined here will extend to higher orders in a simple way.

INTRODUCTION

Recently great progress has been made in understand-
ing the structure of amplitudes in anti-de-Sitter space
by imposing consistency of the boundary conformal field
theory. A particular case has been the focus of many in-
vestigations, namely N' = 4 super Yang-Mills theory on
the boundary which corresponds to type IIB superstrings
interacting in the AdSs x S® bulk [1].

Physical quantities depend on the gauge coupling g
and the gauge group, which we take to be SU(N). The
holographic relation between the bulk and boundary the-
ories implies that the spectrum of the conformal field the-
ory is drastically simplified in the supergravity regime
0 < A < N where A = ¢2N is the 't Hooft coupling.
In this limit the spectrum is given by single-particle half-
BPS operators and their multi-trace products while other
operators, corresponding to excited string states, acquire
infinite scaling dimensions in the limit and decouple.

We study four-point functions of single-particle oper-
ators in a double expansion in 1/N and A~2 around the
supergravity limit. The leading large N contributions
to the operator product expansion (OPE) come from a
degenerate spectrum of double-trace operators E—Iﬂ]

The supergravity contribution to the four-point func-
tions has a compact Mellin representation ] The
mixing between the double-trace operators can be re-
solved, yielding a very simple formula for the leading con-
tributions to their anomalous dimensions M, B] In fact,
the degeneracy is not fully lifted in supergravity. The
residual partial degeneracy can be understood in terms
of a surprising ten-dimensional conformal symmetry ]

Recent papers have explored the structure of string
corrections to the tree-level supergravity amplitudes.
Constraints from the flat space limit E] and results de-
rived using localisation ﬂﬁi allowed a family of corre-
lation functions to be fixed at the first two non-trivial
orders, A2 and A~3. The order A~ 2 corrections can be
determined for every half-BPS four-point function from
the relevant term in the flat space Virasoro-Shapiro am-
plitude ﬂﬂ] From these results it was found in E] that
the double-trace spectrum reflected the ten-dimensional
symmetry structure, even when taking into account the

A% corrections. We explore this feature further here,
generalising the results of previous papers to determine
all half-BPS four-point functions up to order A3,

We use an ansatz for the Mellin amplitude as a function
of the external charges and minimal assumptions about
the form of the corrections to the spectrum. Combined
with crossing symmetry and OPE consistency the above
is sufficient to determine the A3 corrections to the cor-
relation functions as well as the spectrum and three-point
functions of the double-trace operators. The results re-
veal many beautiful features that are suggestive of a gen-
eral pattern which should allow the method to be sim-
ply extended to yet higher orders in A"2. As observed
in ﬂﬂ], we find that the ten-dimensional effective spin
determines which operators receive string corrections to
their dimensions and three-point functions. Moreover, at
order A™3 we find the partial degeneracy is broken at fi-
nite twist in a way consistent with other general features
of the spectrum and suggestive of a general structure.

HALF-BPS FOUR-POINT FUNCTIONS

We recall that N' = 4 super Yang-Mills theory has a
spectrum of single-particle half-BPS operators given by

Op(z,y) =yl yBrtr(gg, o OR) (@) +. (1)

Here 2 = 0 and we omit 1/N suppressed multi-trace con-
tributions determined by the condition that O, should be
orthogonal to all multi-trace operators ﬂ]

Here we focus on four-point functions of such operators
which, due to superconformal symmetry, have the form,

<Op1 Opz Ops Op4> = <Op1 Opz Ops Om >free +PIH. (2)

The first term on the RHS is the contribution from free
theory where g = 0. The second term contains the fac-
tors P and Z, given in @8), (BU), and H(z, T;y,y) which
encodes the dynamical contribution to the correlator. It
depends on conformal and su(4) cross-ratios,

U=az=52, V=(1-0)1-1) =5

Ti3%24 Ti3%24

2 2 2 2
1 — i — Y12Y34 T — 1 _ 1 _ ) — Yi14Ya3 3
> =Yy Vv, o ( y)( ) VU2, (3)
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Here we are concerned only with the leading large N
contribution to H corresponding to tree-level string am-

. . . . . 1
plitudes. This term admits an expansion in A~z

H= 1O+ 22U A 31O 4] (4)

The leading term H(? in the above expansion was de-
termined for all external charges (p1papsps) in , ],
extending previous results (see e.g.

M and verified
by more recent supergravity analyses .

As in , ] we will use a Mellin representation,

o) = [ SRRV MO i),
T = F[m-‘rz;z—ﬂr[p3+1274—5}r[p1+§4—t}
1"I:P2+§3_t:|I‘I:P1+Z273_U}I‘|:p2+1274_u} , (5)

where the Mandelstam-type variables s, ¢, u obey

stt+tu=20-4, Y=3(p1+p2+pstps). (6)
We give the Mellin amplitude of [13, 14] in @). The
most important point here is that it reduces to the flat
space supergravity amplitude in the large s, ¢, u limit,

MO B(o,7)/(stu), B(o,7)= Zi,j NiijiTj » (7)

where the coefficients N;j are given in [{g]). In fact, the

large s, ¢, w limit at each order in A~z is controlled by the
flat space Virasoro-Shapiro amplitude V ﬂﬂ, E, @, %],

V= exp{zn21 224,‘7211431 (S2n+1 + t2n+1 4 u2n+l)}' (8)

The precise relation between }V and M requires an inte-
gral which gives the leading large s, ¢, u behaviour,

M®B) 52732 —1)3B(0,7) x 2(3, (9)
MO 5 275(2 —1)5B(0,7) x Cs(s* + 2 +u?).  (10)

The poles in the factor I' are due to unprotected double-
trace operators exchanged in the OPE. The remaining
poles in the supergravity Mellin amplitude M© are due
to long single-trace contributions (or excited string state
contributions) which must cancel against corresponding
contributions present in the free-theory term in (2) since
they should be absent from the supergravity spectrum.
The A\~ 2 corrections should then have no such poles and
are therefore polynomial in s,t,u ﬂQ, E, @, @] It fol-
lows [17] that the result (@) for M® is in fact complete.
The limit ([@@) for M®) however only determines the
quadratic terms and does not specify additional linear
and constant contributions in s and ¢,

MO = (5[27%(2 = 1)5B(0, 7) (5% + 12 + u?)
+ alo,7)s + B(o, T)t + (o, 7)) (11)

The coefficients «, 3,7 are currently only known for ex-
ternal charges <22qq>m% E] and, up to a single free pa-
rameter, (23 ¢ — 1¢) |17], in which cases there is no de-
pendence on o and 7. In the case of (22¢q) we have

5 2 2(q—
B= iy, a=GREED, gy,
7y =—M8ho(g" + 947 +10¢* — 20— 25).  (12)

To describe an ansatz for M®) it is helpful to
parametrise the charges as

(P1p2pspa) = (p —mpq—nq) . (13)

We use the su(4) blocks Y|apq) (0, 7) (BI) instead of work-
ing with monomials in ¢ and T,

OZ(O’, T) = (E - 1)4Za7bBa,bda,b}/[aba] (Uv T) P (14)

and similarly for 5 while for v we replace (¥ — 1)4 with
(32 —1)3. We have included an explicit factor,

_ pq(p—m)(g—n)(X—2)1b!(b+1)!(b+2+a)
Ba,b T (p+ri)l(p—r2—2—a)!(g+r3)(g—ra—2—a)lriIralrglry! (15)

where we use the notation

r = b;m , ro = b+2m __ b—n _ b+n . (16)

The factor B, is in part motivated by the fact that
B(o,1) =83, BoyYop0) (0, T), (17)

and also by the fact that for each su(4) channel [a,b, a]
we can consistently make a polynomial ansatz for &, B,
7 as a function of p and ¢ for each required value of m
and n. Based on the observed structure of the (22qq)
amplitude, we allow & and 3 to be quadratic and 7 to be
quartic in p and gq.

Consistency with the (22¢q) results and crossing sym-
metry imposes many constraints among the free param-
eters of the ansatz but cannot fix it uniquely. To discuss
the additional constraints we will impose, it is helpful to
recall some facts about the double-trace spectrum.

THE DOUBLE-TRACE SPECTRUM

At leading order in the large IV expansion only double-
trace multiplets are exchanged in the OPE. The primaries
take the form

Oy = 0,002 P00, | p<q). (18)

For a given twist 7, spin [ and su(4) channel [a,b,al,
all the operators (I8)) are degenerate at leading order in
large N. We parametrise the unprotected ones as in ﬂ],

p=i+a+1+r,
i=1,...,(t-1),

g=ita+1l+b-—r,
r=0,...,(k—1), (19)



where we use the notation

t=(r-0/2—a, IQE{ (20)

LHTQJ a+ 1 even,
LHTlJ a + [ odd.

For each 7 = (7,1, a, b) there are d = k(t—1) degenerate
operators which mix and we denote the range of values of
(p, q) by Dz. We will label the eigenstates ICpq with p and
q parametrised by ¢ and r as above. The mixing problem
can be addressed by considering the OPE. If we arrange
a (d x d) matrix of correlators with the pairs (p1,p2) and
(ps, pa) ranging over the same set Dz we have
<OP1 O;Dz OP3 (9114>10ng - Z-FA? Lz,

free

PIHlogu = S -MsLz, (21)

where Az and M= are matrices of coefficients and L= is
the superblock for long multiplets. The coefficients Az
are independent of A\ while M3 receives contributions at
all orders where the corresponding M) is non-zero.

The matrices Az and M3z are related to three-point
functions and anomalous dimensions of the IC,q,

(C;(CZ = A-F, (C;T].F(Cg = M;. (22)

Here C(pq),(5¢) is a (d x d) matrix of three-point functions
[(0,0,K55)] and n is a diagonal matrix encoding the
anomalous dimensions of the eigenstates KCpq,

Apq :T_l“‘%npq"i‘o(ﬁ)' (23)
The n and C matrices are expanded for large A as,
Npg = 77;2) + )\_%nﬁ) + )‘_%771(0?1) +...,
C=CO4A73C® 4 A73C® +.... (29

The tree-level contributions 7(®) induced by (@) take
an astonishingly simple form [7],

77,()2) = —2MM; 141/ (lro + 1), (25)
where the numerator is given by
My=(t—1)(t+a)t+a+b+1)(t+2a+b+2), (26)

and the denominator is a Pochhammer of the effective
ten-dimensional spin

Go(p) =1+ a+2(i+7) — 1 — HELT (27)

In HE] it was recognised that the appearance of £1¢ signals
the presence of a ten-dimensional conformal symmetry.
Note that ¢1¢ only depends on the combination i + r
(or p, not ¢) so in general there are several states with
the same anomalous dimension and the resolution of the
operator mixing in tree-level supergravity is only partial
ﬂ] This means that, although the eigenvalue problem is

3

well-posed, the leading order three-point functions C(°)
are in general not fully determined by M(©).

The first string corrections n(®) are even simpler ﬂﬂ]
They are only non-zero for [ =a=0and ¢ =1, r = 0,
(or £190 = 0) where there is no partial degeneracy in the
supergravity spectrum and they take the form

N® = g5 MiMyy1aGs(t— st +b+1)3.  (28)

Note that (% is a factor and the total polynomial degree
in t is 14. The fact that n® depends only on ¢;¢, instead
of [, a, 7, r individually, suggests that the ten-dimensional
conformal symmetry is respected also at order A%, The
corrections to the three-point functions are uniquely de-
termined and vanish, C®) = 0.

The above result generalises simply to states of the
highest possible spin | = (n — 3) at order A™% with n
odd. In this case the only relevant terms in M) are the
highest powers in s, t, uw which are determined by the flat-
space limit. Again these these terms are only non-zero for
a=0andi=17=0and we find that C"|,_, 3 =0
with the anomalous dimension given by

nl(2n73 X _MtMt-i-l-i-lCn(t - 1)71(t +0+ 1)71 . (29)

Note the anomalous dimensions are invariant under

t——t—b—2a—-1-2. (30)
The above motivates the following general proposal,
o 77;()2) =0 for £19(p) >n —3, (31)
© €1 (o) = 0 for f10(p) > n =3, (32)

° 7752)1#:0 is polynomial in ¢ of degree 8 +2n, (33)

° 771()2) only depends on £1p(p) as t — co. (34)

The constraint ([BI]) says that ¢1 dictates the non-zero
contributions to n and generalises the | = a = 0 and
i = 1,7 = 0 conditions for the A\™2 case ﬂﬂ] The condi-
tion ([B2) says that the columns of C™ corresponding to
operators with too high ten-dimensional spin vanish. In
the n = 3 case it implies C® = 0 since the first equation
in ([22) implies up to rescaling that C(*) is an orthogonal
matrix. Its first correction C® obeys

c®cOT 1 cOCBT =9, (35)

and therefore, after change of basis, is antisymmetric. If
all but the first column vanishes then the whole matrix
vanishes. Importantly, for n = 5 the same condition is
wealker than the condition C®) = 0 examined in ﬂﬂ] since
now there are generically three non-zero columns.

The condition (B3] is an assumption on the anoma-
lous dimension in the case of no partial degeneracy. The
polynomial should obey the symmetry [B0) and is of the
same order as in the maximal spin case ([29). The fourth
condition (34) was also observed in [17], albeit under the
(erroneously) stronger assumption C®®) = 0. Tt relates to
the restoration of ten-dimensional Lorentz symmetry in
the flat space limit (corresponding to ¢t — 00).



RESULTS

Imposing the conditions (B1)-([34]) in the case n = 5 we
find a unique consistent solution for the Mellin amplitude
and the spectrum. We emphasise that the existence of
a solution consistent with the ansatz for the Mellin am-
plitude, crossing symmetry and the spectrum constraints
is highly non-trivial. Actually, various computations in
some channels have revealed that the constraints (BII),
B2) are really a consequence of imposing [B3) and an
ansatz of the form (I4) for the Mellin amplitude.

Here we summarise the form of the A= 2 amplitude and
spectrum resulting from the above assumptions. Firstly
we find that the su(4) channels are constrained by a < 2,
consistent with the ten-dimensional spin obeying £19 < 2
at this order. The resulting partial wave coefficients are

Qap = BQ,b =0, %’72,1; = —Q1p = —%Bl,b =1,
Fip = 2(F2 (PG + b1) + (32 - 4)),
dop=—3(3+ 2)(Bq + bo) + %(22 —4),
Bob = —H2(5G + bo) ,
oy = —1h5 s + 2 +C]. (36)
Here we define p = (2p — m), § = (2¢ — n) and b, =
b(b+4+2a) while for 7o, we have (using R = pg+bo+8)
A=—(m*-1)(n* -1)(p* - 1) - 1),
B = mnpg[mn(pq - 8) — 32(2% — 4))],
C =16(X* —4)((22 + 1)? — 2mn) — 5m?n? + 195
+ 4bo(Z 4 4)? +4%(9% — 8R) — 13R? — T4R + 177b
+ (m? +n?) (2R — 4(Z — 2)® — by + 141). (37)

The anomalous dimensions are non-vanishing only for

l1p < 2, constraining the possible values of (i,7,l,a).
(5)

il WE define the

To write the anomalous dimensions 7
polynomial T as follows,

Ne=(t—-1(t+a)t+a+b+1),
Titiab = too535C5 MMy i NeN_¢—2a—bp—1—2 . (38)
Note that T¢,0,0,5 o< n(3)(t, b). For spin two we must have
i=1,r=0,a=0 and we find

a0 = Trzos(t +1)(E+2)(E+D+2)(t+b+3), (39)

which is just a particular case of ([29)).
For spin one we have i =1, r =0 and a = 0, 1,

Moo = STeros(t+1)(E+b+2)(24B +b+1) +),
Wy = Traastt+ 2+ +3)(E+b+5).  (40)

The spin zero anomalous dimensions have support on a =
0,1,2. For a = 1,2 we have only ¢ =1, r =0,

Nojon = STeo1pt(t +b+4)(262 +2(4+ D)t + b+ 6),

’7%\072 =Teo2pt(L+)(5+b+1)(6+b+1). (41)

4

In all the above cases we have C(®) = 0. The case a = 0
allows for two or three components depending on t,b.
Using 0 =7+ 2 =2t + 2+ b, the ¢ = 1 component reads

(5) _ 7
00,0 = T8 1£.0,06 Jo.t »

fot = 3(6% — bo)? — 35(6% — by) — 34bo + 639. (42)

Finally, the ¢ = r =1 and ¢ = 2,7 = 0 components read:

77%‘00 = 271,005 (bt — 10/ K e)

77§?1)‘070 = 171,005 (b + 10/ k)

ot = T foe — 2(0% 4+ by +21),
kb = Joe + (0% +bo) (07 +bo —10) . (43)

)

Note the residual partial degeneracy is lifted by the
square root. In the | = a = 0 case we have C(®) # 0.

DISCUSSION AND OUTLOOK

The results of the previous section provide a Mellin
formula for all correlators at order A\~ 2 as well as the
corrections to the spectrum. The correlators are consis-
tent with the results for (22¢q) [d, [16] given above and
(23 ¢ — 1) derived in [17]. Note that the anomalous di-
mensions found here differ from those conjectured in ﬂﬂ]
since we have found here that C®) # 0 in general.

In the first case where residual degeneracy is present in
the supergravity spectrum, the A~3 corrections resolve
it. Due to the residual two-fold mixing problem, the
appearance of square roots in the anomalous dimension
is to be expected; this did not happen in supergravity
due to the ten-dimensional conformal symmetry. In some
cases the square roots in (@3] have to disappear:

e When t = 2 there is no degeneracy and only two
states acquire anomalous dimension. In fact, ko =

j§72/100 and 775,51)|0,0 becomes a rational function.

e When b = 0,b =1 there is no degeneracy for any ¢
(k =11n (20)): the square roots disappear again.

e In the flat space limit ¢ — oo the square root terms
are suppressed and degeneracy is restored, respect-
ing the ten-dimensional Lorentz symmetry.

The disappearance of the square roots in these cases is a
strong check of the consistency of the solution. Finally,
all the anomalous dimensions have some shared features.

e When expressed in terms of the twist 7 (or 6 = 2¢t+
2a+b+1+2) instead of ¢ they really depend on the
su(4) labels only through the Casimir combination
by = b(b+ 4 + 2a).



e They enjoy the supergravity symmetry (B0): this in
turns means that all the quartic polynomials f, j, k
are actually quadratic in 62. We partly imposed
this property in ([B3) but again in many examples
it was found to follow from the other assumptions.

We believe the methods that we have developed here
will continue to be effective at higher orders in )\_%, the
next case being A=3. It will be interesting to examine the
first case of triple residual degeneracy at order A7F to see
if there is hope for an explicit formula for the spectrum.
We hope that this may allow us to apply a bootstrap
approach to the full classical string amplitude in AdS.
This in turn will provide valuable information on the A
dependence of the loop amplitudes.

ACKNOWLEDGEMENTS

We thank Dhritiman Nandan and Kostas Rigatos for
collaboration on related topics and Francesco Aprile, Da-
vide Bufalini, Paul Heslop and Sami Rawash for interest-

ing discussions. This work was supported in part by the
ERC Consolidator grant 648630 IQFT.

Appendix: Supergravity Mellin amplitude and
superconformal blocks

We give here the Mellin amplitude in supergravity,

Niipoiri
o _ ijk
M Z(s—§+2k)(t—t+2j)(u—ﬂ+2i)

]

, (44)
with ¢ + j + k = ps + min(0, 2262224) — 2 and the sum
taken such that i, j,k > 0. Here we have used

§ =min(py + p2,p3 +pa) — 2,
=pat+p3—2, U=p+p3—2. (45)

SN

Finally, the coefficients NV;;;, are given by (13, 17,

8p1papapa(iljlk!) "
[2043+;021 +2i} | [p437;021+2j} | [ \P13+P24|+2/€] n
5 ! 5 ! 5 !

Nijk = (46)

The relevant superblocks for long multiplets were given
in m, @] In our notation they take the form

L‘F = PIUR%_2}/[aba] (ya (7?)82+%‘l(x7j) . (47)

In ([@0) we have

P1+tpP2—P43  —P21+P43 P21+P43
2

1y,
P =Nz Zplglg 2 914 (2 952 ) (48)
where we introduce the propagators g;;,

9ij = y?j/‘r?j ) CC?J- = (w; — %‘)27 yfj =YiYj- (49)

The factor Z in (1) is given by

I(x,7;y,9) = (x —y)(= - 9@ —y)(@ - 5)/(y5)*, (50)

and is present due to superconformal symmetry m, @]
The su(4) blocks for [a, b, a] = [ — v, 2v + pa3, u — V] are
given in terms of Jacobi polynomials Jl(ta’ﬁ ,

Yiaba) (45 9) = (P () Pugr () = Pusr (9) P (9))/ (y — 9),
(P4351021 )1021 +;D43) (

!
P#(y) = (H+1Pf|‘l;743)u I 2 2 _ 1) . (51)

Y

Finally the conformal blocks are given by

Bs‘l(:z:, 7) = (_1)1 uigltt Fsﬂ(m)Fi,l(i)—(mHj)’

r—x

Fo(z) = oFy(s— B2 s+ B2 7). (52)
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