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UNIVERSITY OF SOUTHAMPTON 
Faculty of Environmental and Life Sciences 

School of Ocean and Earth Science 

Abstract 

Thesis for the degree of Doctor of Philosophy 

Identification of Seasonal and Interannual Drivers of Primary 
Production in Two Temperate Estuaries Using High-Frequency 

Environmental Data 
by 

Africa Paulina Gómez Castillo 

Estuaries are one of the most productive coastal regions and, within them, phytoplankton 
is the most important primary producer. Net community production, the balance between 
production and consumption, provides an integrated measure of the trophic state, 
determining if the system is accumulating or depleting organic matter and whether is a 
net sink or source of O2 and CO2. Given that interactions between physical and biological 
processes within estuaries tends to vary over diurnal and semi-diurnal timescales, this 
study used high-frequency environmental data to estimate interannual and seasonal 
drivers of primary production of two contrasting temperate estuaries, the Southampton 
Water estuary (2014–2020) and Christchurch Harbour estuary (2014–2018). An analysis 
of the correlation between phytoplankton blooms (from chlorophyll ‘a’) and 
environmental conditions, demonstrated correlations between the spring bloom initiation 
and week-long periods with >800 Wh m-2 d-1 peaks in surface light availability. 
Christchurch displayed the typical dynamics described for coastal temperate estuaries, 
displaying spring and autumn blooms, whereas Southampton presented blooms in spring 
and summer. Blooms in Southampton developed during neap tides and dissipated on the 
following spring tide, suggesting reduced estuarine flushing and possible stratification 
enhancing phytoplankton biomass growth during neap tides. Application of the open 
water diel oxygen method proved to be a reliable technique to integrate daily estimations 
of ecosystem production and respiration rates in both estuaries, as long as assumptions 
are appropriately addressed. Results from this method suggested Southampton Water had 
become more net heterotrophic (-1.3 to -48.7 mmol O2 m-2 d-1), while Christchurch 
Harbour seemed had turnes net autotrophic (-11.7 to 19.8 mmol O2 m-2 d-1). An 
examination of the metabolic balance (GPP:ER) classified both estuaries between 
oligotrophic and mesotrophic states, with Southampton leaning towards mesotrophic 
conditions. Estimations of the estuarine carbonate system parameters were performed in 
Southampton (2019-2020). The estuary was identified to be a source of CO2 to the 
atmosphere, agreeing with the net heterotrophic classification from dissolved oxygen 
derived net community production measurements. Inconsistencies among estimations 
were attributed to possible seasonal stratification, underestimation of wind speed and 
estuarine flushing times. Frequency and magnitude of riverine inputs influenced the 
distribution of carbonate system parameters. Biological processes were identified as a 
major factor controlling the pH/oxygen saturation dynamics and CO2 fluxes were 
observed to follow the pattern of dissolved inorganic carbon concentration. The 
heterogeneity of coastal zones is of global concern and results from this study will allow 
a better understanding of local and regional primary production dynamics as well as 
provide a baseline to assess future anthropogenic impacts and climate change alterations 
to the aquatic trophic state of the Southampton Water and Christchurch Harbour estuaries. 
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Chapter 1 

Introduction

1.1 Importance of estuarine ecosystems 

Coastal zones include lower-river basins (<100 km from shore), estuaries, coastal 

wetlands, and shelves (Cai, 2011). They represent only 7% of the total ocean 

surface area (Kanuri et al., 2017) however, they play a major role in hydrographic 

and biogeochemical characteristics of coastal marine ecosystems by acting as 

natural vectors for land-sea interactions (Ruiz et al., 2013). Coastal waters 

provide habitats to support local biodiversity and sometimes migratory species 

(Liu et al., 2015) and also a variety of ecological services such as water clarity, 

carbon uptake, erosion control and primary production (Mahoney & Bishop, 2017; 

Ruiz-Ruiz et al., 2017). While different coastal zones share similar characteristics, 

their response to changes in climate variables fluctuates according to many 

factors, such as geomorphology and anthropogenic pressures. Among these 

regions, estuaries can be highlighted due to their unique physical, chemical, and 

biological characteristics and complex ecological interactions and spatial and 

temporal variability (Lemley et al., 2020; Newton et al., 2014). 

Estuaries are commonly defined as “semi-enclosed coastal bodies of water that 

have a free connection with the open sea and within which seawater is 

measurably diluted with freshwater derived from land drainage” (Borges & Abril, 

2011). They can act as fast biogeochemical reactors as a consequence of the 

continuous input of environment nutrients and organic matter from riverine 
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sources (Cloern et al., 2014). These natural inputs of nutrients from rivers caused 

by weathering, have been disturbed in the last few decades by human activities, 

such as agriculture, wastewater treatment and consumption of fossil fuels 

(Rodríguez-Gallego et al., 2017) leading to an alteration of the biogeochemical 

processes and the biological community structure (Davidson et al., 2015; Staehr 

et al., 2017). Human population growth around estuaries can lead to an increase 

in nutrient and organic inputs (Caffrey et al., 2014; Guenther et al., 2015) resulting 

in major water quality problems, emphasising the importance of determining the 

current state of representative ranges of estuarine ecosystems.  

1.2 Distribution of phytoplankton in coastal waters 

Phytoplankton communities are the basis of many marine ecosystems, regulating 

the energy transfer efficiency through the food web but also the efficiency of the 

biological carbon pump, and furthermore, are responsible for roughly half of 

global primary production (Behrenfeld et al., 2006; Rose & Caron, 2007). In 

estuaries, phytoplankton exhibit rapid responses to environmental variations by 

modifying their temporal and spatial species distribution, usually highly amplified 

when compared to the open ocean (e.g. Leterme et al., 2014). Therefore, 

phytoplankton is commonly acknowledged as an excellent bioindicator of the 

impact of natural and man-driven changes in coastal ecosystems (Leterme et al., 

2014; López-Abbate et al., 2017).  

The most common parameter used to measure phytoplankton biomass variability 

is the concentration of the chlorophyll ‘a’ (Chl ‘a’) pigment (Niu et al., 2016; 

Winder & Cloern, 2010). Given the strong relation between chl ‘a’ and primary 

production, there is an implication that the observed variability in one parameter 

can indirectly describe processes associated with the other. Therefore, the 
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phytoplankton biomass distribution in an estuary can indicate the dynamics of the 

seasonal and annual variability of the ecosystem properties such as water quality, 

community metabolism, and carrying capacity for fish and shellfish (e.g. Cloern 

& Jassby, 2010). 

Phytoplankton blooms are common occurrences in many coastal ecosystems, 

and estuaries are no exception (e.g. Rose & Caron, 2007). A bloom is a rapid 

increase in phytoplankton biomass caused by temporary imbalances between the 

rate of primary production and the rate of loss of photosynthetically fixed carbon 

due to respiration, grazing, and advection (e.g. Iriarte & Purdie, 1994). To classify 

an event as a bloom, it is widely accepted that a substantial deviation above 

background phytoplankton biomass for the individual ecosystems is needed (e.g. 

Carstensen et al., 2015). More than a single event, blooms are usually a series 

of fluctuations where the biomass and the species composition of the 

phytoplankton population change rapidly (Cloern, 1996; Godrijan et al., 2013), 

and can affect positively or negatively food web structure and carbon flow 

(Narasimha et al., 2017; Trombetta et al., 2019).  

1.2.1 Seasonal blooms 

Phytoplankton communities and biomass change on many scales simultaneously 

(e.g. Bucci et al., 2012). Estuaries present an extensive range of variability 

patterns, with some dominated by a seasonal fluctuation, others dominated by 

annual oscillation and others dominated by the residual component, including 

exceptional bloom events such as red tides (e.g. Cloern & Jassby, 2010). 

In an extensive review of phytoplankton bloom dynamics in coastal ecosystems, 

Cloern (1996) introduced a classification for seasonal blooms into three types: (i) 

recurrent seasonal events that usually persist over weeks, (ii) aperiodic events 
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that often last for days, and (iii) exceptional events that are typically dominated 

by few species (sometimes noxious or toxic forms) and can persist for months. 

Seasonal blooms can be observed in spring, summer, autumn, and winter and 

these events are often dominated by different species each season as the 

phytoplankton community adapts to changes in resources and the physical 

environment (e.g. Cloern & Jassby, 2010). In Cloern (1996) review, he suggested 

that most ecosystems show a narrow range of annual variability and that those 

with substantially large annual variability can attribute this to disturbance from 

natural events or human actions. 

Undoubtedly, the most often described seasonal pattern is the spring bloom 

(Carstensen et al., 2015; Martellucci et al., 2021; Niu et al., 2016; Trombetta et 

al., 2019; Zingone et al., 2010); an occurrence mainly observed in all aquatic 

systems in temperate and subpolar regions as a response to seasonal increases 

in temperature and solar radiation, and the subsequent thermal stratification after 

winter mixing redistributing nutrients to surface water (e.g. Leterme et al., 2014). 

The spring bloom typically persists for a few weeks to months, with eventually 

nutrient limitation, cell sinking and grazing causing the bloom to collapse. A 

secondary biomass peak stimulated by excess nutrients can develop in late 

summer or autumn (e.g. Winder & Cloern, 2010). 

1.2.2 Environmental conditions affecting blooms 

The magnitude, timing and duration of phytoplankton blooms across ecosystems 

varies greatly (Leterme et al., 2014). Even though much of phytoplankton 

variability can be driven by the annual cycles of solar radiation and atmospheric 

input, in such complex and dynamic systems like estuaries, fluctuation in 

phytoplankton biomass is generated by additional processes that occur across 
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their interfaces with land, ocean, atmosphere, and underlying sediments (e.g. 

Cloern & Jassby, 2010). Consequently, blooms are generated from a 

combination of different critical factors and interactions between them (Henson 

et al., 2006; Niu et al., 2016). 

Temperature affects phytoplankton physiology and metabolic process, changing 

the composition and trophic interactions of plankton communities; for instance, in 

non-limited nutrient conditions, rises in temperature can increase nutrient uptake 

(e.g. Trombetta et al., 2019). In addition, surface blooms can be promoted by 

establishing strong thermal stratification in the water column due to the sudden 

increase of temperature (e.g. Carstensen et al., 2015). 

However, light availability is usually the critical driver of bloom initiation in coastal 

environments. Interannual variability within estuaries is modulated by surface 

irradiance (PAR), oscillation and weather conditions affecting it, such as cloud 

cover. Moreover, water transparency and surface mixed layer depth affect the 

amount of light available for phytoplankton (e.g. May et al., 2003). 

Light availability in turbid estuaries can limit phytoplankton growth, but blooms 

regularly occur when turbidity decreases. In most shallow estuaries, the main 

cause of changes in turbidity is vertical mixing driven by tidal currents with 

variations between ebb and flood phases as well as between neap and spring 

tides (Bucci et al., 2012). Tides can affect sediment resuspension rates and, 

therefore, turbidity. Additionally, a higher tidal range means a larger intrusion of 

coastal water than with a low tidal range, which is generally less turbid, and this 

would tend to counteract the effect of bottom resuspension (e.g. Iriarte & Purdie, 

2004). Moreover, the presence of suspended materials from river runoff can also 
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affect estuarine turbidity depending on its particle load as a result of precipitation 

rates (e.g. Martellucci et al., 2021). 

Nutrient input from runoff can supply systems with nutrients, stimulating 

phytoplankton production and leading to the accumulation of biomass and bloom 

formation (e.g. Trombetta et al., 2019). However, changes in nutrient loads due 

to human activities have the potential to modify the periodicity and magnitude of 

phytoplankton blooms or may cause an environment to become eutrophic (e.g. 

Davidson et al., 2012). Horizontal and vertical water movements largely influence 

the availability of nutrients, and in shallow estuaries, the intensity and direction of 

winds can strongly influence the nutrient supply by sediment resuspension (e.g. 

Silkin et al., 2019). Freshwater inflow can favour phytoplankton by promoting 

vertical salinity stratification retaining phytoplankton in a nutrient-rich and well-

illuminated zone. Nevertheless, in small estuarine systems, intense freshwater 

pulses can flush out the phytoplankton community (Bucci et al., 2012; Cloern & 

Jassby, 2010; Peierls et al., 2012). 

1.3 Estuarine biogeochemical processes 

Biogeochemistry is defined by Bianchi (2012) as the integrative field in which 

interactions between biological, chemical, and geological processes are studied 

to determine sources, sinks, and fluxes of elements through different reservoirs 

within ecosystems. Given that estuaries are complex ecosystems where 

processes do not work independently from one another (Laane & Middelburg, 

2011), in recent years, this holistic approach has been used to improve the 

understanding of estuaries and the role they play in defining the hydrographic 

and biogeochemical characteristics of coastal marine ecosystems (e.g. Ruiz et 

al., 2013). 
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In estuaries, the spatial and temporal scales of biogeochemical cycles can vary 

considerably within days and even hours (Bianchi, 2012), thus, the importance of 

estimating atmospheric fluxes of biogases in estuaries and their impact on global 

budgets cannot be overestimated (e.g. Frankignoulle & Middelburg, 2002). 

1.3.1 Dissolved oxygen in the water column 

In estuarine environments, the concentration of dissolved oxygen (DO) is a key 

indicator of water quality due to its direct relation with biological and 

environmental processes (Yuan et al., 2016). In surface waters, DO 

concentrations are determined by inputs from the atmosphere and aquatic plant 

photosynthesis, and outputs, which are dominated by respiration and other 

processes that consume oxygen (Friedrich et al., 2014). Furthermore, low DO 

concentrations can cause adverse responses from aquatic organisms such as 

slower growth rates, elevated stress levels and in some cases death (e.g. O’Boyle 

et al., 2009). Due to the above, it is not surprising that most of the methods 

applied to assess eutrophication include water column DO measurements. Even 

when it has been classified as a secondary symptom of eutrophication (e.g. 

Bricker et al., 2008), dissolved oxygen is a major indicator of how an ecosystem 

responds following an increased runoff of nutrients.  

In coastal ecosystems, and mainly in those affected by eutrophication, the 

developing plant biomass leads to increased photosynthetic oxygen production. 

This elevated oxygen concentration is soon reduced by respiratory oxygen 

consumption of organic matter indicated by a biological demand for oxygen. A 

large oxygen demand can result in two of the most important oxygen-related 

conditions of hypoxia and/or anoxia (e.g. Nezlin et al., 2009). 
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Fig. 1.1 Description of hypoxia process. Infographic from (NOAA. Great Lakes Environmental Research Laboratory, 2017).
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Hypoxia is normally defined as when the DO concentration in a water body falls 

below 2 mg O2 L−1 (~62.5 µmol O2 L-1) and is influenced by a complex interaction 

of physical and biochemical processes (Gammal et al., 2017; Xia & Jiang, 2015). 

Although, it has been pointed out that this value is very low, and a higher one 

(i.e., 3.5 mg O2 L−1 or 109.4 µmol O2 L-1) should be used mainly for sites with 

more sensitive species (Steckbauer et al., 2011). Coastal hypoxia is often 

associated with increases in ecosystem production and respiration, presenting 

higher net autotrophy in surface layers but higher net heterotrophy in underlying 

waters (e.g. Kemp & Testa, 2011). 

Moreover, anoxia occurs when DO concentration, in the ecosystem, is below 0.2 

mg O2 L−1 (~6.3 µmol O2 L-1); these events are also known as no-oxygen events 

(O’Boyle et al., 2009). Hypoxia and/or anoxia events can reduce the tolerance of 

organisms to other stressors, disturbing their metabolic activities and eventually 

causing their death (Cai et al., 2017; Steckbauer et al., 2011; Xia & Jiang, 2015). 

Monitoring oxygen-deficient events in coastal waters is very important, not only 

due to their impact on marine life but also because of the close relation oxygen 

has with biogeochemical cycles and nutrient recycling (Ahlgren et al., 2017; Zhu 

et al., 2017). Hypoxia can modify the amount of P and N released from the 

sediments that then becomes available for biota (e.g. Gammal et al., 2017), which 

helps to extend eutrophication conditions. 

1.3.2 Net community production 

An accurate estimate of the oxygen flux at the air-sea interface can be achieved 

from the determination of the net primary production of the ocean (e.g. Tilstone 

et al., 2009). Several techniques are used to determine aquatic rates of net 

primary production, the most common being the method introduced by 
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Steemann-Nielsen (1952) where radioactive carbon 14 isotope (14CO2) uptake 

and photosynthetic conversion to reduced particulate organic carbon by a natural 

community of microplankton, is measured after growth in bottles (Chavez et al., 

2011; Johnson & Bif, 2021; Oczkowski et al., 2016). 

Alternatively, changes in DO can be measured in small-volume glass bottle 

incubations in the dark and light to detect respiration and net production (Langdon 

& Garcia-Martin, 2021). However, the problems inherent in these short-term, 

small volume incubation techniques are exacerbated in the highly dynamic 

heterogeneous coastal zone, where the seasonal oxygen change shows marked 

variability (Queste et al., 2016). Interaction between physical and biological 

processes within estuaries tends to vary over diurnal, semi-diurnal and 

sometimes episodic timescales, making acquiring frequent data critical to 

accurately assess ecosystem health for these periods (e.g. Nidzieko et al., 2014). 

An alternative and more integrative method to estimate primary production relies 

on the calculation of the in situ oxygen mass-balance from continuous 

measurements of DO: the open water diel oxygen method, first proposed by 

Odum (1956) and later modified to apply it to estuarine systems (Caffrey, 2003; 

Emerson et al., 2008). The difference in DO concentration across a specific 

period of time has been widely used to quantify O2 flux due to the release of 

oxygen during photosynthesis and uptake during aerobic respiration, allowing 

these separate processes to be determined together (Caffrey, 2003, 2004; 

Herrmann et al., 2014). In addition, to DO, it is necessary to monitor other 

parameters such as light and water clarity, temperature, nutrient and organic 

matter loading, water residence time and water depth since these are key 

environmental factors that influence productivity rates (Herrmann et al., 2014). 
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The use of the open water diel oxygen method provides a practical approach to 

capturing events and ecosystem changes over time, given that DO variability can 

be recorded continuously and for sustained periods (e.g. Beck et al., 2015). This 

method quantifies the in situ diel oscillations in DO concentration to estimate daily 

integrated gross primary production (GPP), ecosystem respiration (ER) and net 

community production (NCP) (Demars et al., 2015). 

 

Fig. 1.2 Aquatic ecosystem trophic state through the relationship between ecosystem respiration 
(RE) and gross primary production (GPP), and its influence in the air-sea exchange of O2 and 
CO2. 

NCP, also known as net ecosystem metabolism (e.g. Needoba et al., 2012), is a 

community-level process that integrates all of the processes affecting the balance 

between production and consumption and can be defined as the overall balance 

between GPP and ER (Duarte & Regaudie-De-Gioux, 2009; Garcia-Corral et al., 

2021). It provides an integrated measure of the trophic state of an aquatic 

ecosystem, determining if the system is accumulating or depleting organic matter 

and whether there is net uptake or release of O2 and CO2 as illustrated in Figure 

1.2 (Guenther et al., 2017; Haskell et al., 2019; Hopkinson & Smith, 2005). A 

positive NCP (net autotrophic) indicates that autochthonous organic matter 
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sources dominate in the ecosystem. In contrast, a negative net community 

production (net heterotrophic) suggests external organic sources dominate (Feng 

et al., 2012; McAndrew et al., 2007; Shen et al., 2020; Shen et al., 2019b). 

Although the open ocean has been considered on time scales of months and 

longer to be a net autotrophic ecosystem that exports organic carbon to depth 

and produces more oxygen than it consumes (e.g. McAndrew et al., 2007), recent 

reports have revealed a wider prevalence of heterotrophic communities, 

particularly in the least productive oceanic regions (Aranguren-Gassis et al., 

2011; Duarte et al., 2013b; Williams et al., 2012). However, in estuarine regions, 

a shift from an autotrophic to a heterotrophic state, mainly related to seasonal 

changes in water temperature and light availability, has been reported (Azevedo 

et al., 2006; Tang et al., 2015).  

NCP varies between ecosystems, as seen in Table 1.1, which emphasises the 

importance of determining this parameter in a representative range of marine 

ecosystems. This will provide the information needed to constrain 

biogeochemical models used to determine regional and global biogeochemical 

fluxes (e.g. Beck et al., 2015) since NCP represents the net effect of all biological 

processes contributing to CO2 and O2 fluxes in coastal ecosystems (Demars et 

al., 2015; Valenzuela-Siu et al., 2007).  

1.3.3 Estuarine carbonate system 

Estuaries are a major global source of CO2 to the atmosphere (Bianchi et al., 

2013), given that they are considered efficient ‘traps’ of a large fraction of 

terrestrial organic carbon delivered by rivers (e.g. Hu et al., 2020). However, 

coastal environments are usually neglected in global carbon budgets because 

this region only covers about ~7% of the total ocean system (Kanuri et al., 2017). 
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Despite their small area, according to Chen & Borges (2009), near-shore 

ecosystems account for ~30% of the CO2 uptake by the open oceans based on 

pCO2 measurements and carbon mass-balance calculations. The coastal ocean 

is one of the most biogeochemically active regions of the biosphere where 

production and degradation of organic matter are several times higher than in the 

open ocean and, in consequence, air-sea CO2 fluxes are disproportionately more 

intense than their relative surface area (e.g. Borges et al., 2006) 

The overall picture of air-sea CO2 distribution is that temperate open continental 

shelves are net autotrophic; hence, net exporters of oxygen and potential sinks 

for atmospheric CO2 (Borges et al., 2004). Whereas the consensus regarding 

estuaries is that they are considered net heterotrophic, acting as sources of CO2 

to the atmosphere (Bianchi, 2012; Cai, 2011; Frankignoulle et al., 1998; Hu et al., 

2020; Yao et al., 2020). This is mainly attributed to the large inputs of terrestrial 

organic carbon that these ecosystems receive (Guenther et al., 2017), resulting 

in a respiration increase of detrital organic matter, which in turn produces large 

quantities of dissolved CO2 that generate very high fluxes to the atmosphere 

(Frankignoulle & Middelburg, 2002). In general, CO2 degassing flux is more 

intensive in lower latitude estuaries than in high latitudes (e.g. Bianchi et al., 

2013), and more specifically, in European estuaries, the production of large 

quantities of dissolved CO2 is related to intense anthropogenic disturbance, 

reflected in elevated loadings of detrital organic matter which induces high 

respiration rates (e.g. Frankignoulle et al., 1998). 
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Table 1.1. Annual average rates of net community production determinate by 
the open water diel oxygen method in different estuaries mmol O2 m-2 d-1. 

Site Year Ecosystem description Annual NCP Reference 

Chesapeake Bay, USA 

1995-2000 

The largest estuary in the US. 
The Bay estuarine system com-
prises the Bay proper and more 

than 50 tributaries  

-65.6

(Caffrey, 
2004) 

Mullica River, USA Shallow, polyhaline embayment 
with extensive salt marshes. -67.6

Old Woman Creek, USA 

Freshwater estuary. The 
estuary’s outlet mouth may be 
close for extended periods as 

the result of wave 
action and the formation of a 

barrier beach. 

-112.5

Narragansett Bay, USA 
Is a phytoplankton-based 

ecosystem with relatively little 
salt marsh or macroalgae.  

-40.6

Great Bay, USA 

Complex embayment and New 
Hampshire’s largest estuarine 
system, encompassing tidal 
portions of five major river 

systems. 

-18.8

Wells, USA 

Back-barrier marsh dominated 
by strong tidal currents due to 
the large tidal range in the Gulf 

of Maine.  

28.1 

Weeks Bay, USA 2009-2010 

Mid-bay point. Small, shallow 
sub-estuary of Mobile Bay. 
Freshwater inputs from two 

rivers. 

-68.8 (Mortazavi et 
al., 2012) 

Apachicola Bay, USA 2002-2011 

Extensive open water, 
submerged and emergent 

wetland vegetation, tidal flats, 
and unconsolidated bottom. 

-50 to -20

(Caffrey et al., 
2014) Weeks Bay, USA 2003-2011 

Small, shallow sub-estuary of 
Mobile Bay. Freshwater inputs 

from two rivers. 
-10 to -15

Grand Bay, USA 2004-2011 
Small and relatively pristine 
estuary with no major river 

inputs. 
-20 to -10

River Thames plume, UK 2001-2015 

Warp Anchorage monitoring 
station, which is a permanently 
well-mixed shallow area within 

the River Thames plume. 

-5 (Hull et al., 
2016) 

Pensacola Bay, USA 2013 

Shallow, river-dominated 
estuary with fringing seagrass 

beds graduating to deeper 
unvegetated habitat comprised 

of sand-silt sediments. 

Spring     16.9 

Summer  109.5 
(Murrell et al., 

2018) 

Ria Formosa, Portugal 2017-2018 
Coastal lagoon, depth ~2 m, 

semi-diurnal tides in a mesotidal 
regime, well mixed vertically. 

-0.1 to -71 (Cravo et al., 
2020) 
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Despite the vast agreement on the role of estuaries as sources of CO2, the order 

of magnitude of these contributions are still a matter of debate (Frankignoulle et 

al., 1998). This argument is based on the fact that current global estuarine CO2 

flux estimations are based on a limited dataset that is likely over representing 

highly heterotrophic estuaries (Shen et al., 2020). Furthermore, there is an 

absence of data resolving the temporal variability of carbon cycling for adequately 

describing the diversity and spatial heterogeneity in these highly dynamic 

ecosystems (Borges et al., 2008). 

Since estuaries act as a convergence zone between the terrestrial environment 

and the coastal ocean (Kanuri et al., 2017), riverine discharge controls the 

freshwater residence time and the mechanisms of carbon processing (Bianchi et 

al., 2013). When high freshwater discharge occurs, excess CO2 from riverine flow 

degases to the atmosphere during estuarine mixing and accounts for most of the 

CO2 flux (Borges et al., 2006). Conversely, organic matter remineralisation 

dominates under low freshwater discharge, and dissolved inorganic carbon (DIC) 

builds up in the estuarine water column resulting in CO2 emissions (Hu et al., 

2020). In macrotidal estuaries, most of the mixing between freshwater and 

seawater occurs within the inner estuary; however, the outer estuary can be a 

site of intense primary production and can behave as a major sink for atmospheric 

CO2 (Frankignoulle et al., 1998). Recent work has shown that estuarine plumes 

can also be net sinks of CO2, particularly in the outer plume region (e.g. Bianchi, 

2012). 

The balance between CO2 absorption and release in estuaries is further regulated 

by abiotic factors such as wind speed, atmospheric pressure, pH, alkalinity, 

temperature and salinity, and by biotic factors like primary production and 
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ecosystem respiration (Guenther et al., 2017). Depending on the interaction 

among these factors, an ecosystem or parts of it, can act as a CO2 source or sink 

(Bianchi, 2012). Therefore, to accurately estimate the CO2 flux and the role of 

estuaries in the global carbon cycle, spatiotemporal variations and anthropogenic 

disturbance effects should be considered in budget calculations. 

1.4 Optical sensors in coastal observation 

Interactions between physical and biological processes in estuaries require 

making continuous biogeochemical measurements at the tidal, fortnightly, and 

episodic timescales over which residence time and geochemical rates vary 

(Nidzieko et al., 2014). Moreover, phytoplankton communities and biomass can 

change on many scales at the same time. Large changes can occur at time scales 

shorter than a month, and monthly scale changes in Chl ‘a’ can arise from 

processes operating at shorter timescales (Cloern & Jassby, 2010); therefore, 

Chl ‘a’ measured today could easily represent preceding primary productivity 

(Chavez et al., 2011). Biweekly to monthly sampling campaigns are unable to 

capture such short-term fluctuations, and it has been argued that sampling times 

very often miss critical or controlling events in estuaries (e.g. Chavez et al., 2011). 

Recent improvements in sensor and autonomous platform technology are 

enabling a considerable expansion of the temporal and spatial scope of marine 

biogeochemical observations (e.g. Nicholson et al., 2015). The use of these 

optical sensors (e.g. optodes) permits the coupling of biogeochemical and 

physical measurements at sub-hourly intervals for extended durations (e.g. 

Nidzieko et al., 2014). Additionally, long time series constructed with low sampling 

intervals (minutes) can capture the detail of events that would not be recorded 
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through conventional on-site discrete sampling, to effectively address episodic 

events (e.g. Cravo et al., 2020). 

The literature has widely described examples of the advantages of using optical 

sensors in coastal observation. One of those is the use of optodes compact 

enough to be mounted on autonomous underwater vehicles with high enough 

precision to resolve O2 diel oscillations smaller than 1 µmol O2 L-1 as reported by 

Barone et al. (2019). In addition, Rumyantseva et al. (2019) described the use of 

autonomous platforms for studying phytoplankton dynamics due to their ability to 

obtain frequent depth-resolved profiles of bio-optical and physical properties for 

inter-seasonal periods of time. Lastly, the estimation of primary production 

through continuous dissolved oxygen measurements using optodes (Cravo et al., 

2020; Hull et al., 2016) has proven to identify seasonal and even episodic events 

in estuaries. 

In recent years, the use of optical sensors has expanded, and with it global 

observation networks have developed. Nevertheless, in order to confidently make 

use of these data, a suite of chemical and biological sensors with adequate 

characteristics in terms of size, power consumption, precision/accuracy and long-

term stability are needed (Bittig et al., 2018), and the adequate maintenance and 

calibration must be performed in order to obtain high-quality and reliable data 

(Uchida et al., 2008). 

1.5 Thesis overview 

1.5.1 Aims and objectives 

The overall aim of this study is to estimate interannual and seasonal changes in 

the primary production of two contrasting temperate estuaries, the Southampton 
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Water estuary and Christchurch Harbour estuary, and identify the environmental 

factors influencing its variability by using continuous high-frequency 

environmental data. It is hypothesised that a net heterotrophic state will dominate 

in the two estuaries, implying a depletion of organic C and a net CO2 release to 

the atmosphere, and that a shift to autotrophy will only be episodic and driven by 

phytoplankton blooms. 

In order to test the hypothesis, the following main objectives were addressed: 

 To investigate temporal phytoplankton bloom dynamics and the 

environmental factors driving them in Southampton Water (2014 – 2020) and 

Christchurch Harbour (2014 – 2018). 

 To examine seasonal and interannual variation in productivity rates and the 

interactions between them and environmental variables in Southampton 

Water (2014 – 2020) and Christchurch Harbour (2014 – 2018). 

 To explore the primary controls and temporal variability of carbonate system 

parameters in Southampton Water (2019 – 2020) and their influence on air-

sea CO2 fluxes.  

1.5.2 Thesis structure 

This thesis is presented in six chapters, which are described below: 

Chapter 1: Introduction. 

The first chapter provides a general background on the topics addressed within 

the thesis; including the importance of estuaries in coastal regions, the temporal 

distribution of phytoplankton in the form of seasonal blooms and environmental 

conditions triggering them, the estuarine biogeochemical processes that interact 

with net community production, and the relevance of optical sensors in coastal 
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observations. The main objectives are described and the thesis structure is 

explained. 

Chapter 2: Methods. 

This chapter introduces the study sites and provides background information for 

Southampton Water and Christchurch Harbour estuaries. The data collection and 

processing methods are given for continuous sensor monitoring, field sampling 

and external data acquisition. Equations formulating the open water diel oxygen 

method are reviewed, as well as calculations included in the CO2calc software. 

Statistical analyses used in the following chapters are described.  

Chapter 3: Temporal variation of phytoplankton blooms associated with changes 

in environmental conditions in the Southampton Water and Christchurch Harbour 

estuaries. 

In chapter 3, the seasonal and interannual variability of environmental factors is 

explored graphically and statistically. Variability in the timing, magnitude and 

duration of the blooms and environmental drivers is discussed. For Southampton 

Water, an in-depth analysis of the influence of tides on phytoplankton blooms is 

also included. 

Chapter 4: Variability of net community production, gross primary production, and 

ecosystem respiration in two contrasting estuaries. 

Chapter 4 reviews productivity rates derived from high-frequency measurements 

of surface water dissolved oxygen concentration (in both estuaries) using the 

open water diel oxygen method. Environmental factors influencing ecosystem 

respiration, gross primary production and net community production are 

analysed. Implications on the aquatic trophic state of both estuaries are 
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addressed, and the relationship between ecosystem respiration and gross 

primary production is evaluated.  

Chapter 5: Plankton carbon metabolism and air-sea CO2 fluxes of Southampton 

Water estuary. 

In chapter 5, a characterization of the seasonal and interannual carbonate 

chemistry parameters, for the Southampton Water estuary in 2019 and 2020, 

using the CO2calc software is presented. An analysis of the connection between 

air-sea CO2 flux and net community production, as well as its implication on the 

CO2 release and/or assimilation in the estuary is evaluated. 

Chapter 6: Synthesis and conclusions. 

The final chapter summarises the research presented in this thesis. It includes 

the main findings and implications for future work. 

The appendix and all references are listed at the end of this work. 

 

At the time of submission of this thesis, data for the Southampton Water estuary 

in 2019, included in Chapter 4 and Chapter 5, have been submitted as: 

Gomez-Castillo, A.P., Panton A. & Purdie, D. A. 2022. Temporal variability of 

phytoplankton biomass and net community production in a macrotidal temperate 

estuary. Submitted to Estuarine, Coastal and Shelf Science. 
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Chapter 2 

Methods

2.1 Study sites 

The present study determined environmental conditions and their relationship 

with productivity rates in two South Coast UK estuaries: Southampton Water and 

Christchurch Harbour. Southampton Water was the central area of investigation 

due to its accessibility to different data sets and sensor calibration availability. 

2.1.1 Southampton Water 

The Southampton Water estuary is part of the Solent estuarine system, 

considered the largest on the south coast of the UK (Fig. 2.1). It is an 

approximately linear body of water about 2 km wide and 10 km long with a central 

channel continuously dredged to a minimum depth of 12.2 m below the local 

Chart Datum. Three main rivers discharge into Southampton water: the Rivers 

Test and Itchen towards the head of the estuary and the river Hamble, nearer to 

the mouth on the eastern side (Iriarte & Purdie, 2004). 

The estuary is characterised by a semi-diurnal tidal regime where each tide 

consists of a double high water, ~2 h apart, followed by a short ebb tide. The tidal 

range varies between 1.5 m on neaps and 5.0 m on springs (Crawford et al., 

1997). It is considered a partially mixed system, with minimal stratification 

occurring throughout the semi-diurnal tidal cycle with the highest vertical density 
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gradient occurring at low water and well-mixed conditions at high water 

(Levasseur et al., 2007). 

2.1.2 Christchurch Harbour 

The Christchurch Harbour estuary is a shallow harbour located on the South 

coast of England with an approximate area of 2.39 km2 (Fig. 2.1). It is mainly fed 

by two rivers, the Hampshire Avon and the Stour, that combine and flow into the 

western end of the system; a third small river, the Mude, drains into the estuary 

near the outlet. The system meets the English Channel through a 47-m-wide 

narrow opening known as the Run (Panton et al., 2020).  

The estuary presents an average tidal range of 1.2m during spring tides and has 

a mean water depth of 0.5m outside the main channel. It give flows in the summer 

months when river flows are minimal and typically well-mixed characteristics 

(Huggett et al., 2021a). Due to its shallow nature, the estuary is a tidally driven 

system with salinity values mainly depending on tide flow, presenting freshwater 

conditions at low tides and near fully saline conditions during high tides (Huggett 

et al., 2021b). 

2.2 Continuous monitoring 

2.2.1 Multiparametric probe: EXO2 

Southampton 

Water quality data were collected using a YSI EXO2 sonde deployed on a solar-

powered EMM700 Data Buoy (Xylem Analytics, UK) located at 50.871° N, -1.373° 

W, in the Southampton Water estuary (Fig. 2.1). The sonde was placed into an 

open flow PVC tube fixed to the Data Buoy at a depth of 1.6 m below the sea 

surface; the average water depth at the site was 10 m. Parameters recorded by 
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the sonde included dissolved oxygen (DO) concentration (mg L-1) and oxygen 

saturation (%), temperature (°C), salinity, chlorophyll ‘a' (µg L-1), turbidity (FTU) 

and pH. The sonde has a central wiper that rotates at regular intervals to remove 

biofouling from the optical sensors mechanically. 

The sonde is connected to a Storm data logger situated within the Data Buoy 

system that regularly uploads data, via a mobile phone connection, to a dedicated 

webpage within the Storm Central cloud data collection service 

(https://stormcentral.waterlog.com/).  

Data was recorded at high frequency from May 2014 to December 2020, with a 

total of 178,677 records (Table 2.1). During the first two months, data were 

recorded every 10 minutes, and after that, the rest of the measurements were 

logged every 15 minutes. For this study, hourly averages were calculated for all 

years. 

During the seven year deployment of the data buoy a number of  gaps in data 

collection occurred; major periods of data gaps included  (i) During 2014, a 25-

days gap from 30/06/14 to 25/07/14 and (ii) in 2015, a gap of 22-days from 

19/10/2015 to 09/12/2015. (iii) For 2017, data were recorded from the beginning 

of the year but only for three months (until 29/03/17), since the probe was 

recovered, (iv) and not deployed back again until 07/03/18. In 2019 two significant 

gaps occurred, (v) the first one between 13/02/2019 and 19/03/2019 (34 days) 

caused by the sonde being recovered while the data buoy mooring chain was 

replaced and the sonde and PVC tube cleaned of biofouling, and (vi) the second 

one from 23/11/2019 to 04/12/2019 (11 days) due to some problems backfilling 

data when the Storm Central server migrated from one IP address to another. 

Finally, (vii) a 3-day gap from 24/08/20 to 27/08/20 when the sonde was 

https://stormcentral.waterlog.com/
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recovered for cleaning and review sensors. It is worth mentioning that, in 2020, 

from 15/04/20, temperature and salinity sensors stopped recording, but since the 

COVID-19 restrictions were in place, it was not until 27/08/20 that sensors could 

be calibrated and replaced. Temperature and salinity values for this period were 

estimated based on daily averages from data from 2014 to 2019. The pH sensor 

was removed at the end of the 2017 and a new sensor was not added until 

22/07/2019. 

Finally, all data were carefully inspected for unreliable values, and outliers plus 

negative or occasional inconsistent high magnitude values (typically caused by 

biofouling) and these removed manually. 

Christchurch 

Parameters including (DO) concentration (mg L-1) and oxygen saturation (%), 

temperature (°C), salinity (psu), chlorophyll ‘a' (µg L-1) and turbidity (FTU), were 

recorded using a YSI EXO2 sonde deployed at the Ferry pontoon located at 

50.719° N, -1.744°W, in Christchurch (Fig. 2.1). The probe remained at surface 

water level at all times since the pier moved along with tides; the average water 

depth at the site is 1.75 m. The EXO2 was connected to a solar-powered system 

to provide energy, and to a Storm data logger that uploaded data every 2 hours, 

via a mobile phone connection, to a dedicated webpage within the Storm Central 

cloud data collection service; data between the 2-hour periods was logged into 

the internal storage system and downloaded manually afterwards. 
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Fig. 2.1 Southampton Water and Christchurch Harbour, and their major tributaries, in the south coast of the UK (inset). Multiparametric probe 
deployment sites in each estuary are indicated in blue ●, meteorological stations from the Met Office's MIDAS are indicated in green ●, 
Environment Agency sample site is indicated in red ● and ABP Marine Environmental Research tide gauge location is indicated in yellow ●. 
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Water quality data was collected at high frequency intervals of 10 minutes from 

May 2014 to December 2018, for a total of 180,533 records; with the only 

exception of the period between 30/07/14 and 23/09/2014, when the 

measurements were taken every 2 hours (Table 2.1). For this study, hourly 

averages were calculated for all years, when possible. 

A few major gaps in data collection were observed; (i) in 2014 a 5-day gap from 

25/06/14 to 30/06/14 for all parameters and (ii) a month-gap (06/07/14 – 07/0814) 

for temperature and DO concentration. (iii) During 2015, from 19/05/15 to 

02/09/15 data was not collected. (iv) The 2016 time series lacks 83 days, with 

data collection started on 18/02/16 and finishes in 26/11/2016. (v) In 2017, there 

is a 39-day gap between 03/02/17 and 15/03/17, as well as a 10-day late-start 

and a 7-day early ending. Lastly, (vi) 2018 time series started in 29/03/18 and 

ended in 13/12/18, missing a total of 105 days. 

Table 2.1. Catalog of water quality and meteorological data used to compile 
time series for Southampton Water estuary and Christchurch Harbour. 

  
Southampton Water   Christchurch Harbour 

# records Date start Years   # records Date start Years 

Multiparametric 
probe 178,677 12/05/14 6.6   180,533 12/05/14 4.6 

Met Office 
MIDAS 59,146 01/01/14 6.8  43,612 01/01/14 5 

Environment    
Agency 74 04/02/14 6.8  -- -- -- 

ABPmer 3,679,200 01/01/14 7  -- -- -- 

Probe -- -- --  8 27/05/14 0.3 

Discrete           
sampling 27ab  16/07/18  2.4   16b 27/05/14 0.6 

a Dissolved oxygen water samples. 
b Chlorophyll ‘a’ water samples. 
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Complete time series data was filtered manually, discarding unreliable values and 

outliers, plus negative or occasional inconsistent high magnitude values (typically 

caused by biofouling). 

2.2.2 Optode-based oxygen sensor validation: Southampton 

Semi-continuous oxygen measurements were determined from the EXO2 sonde 

deployed optode. Optodes have proven in recent years to be very useful in 

describing biogeochemical processes as they represent multiple advantages, 

including no oxygen consumption and long-term stability (Bittig & Körtzinger, 

2015). To ensure the optode is recording high-quality dissolved oxygen data, 

comparison against more precise and accurate DO measurements from discrete 

water samples is recommended (Uchida et al., 2008) as well as a dependable 

rectification of DO calculations (Haskell et al., 2019). The optode was protected 

from fouling with a copper mesh pad as suggested by the manufacturer and 

the following correction steps were made prior to using the oxygen time-series 

data to calculate NCP rates: (i) Some missing salinity measurements from the 

time series were estimated since the optode DO sensor installed on the EXO2 

sonde measures oxygen saturation and then uses salinity and temperature data 

to calculate DO concentration. Across the whole time series, the salinity sensor 

fitted on the sonde showed some periods of mainly negative drifting, and a more 

reliable sensor could not be installed until late November 2019. Understanding a 

drift as a variation of the sensor response across a specific time frame and under 

identical conditions (Ando et al., 2005). Thus, Environment Agency discrete 

samples of salinity were compared against existing and reliable salinity data from 

EXO2 sonde though the least squares method and the equation for the best fitted 

curve was used to substitute missing salinity data (Appendix B). This process 
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was done for every year included in the time series, except 2018 where salinity 

values did not show evidence of any drift. (ii) Recalculating DO concentration 

values from polynomial temperature and salinity dependant equations provided 

by the sonde manufacturer (Xylem). (iii) Lastly, discrete oxygen measurements 

from Winkler titrations (June 2018 to November 2020) were used to formulate a 

standard linear regression model (Fig. 2.2) to correct optode derived DO 

concentration values.  

 

Fig. 2.2 Linear regression – (r2 0.62) and prediction intervals (…) from the 
comparison between dissolved oxygen from the Data Buoy system against 
the Winkler titration analysis ● (2018-2020). 1 to 1 fit line is defined as –. 

2.3 Field sampling 

2.3.1 Dissolved oxygen by Winkler titration 

At the study site, sets of three replicate glass bottles (~60ml), on 27 different 

dates between June 2018 and November 2020, were filled with water using two 

methods: (i) from the pump system on RV Callista and (ii) deploying a 5 L Niskin 

Bottle just below the surface from a RIB close to the data buoy.  
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A continuous flow was kept in order to fill bottles carefully to minimise agitation 

and bubble formation. Immediately after, 0.5 ml of manganese chloride solution 

was added to each glass bottle, followed by 0.5 ml of alkali-iodide solution. Bottles 

were closed using the bottle stopper, inverted gently around 30 times to ensure 

chemical mixing and stored underwater to prevent evaporation while awaiting 

titration and analysis. 

The chemical determination of oxygen concentrations in seawater is based on 

the iodometric titration method first proposed by Winkler (1888) and later modified 

by Parsons et al. (1984). Titrations for this study were performed using a 

photometric end-point detector as specified in Carrit & Carpenter (1966).  

Determination of dissolved oxygen concentration in water is based on a multi-

step oxidation described in Hansen (1999): 

Manganese chloride is added to a known volume of water, and Manganese (II) is 

precipitated as hydroxide (Eq. 1), 

𝑀𝑀𝑀𝑀2+ + 2𝑂𝑂𝐻𝐻1− → 𝑀𝑀𝑀𝑀(𝑂𝑂𝑂𝑂)2    (1) 

and oxidized to Manganese (III) hydroxide in a heterogeneous reaction (Eq. 2). 

2𝑀𝑀𝑀𝑀(𝑂𝑂𝑂𝑂)2 + 1
2
𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 → 2𝑀𝑀𝑀𝑀(𝑂𝑂𝑂𝑂)3   (2) 

Next, the iodide ions added are oxidized to iodine by the Manganese (III) ions, 

which are reduced to manganese (II) ions, as shown in Eq. 3. 

2𝑀𝑀𝑀𝑀(𝑂𝑂𝑂𝑂)3 + 6𝐻𝐻1+ + 2𝐼𝐼1− → 2𝑀𝑀𝑀𝑀2+ + 𝐼𝐼2 + 6𝐻𝐻2𝑂𝑂  (3) 

In the final step, the iodine is titrated with a thiosulphate solution (Eq. 4). 

𝐼𝐼31− + 2𝑆𝑆2𝑂𝑂32− → 3𝐼𝐼1− + 𝑆𝑆4𝑂𝑂62−    (4) 
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The thiosulphate solution is not stable and, therefore, must be standardised prior 

to any titration. Before every set of samples was analysed, a standardisation was 

carried out using the photometric end-point detector and a standard potassium 

iodate solution to determine the precise concentration of thiosulphate in the 

titrating solution. An average of six standards was taken to determinate 

thiosulphate normality as follows: 

𝑁𝑁1 = 𝑁𝑁2𝑉𝑉2
𝑉𝑉1

                                                   (5) 

where N2 is the iodate normality (0.01 N), V2 is the iodate volume added (5 ml) 

and V1 is the thiosulphate volume added (titre value/50 in ml). 

2.3.2 Dissolved inorganic carbon and total alkalinity 

Discrete water samples for dissolved inorganic carbon (DIC) and total alkalinity 

(Talk) were taken using the pumping system connected to the Anderaa SOOguard 

Ferry Box on the RV Callista or by deploying a 5L Niskin bottle from a RIB. From 

March to November 2019, samples were taken biweekly (24) and every week 

from February to November 2020 (30). During 2020 a 3-month gap in sample 

collection occurred, from mid-March to Mid-June, due to restrictions during the 

COVID-19 pandemic. In addition, during the 2020 sampling, measurements were 

performed in the laboratory using a Delta 350 pH meter (Mettler-Toledo, 

Switzerland) for pH and temperature, and a TetraCon® 325 S (WTW, Germany) 

four-electrode conductivity cells electrode, for salinity and temperature. Training 

and analysis of 2020 DIC and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴  samples were performed by Dr C. 

Dumousseaud. 

250 ml borosilicate glass bottles were filled with water from a continuous flow 

from a 5 L Niskin Bottle, allowing a head space of 1% for water expansion, and 
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immediately poisoned with 5 µl of saturated solution of mercuric chloride to stop 

any biological activity. Samples were stored for later analysis in the Carbon 

Research Lab using the VINDTA 3C (Marianda, Germany). This equipment 

combines the proven ‘Versatile INstrument for the Determination of Total 

inorganic carbon and titration Alkalinity’ (VINDTA) alkalinity titration concept with 

a simplified extraction unit for coulometric DIC measurement. 

Following Dumousseaud et al. (2010), DIC samples were analysed using a 

coulometric titration and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 was determined using a closed-cell titration 

equipped with a pH half-cell electrode and an Ag/AgCl reference electrode. On 

the day of analysis, all samples were kept at 25°C with temperature regulation 

using a water-bath. Certified Reference Materials (from A.G. Dickson, Scripps 

Institution of Oceanography) were analysed as standards (n≥3) to calibrate the 

instrument at the beginning and end of each day of analysis. The precision of 

measurements on these CRMs was within ±3.1 µmol kg-1 for DIC and ±1.6 µmol 

kg-1 for 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴. 

2.4 External data acquisition 

2.4.1 Met Office's MIDAS database 

The MIDAS database is a collection of meteorological observations made 

available (granting access by request) by the Met Office and includes data from 

meteorological stations around the UK from around the late 19th Century, and 

stored in the Met Office's 'MIDAS Open' database (Met Office, 2020). 

Southampton Water 

The met station at the Southampton Oceanography Centre (50.892° N, -1.394° 

W) was identified as the closest (2.8km) MIDAS location to the Southampton 
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Water Data Buoy system (Fig. 2.1). Hourly barometric pressure and wind speed 

measurements were downloaded and added to the meteorological time series of 

the Southampton Water site (Table 2.1). Additionally, hourly solar radiation 

observations were acquired from the National Oceanography Centre weather 

data archive (https://oesnet.noc.soton.ac.uk/meteorological-station). 

   

Fig 2.3 Linear regression – (r2 0.71), prediction intervals (…) and 1 to 1 fit 
– between hourly wind measurements from met sensor fitted on the Data 
Buoy system and data from the Southampton Oceanography Centre Met 
Office MIDAS station ●, from March to September 2018. 

The Data Buoy system was fitted with a 200WX WeatherStation® (AIRMAR, 

France) sensor during the deployment in March 2018, but this stopped recording 

on 12/09/18 due to damage from a boat collision. Overlapping wind speed data 

from both the data buoy met sensor and the met sensors on the Oceanography 

Centre building were compared to determine if the difference in elevation 

(approximately 26 meters above sea level) of the MIDAS station could present a 

significant difference. After a liner regression analysis (Fig. 2.3), it was considered 

that data from the Met Office station could be used to represent conditions at 

https://oesnet.noc.soton.ac.uk/meteorological-station
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Southampton Water data buoy site, however, it is apparent a wider spread 

between data sets at higher wind speeds producing an underestimation of wind 

values above ~10 m s-1.  

Christchurch 

The nearest MIDAS station (9.8km) to the Christchurch Harbour pontoon location 

(Fig. 2.1) is the one identified as Hurn and is situated at the Bournemouth 

International Airport (50.779° N, -1.835° W). Hourly barometric pressure, wind 

speed and solar radiation measurements were obtained and added to the 

meteorological time series of the Christchurch Harbour site (Table 2.1). 

2.4.2 Environment Agency Water Quality Archive 

The Environment Agency Water Quality Archive 

(https://environment.data.gov.uk/water-quality/view/download/new) is an open 

access collection of measurements taken regularly at sampling points around 

England, which includes coastal and estuarine waters.  

A set of water quality measurements was acquired from the Hound navigation 

buoy sampling site (50.861° N, -1.358° W), selected to compare with the 

Southampton Water data buoy location measurements due to its close proximity 

(Fig. 2.1). Environment Agency data (Table 2.1) included ~ monthly surface 

records of DO (mg L-1 and % sat.), temperature (°C), salinity (psu), chlorophyll 'a' 

(µg L-1), and turbidity (FTU). 

2.4.3 Associated British Ports Marine Environmental Research 

The Associated British Ports Marine Environmental Research (ABPMer) provided 

minute-interval sea surface elevation data measured with a Tidalite tide gauge 

located at Dock Head, Eastern Docks Southampton (Fig. 2.1). Daily minimum 

https://environment.data.gov.uk/water-quality/view/download/new
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and maximum values were extracted from the raw time series (Table 2.1), and 

the difference was plotted to indicate changes in the daily tidal range.  

2.4.4 S-3 EuroHAB project 

This 4-year EU funded project is working on improving the monitoring and 

prediction of harmful algal blooms (HABs) using satellite images in the English 

Channel. As part of the project, the University of Southampton is combining past 

knowledge from the scientific literature with analysis of multiple datasets collected 

throughout the Channel to discover the factors that drive bloom development in 

this region. One of their sample sites is situated next to the Data Buoy System in 

Southampton Water estuary. Chlorophyll ‘a’ and nutrients sampling and analysis 

were performed by Dr A. Panton. 

Chlorophyll ‘a’ 

Discrete water samples were taken at ~1m under surface water using either the 

pumping system connected to the Anderaa SOOguard FerryBox on the RV 

Callista or using a Niskin bottle deployed from a RIB. Samples to determine 

phytoplankton biomass (chlorophyll ‘a’) were taken biweekly during spring-

summer from 2018 to 2020, then three replicates of 50 mL were filtered through 

a Whatman GF/F filter within an hour of collection. Filters were frozen before 

analysis according to Strickland & Parsons (1972) methodology. Pigmemts were 

extracted from filters with 90% acetone before their analysis on a precalibrated 

fluorometer TD-700 (Turner Designs, USA). 

Nutrients 

Surface water (~1m) was collected biweekly, during spring-summer from 2018 to 

2020, into acid-cleaned HDPE bottles then frozen prior to  later inorganic nutrient 
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analysis as described in Panton et al. (2020). Samples were collected through 

the pumping system connected to the Anderaa SOOguard FerryBox on the RV 

Callista or using a 5 Niskin bottle deployed from a RIB. A QuAAtro segmented 

flow auto-analyser (Seal Analytical, UK) was used to determinate concentration 

of silicate SiO2, phosphate PO4 and nitrate NO3. 

2.4.5 River inflow data 

Average daily river flow data was accessed from gauging stations on the River 

Avon, located at Knapp Mill, and on the river Test at Broadlands obtained from 

National River Flow Archive; downloaded from https://nrfa.ceh.ac.uk/data. 

2.5 Mean water column irradiance 

Hourly solar energy (KJ m-2 h-1) data from the Met Office's MIDAS database was 

computed into daily solar energy values and converted to Wh m-2 d-1 using the 

equation shown in Eq. (1). 

𝐾𝐾𝐾𝐾
𝑚𝑚2 = 0.27𝑊𝑊

𝑚𝑚2      (1) 

In order to calculate the proportion of light that can be utilised by plants for 

photosynthesis reaching the surface, also known as photosynthetic active 

radiation (PAR), the constant proposed by Peperzak (1993) was used as in Eq. 

(2). 

𝐼𝐼0 = 0.45 𝑆𝑆𝑆𝑆𝑑𝑑      (2) 

with 𝐼𝐼0 as the daily surface irradiance and 𝑆𝑆𝑆𝑆𝑑𝑑 as the sum for daily solar energy, 

both terms in (Wh m-2 d-1). 

https://nrfa.ceh.ac.uk/data
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PAR within the water column varies according to changes in surface incident 

solar irradiance, turbidity, and depth (Cloern et al., 2014). Therefore, the mean 

water column irradiance (𝐼𝐼𝑚𝑚) was calculated (Eq. 3) following Riley (1967): 

𝐼𝐼𝑚𝑚 = 𝐼𝐼0
(1−𝑒𝑒−𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃ℎ)

𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃ℎ
      (3) 

where  𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 is the diffuse attenuation coefficient (m-1) and ℎ is the mixed layer 

depth (10m for Southampton and 1.75m for Christchurch). The diffuse 

attenuation coefficient was estimated from the slope of a linear regression of 

turbidity against  𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃  data previously generated for Southampton Water estuary 

by Iriarte & Purdie (2004), with 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ranging between 0.2 and 2.0 m-1. 

2.6 Open water diel oxygen method  

2.6.1 Biological Oxygen Fluxes 

The open water diel oxygen method was applied to calculate rates of NCP from 

oxygen probe data obtained from both estuarine systems. This was achieved by 

following the quantification of primary production described by Needoba et al. 

(2012) by calculating oxygen mass-balance in the mixed layer. The hourly 

biological oxygen production (BOP) calculation incorporated equations used by 

(Hull et al., 2016) and (Murrell et al., 2018). 

An essential assumption of this model is that all measurements come from a well-

mixed water column; therefore, the water mass recorded presents the same 

metabolic history (Caffrey et al., 2014). The average water depth at the 

Southampton Water Data Buoy is 10 m; therefore, vertical profiles of temperature, 

salinity and dissolved oxygen were made in 2018 and 2019, with a different EXO2 

sonde (Fig. 2.4) to show that the water column was well mixed at that position in 

the estuary. Dates of vertical profiles include months when surface water usually 
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presents higher temperatures since warming of the upper water layer could 

induce stratification (Gomoiu et al., 2014), and the typical seasons (spring and 

summer) characterizing bloom dynamics of coastal temperate systems 

(Martellucci et al., 2021). 

A second assumption is that other oxygen-consuming processes in the water 

column, such as nitrification, are insignificant compared to phytoplankton 

respiration (Hull et al., 2016); particularly in high light transparency and low 

nutrients ecosystems (Murrell et al., 2018). 

The model calculates the change in oxygen concentration in a certain period of 

time, given the physical parameters measured (Eq. 4).  

ℎ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸 + 𝐹𝐹𝑂𝑂2 + 𝐵𝐵𝐵𝐵𝐵𝐵  (4) 

Where ℎ is the water depth,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is the oxygen concentration change through time, 

𝐸𝐸 is the entrainment of oxygen through changes in the mixed layer depth, 𝐹𝐹𝑂𝑂2 is 

the gas exchange from diffusive and bubble processes (Eq. 5), and 𝐵𝐵𝐵𝐵𝐵𝐵 is the 

biological oxygen production (Eq. 8).
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Fig. 2.4 Vertical profiles of oxygen saturation (—), temperature (—) and salinity (—) at the Data 
Buoy site during spring (a, b, c & d) and summer (e & f).
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Given the assumption that the water column in the estuary is fully mixed at the 

position of the Data Buoy, the term 𝐸𝐸, which represents changes in mixed-

layer depth through time, can be neglected. Similarly, the entrainment term 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 

is set to zero in Eq. (5) and (9).  

𝐹𝐹𝑂𝑂2 = 𝐾𝐾𝑤𝑤
ℎ
𝐶𝐶∗(1 + 𝐵𝐵) 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
+ 1

ℎ
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝐶𝐶   (5) 

The diffusive exchange of gases across the air– sea interface 𝐹𝐹𝑂𝑂2 (Eq. 5) was 

calculated as a function of gas transfer velocity 𝐾𝐾𝑤𝑤  (Eq. 6) and diffusion 

through bubbles 𝐵𝐵  (Eq. 7). It is worth noting, values for 𝑘𝑘𝑤𝑤  needed to be 

converted from cm h-1 to m s-1 before being used in Eq. (5). 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 corresponds 

to an atmospheric pressure standard value of 101,325 Pa, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  is the 

atmospheric air pressure at sea level, 𝐶𝐶∗ is the calculated oxygen 

concentration in equilibrium with the atmosphere as a function of temperature 

and salinity (Feistel, 2008) and 𝐶𝐶 is the oxygen concentration in the surface 

mixed layer. 

𝐾𝐾𝑤𝑤 = 0.251𝑈𝑈2 �𝑆𝑆𝑆𝑆ℎ𝑂𝑂2
660

�
−0.5

    (6) 

The coefficient of gas transfer velocity 𝐾𝐾𝑤𝑤 calculated in Eq. (6) is the 

parameterisation proposed by Wanninkhof (2014), and is a function of salinity 

and temperature through the relation between the Schmidt number 𝑆𝑆𝑆𝑆ℎ𝑂𝑂2 for 

oxygen and the normalised Schmidt number for CO2 at 20°C and salinity of 35 

(constant value of 660 in Eq. 6). 𝑈𝑈 corresponds to wind speed measured at 

10m above sea level but as stated above can be considered the same as at 

sea level at the position of the Data Buoy. 
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𝐵𝐵 = 0.01 �𝑈𝑈
𝑈𝑈𝑖𝑖
�
2
    (7) 

Bubbles can induce gas exchange 𝐵𝐵, therefore its incorporation into the gas 

transfer calculation (Eq. 5). This was determined using a parametrisation 

according to measured wind speed 𝑈𝑈 and a standardised wind speed value 𝑈𝑈𝑖𝑖 

for a smooth boundary regime (Wanninkhof, 2014). 

The biological oxygen production (𝐵𝐵𝐵𝐵𝐵𝐵) is expressed as a mass transfer per 

surface area and time, in mmol O2 m-2 h-1 (Needoba et al., 2012). In Eq. (8) 𝐶𝐶0 

is the oxygen concentration at 𝑡𝑡 = 0 and 𝐶𝐶1 oxygen concentration at the time 

step (for the present study, 1 hour), and it is analytically solved by using the 

air-sea diffusion flux calculation 𝐹𝐹𝑂𝑂2  and a transfer velocity correction 𝑡𝑡 , 

caused by wind-induced turbulence in the water column (Eq. 9). 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑡𝑡ℎ � 𝐶𝐶1−𝐶𝐶0
1−𝑒𝑒−𝑟𝑟𝑟𝑟

+ 𝐶𝐶0� − 𝐹𝐹𝑂𝑂2ℎ    (8) 

𝑡𝑡 = 𝑘𝑘𝑤𝑤
ℎ

+ 1
ℎ
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

       (9) 

Then, 𝐵𝐵𝐵𝐵𝐵𝐵 data were averaged separately during the day and night periods to 

compute hourly rates of apparent primary production (𝑃𝑃𝑎𝑎 ) and night-time 

respiration (𝑅𝑅𝑛𝑛). Light data collected from the MIDAS Met station was used to 

integrate complete daily photoperiods and dark periods. Each diel cycle was 

formed by a light period plus a dark period, starting with the photoperiod.  
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2.6.2 Ecosystem respiration and productivity 

The model assumes respiration rates to be constant during a diel cycle; 

therefore, respiration was extrapolated to 24 hours to calculate daily 

ecosystem respiration 𝐸𝐸𝐸𝐸 (Eq. 10) for the mixed water column (ℎ). 

𝐸𝐸𝐸𝐸 = 𝑅𝑅𝑛𝑛(24)(ℎ)     (10) 

Daily gross primary production 𝐺𝐺𝐺𝐺𝐺𝐺 was determinate (Eq. 11) as a function of 

apparent primary production (𝑃𝑃𝑎𝑎) and night-time respiration (𝑅𝑅𝑛𝑛). 

𝐺𝐺𝐺𝐺𝐺𝐺 = (𝑃𝑃𝑎𝑎 + 𝑅𝑅𝑛𝑛)(𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)(ℎ)   (11) 

As the final step, daily net community production 𝑁𝑁𝑁𝑁𝑁𝑁 was calculated (Eq. 12) 

in mmol O2 m-2 d-1 according to Murrell et al. (2018). 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐸𝐸𝐸𝐸      (12) 

Positive values of NCP (net autotrophy) indicate organic carbon is being 

produced over the local respiration demand. On the contrary, negative values 

(net heterotrophy) suggest the ecosystem requires additional input of organic 

carbon to be sustained. 

2.7 Air-sea CO2 flux model 

2.7.1 CO2calc 

The program COSYS was initially developed by Lewis & Wallace (1998) to 

perform calculations of parameters involved in the carbon dioxide (CO2) 

system in seawater and freshwater, and it was later modified for its use in 

Microsoft Excel by Pierrot et al. (2006). CO2calc is the latest update to the 
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CO2SYS program application, and it was created by Robbins et al. (2010), 

consisting of a user-friendly application compatible with most operating 

systems (OS) with an improved graphical user interface for data entry and 

results (Fig. 2.5). CO2calc offers several improvements, including the possibility 

of calculating air-sea CO2 fluxes for surface waters and the ability to process 

multiple files in a batch-processing mode. 

 

Fig. 2.5 CO2calc (version 4.0.9) software batch input data interface. 

The CO2 system in seawater is characterized by five measurable parameters: 

(i) total alkalinity 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, (ii) total carbon dioxide 𝑇𝑇𝑇𝑇𝑂𝑂2, as the sum of the dissolved 

CO2, the carbonate and bicarbonate; (iii) pH, and (iv) partial pressure of carbon 

dioxide 𝜌𝜌𝜌𝜌𝜌𝜌2 or (iv) fugacity of carbon dioxide 𝑓𝑓𝑓𝑓𝑓𝑓2. The basis of the model is 

that by providing it with two of the five measurable CO2 system parameters, 

along with temperature, pressure and salinity, CO2calc then calculates the 

concentration of the remaining parameters (Robbins et al., 2010). In addition, 
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it also calculates the Revelle factor (homogeneous buffer) and the saturation 

states (Ω) for aragonite and calcite. It also offers the option to include nutrient 

data (silicate and phosphate) into the calculations and provides air-sea CO2 

flux, if wind speed and 𝜌𝜌𝜌𝜌𝜌𝜌2 of air are provided.  

In order to calculate CO2 parameters, a set of constants and preferences need 

to be selected among different options, as well as scales for certain 

parameters: 

► The solubility of CO2 in seawater 𝐾𝐾0 and the conversion between 𝜌𝜌𝜌𝜌𝜌𝜌2 

and 𝑓𝑓𝑓𝑓𝑓𝑓2 are from Weiss (1974). The program sets them as default. 

► Two dissociation constants for carbonic acid (𝐾𝐾1 and 𝐾𝐾2) are used in the 

calculations, the recently added constants for estuarine waters determined 

by Millero (2010), were selected.  

► There are two options for the dissociation constants of potassium sulphate 

(𝐾𝐾𝑆𝑆𝑆𝑆4), selecting the formulations described by Dickson (1990) for sea 

water. 

► The Lee et al. (2010) constant for total Boron was selected since it was 

developed in accordance to the carbonic acid constants selected (Millero, 

2010). 

► Among the pH scales, NBS was selected since it is the same as that used 

by the pH probes collecting data to produce the time series. All constants 

are converted to the selected pH scale before calculations are made. 

► For the calculation of air-sea CO2 fluxes, the gas transfer velocity 

coefficient 𝐾𝐾𝑤𝑤  parametrisation proposed by Wanninkhof (2014) was 

selected in order to correspond to the air-sea O2 fluxes calculations 

described in section 2.6.1. 
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2.7.2 Carbonate system calculations 

Total alkalinity extrapolation 

In order to estimate CO2 fluxes for the entire time series available between 

2019 and 2020 in Southampton Water, Talk and DIC were analysed as 

functions of sea surface salinity, since it has been shown that variability of 

these parameters, expressly Talk, in the surface ocean is controlled mainly by 

freshwater mass movements (Jeffrey et al., 2018; Lee et al., 2006). Once these 

associations were analysed (Fig. 2.6), it was decided to only use Talk equation 

relating it to salinity since it presented a better fit than DIC and, as mentioned 

previously, it has been more frequently described in literature. The result of the 

equation the linear regression between salinity and Talk was then used to 

extrapolate Talk data from salinity data along the1-hour step time series from 

July 2019 to December 2020. 

 

Fig. 2.6 Linear regressions – and prediction intervals (…) for salinity from Data 
Buoy and (a) total alkalinity (r2 0.74) and (b) dissolved inorganic carbon (r2 0.58). 
Data for 2019 is shown in blue circles ● and for 2020 in black circles ●.  

pH data calibration 

Three independent pH data sets were created: (i) pH records from the EXO2 

probe (Data Buoy) deployed in the estuary, (ii) pH measurements made with 
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a calibrated Delta 350 pH meter (Mettler-Toledo, Switzerland) in the laboratory 

for every DIC and Talk sample, and (iii) pH data generated with CO2calc 

application, from DIC and Talk data.  

 

Fig. 2.7 Linear regressions –, prediction intervals (…) and 1 to 1 fit – for pH from 
Data Buoy against (a) pH derived from DIC and Talk using the CO2calc application 
(r2 0.41) and (b) pH measured in laboratory (r2 0.59). Individual data is shown in 
black circles ●. 

pH from the Data buoy was recorded from July 2019 to December 2020, 

however, since measurements for 2020 showed a positive offset, a calibration 

was established. pH data calculated with the CO2calc software was taken as 

the most accurate, therefore, pH from the Data Buoy was standardised using 

equation 𝑦𝑦 = 0.9588𝑥𝑥 + 0.8953 (Fig. 2.7a). 

pH data from the CO2calc software and pH standardised data were analysed 

using a one-way ANOVA in which assumptions of normality and homogeneity 

of variances were met, and a p value of <0.05 was considered significant. Data 

sets presented no significant (p=0.116) difference between each other (Fig. 

2.8); therefore, pH standardised data were selected to be used in carbonate 

system parameters.  
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Fig. 2.8 Scatter plot (a) and normal probability plot (b) of pH from CO2calc application 
and pH from the Data Buoy standardised with equation 𝑦𝑦 = 0.9588𝑥𝑥 + 0.8953. 

CO2 fluxes 

Once Talk and pH data sets were compiled, they were introduced into the 

CO2calc application to formulate seawater CO2 partial pressure 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠 for the 

2019 - 2020 hourly time series.  

Subsequently, hourly air CO2 partial pressure 𝜌𝜌𝜌𝜌𝜌𝜌2𝑎𝑎𝑎𝑎𝑎𝑎 data was downloaded 

from the NOAA archive (Dlugokencky et al., 2021), collected by the Ryan 

Institute's Mace Head Atmospheric Research Station (Galway, Ireland) as part 

of the Earth System Research Laboratories (ESRL) Global Monitoring 

Laboratory. This parameter, in addition to 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠  and wind speed, were 

introduced to the CO2calc programme. Air-sea CO2 fluxes 𝐹𝐹𝐶𝐶𝐶𝐶2 in mmol C m-2 

d-1 were calculated following Eq. 13: 

𝐹𝐹𝐶𝐶𝐶𝐶2 =  𝐾𝐾𝑤𝑤 𝐾𝐾0 ∆𝜌𝜌𝜌𝜌𝜌𝜌2     (13) 

where ∆𝜌𝜌𝜌𝜌𝜌𝜌2  (Eq. 14) is estimated as the difference between CO2 partial 

pressure in seawater 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠 and the atmosphere 𝜌𝜌𝜌𝜌𝜌𝜌2𝑎𝑎𝑎𝑎𝑎𝑎  
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∆𝜌𝜌𝜌𝜌𝜌𝜌2 =  (𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠 −  𝜌𝜌𝜌𝜌𝜌𝜌2𝑎𝑎𝑎𝑎𝑎𝑎) (14) 

Positive ∆𝜌𝜌𝜌𝜌𝜌𝜌2 values indicate a net CO2 flux from the sea to the atmosphere, 

in other words, the aquatic system is a source of CO2. Conversely, 

∆𝜌𝜌𝜌𝜌𝜌𝜌2negative values indicate CO2 flowing from the atmosphere to the sea, 

meaning the aquatic system behaves as a sink of CO2. 

2.8 Statistical analysis 

All statistical analysis was performed using the statistical package in 

SigmaPlot version 13.0. The data matrix was organized with dates as rows 

and environmental conditions and productivity rates as columns. Chlorophyll 

‘a’ (Chl ‘a’) blooms were considered when hourly average concentration values 

exhibited values >5 µg L-1 for Southampton Water and above >10 µg L-1 for 

Christchurch Harbour. The difference between thresholds is attributable to 

Christchurch Harbour receiving a higher input of nutrients (Panton et al., 2020), 

and being a semi-enclosed system presents reduced flushing abilities 

compared to Southampton, a system with open boundaries to the sea (Huggett 

et al., 2021a). This enhanced the process of eutrophication and, sometimes, 

increases the maximal concentrations of phytoplankton biomass an ecosystem 

can sustained (Adams et al., 2020; Turner et al., 2015).  

Seasons were defined by astronomical dates for the Northern hemisphere: 

spring begins on the spring equinox, summer begins on the summer solstice, 

autumn begins on the fall equinox, and winter begins on the winter solstice. 
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2.8.1 Spearman’s correlation 

Time-series data were tested for normality using the Shapiro-Wilk Test. None 

of the environmental data nor productivity rates were normally distributed, 

despite different transforms being applied. The association between variables 

was investigated by the correlation analysis, a valuable tool, highly used in 

coastal marine assessments (Kitsiou & Karydis, 2011).  

Therefore, the non-parametric Spearman's Rank-Order Correlation Coefficient 

(p<0.05) was used to (i) understand the relationship between chl ‘a’ blooms 

and various measured environmental parameters in the Southampton Water 

and Christchurch Harbour estuaries (Chapter 3); (ii) to identify predictors of 

calculated productivity rates and measured environmental variables 

throughout the study period in both estuaries (Chapter 4); and (iii) assess the 

relationship between carbonate system parameters, environmental conditions 

and primary production (Chapter 5). 

2.8.2 Principal components analysis 

The principal component analysis (PCA) allows reducing the dimensionality of 

large datasets without losing its variability by transforming original variables 

into a new and smaller set of uncorrelated variables (principal components 

PCs). The first PC accounts for as much variation as possible, and each 

subsequent component explains progressively less (Jollife & Cadima, 2016).  

In the graphic representation of a PCA, the arrows represent the variables. 

When arrows are far from the centre and close to each other, they are 

positively correlated, meanwhile when they are symmetrically opposed, they 

are negatively correlated (Trombetta et al., 2019). 
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In Chapter 3, PCA was used to assess the influence of environmental 

conditions on the appearance of each major bloom event in both estuaries for 

each year of study. For Chapter 4, the analysis was used to evaluate the 

relationship between the seasonal distribution of productivity rates and 

environmental conditions and the relative contributions of GPP and ER to 

NCP. Finally, in Chapter 5, the PCA method was used to explain the seasonal 

variation of carbonate chemistry parameters, productivity rates and 

environmental factors affecting the response of FO2 and FCO2. 

2.8.3 Ordinary least squares 

Ordinary least squares (OLS) regression is a statistical method of analysis that 

estimates the relationship between one or more independent variables and a 

dependent variable; the method estimates the relationship by minimizing the 

sum of the squares in the difference between the observed and predicted 

values of the dependent variable configured as a straight line (Pohlmann & 

Leitner, 2003). In Chapter 4, OLS was used to examine the relationship 

between ER and GPP, allowing the estimation of the threshold values of GPP 

necessary to achieve metabolic balance (GPP:CR=1) in Southampton Water 

and Christchurch Harbour.  

2.8.4 Analysis of Variance 

In chapter 5, data were divided into seasons for 2019 and 2020. Subsequently, 

a two-factor analysis of variance (two-way ANOVA) was conducted to examine 

the response of the estuarine carbonate system to seasons and the difference 

between years studied. A significant ANOVA model with significant interaction 

between the factors (seasons and year) indicates that the change in the 
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dependent variable (the tested carbonate system parameter) in response to 

one factor depends on the level of the other factor (Kitsiou & Karydis, 2011). 

When differences were detected, the Holm–Šídák method was applied. This 

is an all-pairwise multiple comparison procedure that helps isolate the groups 

differing. 

2.8.5 Regression analysis 

In correlation analysis there is no distinction between dependent and 

independent variables but both are influenced by the same factor (Kitsiou & 

Karydis, 2011), therefore, a simple regression analysis was applied to describe 

pH and oxygen saturation dynamics influence by metabolic rates. In addition, 

a multiple regression was carried out to study the dependence of pH on two 

independent variables: oxygen saturation and salinity. 
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Chapter 3 

Temporal variation of phytoplankton blooms 

associated with changes in environmental 

conditions in the Southampton Water and 

Christchurch Harbour estuaries 

Abstract 

Estuarine blooms are typically identified by measuring changes in phytoplankton 

biomass. In addition, seasonal and interannual patterns can be described by 

paring this data with hydrological and meteorological parameters.  

The present chapter includes an analysis of the correlation between 

phytoplankton blooms and environmental conditions using high-frequency water 

quality data collected in the Southampton Water (2014 – 2020) and Christchurch 

Harbour estuaries (2014 – 2018). It was possible to associate the initiation of the 

spring bloom in both systems with abrupt rises in the water column light 

availability and temperature. Furthermore, the Christchurch Harbour estuary was 

characterised by spring and autumn blooms, while Southampton Water 

presented a pattern with blooms mainly in spring and summer. In addition, an 

analysis of the neap-spring tidal cycle in the Southampton Water estuary 

identified a correlation between initiation of blooms and the lower mixing 

conditions during neap tides. 
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3.1 Introduction 

Phytoplankton in estuaries 

Coastal systems are highly variable ecosystems where chemical, physical and 

biological processes interact at different spatial and temporal scales (Bucci et al., 

2012; Martellucci et al., 2021). Within this area, estuaries act as connection 

vectors for land–sea interactions, mostly transferring substances and energy 

through riverine discharges into the marine environment (Ruiz et al., 2013).  

Phytoplankton is the most important primary producer of coastal areas, acting as 

a key driver of biogeochemical cycles and playing a central role in determining 

water quality (Paerl & Justic, 2013). The concentration of chlorophyll ‘a’ (Chl ‘a’), 

a proxy of phytoplankton biomass, can provide a rapid assessment of the 

disturbance of nutrient enrichment (e.g. van der Struijk & Kroeze, 2010) affecting 

the first trophic levels and consequently the whole ecosystem (Bucci et al., 2012). 

A phytoplankton bloom is defined as the fast growth and accumulation of 

phytoplankton, and are mainly controlled by light energy availability and nutrient 

supply (Shi et al., 2016). However, coastal phytoplankton communities typically 

show strong seasonal and spatial distributions (Paerl & Justic, 2013), since they 

are strongly related to the physical forcing (e.g., wind, rain, rivers, waves, and 

tides) that drives coastal current and runoff dynamics (Bucci et al., 2012; Lauria 

et al., 1999); making an understanding of estuarine phytoplankton dynamics 

extremely difficult to obtain (Martellucci et al., 2021). 

This chapter aims to investigate the variability in the timing, magnitude and 

duration of the blooms and environmental conditions driving them in 

Southampton Water and Christchurch Harbour. 
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3.2 Southampton Water time series of environmental factors 

The time series data collected from the Xylem sonde mounted under the data 

buoy based in the Southampton Water estuary includes 15-minute 

measurements from 2014 to 2020, except for 2017. In 2017, measurements were 

only available from the Data Buoy system for the first 3 months of the year; 

therefore, this data was not included in the results presented here. In addition, 

Environment Agency data from their ~ monthly surface sampling was included in 

plots to compare the magnitude and pattern of parameters. 

Although analysis was done on a daily basis, for the present work in the 

Southampton Water estuary, a chlorophyll ‘a’ (Chl ‘a’) bloom was considered 

when hourly average concentration values exhibited values >5 µg L-1. Despite 

previous work in the region (Arantza Iriarte & Purdie, 2004) stating 10 µg L-1 as 

the threshold for major phytoplankton blooms in the estuary, the findings of the 

current research demonstrated that 5 µg L-1 better reflected the production 

activity, since smaller blooms were being missed if a higher threshold value was 

set. 

3.2.1 Year 2014 

Measurements for 2014 from the Data Buoy system started in May and extended 

to December, with a noticeable gap for most of July.  

The temperature presented a marked seasonal change (Fig. 3.1a), with values 

ranging from 8.7°C in December to 22.7°C in July. Surface salinity did not show 

much variation in the mid estuary (30.8 ± 1.0 psu), with a minimum of 28.0 psu 

and a maximum of 33.2 psu (Fig. 3.1b). 
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Oxygen concentration was higher during June, presenting the yearly maximum 

of 335.5 µmol O2 L-1, and showing the lowest values in the successive month 

(July), with the yearly minimum of 214.1 µmol O2 L-1 (Fig. 3.1c). June also 

presented the highest daily oxygen variability in concentration and saturation, 

particularly towards the end of the month. The yearly average (102.2 ± 5.9 %) for 

oxygen in percentage showed a near overall balance in saturation. 

Oversaturation, conditions prevailed mostly from June to September, with a 

maximum value of 140.9% at the end of June, and the minimum of 92.5% in May, 

although, under saturation values were commonly observed from October to 

December (Fig. 3.1d). 

Chl ‘a’ concentration varied between 0.2 (December) and 18.2 µg L-1 (June) 

throughout the year (Fig. 3.1e), with intermittent increases from June to 

September, when five distinctive blooms were observed: (i) the first bloom lasting 

5 days starting the 2nd week of June with an average of 4.4 µg L-1, and in the 

same month, (ii) the peak with the highest average (9.3 µg L-1) was observed for 

10 days and probably lasted for a few more days but unfortunately the sonde 

stopped recording in the subsequent weeks. (iii) The longest bloom event (18 

days) was detected in the last days of July and beginning of August, just as sonde 

recordings re-started, with an average of 6.5 µg L-1. (iv) A small bloom can be 

seen in the early days of September, with an average of 3.4 µg L-1 during 3 days, 

and lastly into the 3rd week of September, (v) a 6-days long bloom with a mean 

value of 3.6 µg L-1.  
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Fig 3.1 Time series of environmental conditions at the Data Buoy in Southampton Water in 2014. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(b), salinity values generated by a model are shown as grey dots ●. In (d), the red dashed line ‒ 
‒ represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line 
—. (i) Wind speed is represented as daily mean in vertical bars █ and maximum daily values in 
black circles ●.
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Turbidity presented higher monthly variability from August to October, showing a 

maximum value of 29.4 FTU in October while the year minimum was 0.1 FTU 

and was observed in June (Fig. 3.1f). A clear correspondence between peaks of 

turbidity and greater tidal range values was detected.  

Surface PAR (𝐼𝐼0) varied on a seasonal pattern, with higher values towards the 

summer, reaching a maximum of 3312.9 Wh m-2 d-1 in June (Fig. 3.1g). Daily 

values started to noticeable increase in April and then decreased from September 

onwards.  

Mean water column irradiance (𝐼𝐼𝑚𝑚) presented its highest values from May to 

September, then rapidly started to decrease towards the end of the year. Two 

major peaks with values above 1500 Wh m-2 d-1 were observed during June and 

one above 1000 Wh m-2 d-1 in May (Fig. 3.1h). The maximum daily value for 2014 

was observed during the 1st peak in June, reaching 1992.9 Wh m-2 d-1. 

The winter months (December, January and February) showed the highest daily 

wind speeds, with several daily averages above 10 m s-1. However, a few peaks 

in wind speed almost reaching this value occurred in May, October and 

November (Fig. 3.1i). June, July, and September showed the lowest monthly 

average wind speeds below 3.6 m s-1. 

3.2.2 Year 2015 

In 2015 there was a significant gap in data collection from the data buoy lasting 

from mid-October to early December and a smaller gap at the end of March.  

The yearly range in water temperature varied from 5.0°C to 20.4°C showing a 

distinctive seasonal pattern with lowest values in February (Fig. 3.2a), and then 
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rising again in the middle of that month, towards the summer, with  the highest 

monthly average in July (19.3°C).  

Salinity average value for the year was 32.1 ± 1.1 psu, again displaying minimal 

seasonal variation with a minimum value of 27.9 psu in December and a 

maximum of 33.5 psu in August (Fig. 3.2b). Daily values from mid-June to 

October were estimated from Environment Agency data. 

Dissolved oxygen did not show large peaks in concentration, with the exception 

of one detected in April when the maximum yearly value (357.4 µmol O2 L-1) was 

recorded (Fig. 3.2c). From June to August, daily variation was higher than during 

the rest of the year, with the minimum value of 209.3 µmol O2 L-1 detected in 

August. A similar increased daily variation for the same period (June to August) 

was observed for oxygen saturation (Fig. 3.2d). Oversaturated conditions mostly 

prevailed from April to August, with the highest value of 131.2% during a peak in 

April. Outside this period, constant undersaturation values were observed, 

reaching a minimum in September (85.7%).  

In 2015, no major peaks in chl ‘a’ concentration were detected; however, five 

small blooms were identified between the period from April to September (Fig. 

3.2e). During the rest of the year, daily chl ‘a’ averages remained below 1.3 µg L-

1. (i) The first and most noticeable bloom occurred in April, with a 3.9 µg L-1 

average during the 3 days it lasted. (ii) The longest bloom (6 days) was observed 

between the last days of June and first days of July, but due to it being more 

spread out, its average concentration was only 3.0 µg L-1. In August, in the space 

of two weeks, two blooms were identified, (iii) the first one lasting only 2 days and 

presenting a concentration of 3.2 µg L-1, and (iv) the second bloom observed for 

3 days, which reached 4.0 µg L-1 making it the  highest concentration of the year. 
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Lastly, (v) in the middle of September, a 2-day bloom could be observed with a 

mean value of 3.1 µg L-1. 

Turbidity showed greater daily values at the beginning of the year, reaching a 

maximum value of 22.9 FTU in March, just before the sonde stopped recording 

but with a similar pattern observed during April (Fig. 3.2f). From June to August, 

daily mean values remained mostly below 10 FTU and a minimum of 0.1 FTU 

was detected in July. Throughout the year again a clear pattern of turbidity values 

correlating with tidal range was observable, with higher turbidity during spring 

tides.  

A big spike in 𝐼𝐼0 was seen in the first days of April, where, in approximately a 

week, values increased from ~1400 to ~2500 Wh m-2 d-1, to then drop again to 

~1800 Wh m-2 d-1 after 20 days of sustained high 𝐼𝐼0 values (Fig. 3.2g). Following 

this, a more gradual increase in values was observed reaching 3097.5 Wh m-2 d-

1 in July. From mid-October onwards, daily values remained below 1000 Wh m-2 

d-1 with a minimum of 162.9 Wh m-2 d-1 detected in December. 

A high monthly variability could be observed for 𝐼𝐼𝑚𝑚  from April to October, 

(correlating with neap tides and reduced turbidity values) with the highest values 

recorded in June (1727.7 Wh m-2 d-1) and noticeable starting to decrease from 

the end of September. For the rest of the year, daily values remained below 500 

Wh m-2 d-1 (Fig. 3.2h). 

During January, November and December periods of  high winds occurred, with 

recurrent daily maximums above 10 m s-1 and averages around 6.2 m s-1 (Fig. 

3.2i). In contrast, from April, wind speeds started to decline until October where 

only two days were observed to exceed 10 m s-1 gusts and daily averages 

remained below 7 m s-1. 
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Fig 3.2 Time series of environmental conditions at the Data Buoy in Southampton Water in 2015. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(b), salinity values generated by a model are shown as grey dots ●. In (d), the red dashed line ‒ 
‒ represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line 
—. (i) Wind speed is represented as daily mean in vertical bars █ and maximum daily values in 
black circles ●.
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3.2.3 Year 2016 

In 2016, there were no major gaps in measurements across all parameters apart 

from salinity (the probe became unreliable from May for the rest of the year). 

However in May, chl ‘a’ displayed a 9-day disruption after filtering the data due to 

erratic values being detected. 

Water temperature varied from 6.8°C in March to 21.5°C in August (Fig. 3.3a) 

with values initially decreasing throughout the first three months of the year then 

started to rise at the end of March until they stabilised around 19.5°C for the 

summer period (July to September). Temperature then slowly decreased  until 

reaching values of 9°C in December. 

Salinity from the Data Buoy system is displayed until May; after that, values are 

estimated from a model using Environment Agency data (Fig. 3.3b). The range 

of values was from 28 to 32.8 psu, without any clear seasonal variation. 

During the month of May, oxygen concentration showed higher values than the 

rest of the year, with the maximum of 413.3 µmol O2 L-1 in the first week of the 

month during a peak that lasted 8 days (Fig. 3.3c). May and June presented 

elevated daily variability, with the yearly minimum of 160 µmol O2 L-1 in the middle 

of June. The rest of the year showed relatively constant daily values, particularly 

during the first four months. The period from July to September, displayed only 

minimal daily variations in concentration. Regarding oxygen percentage, the 

period from May to August displayed clear oversaturation conditions for 

prolonged periods (~1 month); however, between June and July 30 days of 

undersaturation values were also recorded (Fig. 3.3d). During other months, 

oxygen remained slightly undersaturated and the yearly values ranged from 

64.8% in June to 147.6% in May.
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Fig 3.3 Time series of environmental conditions at the Data Buoy in Southampton Water in 2016. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(b), salinity values generated by a model are shown as grey dots ●. In (d), the red dashed line ‒ 
‒ represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line 
—. (i) Wind speed is represented as daily mean in vertical bars █ and maximum daily values in 
black circles ●.
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Chl ‘a’ showed a very distinct peak at the beginning of May, where the yearly 

maximum value of 16.6 µg L-1 was detected (Fig. 3.3e). This spike in chl ‘a’ 

included an average value of 9.9 µg L-1 for 2 days but data was then interrupted 

and when recording restarted, concentrations above 5 µg L-1 were still detected 

for another 3 days which suggested it was part of a prolonged peak. A small 

chlorophyll peak was then identified at the end of May with an average value of 

4.1 µg L-1. From July to September, some variability in chl ‘a’ concentration was 

detected but with all values below 5 µg L-1. 

February and March presented the highest monthly average turbidity values, 

although, the maximum hourly value (22.7 FTU) was observed in April (Fig. 3.3f). 

An extended period of low turbidity was detected from mid-April to mid-August, 

where values did not exceed 9 FTU. From then onwards, turbidity increased 

again but values were not as high as in the beginning of the year. A perceptible 

correspondence pattern could be observed between turbidity and tidal range. 

A seasonal variability was observed for 𝐼𝐼0, with lower values in winter months 

increasing towards the summer, until reaching a maximum of 2993 Wh m-2 d-1 in 

July (Fig. 3.3g). The period between May and August presented values above 

1950 Wh m-2 d-1 that were not observed during the rest of the year. 

𝐼𝐼𝑚𝑚 remained below 500 Wh m-2 d-1 until the end of March, when several peaks  

occurred during the same period observed in November and December (Fig. 

3.3h). In April, a large spike in Im was observed where in 4 days with values 

increasing from ~400 to ~1240 Wh m-2 d-1. Immediately after, for 24 consecutive 

days, daily values remained above 950 Wh m-2 d-1. Regular peaks surpassing 

this value were identified from the end of April to mid-August. The yearly 

maximum 𝐼𝐼𝑚𝑚 value (1707.3 Wh m-2 d-1) occurred during a peak at the end of May. 
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Daily wind speed oscillated between 0.7 and 11.9 m s-1 throughout the year (Fig. 

3.3i). January to March was the period with highest monthly averages (~5 m s-1) 

and variability, after that, daily averages remained under 10 m s-1, with the 

exception of one day in August, and monthly average values were less than  4.3 

m s-1.  

3.2.4 Year 2018 

The Xylem data buoy commenced recordings in early March 2018. An extensive 

sensor clean-up was performed in the first few days of September and the result 

of some biofouling on the optical sensors can be noticed in parameters such as 

chl ‘a’ and turbidity.  

Temperature values varied between 4.7°C in March and 23.7°C in July (Fig. 

3.4a), following a seasonal distribution with monthly high averages of  ~20°C 

during summer months (June to September).  

Salinity presented an annual average of 30.6 ± 0.9 psu, with a minimum of 28 

psu and a maximum of 33.4 psu (Fig. 3.4b). Two important sensor positive drifts 

were noticed, one at the end of October increasing subsequent values by ~1 psu 

for around two weeks, and another in November where data dropped almost 4 

psu in two days. This last event was reflected in the oxygen concentration data 

since salinity and temperature values are used to calculate O2 concentration from 

O2 saturation. 

Oxygen concentration showed consistently higher values between March and 

May, with a maximum of 337.8 µmol O2 L-1 in April (Fig. 3.4c). Following this 

period, concentration remained below 290 µmol O2 L-1 until mid-December. The 

lowest concentration (152.3 µmol O2 L-1) was detected in July. For both oxygen 
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parameters, concentration and saturation, daily variability was maximal from the 

end of May to mid-August then much reduced from September onwards. 

Saturation percentage exhibited a minimum value in July (67%) and a maximum 

in May (127.1%). From May to August, saturation values fluctuated between 

undersaturated and oversaturated conditions then from September, for the rest 

of the year oxygen remained undersaturated (Fig. 3.4d). 

Ten chl ‘a’ peaks with values reaching at least 5 µg L-1 occurred between March 

and October 2018 , with evidence of major production activity in July (Fig. 3.4e); 

outside this period, the average concentration was 0.2 µg L-1. (i) The first bloom 

of the year appeared at the end of March, lasting 9 days and presenting a mean 

value of 5.6 µg L-1; (ii) two weeks later, a bloom with an average 3.7 µg L-1 was 

sustained for 5 days, (iii) In May, an 11-day event was detected (4.1 µg L-1) and 

(iv) three weeks later, in the middle of June, a bloom averaging 4.7 µg L-1 was 

observed for 4 days. (v) during the first days of July, the most extended bloom of 

the year was sustained for 19 days and presented an average of 4.1 µg L-1; (vi) 

in the same month, just a week later, an 8-day bloom with a maximum value of 

13.7 µg L-1 and an average of 4.9 µg L-1 appeared. (vii) four days later a peak 

lasting a week averaged 4.2 µg L-1 (viii) The smallest bloom (3.5 µg L-1) was 

identified at the end of August, lasting 2 days. (ix) The hourly year maximum (17.8 

µg L-1) was observed during the bloom at the beginning of September, the data 

for this event is for 6 days and ceased when the sensor cleaning occurred, and it 

is believed that this was caused by sensor  biofouling. (x) Finally, in October a 

less clear bloom was noticed where within a week, 3 different days showed hourly 

values exceeding 5 µg L-1, however, daily values stayed below 2.3 µg L-1. 
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From March to mid-May, turbidity maxima with hourly values greater than 12 FTU 

were commonly observed (Fig. 3.4f). In May and early June an unusual 25-day 

period where turbidity values remained below 5 FTU was detected. For the rest 

of the year, only on two occasions did the daily mean values exceed 10 FTU; the 

biofouling event starting at the end of August and finishing when sensors were 

cleaned, and two days in the middle of December. 

Periods from January to mid-April and October to December, showed daily sums 

of 𝐼𝐼0 below 1400 Wh m-2 d-1 (Fig. 3.4g). The highest values of the year were 

noticed from May to August, where data remained constantly above 1900 Wh m-

2 d-1, and the year daily maximum of 3739 Wh m-2 d-1 was observed in early July. 

The largest variability in computed  𝐼𝐼𝑚𝑚 values was observed between the end of 

May and the beginning of September (Fig. 3.4h), daily vales stayed consistently 

under 600 Wh m-2 d-1. In May, a significant peak in 𝐼𝐼𝑚𝑚 occurred when, within a 

week, data values increased from ~212 Wh m-2 d-1 to the year maximum of 1509.8 

Wh m-2 d-1. Although this peak reduced after 7 days, a second peak then occurred 

with values higher than 700 Wh m-2 d-1 for a total of 23 days between May and 

June. 

Daily wind velocity values rarely surpassed 10 m s-1; although irregular wind gusts 

during the year occasionally exceeded this value (Fig. 3.4i). A period of average 

low wind (<7 m s-1) was observed between May and July, and greater monthly 

variation was during January and December. 
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Fig 3.4 Time series of environmental conditions at the Data Buoy in Southampton Water in 2018. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(d), the red dashed line ‒ ‒ represents 100% of saturation. In (e)  represent discrete chlorophyll 
samples taken independently. In (e) and (f), the daily tidal range is indicated as a black line —. 
Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line 
—. (i) Wind speed is represented as daily mean in vertical bars █ and maximum daily values in 
black circles ●.
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3.2.5 Year 2019 

Measurements from all sensors were available for most of the 2019, but with two 

noticeable short gaps. The first one of ~30 days between February and March 

occurred when the probe was removed from the buoy for maintenance, and the 

second gap of about 10 days was in late November. 

The temperature reflected a seasonal warming, with monthly average values of 

~7°C during January and February (Fig. 3.5a), then steadily increasing until 

reaching an average of 20.3°C for July and August and later decreasing to a value 

of 8.7°C in December 2019. 

Salinity showed low variation across the whole year, with an average of 31.8 ± 

1.2 psu (Fig. 3.5b). Failure of the conductivity sensor during two periods required 

salinity values to be estimated from the salinity model derived from Environmental 

Agency samples: almost all dates in May and from early July to November. 

Oxygen concentration presented a year minimum of 165 µmol O2 L-1 during July 

and a maximum of 450.4 µmol O2 L-1 in June (Fig. 3.5c). Elevate daily values 

were detected between April-July; however, periods before April and after July 

showed more constant values. The oxygen concentration during the first 3 

months remained at ~300 µmol O2 L-1 while from August to December, a gradual 

monthly average increase occurred, taking averages from 225.2 to 287.3 µmol 

O2 L-1. An average value of oxygen saturation over the whole year of 100.8% 

indicated an overall balance in the oxygen saturation (Fig. 3.5d). However, 

oxygen percentage presented mainly oversaturated conditions between April and 

July and, in the same way as oxygen concentration, consistently showed the 

greatest daily variations, with the lowest value in July (71.1%), while the highest 

in June (183.5%). During the rest of the year, saturation conditions remained 
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mainly undersaturated. Both oxygen parameters displayed peaks during the high 

productivity period, comprising days of continuous values above 115% saturation 

and 300 µmol O2 L-1 concentration.  

Chl 'a' showed a clear period of increased concentration from late April to late 

August (Fig. 3.5e). Outside of this period, average chl 'a' concentration remained 

below 1.5 µg L-1. During this augmented production activity period, four 

phytoplankton bloom events of different duration and magnitude were observed: 

(i) in late April, a peak was observed for 14 days with an overall average of 4.2 

µg L-1 and, (ii) at the end of May, a bloom was sustained for 15 days with an 

average of 8.7 µg L-1 and reached a maximum hourly value of 27.1 µg L-1. (iii) 

The most prolonged bloom was observed for about 48 days during June-July, 

presenting the year maximum value of 28.3 µg L-1 and an average of 7.5 µg L-1 

and finally, (iv) a short bloom event was observed at the end of August for 5 days 

with a mean concentration of 5 µg L-1. The major bloom events in late April, early 

June and late August developed following a spring tide and peaked during the 

next neap tide. The more prolonged bloom in July started on a neap tide in late 

June but was then sustained over two further spring/neap periods until late July. 

Turbidity measurements ranged between 1.2 and 16.6 FTU, with a marked period 

from May to July of low turbidity when daily averages remained below 6 FTU (Fig. 

3.5f). Higher daily variation was observed from September to December, but this 

could have been caused by some biofouling of the turbidity sensor while chl ‘a’ 

for this period remained unaffected. Highest turbidity values corresponded to 

maximum tidal ranges, especially during spring tides.
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Fig 3.5 Time series of environmental conditions at the Data Buoy in Southampton Water in 2019. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(b), salinity values generated by a model are shown as grey dots ●. In (d), the red dashed line ‒ 
‒ represents 100% of saturation. In (e)  represent discrete chlorophyll samples taken 
independently. In (e) and (f), the daily tidal range is indicated as a black line —. Environmental 
agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 7-day running 
mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are presented as black 
lines —, with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed 
is represented as daily mean in vertical bars █ and maximum daily values in black circles ●.
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For 𝐼𝐼0, values ranged between 165.9 and 3313.6 Wh m-2 d-1 in January and July, 

respectively (Fig. 3.5g). A sudden increase in values was observed at the end of 

March, reaching slightly above 2000 Wh m-2 d-1 but then decreasing to ~1300 Wh 

m-2 d-1 for two weeks, before increasing again and remaining mainly above 2000 

Wh m-2 d-1 for the period between April and August.  

𝐼𝐼𝑚𝑚 showed a large variation throughout the year, with a monthly range from 55.9 

Wh m-2 d-1 in November to 1004.6 Wh m-2 d-1 in May (Fig. 3.5h). Sustained values 

above the annual average of 321.4 Wh m-2 d-1 were observed from April to late 

September, after which a drop in values remained for the rest of the year.  

An exceptionally high 𝐼𝐼𝑚𝑚 period occurred in late April and throughout the whole 

of May, with three different events, lasting from 3 to 9 days, of sustained values 

above 1000 Wh m-2 d-1. 

The first 15 days of March, showed high wind in comparison to the rest of the 

year, with sustained daily values above 6 m s-1 and gusts reaching up to ~16.8 m 

s-1. Directly after those two weeks, a period lasting until the end of July of lower 

wind intensity (>5 m s-1) was identified (Fig. 3.5i). 

3.2.6 Year 2020 

In mid-April, temperature and conductivity sensors stopped logging data, and due 

to COVID-19 social distancing restrictions, it was not possible to reach the Data 

Buoy system until the end of August when the sensor was replaced. In order to 

fill the ~4.5 month data gap, a daily average of all data buoy values for water 

temperature and salinity from 2014 to 2019 for the same annual period were 

used. Without these estimated data values, it would have not been possible to 

calculate oxygen concentration for the productive period of the year. It should 
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also be noted that there was no Environment Agency sampling between early 

March and early October 2020 due to Covid restrictions.  

The water temperature during the first 3 months of the year was ~8.5°C then 

started to steadily increase from April, until reaching an estimated yearly 

maximum of 21.6°C in July (Fig. 3.6a). From then on, temperature declined with 

the monthly average of 9.2°C measured in December. It is possible to notice, at 

the end of November, a negative drift with values decreasing suddenly ~1.0°C. 

The salinity yearly average was 30.9 ± 1.1 psu. Although greater daily variation 

in the monthly averages can be observed from October to December, this was 

less than 1.0 psu. An additional month of salinity data values was added from the 

salinity model derived from Environment Agency data, from mid-March to mid-

April, since values recorded were drifting downward about ~10 psu (Fig. 3.6b). 

A very pronounced oxygen concentration peak could be observed in the middle 

of April, where values above 400 µmol O2 L-1 were sustained for a week and the 

yearly maximum of 542.4 µmol O2 L-1 was identified (Fig. 3.6c). The May to 

August period showed greater daily variability and several other peaks, however, 

none exceeded 370 µmol O2 L-1. The lowest concentration of the year was 

displayed during this period, 102.8 µmol O2 L-1 in July. Oxygen in percentage 

presented a very similar distribution pattern to oxygen concentration, with a major 

peak in values in April (Fig. 3.6d), when the highest saturation of the year 

(190.7%) was detected. Oversaturation conditions could be mainly observed from 

April to August, although during July the lowest measurements of the year (~50%) 

were detected. Outside this period, undersaturation prevailed with monthly 

averages ranging from 91.0 to 98.8%. 
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Fig 3.6 Time series of environmental conditions at the Data Buoy in Southampton Water in 2020. 
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e) 
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different colours. In 
(a) and (b), temperature and salinity values generated by a model are shown as grey dots ●. In 
(d), the red dashed line ‒ ‒ represents 100% of saturation. In (e)  represent discrete chlorophyll 
samples taken independently. In (e) and (f), the daily tidal range is indicated as a black line —. 
Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line 
—. (i) Wind speed is represented as daily mean in vertical bars █ and maximum daily values in 
black circles ●.
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A significant peak of chl ‘a’ was identified in April, presenting the highest 

concentration of the year (33.4 µg L-1) and this event averaged 8.2 µg L-1 during 

the 11 days it lasted (Fig. 3.6e). In addition, four minor blooms were identified 

from June to August: (i) In mid-June a 11 days bloom could be observed, 

averaging 2.5 µg L-1. (ii) Almost three weeks later, for 2 days, higher values were 

described, reaching 12.4 µg L-1 and a mean of 2.1 µg L-1. (iii) In early August, a 

small bloom appeared, exceeding the 5 µg L-1 threshold value for 1 day and 

averaging 2.7 µg L-1, and a week later (iv) a 3-day event averaged 3.4 µg L-1. 

Outside the April-August period, monthly mean values remained below 1 µg L-1. 

The first three months of the year presented, in general, the most elevated values 

for turbidity during the year, with peaks ranging from 13.4 to 18.6 FTU. 

Nevertheless, the year maximum was recorded in a peak (19.4 FTU) during 

October (Fig. 3.6f). April presented the lowest monthly average (2.5 FTU), and 

from that month until June, peaks were observed every 30 days instead of every 

15 days, like during the rest of the year. 

Values for 𝐼𝐼0 started increasing steadily from ~283 Wh m-2 d-1 in January, but at 

the end of March a spike of ~1000 Wh m-2 d-1 took daily sums from 1240 to 2250 

Wh m-2 d-1 in about 9 days (Fig. 3.6g). After this, several peaks in 𝐼𝐼0  were 

observed with a major one at the end of May reaching 3639.4 Wh m-2 d-1. In a 

period of 8 days in mid-August, values dropped more than 1300 Wh m-2 d-1 

keeping daily sums for the rest of the year below 1800 Wh m-2 d-1.  

Distribution of 𝐼𝐼𝑚𝑚  for this year was very irregular, with the highest values 

concentrated in 42 days between April and June, this being  the only time when 

daily sums exceeded 900 Wh m-2 d-1 during the year (Fig. 3.6h). However, within 

this period of major activity, a pronounced decrease occurred in May with values 
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as low as 250 Wh m-2 d-1. In addition, in early June, values exhibited a sudden 

drop, from ~1480 to 290 Wh m-2 d-1 in less than a week, and  then remained under 

900 Wh m-2 d-1 until mid-September. After that, values remained below 350 Wh 

m-2 d-1. 

February presented the highest monthly average wind speeds, with 7.6 m s-1 on 

average and gusts above 12 m s-1, especially in the last two weeks of the month 

(Fig. 3.6i); August and October presented gusts surpassing 12 m s-1, but recorded 

less often. From mid-March to the end of June, low wind conditions were 

observed, with daily means staying, commonly, under 5.8 m s-1. 

3.3 Christchurch Harbour time series of environmental factors 

The data collected from the deployment of an EXO2 multi parameter sonde from 

the Ferry Pontoon in Christchurch Harbour is available from 2014 to 2018.  

For this study site, a chlorophyll ‘a’ (Chl ‘a’) major bloom was considered 

whenever an hourly average value exceeded 10 µg L-1. Since the main analysis 

has been based on daily mean values, any day where Chl ‘a’ concentration 

exceeded the threshold value of 10 µg L-1 was included as a ‘bloom’ event. The 

Environment Agency did not routinely sample in the Christchurch Harbour 

estuary between 2014 and 2018 however some spot sampling was done 

throughout the estuary including at the Ferry pontoon by the Christchurch 

Harbour Macronutrients research team in 2014 (Panton et al., 2020). 

3.3.1 Year 2014 

For 2014, measurements recorded with the EXO2 probe in the estuary 

commenced in May. A 5-day gap in data at the end of June affected all water 

quality parameters and a second 5-day gap in mid-July disturbed both oxygen 
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variables. From 30th July to 23th September 2014, data was collected every 2 

hours instead of the 10 minutes displayed for the rest of the Christchurch Harbour 

time series.  

Water temperature values were not available due to sensor malfunction for 

almost two months from July to September. In order to fill the gap, independent 

measurements made about every two weeks with a similar probe were used to 

produce a temperature model and predicted values were introduced into the time 

series (Fig. 3.7a). These estimated temperature values were used to calculate 

oxygen concentration (from percentage saturation) for the same period. During 

the year, water temperature ranged between 4.2°C in December and 20.9°C in 

August. 

For the first month of measurements, between May and June, estimated salinity 

only varied between 26.2 and 31.5 psu although this reflected high tide values 

(Fig. 3.7b). However, during the rest of the year salinity often showed widely 

fluctuating values between 0.3 to 31.3 psu within one day due to the daily tidal 

fluctuations. This high variation resulted in a yearly average of 22.8 ± 7.7 psu at 

the Christchurch Harbour site. 

Oxygen concentration showed high daily and monthly variability during July and 

August, and during these months the minimum (Aug) and maximum (Jul) values 

were detected (189.9 and 636.4 µmol O2 L-1 respectively). July’s monthly average 

of 380.2 µmol O2 L-1, was considerably higher than for other months, displaying 

the maximum of 299 µmol O2 L-1; October presented the lowest monthly average 

of 247.9 µmol O2 L-1 (Fig. 3.7c). Both oxygen concentration and saturation 

exhibited a sudden drop in values during the first week of August, and after that, 
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concentration did not exceeded 355 µmol O2 L-1 and saturation remained below 

150%. 

Oxygen saturation ranged from 70% in August to 242% in July. Oversaturated 

conditions prevailed in June and July and were common in August and 

September. Undersaturated conditions dominated during other months. 

Chl ‘a’ registered a minimum of 0.1 µg L-1 in December and a maximum of 22.1 

µg L-1 in September, however, July monthly average was the highest of the year, 

with 4.9 µg L-1. At the end of June, a small peak in Chl ‘a’ could be observed, with 

only 1 day exceeding the threshold of 10 µg L-1. In addition, four major blooms 

were detected between July and September as observed in Figure 3.7e. (i) 

Lasting more than three weeks (24 days), the longest bloom of the year was 

observed in July with an average of 5.1 µg L-1 and maximum hourly values up to 

19 µg L-1. Approximately a week later, (ii) the second bloom was maintained for 

6 days averaging 5.8 µg L-1. (iii) In early September, the bloom presented the 

maximum average of 6.4 µg L-1, lasted 9 days; and a week later (iv) a 3-day bloom 

with an average of 5.3 µg L-1 was detected.  

From May to September, hourly values of turbidity remained below 20 FTU, with 

the exception of a few days in August (Fig. 3.7f). During this period, monthly 

average values did not exceed 7.5 FTU. However, from October to December, 

the monthly values increased from 11.2 to 18.3 FTU, and a maximum of 77.2 

FTU was observed in November. 
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Fig 3.7 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry 
Pontoon in 2014. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (a), temperature values generated by a model are shown as grey dots ●. In (d), the 
red dashed line ‒ ‒ represents 100% of saturation. Measurements taken with an independent 
probe are shown as triangles ▲ in different colours in (a) to (e). In (e)  represent discrete 
samples taken independently. 7-day running mean of (g) surface irradiance I0 and (h) mean water 
column irradiance Im are presented as black lines —, with daily mean chlorophyll 'a' concentration 
included as a green line —. (i) Wind speed is represented as daily mean in vertical bars █ and 
maximum daily values in black circles ●.
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𝐼𝐼0 steadily increased during the first three months of the year, until in early April 

a peak of more than 1500 Wh m-2 d-1 stirred values from ~900 to ~2600 Wh m-2 

d-1 in less than two weeks (Fig. 3.7g). From then until the end of August, daily 

sums above 1750 Wh m-2 d-1 were commonly observed; unlike the rest of the 

year when values did not reach this threshold. A maximum of 3556.9 Wh m-2 d-1 

was detected in June. 

Since 𝐼𝐼𝑚𝑚 is partly derived from turbidity, the time series for this parameter started 

in May, with values around 2000 Wh m-2 d-1. At the beginning of June, a big peak 

was observed, moving daily sums from ~1100 to ~2800 Wh m-2 d-1. A second 

peak appeared in late June, including the year maximum of 2824.9 Wh m-2 d-1 

just as estimated values ceased due to a gap in turbidity data (Fig. 3.7h). Values 

above 1550 Wh m-2 d-1 were only identified between May and mid-August. 

January, February and December exhibited higher daily wind speeds, which was 

reflected in their monthly averages ~ 6 m s-1. From these three months, February 

presented the maximum gusts of wind, generally above 13 m s-1. Moreover, in 

May, a peak of high wind speed (>11 m s-1) was identified for over a week (Fig. 

3.7i). On the contrary, June and July maintained daily values consistently below 

6 m s-1 with maximum values never exceeding 9 m s-1. Moreover, September 

presented the lowest monthly value of 2.5 m s-1. 

3.3.2 Year 2015 

In 2015, from mid-May to the end of August (105 days), data from the EXO2 

sonde were not recorded due to a data logger malfunction. Additionally, data in 

December was only collected during the first week of the month. However, this 

year was included in the results since phytoplankton activity in the form of chl ‘a’ 

blooms were detected in months either side of this data gap.  
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Temperature varied between 3.6 and 18.5°C, in February and September 

respectively (Fig. 3.8a). Since data from the summer months were not available, 

it can only be assumed that temperature did not go above 20°C because of 

missing data during the generally warmest period of the year.  

Regarding salinity, a minimum of 0.2 psu and a maximum of 37.4 psu was 

observed during the year (Fig. 3.8b). During the first 3 months of the year salinity 

values were often below 2 psu due to high freshwater river inputs to the estuary 

then for a period of about 3 weeks, data remained above 7 psu. Once 

measurements resumed in September, salinity appeared to displayed a negative 

drift of ~1 psu for about a month, since before this period values did not exceed 

35 psu. 

Both oxygen parameters, concentration and percentage, showed a major peak in 

values in April, when the year maximums (481.4 µmol O2 L-1 and 160.8%) were 

detected. Oxygen concentration exhibited, on average, highest values in the first 

months of the year, with monthly means of ~319 µmol O2 L-1 compared with ~284 

µmol O2 L-1 from September onwards (Fig. 3.8c). In a similar way, data recorded 

between January and March showed, mostly, undersaturated conditions, while 

the rest of the year had larger daily variation, reflecting rapid within day changes 

between over saturated and undersaturation in shortly periods (Fig. 3.8d). 

Chl ‘a’ concentration increased in April and Oct but remained below 5 µg L-1 in 

other monitored months. For 2015, seven major blooms were identified and are 

displayed in Figure 3.8e. (i) The first one started in late March and lasted 7 days, 

averaging 4.9 µg L-1. (ii) During mid-April, the longest event (24 days) was 

evident, presenting an 8.3 µg L-1 average and the year maximum of 48.2 µg L-1. 

Two days later, (iii) a smaller bloom (6.1 µg L-1) could be observed for about 3 
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days. Almost a week after measurements restarted in September, (iv) an event 

where for 12 days several hourly values exceed 10 µg L-1 was identified. (v) The 

bloom presenting the highest average of the year of 12.6 µg L-1, was observed 

between September and October for over 12 days, and almost immediately a (vi) 

smaller peak (5.8 µg L-1) appeared for 4 days. This last bloom could have been 

due to the remnants of the larger one, but it is included as it was separated by 

two days of lower concentrations. (vii) At the end of October, the last bloom of 

the year was observed for 15 days and averaging 9.2 µg L-1. 

Turbidity in October and November presented highest monthly values (>20 FTU) 

compared to the rest of the year and the maximum value for the year (91.6 FTU) 

was detected in November (Fig. 3.8f). However, during the first three months of 

the year some high values were also detected with values as high as 66 FTU. 

Higher daily sums for 𝐼𝐼0 were observed between April and September (Fig. 3.8g), 

with values from 1228 to 2484 Wh m-2 d-1. Until July, values stayed close to 2000 

Wh m-2 d-1, and for the next 3 months  daily peaks occurred from ~1350 to ~2900 

Wh m-2 d-1.  

Similarly, to 𝐼𝐼0, a sudden increase to ~1000 Wh m-2 d-1 in early April, was detected 

for 𝐼𝐼𝑚𝑚. With the year maximum of 2350.2 Wh m-2 d-1 appearing in the following 

week (Fig. 3.8h). From April to mid-September, 𝐼𝐼𝑚𝑚 values exceeded 1370 Wh m-

2 d-1, but it is worth noting that a 3-month gap within this period is shown. 
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Fig 3.8 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry 
Pontoon in 2015. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (d), the red dashed line ‒ ‒ represents 100% of saturation. 7-day running mean of (g) 
surface irradiance I0 and (h) mean water column irradiance Im are presented as black lines —, 
with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed is 
represented as daily mean in vertical bars █ and maximum daily values in black circles ●.
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Windier conditions were seen in November and December, when most maximum 

daily gusts recorded were above 9 m s-1 and monthly average ~5.8 m s-1. 

Nevertheless, daily values above 10 m s-1 with gusts >13 m s-1 occurred at the 

end of March (Fig. 3.8i). On the contrary, an extended period of lower measured 

wind speeds were detected from June to October, presenting monthly values 

~3.8 m s-1 and gusts below 10.5 m s-1. 

3.3.3 Year 2016 

Measurements for 2016 started in mid-February and finished at the end of 

November, with no gaps during the period in-between. 

Temperature varied seasonally, presenting higher monthly averages (~18.8°C) 

in the summer months with a year maximum of 23.7°C in July (Fig. 3.9a). In 

addition, February showed the coldest temperature of the year 5.3°C and the 

lowest monthly value (7.8 °C). 

From February to May, salinity showed a larger variation than for the rest of the 

year, with peaks approximately every two weeks, as seen in Figure 3.9b. It is also 

noticeable that from June to September, hourly values rarely dropped below 5 

psu and, at the end of November, a similar decrease in salinity as detected in the 

first few months, was observed. 

Oxygen concentration exhibited higher values (~354 µmol O2 L-1) from February 

to May, but  then in June started showing slightly lower values (~283 µmol O2 L-

1) for the rest of the year (Fig. 3.9c). Several oxygen peaks could be observed 

from May to August, but especially during May when the highest value of 485.3 

µmol O2 L-1 was recorded. In terms of oxygen saturation, the year presented an 

overall average oversaturation (107.1 ± 9.0%), with most of the undersaturated 
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conditions detected from May to September, but never lasting for extended 

periods (Fig. 3.9d). 

Chl ‘a’ concentrations in 2016, presented four different bloom events, with a 

particularly extended one between May and June, as can be clearly seen in 

Figure 3.9e. (i) The first bloom was detected at the end of April for about 5 days 

and reached a mean value of 4.6 µg L-1. A week later, (ii) a substantial bloom was 

recorded for a total of 45 days, averaging 14 µg L-1 for the total event and reaching 

a maximum value of 130 µg L-1. Following this, a period of about two months 

remained with relatively low productivity, until August when two separate days 

showed hourly values exceeding 10 µg L-1 and presenting daily values of (iii) 3.5 

µg L-1 and (iv) 5.3 µg L-1. 

A clear period of low turbidity, with values never surpassing 30 FTU was detected 

for about 4 months (Apr-Aug), in the middle of the year (Fig. 3.9f). Outside of this 

period, turbidity presented regular peaks over 50 FTU, and even a major increase 

in November reaching 84.1 FTU. 

From February, 𝐼𝐼0 showed a gradual increase in daily values (Fig. 3.9g). The 

period between April and August displayed several changes in the light intensity, 

but values permanently remained above 1600 Wh m-2 d-1. In May and July, peaks 

increased to 2926.9 and 2946.1 Wh m-2 d-1, respectively. A decrease in values 

later in the year was observed from mid-September when in 4 days values 

declined from 1603.2 to 742.5 Wh m-2 d-1. 

 



Chapter 3 – Temporal variation of phytoplankton blooms 

84 

 

Fig 3.9 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry 
Pontoon in 2016. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (d), the red dashed line ‒ ‒ represents 100% of saturation. 7-day running mean of (g) 
surface irradiance I0 and (h) mean water column irradiance Im are presented as black lines —, 
with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed is 
represented as daily mean in vertical bars █ and maximum daily values in black circles ●.
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𝐼𝐼𝑚𝑚 calculations varied greatly across the year as seen in Figure 3.9h, showing 

several spikes in values, with the maximum in July (2555.6 Wh m-2 d-1). Although 

peaks identified during May were only around 2250 Wh m-2 d-1, this month 

presented a very similar average to July, ~2000 Wh m-2 d-1. 

During the first three months of the year, higher wind speeds were detected (Fig. 

3.9i), with monthly averages of ~4.5 m s-1, and reaching gusts of up to 16 m s-1. 

For the rest of the year, monthly averages never exceeded 3.9 m s-1 and daily 

values remained often below 7 m s-1. 

3.3.4 Year 2017 

In 2017, there is missing water quality data for the first and the last week of the 

year, as well as a 40-day gap between February and March. 

Water temperature at the beginning of the year was ~6°C then started to 

progressively increase from the end of January, until reaching a maximum of 

24.8°C in June, to then decrease to temperatures near 7°C in December (Fig. 

3.10a). 

A considerable variability was observed in salinity, with values ranging from 0.3 

to 34.8 psu (Fig. 3.10b). Early in the year large daily fluctuations in salinity are 

evident due to higher river flows in the estuary and later from May salinity did not 

decrease below about 10-15psu during reduced river flow rates and effect of tidal 

water inputs to the estuary.  

Large daily variability was detected from June to August in terms of oxygen 

concentration (Fig. 3.10c). The yearly minimum (171.2 µmol O2 L-1) and 

maximum (462.7 µmol O2 L-1) values were identified within this period, in July and 

June respectively. Monthly averages showed September as the lowest (272.1 
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µmol O2 L-1) and January as the month presenting the highest oxygen 

concentration (357.6 µmol O2 L-1). Regarding oxygen saturation, overall the year 

was oversaturated with a mean of 107.7 ± 9.7%. Values below 100% saturation 

were mainly detected from May onwards, and were less evident in the last few 

months of the year, as seen in Figure 3.10d.  

This year displayed a relatively low Chl ‘a’ concentration (Fig. 3.10e), with an 

average of 2.8 ± 1.3 µg L-1. Three different events reached the conditions 

specified to be classified as major blooms at the Ferry Pontoon in the estuary. (i) 

In early-June, over two days the hourly values reached the threshold of 10 µg L-

1 and the bloom presented a mean of 3.1 µg L-1. Later in the summer, (ii) at the 

beginning of August, a bloom was detected lasting 7 days and reaching a 

maximum of 11.2 µg L-1, however, the yearly maximum of 11.6 µg L-1 was 

observed during (iii) the 3-day bloom in October. A few days after the last bloom, 

a downward drift in data of about 1.1 µg L-1 was identified. 

Peaks in turbidity exceeding 50 FTU were regularly detected during the year, 

particularly in January and December when maximum values were close to 80 

FTU (Fig. 3.10f). Nevertheless, long periods (>2 months) when turbidity remained 

below 20 FTU were evident in April-May and June-August.  

𝐼𝐼0 showed greater variation and several peaks, during the period between April 

and August (Fig. 3.10g). Additionally, daily values remained above 1700 Wh m-2 

d-1. The maximum of 3509.1 Wh m-2 d-1 was detected during the peak in the 

middle of June, the same month that presented the highest monthly average of 

2607.6 Wh m-2 d-1. 
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Fig 3.10 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry 
Pontoon in 2017. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (d), the red dashed line ‒ ‒ represents 100% of saturation. 7-day running mean of (g) 
surface irradiance I0 and (h) mean water column irradiance Im are presented as black lines —, 
with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed is 
represented as daily mean in vertical bars █ and maximum daily values in black circles ●.
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In a very similar pattern to 𝐼𝐼0, calculations of 𝐼𝐼𝑚𝑚 varied significantly from April to 

August (Fig. 3.10h). For this parameter, daily values surpassed 1300 Wh m-2 d-1 

almost the whole time within this period, an exception could be observed in late 

July, and a peak during June presented the highest value of the year (3055.8 Wh 

m-2 d-1). 

Daily average wind speeds rarely exceeded 8 m s-1 during the year, as it can be 

seen in Figure 3.10i. Monthly averages remained below 5 m s-1 for the whole 

year, with the lowest in April (3.3 m s-1) and the highest in March (4.7 m s-1). 

Periods of about two weeks, presenting higher gusts were measured in March 

and December. 

3.3.5 Year 2018 

Water quality data was not available in 2018 until the last days of March, and at 

the end of the year the probe stopped logging data two weeks before the end of 

December. 

Water temperature increased gradually from around 7 °C in March until reaching 

a maximum of 24.3 °C in July, and then progressively decreased to values of 

~6.5°C at the end of the year (Fig. 3.11a). However, in the last weeks of April an 

unusual drop in temperature to near 8°C for a couple of days, to then rapidly 

increase back to ~16.5°C. 

Salinity is a widely variable parameter at this study site, ranging from 0.1 to 34 

psu in this particular year, as shown Figure 3.11b. However, two periods where 

data stayed consistently below 1 psu for days were observed. The first one lasting 

14 days in early-April and the second period for almost all of July (28 days); these 

are believed to be caused by a sensor failure. In addition, during the last three 
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months of the year, values for salinity clearly drifted down steadily, again probably 

due to sensor malfunction. 

Oxygen concentration ranged from 176.6 µmol O2 L-1 in September to a value of 

506.8 µmol O2 L-1 in July. Nevertheless, the first three months average above 340 

µmol O2 L-1 which made this the period with the highest concentration of oxygen 

of the year (Fig. 3.11c). The period between June and August presented the 

highest daily variability in oxygen saturation (Fig. 3.11d), with the yearly limit 

values observed within this period: 64.2% in July and 187.1% in June. The year 

presented a general oversaturated average (108.8 ± 10.6%) with all monthly 

averages above 100% saturation. Regular peaks in oxygen concentration and 

saturation were identified from May to September.  

From 11th August, Chl ‘a’ data had to be fitted since a drift of about ~1.0 µg L-1 

every 2 weeks was detected; values revised by applying a linear model are 

highlighted in Figure 3.11e. A total of seven peaks of Chl ‘a’ were distinguished 

across the year, (i) with the first and longest from May to June (28 days), 

presenting the year maximum of 38.1 µg L-1 and bloom average of 8 µg L-1. (ii) 

Very soon after, a peak lasting 6 days that could have still been part of the bigger 

bloom was observed (3.9 µg L-1). (iii) In July a 3-day bloom occurred and 

averaged 4.3 µg L-1. After almost 2 months of no major productivity, (iv) in mid-

September a significant peak sustained for 21 days got a 6.8 µg L-1 mean value. 

(v) In early November, a spike in Chl ‘a’ data was noticed for about 3 days,

although values above 10 µg L-1 mainly appeared during one day. This particular 

peak, behaves more like a drift in the sensor data than a bloom since values 

dropped from one hour to the next by almost 7.7 µg L-1. Two close peaks showed 

in the last weeks of measurements; (vi) one for 7 days and averaging 9.2 µg L-1 
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and less than a week after (vii), a 5-day peak with a mean value of 8.5 µg L-1. 

The last three peaks mentioned, appeared in a time of the year when blooms in 

this estuary are not that common and were not reflected in the oxygen saturation 

time series. 

Several peaks of turbidity were observed in 2018, especially in the period from 

November onwards (Fig 3.11f). The maximum value of the year (57.1 FTU) was 

detected within this time, however, a spike in August reached 49.9 FTU and one 

in April, 49.1 FTU. Turbidity presented a period of almost two months (June and 

July) of values remaining below 18 FTU. 

Daily values of 𝐼𝐼0 remained under 1500 Wh m-2 d-1 until an increase that took 

them to ~2440 Wh m-2 d-1, in less than two weeks, in late-April (Figure 3.11g). 

From then, until August, the maximum monthly averages (>1950 Wh m-2 d-1) were 

observed and the highest daily value of 3774.2 Wh m-2 d-1 was identified as part 

of the peak in late-June. Values after October mainly stayed below 1000 Wh m-2 

d-1.  

𝐼𝐼𝑚𝑚  calculations presented daily values above 1550 Wh m-2 d-1 for the period 

between May and early August, with the highest point of 3116.4 Wh m-2 d-1 in 

June and being July the month with the highest average (2357.5 Wh m-2 d-1), just 

as observed in Figure 3.11h. It is noticeable that during August; a similar range 

of values seen across the first three months was detected from 2726 to 429 Wh 

m-2 d-1 in about 20 days. 

The windiest month was January followed by December (Fig. 3.11i), both 

presenting regular gusts above 11 m s-1. From May to August, daily averages 

remained below 7.5 m s-1 and only two separate days surpassed 9 m s-1 gusts. 
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Fig 3.11 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry 
Pontoon in 2018. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (d), the red dashed line ‒ ‒ represents 100% of saturation. In (e), chlorophyll ‘a’ values 
generated by a model are shown as grey dots ●. 7-day running mean of (g) surface irradiance I0 
and (h) mean water column irradiance Im are presented as black lines —, with daily mean 
chlorophyll 'a' concentration included as a green line —. (i) Wind speed is represented as daily 
mean in vertical bars █ and maximum daily values in black circles ●.
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3.4 Seasonal and interannual trends and comparison between 

estuaries 

3.4.1 Phytoplankton correlation with abiotic parameters 

The most frequently used parameter to measure or estimate changes in 

phytoplankton biomass in marine and freshwater environments is the 

concentration of chl ‘a’ (Cloern, 1996), and with the addition of hydrological and 

meteorological parameters, spatial and temporal patterns can be inferred. 

However, the relationship between chlorophyll and abiotic parameters is not fixed 

but site-specific (Niu et al., 2016);  it is often shown that it is not just one physical 

factor controlling the initiation of blooms but instead interactions between 

processes (Henson et al., 2006), hence the importance of monitoring as many 

systems as possible and including a vast range of environmental parameters. 

Spearman's rank coefficients were used to understand the relationship between 

chl ‘a’ concentration and various measured environmental parameters in both the 

Southampton Water (SOT) and Christchurch Harbour (CHR) estuaries (Table 

3.1). 

Analysing the complete time series for the two systems, 𝐼𝐼0 is revealed as the 

parameter that correlates strongly with chl ‘a’ in SOT for the complete time series 

(ρ=0.71) but less strongly in CHR (ρ=0.39). Considering individual years, all but 

2020 (ρ=0.46) in SOT showed strong positive correlations to 𝐼𝐼0 (ρ>0.55), and 

similarly in CHR from 2014 to 2016 (ρ>0.55), whereas in 2017 (ρ=0.31), a weaker 

correlation was observed. A very similar relationship among sites for the complete 

time series could be observed for 𝐼𝐼𝑚𝑚, with SOT presenting a strong correlation 

(ρ=0.54) while CHR a weaker one (ρ=0.35). In SOT, 2014-2016 and 2019 
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showed strong correlations (ρ>0.55), 2018 a moderate (ρ=0.49) and 2020 a 

weaker relationship (ρ=0.32). Meanwhile, for CHR, only 2016 showed a strong 

correlation with 𝐼𝐼𝑚𝑚 (ρ=0.62), while 2014 and 2015 a moderate (ρ=0.53 and ρ=50) 

and 2017 a weak relationship (ρ=0.26). Noticeably, 2018 in CHR presented an 

irregular negative correlation with both 𝐼𝐼0 and 𝐼𝐼𝑚𝑚  (ρ=-0.30 and ρ=-0.24) which 

certainly affected the degree of correlation for this site's complete time series 

analysis. Light availability has previously been described as a critical driver of 

bloom initiation for SOT (Iriarte & Purdie, 1994) and correlations point at CHR 

presenting the same behaviour.  

Besides the parameters related to light availability, temperature showed, at both 

sites, a significant correlation for the whole time series and at each individual 

year. A strong correlation (ρ>0.55) between temperature and chlorophyll 

concentration was present for the whole times series at SOT and most individual 

years apart from 2018. At the CHR site, a less strong relationship was evident for 

the whole time series (p=0.31) and with moderate relationships (0.40<ρ<0.54) for 

2016 and 2017. For 2018 at CHR, a negative correlation (ρ=-0.25) between 

temperature and Chl ‘a’ suggested that the chlorophyll data may have been less 

accurate towards the end of the year. It is known that temperature affects 

phytoplankton physiology and metabolic processes (Trombetta et al., 2019), and 

in a previous study at a coastal site in the Western English Channel, it was 

identified that phytoplankton biomass growth was potentially governed by 

temperature control on enzymatic processes associated with carbon fixation 

(Barnes et al., 2015). 
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Table 3.1. Spearman's correlation coefficients relating chlorophyll concentration with environmental conditions. 

Location Period I0 Im Tidal 
range 

Wind 
speed Temp Sal O2% Turb River  

flow 

Southampton 
Water 

Whole 
TS 

0.71 0.54 ns -0.09 0.61 0.19 0.39 ns -0.32 

n= 2014 0.86 0.78 ns -0.16 0.92 0.44 0.56 -0.17 -0.42 

 2015 0.81 0.71 ns -0.12 0.79 0.70 0.25 -0.27 -0.65 

 2016 0.85 0.76 ns ns 0.73 ns 0.31 -0.40 -0.19 

 2018 0.76 0.49 ns -0.14 0.43 ns 0.43 0.29 0.18 

 2019 0.89 0.77 ns ns 0.76 0.25 0.44 -0.20 -0.65 

 2020 0.46 0.32 0.18 ns 0.62 0.49 -0.11 ns -0.56 

Christchurch 
Harbour 

Whole 
TS 

0.39 0.35 --- ns 0.31 ns 0.35 -0.09 -0.12 

n= 2014 0.61 0.53 --- ns 0.58 ns 0.57 -0.26 -0.35 

 2015 0.62 0.50 --- ns 0.66 0.45 0.31 0.27 -0.56 

 2016 0.65 0.62 --- ns 0.28 ns 0.50 -0.39 0.18 

 2017 0.31 0.26 --- 0.12 0.38 ns ns ns ns 

 2018 -0.30 -0.24 --- 0.18 -0.25 0.24 ns ns ns 

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, ρ > 0.55. 
ns = no significant relationship  
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Fig 3.12 Principal Component Analysis (PCA) of environmental conditions for (a) 
Southampton Water and (b) Christchurch Harbour Ferry Pontoon. Bloom events and years 
have been used as factors to illustrate the clusters: No blooms in all years (grey circles ●), 
2014 blooms (red triangles ▲), 2015 blooms (yellow circles ●), 2016 blooms (green squares 
■), 2017 blooms (light blue hexagons ), 2018 blooms (blue diamonds ), 2019 blooms (pink 
squares ■) and 2020 blooms (orange hexagons ). Arrows → represent the variable and the 
direction of an arrow indicates its relation with the Principal Component (PC) and other 
variables. Temp=temperature, Sal=salinity, Chl=chlorophyll ‘a’, I0=surface water irradiance, 
Im=mean water column irradiance, O2%=DO in percentage saturation, [O2]=DO 
concentration, Wind=wind speed, Turb=turbidity and Tide=tidal range.
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Regarding oxygen parameters, oxygen saturation presented moderate positive 

correlations with chlorophyll at both sites for the complete data set (SOT ρ=0.39 

and CHR ρ=0.35). For 2014, a stronger (ρ>0.55) correlation was evident in both 

systems. A moderate relation (0.40<ρ<0.54) was exhibited in SOT in 2018 and 

2019 and CHR in 2016. Weaker correlations (ρ<0.39) were observed in SOT and 

CHR in 2015 and 2016 only in SOT. Dissolved oxygen concentration in coastal 

regions is controlled by physical processes such as atmospheric exchange and 

ocean circulation as well as water temperature (Cravo et al., 2020). However, its 

close relationship to phytoplankton biomass is due to its direct release and 

consumption during photosynthesis and respiration respectively (Yuan et al., 

2016). 

Chl ‘a’ showed no direct relationship with turbidity for the complete time series for 

both sites; however, individual years at both sites presented some significant 

correlations; e.g. in SOT negative correlations (ρ<-0.40) in 2015, 2016 and 2019 

and a positive correlation (ρ=0.29) in 2018, while CHR presented negative 

correlations (ρ<-0.39) in 2014 and 2016 and positive correlation for 2015 

(ρ=0.27). Turbidity relates to decreasing phytoplankton biomass since it reduces 

light availability, but variations in turbidity can be driven by interactions between 

physical and biological processes such as wind and tides (e.g. May et al., 2003). 

Daily rates of riverine inflow measurements from the River Test were used in the 

analysis for SOT and from the River Avon for CHR. This parameter showed an 

overall moderate negative correlation to Chl ‘a’ in SOT (ρ=-0.32) and a very weak 

correlation in CHR (ρ=-0.12). However, considering individual years, data for 

CHR in 2015 presented a strong negative correlation (ρ=-0.56), and in 2014 a 

moderate one (ρ=-0.35). In the case of SOT, 2015, 2019 and 2020 showed strong 
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negative correlations (ρ<-0.55) and 2014 a moderate relation (ρ=-0.42). 

Freshwater inflow can favour phytoplankton growth; nevertheless, in small 

estuarine systems, intense pulses of freshwater can flush out the phytoplankton 

community (Cloern & Jassby, 2010; Peierls et al., 2012). 

Influence of environmental conditions on major bloom events, at both estuaries, 

for each year of study is shown in Figure 3.12. SOT being a deeper ecosystem 

showed a closer relationship with 𝐼𝐼𝑚𝑚 and with Chl ‘a’, and an inverse connection 

to turbidity, wind speed and tides, with O2 being more related (inversely) to 

temperature and salinity. The shallower estuary (CHR), related strongly to Chl ‘a’ 

and to O2, and slightly to 𝐼𝐼0 and 𝐼𝐼𝑚𝑚, and inversely to turbidity and wind with O2 

related inversely to salinity as well. In terms of blooms, SOT has stronger 

relationship to 𝐼𝐼𝑚𝑚 and O2 than CHR, which presents more spread in data and 

weaker influence of Chl ‘a’ in bloom event separation. The classification of blooms 

through the PCA analysis did not reflect any major influence of tidal range, 

turbidity, or wind speed; however, it was observed for both estuaries, that late-

year blooms in 2018 correlated with such parameters. 

3.4.2 Timing of blooms 

Temporal patterns of bloom distribution can be inferred from the PCA results (Fig. 

3.12). The majority of days classified as within bloom events are explained by 

parameters affected by seasonality (i.e. temperature, 𝐼𝐼0 and 𝐼𝐼𝑚𝑚), indicating the 

presence of warmer waters and extended hours of light availability, as well as 

greater irradiance levels within the water column, favouring the appearance of 

phytoplankton blooms in both estuaries. 

The period when blooms were observed in CHR was longer than in SOT, with an 

average duration of 153 (~5 months) and 121 (~4 months) days, respectively. 
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CHR estuary shows (Fig. 3.13b) the typical dynamics of the coastal temperate 

systems (e.g. Martellucci et al., 2021), which are characterised by spring and 

autumn blooms and significant interannual variability; while SOT follows a 

different pattern of bloom occurrence, particularly during spring and summer (Fig. 

3.13a). Both estuaries showed blooms typically persisting for days or even weeks 

during spring before dissipating, followed by additional biomass peaks in late 

summer or autumn that may be stimulated by an excess in nutrients (Winder & 

Cloern, 2010). 

Riverine inflow (and possibly nutrients) increased in both estuaries during the 

winter months through elevated riverine inflow (e.g. Nedwell et al., 2002). 

Nevertheless, phytoplankton biomass remains low mainly due to limiting surface 

light availability (Fig. 3.14 & 3.15). Spring blooms marked the beginning of the 

productivity period each year at both locations, except for 2014 at both sites, 

where data was not available from the autonomous monitoring until May. 

Certainly, the most described seasonal pattern in coastal regions is the spring 

bloom (e.g. Martellucci et al., 2021; Niu et al., 2016; Trombetta et al., 2019; 

Zingone et al., 2010), and it is particularly pronounced in northern latitudes (e.g. 

Henson et al., 2006). Previous work identified the existence of spring blooms in 

the Southampton Water estuary (Iriarte & Purdie, 2004; Kifle & Purdie, 1993; 

Wright et al., 1997) and an extended study on phytoplankton blooms in estuarine 

coastal waters around the world (Carstensen et al., 2015) found that the spring 

bloom was the most common seasonal bloom across all regions, occurring in 

April-May in European coastal regions at similar latitudes to the ones studied in 

the present research. 
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A previous 5-year monitoring (1999–2003) of phytoplankton dynamics in SOT 

characterised the system with distinctive spring and summer blooms (Holley et 

al., 2007) and the main spring bloom occurring around May, similarly to that 

observed in this research (Fig. 3.13a). In comparison, a study of the temporal 

variation of chlorophyll ‘a’ in a coastal region in the Western English Channel 

(Smyth et al., 2010) showed that the area presents distinct spring and autumn 

phytoplankton blooms, just as seen for CHR in the present study (Fig. 3.13b). 

This extended studied site is highly influenced by the Tamar estuary and presents 

very well mixed waters during the autumn and winter months and a more stratified 

water column in spring-summer. A similar temperature-driven stratification 

process, but in much lesser magnitude, could be occurring in SOT since 

temperature seems to play a major role in bloom initiation. However, in CHR, 

given that years when autumn blooms were highly marked (2015 & 2018) 

correlated with salinity, a possible stratification due to horizontal and vertical 

density gradients generated by difference in salinity could be reducing turbulence 

and enhancing resuspension (Zehrer et al., 2015). 

Blooms are generated from a combination of different critical factors, and most of 

the time, through interaction between them (e.g. Niu et al., 2016). The initiation 

of the spring bloom in all years evaluated in SOT occurred when 𝐼𝐼0 values were 

above 1314 Wh m-2 d-1 in combination with light penetration in the water column 

(𝐼𝐼𝑚𝑚 values) above 188 Wh m-2 d-1 as observed in Figure 3.14. A similar value of 

𝐼𝐼0 (1245 Wh m-2 d-1) was identified for CHR spring bloom initiation, but as it can 

be appreciated in Figure 3.15, for this system 𝐼𝐼𝑚𝑚 data was consistently above 640 

Wh m-2 d-1 mostly due to the shallower water column. 𝐼𝐼0 values are an indication 

of patterns in bloom development shaped by the annual cycle of solar radiation 
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(e.g. Rumyantseva et al., 2019), differing from 𝐼𝐼𝑚𝑚  which is affected by other 

shorter timescale processes, like tidal currents. 𝐼𝐼0 values found at the initiation of 

blooms in SOT and CHR are above the range (500 – 800 Wh m-2 d-1) found by 

Martellucci et al. (2021) for an ecosystem on the Italian coast with very marked 

spring and autumn blooms, but below previous values reported for the 

Southampton Water estuary by Iriarte & Purdie (2004) where blooms occurred 

consistently with I0 > 2000 Wh m-2 d-1. Regarding 𝐼𝐼𝑚𝑚, the critical theoretical value, 

according to Riley (1967), for a sustained increase in phytoplankton biomass, in 

temperate coastal and estuarine waters is 193 Wh m-2 d-1; with results from the 

current study suggesting a similar value of Im for  SOT. However, for the  CHR a 

much larger value of Im above Riley’s value, was evident which could relate to the 

shallower conditions in CHR since PAR within the water column varies according 

to changes in depth (e.g. Cloern et al., 2014). Previous research done in the 

Southampton Water estuary by Iriarte & Purdie (2004) reported that Chl ‘a’ levels 

above 10 µg L-1 occurred when 𝐼𝐼𝑚𝑚 averaged for the previous 7 days exceeded 

380 Wh m-2 d-1. 

When considering turbidity measurements at the onset of blooms, <8.4 FTU for 

SOT and <31.7 FTU for CHR, it is no surprise that a lower 𝐼𝐼𝑚𝑚  value was 

registered for SOT. Furthermore, CHR is a more turbid estuary presenting an 

average during blooms of 11.2 ± 9.0 FTU, while SOT mean value was 4.1 ± 2.7 

FTU. Nevertheless, phytoplankton growth in CHR does not seem to be light-

limited since blooms initiate at a similar time of the year as in SOT; this is likely 

to be due to its shallower water column depth that allows enough light energy 

required for photosynthesis (e.g. Cloern, 1996), despite the elevated turbidity 

present. 
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Fig 3.13 Chlorophyll ‘a’ daily concentration during bloom events from 2014 
to 2020 in (a) Southampton Water estuary and (b) Christchurch Harbour 
Ferry Pontoon. The Spring and Autumn bloom periods have been 
background shaded in light grey, while the Sumer bloom period has a white 
background. 

The temperature was also identified as a primary driver of the spring blooms, with 

SOT events commonly appearing when water reached values >11.8°C and an 

average of 12.2 ± 0.3°C, excluding 2014 when measurements started later in the 

year (May), hence, by the time the first bloom was recorded temperature had 

reached 17.7°C. For CHR, the temperature at the beginning of the spring bloom 

ranged from 9.8°C in 2015 to 17.2°C in 2017, showing no clear set value to initiate 

events. This wider range of water temperature can perhaps indicate that blooms 

in this estuary are initiated by an increase in water temperature rather than a 



Chapter 3 – Temporal variation of phytoplankton bloom 

102 

threshold temperature value, similar to that described by Trombetta et al. (2019) 

for a Mediterranean shallow coastal lagoon with a similar yearly temperature 

range to the CHR site. 

3.4.3 The magnitude of blooms and interannual variability 

Interannual variability of environmental conditions can affect, positively or 

negatively, the magnitude of blooms within a system (e.g. Leterme et al., 2014). 

Therefore, it is clear the importance of studying extended time series that allows 

the comparison among years and permits the possibility of predictions. 

SOT presented an average of daily Chl ‘a’ during bloom events and across the 

time series of  5.6 ± 3.2 µg L-1, while CHR showed a mean value of 8.2 ± 5.3 µg 

L-1, approximately 1.5 times higher than the one calculated for SOT. Analysing 

the range of data, a similar pattern was observed, where CHR (9.5 – 130 µg L-1) 

presents, in general, higher biomass concentrations than SOT (4.9 – 33.4 µg L-

1). With blooms detected in CHR occasionally reaching values above 30 µg L-1 

(17.2% of bloom observations), while in SOT only during the maximum peak of 

2020, was this threshold exceeded (1.2% of bloom observations) as shown in 

Figures 3.15 and 3.14, respectively. 

Holley et al. (2007) review of the magnitude of phytoplankton blooms at a 

Southampton Water mid-estuary location showed that maximum annual Chl ‘a’ 

values range from 17.2 to 38.2 µg L-1 during their 5-year study (1999–2003). A 

similar variation was  observed in this study in SOT of 6.6 – 33.4 µg L-1, especially 

if considering that besides 2015, the other years maxima were above 16 µg L-1. 

However, Holley et al. (2007) states these major peaks occurred around day 140 

of the year, a pattern not observed in SOT but seen in CHR (Fig. 3.13b).  
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A  lower Chl ‘a’ concentration was used to describe a phytoplankton bloom in the 

Southampton Water estuary, during the ~100-day monitoring done by Wright et 

al. (1997), where values of 3.6 µg L-1 represented an increase from the general 

range detected of 0.5 – 1.0 µg L-1. This value is closer to the 5.0 µg L-1 threshold 

used to delimit blooms in the current work than the 10.0 µg L-1 previously used 

for the same location by Holley et al. (2007) and Iriarte & Purdie (1994). In the 

same study by Wright et al. (1997), the bloom was identified in summer, the same 

season where SOT higher Chl ‘a’ peaks were observed for most years studied 

(Fig. 3.13a).  

Previous measurements of Chl ‘a’ made at the L4 site in the Western Channel as 

representative of coastal waters (~12 km offshore), defined a blooming pattern 

dominated by autumn blooms from 4.0 µg L-1 (Kitidis et al., 2012) to 12.0 µg L-1 

(Smyth et al., 2010). Autumn blooms were present almost exclusively in CHR, 

especially in 2015 and 2018, which could infer that the CHR system presents a 

similar seasonality pattern to the Tamar estuary, although CHR is a much smaller 

and shallower estuary than Tamar. Given the general lower biomass observed in 

coastal waters, the overall lower concentrations of Chl ‘a’ in SOT could indicate 

more oceanic waters entering the system compared to CHR. 

The magnitude of coastal phytoplankton blooms is highly variable across the 

world, ranging from coastal ecosystems with typically low concentrations of Chl 

‘a’ such as the Mediterranean Thau Lagoon presenting mean values ~ 2 µg L-1 

during spring blooms and concentrations between 2.8 and 3.6 µg L-1 while 

experiencing winter blooms (Trombetta et al., 2019); to systems with marked 

seasonal changes like the Mediterranean Lagoon and the Bay of Bizerte (Salhi 

et al., 2018), displaying maximum mean values during a summer bloom of 15.8 
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and 8.5 µg L-1. It is also possible to find highly eutrophicated and stratified 

systems like the Sundays Estuary in South Africa, where exceptional maximum 

Chl ‘a’ values during autumn blooms above 100 µg L-1 have been reported 

(Lemley et al., 2018). 

The highest concentration of biomass during a single bloom period in SOT was 

observed in 2019 during summer when the longest event recorded (48 days) 

coincided with the highest values of 𝐼𝐼0  of the year (3313 Wh m-2 d-1) and a 

reduced moderate turbidity period (<8.8 FTU). However, the maximum 

chlorophyll peak of the time series was observed in the spring of 2020 during a 

period of low turbidity (<3.6 FTU), and low wind (<4.7 m s-1) was detected at the 

time of the year when 𝐼𝐼0 started to increase, resulting in a rapid rise of 𝐼𝐼𝑚𝑚 values 

(Figure 3.14). Unfortunately, there is no additional data to corroborate this 

chlorophyll peak since there was no regular chlorophyll sampling from March to 

June 2020 in SOT due to COVID restrictions and similarly, there is no EA data 

available, as their sampling had also been stopped. In contrast, the lowest 

chlorophyll values during a bloom in SOT were detected in 2015, although there 

were no apparent major differences from  other years, except a strong correlation 

between Chl ‘a’ and salinity. This could indicate the effect of riverine inflow on the 

system, given that 2015 was one of the two years presenting the highest 

correlation with freshwater input (Table 3.1). Even though it is known that a high 

freshwater runoff in estuarine systems can cause reduced phytoplankton 

biomass by preventing the accumulation of cells in the mixed layer (Levasseur et 

al., 1984; Peierls et al., 2012), this does not seem to be the case for SOT given 

that although 2015 presented a low river inflow, the lowest annual flow recorded 
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was in 2019 when the total biomass was much higher than the other years 

analysed (Fig. 3.14e). 

The maximum chlorophyll biomass and peak in CHR was observed in 2016, a 

year that showed the highest correlation to low turbidity and elevated 𝐼𝐼𝑚𝑚, which 

was represented by the biggest peak appearing during an extended low turbidity 

period (<9.6 FTU) and when the first values above 2000 Wh m-2 d-1 of 𝐼𝐼𝑚𝑚 

appeared in the year. Conversely, the smallest peak and the lower biomass 

observed in CHR was during the following year, 2017, when daily turbidity varied 

more (8.3 – 12.9 FTU) and was reflected in pronounced peaks of 𝐼𝐼𝑚𝑚  (Figure 

3.15). 2018 was an unusual year in CHR, presenting the latest autumn blooms 

observed in Figure 3.13b. Although autumn blooms were identified previously in 

the estuary in 2015, the correction performed to Chl ‘a’ 2018 data may be the 

cause for such high concentrations later in the year, and the reason for such 

unusual negative correlations between Chl ‘a’ and both light parameters and 

temperature (see the previous section). Regarding riverine inflow, as in SOT, the 

high flow was not a clear driver of higher phytoplankton biomass in CHR; where 

the highest riverine annual flow, by almost double in magnitude, was observed in 

2014, but the blooms during that year were not particularly higher or more 

numerous (Fig. 3.15e). 

 



Chapter 3 – Temporal variation of phytoplankton bloom 

106 

 

Fig 3.14 Time series of environmental conditions at the Data Buoy in Southampton Water from 
2014 to 2020. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage 
saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly values with dots ● of different 
colours. In (a) and (b), temperature and salinity values generated by a model are shown as grey 
dots ●. In (d), the red dashed line ‒ ‒ represents 100% of saturation. In (e)  represent discrete 
chlorophyll samples taken independently and the daily river flow is indicated as a black line —. 
Environmental agency sampling points are shown as triangles ▲ in different colours in (a) to (f). 
7-day running mean of (g) surface irradiance I0 and (h) mean water column irradiance Im are 
presented as black lines —. (i) Wind speed is represented as daily mean in vertical bars █ and 
maximum daily values in black circles ●.
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Fig 3.15 Time series of environmental conditions at the Data Buoy in Christchurch Harbour 
Ferry Pontoon from 2014 to 2018. . (a) Temperature, (b) salinity, (c) DO in concentration and 
(d) DO in percentage saturation, (e) chlorophyll 'a' and (f) turbidity are presented as hourly 
values with dots ● of different colours. In (a) and (b), temperature and salinity values generated 
by a model are shown as grey dots ●. In (d), the red dashed line ‒ ‒ represents 100% of 
saturation. In (e)  represent discrete chlorophyll samples taken independently and the daily 
river flow is indicated as a black line —. Measurements taken with an independent probe are 
shown as triangles ▲ in different colours in (a) to (e). 7-day running mean of (g) surface 
irradiance I0 and (h) mean water column irradiance Im are presented as black lines —. (i) Wind 
speed is represented as daily mean in vertical bars █ and maximum daily values in black 
circles ●.
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Both estuaries showed the highest blooms coinciding with prolonged periods 

of low turbidity. High turbidity can limit phytoplankton growth by reducing light 

availability in the water column. In shallow estuaries, the leading cause of 

changes in turbidity is the tidal variation (e.g. Bucci et al., 2012), as can be 

observed in SOT where frequent  water level data was available. 

3.4.4 Tidal analysis for Southampton Water 

Water level data analysed for the Southampton Water estuary showed a 

positive correlation (ρ=0.52) between tidal range and turbidity, indicating that 

turbidity in the system generally increases with the presence of spring tides. In 

shallow estuaries, the principal cause for changes in turbidity is the vertical 

mixing driven by tidal currents (e.g. Bucci et al., 2012). 

Despite the absence of a statistical relationship between Chl ‘a’ concentration 

peaks, more specifically blooms, and tidal range in SOT (Table 3.1), individual 

blooms were observed to develop mainly during neap tides to then dissipate 

with the arrival of the following spring tide; this relation was well represented 

in 2020, the only year of the time series where tidal range and Chl ‘a’ showed 

a small but significant correlation (ρ=0.18); during this year, all five identified 

blooms occurred during weak neap tides (Fig. 3.6). Bucci et al. (2012) 

described a similar situation, where reported phytoplankton summer blooms in 

the São Vicente estuary (Brazil) usually occurred towards the end of neap 

tides, but no significant correlation to found. This lack of correlation to the tidal 

range, in addition to the strong correlations between phytoplankton peaks and 

𝐼𝐼𝑚𝑚 and temperature (as discussed in previous sections), indicate that blooms 

in SOT are not only regulated by turbulent mixing due to tides but a 
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combination of factors affecting the solar radiation attenuation throughout the 

water column (e.g. Cloern et al., 2014). 

According to a previous study on the phytoplankton dynamics in Southampton 

Water (Wright et al., 1997), the tidal range observed during spring tides in this 

study (~ 5m) is high enough to decrease water column stability, inhibit growth, 

and, perhaps, decrease retention time meaning a proportion of phytoplankton 

can be flushed from the estuary. In most shallow estuaries where the neap-

spring cycle is present, like in SOT, fortnightly patterns of reduced mixing 

during neap tides can be observed and it is during these periods that 

phytoplankton net biomass growth is enhanced (e.g. Carstensen et al., 2015). 

Such pattern has been extensively reported by Cloern (1996) in his 

widespread review of phytoplankton bloom dynamics in the San Francisco 

Bay, a system with a similar depth to SOT (~10m) and a 2m tidal range. 

3.5 Conclusions 

The collection of high-frequency water quality data combined with 

meteorological information allowed an accurate and thoroughly comparison of 

the relationship between physical environmental conditions with the 

occurrence of phytoplankton blooms in two different temperate estuaries. 

Phytoplankton distribution exhibited seasonal variability in both estuaries, with 

bloom initiation being primarily related to periods of ~7 days when a sudden 

increase in surface light availability (>800 Wh m-2 d-1) was observed. 

Temperatures above 11.8°C correlated with the appearance of blooms in 

Southampton Water, while rising water temperature (<10°C) overlapping with 
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values of solar radiation above 1245 Wh m-2 d-1, seemed to initiate blooms at 

the Christchurch Harbour estuary.  

Despite being different in size, shape, average depth, tidal regime, and 

discharge, both estuaries showed similarities regarding the timing of the spring 

bloom, developing between April and May. However, whereas Christchurch 

displayed the typical dynamics described for coastal temperate estuaries, 

presenting mainly spring and autumn blooms, Southampton presented a 

pattern with blooms in spring and summer. 

Higher concentration of phytoplankton biomass during blooms was associated 

with values of water column irradiance <188 Wh m-2 d-1 for SOT and <640 Wh 

m-2 d-1 for CHR), corresponding with lower turbidity (<8.4 FTU for SOT and 

<31.7 FTU for CHR,) and daily wind speed average below 4.7 m s-1. 

An additional analysis of the tidal cycle in the Southampton Water estuary 

identified that blooms typically developed during neap tides and dissipated 

during the following spring tide. This suggests that the tidal cycle creates 

stronger mixing conditions during spring tides leading to increased turbidity 

and creating lower mixing and possible stratification during neap tides that 

enhance phytoplankton biomass growth. 
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Chapter 4 

Variability of net community production, gross 

primary production, and ecosystem respiration in 

two contrasting estuaries

Abstract 

Measurements of primary production provide essential information about the 

trophic status of aquatic ecosystems. In this chapter, the open water diel oxygen 

method was applied to high-frequency water quality data collected from the 

Southampton Water (2014 – 2020) and Christchurch Harbour estuaries (2014 – 

2018) to estimate ecosystem respiration (ER), gross primary production (GPP), 

and net community production (NCP). Trends in the overall trophic state of the 

two estuaries were identified, with Southampton becoming more net 

heterotrophic over the 7-year time series (from -1.3 to -48.7 mmol O2 m-2 d-1), 

while Christchurch Harbour showed an increasing net autotrophic state -11.7 to 

19.8 mmol O2 m-2 d-1). A pattern was observed, where autotrophic conditions 

prevailed during summer and spring due to the dominant factors driving metabolic 

rates being related to seasonal changes in light availability, temperature, and 

riverine flow. Threshold values for the Southampton estuary and Christchurch 

Harbour of temperature (10.5 & 10.3 °C), surface water irradiance (1520 & 1240 

Wh m-2 d-1) and mean water column irradiance (415 & 950 Wh m-2 d-1) were 

related to the appearance of extreme autotrophic and heterotrophic conditions. 
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The relationship between ecosystem respiration and gross primary production 

allowed classification of both estuaries between oligotrophic and mesotrophic 

states, with Southampton particularly leaning to mesotrophic conditions. Variance 

in Chl ‘a’ concentration during phytoplankton blooms was explained by NCP rates 

in more than 75% for both estuaries. Regarding the methodology assumptions, 

an overestimation of ER was related to higher air-water transfer rates calculated 

through the model, due to high wind speeds. 

4.1 Introduction 

Almost half of global primary production occurs in the oceans (Cloern & Jassby, 

2008). Furthermore, estuaries are one of the most productive marine ecosystems 

(Golubkov et al., 2017), especially those receiving an important runoff of nutrients 

from the basin (Butron et al., 2009; Hopkinson & Smith, 2005).  

Phytoplankton account  for  most  of  ecosystem  primary  production in the 

majority of  coastal  ecosystems (Paerl & Justic, 2013), with phytoplankton 

primary production playing a central role in the ecological and biogeochemical 

dynamics of estuaries (Cloern et al., 2014). In coastal ecosystems spatio-

temporal variability of primary production and phytoplankton biomass are the 

result of the interaction of a number of factors such as irradiance (May et al., 

2003), temperature (Trombetta et al., 2019), nutrients (Davidson et al., 2012) and 

horizontal and vertical water movements (Silkin et al., 2019). 

Net community production, also known as net ecosystem metabolism (eg. Shen 

et al., 2015), is a community-level process that integrates all of the processes 

affecting the balance between production and consumption (Duarte & Regaudie-

De-Gioux, 2009; Garcia-Corral et al., 2021). It can be defined as the difference 

between gross primary production (GPP) and ecosystem respiration (R) (Lee et 
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al., 2022). When NCP>0, the ecosystem is net autotrophic, suggesting that the 

internal production of organic matter dominates. In contrast, if NCP<0, this 

indicates the system is net heterotrophic and depends on external sources of 

organic matter (Agusti et al., 2018; Herrmann et al., 2020; Loken et al., 2021). 

Estuaries are complex, open systems with the potential to be either autotrophic 

or heterotrophic systems (Hopkinson & Smith, 2005). 

In systems with relatively homogeneous water masses, clear signals of diel 

changes in water-column O2 and CO2 concentration are often detectable and 

associated with net community production (Testa et al., 2012). Thus, NCP can 

be accurately estimated from the calculation of the oxygen flux at the air-sea 

interface (e.g. Tilstone et al., 2009) employing the open water diel oxygen 

method, first proposed by Odum (1956) and later modified to apply it to estuarine 

systems (Caffrey, 2003, 2004; Emerson et al., 2008). 

Interaction between physical and biological processes within estuaries tends to 

vary over diurnal, semi-diurnal and sometimes episodic timescales (Cloern et al., 

2016, Nidzieko et al., 2014) making the open water diel oxygen method an 

advantageous resource to  measure the integrated metabolic activity of the entire 

ecosystem over a short time period since O2 sensors can be deployed for weeks 

or more, allowing long-term measurements (Testa et al., 2012). 

In this chapter, productivity rates (GPP, ER and NCP) were derived from high-

frequency measurements of surface water dissolved oxygen concentration, for 

Southampton Water and Christchurch Harbour, using the open water diel oxygen 

method. The influence of environmental factors on productivity rates and their 

implications on the aquatic trophic state were evaluated. 
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4.2 Southampton Water time series analysis of ecosystem 

respiration, gross primary production, and trophic state: 

net community production. 

Productivity rate calculations are derived from the dissolved oxygen, 

temperature, salinity, and wind speed time series data presented in Chapter 3 

section 1. Data from 2017 was not included in the following individual-year results 

since only measurements for the first 3 months of the year were available. 

Daily rates of net community production (NCP) can be either positive when gross 

primary production (GPP) exceeds ecosystem respiration (ER) indicating a net 

autotrophic state of the estuarine water column or negative reflecting a 

heterotrophic state of the system (Shen et al., 2019b). 

4.2.1 Year 2014 

For 2014, calculated ER rates presented a high variability throughout the year, 

ranging from 0.1 mmol O2 m-2 d-1 in September to 221.4 mmol O2 m-2 d-1 in May, 

as seen in figure 4.1a. A dynamic period was detected in May-June when the 

average estimate was 40.4 mmol O2 m-2 d-1, against 9.5 mmol O2 m-2 d-1 for the 

rest of the year. Excluding this active period of ER, October and November 

presented maximum values of ~ 64.0 mmol O2 m-2 d-1, followed  by 48.1 mmol O2 

m-2 d-1 in mid-August. September was the month with the lowest average value 

of ER (3.0 mmol O2 m-2 d-1), while the mean value in May of 60.0 mmol O2 m-2 d-

1 was the monthly highest of the year. 
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Fig 4.1 Time series for 2014 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

GPP also exhibited noticeably higher calculations during May-June than for the 

rest of the year, with a mean value of 43.0 mmol O2 m-2 d-1 during that period, 

and the year maximum of 151.5 mmol O2 m-2 d-1 in June (Fig. 4.1a). From August 

to December, an average of 7 mmol O2 m-2 d-1 was estimated, and a maximum 

daily value was observed in August (95.7 mmol O2 m-2 d-1). May presented the 

highest monthly mean of 47.3 mmol O2 m-2 d-1, followed closely by June with 40.2 

mmol O2 m-2 d-1. GPP was low in December (3.0 mmol O2 m-2 d-1), and monthly 

values remained consistently below 6.5 mmol O2 m-2 d-1 from September. 

Annual NCP daily average was -1.3 mmol O2 m-2 d-1, indicating a slightly 

heterotrophic state. During this year there was a noticeable increase in NCP 

during spring, with the highest autotrophic (137.4 mmol O2 m-2 d-1) and 
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heterotrophic (-113.6 mmol O2 m-2 d-1) conditions of the year occurring within this 

season, only 16 days apart (Fig. 4.1b). During spring NCP oscillated between the 

two trophic states, but with autotrophic conditions dominating in late spring (+1.8 

mmol O2 m-2 d-1); indicating a greater balanced between GPP and ER than during 

summer, which was more autotrophic (4.0 mmol O2 m-2 d-1) and autumn, that 

showed a general heterotrophic state (-6.6 mmol O2 m-2 d-1). During the summer, 

positive NCP values matched up with Chl ‘a’ concentration peaks, particularly 

during the middle of summer when from day 211 to 222 NCP averaged +22.4 

mmol O2 m-2 d-1, and then later from summer to autumn when NCP was +11.2 

mmol O2 m-2 d-1. 

4.2.2 Year 2015 

ER in 2015 presented an average of 20.0 mmol O2 m-2 d-1, with occasional  

isolated high daily values from May to October (Fig. 4.2a), when the yearly 

maximum of 167.5 mmol O2 m-2 d-1 was observed in August, followed closely by 

a peak in May of 160.3 mmol O2 m-2 d-1. However, it is important to highlight that 

only 4.9% of ER observations in 2015 exceeded 70 mmol O2 m-2 d-1, almost half 

of them identified in December. March was the month with the lower average ER 

estimate, of 9.0 mmol O2 m-2 d-1, while December showed a substantial increase 

in overall daily values, which was reflected in an average value of 55.6 mmol O2 

m-2 d-1. 

A yearly estimate of 12.0 mmol O2 m-2 d-1 was obtained for GPP in 2015. Values 

remained consistently below 73 mmol O2 m-2 d-1 throughout the year, except for 

one day in early-May that presented a value of 149.5 mmol O2 m-2 d-1, as reflected 

in figure 4.2a. Months showing an overall high GPP estimate were April (21.5 
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mmol O2 m-2 d-1) and June (22.4 mmol O2 m-2 d-1), meanwhile, the lowest monthly 

mean value of 5.1 mmol O2 m-2 d-1 was in March. 

 

Fig 4.2 Time series for 2015 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

Negative NCP rates dominated for much of the year with an annual average value 

of -8.2 mmol O2 m-2 d-1. Five daily values of high negative rates of NCP indicating 

heterotrophic conditions (<-90 mmol O2 m-2 d-1) were observed mainly in spring 

and summer, in addition to three days at the end of the year (Figure 4.2b). 

Additional negative NCP values were observed throughout the year without a 

clear pattern. One outstanding autotrophic daily value of +123.1 mmol O2 m-2 d-1 

was identified in the middle of spring just before the highest heterotrophic value 

was estimated (-157.3 mmol O2 m-2 d-1); unlike heterotrophic peaks, in the case 

of positive NCP of this magnitude, it was an isolated event. A prolonged period 
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of autotrophic conditions was observed for almost 25 days in the first half of the 

spring season, averaging 8.8 mmol O2 m-2 d-1. In addition, a second extended 

period of positive NCP daily values was calculated during the transition between 

spring and summer for ~30 days, averaging 15.3 mmol O2 m-2 d-1.  

4.2.3 Year 2016 

During 2016, ER showed a yearly average rate of 26.9 mmol O2 m-2 d-1, and a 

range of values from 0.1 mmol O2 m-2 d-1 in April to a maximum of 244.9 mmol 

O2 m-2 d-1 in May (Figure 4.3a). A period of low rates of ER was observed in 

March and April, when daily values remained below 52 mmol O2 m-2 d-1, with only 

one exceptional peak in March of 110.7 mmol O2 m-2 d-1. January presented the 

highest average rate of ER  (45.4 mmol O2 m-2 d-1), followed closely by May (41.2 

mmol O2 m-2 d-1) after which monthly values decreased until reaching 18.7 mmol 

O2 m-2 d-1 in December. 

GPP rates in 2016 displayed a distinct period of increased values in May (97.9 

mmol O2 m-2 d-1), with three daily values above 200.0 mmol O2 m-2 d-1, and in 

addition a maximum of 334 mmol O2 m-2 d-1, as seen in Figure 4.3a. In contrast, 

in March, most of April, and from October to December average values below 7 

mmol O2 m-2 d-1 were estimated. 

In 2016, over the whole year, the heterotrophic state dominated with an NCP 

average of -7.9 mmol O2 m-2 d-1. NCP values representing heterotrophic 

conditions and exceeding -100 mmol O2 m-2 d-1, were mainly observed during 

winter and some short periods in summer months (Fig. 4.3b). The main period of 

autotrophic conditions was identified during spring, when for 40 continuous days 

the NCP averaged 49.5 mmol O2 m-2 d-1 and the maximum of 179.2 mmol O2 m-
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2 d-1 was observed. The beginning of this extended period of positive NCP values 

coincided with increased Chl ‘a’ concentration. 

 

Fig 4.3 Time series for 2016 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

4.2.4 Year 2018 

During the first half of the 2018 (Figure 4.4a), ER estimated values remained 

below 90 mmol O2 m-2 d-1, with April having the lowest monthly average value of 

the year (8.1 mmol O2 m-2 d-1). At the end of July, peaks in ER started to occur, 

reaching the yearly daily maximum of 264.1 mmol O2 m-2 d-1 in August; however, 

the highest average monthly ER value was in December (53.2 mmol O2 m-2 d-1). 

The annual average ER was 30.6 mmol O2 m-2 d-1, with two marked periods of 

increased rates from March to July with values below 19 mmol O2 m-2 d-1, and the 

second from August to December when values exceeded 45 mmol O2 m-2 d-1. 
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Fig 4.4 Time series for 2018 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

GPP in 2018 presented highly variable daily estimated rates, with peaks of 

different magnitudes throughout the year, as can be seen in Figure 4.4. A yearly 

average of 18.4 mmol O2 m-2 d-1 was estimated, with a range from 0.1 mmol O2 

m-2 d-1, detected in June, to 143.7 mmol O2 m-2 d-1, in July. Only ~2% of daily 

observations were greater than 80 mmol O2 m-2 d-1 and these were registered in 

July and August, however, the highest monthly value of 29.0 mmol O2 m-2 d-1 was 

estimated for May,  followed closely by the 28.4 mmol O2 m-2 d-1 calculated for 

July. 

An NCP average of -12.3 mmol O2 m-2 d-1 was observed in 2018, indicative of an 

overall annual heterotrophic state. The highest negative NCP values (>90 mmol 

O2 m-2 d-1) were detected in the second half of summer and throughout autumn, 
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as shown in figure 4.4b. It was during these two seasons when ~75% of all 

negative NCP observations were calculated and reached a maximum of -192.8 

mmol O2 m-2 d-1. Both summer and autumn presented overall heterotrophic states 

with -12.2 and -30.5 mmol O2 m-2 d-1 respectively. Positive NCP values mainly 

occurred during spring and early summer when ~85% of autotrophic daily 

conditions were detected. Three extended periods (between 34 and 43 days) of 

almost uninterrupted positive NCP values were identified, averaging 7.0 and 14.5 

mmol O2 m-2 d-1 in spring, and 15.4 mmol O2 m-2 d-1 in early-summer.  

4.2.5 Year 2019 

Estimated daily values of ER for 2019 are presented in Figure 4.5a. Calculations 

for this year ranged from 0.1 (June) to 437.5 (August) mmol O2 m-2 d-1 with a 

yearly average of 37.6 mmol O2 m-2 d-1. ER rates did not show a particularly well 

defined seasonality with occasional periods of ~7 days of peaks in activity 

throughout the year, mainly from June to November. From August to October, 

monthly values were above 50 mmol O2 m-2 d-1. Conversely, March presented a 

particularly low monthly value of 2.9 mmol O2 m-2 d-1 (although only 12 days of 

estimates were available), with the next closest monthly average being for 

January of 21.8 mmol O2 m-2 d-1.  

GPP in 2019 presented an annual daily average of 36.8 mmol O2 m-2 d-1 and 

varied from 0.1 to 411.2 mmol O2 m-2 d-1 with both values occurring in the second 

half of June, only 11 days apart as seen, in Figure 4.5a. A period of increased 

productivity was noted from late April to mid-August, with the average productivity 

rate for this time being 58.6 mmol O2 m-2 d-1, compared to only 11.1 mmol O2 m-

2 d-1 for the rest of the year. In addition, daily values outside this period were 
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below 100.0 mmol O2 m-2 d-1, while ~20% of daily observations from April to May 

were above this rate. 

 

Fig 4.5 Time series for 2019 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

NCP calculated values for 2019 showed a year with a good balance between 

GPP and ER rates reflected in an annual average of -0.8 mmol O2 m-2 d-1. Positive 

NCP estimations exhibited a seasonal pattern with a highly productive period 

during spring and early summer (Fig. 4.5b), reflecting net autotrophic conditions 

with averages of 22.7 and 10.7 mmol O2 m-2 d-1 for each season. The maximum 

autotrophic daily value (+229.6 mmol O2 m-2 d-1) matched with  the maximum Chl 

‘a’ peak registered in spring, almost at the end of a 57-day period of continuous 

autotrophic conditions, that averaged +44.1 mmol O2 m-2 d-1. This peak was 

followed closely by a second observed at the beginning of summer (+197.1 mmol 
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O2 m-2 d-1), when another extended autotrophic period lasted for 29 days, 

averaging +72.2 mmol O2 m-2 d-1. Heterotrophic conditions were nearly absent 

during spring, presenting less than ~15% of total observations in this season. 

However, in summer some high negative rates of NCP were estimated (e.g. -

366.8 mmol O2 m-2 d-1) and in autumn (e.g. 309.8 mmol O2 m-2 d-1). The winter 

and autumn periods showed a heterotrophic state averaging -21.3 and -37.5 

mmol O2 m-2 d-1, respectively. 

4.2.6 Year 2020 

In 2020, ER estimated daily rates were the highest values of the whole time 

series, with an annual average of 90.4 mmol O2 m-2 d-1. A notable period between 

the end of June and the end of August presented the largest peaks (>425 mmol 

O2 m-2 d-1) and an average of 202.0 mmol O2 m-2 d-1, in contrast  to the 64.6 mmol 

O2 m-2 d-1 for the rest of the year (Fig. 4.6a). During July, the highest daily rates 

of ER were estimated, yielding the maximum monthly value of 224.5 mmol O2 m-

2 d-1. However, the maximum daily maximum (664.7 mmol O2 m-2 d-1) was 

observed in August. In March a low average, of 37.9 mmol O2 m-2 d-1 was 

estimated with most daily values below 100 mmol O2 m-2 d-1. 

GPP in 2020 showed a similar pattern to ER, with peaks occurring in a range of 

months, as shown in Figure 4.6a. The maximum values above 120 mmol O2 m-2 

d-1 were described from mid-April to August and this almost 5-month period 

averaged 72.3 mmol O2 m-2 d-1, while the rest of the year showed an average of 

18.1 mmol O2 m-2 d-1. The maximum daily value was observed in April (395.4 

mmol O2 m-2 d-1), followed closely by a 389.6 mmol O2 m-2 d-1 peak in May; even 

so, the month with highest average GPP overall was July (95.7 mmol O2 m-2 d-1). 



Chapter 4 – Variability of productivity rates 

124 

 

Fig 4.6 Time series for 2020 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Southampton 
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of 
graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive 
values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line 
—. 

A particularly strong heterotrophic state was calculated for 2020, as clearly seen 

in figure 4.6b, with an annual daily average of -48.7 mmol O2 m-2 d-1. For this 

year, all four seasons were classified as heterotrophic, with NCP rates ranging 

from -13.6 mmol O2 m-2 d-1 during spring, to -84.99 mmol O2 m-2 d-1 in summer. 

High heterotrophic daily values (>220 mmol O2 m-2 d-1) were observed 

throughout summer, season where the year maximum of NCP of -428.3 mmol 

O2 m-2 d-1 was observed. Positive NCP values only represented 12% of total 

daily observations in 2020, with almost two thirds of these during spring. The 

maximum positive daily NCP rate of 111.7 mmol O2 m-2 d-1 occurred at the same 

time as the maximum peak in Chl ‘a’. It is important to note that NCP calculations 

for this year, used temperature and salinity values estimated from daily averages 

from time series from 2014 to 2019 due to problems with sensor failures and it 
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being impossible to access the Data Buoy system due to national COVID-19 

restrictions, as explained in Chapter 2, section 2.2.1. 

4.3 Christchurch Harbour time series analysis of ecosystem 

respiration, gross primary production, and trophic state: 

net community production. 

Productivity rate calculations within Christchurch Harbour are derived from the 

dissolved oxygen, temperature, salinity, and wind speed time series data 

presented in Chapter 3 section 2.  

Daily rates of net community production (NCP) can be either positive when gross 

primary production (GPP) exceeds ecosystem respiration (ER) indicating a net 

autotrophic state of the estuarine water column or negative reflecting a 

heterotrophic state of the system (e.g. Shen et al., 2019b). 

4.3.1 Year 2014 

In 2014, ER rates averaged 28.5 mmol O2 m-2 d-1 and showed a minimum daily 

value of 0.1 mmol O2 m-2 d-1 in September, while the maximum (228.7 mmol O2 

m-2 d-1) was observed in the month of November. ER presented two periods of 

consistent daily values below 50.0 mmol O2 m-2 d-1, the first from May to mid-July, 

and the second during the whole of September (Fig 4.7a). However, during July 

and August, higher ER calculations were described with monthly averages ~30.0 

mmol O2 m-2 d-1, but daily values never exceeded 110.0 mmol O2 m-2 d-1, 

compared to the period from October to December when monthly means were 

above 39.0 mmol O2 m-2 d-1. 

An annual value of 29.0 mmol O2 m-2 d-1 was estimated for GPP in 2014. At the 

start of calculations, in May, daily values were ~5.8 mmol O2 m-2 d-1; then, in 
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early-June GPP started to gradually increase, despite the two gaps in data in 

June and July (Fig. 4.7a). By the middle of July, a 19-day period of high daily 

rates of GPP was observed, reaching the yearly maximum of 239.0 mmol O2 m-2 

d-1 and averaging 155.9 mmol O2 m-2 d-1. Immediately after this increased 

productivity period, GPP dropped to ~45.0 mmol O2 m-2 d-1 and remained low 

until showing a few peaks in October and November, but these were less than  

75.0 mmol O2 m-2 d-1. 

Overall, for the months when data was available in 2014, a slightly autotrophic 

state was determined, with an annual NCP of 0.6 mmol O2 m-2 d-1. Positive NCP 

rates (Fig. 4.7b) mostly occurred in summer months and averaged 35.9 mmol O2 

m-2 d-1 for the period with the highest positive daily NCP rate of the year of 182.9 

mmol O2 m-2 d-1. During summer, a period of particularly high rates of positive 

NCP  was evident (~49 days) and during this, more than 35% of the observations 

were above 60 mmol O2 m-2 d-1 with an average of 90.1 mmol O2 m-2 d-1 

calculated. From mid-summer to the end of the year, positive NCP values 

remained below 35.0 mmol O2 m-2 d-1. Although the two main Chl ‘a’ peaks 

identified in the year corresponded to autotrophic conditions, only the first was 

observed during increased NCP values (<100.0 mmol O2 m-2 d-1). Contrary, 

heterotrophic conditions mainly occurred during autumn. NCP during this season 

averaged -27.8 mmol O2 m-2 d-1 and peaks of more than -85.0 mmol O2 m-2 d-1 

were commonly observed, including the maximum registered of -161.4 mmol O2 

m-2 d-1. Greater values of phytoplankton biomass did not seem to shift conditions 

to autotrophic during autumn, as compared to the summer. 
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Fig 4.7 Time series for 2014 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Christchurch 
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for 
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), 
and positive values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as 
a green line —. 

4.3.2 Year 2015 

In 2015 there was a major gap in available data between May and September. 

ER showed a different distribution between the two periods of available data; 

between January and May and September and December, as seen in figure 4.8a. 

Although the annual average of ER was 27.0 mmol O2 m-2 d-1, the period from 

January to May presented a mean value of 35.4 mmol O2 m-2 d-1 with the daily 

maximum of 248.4 mmol O2 m-2 d-1 in January, followed by a peak at the end of 

March of 235.1 mmol O2 m-2 d-1. Noticeably, during this period of increased ER, 

estimations in April were observed mainly below 15.0 mmol O2 m-2 d-1. For the 

second part of the year (September to December), ER showed an average of 
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11.8 mmol O2 m-2 d-1 and two peaks of ~65.0 mmol O2 m-2 d-1 in October and 

November. 

 

Fig 4.8 Time series for 2015 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Christchurch 
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for 
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), 
and positive values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as 
a green line —. 

In 2015, values of GPP ranged from 0.2 mmol O2 m-2 d-1 in February to 82.5 mmol 

O2 m-2 d-1 in April; however, only 3.7% of observations exceeded 50.0 mmol O2 

m-2 d-1 and half of these were identified in April and November (Fig 4.8a). The 

period from January to May averaged 17.6 mmol O2 m-2 d-1 and included the 

month with the highest value, April with 32.1 mmol O2 m-2 d-1. In comparison the 

period from September to December included the lowest monthly value of 6.8 

mmol O2 m-2 d-1 (October) and averaged 10.5 mmol O2 m-2 d-1. 

An overall heterotrophic state was calculated for 2015 (-11.7 mmol O2 m-2 d-1). 

However, it is important to note the large gap in available data between day 139 
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and 245 (Fig. 4.8b), with the annual estimations affected by missing spring and 

summer data. NCP rates remained mostly negative during the first 100 days of 

the year, exhibiting values greater than -80.0 mmol O2 m-2 d-1 approximately 

every 20 days. During this period NCP averaged -29.5 mmol O2 m-2 d-1 and a 

maximum of -217.8 mmol O2 m-2 d-1 was observed. Daily heterotrophic 

estimations during summer and autumn stayed below -60 mmol O2 m-2 d-1. During 

spring, autotrophic conditions prevailed uninterrupted for 23 days, corresponding 

with higher concentrations of Chl ‘a’. A mean of 27.2 mmol O2 m-2 d-1 was 

calculated for this period, and the highest NCP value observed was 80.5 mmol 

O2 m-2 d-1. At the end of summer, a similar pattern was identified, with a 11-day 

lapse averaged 19.7 mmol O2 m-2 d-1 but only reached 44.2 mmol O2 m-2 d-1. 

Although Chl ‘a’ showed increased values in autumn, the autotrophic conditions 

were not as high as during the spring. Two great peaks (>12 µg L-1) of Chl ‘a’ 

were observed in autumn, but only during the first peak, the trophic state shifted 

from heterotrophic to autotrophic. 

4.3.3 Year 2016 

In 2016, ER daily values during the year remained below 90 mmol O2 m-2 d-1, 

apart from only two days at the end of November (Fig. 4.9a) when peaks reached 

183.36 and 158.13 mmol O2 m-2 d-1. The year average was 11.1 mmol O2 m-2 d-

1, but months of May and November presented mean values of 21.7 and 24.7 

mmol O2 m-2 d-1, respectively. Throughout the year, ER calculations showed a 

bimonthly pattern where values start increasing until reaching a peak to then 

reduce in magnitude abruptly, particularly noticeable up to August. From 

September to mid-November, an extended period of low daily ER rates was 

observed, with values below 25 mmol O2 m-2 d-1. 
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Fig 4.9 Time series for 2016 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Christchurch 
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for 
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), 
and positive values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as 
a green line —. 

GPP in 2016 presented a mean annual value of 28.4 mmol O2 m-2 d-1, however, 

most of the productivity was concentrated between April and August (Fig. 4.9a). 

Estimations of GPP rates averaged ~12.0 mmol O2 m-2 d-1 in February and March 

then increased in mid-April lasting for about 45 days and averaging 71.8 mmol 

O2 m-2 d-1 with the year maximum of 261.5 mmol O2 m-2 d-1 in late May. Two other 

periods when GPP calculations increased and peaked beyond 130.0 mmol O2 m-

2 d-1 were present in July and August, both lasting ~18 days and averaging 53.2 

and 61.5 mmol O2 m-2 d-1, respectively. For the remaining months, daily GPP 

remained below 40.0 mmol O2 m-2 d-1, except for one day in September. 

2016 displayed a general net autotrophic state and an NCP average of 17.3 mmol 

O2 m-2 d-1. Around 75% of NCP estimations corresponding to autotrophic 
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conditions were identified during spring and summer (Fig. 4.9b). The spring 

season averaged 29.1 mmol O2 m-2 d-1 of NCP and presented a daily maximum 

of 189.3 mmol O2 m-2 d-1, while summer showed a mean value of 26.4 mmol O2 

m-2 d-1 and a daily observation of 148.3 mmol O2 m-2 d-1 as the maximum.

Phytoplankton biomass displayed high concentrations at the end of the spring 

season (>20 µg L-1), overlapping with the most autotrophic conditions overserved 

through the year. Autotrophic conditions during winter did not exceed 45.0 mmol 

O2 m-2 d-1 and autumn displayed even lower values, with calculations remaining 

below 25.0 mmol O2 m-2 d-1. Negative NCP values accounted for less than the 

25% of the yearly calculations and were mainly identified during autumn, the only 

season to show an overall heterotrophic state (-4.6 mmol O2 m-2 d-1) in 2016. The 

last few estimates in autumn were characterised by high negative NCP values 

(>30.0 mmol O2 m-2 d-1), however, this weeklong heterotrophic period was only 

disturbed for one day when NCP displayed 14.1 mmol O2 m-2 d-1, corresponding 

to a minor rise in Chl ‘a’ concentration. 

4.3.4 Year 2017 

ER displayed an annual average of 11.7 mmol O2 m-2 d-1 in 2017, with the 

maximum daily value (99.9 mmol O2 m-2 d-1) identified at the beginning of 

February (Fig. 4.10a) when 3 continuous days exceeded 85.1 mmol O2 m-2 d-1. 

Throughout the rest of the year the next maximum peak was observed in June 

(89.4 mmol O2 m-2 d-1). It is notable that less than 3% of ER daily rate calculations 

for 2017 surpassed 50 mmol O2 m-2 d-1. June displayed the greatest monthly 

average ER rate of 15.5 mmol O2 m-2 d-1, followed closely by September with 

14.1 mmol O2 m-2 d-1. 
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The average annual GPP rate in 2017 was 29.5 mmol O2 m-2 d-1, but distribution 

across the year was not even, as observed in figure 4.10a. Between April and 

August most estimations were >60 mmol O2 m-2 d-1 and the year maximum of 

220.7 mmol O2 m-2 d-1 was detected in May, with an average of 50.5 mmol O2 m-

2 d-1, for said period. In March, September and October a rapid decline in values 

was evident averaging 14.3 mmol O2 m-2 d-1. Lastly, months at the beginning and 

end of the year (January, November and December), presented the lowest GPP 

values of 3.6 mmol O2 m-2 d-1. 

 

Fig 4.10 Time series for 2017 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Christchurch 
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for 
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), 
and positive values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as 
a green line —. 

An overall net autotrophic state was calculated for 2017, showing an average 

NCP of 18.1 mmol O2 m-2 d-1. During this year, more than 73% of the total NCP 

estimations corresponded to autotrophic conditions and were present during 
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spring and summer seasons, as clearly seen in figure 4.10b. Spring displayed the 

highest daily NCP value of the year (158.1 mmol O2 m-2 d-1) and an average of 

34.8 mmol O2 m-2 d-1, although the summer season also exhibited an autotrophic 

state, it was not as marked as the one for spring since the maximum value 

observed was 88.5 mmol O2 m-2 d-1 and presented a mean of 29.6 mmol O2 m-2 

d-1. Autumn and winter showed weak daily autotrophic conditions, given that 

values remained constantly below 25.0 mmol O2 m-2 d-1. It was during these two 

seasons that heterotrophic conditions prevailed, with winter averaging -5.1 mmol 

O2 m-2 d-1 and autumn -1.9 mmol O2 m-2 d-1. However, peaks in negative NCP 

were greater at the begging of the year, reaching -83.7 mmol O2 m-2 d-1. 

4.3.5 Year 2018 

For 2018, ER annual daily average rate was 12.0 mmol O2 m-2 d-1. Across the 

year, daily values mostly remained less than 40.0 mmol O2 m-2 d-1, with only 6.2% 

of calculations exceeding this threshold, half of them in April and May, even 

though the highest value of ER in the year (86.5 mmol O2 m-2 d-1) was observed 

in July (Fig. 4.11a). Despite April and May displaying peaks of ER, their monthly 

averages (15.9 and 17.5 mmol O2 m-2 d-1) were not as high as the one calculated 

for December, 22.7 mmol O2 m-2 d-1. June to July was the longest uninterrupted 

period showing values below 30 mmol O2 m-2 d-1.  

The GPP observed in 2018 was mainly concentrated between May and July (Fig 

4.11a), months when two major periods of increased GPP were identified. Lasting 

almost the entire month of May (22 days), a productivity lapse averaging 71.2 

mmol O2 m-2 d-1 and reaching values above 140 mmol O2 m-2 d-1, on two 

occasions, was detected. A similar period appeared three weeks later, when for 

27 days (between June and July), enhanced GPP daily values reached a 
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maximum of 169.8 mmol O2 m-2 d-1 and displayed an average of 80.6 mmol O2 

m-2 d-1. April, August and September seemed to act as transition periods given 

that increasing values were observed towards the major production months; 

monthly averages of them ranged from 21.8 to 28.8 mmol O2 m-2 d-1. From 

October to December GPP did not exceed 25 mmol O2 m-2 d-1 and this three-

month period showed an average value of 6.5 mmol O2 m-2 d-1. 

 

Fig 4.11 Time series for 2018 of (a) calculated daily respiration ER (red bars █) and gross primary 
production GPP (green bars █) and (b) calculated net community production in Christchurch 
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for 
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), 
and positive values indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as 
a green line —. 

In 2018, an autotrophic state dominated the year, represented with an average 

NCP value of 19.8 mmol O2 m-2 d-1. Nearly 80% of total positive NCP daily values 

were visible between spring and summer, as shown in figure 4.11b. Both seasons 

reflected autotrophic states, with 24.3 and 36.1 mmol O2 m-2 d-1 averages, 

respectively, and a maximum of 132.5 mmol O2 m-2 d-1 during spring and the 
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years highest daily NCP value (159.3 mmol O2 m-2 d-1) in summer. However, the 

period of the year when values of NCP above 70.0 mmol O2 m-2 d-1 occurred, was 

between day 142 and 209, taking place during the transition period between 

spring and summer seasons. This period averaged 52.9 mmol O2 m-2 d-1 and did 

not present any change to heterotrophic conditions. In addition, for the first 30 

days it corresponded to the highest and prolonged increase in phytoplankton 

biomass observed in the year. Heterotrophic conditions were mainly identified in 

autumn, that averaged -2.5 mmol O2 m-2 d-1 but only presented values below -

45.0 mmol O2 m-2 d-1. Unlike spring, that surpassed -50 mmol O2 m-2 d-1 on two 

occasions and summer that showed a particular highly negative NCP value of -

77.0 mmol O2 m-2 d-1 right after the long-positive NCP period mentioned 

previously. At the end of summer and during autumn, increasing values of Chl ‘a’ 

seemed to help shift heterotrophic to autotrophic conditions. 

4.4 Drivers of productivity rates 

4.4.1 Environmental factors regulating productivity rates 

There are many physical, chemical, and biological processes that regulate the 

balance between production and consumption of organic matter in estuarine 

ecosystems (Kemp & Testa, 2011). To assess the influence of different 

environmental factors on productivity rates, Spearman’s correlation coefficient 

was calculated (Table 4.1) for the Southampton Water estuary (SOT) and 

Christchurch Harbour Ferry Pontoon (CHR). 

Analysing the whole time series for SOT and CHR, both, NCP and GPP 

correlated with parameters denoting light availability, 𝐼𝐼0  and 𝐼𝐼𝑚𝑚 , especially in 

CHR (ρ>0.66). This is no surprise given that light availability is considered the 
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critical driver for photosynthesis, hence, photosynthetic rates generally follow 

daily and seasonal variations in solar intensity (e.g. Kemp & Testa, 2011). 

However, ER showed very weak negative correlations with light parameters (ρ<-

0.16) agreeing with the open water diel oxygen method assumption that 

respiration rates are constant during day and night (e.g. Caffrey et al., 2014). 

Temperature in CHR showed a strong correlation with NCP (ρ=0.50) and a more 

moderate correlation with GPP (ρ=0.47), while SOT only presented a weak 

relationship between GPP and temperature (ρ=0.29). In temperate estuaries, 

GPP generally shows a strong correlation with temperature by following closely 

seasonal variations, while NCP can strongly be affected by seasonal and 

interannual fluctuations that are sometimes difficult to detect (Kemp & Testa, 

2011). 

Chl ‘a’ has become the most widely used indicator of phytoplankton biomass even 

though its relation to phytoplankton carbon changes significantly with light 

intensity, nutrient availability, and species composition (e.g. Hopkinson & Smith, 

2005). When analysing chlorophyll concentration in relation to productivity rates 

in the estuarine systems studied here, positive correlations were observed for 

both estuaries, SOT (ρ>0.30) and CHR (ρ>0.27), with NCP and GPP; meaning 

that higher phytoplankton biomass was related to autotrophic conditions, 

particularly between NCP and Chl ‘a’ in SOT (ρ=0.45). 

Wind speed strongly correlates with ER in SOT (ρ=0.54) and CHR (ρ=0.51), and 

moderately correlates with GPP (ρ>0.23). The negative correlations observed 

between NCP and wind speed, are a clear indication of the influence of winds in 

ER driving the trophic state into net heterotrophic. It has been reported that 
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increased wind periods could drive sediment resuspension events and induce 

apparent negative NCP (Hull et al., 2016; Staehr et al., 2012). 

Oxygen saturation (O2%) negatively correlated with ER in SOT (ρ=-0.41) and 

CHR (ρ=-0.30), while positively related to NCP in both estuaries (ρ>0.58) and 

only to GPP in CHR (ρ=0.62). This relationship between O2% and conditions 

more representative of net autotrophy, point towards the estuarine systems 

releasing DO to the atmosphere (e.g. Haskell et al., 2019); a trend more clearly 

observed in CHR than in SOT. Although DO variations in the water column of 

coastal systems depend mainly on the balance between respiration and 

photosynthesis (e.g. Alonso-Pérez et al., 2015), it has been reported that 

atmospheric exchange of DO could represent about 10% of the estimation of DO 

production and consumption, thought to be by biological processes (e.g. Cravo 

et al., 2020). 

In CHR, NCP and GPP declined (ρ=-0.49 and ρ=-0.30) as water clarity decayed, 

while ER appeared to increase with turbidity (ρ=0.28). This correlation was only 

apparent in CHR since being a much shallower system turbidity effects are 

greater. It is known that water clarity is a critical factor influencing light availability 

for photosynthesis (e.g. May et al., 2003) , moreover, in many shallow estuaries 

there is a strong correlation between turbidity and suspended sediment 

concentrations. 

River inflow rates, similar to turbidity, was significantly correlated with NCP (ρ=-

0.22) and ER (ρ=0.23) in CHR, implicating that freshwater inflow, in this estuary, 

seemed to not only determine light availability in the water column but also 

enhanced respiration due to possible organic inputs (Azevedo et al., 2006). 
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Table 4.1. Spearman’s correlation matrix relating environmental conditions and productivity rates in Southampton Water 
and Christchurch Harbour Ferry Pontoon. 

Location Productivity 
rates 𝐼𝐼0 𝐼𝐼𝑚𝑚 

Tidal 
Range 

Wind 
Speed Temp Sal O2% Chl 'a’ Turb River 

flow 

Southampton 

Water 

n=1668 

NCP 0.39 0.37 0.00 -0.27 0.12 0.00 0.58 0.45 -0.16 0.00 

GPP 
0.39 0.25 0.01 0.35 0.29 0.09 0.08 0.30 0.00 -0.09 

ER -0.10 -0.16 0.00 0.54 0.04 0.04 -0.41 -0.18 0.13 -0.03 

Christchurch 

Pontoon 

n=1241 

NCP 0.70 0.73 --- -0.17 0.50 0.08 0.81 0.27 -0.49 -0.22 

GPP 
0.67 0.66 --- 0.23 0.47 -0.04 0.62 0.33 -0.30 -0.07 

ER -0.11 -0.16 --- 0.51 -0.13 -0.20 -0.30 0.03 0.28 0.23 

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, ρ > 0.50.  
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4.4.2 Site-specific variables regulating season effects on NCP, GPP 

and ER 

Seasonal patterns in primary production variability can be identified with 

multivariate techniques such as principal component analysis (PCA) (Cloern, 

1996). By considering daily rates throughout the complete time series, for both 

estuaries, PCA analysis was performed to assess the relationship between the 

seasonal distribution of productivity rates and environmental conditions as well 

as the relative contributions of GPP and ER to NCP. Figure 4.12 shows a 

representation of the first two principal components (PCs), accounting for ~46% 

of the total variance in SOT and ~59% in CHR. Day rates have been labelled 

based on season and trophic state. 

For SOT, PC1 explained 26.5% of the total variability in the dataset and PC2 

explained 19.5%. The main factors contributing to PC1 positive eigenvalues 

(R2>0.40) were 𝐼𝐼0, temperature and 𝐼𝐼𝑚𝑚, and to a lesser extent (R2>0.20) Chl ‘a’, 

salinity and NCP. PC1 negative values (R2>-0.22) were attributed to riverine 

inflow and turbidity. The factor loading scores in biplots (Fig. 4.12a) show a 

seasonal difference among daily rates following the gradient of PC1, with positive 

values attributed to spring and summer and negative to autumn and winter. This 

could denote an association with physical parameters dependent on seasonality, 

favouring the appearance of higher phytoplankton biomass and primary 

production due to warmer waters and extended hours of light availability. A similar 

analysis in the Western English Channel (Barnes et al., 2015) revealed an 

identical clustering of seasons and related it to stratification and primary 

production governed by temperature control on enzymatic processes and 

phytoplankton succession. Variables describing positive values for PC2 were ER 
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and temperature (R2>0.30), followed by salinity and wind speed (R2>0.20). NCP, 

O2 %, dissolved oxygen concentration ([O2]), and river inflow contributed to 

negative eigenvalues (R2>-0.30) of PC2. Heterotrophic conditions were mainly 

associated with positive values of PC2, while negative loadings related to an 

autotrophic state (Fig. 4.12a). This indicates that ER correlates to irregular 

events, like high wind periods, and drives NCP into a net heterotrophic state, 

while increases in O2 saturation and concentration reflect a closer relation to 

autotrophic conditions and, seemingly, to riverine inflow. This correlation between 

ER and high wind speeds was demonstrated in the Spearman’s correlation 

coefficient (Table 4.1). Moreover, it has been demonstrated that in large 

estuaries, such as Chesapeake Bay (Winder & Cloern, 2010), high river flow can 

deliver nutrients and freshwater to establish salinity stratification and enhance 

phytoplankton blooms.   

PCA analysis for CHR revealed that PC1 explained 38.6% of the total variance, 

while PC2 explained 20.2%. Factors contributing positively to PC1 (R2>0.30) 

were 𝐼𝐼𝑚𝑚, 𝐼𝐼0, NCP, O2%, temperature and GPP (Fig. 4.12b). In comparison, river 

flow and turbidity correlated with negative eigenvalues of PC1 (R2>-0.20). In the 

same way as the pattern observed for SOT, CHR component loadings of PC1 

associated positive eigenvalues to daily rates in spring and summer and negative 

values to observations in autumn and winter. In addition, heterotrophic conditions 

seemed to only correlate with negative values.
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Fig. 4.12 Principal Component Analysis (PCA) for (a) Southampton Water and (b) 
Christchurch Harbour Ferry Pontoon. Seasons have been used as factors to illustrate the 
clusters: winter (blue diamonds ♦), autumn (orange circles ●), summer (green squares ■) and 
spring (yellow triangles ▲). Filled symbols designate autotrophic conditions while open 
symbols indicate heterotrophic conditions. Arrows → represent the variable and the direction 
of an arrow indicates its relation with the Principal Component (PC) and other variables. 
Tem=temperature, Sal=salinity, Chl=chlorophyll ‘a’, I0=surface water irradiance, Im=mean 
water column irradiance, O2%=DO in percentage saturation, [O2]=DO concentration, 
Wind=wind speed, Tur=turbidity, Tide=tidal range, River=river inflow, GPP=gross primary 
production, ER=ecosystem respiration and NCP=net community production.  
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Fig. 4.13 Net Community Production (NCP) compared with temperature (a, d), daily surface 
irradiance I0 (b, e) and water column irradiance Im (c, f), in Southampton Water (a, b, c) and 
Christchurch Harbour Ferry Pontoon (d, e, f). Red dashed lines – – indicate threshold values. 
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PCAs results in this study display a strong seasonal classification, however, 

previous research on the factors controlling primary production in the Duoro 

estuary, Portugal (Azevedo et al., 2006), described a distinct arrangement of 

winter and summer samples in opposite extremes of PCs but a spring and fall 

spreading across the middle of the factor loading biplot. PC1 for CHR indicates 

that light availability and temperature increase relate to higher GPP, and in 

turn the great influence of GPP on NCP in this estuary. This suggests that 

seasonal fluctuations in phytoplankton biomass positively correlate with annual 

cycles of temperature and solar radiation, a characteristic pattern usually 

observed in coastal ecosystems (e.g. Leterme et al., 2014). Positive values of 

PC2 were mainly described (R2>0.40) by [O2] and riverine inflow, followed by 

GPP and O2% (R2>0.22). Conversely, salinity (R2=-0.49) and temperature 

(R2=-0.26) contributed to negative eigenvalues (Fig. 4.12b). The seasonal 

distribution of primary production in CHR appears to be a response to seasonal 

fluctuations in the riverine inflow into the estuary and its influence on primary 

production, as previously described by (Cloern, 1996) for San Francisco Bay, 

USA. However, the relationship between phytoplankton primary production 

and river discharge is complex and ecosystem specific (Cloern et al., 2014). 

This intricate relation was highlighted in the comparison of two neighbouring, 

shallow, microtidal estuaries in North Carolina, USA (Peierls et al., 2012), 

where negative and positive responses between estuarine phytoplankton 

biomass and river discharge were found in both estuaries, similarly to results 

from the PCA in CHR. 

The main factors limiting water column primary production in shallow coastal 

systems located in temperate latitudes are light availability (e.g. Brito & 
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Newton, 2013) and temperature (e.g. Trombetta et al., 2019), which are highly 

seasonal parameters. A comparison between productivity rates against 

temperature and light availability (Fig. 4.13) showed that, for SOT, a surface 

water temperature threshold of 10.5 °C, 𝐼𝐼0 values above 1520 Wh m-2 d-1 and 

𝐼𝐼𝑚𝑚 greater than 415 Wh m-2 d-1, corresponded to the maximum NCP calculated 

rates, meaning positive values above 100 mmol O2 m-2 d-1 and negative NCP 

beyond -200 mmol O2 m-2 d-1. In CHR, this same comparison revealed that 

NCP exceeding positive and negative values above 50 mmol O2 m-2 d-1, were 

consistent with the appearance of water temperatures above 10.3 °C, values 

above 1240 Wh m-2 d-1 for 𝐼𝐼0 and 𝐼𝐼𝑚𝑚 higher than 950 Wh m-2 d-1, as seen in 

Fig. 4.13.  

In both studied estuaries, it was difficult to separate the effects of light and 

temperature on primary production. The same covariance between these two 

parameters was identified in the 3-year study of phytoplankton biomass 

variability of two shallow (<5m), microtidal estuaries in North Carolina (USA) 

(Peierls et al., 2012). Identifying these borderline values of temperature is an 

important precedent since both community production and respiration will 

increase in a possible scenario of sea temperature rise (López-Urrutia et al., 

2011). While solar radiation is an important factor enhancing photosynthesis, 

in coastal waters the light available for primary production depends on water 

column light attenuation (e.g. Caffrey et al., 2014). This was particularly 

recognised for CHR since it required a higher value of 𝐼𝐼𝑚𝑚 than SOT but a lower 

𝐼𝐼0 , an indication of its shallower water column being affected by turbidity 

increases due to suspended sediment associated to river flow (e.g. Hall et al., 

2015). Reduction  in  estuarine  primary  production  has  been linked  to the  
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increase  in  water  turbidity  promoted by dredging and differential sediment 

transport (Bucci et al., 2012). 

4.4.3 Relation between ecosystem respiration and gross primary 

production: implications on aquatic trophic state 

The concept of ‘trophic’ or ‘metabolic’ state of an aquatic system is based on 

the metabolic theory of ecology (López-Urrutia et al., 2011), and it is defined 

as the ratio between GPP and ER, with a system being net autotrophic if it 

produces more organic matter than it consumes it (GPP:ER > 1), and net 

heterotrophic if organic matter consumption exceeds production (GPP:ER < 1) 

(Caffrey, 2003; McKinnon et al., 2017). 

Examination of the relationship between GPP and ER using Ordinary Least 

Squares (OLS) allows the estimation of the threshold values of GPP necessary 

to achieve metabolic balance (GPP:ER = 1) (Duarte & Regaudie-De-Gioux, 

2009). The metabolic balance in SOT and CHR is described in Figure 4.14 

where the solid line is the 1:1 relationship, the dashed line is the regression of 

the log-transformed ER and GPP data, and where the lines intercept indicates 

the threshold for metabolic balance (GPP:ER) for each system. 
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Fig. 4.14 Relationship between daily ecosystem respiration (ER) and daily gross primary 
production (GPP) for (a) Southampton Water estuary and (b) Christchurch Harbour Ferry 
Pontoon. Both rates are expressed in mmol O2 m-2 d-1. Grey circles ● show data for days 
classified as No Blooms and blue squares ■ show data for days classified as Blooms (see 
Chapter 3). The red dashed line --- represents the ordinary least-squares regression of the 
log-transformed data: (a) 𝐸𝐸𝐸𝐸 = 5.74𝑥𝑥0.44, 𝑟𝑟2 = 0.22, 𝑛𝑛 = 1720, and (b) 𝐸𝐸𝐸𝐸 = 5.74𝑥𝑥0.44, 𝑟𝑟2 =
0.06, 𝑛𝑛 = 1249. The black continuous line — represents 1:1. 
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For SOT, a GPP threshold of 22.4 mmol O2 m-2 d-1 was calculated (Fig. 4.14a) 

while for CHR, a value of 4.9 mmol O2 m-2 d-1 was estimated (Fig. 4.14b). This 

results implicate that the production needed to drive SOT towards net autotrophic 

metabolism is higher than in CHR (Kemp & Testa, 2011). There is a considerable 

variation in the GPP threshold among marine ecosystems, with the open ocean 

considerably lower than coastal water as described by Duarte & Agustí (1998) in 

their cross-comparative survey of metabolism in coastal and adjacent waters. In 

this work, a GPP threshold of 12.96 mmol O2 m-2 d-1 was about a factor of 10 or 

higher in these environments compared to open-ocean waters. A comparable 

value was reported as the primary production required to drive estuaries into a 

net autotrophic state (12.8 mmol O2 m-2 d-1) by Duarte & Prairie (2005). Both of 

these limits are lower than the one reported for SOT but higher than what was 

calculated for CHR. Moreover, in a study of the coastal waters adjacent to 

Northern Australia (McKinnon et al., 2017) the mean threshold of GPP was 45 

mmol O2 m-2 d-1. Much elevated values than the ones calculated in the present 

study have been reported for the whole European coast (Duarte & Regaudie-De-

Gioux, 2009), with 212.5 mmol O2 m-2 d-1 originated from experiments and 288.0 

mmol O2 m-2 d-1 derived from a cross-comparative synthesis of different studies. 

An even more significantly higher threshold was reported by Hopkinson & Smith 

(2005) for whole-system metabolism of estuaries (500 mmol O2 m-2 d-1). The 

discrepancy between some of the highest thresholds reported for estuarine and 

coastal systems, and values found for CHR and SOT, can be related to the 

amount and importance of allochthonous organic matter inputs received by the 

estuaries (e.g. Serret et al., 2002). For SOT and CHR, riverine inflow seems to 

not be as strongly correlated with productivity rates as some of the estuarine 

systems included in the studies mentioned above (Table 4.1). 
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An additional tool to describe the balance between the flow of organic matter 

required to maintain community metabolic balance and that available for growth 

or export away from the ecosystem (NCP) is the GPP/ER ratio (Caffrey, 2003). 

The daily GPP/ER ratio for SOT was 0.63 while the value for CHR was 1.52, 

indicating a state of heterotrophy for SOT and net autotrophy for CHR. A GPP/ER 

ratio of 1.91 was described for Matilda Bay (Australia), a temperate estuary 

located in Western Australia (Agusti et al., 2018). This ratio classifies the estuary 

as autotrophic, and like in CHR, the system is influenced by riverine input but also 

experiences significant inflow of oceanic waters. The GPP/ER ratio varies greatly 

among ecosystems; examples of this fluctuation can be observed in the analysis 

presented by Duarte & Agustí (1998) for global coastal waters (0.03 – 34.3), as 

well as the range described for coastal and shelf waters adjacent to Northern 

Australia (McKinnon et al., 2017) where the ratio ranged from 0.84 to 5.21. 

Differences in GPP/ER ratios can be attributed to light and nutrient availability 

and changes in phytoplankton community structure and cell size (e.g. McKinnon 

et al., 2017). 

In both systems, it was observed a prevalence of ER>GPP at lower rates, and 

similarly, a tendency for GPP>ER at higher metabolic rates. This same pattern 

has been recognised before for coastal waters, by Duarte & Prairie (2005) in their 

study of metabolism in different aquatic systems, implying that ER takes longer 

than GPP to decline, within less productive ecosystems. This observation that 

less productive aquatic ecosystems tend to be more heterotrophic at lower 

productivity rates, implies that these systems rely on allochthonous inputs of 

organic matter (Azevedo et al., 2006; Duarte & Agustí, 1998) and that metabolic 

balance of plankton communities in coastal areas is mainly regulated by factors 
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controlling autotrophic processes, such as nutrient inputs and temperature (e.g. 

Agusti et al., 2018). 

Changes along the GPP:ER diagonal represent variations in ecosystem vitality, 

thus, systems can be classified by their metabolic state ranging from oligotrophic 

at low rates to eutrophic at high rates, with mesotrophic conditions being 

intermediate (Kemp & Testa, 2011). Using this approach both estuaries seemed 

to be situated between oligotrophic and mesotrophic states, with SOT particularly 

leaning to mesotrophic conditions. 

In order to apply the more traditional trophic classification based on the yearly 

organic Carbon supply of an ecosystem (Nixon, 1995), NCP calculated in O2 

needed to be converted to organic carbon equivalents. This can be accomplished 

by using a productivity 𝑃𝑃𝑃𝑃  and a respiratory quotients 𝑅𝑅𝑅𝑅 ; whereas the 𝑃𝑃𝑃𝑃 

corresponds to the ratio of gross photosynthetic O2 production 𝐺𝐺𝐺𝐺𝐺𝐺  to 𝐷𝐷𝐷𝐷𝐷𝐷 

fixation, and the 𝑅𝑅𝑅𝑅 reflects the ratio among O2 consumed during respiration 𝐸𝐸𝐸𝐸 

and 𝐷𝐷𝐷𝐷𝐷𝐷 (Jeffrey et al., 2018; Taddei, Cuet, Frouin, Esbelin, & Clavier, 2008). 

Often is assumed constant values for 𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅, commonly ranging from 0.6 to 

1.5 (Robinson, 2019). For the present study, the 𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅 were assumed equal 

to 1 following the proposal for the European coastal zone proposed by Gazeau 

et al., (2004). Using the coastal marine eutrophication classification proposed by 

Nixon (1995), both estuaries were classified as mesotrophic (100-300 g C m-2 y-

1), with CHR positioned slightly higher (~131 g C m-2 y-1) than SOT (~128 g C m-

2 y-1) on the scale. 

The simplest model used to estimate primary production describes it as a linear 

function of phytoplankton biomass, and is generally measured through values of 

the concentration of Chl ‘a’ (e.g. Cloern et al., 2014). In Figure 4.14, daily rates 
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classified as within Blooms in Chapter 3 were highlighted to assess the viability 

of Chl ‘a’ as a predictor or primary production and trophic state, in the two 

estuaries studied. The analysis was carried out under the premise that rates 

classified as blooms would be below the metabolic balance line (GPP:ER = 1). 

SOT presented 78.8% of total NCP observations explained by phytoplankton 

biomass (Fig. 4.14a). In SOT, almost two thirds (64.3%) of the daily rates 

classified as Blooms and identified as heterotrophic, were estimated for 2020. 

Another implication of the NCP model not responding well to calculations based 

on estimated salinity and temperature values assumed due to the 4.5-month gap 

after temperature and conductivity sensors stopped logging data and were not 

accessible because of COVID-19 social distancing restrictions. In CHR, 75.1% of 

Bloom daily rates were related to positive values of NCP (Fig. 4.14b). Nearly half 

of these estimations (47.8%) were documented in 2015, a year where data for 

most of spring and summer is missing. Seasons that, according to the whole time 

series, are the most productive in the estuary.  

Phytoplankton biomass in estuarine ecosystems is highly variable and can 

fluctuate up to 500-fold across these systems, as demonstrated in the compilation 

by Cloern & Jassby (2008) of Chl ‘a’ measurements from more than 100 coastal 

ecosystems representing the global diversity of marine habitats. Moreover, 

coastal chlorophyll integrated primary production can differ by a factor of 3 to 4 

against direct measurements of production (e.g. Chavez et al., 2011) since 

interannual variability in biomass corresponds to even larger variability in primary 

production (e.g. May et al., 2003). Nevertheless, results of NCP rates explained 

by daily variation of phytoplankton biomass in SOT and CHR are better than the 

prediction of variance in Chl ‘a’ from a pH/O2 model in Narragansett Bay 
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(Oczkowski et al., 2016) where only 27–60% could be explained. A closer 

explanation of the daily variability of phytoplankton productivity from fluctuations 

of Chl ‘a’ is the 64% reported for the Saanich Inlet (Grundle et al., 2009) a British 

Columbia fjord (Canada). Lastly, the highest variability of annual phytoplankton 

primary production explained by oscillation of the annual mean of Chl ‘a’ found in 

the literature review was 81%, as reported by (Keller et al., 2001) for the Boston 

Harbor-Massachusetts Bay (USA). 

4.4.4 Seasonal and interannual fluctuations of productivity rates 

The PCA analysis presented in Figure 4.12, permitted a separation of productivity 

rates by season. For SOT the metabolic balance among seasons, showed a net 

autotrophic state only during spring (6.4 mmol O2 m-2 d-1) with a few sporadic 

daily rates during summer also presenting positive NCP values (Fig. 4.15b). This 

reduced the average NCP for summer months to a less heterotrophic state (-16.9 

mmol O2 m-2 d-1) than that observed for autumn and winter (~ -25.0 mmol O2 m-2 

d-1). Spring and summer GPP rates (~33.5 mmol O2 m-2 d-1) were almost three 

orders of magnitude higher than the rates for winter and autumn (~11.2 mmol O2 

m-2 d-1). However, spring showed a slightly lower rate of ER than the other 

seasons which, in addition to the elevated GPP rates, derived in net autotrophic 

conditions for spring. The trophic balance for CHR (Fig. 4.16b) described summer 

and spring as net autotrophic (30.8 and 22.6 mmol O2 m-2 d-1, respectively), and 

autumn as heterotrophic (-8.6 mmol O2 m-2 d-1). Although winter was also 

classified as heterotrophic, it is important to notice that NCP calculations for this 

season were not available for 2014 and 2018, and more than half of observations 

were found in 2015. Winter and spring were separated from autumn and summer 

at CHR by the influence of riverine inflow which is higher during these seasons 
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(see Fig. 3.15e, section 3.3).  River runoff was also correlated to [O2] which the 

open water diel oxygen method indicates is mainly driven by GPP. 

In both estuaries, the dominant factors driving metabolic rates appeared to be 

related to seasonal changes in light availability and temperature, with the addition 

of freshwater flow affecting CHR rates. This produced a shift from heterotrophic 

to autotrophic state associated with the season (Azevedo et al., 2006; Tang et 

al., 2015). The same seasonal dominance over the trophic state by light and 

temperature, was previously documented by Murrell et al. (2018) for a shallow, 

river-dominated estuary in Pensacola Bay (USA).  

Strong temperature effects on respiration rates have been reported in estuarine 

systems (Caffrey, 2003; McKinnon et al., 2017), however, this was not the case 

for the present study. Additionally, ecosystems in regions such as the north-

eastern Gulf of Mexico (Caffrey et al., 2014) and Matilda Bay (Australia) (Agusti 

et al., 2018) have not found clear seasonal trends in either GPP or ER throughout 

the year. 

The extensive compilation of productivity rates in estuaries across the U.S. made 

by Caffrey (2004) found that all ecosystems located in the mid-Atlantic region 

exhibited summer production and respiration rates around 1.5–2 times higher 

than in other seasons, similar in magnitude to GPP rates observed in SOT and 

CHR, but not ER since rates were more evenly spread throughout  the year. 

Weaker heterotrophic conditions during spring and summer were observed in the 

Ria Formosa Lagoon (Portugal), when the study area was considered slightly 

autotrophic for very short periods (Cravo et al., 2020). In addition, a mainly 

heterotrophic state was reported for winter in the shallow bank site at the mouth 
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of the River Thames (Hull et al., 2016). These studies aligned with similar findings 

for SOT and CHR. 

ER magnitude seems to be increasing across the SOT time series by around 

22% each year, with the exception of 2020 that increased by three orders of 

magnitude against the previous years (Fig 4.15a). A similar trend was observed 

for GPP but not to the same degree as ER, thus, annual net heterotrophic 

conditions have been steadily increasing and were only brought to almost 

metabolic balance in 2019 (Fig 4.15b). In comparison in CHR, the rate of GPP 

has seen an increase throughout the time series, particularly from 2016 when 

GPP doubled in comparison to the previous year, and after that, annual averages 

remained above 28 mmol O2 m-2 d-1. From 2015 to 2016, ER decreased by ~50% 

and remained at similar values (11.6 mmol O2 m-2 d-1) until the end of the time 

series (Fig. 4.16a). Therefore, a net autotrophic state has prevailed in the estuary 

since 2015 (Fig. 4.16b). According to Cai (2011), research has strongly 

suggested that the coastal ocean, and particularly estuarine ecosystems, are 

significant sources of CO2 to the atmosphere, therefore, a net heterotrophic state 

generally prevails. Moreover, it has been reported that increased nutrient inputs 

to this region could shift ecosystems towards net heterotrophy (e.g. Mortazavi et 

al., 2012).



Chapter 4 – Variability of productivity rates 

154 

 

 

Fig 4.15 Time series from 2014 to 2020 of (a) calculated daily respiration ER (red bars █) and gross primary production GPP (green bars 
█) and (b) calculated net community production in Southampton Water. In (a) ecosystem respiration data are displayed as negative values 
for convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive values indicate net 
autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line —. Seasons are represented with white and grey bars; 
W=winter, Sp=spring, Su=summer and A=autumn.
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Fig 4.16 Time series from 2014 to 2018 of (a) calculated daily respiration ER (red bars █) and gross primary production GPP (green bars 
█) and (b) calculated net community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as 
negative values for convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars █), and positive values 
indicate net autotrophic state (blue bars █). Daily chlorophyll ‘a’ is shown as a green line —. Seasons are represented with white and grey 
bars; W=winter, Sp=spring, Su=summer and A=autumn. 
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Average ER in SOT (38.6 mmol O2 m-2 d-1) was more than two orders of 

magnitude higher than the mean ER for CHR (16.5 mmol O2 m-2 d-1). In addition, 

ER across the time series ranged between 0.1 and 664.7 mmol O2 m-2 d-1 in SOT, 

and from 0.1 to 284.4 mmol O2 m-2 d-1 in CHR, with values for both estuaries in 

agreement with the variation reported by Robinson & Williams (2005) for 

community respiration in coastal areas (0.9 – 670 mmol O2 m-2 d-1). Furthermore, 

on their review of open–water portion of estuaries, Hopkinson & Smith (2005) 

reported ER based on O2 incubations (Feb–Sep 1972) for Southampton Water to 

be an average of 93 mmol O2 m-2 d-1 and have ranged from 0.1 to 246 mmol O2 

m-2 d-1. Their higher ER average, compared to the result of this study, is perhaps 

a result of incubations excluding less productive months (Oct–Jan), while a 

smaller range is an indication of the interannual variability. 

Even though GPP average was very similar for SOT and CHR (24.5 and 25.0 

mmol O2 m-2 d-1 respectively), the maximum observed in SOT of 411.2 mmol O2 

m-2 d-1 was almost double the peak observed in CHR (284. 4 mmol O2 m-2 d-1). A 

similar maximum GPP (256 mmol O2 m-2 d-1) to that in CHR was reported among 

systems in the northeast coast of the U.S. (Caffrey, 2004), while only systems in 

southern California matched the peak registered in SOT. 

Annual NCP estimations for SOT (-48.7 to -0.9 mmol O2 m-2 d-1) are comparable 

with ranges reported for other estuaries presenting mainly heterotrophic 

conditions (-71.0 to -0.1 mmol O2 m-2 d-1 ) (Caffrey, 2004; Cravo et al., 2020; Hull 

et al., 2016; Mortazavi et al., 2012; Murrell et al., 2018). In contrast, CHR showed 

a tendency to become more autotrophic and its annual NCP calculations (-11.7 

to 19.8 mmol O2 m-2 d-1) were comparable to the ones described for a eutrophic 

ecosystem in Western Australia (-9.3 to 76.99 mmol O2 m-2 d-1) (McKinnon et al., 
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2017). However, CHR is a considerable smaller, shallower estuary and does not 

present sustained periods of high chl ‘a’ concentration or any other signs of 

eutrophication in the outer estuary region (Huggett et al., 2021a). 

Most research describing primary production, in terms of GPP and ER, has been 

done in the northern hemisphere between 30°N and 50°N. However, these 

measurements have been collected largely in the open ocean and coastal areas 

(<20m) and mainly during the temperate and austral spring (e.g. Robinson & 

Williams, 2005). This information highlights the necessity of estimations of NCP 

including paired ER and GPP measurements to be made in estuaries, given that 

these systems are highly dynamic, presenting fluctuations in primary production 

over short temporal scales (days to hours) (e.g. Guenther et al., 2017) and 

present an opportunity to evaluate the health of these areas in order to prevent 

adverse effects such as eutrophication (e.g. Liu et al., 2015). 

4.4.5 Open water diel oxygen method implications 

The open water diel oxygen method coupled with high- frequency water quality 

monitoring is a powerful tool to help understand the influence of physical and 

biological processes on DO changes through time, particularly since the principal 

biological process influencing the ocean's declining DO concentration is 

phytoplankton respiration (Robinson, 2019). The increasing availability of 

improved and affordable instrumentation has made it possible to create high-

frequency time-series from which more reliable estimations of net community 

production can be derived and evaluate different scales of spatial and temporal 

variability within ecosystems (Aristegi et al., 2009; Staehr et al., 2012).  

As with any other method, assumptions must be made in order to apply the 

approach to different ecosystems and data availability. Since it frames the 
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possibility of applying the open water diel oxygen method to a particular 

ecosystem, one of the main assumptions is that the water column monitored must 

be reasonably homogenous and well mixed (e.g. Caffrey et al., 2014). Therefore, 

vertical profiles of temperature, salinity and dissolved oxygen were made in SOT 

in 2018 and 2019, with a different EXO2 sonde (see Chapter 2, section 2.6), this 

analysis presented temperature differences between the surface and bottom 

waters ranged from 0.1°C in late April to 2.0°C in July. DO saturation through the 

water column presented higher variability in August (9%) and did not correspond 

with the profile presenting the greater temperature variation or the highest 

temperature (July). Both DO saturation and temperature showed less variability 

through the water column than data in Murrell et al. (2018) study (26% and ~4°C) 

where the open water diel oxygen method was applied in a shallow, river-

dominated estuary located in the northeaster Gulf of Mexico.  

Among other complications previously encountered using this methodology, is 

the necessity to separate air-sea O2 exchange (Staehr et al., 2012; J M Testa & 

Kemp, 2011). Direct measurements of air-water exchange can present great 

difficulty, and some past works have opted for assumed constant values for 

similar systems (e.g. Caffrey, 2004). Since air-water exchange can vary with 

fluctuations in surface turbulence, water viscosity and the solubility of O2 (e.g. 

Holtgrieve et al., 2010); to minimised error propagation, in the present study it 

was calculated for every time-step (1 hour) as a function of diffusion through 

bubbles and gas transfer velocity, which in turn included the Schmidt number 

encapsulating influences of water temperature and salinity. Contribution from 

partially dissolved bubbles and overestimation in the air-water transfer has been 

reported previously (Haskell et al., 2019; Liang et al., 2013), without explicit 
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consideration of bubble-mediated supersaturation, NCP can be significantly 

overestimated (e.g. Nicholson et al., 2015). 

  

Fig 4.17 Comparison of maximum daily wind speed and daily ecosystem 
respiration (ER). Symbols and colours differentiate years: 2014 (red triangles ▲), 
2015 (yellow circles ●), 2016 (green squares ■), 2017 (light blue hexagons ), 
2018 (blue diamonds ), 2019 (pink squares ■) and 2020 (orange hexagons ). 
Linear regression is represented with a dash black line (– –) and prediction intervals 
with a dotted line (…). 

However, both estuaries showed a strong correlation between values of 

calculated ER and wind speed (Table 4.1). In Fig. 4.17 it is noticeable that 

isolated elevate ER calculations correspond to wind gusts above ~9 m s-1, thus, 

inducing negative NCP and perhaps overestimating heterotrophic conditions. 

Although it is known that in shallow ecosystems high wind gusts can induce rates 

of sediment resuspension, affecting the magnitude and balance between GPP 

and ER (Hull et al., 2016; Staehr et al., 2012; Testa & Kemp, 2011), in the current 

study seems to be an overprediction of the biological oxygen production (BOP) 

calculation due to the poor performance of the wind speed curve fitting at higher 

winds (see Chapter 2, Fig. 2.3). Moreover, 2020 calculations for SOT, seemed to 
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have worsen the BOP overestimation (Fig. 4.17) through DO approximations from 

yearly averages of temperature and salinity (see Chapter 2, section 2.2.1).  

A final generalisation is that ER rates are assumed constant through the diel cycle 

since CO2 fixation through chemoautotrophic processes is usually smaller than 

that fixed by photosynthesis. However, in systems where nitrification is an 

important process, overlooking it could result in overestimating ER and 

underestimating NCP (Hull et al., 2016; Murrell et al., 2018). Nitrification could 

represent up to 20% of total organic matter production around the maximum 

turbidity zone (e.g Gazeau et al., 2005c) and it can be increase by organic matter 

inputs from water runoff (Hopkinson & Smith, 2005). Given the characteristics of 

high light transparency and low nutrients in the estuaries studied, particularly 

SOT, nitrification and photooxidation were assumed to be insignificant compared 

to estimates of ‘night respiration’ (Demars et al., 2015; Kemp & Testa, 2011). 

There are several methods to estimate aquatic primary production, but few 

provide the opportunity to calculate direct continuous productivity rates for long 

periods at a low cost and fieldwork intensity, and at the same time, make available 

easy validation using independent estimations, like the open water diel oxygen 

method (e.g. Briggs et al., 2018). Climate change and variability in environmental 

conditions will have an effect on both ER and GPP and, consequently, on NCP 

(Staehr et al., 2012), therefore, it is vital to increase understanding of how these 

factors influence productivity rates across a broader range of coastal regions, and 

in a scale that allows prevention and mitigation management in future years. 

4.5 Conclusions 

The present study identified trends suggesting between 2014 and 2020 the 

Southampton Water estuary had become more net heterotrophic (from -1.3 to -
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48.7 mmol O2 m-2 d-1), while between 2014 and 2018 Christchurch Harbour 

seemed to be turning more net autotrophic (-11.7 to 19.8 mmol O2 m-2 d-1). 

In both estuaries, the dominant factors driving metabolic rates were related to 

seasonal changes in light availability and temperature, with the addition of riverine 

inflow affecting Christchurch Harbour. This produced a shift from heterotrophic to 

autotrophic state mainly in spring and summer. 

An analysis between productivity, temperature and light availability showed that, 

for Southampton, a surface water temperature threshold of 10.5 °C, surface water 

irradiance above 1520 Wh m-2 d-1 and mean water column irradiance greater than 

415 Wh m-2 d-1, corresponded maximum NCP calculated rates, meaning positive 

values above 100 mmol O2 m-2 d-1 and negative NCP beyond -200 mmol O2 m-2 

d-1. Furthermore, the same analysis revealed that in Christchurch, NCP 

exceeding positive and negative values beyond 50 mmol O2 m-2 d-1, were 

consistent with the appearance of water temperatures above 10.3 °C, values 

above 1240 Wh m-2 d-1 for surface water irradiance and mean water column 

irradiance higher than 950 Wh m-2 d-1. This analysis concluded that Christchurch 

Harbour being a shallower and more turbid water column is more affected by 

disturbances in the mean water column irradiance. 

The examination of the relation between ecosystem respiration and gross primary 

production permitted values for metabolic balance (GPP:ER) for each system to 

be estimated (22.4 mmol O2 m-2 d-1 for Southampton and 4.9 mmol O2 m-2 d-1 for 

Christchurch). This results implicate that production needed to shift the 

Southampton from net heterotrophy to net autotrophy is four orders of magnitude 

higher than what is needed in Christchurch. This approach also allowed 

classification of both estuaries between oligotrophic and mesotrophic states, with 
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Southampton particularly leaning towards mesotrophic conditions. A tendency of 

ecosystem respiration exceeding gross primary production at lower rates along 

the metabolic balance (GPP:ER) analysis was observed, implying that metabolic 

balance in these systems relies to some extent on allochthonous inputs of organic 

matter. 

A comparison between days classified as within bloom events, using chlorophyll 

‘a’ concentration, and net autotrophic daily rates, highlighted the viability of 

chlorophyll ‘a’ as a predictor or primary production and trophic state since more 

than 75% observations overlapped. 

The open water diel oxygen method proved to be a reliable technique to 

integrated daily estimations of ecosystem production and respiration rates in both 

estuaries. Ecosystem respiration showed no clear dependence on water 

temperature, in agreement with the assumption that respiration rates are constant 

during day and night. However, the methodology has the disadvantage of 

requiring a very precise air-sea correction that can be easily disturbed by over or 

underestimation of wind speed, which in turns results in uncertainty in the O2 air-

sea calculation. In the present study, in order to minimised error propagation, the 

diffusive exchange of O2 across the air– sea interface was calculated for every 

time-step (1 hour) as a function of diffusion through bubbles and gas transfer 

velocity, instead of using a constant.
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Chapter 5 

Plankton carbon metabolism and air-sea CO2 

fluxes at Southampton Water estuary

Abstract 

Coastal zones account for about 20% of total ocean CO2 flux, nevertheless, a 

comprehensive description and analysis of the spatial and temporal variability of 

CO2 fluxes and their relation to environmental factors in estuaries is scarce. In 

this chapter, an estimation of carbonate system parameters (CO2 flux, partial 

pressure of CO2, dissolved inorganic carbon, total alkalinity and pH) was carried 

out at hourly intervals for a position in the Southampton Water estuary in 2019 

and 2020 using the software CO2calc, described in Chapter 2, using inputs of 

discrete sampling of dissolved inorganic carbon and total alkalinity and the 

continuous monitoring of pH. The estuary exhibited an annual average of 6.56 ± 

10.43 mmol C m-2 d-1, acting as a source of CO2 to the atmosphere and agreeing 

with the overall net heterotrophic classification performed in Chapter 4. 

Discrepancies among estimations were attributed to possible seasonal 

stratification, wind speed affecting the calculation of O2 fluxes and estuarine 

flushing times. Frequency and magnitude of riverine inputs influenced the 

distribution of carbonate system parameters, presenting supersaturated CO2 

conditions in summer when there was reduced daily river discharge and 

undersaturated CO2 corresponding to high riverine inflow during winter. Biological 

processes were identified as a major factor controlling the pH/oxygen saturation 
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dynamics and CO2 fluxes were observed to follow the pattern of DIC, indicating 

its association with metabolic rates. 

5.1 Introduction 

Estuaries are one of the most biogeochemically active systems of the coastal 

zone due to intense inputs of nutrients and carbon from land through rivers and 

from the open ocean at continental margins (Borges et al., 2006). Yet, despite 

the importance of dissolved gases in many of the biogeochemical  cycles  of  

estuaries  and  coastal waters, only during the last two decades have  large-scale  

collaborative  efforts  addressed  the importance  of  air-sea  exchange  in  

estuaries (Bianchi, 2012). 

The consensus regarding estuaries, is that they are considered net heterotrophic, 

acting as sources of CO2 to the atmosphere (Bianchi, 2012; Cai, 2011; 

Frankignoulle et al., 1998; Hu et al., 2020; Yao et al., 2020), particularly  in  the  

outer plume region (Bianchi, 2012). This is mainly attributed to the large inputs of 

terrestrial organic carbon that these ecosystems receive (Guenther et al., 2017), 

resulting in increased respiration of detrital organic matter, which in turn produces 

large quantities of dissolved CO2 that generate very high fluxes to the 

atmosphere. 

One of the main drivers of estuarine CO2 emissions to the atmosphere is the rate 

of primary production (the photosynthetic production of carbon and oxygen) 

(Frankignoulle & Middelburg, 2002), since it acts as a fundamental component of 

the global carbon cycle and initiating the biogeochemical cycling of major 

nutrients (Henderikx et al., 2020). 
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It has been reported that air-sea CO2 fluxes and net community production (NCP) 

in estuaries show a consistent pattern of being a source of CO2 coupled to net 

heterotrophy (Borges et al., 2006; Gazeau et al., 2005c; Gupta et al., 2008; 

Raymond et al., 2000), yet the link between the exchange of CO2 with the 

atmosphere and the metabolic status is not direct since the variability of air-sea 

CO2 fluxes is also a function of the physical settings of estuaries, in particular with 

respect to the occurrence of vertical stratification, and residence time of the water 

mass (Borges & Abril, 2011). To better understand how CO2 and O2 are 

transferred across the air–sea boundary, the environmental parameters driving 

their dynamics in estuarine waters need to be examined (Shen et al., 2019a). 

The aim of this chapter is to provide a depiction of the seasonal and interannual 

carbonate chemistry parameters for the Southampton Water estuary and explore 

drivers of the carbonate system parameters and its connection to net community 

production. 

5.2 Seasonal oscillation of the carbonate system in 

Southampton Water 

Parameters for the carbonate system in the Southampton Water estuary were 

calculated using the program CO2calc (see Chapter 2, section 2.7.1). Time series 

of hourly calculations are presented for 2019 and 2020 for Southampton Water. 

5.2.1 Estuarine carbonate chemistry 

pH 

A strong seasonality was observed for pH across the 2-year time series (Fig. 

5.1a), with both years showing the same general pattern. This parameter 

presented the highest seasonal average during Winter (8.17 ± 0.01), to then start 
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decreasing values throughout spring (8.10 ± 0.03). Observations reached the 

lowest seasonal mean of 8.02 ± 0.01 in summer (Table 5.1). At the end of this 

season, values started increasing continuously, a trend that prevailed all through 

autumn (8.09 ± 0.03). Although 2019 showed the maximum (8.21) and the 

minimum (7.98) of the time series, the yearly averages were identical, with 2019 

presenting 8.09 ± 0.04 and 2020 showing 8.09 ± 0.07 as a mean value. Annual 

minimum pH was detected for both years in July, while maximums were detected 

in February.  

pH variability was significantly higher during spring and autumn than in winter and 

summer, indicating that spring and autumn were acting more as transitional 

seasons (p<0.001, Table 5.2), whereas winter and summer appeared to be more 

stable. However, winter in 2020 was considerably less variable than in 2019, 

when a high peak pH value was observed (Fig. 5.1a). 

Dissolved inorganic carbon and total alkalinity 

Dissolved inorganic carbon (DIC) and total alkalinity ( 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ) presented an 

analogous fluctuation between the seasons and years, as can be seen in figure 

5.1b & c. For both parameters, winter was the season showing the highest 

average values, with 2413 ± 68 µmol kg-1 for DIC and 2578 ± 63 µmol kg-1 for 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 . During spring, values started to steadily decrease, particularly in 2020, 

reaching season averages of 2365 ± 32 µmol kg-1 for DIC, and 2533 ± 29 µmol 

kg-1 for 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. This trend extended throughout the summer season when the lowest 

mean values were observed for DIC and  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 (2295 ± 30 and 2467 ± 28 µmol kg-

1, respectively). At the end of summer, DIC and  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 values started rising again. 

However, hourly maximums did not reach those  registered for winter in either of 

the studied years (Table 5.1). Seasonal averages in autumn were 2360 ± 70 µmol 
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kg-1 for DIC, and 2529 ± 66 µmol kg-1 for 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. For 2019 and 2020, maximum 

values occurred in February, whereas minimums during September were 

identified for both parameters. 

Although spring and autumn presented very similar seasonal averages, the 

variation among data was higher in autumn, particularly in 2020, where spring 

showed a smaller fluctuation than in 2019 (Fig. 5.1b & c). Furthermore, winter in 

2019 exhibited a marked peak in values in the middle of the season that was not 

observed in 2020, when values oscillated greatly but between a very specific 

range, 2329 – 2544 for DIC and 2497 – 2701 for 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. This made a significant 

difference between winter within the two years studied (p<0.001, Table 5.2), and 

favoured a larger influence in the seasonal average by the 2020 data. 

Partial pressure of CO2 in the aquatic system 

The estuarine partial pressure of CO2 (𝜌𝜌𝜌𝜌𝜌𝜌2) showed a large seasonal variation 

(Fig. 5.1d), with a similar annual pattern for 2019 and 2020. Starting with low 

values throughout winter, reflected in the lowest seasonal average of 450.5 ± 

28.6 µatm, 𝜌𝜌𝜌𝜌𝜌𝜌2 started increasing continuously during spring and presented a 

mean value of 544.8 ± 52.5 µatm. Summer displayed the highest records of 𝜌𝜌𝜌𝜌𝜌𝜌2 

with a 672.4 ± 27.5 µatm average for the season (Table 5.1). At the end of 

summer, values started to show a decline that continued throughout autumn 

(557.1 ± 37.3 µatm). Maximum values were identified during July, whilst 

minimums were observed in February for the two years included.  
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Fig 5.1 Seasonal variations of carbonate system parameters: (a) pH, (b) dissolved inorganic 
carbon [DIC], (c) total alkalinity [Talk] and (d) partial pressure of CO2 [pCO2], calculated with the 
CO2calc software for Southampton Water from 2019 to 2020. In (d) the black line represents the 
atmospheric pCO2, data from the Ryan Institute's Mace Head Atmospheric Research Station 
(Galway, Ireland). In (b) and (c)  indicate discrete samples.
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Table 5.1. Annual and seasonal average, standard errors and range of hourly hydrologic (O2%), carbonate system parameters (pH, 
DIC, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝜌𝜌𝜌𝜌𝜌𝜌2 𝑎𝑎𝑎𝑎𝑟𝑟 ,𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠), O2 (FO2) and CO2 (FCO2) fluxes in Southampton Water from 2019 to 2020.  

Parameter Annual 
n=730 

Winter 
n=181 

Spring 
n=183 

Summer 
n=184 

Autumn 
n=182 

pH 
8.09 ± 0.06 

(7.98 – 8.21) 

8.17 ± 0.01 

(8.14 – 8.21) 

8.10 ± 0.03 

(8.04 – 8.17) 

8.02 ± 0.01 

(7.98 – 8.06) 

8.09 ± 0.03 

(8.04 – 8.15) 

DIC 

(µmol kg-1) 

2351 ± 65 

(2205 – 2544) 

2413 ± 68 

(2282 – 2544) 

2365 ± 32 

(2262 – 2508) 

2295 ± 30 

(2216 – 2421) 

2360 ± 70 

(2205 – 2541) 

Talk 

(µmol kg-1) 

2520 ± 61 

(2383 – 2700) 

2578 ± 63 

(2456 – 2700) 

2533 ± 29 

(2437 – 2667) 

2467 ± 28 

(2394 – 2585) 

2529 ± 66 

(2383 – 2698) 

𝜌𝜌𝜌𝜌𝜌𝜌2 𝑎𝑎𝑎𝑎𝑎𝑎 

(µatm) 

433.6 ± 6.8 

(415.8 – 449.6) 

439.0 ± 2.5 

(434.5 – 449.6) 

438.7 ± 2.1 

(431.9 – 447.7) 

425.4 ± 4.6 

(415.8 – 441.6) 

433.3 ± 4.0 

(423.2 – 447.8) 

𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠 

(µatm) 

568.4 ± 86.6 

(378.7 – 756.8) 

450.5 ± 28.6 

(378.8 – 509.0) 

544.8 ± 52.5 

(442.2 – 653.4) 

672.4 ± 27.4 

(589.9 – 756.8) 

557.1 ± 37.3 

(445.9 – 652.6) 

FCO2  

(mmol m-2 d-1) 

-6.6 ± 10.4 

(-133.3 – 20.5) 

-1.7 ± 4.1 

(-38.9 – 20.5) 

-3.7 ± 5.2 

(-48.0 – 0.1) 

-11.5 ± 14.2 

(-133.3 – -0.1) 

7.7 ± 10.2 

(-105.1 – 0.1) 

FO2  

(mmol m-2 d-1) 

13.3 ± 18.5 

(0.1 – 247.2) 

23.9 ± 28.5 

(0.1 – 247.2) 

8.9 ± 10.5 

(0.1 – 94.5) 

10.2 ± 14.4 

(0.1 – 116.1) 

14.9 ± 17.5 

(0.1 – 219.0) 

O2 % 

 

98.9 ± 13.5 

(43.9 – 190.7) 

97.2 ± 1.4 

(91.9 – 101.1) 

107.1 ± 15.9 

(61.5 – 190.7) 

96.1 ± 17.8 

(43.9 – 183.5) 

93.4 ± 2.2 

(81.0 – 9.7) 
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There was greater variance during spring and autumn than in winter and summer 

(p<0.001, Table 5.2). Even though both years showed a similar range in values 

through spring (~200 µatm), autumn in 2019 varied ~200 µatm while in 2020, only 

~140 µatm. Moreover, 2019 presented a wider annual range than 2020, with 

~378 µatm and ~300 µatm, respectively. 

5.2.2 Temporal variability of O2 and CO2 air-sea fluxes 

O2 flux 

Annual mean air-sea O2 flux (FO2) was 13.3 ± 18.5 mmol O2 m-2 d-1 (Table 5.1). 

The range of values during 2019 were from 0.1 to 219.0 mmol O2 m-2 d-1 and an 

average of 11.4 ± 15.2 mmol O2 m-2 d-1 was calculated. The following year, 

maximum value increased to 247.2 mmol O2 m-2 d-1 and the mean value 1.3 

orders of magnitude larger (15.2 ± 20.9 mmol O2 m-2 d-1). The overall seasonal 

tendency was for high values during winter (>50 mmol O2 m-2 d-1), then 

decreasing and remaining mainly below ~25 mmol O2 m-2 d-1 during spring and 

summer, to then increase again (~30 mmol O2 m-2 d-1) at the end of year 

(autumn), although not as much as in winter. 

A significant difference among the distribution of O2 flux between 2019 and 2020 

was identified (p<0.001, Table 5.2). This was mainly driven by the variance 

between the winter seasons in 2019 (14.2 ± 20.0 mmol O2 m-2 d-1) and 2020 (30.5 

± 31.4 mmol O2 m-2 d-1), given that the average season value in 2020 was doubled 

that for 2019. Additionally, data in winter for 2020 was distributed in several peaks 

against just one perceivable peak identified in 2019 (Fig. 5.2a). A minor source 

of variance was identified within 2020 (p<0.001, Table 5.2) since spring and 

summer showed lower average values and lesser variation than winter and 

autumn. 
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CO2 flux 

Air-sea CO2 flux (FCO2) presented and annual average of -6.6 ± 10.4 mmol C m-

2 d-1. Averages among years investigated were very similar, with -6.6 ± 11.2 mmol 

C m-2 d-1 for 2019 and -6.5 ± 9.7 mmol C m-2 d-1 for 2020 (Table 5.1). However, 

the range of values decreased from one year to another, from -133.3 to 20.5 

mmol C m-2 d-1 to -100.7 to 5.6 mmol C m-2 d-1. Positive values, indicating net flux 

from the atmosphere to the aquatic system, were observed only during winter of 

both years, and winter 2019 was the only season that averaged above zero, 

presenting 0.7 ± 2.1 mmol C m-2 d-1 (Fig. 5.2b). Summer was visibly the season 

with the lowest values, showing an average of -11.5 ± 14.2 mmol C m-2 d-1. It was 

followed by autumn, which did not present an average as decreased as summer 

(-7.7 ± 10.2 mmol C m-2 d-1), although maximum values were close, and well 

above the other seasons. Winter and spring averages remained above -4 mmol 

C m-2 d-1 in both years.  

There was a significant difference between seasons but not between the years 

studied (p<0.001, Table 5.2). This variance among seasons was mainly attributed 

to the lower values observed in winter of 2019, when for a period of 18 days, 

negative CO2 fluxes were recorded. An additional source of variance was credited 

to the fluctuation of winter and spring averages within years, given that in 2019 

the difference between seasons was 4.8 mmol C m-2 d-1, while in 2020, the 

fluctuation reduced to 0.1 mmol C m-2 d-1. 
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Fig 5.2 Seasonal variation of air-sea (a) O2 (mmol m-2 d-1) and (b) CO2 (mmol m-2 d-1) fluxes in Southampton Water from 
2019 to 2020. In (a) and (b) positive values indicate net flux from the atmosphere to the aquatic system. O2 fluxes were 
calculated with the open water diel method. CO2 fluxes were calculated with the  CO2calc software.
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Table 5.2. Two-way ANOVA of daily carbonate system parameters, testing 
for season (winter, spring, summer and autumn) and year (2019 and 2020) 
effects, and their interactions. 

Parameter Factor dF SS MS F P 

pH Seasons 3 1.6 0.5 945.0 <0.001 

 
Year 1 0.0 0.0 1.5 0.226 

 
Seasons*Year 3 0.0 0.0 4.8 0.002 

DIC Seasons 3 980755.0 326918.3 216.9 <0.001 

 
Year 1 85119.2 85119.2 56.5 <0.001 

 
Seasons*Year 3 165541.8 55180.6 36.6 <0.001 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  Seasons 3 859044.3 286348.1 216.9 <0.001 

 
Year 1 74555.8 74555.8 56.5 <0.001 

 
Seasons*Year 3 144997.9 48332.6 36.6 <0.001 

𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠 Seasons 3 3743544.2 1247848.1 901.1 <0.001 

 
Year 1 10298.6 10298.6 7.4 0.007 

 
Seasons*Year 3 54519.2 18173.1 13.1 <0.001 

FCO2 Seasons 3 8526.1 2842.0 48.5 <0.001 

 
Year 1 44.8 44.8 0.8 0.382 

 
Seasons*Year 3 526.7 175.6 3.0 0.03 

FO2 Season 3 14594.4 4864.8 28.6 <0.001 

 
Year 1 2545.1 2545.1 15.0 <0.001 

 
Seasons*Year 3 5729.7 1909.9 11.2 <0.001 

Holm-Šídák post hoc test p<0.05. dF=degrees of freedom, SS=sum of squares, MS=mean squares, 
F=factorial test, and P= p-values for treatments (season and year). 
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5.3 Analysis of variation in air-sea exchange from 

biogeochemical processes  

5.3.1 Main factors impacting air-sea O2 and CO2 fluxes 

Estuaries are a major boundary in the land-ocean interaction zone where the 

gathering of different biogeochemical processes results in high air-sea O2 and 

CO2 fluxes, making them more dynamic and complex than the open ocean (Cai, 

2011; Duarte et al., 2013a). To assess the relationship between environmental 

factors and carbonate chemistry parameters with FO2 and FCO2, the Spearman’s 

correlation coefficient was calculated (Table 5.3) for the Southampton Water 

estuary, for 2019 and 2020 individually, and the complete time series. 

FO2 showed a strong correlation (ρ>0.97) with wind speed throughout the time 

series. This is expected since wind is a key parameter in calculating the biological 

oxygen production used to compute net community production (NCP). Although 

it has been stated before that, in shallow ecosystems, high wind gusts can affect 

the magnitude and balance between gross primary production (GPP) and 

ecosystem respiration (ER) due to wind‐induced mixing (Hull et al., 2016; Kemp 

& Testa, 2011; Staehr et al., 2017), in this research, it was established that NCP 

calculations were most likely overestimating heterotrophic conditions, and the 

correlation between ER and wind, although present, was over amplified (see 

Chapter 4, section 4.4.5). 

A clear influence of the relations calculated for FO2 in 2020 on those estimated 

for the complete time series is observed (Table 5.3), since patterns for both years 

are more similar to those in 2020. Apart from wind and ER, FO2 in 2019 only 

presented a moderate correlation (ρ=0.44) with GPP. Conversely, for 2020, a 
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moderate positive correlation was found with ER (ρ=0.48) and river inflow 

(ρ=0.42), while negative modest correlations were identified with 𝐼𝐼𝑚𝑚  (ρ=-0.51) 

and NCP (ρ=-0.47). Weaker direct correlations (0.30<ρ<0.37) were observed 

between FO2 and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, DIC, pH and GPP, whilst negative with 𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠 (ρ=-0.27), 

𝐼𝐼0 (ρ=-0.39) and temperature (ρ=-0.33). FO2 is linked to primary production due 

to the release of oxygen during photosynthesis and uptake during aerobic 

respiration (Caffrey, 2003, 2004; Herrmann et al., 2020).  

FCO2 was strongly negatively correlated to most of the carbonate system 

parameters (Table 5.3); 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  (ρ=-0.69), DIC (ρ=-0.69) and pH (ρ=-0.99), 

indicating that CO2 release to the atmosphere was closely related to increases in 

those parameters. The correlation of ρ=1.0 between FCO2 and 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠  was 

anticipated since FCO2 is estimated from the difference between CO2 partial 

pressure in seawater 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠  and the atmosphere 𝜌𝜌𝜌𝜌𝜌𝜌2𝑎𝑎𝑎𝑎𝑎𝑎  (see Chapter 2, 

section 2.7.2). The close connection among the carbonate system parameters is 

an expected outcome due to their participation in different states of the C 

buffering process in aquatic systems (Duarte et al., 2013a, b; Millero, 2010). 

However, data for 2020 showed a slightly higher relationship between FCO2, DIC 

and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 than in 2019. 

Regarding parameters related to primary production, FCO2 presented a strong 

correlation with Chl ‘a’ in 2019 (ρ=0.73) and 2020 (ρ=0.60). In a similar pattern, 

GPP had a stronger relation in 2019 (ρ=0.44) than in 2020 (ρ=0.38), but not as 

elevated as Chl ‘a’ (Table 5.3). NCP was positively correlated in 2020 (ρ=0.27) 

and negatively in 2020 with FCO2 (ρ=-0.30), possibly driven by ER which only 

presented a substantial correlation with FCO2 this year (ρ=0.37). It has been 
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reported that NCP in estuaries shows a consistent pattern of a CO2 emission to 

the atmosphere coupled to net heterotrophy (e.g. Borges & Abril, 2011). 

Abiotic factors mainly affected by the annual cycle of solar radiation (𝐼𝐼0 ρ>0.55 

and temperature ρ>0.98) showed strong correlations with FCO2 (Table 5.3); in 

addition, 𝐼𝐼𝑚𝑚  a parameter also affected by light availability (𝐼𝐼0 ), presented a 

moderate relationship (ρ=0.47). Furthermore, oxygen concentration [O2] 

negatively correlated in both years (ρ>-0.54), while oxygen saturation (O2%) only 

in 2019 (ρ=-0.57). The correlation between FCO2 and seasonal drivers of 

phytoplankton bloom development (𝐼𝐼0, 𝐼𝐼𝑚𝑚 and temperature) (Rumyantseva et al., 

2019) and [O2], mainly occurs since CO2 is involved in various aspects of carbon 

transport and metabolism in photosynthesis (e.g. Raven et al., 2020). Lastly, river 

flow presented a strong correlation with FCO2 in 2019 (ρ=-0.93) and 2020 (ρ=-

0.90), which is credited to riverine input to the estuary being generally rich in 

organic carbon (e.g. Salisbury et al., 2008a). 

A PCA analysis was conducted to further investigate the seasonal variation of 

carbonate chemistry parameters, productivity rates and environmental factors 

affecting the response of FO2 and FCO2. Spatial and temporal variability in 

carbonate chemistry parameters in estuaries has been identified before using  

PCA (Shen et al., 2020; Uthicke et al., 2014). 𝜌𝜌𝜌𝜌𝜌𝜌2𝑠𝑠𝑠𝑠  was omitted from this 

analysis as it is directly correlated with FCO2. For the present work, daily 

observations were classified within ‘seasons’ (autumn, spring, summer and 

winter) and were noticeably grouped together in the PCA, as seen in figure 5.3. 

The first two principal components (PCs) accounted for ~64% of the total variance 

in data. PC1 explained 44.4% of the total variability while PC2 accounted for 

19.3%.  
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The main factors contributing to PC1 positive eigenvalues (R2>0.36) were 

temperature and FCO2, and in a reduced magnitude (R2>0.14) Chl ‘a’, 𝐼𝐼0 and 𝐼𝐼𝑚𝑚. 

PC1 negative values (R2>-0.31) were attributed to river flow, DIC, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 and pH. 

Component loadings of PC1 showed a seasonal pattern associating positive 

eigenvalues to daily observations during summer, while negative values were 

attributed to winter days. PC1 variability is correlated to river discharge, given 

that maximum FCO2 (83.1 mmol C m-2 d-1) and temperature (22.0 °C) both 

occurred in summer of 2019, when there was lower daily discharge (<5 m s-1), 

and the highest DIC, 𝑇𝑇𝑎𝑎𝑙𝑙𝑙𝑙 (2660 and 2501 µmol kg-1, respectively) and pH (8.2) 

values corresponded to high riverine inflow (> 30 m s-1) during winter. Spring and 

autumn data were situated right at the transition zone of PC1, given that river 

discharge average for these seasons (11 m s-1) was among values for summer 

(6.7 m s-1) and winter (18.3 m s-1). Salisbury (2008b) stated that most river plumes 

are acidic relative to the adjacent ocean, and therefore, capable of significantly 

depressing calcium carbonate saturation and increasing concentrations of CO2 in 

the aquatic system within marine coastal zones (e.g. Cai et al., 2008). 

Positive values of PC2 were mainly described by NCP (R2=0.44), followed by 𝐼𝐼𝑚𝑚 

and [O2] (R2>0.17). Conversely, wind speed (R2=-0.48), ER (R2=-0.46) and FO2 

(R2=-0.45) contributed to negative eigenvalues (Fig. 5.3). Seasonal separation 

was not as clear for PC2, even though positive values were mainly attributed to 

spring, the other seasons were situated in the centre of the component axis. The 

main drivers of high rates of ER were  associated with negative values of PC2, 

while positive loadings related to indicators of increased phytoplankton biomass 

like light availability, [O2] and chlorophyll ‘a’ (Cloern et al., 2014). The correlation 

between ER and high wind speeds, and their influence on FO2 was also 
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recognised by the Spearman’s correlation coefficient and it can be observed at 

the negative end of the PC2 (Fig. 5.3). Carbonate chemistry parameters were not 

relevant in the description of variability by PC2, however, this does not mean that 

NCP is not related to the carbonate system, but as Gazeau et al. (2005b) detailed, 

besides NCP the carbonate system can be regulated by different biogeochemical 

processes such as organic matter production/mineralisation and calcium 

carbonate (CaCO3) precipitation/dissolution. 

 
Fig. 5.3 Principal Component Analysis (PCA) for Southampton Water estuary (2019-2020). 
Seasons have been used as factors to illustrate the clusters: winter (blue diamonds ♦), autumn 
(orange circles ●), summer (green squares ■) and spring (yellow triangles ▲). Arrows → 
represent the variable and the direction of an arrow indicates its relation with the Principal 
Component (PC) and other variables. TAlk=total alkalinity, DIC=dissolved inorganic carbon, 
pH=pH, FCO2=air-sea CO2 flux, FO2=air-sea O2 flux, I0= surface water irradiance, Im= mean 
water column irradiance, Wind=wind speed, Temp=temperature, [O2]= DO concentration, 
Chl= chlorophyll ‘a’, River=river inflow, NCP=net community production, GPP=gross primary 
production, ER=ecosystem respiration. 
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Table 5.3. Spearman’s correlation matrix relating O2 and CO2 fluxes with carbonate system parameters, abiotic environmental 
factors and primary production rates in the Southampton Water estuary. 

Air-sea 
fluxes Year 

 
Carbonate system 

 
Abiotic environmental factors 

 
Primary production 

 𝑇𝑇𝐴𝐴𝑙𝑙𝑙𝑙 DIC pH 𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠𝑠𝑠 
 𝐼𝐼0 𝐼𝐼𝑚𝑚 Wind 

speed Temp O2% [O2] 
River 
flow 

 Chl 'a' NCP GPP ER 

FO2  Total  0.16 0.16 0.17 -0.14  -0.25 -0.33 0.98 -0.17 -0.06 0.03 0.20  -0.13 -0.36 0.37 0.56 

 2019  -0.12 -0.12 0.00 -0.01  -0.11 -0.16 0.98 0.00 -0.17 -0.10 -0.02  -0.07 -0.16 0.44 0.62 

 2020  0.37 0.37 0.32 -0.27  -0.39 -0.51 0.97 -0.33 0.08 0.12 0.42  -0.15 -0.47 0.30 0.48 

FCO2 Total  -0.69 -0.69 -0.99 1.00  0.63 0.47 0.03 0.99 -0.32 -0.55 -0.84  0.65 0.00 0.41 0.22 

 
2019  -0.59 -0.59 -0.99 1.00  0.70 0.49 0.11 0.99 -0.07 -0.54 -0.93  0.73 0.27 0.44 0.14 

 
2020  -0.78 -0.78 -0.98 1.00  0.55 0.45 -0.16 0.98 -0.57 -0.60 -0.90  0.60 -0.30 0.38 0.37 

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, ρ > 0.55. 
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5.3.2 Relationship between air-sea CO2 fluxes and net community 

production 

The trophic state of estuaries can be determined by calculating NCP in the 

water column. NCP integrates all of the processes affecting the balance 

between production (GPP) and consumption (ER) of organic matter (Duarte & 

Agustí, 1998; Garcia-Corral et al., 2021). If the estimation of NCP is positive, 

the ecosystem is considered net autotrophic and exports or stores the excess 

organic carbon and is a potential sink for atmospheric CO2. Conversely, a net 

heterotrophic ecosystem is characterised by a negative NCP, requires stored 

or imported organic matter to maintain its metabolic state and acts as a net 

CO2 source (Duarte & Agustí, 1998; Gazeau et al., 2004; Nidzieko et al., 2014; 

Raymond et al., 2000).  

However, the presumed link between FCO2 and the metabolic status of an 

aquatic ecosystem is not as direct as expected in coastal environments (e.g. 

Borges et al., 2006) as it can be masked by thermodynamic and hydrodynamic 

effects on gas exchange and the anthropogenic perturbation of the CO2 budget 

(Duarte & Prairie, 2005). Although NCP is the main regulator of air-sea FCO2 

(e.g. Borges & Frankignoulle, 2003), processes such as the exchange of water 

masses with adjacent ecosystems, decoupling of organic carbon production 

and the fluctuation of flushing times can alter FCO2 (Ávila-López et al., 2017; 

Borges & Abril, 2011; Borges et al., 2006). 

A comparison of monthly FCO2 and NCP estimates in Southampton Water was 

carried out for 2019 and 2020, coupling months within seasons (Fig. 5.4). The 

FCO2 calculated was supported by NCP measurements for all of 2020 and 
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2019 for the complete autumn season and two months of summer (August and 

September). This indicated that the estuary was net heterotrophic and a 

source of CO2 for most of the studied period, in agreement with the assumption 

that most estuaries are net heterotrophic ecosystems where respiration rates 

exceed gross rates of photosynthesis as stated by Cai (2011) and Raven et al. 

(2020) 

Contrary to the conceptual relationship between FCO2 and the trophic status, 

values for spring and July (summer) in 2019 indicated that the ecosystem was 

a source of CO2 while also classified as autotrophic by the NCP model (Fig. 

5.4). This could be a result of the water column being stratified and FCO2 

driven partially by the mixed layer metabolic processes, as  was described by 

(Borges et al., 2006) in their evaluation of metabolic process rates and FCO2, 

where the Bay of Palma showed positive NCP and an association to be a 

source of CO2 due to the seasonally thermally stratification. In addition, NCP 

is highly influenced by wind speed, hence, notable departures from the 

relationship with FCO2 during the season with highest average wind speeds 

(winter) was expected (e.g. Salisbury et al., 2009). 

A different unbalance among estimations was observed in winter 2019, when 

February and January were sinks of CO2 but showed negative NCP 

(heterotrophy); nevertheless, March remained close to the equilibrium with 

both methods (Fig. 5.4). This same discrepancy was reported by Guenther et 

al. (2017) in their comparison of FCO2 and plankton metabolism in a 

hypereutrophic estuary (Recife Harbor, Brazil), showing that an excess of CO2 

was entering the ecosystem but was not being entirely incorporated by the 

primary producers and consequently was being exported to the atmosphere. 
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Additionally, a numerical disagreement between the magnitude of the 

metabolic rates was identified with estimations through the NCP model being 

up to ~6.6 orders of magnitude higher than calculated from FCO2, especially 

during summer (Fig. 5.4). This magnitude of discrepancy was also found in the 

Randers Fjord (Denmark) and in the Scheldt estuary where FCO2 was 6 to 7 

times higher than in the mixed layer NCP (Borges et al., 2006; Gazeau et al., 

2005a). 

 
Fig. 5.4 Monthly comparison between air–sea CO2 fluxes (FCO2) and net community 
production (NCP). Seasons have been used as factors to illustrate the clusters: winter 
(blue diamonds ♦), autumn (orange circles ●), summer (green squares ■) and spring 
(yellow triangles ▲). Filled symbols correspond to 2019 while open symbols to 2020. 

The water residence time can play a major role in uncoupling FCO2 and NCP 

estimations in estuaries (Borges & Abril, 2011; Cai, 2011). In the current 

research, months with riverine inflow below 10 m s-1 showed the highest 
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monthly DIC averages (> 2415 µmol kg-1), contrary to the findings of Gazeau 

et al. (2005a), indicating that long residence times can lead to a built-up of DIC 

in the water column and, therefore, higher emissions of CO2. This is most likely 

because the system studied by Gazeau et al. (2005a) showed residence times 

between 60 and 90 days, while Southampton Water estuary flushing times 

range between 5 and 11 days (Shi, 2000), not giving enough time for DIC to 

accumulate. However, FCO2 values >10 mmol C m-2 d-1 corresponded to 

summer, a season described previously with the most extended residence 

times in the estuary (e.g. Shi, 2000), while averages below 5 mmol C m-2 d-1 

mostly matched to lower river inflow rates. It has been identified before that 

short residence times, of a few of days, can flush the water mass quickly 

enough that biological activity has little or no effect on FCO2 (e.g. Gazeau et 

al., 2005b).  

5.3.3 Metabolically driven pH and oxygen fluctuations 

Whereas factors such as temperature, salinity and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴  influence the pH of 

coastal waters, rates of production and respiration, and the associated uptake 

and release of DIC (Laurent et al., 2012), induce most of the daily and seasonal 

changes of pH in estuarine ecosystems (e.g. Nixon et al., 2015). These 

metabolic effects, tend to be higher in coastal systems than in the open ocean 

due to hydrological processes dictating the mixing between the two water 

masses and watershed inputs (e.g. Duarte et al., 2013b). 

Since coastal pH fluctuations are primarily caused by variable metabolic rates, 

they are necessarily accompanied by changes in dissolved oxygen 

concentration (e.g. Baumann et al., 2015). Moreover, fluctuation in the 

pH/dissolved oxygen dynamics can provide an indication of the balance 
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between autotrophy and heterotrophy (Caffrey, 2004; Cloern, 1996; O’Boyle 

et al., 2013). The strong correlation between pH and dissolved oxygen has 

been used to broadly characterise the trophic status (Howland et al., 2000; 

Laurent et al., 2012; O’Boyle et al., 2009) and trends in acidification (Cai, 2011; 

Shen et al., 2019a; Wallace et al., 2014) of estuarine water bodies. 

Continuous high-frequency pH and oxygen data can be a powerful tool in 

determining the trophic status of estuarine ecosystems since it captures the 

diel oscillation (e.g. O’Boyle et al., 2013); hence, it allows identification of the 

cumulative effects of respiration over photosynthesis during the night, that 

decrease [O2] and pH (e.g. Raven et al., 2020). Furthermore, using O2% 

saturation as an alternative to [O2] standardises the effects of temperature and 

salinity variations (e.g. Baumann & Smith, 2018). Supersaturated conditions 

can reflect the role of biological processes in the water column, just as O’Boyle 

et al. (2009) indicated in their evaluation of estuarine and coastal waters in 

Ireland, where values >130% correlated to high phytoplankton photosynthesis 

rates. 

Besides O2%, salinity has been reported to be a significant parameter in 

explaining a substantial variation of pH in the water column and throughout 

diel cycles in coastal ecosystems (e.g. Baumann et al., 2015). Water masses 

of low salinity generally have lower alkalinity values and, thus, decreased CO2 

buffering capacity (e.g. Salisbury et al., 2009). However the rivers feeding into 

Southampton water are derived from chalk streams and have higher alkalinity 

values than the adjacent sea water. 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 values above 2580 µmol kg-1 in this 

work were related to river inflow over 18 m s-1, therefore, to evaluate the 
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influence of freshwater on pH variability in the estuary, an analysis was carried 

out including salinity as a predictor of pH along with O2%.  

In order to assess if trends in pH, O2% and salinity coupling remain valid across 

similar ecosystems, an examination of the sensitivity of pH variation through 

multiple regression analysis was undertaken. In figure 5.5 the regression using 

O2% as a predictor of pH is plotted since the analysis using only O2% (R2=0.50) 

performed, to some extent, better than the combination of O2% and salinity 

(R2=0.48). In addition, the relationship between these two parameters from five 

different estuaries that form part of the US National Estuarine Research 

Reserve System (NERRS) was included in the comparison. They were 

selected for being temperate ecosystems that, in the extensive analysis carried 

out by Baumann & Smith (2018), better relate pH to O2% than also adding 

salinity, like with Southampton Water (SOT). 

A similar trend in the association of pH and O2% was observed with the Wellls 

(WEL), Elkhom (ELK) and Delaware (DEL) estuaries (Fig. 5.5); systems with 

a tidal range between 1 and 2.8 m and average depth ~3.5 m (Baumann et al., 

2015). WEL and DEL presented a comparable pH average (7.9 and 8.0, 

respectively) to the one identified for SOT (8.1) but were undersaturated for 

longer periods than SOT, reaching means of 87.8% and 85.6% 

correspondingly, while SOT was on average close to the atmospheric 

equilibrium (98.9%). Although DEL did not show a significant relation between 

pH and salinity, clearly its more considerable range (21.3 psu) moved its 

prediction to lower pH values. 

Given that the comparison (Fig 5.5) included ecosystems with very similar 

hydrologic characteristics, it is apparent that pH/O2% dynamics respond to 
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local factors influencing aquatic metabolism. This highlights the importance of 

including a broad range of ecosystems in coastal monitoring to enlarge the 

understanding of the scales and magnitudes of fluctuations, as these are 

highly complex ecosystems and will differ among global regions. 

 
Fig. 5.5 Comparative analysis of the relationship between pH and oxygen saturation (O2%) in 
estuarine ecosystems. Southampton Water (SOT), Wells (WEL), Delaware (DEL), Elkhorn 
Slough (ELK), Weeks Bay (WKS) and Padilla Bay (PDB). Liner regression equations for the 
US National Estuarine Research Reserve System estuaries were taken from Baumann & 
Smith (2018). 

5.3.4 Interannual and seasonal distribution of CO2 air-sea fluxes 

Coastal zones account for about 20% of total ocean FCO2 (Ávila-López et al., 

2017); nevertheless, a comprehensive description and analysis of the spatial 

and temporal variability of FCO2 and its relation to environmental factors in 

estuaries is scarce (Raymond et al., 2000). When these summaries exist, they 

tend to poorly represent the wide variety of ecosystems due to the strong 
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spatial and temporal heterogeneity of coastal ecosystems (Ávila-López et al., 

2017). 

There is no general agreement on the role of estuaries on the exchange of 

CO2 with the atmosphere (Borges & Frankignoulle, 2003). Several studies 

have indicated that estuaries are supersaturated with respect to CO2 

(heterotrophy) (Algesten et al., 2004; Ávila-López et al., 2017; Cai, 2011; Chen 

et al., 2013; Raymond et al., 2000; Yao et al., 2020), while some others have 

found a prevalence of undersaturated CO2 conditions (autotrophy) (Crosswell 

et al., 2017; Guenther et al., 2017; Van Dam et al., 2018; Van Dam et al., 

2019). The above statement exacerbates the importance in defining the trophic 

status of as many and diverse coastal ecosystems. 

European estuaries have been reported to be CO2 sources by Borges et al., 

(2006), and to have a significant impact on the regional CO2 budget by 

contributing to an average of 50 mol C m−2 y−1, equivalent to between 5–10% 

of the total anthropogenic CO2 emissions from Western Europe, according to 

Cai (2011). Moreover, Borges (2005) calculated that the average FCO2 from 

mid-latitude (30–60°) estuaries is 46 mol C m−2 y−1, while Chen et al. (2013) 

specified a lower value for estuaries north of 50°N (36 mol C m−2 y−1). Taking 

the global open estuarine water area of 1.05 × 1012 m2, proposed by Cai 

(2011), and applying it to the results of this study (6.6 ± 10.4 mmol C m−2 d−1), 

SOT presents an overall FCO2 of 45.2 mol C m−2 y−1, in agreement with the 

stated above estimate.  

Furthermore, Borges & Frankignoulle (2003) found that the English Channel 

was a small net source of CO2 (0.9 mmol C m−2 d−1) and that the Eastern region 

was strongly influenced by freshwater inputs of organic matter influencing 
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respiration rates and probably accounting for higher levels of heterotrophy. In 

contrast, Kitidis et al. (2012) found that the L4 site in the Western English 

Channel, located ~12 km offshore of Plymouth, was a net sink for atmospheric 

CO2 (-1.4 mmol C m−2 d−1) over an annual cycle. In some way, this agrees with 

the widespread idea that estuarine mixing zones are considered as moderate 

CO2 sources, whereas the adjacent ocean behaves as a CO2 sink (Borges & 

Abril, 2011; Chen et al., 2013; Cotovicz et al., 2020; Frankignoulle et al., 1998). 

In estuarine regions, a shift from an autotrophic to a heterotrophic state, mainly 

related to seasonal changes in water temperature and light availability, has 

been reported (Azevedo et al., 2006; Tang et al., 2015). In SOT, summer 

increased values of 𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠 and FCO2 were consistent with lower DIC, 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴and 

pH values. In contrast, lower 𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠 and FCO2 during winter corresponded to 

high DIC, Talk and pH. Ávila-López et al. (2017) reported shifts from net 

autotrophy in winter to net heterotrophy in summer in San Quintín Bay 

(Mexico), driven by upwelling events enhanced by warmer waters. SOT 

presented a similar change to autotrophy in winter of 2019, but in lesser 

magnitude, agreeing with the observation made by Kemp & Testa (2011) that 

the tropical ecosystems affected by upwelling season resemble many 

temperate estuaries and shallow coastal lagoons, where NCP peaks in spring 

influenced by annual light and temperature cycles. However, there is no 

evidence that SOT becomes significantly stratified given that there is no 

apparent CO2 release from bottom waters right after the major productivity 

period and when temperatures start decreasing in autumn (e.g. Kitidis et al., 

2012).  
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The analysis of seasonal variation in SOT (Table 5.2) found FCO2 roughly 

follows the pattern of DIC, indicating that biology is an important factor in 

modulating CO2 exchange with the atmosphere (e.g. Salisbury et al., 2009). 

The relationship between net heterotrophy from NCP and FCO2 calculations 

was  evident  in  seasonal  CO2 variation, especially in 2019, when maximum 

FCO2 occurred in summer, corresponding to high temperatures, favouring 

elevated rates of  respiration. Moreover, minimum FCO2 values were observed 

in the winter when water temperatures are low and river discharge is high. 

Similar seasonal patterns in CO2 were observed at the outer section of the 

York River estuary (USA) (Raymond et al., 2000) and in the Mission-Arkansas 

system (USA) (Yao et al., 2020). Lastly, a comparison with O2% showed that 

at higher 𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠, oxygen saturation was often less than 100%, indicating the 

overall importance of respiration in the estuary. This same correlation was 

reported by Howland et al. (2000), for the Tweed estuary (UK), in their excess 

𝜌𝜌𝜌𝜌𝜌𝜌2 model calculated from 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴, pH and temperature. 

Although results from most studies agree that estuaries are sources of CO2, it 

is clear that coastal ecosystems can also be considered net sinks, either 

seasonally or overall, since processes that modulate the carbonate chemistry 

system are driven by regionality, thermal effects and biological activities. 

5.4 Conclusions 

Results from the present work has shown that high-frequency carbonate 

system data in combination with meteorological and hydrological information, 

allows the description of short-term variability and long-term changes of CO2 

fluxes in the Southampton Water estuary. 
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Defining the trophic state of an ecosystem can potentially predict if it behaves 

as a sink or source of CO2 to the atmosphere. In chapter 4, Southampton 

Water was classified as net heterotrophic, suggesting the estuary is generally 

supersaturated with CO2 and agreeing with the independent CO2 flux 

calculation of -6.6 ± 10.4 mmol C m-2 d-1, based on discrete sampling of DIC 

and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴, and the continuous monitoring of pH. FCO2 estimations reinforced 

net community production calculations made in 2020 and, in autumn and parts 

of summer in 2019. Discrepancies between the estimations were attributed to 

possible seasonal stratification and wind speed affecting the calculation of O2 

fluxes and flushing times.  

The frequency and magnitude of riverine inputs influenced the distribution of 

carbonate system parameters, presenting high partial pressure of CO2 and 

therefore, increased degassing of CO2 in summer when there was lower daily 

river discharge, and the highest DIC, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 and pH values corresponding to high 

riverine inflow during winter. 

CO2 fluxes were observed to follow the pattern of DIC, indicating that biology 

is an important controlling factor given the association with uptake and release 

of DIC to metabolic rates. Analysis of the fluctuation of the pH/oxygen 

saturation dynamics demonstrated that this relation can reflect the role of 

biological processes in the water column and that these respond to local 

factors. Although it is known that the rivers feeding into Southampton water 

are derived from chalk streams and have higher alkalinity values than the 

adjacent sea water, salinity was not a significant predictor of pH in the 

Southampton Water system. 
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Specific studies of the carbonate chemistry dynamics are needed for a global 

understanding of the estuarine carbon system. Results from the current 

research can be used as a baseline to assess future anthropogenic impacts 

and climate change alterations to the CO2 flux between the aquatic system 

and the atmosphere in the Southampton Water estuary. 
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Chapter 6 

Synthesis and conclusions

This chapter draws together the major findings of research presented in this 

thesis, and suggests the pending questions raised and future work where 

these findings might be applied. 

6.1 Synthesis and conclusions 

Coastal zones represent only 7% of the total ocean surface area (Kanuri et al., 

2017) and within this region, estuaries can be highlighted due to their unique 

biogeochemical and complex ecological interactions (Lemley et al., 2020; 

Newton et al., 2014). 

Phytoplankton communities are the basis of many marine ecosystems, 

estuaries not being the exception (e.g. Leterme et al., 2014). Therefore, the 

phytoplankton biomass distribution in an estuary can indicate the dynamics of 

the seasonal and annual variability of the ecosystem properties such as water 

quality and community metabolism (e.g. Cloern & Jassby, 2010). 

Net community production, also known as net ecosystem metabolism (NCP) 

(e.g. Needoba et al., 2012), is a community-level process that integrates all 

processes affecting the balance between gross primary production (GPP) and 

ecosystem respiration (ER) (Duarte & Regaudie-De-Gioux, 2009; Garcia-

Corral et al., 2021). If the NCP estimation is positive, the ecosystem is 

considered net autotrophic and exports or stores the excess organic carbon 
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and is a potential sink for atmospheric CO2. Conversely, a net heterotrophic 

ecosystem is characterised by a negative NCP, requires stored or imported 

organic matter to maintain its metabolic state and acts as a net CO2 source 

(Duarte & Agustí, 1998; Gazeau et al., 2005b; Nidzieko et al., 2014; Raymond 

et al., 2000). 

Although estuaries account for about 20% of total ocean CO2 flux, a 

comprehensive description and analysis of the spatial and temporal variability 

of factors influencing primary production, and therefore, CO2 fluxes is scarce. 

Moreover, there is no general agreement on the ‘trophic’ state of estuaries 

(Borges & Frankignoulle, 2003). Although some studies have shown  that 

estuaries are sources of CO2 (heterotrophic) (Algesten et al., 2004; Ávila-

López et al., 2017; Cai, 2011; C. T. A. Chen et al., 2013; Yao et al., 2020), it is 

clear that coastal ecosystems can also be considered net sinks (autotrophic) 

(Crosswell et al., 2017; Guenther et al., 2017; Van Dam et al., 2019), either 

seasonally or overall, since processes that modulate primary production are 

driven by regional factors, thermal effects and biological activities. 

The overall aim of this study was to estimate interannual and seasonal 

changes in the primary production of two contrasting temperate estuaries, the 

Southampton Water estuary and Christchurch Harbour estuary, and identify 

the environmental factors influencing its variability by using continuous high-

frequency environmental data. It was hypothesised that a net heterotrophic 

state will dominate in the two estuaries, implying a depletion of organic C and 

a net CO2 release to the atmosphere, and that a shift to autotrophy will only be 

episodic and driven by phytoplankton blooms. This work was implemented 

through the three following objectives: 
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1. To investigate temporal phytoplankton bloom dynamics and the 

environmental factors driving them in Southampton Water (2014 – 2020) 

and Christchurch Harbour (2014 – 2018). 

In chapter 3, an analysis of the correlation between phytoplankton blooms and 

environmental conditions using high-frequency water quality data collected in 

the Southampton Water (2014 – 2020) and Christchurch Harbour estuaries 

(2014 – 2018) is presented. The study of these extended time series allowed 

the identification of seasonal patterns, comparison among years and could 

open the possibility for predictions. 

Phytoplankton distribution exhibited a seasonal variability in both estuaries, 

with the initiation of the spring bloom related to abrupt rises in the water column 

light availability and temperature. Temperatures above 11.8°C correlated with 

the appearance of blooms in Southampton Water, while rising water 

temperature overlapping with increased solar radiation seemed to initiate 

blooms in Christchurch Harbour.  

Interannual variability in bloom magnitude was associated with sudden 

increases in water column irradiance synchronised with lower turbidity and 

wind speed periods. Christchurch Harbour displayed the typical dynamics 

observed in coastal temperate systems with mainly spring and autumn blooms, 

while Southampton Water presented a pattern with blooms in spring and 

summer.  

In addition, an analysis of the neap-spring tidal cycle in the Southampton Water 

estuary identified that blooms typically developed during neap tides and 

dissipated during the following spring tide. The tidal cycle creates stronger 
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mixing conditions during spring tides leading to a turbidity increase and 

creating lower mixing, with possible stratification during neap tides enhancing 

phytoplankton biomass growth. 

2. To examine seasonal and interannual variation in productivity rates and the 

interactions between them and environmental variables in Southampton 

Water (2014 – 2020) and Christchurch Harbour (2014 – 2018). 

In chapter 4, the open water oxygen diel method was applied to the time series 

analysed in chapter 3 for Southampton Water and Christchurch Harbour, in 

order to estimate ecosystem respiration (ER), gross primary production (GPP), 

and net community production (NCP). To my knowledge, this is the first study 

to apply high-resolution oxygen diel data to calculate NCP and productivity 

rates in both of these estuaries.  

The open water diel oxygen method appeared to provide reasonable estimates 

of ecosystem production and respiration rates in both estuaries. ER showed 

no clear dependence on water temperature, in agreement with the assumption 

that respiration rates are constant during day and night, however, an 

overestimation in the air-water transfer due to high winds was found.  

Trends in the overall trophic state of the two estuaries were identified, with 

Southampton Water becoming more net heterotrophic over the 7-year time 

series (from -1.3 to -48.7 mmol O2 m-2 d-1), while Christchurch Harbour showed 

an increasing net autotrophic state (-11.7 to 19.8 mmol O2 m-2 d-1) in the 5 

years studied.  

In both estuaries, a pattern was observed where autotrophic conditions 

prevailed during summer and spring due to the dominant factors driving 
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metabolic rates being related to seasonal changes in light availability and 

temperature, with the addition of riverine inflow affecting Christchurch Harbour. 

Threshold values for the Southampton estuary and Christchurch Harbour of 

temperature (10.5 & 10.3 °C), surface water irradiance (1520 & 1240 Wh m-2 

d-1) and mean water column irradiance (415 & 950 Wh m-2 d-1) were related to 

the appearance of extreme autotrophic and heterotrophic conditions. 

Christchurch Harbour, being a shallower with a more turbid water column, is 

more affected by disturbances in the mean water column irradiance. 

The relationship between ecosystem respiration and gross primary production 

allowed estimations of metabolic balance (GPP:ER). This showed that the 

primary production needed to drive Southampton Water towards net 

autotrophic metabolism is four orders of magnitude greater than that required 

for the shallower Christchurch Harbour. This approach also allowed 

classification of both estuaries between oligotrophic and mesotrophic states, 

with Southampton particularly leaning towards mesotrophic conditions.  

A prevalence of ER>GPP at lower rates and a tendency for GPP>ER at higher 

metabolic rates was observed, implying that metabolic balance in these 

systems relies to some extent on allochthonous inputs of organic matter. 

Variance in Chl ‘a’ concentration during phytoplankton blooms was explained 

by NCP rates in more than 75% for both estuaries. 

3. To explore the primary controls and temporal variability of carbonate 

system parameters in Southampton Water (2019 – 2020) and their 

influence on air-sea CO2 fluxes.  
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In chapter 5, an estimation of carbonate systems parameters (CO2 flux, partial 

pressure of CO2 [𝜌𝜌𝜌𝜌𝜌𝜌2 𝑠𝑠𝑠𝑠], dissolved inorganic carbon [DIC], total alkalinity 

[ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ] and pH) was carried out at hourly intervals for a position in the 

Southampton Water estuary in 2019 and 2020. The software CO2calc, as 

described in chapter 2, used inputs of discrete sample values  of dissolved 

inorganic carbon and total alkalinity and the continuous monitoring of pH.  

The estuary presented an annual average of 6.6 ± 10.4 mmol C m-2 d-1, acting 

as a source of CO2 to the atmosphere and agreeing with the overall net 

heterotrophic classification result from chapter 4. CO2 flux estimations 

reinforced net community production calculations made in 2020 and, in autumn 

and parts of summer in 2019. Discrepancies among estimations were 

attributed to possible seasonal stratification, wind speed affecting the 

calculation of O2 fluxes and estuarine flushing times.  

Frequency and magnitude of riverine inputs influenced the distribution of 

carbonate system parameters, presenting high partial pressure of CO2 and 

therefore, increased degassing of CO2 in summer when there was lower daily 

river discharge, and the highest DIC, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 and pH values corresponding to high 

riverine inflow during winter.  

An analysis of the fluctuation of the pH/oxygen saturation dynamics 

demonstrated that this relation can reflect the role of biological processes in 

the water column and that these respond to local factors. Although it is known 

that the rivers feeding into Southampton water are derived from chalk streams 

and have higher alkalinity values than the adjacent seawater, salinity was not 

a significant predictor of pH in the Southampton Water system.  
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The high‐resolution simulation of the carbonate chemistry dynamics presented 

in this chapter is the first performed for the Southampton Water estuary and 

can be used as a baseline to assess future anthropogenic impacts and climate 

change alterations to the CO2 flux between the aquatic system and the 

atmosphere in the ecosystem. 

6.2 Recommendations 

Open water diel oxygen method application 

In this study, it was proven that the use of high frequency dissolved oxygen 

measurements using optodes for estimating metabolic rates in estuaries, 

through the open water diel oxygen method, is possible and reliable. However, 

before applying this method to any ecosystem, a review of the underlying 

assumptions and limitations needs to be done. For instance, in systems with 

persistent stratification, calculations of surface and bottom layers are 

necessary to estimate water column net community production more 

accurately, since the method assumes homogeneous plankton 

production/respiration rates throughout the water column depth. Another 

important consideration recognised in this thesis, is that wind mixing leading 

to O2 air–sea exchange is an important component of the metabolic rate 

calculations, and it is especially important in shallow systems. It is 

recommended to use time-specific gas transfer velocity coefficients instead of 

using a constant, in order to minimised error propagation. 

Coastal monitoring 

Despite the ecological importance of estuaries, description and analysis of the 

variability in relation to environmental factors of these ecosystems is limited. 
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Furthermore, when these summaries exist, they tend to poorly represent the 

variety of systems from around the globe adequately enough to support a 

precise global synthesis, due to the strong spatial and temporal heterogeneity 

of coastal areas. It is suggested to increase studies using high-frequency, 

multi-parameter observations in estuarine systems, as long as they are 

accompanied by consistent quality control and sensor calibration. This will 

allow better understanding of  local and regional primary production dynamics 

and develop adequate long-term monitoring strategies. It is also recommended 

to analysed, when possible, several different sites in each estuary to extend 

the spatial comprehension of freshwater and seawater mixing, and its 

implications for metabolic rates. 

Climate change response 

Studies have tended to focus on those estuaries that receive substantial 

anthropogenic alterations, providing much less attention to estuaries that 

receive little human impact. However, increasing atmospheric CO2 conditions 

will impact globally and given the ecological and economic importance of 

shallow-water estuarine environments, further efforts to predict how these 

alterations could disturb production-respiration balances are essential to the 

effective management of these environments. Results from the current 

research can be used as a baseline to assess future anthropogenic impacts 

and climate change alterations to the aquatic trophic state in Southampton 

Water and Christchurch Harbour estuaries. Understanding the heterogeneity 

of coastal zones can provide a powerful tool to recognizing the symptoms of 

developing change. 
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6.3 Future work: advances in marine in situ sensors 

Advances in phytoplankton community assessment 

In the present study, phytoplankton diversity was not measured. However, it is 

known that by describing the phytoplankton community of a specific 

ecosystem, and its relationship with biotic and abiotic factors, interpretation of 

the ecosystem function and resilience can be improved (Campbell et al., 

2022). Phytoplankton dynamics in marine ecosystems has been advanced, in 

the last decade, by using in situ molecular and imaging instrumentation 

(Spanbauer et al., 2020). These tools provide the opportunity of determining 

the impact of phytoplankton community structure on carbon export fluxes, 

coastal water quality and surveillance of blooms, including harmful algal 

blooms (HABs) (Baird et al., 2022). The vast majority of research effort in this 

area is concentrated on ecogenomic sensors: ‘autonomous sensors, which 

apply molecular techniques on an in situ platform that allows for remote sample 

collection, processing, and molecular analyses’ (Smith et al., 2022). Projects 

like TechOceanS (https://techoceans.eu/), are betting on developing 

ecogenomic samplers that autonomously perform in situ molecular analyses 

and provide real-time data with the idea of revolutionising ocean monitoring. 

The possibility of a low-cost, in situ and automated systems for biological 

sensing would enable covering a spatio-temporal resolution difficult to obtain 

by manual sampling since conditions in estuaries can vary considerably within 

days and even hours, as the present study corroborated 

 

 

https://techoceans.eu/
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Biochemical sensor development 

It is clear that long-term observations and measurements of the marine 

environment are needed to understand the variability caused by both 

anthropogenic and natural processes. With an increasing number of nutrients 

(e.g. NO3, PO4 and SiO4), carbonate system parameters (pH, DIC, Talk and 

pCO2) and other dissolved gases (e.g. O2 and CH4) to be monitored 

(Nightingale, Beaton, & Mowlem, 2015), a need has been identified to  design 

and development multifunctional sensor systems capable of sharing data in 

real-time (Precheur & Delory, 2018). Data from these systems,  deployed 

directly or on autonomous platforms, have changed our understanding of 

marine systems and processes (e.g. D’asaro & Mcneil, 2013). Sensors are 

clearly playing an major role in environmental monitoring and recent 

technological advances are certain to facilitate the application of new sensing 

devices (Pejcic et al., 2022). In order to miniaturised existing chemical 

analytical methods so they can be easily deploy on moorings and mobile 

platforms, the development of novel Lab-on-Chip microfluidic analysers has 

been gaining momentum in the last few years (e.g. Nightingale et al., 2019). 

Currently, this technology aims to reduce uncertainty in estimations of  marine 

macronutrient data (Birchill et al., 2019) and, hopefully, one day it will lead to 

the integration of affordable and easily deployable carbonate system 

measurements and, even primary productivity rate sensors. 
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Appendix A 

Nutrient data in Southampton Water estuary (2018 – 2020) 

 
Fig. A1 Temporal variation of (a) SiO2, (b) PO4 and (c) NO3 at the Environment Agency Hound 
Buoy sampling site and from discrete sampling part of the EuroHAB project at the Data Buoy 
system (Southampton Water estuary) from 2018 to 2020. 
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Appendix B 

Salinity models for Southampton Water 

 
Fig. B1 Polynomial curve fitting for salinity data from Environment Agency sampling in (a) 2014, 
(b) 2015, (c) 2016 and (d) 2020. 
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Appendix C  

Temporal variability of phytoplankton biomass and net 

community production in a macrotidal temperate estuary  

 

At the time of submission of this thesis, data for the Southampton Water estuary 

in 2019, included in Chapter 4 and Chapter 5, have been submitted as: 

Gomez-Castillo, A.P., Panton A. & Purdie, D. A. 2022. Temporal variability of 

phytoplankton biomass and net community production in a macrotidal temperate 

estuary. Submitted to Estuarine, Coastal and Shelf Science. 
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Abstract 14 

Coastal zones play a significant role in Earth's biogeochemical processes. Within these 15 

regions, estuaries are particularly important due to their complex ecological 16 

interactions and spatial and temporal variability. The aim of this study was to apply a 17 

year long high-frequency (15 minute) environmental data time series to identify both 18 

the timing and factors influencing phytoplankton blooms in the Southampton Water 19 

estuary. Dissolved oxygen measurements from an in situ deployed optode were applied 20 

to the open diel oxygen method to estimate daily integrated rates of gross primary 21 

production (GPP), ecosystem respiration (ER) and net community production (NCP). 22 

Additional water quality data including temperature, salinity, chlorophyll 23 

concentration and turbidity allowed the relationship between physical and biological 24 

processes occurring over different time scales to be investigated. The occurrence of 25 

major phytoplankton blooms during the spring-summer period were associated with 26 

critical values of estuarine water temperature and mean water column irradiance. In 27 

addition, neap tides were found to promote the initiation of phytoplankton blooms in 28 

late spring and summer months. Annual daily average NCP for the estuarine ecosystem 29 

presented an estimated net heterotrophic state (-0.8 mmol O2 m-2 d-1), although 30 

seasonal productivity events shifted this state for several days and sometimes weeks 31 

to net autotrophic conditions. The results of this study have demonstrated how high 32 

frequency in situ dissolved oxygen measurements from an optode can make a valuable 33 

contribution to understanding the key factors influencing bloom events in a temperate 34 

macrotidal estuary. This approach if applied more widely to other coastal sites could 35 

therefore contribute to consolidating global annual primary production budgets for 36 

coastal regions. 37 
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Keywords 38 

Estuarine ecosystems 39 

High-frequency data 40 
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Phytoplankton blooms  43 

1. Introduction 44 

Coastal zones represent around 7% of the total ocean surface area (Kanuri et al., 2017), 45 

however, they are responsible for 14–33% of total oceanic production (Garcia-Corral 46 

et al., 2021). Within these regions, estuaries play a major role in hydrographic and 47 

biogeochemical processes of marine ecosystems (Mahoney & Bishop, 2017; Ruiz-48 

Ruiz et al., 2017) due to the mixing of riverine freshwater with seawater carried in by 49 

the tides (Srichandan et al., 2015). 50 

Given that phytoplankton communities form the base of most marine ecosystems 51 

(Leterme et al., 2014), the phytoplankton biomass distribution in an estuary can 52 

indicate the dynamics of the seasonal and annual variability of the system properties 53 

such as water quality and the aquatic trophic state (Cloern & Jassby, 2010; Haskell et 54 

al., 2019).  55 

Several techniques are used to determine aquatic rates of net primary production, the 56 

most common being measurements of radioactive carbon 14 isotope (14CO2) 57 

incorporation by a natural community of microplankton incubated in bottles 58 

(Oczkowski et al., 2016). Alternatively, changes in dissolved oxygen (DO) can be 59 

measured in small volume glass bottle incubations in the dark and light to define rates 60 

of planktonic respiration and net production (Langdon & Garcia-Martin, 2021).  The 61 

problems inherent in these short term, small volume incubation techniques however 62 
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are exacerbated in the highly dynamic heterogeneous coastal zone, where the seasonal 63 

oxygen change shows marked variability (Queste et al., 2016). Interaction between 64 

physical and biological processes within estuaries tends to vary over diurnal, semi-65 

diurnal and sometimes episodic timescales, making acquiring frequent data critical to 66 

accurately assess ecosystem health for these periods (Bianchi, 2012; Nidzieko et al., 67 

2014). 68 

An alternative, more integrative, method to estimate primary production relies on the 69 

calculation of the in situ oxygen mass-balance from continuous measurements of DO, 70 

the open diel oxygen water method, first proposed by Odum (1956) and later modified 71 

to apply it to estuarine systems (Caffrey, 2003, 2004; Emerson et al., 2008). This 72 

method quantifies the in situ diel oscillations in DO concentration to estimate daily 73 

integrated gross primary production (GPP), ecosystem respiration (ER) and net 74 

community production (NCP), also known as net ecosystem metabolism (Demars et 75 

al., 2015). 76 

NCP is a community-level process that integrates all processes affecting the balance 77 

between GPP and ER (Duarte & Regaudie-De-Gioux, 2009; Garcia-Corral et al., 78 

2021). If the NCP estimation is positive, the ecosystem is considered net autotrophic 79 

and exports or stores the excess organic carbon and is a potential sink for atmospheric 80 

CO2. Conversely, a net heterotrophic ecosystem is characterised by a negative NCP 81 

that requires stored or imported organic matter to maintain its metabolic state and acts 82 

as a net CO2 source (Feng et al., 2012; Nidzieko et al., 2014). 83 

The aim of this study was to estimate daily and seasonal changes in estuarine primary 84 

production and identify the environmental factors influencing its variability by using 85 

continuous high-frequency environmental data in the macrotidal Southampton Water 86 

estuary, over a period of one year. To our knowledge, this is the first study to apply 87 
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high-resolution oxygen diel data to calculate productivity rates and relate them to 88 

phytoplankton blooms in a UK estuarine system. While our study is regional, the 89 

heterogeneity of coastal zones is of global concern and results from this study will 90 

allow a better understanding of local and regional primary production dynamics as 91 

well as provide a baseline to assess future anthropogenic impacts and climate change 92 

alterations to the aquatic trophic state of the Southampton Water estuary. 93 

2. Materials and methods 94 

2.1 Study sites 95 

The Southampton Water estuary is part of the Solent estuarine system, considered the 96 

largest on the south coast of the UK (Fig. 1). It is an approximately linear body of 97 

water about 2 km wide and 10 km long with a central channel continuously dredged 98 

to a minimum depth of 12.2 m below the local Chart Datum. Three main rivers 99 

discharge into Southampton water: the River Test and Itchen towards the head of the 100 

estuary and the river Hamble, nearer to the mouth on the eastern side (Iriarte & Purdie, 101 

2004). 102 

The estuary is characterised by a semi-diurnal tidal regime where each tide consists of 103 

a double high water, ~2 h apart, followed by a short ebb-tide. The tidal range varies 104 

between 1.5 m on neaps and 5.0 m on springs (Crawford et al., 1997). It is considered 105 

a partially mixed system, with minimal stratification occurring throughout the semi-106 

diurnal tidal cycle with the highest vertical density gradient occurring at low water and 107 

well-mixed conditions at high water (Levasseur et al., 2007). 108 

2.2 Data Sources 109 

Water quality data were collected using a YSI EXO2 sonde deployed since 2018 on a 110 

solar-powered Xylem Analytics UK EMM700 Data Buoy located at 50.871° N, -111 

1.373° W, in the Southampton Water estuary (Fig. 1). The sonde was placed into an 112 
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open flow PVC tube fixed to the Data Buoy at a depth of 1.6m below the sea surface; 113 

the average water depth at the site was 10m. Parameters recorded by the sonde 114 

included dissolved oxygen (DO) concentration (mg L-1) and oxygen saturation (%), 115 

temperature (°C), salinity, chlorophyll 'a' (µg L-1) and turbidity (FNU). The sonde is 116 

connected to a Storm data logger situated within the Data Buoy system that regularly 117 

uploads data, via a mobile phone connection, to a dedicated webpage within the Storm 118 

Central cloud data collection service (https://stormcentral.waterlog.com/). Data was 119 

recorded at high-frequency (every 15 minutes) from January 2019 to December 2019, 120 

but with hourly averages calculated for the purpose of this study. Two gaps in data 121 

collection occurred: the first between 13/02/2019 and 19/03/2019, caused by the sonde 122 

being recovered while the Data Buoy mooring chain was replaced and the sonde and 123 

PVC tube cleaned of biofouling and the second gap from 23/11/2019 to 04/12/2019 124 

due to some problems backfilling data when the Storm Central server migrated from 125 

one IP address to another. All data was carefully inspected for unreliable values, and 126 

outliers plus negative or occasional inconsistent high magnitude values (typically 127 

caused by biofouling) were discarded manually. 128 

The Data Buoy system was originally fitted with a met sensor, but this stopped 129 

recording on 12/09/18 due to damage from a boat collision. Hourly barometric 130 

pressure measurements during 2019 were taken from a Met Office met station mounted 131 

on the roof of the National Oceanography Centre (archived in the Met Office's MIDAS 132 

database). Additionally, the National Oceanography Centre meteorological database 133 

was used to obtained hourly wind speed and solar radiation values, measured at the 134 

same site (50.892° N, -1.394° W).  135 

A set of water quality measurements from the Southampton Water estuary was 136 

acquired from the Environment Agency Water Quality Archive 137 

https://stormcentral.waterlog.com/
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(https://environment.data.gov.uk/water-quality/view/download/new). Data from the 138 

Hound navigation Buoy sampling site (50.861° N, -1.358° W) was selected to compare 139 

with the Xylem Analytics Data Buoy measurements due to its close proximity. 140 

Environment Agency data included monthly surface records of DO (mg L-1 and % 141 

sat.), temperature (°C), salinity (psu), chlorophyll 'a' (µg L-1), and turbidity (FNU). 142 

The Associated British Ports (ABP) Marine Environmental Research provided minute-143 

interval sea surface elevation data measured with a Tidalite tide gauge located at Dock 144 

Head, Eastern Docks Southampton (Fig. 1). Daily minimum and maximum values 145 

were extracted from the raw time series, and the difference plotted to indicate changes 146 

in the daily tidal range.  147 

2.3 Field sampling 148 

Discrete water samples were periodically collected using a Niskin bottle deployed at 149 

2 m below the sea surface close to the Data Buoy from the RV Callista. Sets of three 150 

replicate glass bottles (~60ml) were filled from the Niskin to measure DO 151 

concentration on several dates during winter and spring 2019. The chemical 152 

determination of oxygen concentration was based on the method first proposed by 153 

Winkler (1888) and modified by Parsons et al. (1984). Winkler titrations were 154 

performed using a photometric end-point detector (Carrit & Carpenter, 1966). 155 

Surface water samples for phytoplankton analysis were collected biweekly from the 156 

data buoy and 100 ml added to a darkened glass bottle and preserved in acidic Lugol's 157 

iodine to a final concentration of 1%. For analysis, 10 ml of preserved sample was 158 

settled in a glass sedimentation chamber for 24 h and cells then identified and counted 159 

using a Leica inverted light microscope (Utermöhl, 1958). Samples for later nutrient 160 

analysis were filtered through a 25 mm diameter GF/F filter using an inline syringe 161 

unit and then frozen in 50ml plastic bottles prior to analysis. Concentrations of nitrate 162 

https://environment.data.gov.uk/water-quality/view/download/new
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plus nitrite, phosphate and silicate were determined on a QuAAtro segmented flow 163 

nutrient analyser (SEAL Analytical, UK) as described by Panton et al. (2020). 164 

2.4 Mean water column irradiance 165 

Photosynthetic Active Radiation (PAR) within the water column varies according to 166 

changes in surface incident solar irradiance, turbidity, and depth (Cloern et al., 2014). 167 

Therefore, the mean water column irradiance (𝐼𝐼𝑚𝑚) was calculated following Riley 168 

(1967) as: 169 

𝐼𝐼𝑚𝑚 = 𝐼𝐼0
(1−𝑒𝑒−𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃ℎ)

𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃ℎ
       (1) 170 

where 𝐼𝐼0 is the daily surface irradiance (W h m-2 d-1), 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 is the diffuse attenuation 171 

coefficient (m-1), and ℎ is the mixed layer depth (10 m). The diffuse attenuation 172 

coefficient was estimated from the slope of a linear regression of turbidity against  173 

𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃  data previously generated for the estuary by Iriarte & Purdie (2004), with 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 174 

ranging between 0.2 and 2.0 m-1. 175 

2.5 Optode-based oxygen sensor validation 176 

Semi-continuous oxygen measurements were determined from the EXO2 sonde 177 

deployed optode. While optodes have proven useful in describing biogeochemical 178 

processes (Bittig & Körtzinger, 2015), to ensure high quality dissolved oxygen data 179 

were being recorded, we compared the optode data to measurements made on discrete 180 

water samples (Haskell et al., 2019; Uchida et al., 2008). The following correction 181 

steps were therefore made prior to using the oxygen time-series data to calculate NCP 182 

rates: (i) Some missing salinity measurements from the time series were estimated 183 

since the optode DO sensor installed on the EXO2 sonde measures oxygen saturation 184 

and then  salinity and temperature data are used to calculate DO concentration. During 185 

2019, the salinity sensor on the sonde showed some periods of drifting, and a more 186 

reliable sensor was not replaced until November. Thus, Environment Agency 187 
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measured salinity data was compared against existing and reliable salinity data from 188 

the EXO2 sonde, and an equation from that correlation was used to substitute missing 189 

salinity data. (ii) Recalculating DO concentration values from polynomial temperature 190 

and salinity dependant equations (Feistel, 2008). (iii) Lastly, discrete oxygen 191 

measurements from Winkler titrations and Environment Agency collected 192 

measurements were used to formulate a standard linear regression (see supplementary 193 

material Fig. A.1) model to correct optode derived DO concentration values. 194 

2.6 Open diel oxygen method 195 

The open diel method (Needoba et al., 2012) was applied to calculate daily NCP by 196 

calculating oxygen mass-balance in the surface mixed layer (see supplementary 197 

material). An essential assumption of this model is that all measurements come from 198 

a well-mixed water column; therefore, the water mass recorded presents the same 199 

metabolic history (Caffrey et al., 2014). 200 

The hourly biological oxygen production (BOP) calculation incorporated equations 201 

used by Hull et al. (2016) and Murrell et al. (2018). In Eq. (2) 𝐶𝐶0 is the oxygen 202 

concentration at 𝑡𝑡 = 0 and 𝐶𝐶1 oxygen concentration at the time step (for the present 203 

study, 1 hour), and it is analytically solved by using the air-sea diffusion flux 204 

calculation 𝐹𝐹 and a transfer velocity correction 𝑡𝑡, caused by wind-induced turbulence 205 

in the mixed water column (ℎ). 206 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑡𝑡ℎ � 𝐶𝐶1−𝐶𝐶0
1−𝑒𝑒−𝑟𝑟𝑟𝑟

+ 𝐶𝐶0� − 𝐹𝐹ℎ     (2) 207 

The diffusive exchange of gases across the air– sea interface 𝐹𝐹 (Eq. 3) was calculated 208 

as a function of gas transfer velocity 𝑘𝑘𝑤𝑤 (Eq. 4) and diffusion through bubbles 𝐵𝐵. 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 209 

corresponds to an atmospheric pressure standard value of 101,325 Pa, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 is the 210 

atmospheric air pressure at sea level, 𝐶𝐶∗ is the calculated oxygen concentration in 211 
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equilibrium with the atmosphere as a function of temperature and salinity (Feistel, 212 

2008) and 𝐶𝐶 is the oxygen concentration in the surface mixed layer. 213 

 𝐹𝐹 = 𝑘𝑘𝑤𝑤
ℎ
𝐶𝐶∗(1 + 𝐵𝐵) 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
+ 1

ℎ
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝐶𝐶     (3) 214 

𝑘𝑘𝑤𝑤 (Eq. 4) is the parameterisation proposed by Wanninkhof (2014), as function of 215 

salinity and temperature through the relation between the Schmidt number 𝑆𝑆𝑆𝑆ℎ𝑂𝑂2 for 216 

oxygen and the normalised Schmidt number for CO2 at 20°C and salinity of 35 217 

(constant value of 660 in Eq. 4). 𝑈𝑈 corresponds to wind speed measured at 10m above 218 

sea level but as stated above can be considered the same as at sea level at the position 219 

of the Data Buoy . 220 

𝑘𝑘𝑤𝑤 = 0.251𝑈𝑈2 �𝑆𝑆𝑆𝑆ℎ𝑂𝑂2
660

�
−0.5

     (4) 221 

𝐵𝐵𝐵𝐵𝐵𝐵 data were averaged separately into “day” and “night” periods using light data 222 

from the MIDAS Met station. Respiration rates were assumed to be constant during a 223 

diel cycle; thus, respiration was extrapolated to 24 hours to obtain daily ecosystem 224 

respiration (𝐸𝐸𝐸𝐸). Finally, daily 𝑁𝑁𝑁𝑁𝑁𝑁 (Eq. 5) was calculated as a function of the 225 

difference between daily gross primary production (𝐺𝐺𝐺𝐺𝐺𝐺) and ER. 226 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐸𝐸𝐸𝐸      (5) 227 

2.7 Statistical analysis 228 

None of the environmental data nor productivity rates were normally distributed, 229 

despite different transforms being applied. Consequently, the non-parametric 230 

Spearman's Rank-Order Correlation Coefficient (p<0.05) was used to evaluate the 231 

strength of associations among calculated productivity rates and measured 232 

environmental variables throughout the study period (Table 1). Data were divided into 233 
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separate groups (Table 2), and the Kruskal-Wallis One Way Analysis of Variance on 234 

Ranks (p<0.05) and the all pairwise Dunn's test (p<0.05) were used to evaluate whether 235 

environmental conditions and productivity rates changed between major bloom event 236 

periods and the remaining days over the 12-month period. In order to explain the 237 

sources of variability in bloom events, Principal Component Analysis was applied. 238 

This method allows reducing the dimensionality of large datasets without losing its 239 

variability by transforming original variables into a new and smaller set of uncorrelated 240 

variables (Jollife & Cadima, 2016). Statistical analysis was performed using the 241 

statistical package in SigmaPlot version 13.0. 242 

 243 

Fig. 1. Map of the Southampton Water estuary located on the south coast of The UK (inset). Data sets 244 

were collected from the Meteorological station at the National Oceanography Centre (green circle ●), 245 

tide gauge data from ABP Marine Environmental Research (orange circle ●), Xylem Analytics Data 246 

Buoy system (blue circle ●) and Environment Agency samples from Hound navigation buoy (red circle 247 

●). 248 
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 249 

3 Results 250 

3.1 Variation of environmental conditions 251 

The estuarine water temperature reflected a seasonal warming, with monthly average 252 

values of ~7°C during January and February (Fig. 2a), then steadily increasing until 253 

reaching an average of 20.3°C for July and August and later decreasing to a value of 254 

8.7°C in December 2019. 255 

Salinity showed low variation across the whole year, with an average of 31.8 ± 1.2 256 

(Fig. 2b). Some differences, although not significant, were found over 24 hr periods, 257 

but as seen in previous studies (Levasseur et al., 2007), salinity at this point of the 258 

estuary is mainly driven by the semi-diurnal tidal cycle and typically ranges between 259 

28.0 and 32.9. 260 

Oxygen concentration presented a year minimum of 165 µmol L-1 during July and a 261 

maximum of 450.4 µmol L-1 in June (Fig. 2c). Elevated daily concentrations  were 262 

detected between April-July; however, periods before April and after July showed 263 

more constant values. The oxygen concentration during the first 3 months remained at 264 

~300 µmol L-1, while from August to December, a gradual monthly average increase 265 

occurred, with averages from 225.2 to 287.3 µmol L-1. An average value of oxygen 266 

saturation over the whole year of 100.8% indicated an overall balance in the oxygen 267 

saturation (Fig. 2d). Oxygen percentage presented mainly oversaturated conditions 268 

between April and July and similar to oxygen concentration, consistently showed the 269 

greatest daily variations, with the lowest value in July (71.1%), while the highest in 270 

June (183.5%). During the rest of the year, oxygen conditions remained slightly  271 

undersaturated. Both oxygen parameters displayed peaks during the high productivity 272 
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period, comprising days of continuous values >115% saturation and >300 µmol L-1 273 

concentration.  274 

Chl 'a' showed a clear period of increased concentration from late April to late August 275 

(Fig. 2e). Outside of this period, average Chl 'a' concentration remained below 1.5 µg 276 

L-1. Four phytoplankton bloom events of different duration and magnitude were 277 

observed (Table 1): (i) in late April, a peak dominated by the colonial phytoplankton 278 

Phaeocystis was observed for 14 days with an overall average of 4.2 µg L-1 and, (ii) at 279 

the end of May, a bloom comprising of the diatom Guinardia delicatula was sustained 280 

for 15 days with an average of 8.7 µg L-1 and reached a maximum hourly value of 27.1 281 

µg L-1. (iii) The most prolonged bloom was observed for about 48 days during June-282 

July and was mainly attributed to the photosynthetic ciliate Mesodinium rubrum, 283 

presenting the hourly year maximum value of 28.3 µg L-1 and an event average of 7.5 284 

µg L-1 and finally, (iv) a short bloom was observed at the end of August for 5 days 285 

with a mean concentration of 5 µg L-1. The major bloom events in late April, early 286 

June and late August developed following a spring tide and peaked during the next 287 

neap tide (Fig. 2). The more prolonged bloom dominated by Mesodinium rubrum in 288 

July started on a neap tide in late June but was then sustained over two further 289 

spring/neap periods until late July. 290 

Turbidity measurements ranged between 1.2 and 16.6 FTU, with a marked period from 291 

May to July of low turbidity when daily averages remained below 6 FTU (Fig. 2f). 292 

Increased daily variation in turbidity was observed from September to December, but 293 

this could have been caused by some biofouling of the turbidity sensor since Chl ‘a’ 294 

for this period remained unaffected. Highest turbidity values corresponded to 295 

maximum tidal ranges during peak spring tides (Fig. 2f). 296 
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The first two weeks of March, showed high wind speeds in comparison to the rest of 297 

the year, with sustained daily values above 6 m s-1 and gusts reaching up to 16.8 m s-298 

1. Following this a period lasting until the end of July of lower wind speeds (>5 m s-1) 299 

was identified (Fig. 2g). 300 

For 𝐼𝐼0, values ranged between 165.9 and 3313.6 W h m-2 d-1 in January and July, 301 

respectively (Fig. 3a). A sudden increase in values was observed at the end of March, 302 

reaching slightly above 2000 W h m-2 d-1 but then decreasing to ~1300 W h m-2 d-1 for 303 

two weeks, before increasing again and remaining mainly above 2000 W h m-2 d-1 for 304 

the period between April and August.  305 

𝐼𝐼𝑚𝑚 showed a large variation throughout the year, with a monthly range from 55.9 W h 306 

m-2 d-1 in November to 1004.6 W h m-2 d-1 in May (Fig. 3.b). Sustained values above 307 

the annual average of 321.4 W h m-2 d-1 were observed from April to late September, 308 

after which a drop in values remained for the rest of the year. An exceptionally high 309 

𝐼𝐼𝑚𝑚 period occurred in late April and throughout the whole of May, with three different 310 

events, lasting from 3 to 9 days, of sustained values above 1000 W h m-2 d-1. 311 

3.2 Fluctuation of productivity rates 312 

Estimated daily values of ER are presented in Figure 4. Calculated values ranged from 313 

0.1 (June) to 437.5 (August) mmol O2 m-2 d-1 with a yearly average of 37.6 mmol O2 314 

m-2 d-1. ER rates did not show a particularly well defined seasonality with occasional 315 

periods of ~7 days of peaks in activity throughout the year, notably from May to 316 

November. From August to October, monthly values were above 50.0 mmol O2 m-2 d-317 

1. Conversely, March presented a particularly low monthly value of 2.9 mmol O2 m-2 318 

d-1 (although only 12 days of estimates were available). 319 

GPP  presented an annual daily average of 36.7 mmol O2 m-2 d-1 and varied from 0.1 320 

to 411.2 mmol O2 m-2 d-1 with both values occurring in the second half of June, only 321 
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11 days apart, as seen in Figure 4. A period of increased productivity was noted from 322 

late April to mid-August, with the average productivity rate for this time being 58.6 323 

mmol O2 m-2 d-1, compared to only 11.1 mmol O2 m-2 d-1 for the rest of the year. In 324 

addition, daily values outside this period were below 100.0 mmol O2 m-2 d-1, while 325 

~20% of daily observations from April to May were above this rate. 326 

Positive daily values of NCP indicate net autotrophy within the water column while 327 

negative values suggest net heterotrophy. NCP showed a relatively balanced annual 328 

average of -0.8 mmol O2 m-2 d-1. Positive NCP estimations exhibited a seasonal pattern 329 

with a highly productive period from April to July (Fig. 4), reflecting net autotrophic 330 

conditions with an average of +34.8 mmol O2 m-2 d-1 across the 4-month period. The 331 

highest positive NCP value of the year (+229.6 mmol O2 m-2 d-1) was observed at the 332 

end of a 57-day period of continuous autotrophic conditions, that averaged +44.1 mmol 333 

O2 m-2 d-1, and matched the peak in  Chl ‘a’ concentration at the end of May. This peak 334 

was followed closely by a second observed in late-June (+197.1 mmol O2 m-2 d-1), 335 

when an additional extended autotrophic period (29 days) averaged +72.2 mmol O2 m-336 

2 d-1. Heterotrophic conditions were nearly absent from March to May, presenting less 337 

than ~15% of total observations in this period. However, in August (-366.8 mmol O2 338 

m-2 d-1) and October (-309.8 mmol O2 m-2 d-1) some high negative daily rates of NCP 339 

were estimated. From August to November, a heterotrophic state averaging -30.0 340 

mmol O2 m-2 d-1 was calculated. 341 

3.3 Relation between environmental conditions and bloom events 342 

Spearman's rank coefficients analysis (Table 1, p<0.05) showed that NCP was strongly 343 

positively (ρ>0.55) correlated with 𝐼𝐼𝑚𝑚, DO in percentage and concentration of Chl 'a' 344 

and negatively correlated (ρ=0.43) with turbidity. GPP showed a strong positive 345 

correlation (ρ>0.55) with Chl 'a' concentration. Moderate positive correlations were 346 
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also found between GPP and 𝐼𝐼𝑚𝑚 (ρ=0.40), average wind speed (ρ=0.47) and 347 

temperature (ρ=0.41). ER was found to strongly negatively correlate with average 348 

wind speed (ρ>0.55).  349 

For this study, a major bloom was considered when 1-hour average values of Chl ‘a’ 350 

concentration were sustained  above 10 µg L-1 and when the biomass gain 351 

corresponded to NCP values >+20 mmol O2 m-2 d-1. In order to evaluate differences 352 

among parameters during bloom events and the rest of the days studied (identified as 353 

low productivity periods LPP), a Kruskal-Wallis analysis (p<0.05) was conducted, 354 

paired with Dunn's test (p<0.05) to identify specific groups (Table 2). Both Chl 'a' and 355 

𝐼𝐼𝑚𝑚 showed a clear separation between bloom groups and LPP, presenting higher 356 

average values during bloom events, particularly during Bloom 2. On average, 357 

oversaturated oxygen values were observed during Bloom 1, 2 and 3, while during 358 

Bloom 4 and LPP water was slightly undersaturated. For NCP, Bloom 4 and LPP 359 

presented average values closer to production balance (=0), while Bloom 1, 2 and 3 360 

showed mean values reflecting a more autotrophic state (>0). Bloom 4 was grouped 361 

with LPP for GPP data due to its lower mean value. For ER, Bloom 4 presented a 362 

tighter range and lower average than the other groups; hence was separated. Grouping 363 

blooms based on temperature placed those occurring during summer (Bloom 3 and 4) 364 

and those in winter-spring periods (LPP and Bloom 1) in different groups, with Bloom 365 

2 (late spring) overlapping among the two groups (Table 2). 366 

Further analysis of how individual environmental conditions contribute to each major 367 

bloom event is shown in the PCA (Fig. 5). The first two principal components 368 

accounted for ~58% of the total variance. PC1 explained 32.82% of the total variability 369 

in the dataset while PC2 described 25.54%. The main factors contributing to PC1 370 

positive eigenvalues (R2>0.80) were 𝐼𝐼0, 𝐼𝐼𝑚𝑚, O2% and Chl ‘a’. In comparison, river 371 
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flow and turbidity correlated with negative eigenvalues of PC1 (R2>-0.41), and to a 372 

lesser extend (R2>-0.20) tidal range, wind speed and ER. Trophic state was associated 373 

with PC1, with blooms being mainly associated to positive loadings, correlating to 374 

autotrophic conditions. Positive values of PC2 were mainly described (R2>0.84) by 375 

temperature and salinity, followed by ER, turbidity, 𝐼𝐼0 and wind speed (R2>0.33). 376 

Conversely, river inflow and [O2] were the main contributors (R2<-0.81) to negative 377 

eigenvalues. PC2 described the influence of river input to the estuary, associating 378 

Bloom 1 and Bloom 2 (Fig. 5) with higher freshwater flow while Bloom 3 and Bloom 379 

4 were distributed across daily rates during lower riverine inflow. 380 

 381 

Table 1  382 
Spearman's correlation coefficients relating environmental conditions and productivity rates 383 
 𝐼𝐼𝑚𝑚  Tidal 

Range 

Wind 

Speed 

Temp. Sal. O2% [O2] Chl 'a’ Turb. 

NCP 0.61 -0.10 -0.15 0.24 -0.19 0.60 0.37 0.61 -0.43 

GPP 0.40 -0.10 0.47 0.41 0.10 0.28 0.12 0.57 -0.15 

ER 0.21 -0.00 -0.66 -0.12 -0.22 0.27 0.15 0.04 -0.24 

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, ρ 

> 0.55.  

384 
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Table 2  385 
Average and range of daily measured environmental conditions and calculated productivity rates for different major bloom events (continuous chlorophyll' a' concentration values higher than 10 µg L-1) 386 
and low productivity period LPP (studied days without blooms). 387 
 𝐼𝐼𝑚𝑚 Tidal  

range 
Wind 
speed Temp. Sal. O2 % [O2] Chl ‘a’ Turb. NCP GPP ER 

LPP 221.7a 3.3a 4.3  12.7a 31.7a 95.9a 274.8a 0.9a 5.4a -21.2a 18.0a -39.3a 

(283) (26.9 : 2001.9) (1.6 : 4.8) (1.1 : 13.1) (5.7 : 22.0) (28.8 : 33.6) (81.5 : 116.9) (205.8 : 361.4) (0.1 : 3.3) (1.8 : 10.9) (-366.8 : 91.9) (0.2 : 117.9) (-437.5 : -0.2) 

Bloom 1 625.1b 3.0ab 4.2  12.9a 31.3a 120.6b 330.7b 4.2b 3.8a 59.9b 110.2b -50.3a 

(111–124) (188.3 : 1337.6) (1.7 : 4.4) (2.0 : 8.9) (12.3 : 13.5) (29.9 : 31.7) (113.4 : 129.1) (310.3 : 356.1) (3.0 : 5.5) (1.9 : 7.4) (20.6 : 154.0) (39.1 : 284.2) (-212.6 : -4.9) 

Bloom 2 1006.6b 2.9ab 4.0  15.9ab 31.8a 120.3b 312.3b 8.7b 2.3b 87.0b 123.1b -36.1a 

(142–156) (650.3 : 1388.9) (2.0 : 3.9) (2.7 : 5.1) (15.0 : 16.7) (30.9 : 32.4) (104.2 : 134.5) (269.7 : 355.0) (2.0 : 14.3) (1.9 : 2.8) (7.9 : 229.6) (9.1 : 277.9) (-80.0 : -1.3) 

Bloom 3 426.4b 3.2ab 3.6 19.9b 32.3ab 113.5b 270.0a 7.5b 4.6a 44.3b 74.5b -30.1a 

(169–216) (136.3 : 783.5) (2.0 : 4.4) (1.5 : 9.7) (16.5 : 22.0) (30.8 : 33.5) (84.6 : 146.8) (202.7 : 349.8) (2.6 : 16.2) (2.9 : 8.8) (-172.1 : 197.1) (0.1 : 411.2) (-214.1 : -0.1) 

Bloom 4 698.6b 2.3b 2.8 20.5b 33.6b 96.8ab 237.6a 5.0b 3.1ab 2.2ab 6.4a -4.2b 

(236–240) (570.7 : 817.6) (1.9 : 3.1) (2.0 : 4.4) (19.7 : 20.9) (33.6 : 33.6) (94.4 : 99.1) (234.3 : 241.7) (3.3 : 6.5) (2.8 : 3.4) (-1.2 : 6.2) (1.6 : 12.0) (-6.6 : -2.5) 

Included mean water column irradiance 𝐼𝐼𝑚𝑚 (W h m-2 d-1), tidal range (m), wind speed (m s-1), temperature (°C), salinity, dissolved oxygen (% and µmol L-1), chlorophyll 'a' (µg L-1) and turbidity (FNU). Calculated 
productivity rates: NCP, GPP and ER in mmol O2 m-2 d-1. 
Letters in superscript indicate a significant difference from one/all other groups (Dunn's test; p<0.05).  
 388 
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 389 

Fig. 2. Hourly time series of environmental conditions at the Xylem Data Buoy in Southampton Water 390 

in 2019: (a) temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation , (e) 391 

chlorophyll 'a', (f) turbidity and (g) wind speed, represented as daily mean in vertical bars █ and 392 

maximum daily values in black circles ●. In a to g, the 4 major blooms identified are shown as a grey 393 

background █. In d, the red dashed line ‒ ‒ represents 100% of saturation. In c, d and f discrete samples 394 

are shown as  in different colours. In e and f, the daily tidal range is indicated with a black line. In a 395 

to f, Environmental agency sampling points are shown as triangles ▲ in different colours.  396 
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 397 

Fig. 3. Temporal variations (7-day running mean) in (a) surface irradiance I0 and (b) mean water 398 

column irradiance Im with daily mean chlorophyll 'a' concentration included in (a) and (b) as a green 399 

line —. 400 

 401 

 402 

Fig. 4. Calculated daily net community production NCP (vertical bars █), ecosystem respiration ER 403 

(red circles ●) and gross primary production GPP (green circles ●). Respiration data are displayed as 404 

negative values. Change in the daily tidal range is indicated — as a black continuous line. 405 

 406 
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 407 

Fig. 5. Principal Component Analysis (PCA) of environmental conditions. The data clustering and the 408 

primary (PC1:  32.82% of the variance) and secondary (PC2: 25.54% of the variance) axes represent 409 

58.36% of the total variance. Bloom events have been used as factors to illustrate the clusters: Bloom 1 410 

(red circles ●), Bloom 2 (green diamonds ♦), Bloom 3 (blue triangles ▲) and Bloom 4 (orange squares 411 

■). Tem=temperature, Sal=salinity, Chl=chlorophyll ‘a’, I0=surface water irradiance, Im=mean water 412 

column irradiance, O2%=DO in percentage saturation, [O2]=DO concentration, Wind=wind speed, 413 

Tur=turbidity, Tide=tidal range, River=river inflow, GPP=gross primary production, ER=ecosystem 414 

respiration and NCP=net community production. 415 
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 416 

Fig. 6. Daily mean water column irradiance Im compared with (a) daily chlorophyll ‘a’ and (b) net 417 

community production NCP; and daily temperature averages compared with (c) daily chlorophyll ‘a’ 418 

and (d) net community production NCP. References lines   ̶ ̶  for water column irradiance Im of 280 (a) 419 

and 450 W h m-2 d-1 (b), and temperature of 11.91 °C (c and d) were added in. 420 

 421 

4 Discussion 422 

4.1 Drivers of phytoplankton bloom events 423 

Blooms are a fundamental feature of phytoplankton dynamics, defined as events of 424 

fast growth and accumulation of biomass, occurring at different magnitudes and 425 

duration according to environmental conditions (Shi et al., 2016). Three major 426 

phytoplankton bloom events were observed in the mid Southampton Water estuary 427 
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between late April and the beginning of August 2019, plus a fourth minor bloom 428 

detected at the end of August.  429 

Daily peaks in Chl ’a’ recorded during bloom events in the present study compare well 430 

with previous observations in the estuary (Iriarte & Purdie, 2004; Torres-Valdés & 431 

Purdie, 2006), where values reached nearly 20 µg L-1 during spring blooms. The 432 

magnitude of coastal phytoplankton blooms is highly variable across the world; 433 

ranging from coastal ecosystems with typically low concentrations of Chl ‘a’ such as 434 

the Thau Lagoon (France) presenting mean values between 2.8 and 3.6 µg L-1 during 435 

intense bloom events (Trombetta et al., 2019) to the  Lagoon and Bay of Bizerte 436 

(Tunisia) described by Salhi et al. (2018) displaying more comparable maximum mean 437 

values during a summer bloom (15.8 and 8.5 µg L-1). It is also possible to find highly 438 

eutrophicated systems like the Sundays Estuary in South Africa where exceptional 439 

maximum chlorophyll values during blooms above 100 µg L-1 have been reported 440 

(Lemley et al., 2018). 441 

Nutrient input from runoff can supply ecosystems with nutrients, stimulating 442 

phytoplankton production and leading to the accumulation of biomass and bloom 443 

formation (Cloern & Jassby, 2010; Trombetta et al., 2019). However, in the present 444 

study nutrient measurements from surface water samples collected from near the data 445 

Buoy showed no clear relationship to appearance of blooms although nitrate, 446 

phosphate and silicate concentrations reached minimum levels in late May following 447 

the Guinardia delicatula bloom (see supplementary Figure A.2). Nutrient 448 

concentrations then increased during June with nitrate and phosphate concentrations 449 

declining to almost undetectable levels for the first 3 weeks of July during the 450 

Mesodinium rubrum bloom. 451 
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One of the main factors limiting water column primary production is light availability, 452 

in shallow and turbid coastal systems (Brito & Newton, 2013). A comparison between 453 

the temporal variation of average daily Chl ‘a’ concentration and 𝐼𝐼𝑚𝑚 (Fig. 6a), showed 454 

that Chl ‘a’ values above 10 µg L-1 only occurred when 𝐼𝐼𝑚𝑚 was greater than  280 W h 455 

m-2 d-1. A similar comparison between NCP values and Im (Fig. 6b) resulted in positive 456 

values, therefore production exceeding respiration, when 𝐼𝐼𝑚𝑚 was above 450 W h m-2 457 

d-1. Riley (1967), proposed a theoretical 𝐼𝐼𝑚𝑚 critical value for a sustained increase in 458 

phytoplankton biomass, in temperate coastal and estuarine waters, of 200 W h m-2 d-1, 459 

a threshold value below that found in the present study. However, previous research 460 

in Southampton Water (Iriarte & Purdie, 2004) found that Chl ‘a’ levels above 10 µg 461 

L-1 occurred, when 𝐼𝐼𝑚𝑚 averaged for the previous 7 days exceeded 380 W h m-2 d-1. 462 

In temperate latitudes, water temperature is a critical parameter influencing 463 

phytoplankton bloom development (Lemley et al., 2018b; Trombetta et al., 2019). 464 

Furthermore, phytoplankton growth rates increase with temperature, almost doubling 465 

with each 10 °C rise (Rose & Caron, 2007). Given the range of temperature observed 466 

during 2019 in Southampton Water (5.7 – 22 °C), phytoplankton growth rates will 467 

have increased by more than double during the annual period studied. A comparison 468 

of   temporal variation in water temperature against daily average Chl ‘a’ concentration 469 

(Fig. 6c) and NCP (Fig. 6d) found that bloom conditions only occurred  when 470 

temperature values were above 11.9 °C for both parameters. A similar result was 471 

reported by (Iriarte & Purdie, 2004) in their previous 5-year study where all major 472 

bloom events in Southampton Water occurred when water temperature was greater 473 

than 12 °C. An identical reference value of 12 °C was found by (Carstensen et al., 474 

2015) for coastal sites in the Rhine-Meuse-Scheldt delta and the Wadden Sea, 475 

indicating phytoplankton communities of temperate coastal ecosystems, at comparable 476 
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latitudes, tend to bloom at around the similar threshold temperature. When compared 477 

against a coastal ecosystem at a lower latitude (southern France), the spring bloom 478 

generally occurred at a slightly increased temperature of 14 °C (Trombetta et al., 479 

2019). 480 

Water level data analysed showed a positive correlation (data not shown) between tidal 481 

range and turbidity, indicating that turbidity in the system generally increased during 482 

spring tides. Bucci et al. (2012) reported phytoplankton summer blooms in the São 483 

Vicente estuary (Brazil) usually occurred towards the end of neap tides, but no 484 

significant correlation with tidal cycles was found. This lack of correlation with tidal 485 

range, in addition to the strong correlations between phytoplankton peaks and 𝐼𝐼𝑚𝑚 and 486 

temperature, indicate that blooms in the Southampton Water estuary are not only 487 

regulated by turbulent mixing due to tides but a combination of factors affecting the 488 

solar radiation attenuation throughout the water column (Cloern et al., 2014). In most 489 

shallow estuaries where the neap-spring cycle is present, fortnightly patterns of 490 

reduced mixing during neap tides can be observed (Carstensen et al., 2015), and it is 491 

during these periods that phytoplankton net biomass growth is enhanced. A similar 492 

pattern was reported by Cloern (1996) in his review of phytoplankton bloom dynamics 493 

in the San Francisco Bay, a system with a similar depth (~10m) to the Southampton 494 

Water estuary, but with a smaller tidal range (2m). 495 

4.2 Net community production 496 

High-frequency DO measurements represent a useful opportunity to link productivity 497 

rate dynamics and net community production response to short-period changes in 498 

environmental conditions, as well as episodic events, such as storms or increased river 499 

inputs (Staehr et al., 2012). The annual average rate of NCP for Southampton Water 500 

of -0.8 mmol O2 m-2 d-1 showed an overall more or less balance between GPP and ER, 501 
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leaning slightly towards a heterotrophic state. A more heterotrophic annual average 502 

value of -5 mmol O2 m-2 d-1 was reported for a shallow bank in the mouth of the 503 

Thames estuary, calculated using the open diel method (Hull et al., 2016). Reports of 504 

more highly heterotrophic ecosystems are widely described in the literature: such as 505 

the Ria Formosa Lagoon, South Portugal with DO dynamics used to calculate an 506 

annual value of -244 mmol O2 m-2 d-1 (Cravo et al., 2020) and the use of the LOICZ 507 

biogeochemical model applied to four different coastal lagoons in the Gulf of 508 

California reported all of them to be heterotrophic for the time studied (Valenzuela-509 

Siu et al., 2007).  Caffrey et al. (2014) calculated the annual NCP, for three different 510 

estuaries in the Gulf of Mexico, and found all sites were net heterotrophic for most of 511 

the year with the greatest heterotrophy during the summer. On the other hand, an 512 

example of an ecosystem inclining to an autotrophic state is that reported by Haskell 513 

et al. (2019) in a productive coastal zone in southern California where NCP values of 514 

+0.16 and +0.18 mmol O2 m-2 d-1 were calculated for 2013 and 2014, respectively 515 

through glider-measured oxygen concentrations.  516 

Results from the current study showed a noticeable pattern of NCP behaving more 517 

similarly to GPP than to ER, and both showing a strong correlation to Chl ‘a’ 518 

concentration (Table 1), suggesting productivity rates could be regulated by factors 519 

influencing autotrophic processes. The same tendency of GPP influencing NCP trends 520 

more strongly and correlations with Chl ‘a’ were observed by Agusti et al. (2018) in 521 

their study of the productive Matilda Bay in Australia, where they found that over an 522 

annual period, ER rates were less variable than GPP rates. Lack of correlation between 523 

ER and Chl ‘a’, while presenting a strong relation to GPP, was also observed by 524 

Murrell et al. (2018) in their study of a river-dominated estuary located in the Gulf of 525 

Mexico. 526 
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ER showed no clear seasonal pattern, while GPP produced maximum rates during the 527 

spring-summer period (Fig. 4). This was reflected in moderate correlations between 528 

GPP and temperature and 𝐼𝐼𝑚𝑚 (Table 1), with higher values converging during summer. 529 

Since NCP closely reflected GPP trends, the highest positive NCP calculated value of 530 

175 mmol O2 m-2 d-1, was observed in the middle of the spring-summer period. This 531 

maximum value is lower than others have reported during spring-summer NCP peaks 532 

in the Ria de Vigo, Spain (Alonso-Pérez et al., 2015) and in the mouth of the River 533 

Thames  (Hull et al., 2016), of ~300 mmol O2 m-2 d-1 and 485 mmol O2 m-2 d-1, 534 

respectively.  535 

Photosynthetic rates generally present a close relation to light availability in the water 536 

column, although coastal ecosystem respiration is sometimes unaffected directly by 537 

light levels (Kemp & Testa, 2011). An analysis of NCP and light availability (Fig. 6b) 538 

showed that when 𝐼𝐼𝑚𝑚 reached values of 450 W h m-2 d-1 and above, NCP was 539 

consistently positive, indicating at these levels of  𝐼𝐼𝑚𝑚, productivity was consistently 540 

exceeding respiration; hence, the system was net autotrophic. 541 

As shown with Chl ‘a’ concentration peaks, NCP daily values during the high 542 

productivity period (April to August) were related to neap tides (Fig. 4). During this 543 

time, NCP showed a biweekly pattern peaking during the monthly low neap tide. This 544 

reveals the system was strongly autotrophic during these tides and moving to a less 545 

autotrophic state or, sometimes, even shifting to heterotrophic conditions with the 546 

onset of the spring tide. The closest comparison to these results was the two-month 547 

study done by Nidzieko et al. (2014) in a tidal creek/marsh area in the deeper main 548 

channel of Elkhorn Slough, California, where they found net heterotrophic conditions 549 

during spring tides and mostly in balance conditions during neap tides. 550 
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Although our results showed that the Southampton Water estuary presented an overall 551 

net heterotrophic annual state in 2019, where input of external organic matter is 552 

needed, and CO2 is released to the atmosphere (Tang et al., 2015), seasonal 553 

productivity events shifted this state for a few days and sometimes weeks to 554 

autotrophic conditions, particularly during the highly productive period in spring-555 

summer. This change meant that for brief periods, the ecosystem was a strong CO2 556 

sink and a source of organic matter and oxygen (Lee et al., 2017), consistent with the 557 

hypothesis that primary production during these brief episodes is a substantial 558 

component of annual primary production (Cloern et al., 2014). 559 

4.3 Method implications 560 

The open diel oxygen method coupled with high-frequency water quality monitoring 561 

is a powerful tool to help understand the influence of physical and biological processes 562 

on DO changes through time, particularly since the principal biological process 563 

influencing the ocean's declining DO concentration is phytoplankton respiration 564 

(Robinson, 2019). The increasing availability of improved and affordable 565 

instrumentation has made it possible to create high-frequency time-series from which 566 

more reliable estimations of net community production can be derived and evaluate 567 

different spatial and temporal variability within ecosystems (Aristegi et al., 2009; 568 

Staehr et al., 2012). 569 

As with any method, assumptions must be made in order to apply the approach to 570 

different ecosystems and data availability. Since it frames the possibility of applying 571 

the open diel method to a particular ecosystem, one of the main assumptions is that the 572 

water column monitored must be reasonably homogenous and well mixed (Caffrey et 573 

al., 2014). Vertical profiles of temperature, salinity and DO% made previous to the 574 

2019 data time series (see supplementary Figure A.3) presented temperature 575 
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differences between the surface and bottom waters that ranged from 0.1°C in late April 576 

to 2.0°C in July. DO saturation throughout the water column presented higher 577 

variability in August (9%) and did not correspond with the profile presenting the 578 

greater temperature variation or the highest temperature (July). Both DO saturation 579 

and temperature showed less variability through the water column than data in Murrell 580 

et al. (2018) study (26% and ~4°C). Among other complications previously 581 

encountered using this methodology is the necessity to separate air-sea O2 exchange 582 

(Staehr et al., 2012). Direct measurements of air-water exchange can present great 583 

difficulty, and some past works have opted for assumed constant values for similar 584 

systems (Caffrey, 2004). Since air-water exchange varies due to surface turbulence, 585 

water viscosity and the solubility of O2 (Holtgrieve et al., 2010); to minimize error 586 

propagation, in the present study it was calculated for every time-step (1 hour) as a 587 

function of diffusion through bubbles and gas transfer velocity, which in turn included 588 

the Schmidt number encapsulating influences of water temperature and salinity. 589 

However, a correlation between values of calculated ER and wind speed (Table 1) 590 

suggest highly negative NCP rates related to wind gusts above 9 m s-1 (data not shown) 591 

and, although it is known that in shallow ecosystems, wind stress can induce rates of 592 

sediment resuspension stimulating ER and reducing GPP (Kemp & Testa, 2011), this 593 

seems to be an overestimating heterotrophic condition from the bubble supersaturation 594 

term.  595 

Contributions from partially dissolved bubbles and overestimation in the air-water 596 

transfer has been reported previously (Haskell et al., 2019; Hull et al., 2016; Liang et 597 

al., 2013). A final generalisation is that ER rates are assumed constant through the diel 598 

cycle since CO2 fixation through chemoautotrophic processes is usually smaller than 599 

that fixed by photosynthesis. In most coastal ecosystems (Testa et al., 2012), processes 600 
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such as nitrification and photooxidation are assumed to be insignificant compared to 601 

estimates of ‘night respiration’ (Demars et al., 2015). 602 

There are several methods available to estimate aquatic primary production, but few 603 

provide the opportunity to calculate directly continuous productivity rates for long 604 

periods at a low cost and fieldwork intensity, and at the same time, make available 605 

easy validation using independent estimations, like the open diel oxygen method 606 

(Briggs et al., 2018). Climate change and variability in environmental conditions will 607 

have an effect on both ER and GPP and, consequently, on NCP (Staehr et al., 2012), 608 

therefore, it is vital to increase understanding of how these factors influence 609 

productivity rates across a broader range of coastal regions, and at a scale that allows 610 

prevention and mitigation management in future  years. 611 

5 Conclusions 612 

The collection of high-frequency estuarine water quality data allowed the correlation 613 

of abiotic environmental conditions with biological rate processes occurring over 614 

different time scales. Two independent variables were used to identify major 615 

phytoplankton bloom events in the Southampton Water estuary; Chl ‘a’ concentration 616 

and calculated rates of NCP from high frequency dissolved oxygen concentrations. 617 

The initiation of major phytoplankton bloom events during the spring-summer period 618 

were correlated with critical values of temperature above 12 °C and mean water 619 

column irradiance 𝐼𝐼𝑚𝑚 greater than 280 W h m-2 d-1. Additionally, an analysis of the 620 

neap-spring tidal cycle identified that blooms typically developed during neap tides 621 

and dissipated during the following spring tide. The tidal cycle creates stronger mixing 622 

conditions during spring tides leading to increased turbidity compared with lower 623 

mixing, and possible stratification, during neap tides enhancing phytoplankton 624 

biomass growth. Annual daily average NCP for the estuary detailed a net heterotrophic 625 
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state (-0.8 mmol O2 m-2 d-1,) but seasonal productive events, shifted this state for 626 

several days and sometimes weeks to net autotrophic conditions. The results of this 627 

study have demonstrated the opportunity of coupling high-frequency data on estuarine 628 

water quality and the use of the open oxygen diel method for a broader understanding 629 

of the bloom phenomenon in estuarine and coastal waters. Collectively, these studies 630 

can provide predictors of future phytoplankton bloom occurrence across a diversity of 631 

aquatic ecosystems. 632 
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