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Identification of Seasonal and Interannual Drivers of Primary
Production in Two Temperate Estuaries Using High-Frequency
Environmental Data

by
Africa Paulina Gomez Castillo

Estuaries are one of the most productive coastal regions and, within them, phytoplankton
is the most important primary producer. Net community production, the balance between
production and consumption, provides an integrated measure of the trophic state,
determining if the system is accumulating or depleting organic matter and whether is a
net sink or source of O and CO». Given that interactions between physical and biological
processes within estuaries tends to vary over diurnal and semi-diurnal timescales, this
study used high-frequency environmental data to estimate interannual and seasonal
drivers of primary production of two contrasting temperate estuaries, the Southampton
Water estuary (2014-2020) and Christchurch Harbour estuary (2014-2018). An analysis
of the correlation between phytoplankton blooms (from chlorophyll ‘a’) and
environmental conditions, demonstrated correlations between the spring bloom initiation
and week-long periods with >800 Wh m? d*! peaks in surface light availability.
Christchurch displayed the typical dynamics described for coastal temperate estuaries,
displaying spring and autumn blooms, whereas Southampton presented blooms in spring
and summer. Blooms in Southampton developed during neap tides and dissipated on the
following spring tide, suggesting reduced estuarine flushing and possible stratification
enhancing phytoplankton biomass growth during neap tides. Application of the open
water diel oxygen method proved to be a reliable technique to integrate daily estimations
of ecosystem production and respiration rates in both estuaries, as long as assumptions
are appropriately addressed. Results from this method suggested Southampton Water had
become more net heterotrophic (-1.3 to -48.7 mmol O, m? d*), while Christchurch
Harbour seemed had turnes net autotrophic (-11.7 to 19.8 mmol 0? m?2 d?). An
examination of the metabolic balance (GPP:ER) classified both estuaries between
oligotrophic and mesotrophic states, with Southampton leaning towards mesotrophic
conditions. Estimations of the estuarine carbonate system parameters were performed in
Southampton (2019-2020). The estuary was identified to be a source of CO; to the
atmosphere, agreeing with the net heterotrophic classification from dissolved oxygen
derived net community production measurements. Inconsistencies among estimations
were attributed to possible seasonal stratification, underestimation of wind speed and
estuarine flushing times. Frequency and magnitude of riverine inputs influenced the
distribution of carbonate system parameters. Biological processes were identified as a
major factor controlling the pH/oxygen saturation dynamics and CO. fluxes were
observed to follow the pattern of dissolved inorganic carbon concentration. The
heterogeneity of coastal zones is of global concern and results from this study will allow
a better understanding of local and regional primary production dynamics as well as
provide a baseline to assess future anthropogenic impacts and climate change alterations
to the aquatic trophic state of the Southampton Water and Christchurch Harbour estuaries.
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Fig 4.3 Time series for 2016 of (a) calculated daily respiration ER (red bars .)
and gross primary production GPP (green bars l) and (b) calculated net
community production in Southampton Water. In (a) ecosystem respiration data
are displayed as negative values for convenience of graphing. In (b) negative
values indicate net heterotrophic state (orange bars [ ), and positive values
indicate net autotrophic state (blue bars .) Daily chlorophyll ‘a’ is shown as a
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Fig 4.4 Time series for 2018 of (a) calculated daily respiration ER (red bars .)
and gross primary production GPP (green bars l) and (b) calculated net
community production in Southampton Water. In (a) ecosystem respiration data
are displayed as negative values for convenience of graphing. In (b) negative
values indicate net heterotrophic state (orange bars [ ), and positive values
indicate net autotrophic state (blue bars .) Daily chlorophyll ‘a’ is shown as a
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Fig 4.5 Time series for 2019 of (a) calculated daily respiration ER (red bars .)
and gross primary production GPP (green bars l) and (b) calculated net
community production in Southampton Water. In (a) ecosystem respiration data
are displayed as negative values for convenience of graphing. In (b) negative

values indicate net heterotrophic state (orange bars [ ), and positive values
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indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as a
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Fig 4.6 Time series for 2020 of (a) calculated daily respiration ER (red bars l)
and gross primary production GPP (green bars .) and (b) calculated net
community production in Southampton Water. In (a) ecosystem respiration data
are displayed as negative values for convenience of graphing. In (b) negative
values indicate net heterotrophic state (orange bars [), and positive values
indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as a
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Fig 4.7 Time series for 2014 of (a) calculated daily respiration ER (red bars l)
and gross primary production GPP (green bars .) and (b) calculated net
community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars .) Daily chlorophyll ‘a’ is shown
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Fig 4.8 Time series for 2015 of (a) calculated daily respiration ER (red bars l)
and gross primary production GPP (green bars .) and (b) calculated net
community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars .) Daily chlorophyll ‘a’ is shown
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Fig 4.9 Time series for 2016 of (a) calculated daily respiration ER (red bars l)
and gross primary production GPP (green bars .) and (b) calculated net

community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
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respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown
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Fig 4.10 Time series for 2017 of (a) calculated daily respiration ER (red bars .)
and gross primary production GPP (green bars l) and (b) calculated net
community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown
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Fig 4.11 Time series for 2018 of (a) calculated daily respiration ER (red bars .)
and gross primary production GPP (green bars l) and (b) calculated net
community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown
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Fig. 4.12 Principal Component Analysis (PCA) for (a) Southampton Water and
(b) Christchurch Harbour Ferry Pontoon. Seasons have been used as factors to
illustrate the clusters: winter (blue diamonds ¢), autumn (orange circles ),
summer (green squares m) and spring (yellow triangles +). Filled symbols
designate autotrophic conditions while open symbols indicate heterotrophic
conditions. Arrows — represent the variable and the direction of an arrow
indicates its relation with the Principal Component (PC) and other variables.

Tem=temperature, Sal=salinity, Chl=chlorophyll ‘a’, 10=surface water irradiance,
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Im=mean water column irradiance, 02%=DO in percentage saturation, [02]=DO
concentration, Wind=wind speed, Tur=turbidity, Tide=tidal range, River=river
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Fig. 4.14 Relationship between daily ecosystem respiration (ER) and daily gross
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Fig 4.15 Time series from 2014 to 2020 of (a) calculated daily respiration ER (red
bars l) and gross primary production GPP (green bars .) and (b) calculated net
community production in Southampton Water. In (a) ecosystem respiration data
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green line —. Seasons are represented with white and grey bars; W=winter,
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Fig 4.16 Time series from 2014 to 2018 of (a) calculated daily respiration ER (red

bars l) and gross primary production GPP (green bars .) and (b) calculated net
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community production in Christchurch Harbour Ferry Pontoon. In (a) ecosystem
respiration data are displayed as negative values for convenience of graphing. In
(b) negative values indicate net heterotrophic state (orange bars | ), and positive
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Symbols and abbreviations

C*

Calculated oxygen concentration in equilibrium with the
atmosphere as a function of temperature and salinity (Feistel,
2008)

Oxygen concentration att = 0

Oxygen concentration at the time step (for the present study,
1 hour)

Gas exchange from diffusive and bubble processes
Dihydrogen monoxide; chemical formula for water
Daily surface irradiance

Daily mean water column irradiance

Gas transfer velocity coefficient

Manganese (lIl) hydroxide

Hydroxide ion

Hourly rates of apparent primary production
Atmospheric pressure standard value of 101,325 Pa,
Atmospheric air pressure at sea level

Hourly rates of apparent night-time respiration
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Sum for daily solar energy

Schmidt number; a dimensionless number defined as the
ratio of momentum diffusivity (kinematic viscosity) and mass

diffusivity for Oz

Total alkalinity

Standardised wind speed value (9 m s?) for a smooth

boundary regime defined by Wanninkhof (2014)
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Chapter 1

Introduction

1.1 Importance of estuarine ecosystems

Coastal zones include lower-river basins (<100 km from shore), estuaries, coastal
wetlands, and shelves (Cai, 2011). They represent only 7% of the total ocean
surface area (Kanuri et al., 2017) however, they play a major role in hydrographic
and biogeochemical characteristics of coastal marine ecosystems by acting as
natural vectors for land-sea interactions (Ruiz et al.,, 2013). Coastal waters
provide habitats to support local biodiversity and sometimes migratory species
(Liu et al., 2015) and also a variety of ecological services such as water clarity,
carbon uptake, erosion control and primary production (Mahoney & Bishop, 2017;
Ruiz-Ruiz et al., 2017). While different coastal zones share similar characteristics,
their response to changes in climate variables fluctuates according to many
factors, such as geomorphology and anthropogenic pressures. Among these
regions, estuaries can be highlighted due to their unique physical, chemical, and
biological characteristics and complex ecological interactions and spatial and

temporal variability (Lemley et al., 2020; Newton et al., 2014).

Estuaries are commonly defined as “semi-enclosed coastal bodies of water that
have a free connection with the open sea and within which seawater is
measurably diluted with freshwater derived from land drainage” (Borges & Abril,
2011). They can act as fast biogeochemical reactors as a consequence of the

continuous input of environment nutrients and organic matter from riverine
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sources (Cloern et al., 2014). These natural inputs of nutrients from rivers caused
by weathering, have been disturbed in the last few decades by human activities,
such as agriculture, wastewater treatment and consumption of fossil fuels
(Rodriguez-Gallego et al., 2017) leading to an alteration of the biogeochemical
processes and the biological community structure (Davidson et al., 2015; Staehr
et al., 2017). Human population growth around estuaries can lead to an increase
in nutrient and organic inputs (Caffrey et al., 2014; Guenther et al., 2015) resulting
in major water quality problems, emphasising the importance of determining the

current state of representative ranges of estuarine ecosystems.

1.2 Distribution of phytoplankton in coastal waters

Phytoplankton communities are the basis of many marine ecosystems, regulating
the energy transfer efficiency through the food web but also the efficiency of the
biological carbon pump, and furthermore, are responsible for roughly half of
global primary production (Behrenfeld et al., 2006; Rose & Caron, 2007). In
estuaries, phytoplankton exhibit rapid responses to environmental variations by
modifying their temporal and spatial species distribution, usually highly amplified
when compared to the open ocean (e.g. Leterme et al.,, 2014). Therefore,
phytoplankton is commonly acknowledged as an excellent bioindicator of the
impact of natural and man-driven changes in coastal ecosystems (Leterme et al.,

2014; Lépez-Abbate et al., 2017).

The most common parameter used to measure phytoplankton biomass variability
is the concentration of the chlorophyll ‘a’ (Chl ‘a’) pigment (Niu et al., 2016;
Winder & Cloern, 2010). Given the strong relation between chl ‘a’ and primary
production, there is an implication that the observed variability in one parameter
can indirectly describe processes associated with the other. Therefore, the

2
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phytoplankton biomass distribution in an estuary can indicate the dynamics of the
seasonal and annual variability of the ecosystem properties such as water quality,
community metabolism, and carrying capacity for fish and shellfish (e.g. Cloern

& Jassby, 2010).

Phytoplankton blooms are common occurrences in many coastal ecosystems,
and estuaries are no exception (e.g. Rose & Caron, 2007). A bloom is a rapid
increase in phytoplankton biomass caused by temporary imbalances between the
rate of primary production and the rate of loss of photosynthetically fixed carbon
due to respiration, grazing, and advection (e.qg. Iriarte & Purdie, 1994). To classify
an event as a bloom, it is widely accepted that a substantial deviation above
background phytoplankton biomass for the individual ecosystems is needed (e.g.
Carstensen et al., 2015). More than a single event, blooms are usually a series
of fluctuations where the biomass and the species composition of the
phytoplankton population change rapidly (Cloern, 1996; Godrijan et al., 2013),
and can affect positively or negatively food web structure and carbon flow

(Narasimha et al., 2017; Trombetta et al., 2019).

1.2.1 Seasonal blooms

Phytoplankton communities and biomass change on many scales simultaneously
(e.g. Bucci et al., 2012). Estuaries present an extensive range of variability
patterns, with some dominated by a seasonal fluctuation, others dominated by
annual oscillation and others dominated by the residual component, including

exceptional bloom events such as red tides (e.g. Cloern & Jasshy, 2010).

In an extensive review of phytoplankton bloom dynamics in coastal ecosystems,
Cloern (1996) introduced a classification for seasonal blooms into three types: (i)

recurrent seasonal events that usually persist over weeks, (ii) aperiodic events

3
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that often last for days, and (iii) exceptional events that are typically dominated
by few species (sometimes noxious or toxic forms) and can persist for months.
Seasonal blooms can be observed in spring, summer, autumn, and winter and
these events are often dominated by different species each season as the
phytoplankton community adapts to changes in resources and the physical
environment (e.g. Cloern & Jassby, 2010). In Cloern (1996) review, he suggested
that most ecosystems show a narrow range of annual variability and that those
with substantially large annual variability can attribute this to disturbance from

natural events or human actions.

Undoubtedly, the most often described seasonal pattern is the spring bloom
(Carstensen et al., 2015; Martellucci et al., 2021; Niu et al., 2016; Trombetta et
al., 2019; Zingone et al., 2010); an occurrence mainly observed in all aquatic
systems in temperate and subpolar regions as a response to seasonal increases
in temperature and solar radiation, and the subsequent thermal stratification after
winter mixing redistributing nutrients to surface water (e.g. Leterme et al., 2014).
The spring bloom typically persists for a few weeks to months, with eventually
nutrient limitation, cell sinking and grazing causing the bloom to collapse. A
secondary biomass peak stimulated by excess nutrients can develop in late

summer or autumn (e.g. Winder & Cloern, 2010).
1.2.2 Environmental conditions affecting blooms

The magnitude, timing and duration of phytoplankton blooms across ecosystems
varies greatly (Leterme et al., 2014). Even though much of phytoplankton
variability can be driven by the annual cycles of solar radiation and atmospheric
input, in such complex and dynamic systems like estuaries, fluctuation in

phytoplankton biomass is generated by additional processes that occur across
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their interfaces with land, ocean, atmosphere, and underlying sediments (e.g.
Cloern & Jassby, 2010). Consequently, blooms are generated from a
combination of different critical factors and interactions between them (Henson

et al., 2006; Niu et al., 2016).

Temperature affects phytoplankton physiology and metabolic process, changing
the composition and trophic interactions of plankton communities; for instance, in
non-limited nutrient conditions, rises in temperature can increase nutrient uptake
(e.g. Trombetta et al., 2019). In addition, surface blooms can be promoted by
establishing strong thermal stratification in the water column due to the sudden

increase of temperature (e.g. Carstensen et al., 2015).

However, light availability is usually the critical driver of bloom initiation in coastal
environments. Interannual variability within estuaries is modulated by surface
irradiance (PAR), oscillation and weather conditions affecting it, such as cloud
cover. Moreover, water transparency and surface mixed layer depth affect the

amount of light available for phytoplankton (e.g. May et al., 2003).

Light availability in turbid estuaries can limit phytoplankton growth, but blooms
regularly occur when turbidity decreases. In most shallow estuaries, the main
cause of changes in turbidity is vertical mixing driven by tidal currents with
variations between ebb and flood phases as well as between neap and spring
tides (Bucci et al.,, 2012). Tides can affect sediment resuspension rates and,
therefore, turbidity. Additionally, a higher tidal range means a larger intrusion of
coastal water than with a low tidal range, which is generally less turbid, and this
would tend to counteract the effect of bottom resuspension (e.qg. Iriarte & Purdie,

2004). Moreover, the presence of suspended materials from river runoff can also



Chapter 1 — Introduction

affect estuarine turbidity depending on its particle load as a result of precipitation

rates (e.g. Martellucci et al., 2021).

Nutrient input from runoff can supply systems with nutrients, stimulating
phytoplankton production and leading to the accumulation of biomass and bloom
formation (e.g. Trombetta et al., 2019). However, changes in nutrient loads due
to human activities have the potential to modify the periodicity and magnitude of
phytoplankton blooms or may cause an environment to become eutrophic (e.g.
Davidson et al., 2012). Horizontal and vertical water movements largely influence
the availability of nutrients, and in shallow estuaries, the intensity and direction of
winds can strongly influence the nutrient supply by sediment resuspension (e.g.
Silkin et al., 2019). Freshwater inflow can favour phytoplankton by promoting
vertical salinity stratification retaining phytoplankton in a nutrient-rich and well-
illuminated zone. Nevertheless, in small estuarine systems, intense freshwater
pulses can flush out the phytoplankton community (Bucci et al., 2012; Cloern &

Jassby, 2010; Peierls et al., 2012).
1.3 Estuarine biogeochemical processes

Biogeochemistry is defined by Bianchi (2012) as the integrative field in which
interactions between biological, chemical, and geological processes are studied
to determine sources, sinks, and fluxes of elements through different reservoirs
within ecosystems. Given that estuaries are complex ecosystems where
processes do not work independently from one another (Laane & Middelburg,
2011), in recent years, this holistic approach has been used to improve the
understanding of estuaries and the role they play in defining the hydrographic
and biogeochemical characteristics of coastal marine ecosystems (e.g. Ruiz et

al., 2013).
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In estuaries, the spatial and temporal scales of biogeochemical cycles can vary
considerably within days and even hours (Bianchi, 2012), thus, the importance of
estimating atmospheric fluxes of biogases in estuaries and their impact on global

budgets cannot be overestimated (e.g. Frankignoulle & Middelburg, 2002).
1.3.1 Dissolved oxygen in the water column

In estuarine environments, the concentration of dissolved oxygen (DO) is a key
indicator of water quality due to its direct relation with biological and
environmental processes (Yuan et al., 2016). In surface waters, DO
concentrations are determined by inputs from the atmosphere and aquatic plant
photosynthesis, and outputs, which are dominated by respiration and other
processes that consume oxygen (Friedrich et al., 2014). Furthermore, low DO
concentrations can cause adverse responses from aquatic organisms such as
slower growth rates, elevated stress levels and in some cases death (e.g. O’Boyle
et al., 2009). Due to the above, it is not surprising that most of the methods
applied to assess eutrophication include water column DO measurements. Even
when it has been classified as a secondary symptom of eutrophication (e.g.
Bricker et al., 2008), dissolved oxygen is a major indicator of how an ecosystem

responds following an increased runoff of nutrients.

In coastal ecosystems, and mainly in those affected by eutrophication, the
developing plant biomass leads to increased photosynthetic oxygen production.
This elevated oxygen concentration is soon reduced by respiratory oxygen
consumption of organic matter indicated by a biological demand for oxygen. A
large oxygen demand can result in two of the most important oxygen-related

conditions of hypoxia and/or anoxia (e.g. Nezlin et al., 2009).
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1. Overlan runoff and water from rivers enter de
ecosystem; bringing organic matter and nutrients.

2. Nutrients allow
plankton to flourish.

7. Dead cells, waste and organic
matter are decomposed and
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@ zooplankton
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5. Movement of water
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Fig. 1.1 Description of hypoxia process. Infographic from (NOAA. Great Lakes Environmental Research Laboratory, 2017).
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Hypoxia is normally defined as when the DO concentration in a water body falls
below 2 mg O2 L™ (~62.5 umol Oz L) and is influenced by a complex interaction

of physical and biochemical processes (Gammal et al., 2017; Xia & Jiang, 2015).

Although, it has been pointed out that this value is very low, and a higher one
(i.e., 3.5 mg O2 L™ or 109.4 umol O2 L) should be used mainly for sites with
more sensitive species (Steckbauer et al.,, 2011). Coastal hypoxia is often
associated with increases in ecosystem production and respiration, presenting
higher net autotrophy in surface layers but higher net heterotrophy in underlying

waters (e.g. Kemp & Testa, 2011).

Moreover, anoxia occurs when DO concentration, in the ecosystem, is below 0.2
mg Oz L™ (~6.3 umol Oz L1); these events are also known as no-oxygen events
(O'Boyle et al., 2009). Hypoxia and/or anoxia events can reduce the tolerance of
organisms to other stressors, disturbing their metabolic activities and eventually

causing their death (Cai et al., 2017; Steckbauer et al., 2011; Xia & Jiang, 2015).

Monitoring oxygen-deficient events in coastal waters is very important, not only
due to their impact on marine life but also because of the close relation oxygen
has with biogeochemical cycles and nutrient recycling (Ahlgren et al., 2017; Zhu
et al.,, 2017). Hypoxia can modify the amount of P and N released from the
sediments that then becomes available for biota (e.g. Gammal et al., 2017), which

helps to extend eutrophication conditions.
1.3.2 Net community production

An accurate estimate of the oxygen flux at the air-sea interface can be achieved
from the determination of the net primary production of the ocean (e.g. Tilstone
et al., 2009). Several techniques are used to determine aquatic rates of net

primary production, the most common being the method introduced by
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Steemann-Nielsen (1952) where radioactive carbon 14 isotope (**COz) uptake
and photosynthetic conversion to reduced particulate organic carbon by a natural
community of microplankton, is measured after growth in bottles (Chavez et al.,

2011; Johnson & Bif, 2021; Oczkowski et al., 2016).

Alternatively, changes in DO can be measured in small-volume glass bottle
incubations in the dark and light to detect respiration and net production (Langdon
& Garcia-Martin, 2021). However, the problems inherent in these short-term,
small volume incubation techniques are exacerbated in the highly dynamic
heterogeneous coastal zone, where the seasonal oxygen change shows marked
variability (Queste et al., 2016). Interaction between physical and biological
processes within estuaries tends to vary over diurnal, semi-diurnal and
sometimes episodic timescales, making acquiring frequent data critical to

accurately assess ecosystem health for these periods (e.g. Nidzieko et al., 2014).

An alternative and more integrative method to estimate primary production relies
on the calculation of the in situ oxygen mass-balance from continuous
measurements of DO: the open water diel oxygen method, first proposed by
Odum (1956) and later modified to apply it to estuarine systems (Caffrey, 2003;
Emerson et al.,, 2008). The difference in DO concentration across a specific
period of time has been widely used to quantify Oz flux due to the release of
oxygen during photosynthesis and uptake during aerobic respiration, allowing
these separate processes to be determined together (Caffrey, 2003, 2004;
Herrmann et al., 2014). In addition, to DO, it is necessary to monitor other
parameters such as light and water clarity, temperature, nutrient and organic
matter loading, water residence time and water depth since these are key

environmental factors that influence productivity rates (Herrmann et al., 2014).
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The use of the open water diel oxygen method provides a practical approach to
capturing events and ecosystem changes over time, given that DO variability can
be recorded continuously and for sustained periods (e.g. Beck et al., 2015). This
method quantifies the in situ diel oscillations in DO concentration to estimate daily
integrated gross primary production (GPP), ecosystem respiration (ER) and net

community production (NCP) (Demars et al., 2015).

ER > GPP Heterotrophy

ER < GPP Autotrophy

Fig. 1.2 Aquatic ecosystem trophic state through the relationship between ecosystem respiration
(RE) and gross primary production (GPP), and its influence in the air-sea exchange of Oz and
COa..

NCP, also known as net ecosystem metabolism (e.g. Needoba et al., 2012), is a
community-level process that integrates all of the processes affecting the balance
between production and consumption and can be defined as the overall balance
between GPP and ER (Duarte & Regaudie-De-Gioux, 2009; Garcia-Corral et al.,
2021). It provides an integrated measure of the trophic state of an aquatic
ecosystem, determining if the system is accumulating or depleting organic matter
and whether there is net uptake or release of Oz and CO:2 as illustrated in Figure
1.2 (Guenther et al., 2017; Haskell et al., 2019; Hopkinson & Smith, 2005). A

positive NCP (net autotrophic) indicates that autochthonous organic matter
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sources dominate in the ecosystem. In contrast, a negative net community
production (net heterotrophic) suggests external organic sources dominate (Feng

et al., 2012; McAndrew et al., 2007; Shen et al., 2020; Shen et al., 2019b).

Although the open ocean has been considered on time scales of months and
longer to be a net autotrophic ecosystem that exports organic carbon to depth
and produces more oxygen than it consumes (e.g. McAndrew et al., 2007), recent
reports have revealed a wider prevalence of heterotrophic communities,
particularly in the least productive oceanic regions (Aranguren-Gassis et al.,
2011; Duarte et al., 2013b; Williams et al., 2012). However, in estuarine regions,
a shift from an autotrophic to a heterotrophic state, mainly related to seasonal
changes in water temperature and light availability, has been reported (Azevedo

et al., 2006; Tang et al., 2015).

NCP varies between ecosystems, as seen in Table 1.1, which emphasises the
importance of determining this parameter in a representative range of marine
ecosystems. This will provide the information needed to constrain
biogeochemical models used to determine regional and global biogeochemical
fluxes (e.g. Beck et al., 2015) since NCP represents the net effect of all biological
processes contributing to CO2 and O:2 fluxes in coastal ecosystems (Demars et

al., 2015; Valenzuela-Siu et al., 2007).
1.3.3 Estuarine carbonate system

Estuaries are a major global source of CO2 to the atmosphere (Bianchi et al.,
2013), given that they are considered efficient ‘traps’ of a large fraction of
terrestrial organic carbon delivered by rivers (e.g. Hu et al.,, 2020). However,
coastal environments are usually neglected in global carbon budgets because

this region only covers about ~7% of the total ocean system (Kanuri et al., 2017).
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Despite their small area, according to Chen & Borges (2009), near-shore
ecosystems account for ~30% of the CO2 uptake by the open oceans based on
pCO2 measurements and carbon mass-balance calculations. The coastal ocean
is one of the most biogeochemically active regions of the biosphere where
production and degradation of organic matter are several times higher than in the
open ocean and, in consequence, air-sea COz2 fluxes are disproportionately more

intense than their relative surface area (e.g. Borges et al., 2006)

The overall picture of air-sea CO:2 distribution is that temperate open continental
shelves are net autotrophic; hence, net exporters of oxygen and potential sinks
for atmospheric CO2 (Borges et al., 2004). Whereas the consensus regarding
estuaries is that they are considered net heterotrophic, acting as sources of COz2
to the atmosphere (Bianchi, 2012; Cai, 2011; Frankignoulle et al., 1998; Hu et al.,
2020; Yao et al., 2020). This is mainly attributed to the large inputs of terrestrial
organic carbon that these ecosystems receive (Guenther et al., 2017), resulting
in a respiration increase of detrital organic matter, which in turn produces large
quantities of dissolved CO2 that generate very high fluxes to the atmosphere
(Frankignoulle & Middelburg, 2002). In general, CO2 degassing flux is more
intensive in lower latitude estuaries than in high latitudes (e.g. Bianchi et al.,
2013), and more specifically, in European estuaries, the production of large
guantities of dissolved COz: is related to intense anthropogenic disturbance,
reflected in elevated loadings of detrital organic matter which induces high

respiration rates (e.g. Frankignoulle et al., 1998).
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Table 1.1. Annual average rates of net community production determinate by
the open water diel oxygen method in different estuaries mmol O2 m=2 d2.

Site

Year

Ecosystem description

Chesapeake Bay, USA

Mullica River, USA

Old Woman Creek, USA

Narragansett Bay, USA

Great Bay, USA

Wells, USA

1995-2000

The largest estuary in the US.
The Bay estuarine system com-
prises the Bay proper and more

than 50 tributaries

Shallow, polyhaline embayment
with extensive salt marshes.

Freshwater estuary. The
estuary’s outlet mouth may be
close for extended periods as

the result of wave
action and the formation of a
barrier beach.

Is a phytoplankton-based
ecosystem with relatively little
salt marsh or macroalgae.

Complex embayment and New
Hampshire’s largest estuarine
system, encompassing tidal
portions of five major river
systems.

Back-barrier marsh dominated

by strong tidal currents due to

the large tidal range in the Gulf
of Maine.

Weeks Bay, USA

2009-2010

Mid-bay point. Small, shallow
sub-estuary of Mobile Bay.
Freshwater inputs from two

rivers.

Apachicola Bay, USA

2002-2011

Extensive open water,
submerged and emergent
wetland vegetation, tidal flats,
and unconsolidated bottom.

Weeks Bay, USA

2003-2011

Small, shallow sub-estuary of
Mobile Bay. Freshwater inputs
from two rivers.

Grand Bay, USA

2004-2011

Small and relatively pristine
estuary with no major river
inputs.

River Thames plume, UK

2001-2015

Warp Anchorage monitoring
station, which is a permanently
well-mixed shallow area within

the River Thames plume.

Pensacola Bay, USA

2013

Shallow, river-dominated
estuary with fringing seagrass
beds graduating to deeper
unvegetated habitat comprised
of sand-silt sediments.

Ria Formosa, Portugal

2017-2018

Coastal lagoon, depth ~2 m,
semi-diurnal tides in a mesotidal
regime, well mixed vertically.

Annual NCP Reference
-65.6
-67.6
-112.5
(Caffrey,
2004)
-40.6
-18.8
28.1
) (Mortazavi et
68.8 al., 2012)
-50 to -20
(Caffrey et al.,
-10to -15 2014)
-20to -10
5 (Hull et al.,
2016)
Spring  16.9 (Murrell et al.,
Summer 109.5 2018)
) } (Cravo et al.,
0.1to-71 2020)
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Despite the vast agreement on the role of estuaries as sources of COz2, the order
of magnitude of these contributions are still a matter of debate (Frankignoulle et
al., 1998). This argument is based on the fact that current global estuarine CO:2
flux estimations are based on a limited dataset that is likely over representing
highly heterotrophic estuaries (Shen et al., 2020). Furthermore, there is an
absence of data resolving the temporal variability of carbon cycling for adequately
describing the diversity and spatial heterogeneity in these highly dynamic

ecosystems (Borges et al., 2008).

Since estuaries act as a convergence zone between the terrestrial environment
and the coastal ocean (Kanuri et al., 2017), riverine discharge controls the
freshwater residence time and the mechanisms of carbon processing (Bianchi et
al., 2013). When high freshwater discharge occurs, excess COz from riverine flow
degases to the atmosphere during estuarine mixing and accounts for most of the
CO2 flux (Borges et al., 2006). Conversely, organic matter remineralisation
dominates under low freshwater discharge, and dissolved inorganic carbon (DIC)
builds up in the estuarine water column resulting in CO2 emissions (Hu et al.,
2020). In macrotidal estuaries, most of the mixing between freshwater and
seawater occurs within the inner estuary; however, the outer estuary can be a
site of intense primary production and can behave as a major sink for atmospheric
COz2 (Frankignoulle et al., 1998). Recent work has shown that estuarine plumes
can also be net sinks of COz, particularly in the outer plume region (e.g. Bianchi,

2012).

The balance between CO2 absorption and release in estuaries is further regulated
by abiotic factors such as wind speed, atmospheric pressure, pH, alkalinity,

temperature and salinity, and by biotic factors like primary production and
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ecosystem respiration (Guenther et al.,, 2017). Depending on the interaction
among these factors, an ecosystem or parts of it, can act as a CO2 source or sink
(Bianchi, 2012). Therefore, to accurately estimate the CO: flux and the role of
estuaries in the global carbon cycle, spatiotemporal variations and anthropogenic

disturbance effects should be considered in budget calculations.

1.4 Optical sensors in coastal observation

Interactions between physical and biological processes in estuaries require
making continuous biogeochemical measurements at the tidal, fortnightly, and
episodic timescales over which residence time and geochemical rates vary
(Nidzieko et al., 2014). Moreover, phytoplankton communities and biomass can
change on many scales at the same time. Large changes can occur at time scales
shorter than a month, and monthly scale changes in Chl ‘a’ can arise from
processes operating at shorter timescales (Cloern & Jassby, 2010); therefore,
Chl ‘a’ measured today could easily represent preceding primary productivity
(Chavez et al., 2011). Biweekly to monthly sampling campaigns are unable to
capture such short-term fluctuations, and it has been argued that sampling times

very often miss critical or controlling events in estuaries (e.g. Chavez et al., 2011).

Recent improvements in sensor and autonomous platform technology are
enabling a considerable expansion of the temporal and spatial scope of marine
biogeochemical observations (e.g. Nicholson et al., 2015). The use of these
optical sensors (e.g. optodes) permits the coupling of biogeochemical and
physical measurements at sub-hourly intervals for extended durations (e.g.
Nidzieko et al., 2014). Additionally, long time series constructed with low sampling

intervals (minutes) can capture the detail of events that would not be recorded
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through conventional on-site discrete sampling, to effectively address episodic

events (e.g. Cravo et al., 2020).

The literature has widely described examples of the advantages of using optical
sensors in coastal observation. One of those is the use of optodes compact
enough to be mounted on autonomous underwater vehicles with high enough
precision to resolve O2 diel oscillations smaller than 1 umol Oz L' as reported by
Barone et al. (2019). In addition, Rumyantseva et al. (2019) described the use of
autonomous platforms for studying phytoplankton dynamics due to their ability to
obtain frequent depth-resolved profiles of bio-optical and physical properties for
inter-seasonal periods of time. Lastly, the estimation of primary production
through continuous dissolved oxygen measurements using optodes (Cravo et al.,
2020; Hull et al., 2016) has proven to identify seasonal and even episodic events

in estuaries.

In recent years, the use of optical sensors has expanded, and with it global
observation networks have developed. Nevertheless, in order to confidently make
use of these data, a suite of chemical and biological sensors with adequate
characteristics in terms of size, power consumption, precision/accuracy and long-
term stability are needed (Bittig et al., 2018), and the adequate maintenance and
calibration must be performed in order to obtain high-quality and reliable data

(Uchida et al., 2008).

1.5 Thesis overview

1.5.1 Aims and objectives

The overall aim of this study is to estimate interannual and seasonal changes in

the primary production of two contrasting temperate estuaries, the Southampton
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Water estuary and Christchurch Harbour estuary, and identify the environmental
factors influencing its variability by wusing continuous high-frequency
environmental data. It is hypothesised that a net heterotrophic state will dominate
in the two estuaries, implying a depletion of organic C and a net CO: release to
the atmosphere, and that a shift to autotrophy will only be episodic and driven by

phytoplankton blooms.
In order to test the hypothesis, the following main objectives were addressed:

» To investigate temporal phytoplankton bloom dynamics and the
environmental factors driving them in Southampton Water (2014 — 2020) and

Christchurch Harbour (2014 — 2018).

» To examine seasonal and interannual variation in productivity rates and the
interactions between them and environmental variables in Southampton

Water (2014 — 2020) and Christchurch Harbour (2014 — 2018).

» To explore the primary controls and temporal variability of carbonate system
parameters in Southampton Water (2019 — 2020) and their influence on air-

sea CO:z2 fluxes.
1.5.2 Thesis structure
This thesis is presented in six chapters, which are described below:
Chapter 1: Introduction.

The first chapter provides a general background on the topics addressed within
the thesis; including the importance of estuaries in coastal regions, the temporal
distribution of phytoplankton in the form of seasonal blooms and environmental
conditions triggering them, the estuarine biogeochemical processes that interact
with net community production, and the relevance of optical sensors in coastal

18



Chapter 1 — Introduction

observations. The main objectives are described and the thesis structure is

explained.
Chapter 2: Methods.

This chapter introduces the study sites and provides background information for
Southampton Water and Christchurch Harbour estuaries. The data collection and
processing methods are given for continuous sensor monitoring, field sampling
and external data acquisition. Equations formulating the open water diel oxygen
method are reviewed, as well as calculations included in the CO2%¢ software.

Statistical analyses used in the following chapters are described.

Chapter 3: Temporal variation of phytoplankton blooms associated with changes
in environmental conditions in the Southampton Water and Christchurch Harbour

estuaries.

In chapter 3, the seasonal and interannual variability of environmental factors is
explored graphically and statistically. Variability in the timing, magnitude and
duration of the blooms and environmental drivers is discussed. For Southampton
Water, an in-depth analysis of the influence of tides on phytoplankton blooms is

also included.

Chapter 4: Variability of net community production, gross primary production, and

ecosystem respiration in two contrasting estuaries.

Chapter 4 reviews productivity rates derived from high-frequency measurements
of surface water dissolved oxygen concentration (in both estuaries) using the
open water diel oxygen method. Environmental factors influencing ecosystem
respiration, gross primary production and net community production are

analysed. Implications on the aquatic trophic state of both estuaries are
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addressed, and the relationship between ecosystem respiration and gross

primary production is evaluated.

Chapter 5: Plankton carbon metabolism and air-sea CO: fluxes of Southampton

Water estuary.

In chapter 5, a characterization of the seasonal and interannual carbonate
chemistry parameters, for the Southampton Water estuary in 2019 and 2020,
using the CO?cac software is presented. An analysis of the connection between
air-sea COz flux and net community production, as well as its implication on the

CO:z2 release and/or assimilation in the estuary is evaluated.
Chapter 6: Synthesis and conclusions.

The final chapter summarises the research presented in this thesis. It includes

the main findings and implications for future work.

The appendix and all references are listed at the end of this work.

At the time of submission of this thesis, data for the Southampton Water estuary

in 2019, included in Chapter 4 and Chapter 5, have been submitted as:

Gomez-Castillo, A.P., Panton A. & Purdie, D. A. 2022. Temporal variability of
phytoplankton biomass and net community production in a macrotidal temperate

estuary. Submitted to Estuarine, Coastal and Shelf Science.
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Methods

2.1 Study sites

The present study determined environmental conditions and their relationship
with productivity rates in two South Coast UK estuaries: Southampton Water and
Christchurch Harbour. Southampton Water was the central area of investigation

due to its accessibility to different data sets and sensor calibration availability.
2.1.1 Southampton Water

The Southampton Water estuary is part of the Solent estuarine system,
considered the largest on the south coast of the UK (Fig. 2.1). It is an
approximately linear body of water about 2 km wide and 10 km long with a central
channel continuously dredged to a minimum depth of 12.2 m below the local
Chart Datum. Three main rivers discharge into Southampton water: the Rivers
Test and Itchen towards the head of the estuary and the river Hamble, nearer to

the mouth on the eastern side (Iriarte & Purdie, 2004).

The estuary is characterised by a semi-diurnal tidal regime where each tide
consists of a double high water, ~2 h apart, followed by a short ebb tide. The tidal
range varies between 1.5 m on neaps and 5.0 m on springs (Crawford et al.,
1997). It is considered a partially mixed system, with minimal stratification

occurring throughout the semi-diurnal tidal cycle with the highest vertical density
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gradient occurring at low water and well-mixed conditions at high water

(Levasseur et al., 2007).
2.1.2 Christchurch Harbour

The Christchurch Harbour estuary is a shallow harbour located on the South
coast of England with an approximate area of 2.39 km? (Fig. 2.1). It is mainly fed
by two rivers, the Hampshire Avon and the Stour, that combine and flow into the
western end of the system; a third small river, the Mude, drains into the estuary
near the outlet. The system meets the English Channel through a 47-m-wide

narrow opening known as the Run (Panton et al., 2020).

The estuary presents an average tidal range of 1.2m during spring tides and has
a mean water depth of 0.5m outside the main channel. It give flows in the summer
months when river flows are minimal and typically well-mixed characteristics
(Huggett et al., 2021a). Due to its shallow nature, the estuary is a tidally driven
system with salinity values mainly depending on tide flow, presenting freshwater
conditions at low tides and near fully saline conditions during high tides (Huggett

et al., 2021b).

2.2 Continuous monitoring

2.2.1 Multiparametric probe: EXO2

Southampton

Water quality data were collected using a YSI EXO2 sonde deployed on a solar-
powered EMM700 Data Buoy (Xylem Analytics, UK) located at 50.871° N, -1.373°
W, in the Southampton Water estuary (Fig. 2.1). The sonde was placed into an
open flow PVC tube fixed to the Data Buoy at a depth of 1.6 m below the sea

surface; the average water depth at the site was 10 m. Parameters recorded by
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the sonde included dissolved oxygen (DO) concentration (mg L) and oxygen
saturation (%), temperature (°C), salinity, chlorophyll ‘a’' (ug L), turbidity (FTU)
and pH. The sonde has a central wiper that rotates at regular intervals to remove

biofouling from the optical sensors mechanically.

The sonde is connected to a Storm data logger situated within the Data Buoy
system that regularly uploads data, via a mobile phone connection, to a dedicated
webpage within the Storm Central cloud data collection service

(https://stormcentral.waterlog.com/).

Data was recorded at high frequency from May 2014 to December 2020, with a
total of 178,677 records (Table 2.1). During the first two months, data were
recorded every 10 minutes, and after that, the rest of the measurements were
logged every 15 minutes. For this study, hourly averages were calculated for all

years.

During the seven year deployment of the data buoy a number of gaps in data
collection occurred; major periods of data gaps included (i) During 2014, a 25-
days gap from 30/06/14 to 25/07/14 and (ii) in 2015, a gap of 22-days from
19/10/2015 to 09/12/2015. (iii) For 2017, data were recorded from the beginning
of the year but only for three months (until 29/03/17), since the probe was
recovered, (iv) and not deployed back again until 07/03/18. In 2019 two significant
gaps occurred, (v) the first one between 13/02/2019 and 19/03/2019 (34 days)
caused by the sonde being recovered while the data buoy mooring chain was
replaced and the sonde and PVC tube cleaned of biofouling, and (vi) the second
one from 23/11/2019 to 04/12/2019 (11 days) due to some problems backfilling
data when the Storm Central server migrated from one IP address to another.

Finally, (vii) a 3-day gap from 24/08/20 to 27/08/20 when the sonde was
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recovered for cleaning and review sensors. It is worth mentioning that, in 2020,
from 15/04/20, temperature and salinity sensors stopped recording, but since the
COVID-19 restrictions were in place, it was not until 27/08/20 that sensors could
be calibrated and replaced. Temperature and salinity values for this period were
estimated based on daily averages from data from 2014 to 2019. The pH sensor
was removed at the end of the 2017 and a new sensor was not added until

22/07/2019.

Finally, all data were carefully inspected for unreliable values, and outliers plus
negative or occasional inconsistent high magnitude values (typically caused by

biofouling) and these removed manually.
Christchurch

Parameters including (DO) concentration (mg L) and oxygen saturation (%),
temperature (°C), salinity (psu), chlorophyll ‘a’ (ug L) and turbidity (FTU), were
recorded using a YSI EXO2 sonde deployed at the Ferry pontoon located at
50.719° N, -1.744°W, in Christchurch (Fig. 2.1). The probe remained at surface
water level at all times since the pier moved along with tides; the average water
depth at the site is 1.75 m. The EXO2 was connected to a solar-powered system
to provide energy, and to a Storm data logger that uploaded data every 2 hours,
via a mobile phone connection, to a dedicated webpage within the Storm Central
cloud data collection service; data between the 2-hour periods was logged into

the internal storage system and downloaded manually afterwards.
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Fig. 2.1 Southampton Water and Christchurch Harbour, and their major tributaries, in the south coast of the UK (inset). Multiparametric probe
deployment sites in each estuary are indicated in blue e, meteorological stations from the Met Office's MIDAS are indicated in green e,
Environment Agency sample site is indicated in red ¢ and ABP Marine Environmental Research tide gauge location is indicated in yellow ».
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Water quality data was collected at high frequency intervals of 10 minutes from
May 2014 to December 2018, for a total of 180,533 records; with the only
exception of the period between 30/07/14 and 23/09/2014, when the
measurements were taken every 2 hours (Table 2.1). For this study, hourly

averages were calculated for all years, when possible.

A few major gaps in data collection were observed; (i) in 2014 a 5-day gap from
25/06/14 to 30/06/14 for all parameters and (ii) a month-gap (06/07/14 — 07/0814)
for temperature and DO concentration. (iii) During 2015, from 19/05/15 to
02/09/15 data was not collected. (iv) The 2016 time series lacks 83 days, with
data collection started on 18/02/16 and finishes in 26/11/2016. (v) In 2017, there
is a 39-day gap between 03/02/17 and 15/03/17, as well as a 10-day late-start
and a 7-day early ending. Lastly, (vi) 2018 time series started in 29/03/18 and

ended in 13/12/18, missing a total of 105 days.

Table 2.1. Catalog of water quality and meteorological data used to compile
time series for Southampton Water estuary and Christchurch Harbour.

Southampton Water Christchurch Harbour
# records Date start Years # records Date start Years
M”'“gfg;‘?e‘r'c 178,677 12/05/14 6.6 180,533 12/05/14 46
Met Office
MIDAS 59,146 01/01/14 6.8 43,612 01/01/14 5
Environment 74 04/02/14 6.8
Agency
ABPmer 3,679,200 01/01/14 7
Probe - -- - 8 27/05/14 0.3
Discrete 274b 16/07/18 2.4 16b 27/05/14 0.6
sampling

a Dissolved oxygen water samples.

b Chlorophyll ‘a’ water samples.
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Complete time series data was filtered manually, discarding unreliable values and
outliers, plus negative or occasional inconsistent high magnitude values (typically

caused by biofouling).
2.2.2 Optode-based oxygen sensor validation: Southampton

Semi-continuous oxygen measurements were determined from the EXO2 sonde
deployed optode. Optodes have proven in recent years to be very useful in
describing biogeochemical processes as they represent multiple advantages,
including no oxygen consumption and long-term stability (Bittig & Koértzinger,
2015). To ensure the optode is recording high-quality dissolved oxygen data,
comparison against more precise and accurate DO measurements from discrete
water samples is recommended (Uchida et al., 2008) as well as a dependable
rectification of DO calculations (Haskell et al., 2019). The optode was protected
from fouling with a copper mesh pad as suggested by the manufacturer and
the following correction steps were made prior to using the oxygen time-series
data to calculate NCP rates: (i) Some missing salinity measurements from the
time series were estimated since the optode DO sensor installed on the EXO2
sonde measures oxygen saturation and then uses salinity and temperature data
to calculate DO concentration. Across the whole time series, the salinity sensor
fitted on the sonde showed some periods of mainly negative drifting, and a more
reliable sensor could not be installed until late November 2019. Understanding a
drift as a variation of the sensor response across a specific time frame and under
identical conditions (Ando et al., 2005). Thus, Environment Agency discrete
samples of salinity were compared against existing and reliable salinity data from
EXO2 sonde though the least squares method and the equation for the best fitted

curve was used to substitute missing salinity data (Appendix B). This process

27



Chapter 2 — Methods

was done for every year included in the time series, except 2018 where salinity
values did not show evidence of any drift. (ii) Recalculating DO concentration
values from polynomial temperature and salinity dependant equations provided
by the sonde manufacturer (Xylem). (iii) Lastly, discrete oxygen measurements
from Winkler titrations (June 2018 to November 2020) were used to formulate a
standard linear regression model (Fig. 2.2) to correct optode derived DO

concentration values.
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Fig. 2.2 Linear regression — (r2 0.62) and prediction intervals (...) from the
comparison between dissolved oxygen from the Data Buoy system against
the Winkler titration analysis e (2018-2020). 1 to 1 fit line is defined as —.

2.3 Field sampling

2.3.1 Dissolved oxygen by Winkler titration

At the study site, sets of three replicate glass bottles (~60ml), on 27 different
dates between June 2018 and November 2020, were filled with water using two
methods: (i) from the pump system on RV Callista and (ii) deploying a 5 L Niskin

Bottle just below the surface from a RIB close to the data buoy.
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A continuous flow was kept in order to fill bottles carefully to minimise agitation
and bubble formation. Immediately after, 0.5 ml of manganese chloride solution
was added to each glass bottle, followed by 0.5 ml of alkali-iodide solution. Bottles
were closed using the bottle stopper, inverted gently around 30 times to ensure
chemical mixing and stored underwater to prevent evaporation while awaiting

titration and analysis.

The chemical determination of oxygen concentrations in seawater is based on
the iodometric titration method first proposed by Winkler (1888) and later modified
by Parsons et al. (1984). Titrations for this study were performed using a

photometric end-point detector as specified in Carrit & Carpenter (1966).

Determination of dissolved oxygen concentration in water is based on a multi-

step oxidation described in Hansen (1999):

Manganese chloride is added to a known volume of water, and Manganese (Il) is

precipitated as hydroxide (Eq. 1),
Mn?** 4+ 20H'" - Mn(0H), 1)
and oxidized to Manganese (lll) hydroxide in a heterogeneous reaction (Eq. 2).
2Mn(0H); + 0, + Hy0 —» 2Mn(0H), )

Next, the iodide ions added are oxidized to iodine by the Manganese (lll) ions,

which are reduced to manganese (ll) ions, as shown in Eq. 3.
2Mn(0H); + 6H + 21" - 2Mn** + I, + 6H,0 (3)
In the final step, the iodine is titrated with a thiosulphate solution (Eqg. 4).

LY 4 25,05% = 31" +5,0,° (4)
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The thiosulphate solution is not stable and, therefore, must be standardised prior
to any titration. Before every set of samples was analysed, a standardisation was
carried out using the photometric end-point detector and a standard potassium
iodate solution to determine the precise concentration of thiosulphate in the
titrating solution. An average of six standards was taken to determinate

thiosulphate normality as follows:

Ny =22 (5)

|41

where N2 is the iodate normality (0.01 N), V2 is the iodate volume added (5 ml)

and V1 is the thiosulphate volume added (titre value/50 in ml).
2.3.2 Dissolved inorganic carbon and total alkalinity

Discrete water samples for dissolved inorganic carbon (DIC) and total alkalinity
(Tak) were taken using the pumping system connected to the Anderaa SOOguard
Ferry Box on the RV Callista or by deploying a 5L Niskin bottle from a RIB. From
March to November 2019, samples were taken biweekly (24) and every week
from February to November 2020 (30). During 2020 a 3-month gap in sample
collection occurred, from mid-March to Mid-June, due to restrictions during the
COVID-19 pandemic. In addition, during the 2020 sampling, measurements were
performed in the laboratory using a Delta 350 pH meter (Mettler-Toledo,
Switzerland) for pH and temperature, and a TetraCon® 325 S (WTW, Germany)
four-electrode conductivity cells electrode, for salinity and temperature. Training
and analysis of 2020 DIC and Ty; samples were performed by Dr C.

Dumousseaud.

250 ml borosilicate glass bottles were filled with water from a continuous flow

from a 5 L Niskin Bottle, allowing a head space of 1% for water expansion, and
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immediately poisoned with 5 pl of saturated solution of mercuric chloride to stop
any biological activity. Samples were stored for later analysis in the Carbon
Research Lab using the VINDTA 3C (Marianda, Germany). This equipment
combines the proven ‘Versatile INstrument for the Determination of Total
inorganic carbon and titration Alkalinity’ (VINDTA) alkalinity titration concept with

a simplified extraction unit for coulometric DIC measurement.

Following Dumousseaud et al. (2010), DIC samples were analysed using a
coulometric titration and T, was determined using a closed-cell titration
equipped with a pH half-cell electrode and an Ag/AgCl reference electrode. On
the day of analysis, all samples were kept at 25°C with temperature regulation
using a water-bath. Certified Reference Materials (from A.G. Dickson, Scripps
Institution of Oceanography) were analysed as standards (n=3) to calibrate the
instrument at the beginning and end of each day of analysis. The precision of
measurements on these CRMs was within 3.1 umol kg for DIC and +1.6 pmol

kgt for Ty.
2.4 External data acquisition

2.4.1 Met Office's MIDAS database

The MIDAS database is a collection of meteorological observations made
available (granting access by request) by the Met Office and includes data from
meteorological stations around the UK from around the late 19th Century, and

stored in the Met Office's 'MIDAS Open' database (Met Office, 2020).

Southampton Water

The met station at the Southampton Oceanography Centre (50.892° N, -1.394°

W) was identified as the closest (2.8km) MIDAS location to the Southampton
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Water Data Buoy system (Fig. 2.1). Hourly barometric pressure and wind speed
measurements were downloaded and added to the meteorological time series of
the Southampton Water site (Table 2.1). Additionally, hourly solar radiation
observations were acquired from the National Oceanography Centre weather

data archive (https://oesnet.noc.soton.ac.uk/meteorological-station).

15 -

y =0.7646x + 0.1317
=071

0 T - T T T
3 6 9 12 15

Data Buoy (ms™)

Fig 2.3 Linear regression — (r20.71), prediction intervals (...) and 1 to 1 fit
— between hourly wind measurements from met sensor fitted on the Data
Buoy system and data from the Southampton Oceanography Centre Met
Office MIDAS station e, from March to September 2018.

The Data Buoy system was fitted with a 200WX WeatherStation® (AIRMAR,
France) sensor during the deployment in March 2018, but this stopped recording
on 12/09/18 due to damage from a boat collision. Overlapping wind speed data
from both the data buoy met sensor and the met sensors on the Oceanography
Centre building were compared to determine if the difference in elevation
(approximately 26 meters above sea level) of the MIDAS station could present a
significant difference. After a liner regression analysis (Fig. 2.3), it was considered

that data from the Met Office station could be used to represent conditions at
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Southampton Water data buoy site, however, it is apparent a wider spread
between data sets at higher wind speeds producing an underestimation of wind

values above ~10 m s
Christchurch

The nearest MIDAS station (9.8km) to the Christchurch Harbour pontoon location
(Fig. 2.1) is the one identified as Hurn and is situated at the Bournemouth
International Airport (50.779° N, -1.835° W). Hourly barometric pressure, wind
speed and solar radiation measurements were obtained and added to the

meteorological time series of the Christchurch Harbour site (Table 2.1).
2.4.2 Environment Agency Water Quality Archive

The Environment Agency Water Quality Archive

(https://environment.data.gov.uk/water-quality/view/download/new) is an open

access collection of measurements taken regularly at sampling points around

England, which includes coastal and estuarine waters.

A set of water quality measurements was acquired from the Hound navigation
buoy sampling site (50.861° N, -1.358° W), selected to compare with the
Southampton Water data buoy location measurements due to its close proximity
(Fig. 2.1). Environment Agency data (Table 2.1) included ~ monthly surface
records of DO (mg L* and % sat.), temperature (°C), salinity (psu), chlorophyll ‘a’

(ug L), and turbidity (FTU).
2.4.3 Associated British Ports Marine Environmental Research

The Associated British Ports Marine Environmental Research (ABPMer) provided
minute-interval sea surface elevation data measured with a Tidalite tide gauge

located at Dock Head, Eastern Docks Southampton (Fig. 2.1). Daily minimum
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and maximum values were extracted from the raw time series (Table 2.1), and

the difference was plotted to indicate changes in the daily tidal range.
2.4.4 S-3 EuroHAB project

This 4-year EU funded project is working on improving the monitoring and
prediction of harmful algal blooms (HABSs) using satellite images in the English
Channel. As part of the project, the University of Southampton is combining past
knowledge from the scientific literature with analysis of multiple datasets collected
throughout the Channel to discover the factors that drive bloom development in
this region. One of their sample sites is situated next to the Data Buoy System in
Southampton Water estuary. Chlorophyll ‘a’ and nutrients sampling and analysis

were performed by Dr A. Panton.

Chlorophyll ‘a’

Discrete water samples were taken at ~1m under surface water using either the
pumping system connected to the Anderaa SOOguard FerryBox on the RV
Callista or using a Niskin bottle deployed from a RIB. Samples to determine
phytoplankton biomass (chlorophyll ‘a’) were taken biweekly during spring-
summer from 2018 to 2020, then three replicates of 50 mL were filtered through
a Whatman GF/F filter within an hour of collection. Filters were frozen before
analysis according to Strickland & Parsons (1972) methodology. Pigmemts were
extracted from filters with 90% acetone before their analysis on a precalibrated

fluorometer TD-700 (Turner Designs, USA).
Nutrients
Surface water (~1m) was collected biweekly, during spring-summer from 2018 to

2020, into acid-cleaned HDPE bottles then frozen prior to later inorganic nutrient
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analysis as described in Panton et al. (2020). Samples were collected through
the pumping system connected to the Anderaa SOOguard FerryBox on the RV
Callista or using a 5 Niskin bottle deployed from a RIB. A QuAAtro segmented
flow auto-analyser (Seal Analytical, UK) was used to determinate concentration

of silicate SiO2, phosphate PO4 and nitrate NOs.
2.4.5 River inflow data

Average daily river flow data was accessed from gauging stations on the River
Avon, located at Knapp Mill, and on the river Test at Broadlands obtained from

National River Flow Archive; downloaded from https://nrfa.ceh.ac.uk/data.

2.5 Mean water column irradiance

Hourly solar energy (KJ m2 h't) data from the Met Office's MIDAS database was
computed into daily solar energy values and converted to Wh m2 d! using the

equation shown in Eq. (1).

Kj 027w
—= = (1)

m2 m2

In order to calculate the proportion of light that can be utilised by plants for
photosynthesis reaching the surface, also known as photosynthetic active

radiation (PAR), the constant proposed by Peperzak (1993) was used as in Eq.
(2).
I, = 0.45 SE, (2)

with I, as the daily surface irradiance and SE,; as the sum for daily solar energy,

both terms in (Wh m2 d?).
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PAR within the water column varies according to changes in surface incident
solar irradiance, turbidity, and depth (Cloern et al., 2014). Therefore, the mean

water column irradiance (1,,,) was calculated (Eqg. 3) following Riley (1967):

(1—e~kpParM)

3)

I =
m O kpagh

where kp,p is the diffuse attenuation coefficient (m™?) and h is the mixed layer
depth (10m for Southampton and 1.75m for Christchurch). The diffuse
attenuation coefficient was estimated from the slope of a linear regression of
turbidity against kp,r data previously generated for Southampton Water estuary

by Iriarte & Purdie (2004), with kp4r ranging between 0.2 and 2.0 m,

2.6 Open water diel oxygen method

2.6.1 Biological Oxygen Fluxes

The open water diel oxygen method was applied to calculate rates of NCP from
oxygen probe data obtained from both estuarine systems. This was achieved by
following the quantification of primary production described by Needoba et al.
(2012) by calculating oxygen mass-balance in the mixed layer. The hourly
biological oxygen production (BOP) calculation incorporated equations used by

(Hull et al., 2016) and (Murrell et al., 2018).

An essential assumption of this model is that all measurements come from a well-
mixed water column; therefore, the water mass recorded presents the same
metabolic history (Caffrey et al.,, 2014). The average water depth at the
Southampton Water Data Buoy is 10 m; therefore, vertical profiles of temperature,
salinity and dissolved oxygen were made in 2018 and 2019, with a different EXO2
sonde (Fig. 2.4) to show that the water column was well mixed at that position in

the estuary. Dates of vertical profiles include months when surface water usually
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presents higher temperatures since warming of the upper water layer could
induce stratification (Gomoiu et al., 2014), and the typical seasons (spring and
summer) characterizing bloom dynamics of coastal temperate systems

(Martellucci et al., 2021).

A second assumption is that other oxygen-consuming processes in the water
column, such as nitrification, are insignificant compared to phytoplankton
respiration (Hull et al., 2016); particularly in high light transparency and low

nutrients ecosystems (Murrell et al., 2018).

The model calculates the change in oxygen concentration in a certain period of

time, given the physical parameters measured (Eq. 4).

hS=E +FO0, + BOP (4)

Where h is the water depth, Z—i is the oxygen concentration change through time,

E is the entrainment of oxygen through changes in the mixed layer depth, F,, is
the gas exchange from diffusive and bubble processes (Eq. 5), and BOP is the

biological oxygen production (Eg. 8).
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Fig. 2.4 Vertical profiles of oxygen saturation (—), temperature () and salinity (—) at the Data
Buoy site during spring (a, b, ¢ & d) and summer (e & f).
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Given the assumption that the water column in the estuary is fully mixed at the

position of the Data Buoy, the term E, which represents changes in mixed-
layer depth through time, can be neglected. Similarly, the entrainment term Z—}Z

Is set to zero in Eq. (5) and (9).

= Kw o Psip | 10
For =31 C' 1+ B) L+ 122C (5)

The diffusive exchange of gases across the air— sea interface F,, (EQ. 5) was
calculated as a function of gas transfer velocity K,, (Eq. 6) and diffusion
through bubbles B (Eq. 7). It is worth noting, values for k,, needed to be
converted from cm ht to m s before being used in Eq. (5). P,;,, corresponds
to an atmospheric pressure standard value of 101,325 Pa, Py, is the
atmospheric air pressure at sea level, C* is the calculated oxygen
concentration in equilibrium with the atmosphere as a function of temperature
and salinity (Feistel, 2008) and C is the oxygen concentration in the surface
mixed layer.

-0.5
K, = 025107 (1222) (6)

The coefficient of gas transfer velocity K, calculated in Eq. (6) is the
parameterisation proposed by Wanninkhof (2014), and is a function of salinity
and temperature through the relation between the Schmidt number Sch,, for
oxygen and the normalised Schmidt number for CO2 at 20°C and salinity of 35
(constant value of 660 in Eq. 6). U corresponds to wind speed measured at
10m above sea level but as stated above can be considered the same as at

sea level at the position of the Data Buoy.
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B = 0.01 (UE)2 @)

Bubbles can induce gas exchange B, therefore its incorporation into the gas
transfer calculation (Eg. 5). This was determined using a parametrisation
according to measured wind speed U and a standardised wind speed value U;

for a smooth boundary regime (Wanninkhof, 2014).

The biological oxygen production (BOP) is expressed as a mass transfer per
surface area and time, in mmol O2 m?2 h-! (Needoba et al., 2012). In Eq. (8) C,
is the oxygen concentration at t = 0 and C; oxygen concentration at the time
step (for the present study, 1 hour), and it is analytically solved by using the
air-sea diffusion flux calculation F,, and a transfer velocity correction t,

caused by wind-induced turbulence in the water column (Eq. 9).

BOP = th (f_l;fft + co) — Fyyh (8)
kw = 10h
t = s + Y (9)

Then, BOP data were averaged separately during the day and night periods to
compute hourly rates of apparent primary production (P,) and night-time
respiration (R,,). Light data collected from the MIDAS Met station was used to
integrate complete daily photoperiods and dark periods. Each diel cycle was

formed by a light period plus a dark period, starting with the photoperiod.
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2.6.2 Ecosystem respiration and productivity

The model assumes respiration rates to be constant during a diel cycle;
therefore, respiration was extrapolated to 24 hours to calculate daily

ecosystem respiration ER (Eg. 10) for the mixed water column (h).

ER = R,,(24)(h) (10)

Daily gross primary production GPP was determinate (Eq. 11) as a function of

apparent primary production (P,) and night-time respiration (R,,).

GPP = (P, + R,)(daylight hours)(h) (11)

As the final step, daily net community production NCP was calculated (Eq. 12)

in mmol O2 m~? d* according to Murrell et al. (2018).

NCP = GPP — ER (12)

Positive values of NCP (net autotrophy) indicate organic carbon is being
produced over the local respiration demand. On the contrary, negative values
(net heterotrophy) suggest the ecosystem requires additional input of organic

carbon to be sustained.

2.7 Air-sea CO: flux model

2.7.1 COytalc

The program COSYS was initially developed by Lewis & Wallace (1998) to
perform calculations of parameters involved in the carbon dioxide (CO2)
system in seawater and freshwater, and it was later modified for its use in

Microsoft Excel by Pierrot et al. (2006). CO2°¢ is the latest update to the
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CO2SYS program application, and it was created by Robbins et al. (2010),
consisting of a user-friendly application compatible with most operating
systems (OS) with an improved graphical user interface for data entry and
results (Fig. 2.5). CO2%a¢ offers several improvements, including the possibility
of calculating air-sea CO: fluxes for surface waters and the ability to process

multiple files in a batch-processing mode.

© CO2Calc v4.0.9 - O X

# co2calc v4.0.9

Manual Input | Batch Input Report Install

Batch Calculation

This mode allows swift processing of multiple samples by providing CO2Calc the input data in a specially formatted CSV (Comma Separated
Value) file where each row represents a different sample.

Use the button on the right to download a blank template of the input CSV file in which to enter the sample data.

| CSV Template

Results are returned with the original input values in a separate CSV file and additionally, if requested, in formats compatible with Google
Earth (KML) as ArcGIS (Shapefile SHP). & CO2Calc output CS¥ file can also be converted to KML or SHP formats at a later time using the
included Export tool.

Input CSV File: ‘ | l Browse J

Output Folder: ‘ |

| Browse
Output File Name: ‘ |

Append Error Details: |« Append error log to the end of the output file

Additional Format(s): Google Earth (KML) ArcGIS Shapefile (SHP)

Calculation Preferences

These Calculation Preferences are set and stored independently of those used for Manual calculations. Changes made here will not
affect preferences set in the Manual calculation screen and vice versa. Starred preferences (*) are required. Other preferences are
optional depending on input data.

| nBS. scale (mol/kg-H20)

CO2 Constant * KHS04 *
[ millera, 2010 ~ | | Dickson, 1990 B
pH Scale * Total Boron *

| Lee et al., 2010 ~ |

Air-Sea Flux Windspeed Units Calcium Units

iWanmnkhof, 2014 | tm,fs s |

Process

Fig. 2.5 CO2ac (version 4.0.9) software batch input data interface.

The COz2 system in seawater is characterized by five measurable parameters:
(i) total alkalinity Ty, (ii) total carbon dioxide TC0,, as the sum of the dissolved
COz2, the carbonate and bicarbonate; (iii) pH, and (iv) partial pressure of carbon
dioxide pCO0, or (iv) fugacity of carbon dioxide fC0O,. The basis of the model is
that by providing it with two of the five measurable CO2 system parameters,
along with temperature, pressure and salinity, CO2@° then calculates the

concentration of the remaining parameters (Robbins et al., 2010). In addition,

42



Chapter 2 — Methods

it also calculates the Revelle factor (homogeneous buffer) and the saturation
states (Q) for aragonite and calcite. It also offers the option to include nutrient
data (silicate and phosphate) into the calculations and provides air-sea CO:2

flux, if wind speed and pC0, of air are provided.

In order to calculate CO2 parameters, a set of constants and preferences need
to be selected among different options, as well as scales for certain

parameters:

» The solubility of CO2 in seawater K, and the conversion between pCO,
and fCO, are from Weiss (1974). The program sets them as default.

» Two dissociation constants for carbonic acid (K; and K,) are used in the
calculations, the recently added constants for estuarine waters determined
by Millero (2010), were selected.

» There are two options for the dissociation constants of potassium sulphate
(Ks04), selecting the formulations described by Dickson (1990) for sea
water.

» The Lee et al. (2010) constant for total Boron was selected since it was
developed in accordance to the carbonic acid constants selected (Millero,
2010).

» Among the pH scales, NBS was selected since it is the same as that used
by the pH probes collecting data to produce the time series. All constants
are converted to the selected pH scale before calculations are made.

» For the calculation of air-sea CO:2 fluxes, the gas transfer velocity
coefficient K,, parametrisation proposed by Wanninkhof (2014) was
selected in order to correspond to the air-sea O:2 fluxes calculations

described in section 2.6.1.
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2.7.2 Carbonate system calculations

Total alkalinity extrapolation

In order to estimate CO:2 fluxes for the entire time series available between
2019 and 2020 in Southampton Water, Tak and DIC were analysed as
functions of sea surface salinity, since it has been shown that variability of
these parameters, expressly Tak, in the surface ocean is controlled mainly by
freshwater mass movements (Jeffrey et al., 2018; Lee et al., 2006). Once these
associations were analysed (Fig. 2.6), it was decided to only use Tak equation
relating it to salinity since it presented a better fit than DIC and, as mentioned
previously, it has been more frequently described in literature. The result of the
equation the linear regression between salinity and Tak was then used to
extrapolate Tak data from salinity data along thel-hour step time series from

July 2019 to December 2020.
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Fig. 2.6 Linear regressions — and prediction intervals (...) for salinity from Data
Buoy and (a) total alkalinity (r? 0.74) and (b) dissolved inorganic carbon (r2 0.58).
Data for 2019 is shown in blue circles e and for 2020 in black circles e.

pH data calibration

Three independent pH data sets were created: (i) pH records from the EXO2

probe (Data Buoy) deployed in the estuary, (ii) pH measurements made with
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a calibrated Delta 350 pH meter (Mettler-Toledo, Switzerland) in the laboratory
for every DIC and Tak sample, and (iii) pH data generated with CO2c3c

application, from DIC and Tak data.
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Fig. 2.7 Linear regressions —, prediction intervals (...) and 1 to 1 fit — for pH from
Data Buoy against (a) pH derived from DIC and Talk using the CO2¢ac application
(r2 0.41) and (b) pH measured in laboratory (r? 0.59). Individual data is shown in
black circles e.

pH from the Data buoy was recorded from July 2019 to December 2020,
however, since measurements for 2020 showed a positive offset, a calibration
was established. pH data calculated with the CO2¢@° software was taken as
the most accurate, therefore, pH from the Data Buoy was standardised using

equation y = 0.9588x + 0.8953 (Fig. 2.7a).

pH data from the CO2%¥¢ software and pH standardised data were analysed
using a one-way ANOVA in which assumptions of normality and homogeneity
of variances were met, and a p value of <0.05 was considered significant. Data
sets presented no significant (p=0.116) difference between each other (Fig.
2.8); therefore, pH standardised data were selected to be used in carbonate

system parameters.
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Fig. 2.8 Scatter plot (a) and normal probability plot (b) of pH from CO2cac application
and pH from the Data Buoy standardised with equation y = 0.9588x + 0.8953.

CO2 fluxes

Once Tak and pH data sets were compiled, they were introduced into the
CO:%¥¢ application to formulate seawater CO: partial pressure pCO0,y,, for the

2019 - 2020 hourly time series.

Subsequently, hourly air CO2 partial pressure pC0,,;, data was downloaded
from the NOAA archive (Dlugokencky et al., 2021), collected by the Ryan
Institute's Mace Head Atmospheric Research Station (Galway, Ireland) as part
of the Earth System Research Laboratories (ESRL) Global Monitoring
Laboratory. This parameter, in addition to pC0,,, and wind speed, were
introduced to the CO2%¢ programme. Air-sea CO: fluxes F.,, in mmol C m2

d* were calculated following Eq. 13:

Feoz = Ky Ko ApCO, (13)

where ApCO, (Eq. 14) is estimated as the difference between CO:2 partial

pressure in seawater pC0,, and the atmosphere pC0,,;,
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ApCO, = (pCOyg, — pCO44ir) (14)

Positive ApCO, values indicate a net COz2 flux from the sea to the atmosphere,
in other words, the aquatic system is a source of CO2. Conversely,
ApCO,negative values indicate CO:2 flowing from the atmosphere to the sea,

meaning the aquatic system behaves as a sink of CO..

2.8 Statistical analysis

All statistical analysis was performed using the statistical package in
SigmaPlot version 13.0. The data matrix was organized with dates as rows
and environmental conditions and productivity rates as columns. Chlorophyll
‘a’ (Chl ‘a’) blooms were considered when hourly average concentration values
exhibited values >5 pg L for Southampton Water and above >10 ug L for
Christchurch Harbour. The difference between thresholds is attributable to
Christchurch Harbour receiving a higher input of nutrients (Panton et al., 2020),
and being a semi-enclosed system presents reduced flushing abilities
compared to Southampton, a system with open boundaries to the sea (Huggett
et al., 2021a). This enhanced the process of eutrophication and, sometimes,
increases the maximal concentrations of phytoplankton biomass an ecosystem

can sustained (Adams et al., 2020; Turner et al., 2015).

Seasons were defined by astronomical dates for the Northern hemisphere:
spring begins on the spring equinox, summer begins on the summer solstice,

autumn begins on the fall equinox, and winter begins on the winter solstice.
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2.8.1 Spearman’s correlation

Time-series data were tested for normality using the Shapiro-Wilk Test. None
of the environmental data nor productivity rates were normally distributed,
despite different transforms being applied. The association between variables
was investigated by the correlation analysis, a valuable tool, highly used in

coastal marine assessments (Kitsiou & Karydis, 2011).

Therefore, the non-parametric Spearman's Rank-Order Correlation Coefficient
(p<0.05) was used to (i) understand the relationship between chl ‘a’ blooms
and various measured environmental parameters in the Southampton Water
and Christchurch Harbour estuaries (Chapter 3); (ii) to identify predictors of
calculated productivity rates and measured environmental variables
throughout the study period in both estuaries (Chapter 4); and (iii) assess the
relationship between carbonate system parameters, environmental conditions

and primary production (Chapter 5).
2.8.2 Principal components analysis

The principal component analysis (PCA) allows reducing the dimensionality of
large datasets without losing its variability by transforming original variables
into a new and smaller set of uncorrelated variables (principal components
PCs). The first PC accounts for as much variation as possible, and each

subsequent component explains progressively less (Jollife & Cadima, 2016).

In the graphic representation of a PCA, the arrows represent the variables.
When arrows are far from the centre and close to each other, they are
positively correlated, meanwhile when they are symmetrically opposed, they

are negatively correlated (Trombetta et al., 2019).
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In Chapter 3, PCA was used to assess the influence of environmental
conditions on the appearance of each major bloom event in both estuaries for
each year of study. For Chapter 4, the analysis was used to evaluate the
relationship between the seasonal distribution of productivity rates and
environmental conditions and the relative contributions of GPP and ER to
NCP. Finally, in Chapter 5, the PCA method was used to explain the seasonal
variation of carbonate chemistry parameters, productivity rates and

environmental factors affecting the response of FO2 and FCO..
2.8.3 Ordinary least squares

Ordinary least squares (OLS) regression is a statistical method of analysis that
estimates the relationship between one or more independent variables and a
dependent variable; the method estimates the relationship by minimizing the
sum of the squares in the difference between the observed and predicted
values of the dependent variable configured as a straight line (Pohlmann &
Leitner, 2003). In Chapter 4, OLS was used to examine the relationship
between ER and GPP, allowing the estimation of the threshold values of GPP
necessary to achieve metabolic balance (GPP:CR=1) in Southampton Water

and Christchurch Harbour.
2.8.4 Analysis of Variance

In chapter 5, data were divided into seasons for 2019 and 2020. Subsequently,
a two-factor analysis of variance (two-way ANOVA) was conducted to examine
the response of the estuarine carbonate system to seasons and the difference
between years studied. A significant ANOVA model with significant interaction

between the factors (seasons and year) indicates that the change in the
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dependent variable (the tested carbonate system parameter) in response to
one factor depends on the level of the other factor (Kitsiou & Karydis, 2011).
When differences were detected, the Holm-Sidak method was applied. This
is an all-pairwise multiple comparison procedure that helps isolate the groups

differing.
2.8.5 Regression analysis

In correlation analysis there is no distinction between dependent and
independent variables but both are influenced by the same factor (Kitsiou &
Karydis, 2011), therefore, a simple regression analysis was applied to describe
pH and oxygen saturation dynamics influence by metabolic rates. In addition,
a multiple regression was carried out to study the dependence of pH on two

independent variables: oxygen saturation and salinity.
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Chapter 3

Temporal variation of phytoplankton blooms
associated with changes in environmental
conditions in the Southampton Water and

Christchurch Harbour estuaries

Abstract

Estuarine blooms are typically identified by measuring changes in phytoplankton
biomass. In addition, seasonal and interannual patterns can be described by

paring this data with hydrological and meteorological parameters.

The present chapter includes an analysis of the correlation between
phytoplankton blooms and environmental conditions using high-frequency water
guality data collected in the Southampton Water (2014 — 2020) and Christchurch
Harbour estuaries (2014 — 2018). It was possible to associate the initiation of the
spring bloom in both systems with abrupt rises in the water column light
availability and temperature. Furthermore, the Christchurch Harbour estuary was
characterised by spring and autumn blooms, while Southampton Water
presented a pattern with blooms mainly in spring and summer. In addition, an
analysis of the neap-spring tidal cycle in the Southampton Water estuary
identified a correlation between initiation of blooms and the lower mixing

conditions during neap tides.
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3.1 Introduction

Phytoplankton in estuaries

Coastal systems are highly variable ecosystems where chemical, physical and
biological processes interact at different spatial and temporal scales (Bucci et al.,
2012; Martellucci et al., 2021). Within this area, estuaries act as connection
vectors for land-sea interactions, mostly transferring substances and energy

through riverine discharges into the marine environment (Ruiz et al., 2013).

Phytoplankton is the most important primary producer of coastal areas, acting as
a key driver of biogeochemical cycles and playing a central role in determining
water quality (Paerl & Justic, 2013). The concentration of chlorophyll ‘a’ (Chl ‘a’),
a proxy of phytoplankton biomass, can provide a rapid assessment of the
disturbance of nutrient enrichment (e.g. van der Struijk & Kroeze, 2010) affecting

the first trophic levels and consequently the whole ecosystem (Bucci et al., 2012).

A phytoplankton bloom is defined as the fast growth and accumulation of
phytoplankton, and are mainly controlled by light energy availability and nutrient
supply (Shi et al., 2016). However, coastal phytoplankton communities typically
show strong seasonal and spatial distributions (Paerl & Justic, 2013), since they
are strongly related to the physical forcing (e.g., wind, rain, rivers, waves, and
tides) that drives coastal current and runoff dynamics (Bucci et al., 2012; Lauria
et al.,, 1999); making an understanding of estuarine phytoplankton dynamics

extremely difficult to obtain (Martellucci et al., 2021).

This chapter aims to investigate the variability in the timing, magnitude and
duration of the blooms and environmental conditions driving them in

Southampton Water and Christchurch Harbour.
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3.2 Southampton Water time series of environmental factors

The time series data collected from the Xylem sonde mounted under the data
buoy based in the Southampton Water estuary includes 15-minute
measurements from 2014 to 2020, except for 2017. In 2017, measurements were
only available from the Data Buoy system for the first 3 months of the year;
therefore, this data was not included in the results presented here. In addition,
Environment Agency data from their ~ monthly surface sampling was included in

plots to compare the magnitude and pattern of parameters.

Although analysis was done on a daily basis, for the present work in the
Southampton Water estuary, a chlorophyll ‘a’ (Chl ‘a’) bloom was considered
when hourly average concentration values exhibited values >5 pg L. Despite
previous work in the region (Arantza Iriarte & Purdie, 2004) stating 10 pug L™ as
the threshold for major phytoplankton blooms in the estuary, the findings of the
current research demonstrated that 5 pg L better reflected the production
activity, since smaller blooms were being missed if a higher threshold value was

set.
3.2.1 Year 2014

Measurements for 2014 from the Data Buoy system started in May and extended

to December, with a noticeable gap for most of July.

The temperature presented a marked seasonal change (Fig. 3.1a), with values
ranging from 8.7°C in December to 22.7°C in July. Surface salinity did not show
much variation in the mid estuary (30.8 + 1.0 psu), with a minimum of 28.0 psu

and a maximum of 33.2 psu (Fig. 3.1b).
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Oxygen concentration was higher during June, presenting the yearly maximum
of 335.5 umol Oz L, and showing the lowest values in the successive month
(July), with the yearly minimum of 214.1 pumol O2 L? (Fig. 3.1c). June also
presented the highest daily oxygen variability in concentration and saturation,
particularly towards the end of the month. The yearly average (102.2 + 5.9 %) for
oxygen in percentage showed a near overall balance in saturation.
Oversaturation, conditions prevailed mostly from June to September, with a
maximum value of 140.9% at the end of June, and the minimum of 92.5% in May,
although, under saturation values were commonly observed from October to

December (Fig. 3.1d).

Chl ‘a’ concentration varied between 0.2 (December) and 18.2 ug L* (June)
throughout the year (Fig. 3.1e), with intermittent increases from June to
September, when five distinctive blooms were observed: (i) the first bloom lasting
5 days starting the 2" week of June with an average of 4.4 ug L, and in the
same month, (ii) the peak with the highest average (9.3 pug L) was observed for
10 days and probably lasted for a few more days but unfortunately the sonde
stopped recording in the subsequent weeks. (iii) The longest bloom event (18
days) was detected in the last days of July and beginning of August, just as sonde
recordings re-started, with an average of 6.5 ug L. (iv) A small bloom can be
seen in the early days of September, with an average of 3.4 ug L during 3 days,
and lastly into the 3 week of September, (v) a 6-days long bloom with a mean

value of 3.6 ug L.
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Fig 3.1 Time series of environmental conditions at the Data Buoy in Southampton Water in 2014.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a’ and (f) turbidity are presented as hourly values with dots e of different colours. In
(b), salinity values generated by a model are shown as grey dots e. In (d), the red dashed line —
— represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles A in different colours in (a) to (f).
7-day running mean of (g) surface irradiance lo and (h) mean water column irradiance I, are
presented as black lines —, with daily mean chlorophyll ‘a' concentration included as a green line
—. (i) Wind speed is represented as daily mean in vertical bars | and maximum daily values in
black circles e.
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Turbidity presented higher monthly variability from August to October, showing a
maximum value of 29.4 FTU in October while the year minimum was 0.1 FTU
and was observed in June (Fig. 3.1f). A clear correspondence between peaks of

turbidity and greater tidal range values was detected.

Surface PAR (I,) varied on a seasonal pattern, with higher values towards the
summer, reaching a maximum of 3312.9 Wh m?2 d in June (Fig. 3.1g). Daily
values started to noticeable increase in April and then decreased from September

onwards.

Mean water column irradiance (I,,) presented its highest values from May to
September, then rapidly started to decrease towards the end of the year. Two
major peaks with values above 1500 Wh m2 d-* were observed during June and
one above 1000 Wh m2 d! in May (Fig. 3.1h). The maximum daily value for 2014

was observed during the 15t peak in June, reaching 1992.9 Wh m2 d.

The winter months (December, January and February) showed the highest daily
wind speeds, with several daily averages above 10 m st. However, a few peaks
in wind speed almost reaching this value occurred in May, October and
November (Fig. 3.1i). June, July, and September showed the lowest monthly

average wind speeds below 3.6 m s,
3.2.2 Year 2015

In 2015 there was a significant gap in data collection from the data buoy lasting

from mid-October to early December and a smaller gap at the end of March.

The yearly range in water temperature varied from 5.0°C to 20.4°C showing a

distinctive seasonal pattern with lowest values in February (Fig. 3.2a), and then
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rising again in the middle of that month, towards the summer, with the highest

monthly average in July (19.3°C).

Salinity average value for the year was 32.1 £ 1.1 psu, again displaying minimal
seasonal variation with a minimum value of 27.9 psu in December and a
maximum of 33.5 psu in August (Fig. 3.2b). Daily values from mid-June to

October were estimated from Environment Agency data.

Dissolved oxygen did not show large peaks in concentration, with the exception
of one detected in April when the maximum yearly value (357.4 umol O2 L1) was
recorded (Fig. 3.2c). From June to August, daily variation was higher than during
the rest of the year, with the minimum value of 209.3 pumol O2 L detected in
August. A similar increased daily variation for the same period (June to August)
was observed for oxygen saturation (Fig. 3.2d). Oversaturated conditions mostly
prevailed from April to August, with the highest value of 131.2% during a peak in
April. Outside this period, constant undersaturation values were observed,

reaching a minimum in September (85.7%).

In 2015, no major peaks in chl ‘a’ concentration were detected; however, five
small blooms were identified between the period from April to September (Fig.
3.2e). During the rest of the year, daily chl ‘a’ averages remained below 1.3 ug L
L. (i) The first and most noticeable bloom occurred in April, with a 3.9 pg L?
average during the 3 days it lasted. (ii) The longest bloom (6 days) was observed
between the last days of June and first days of July, but due to it being more
spread out, its average concentration was only 3.0 pg L. In August, in the space
of two weeks, two blooms were identified, (iii) the first one lasting only 2 days and
presenting a concentration of 3.2 ug L1, and (iv) the second bloom observed for

3 days, which reached 4.0 pug Lt making it the highest concentration of the year.
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Lastly, (v) in the middle of September, a 2-day bloom could be observed with a

mean value of 3.1 ug L.

Turbidity showed greater daily values at the beginning of the year, reaching a
maximum value of 22.9 FTU in March, just before the sonde stopped recording
but with a similar pattern observed during April (Fig. 3.2f). From June to August,
daily mean values remained mostly below 10 FTU and a minimum of 0.1 FTU
was detected in July. Throughout the year again a clear pattern of turbidity values
correlating with tidal range was observable, with higher turbidity during spring

tides.

A big spike in I, was seen in the first days of April, where, in approximately a
week, values increased from ~1400 to ~2500 Wh m2 d1, to then drop again to
~1800 Wh m2 d* after 20 days of sustained high I, values (Fig. 3.29). Following
this, a more gradual increase in values was observed reaching 3097.5 Wh m=2 d-
Lin July. From mid-October onwards, daily values remained below 1000 Wh m-?

d-* with a minimum of 162.9 Wh m=2 d! detected in December.

A high monthly variability could be observed for I,, from April to October,
(correlating with neap tides and reduced turbidity values) with the highest values
recorded in June (1727.7 Wh m2 d!) and noticeable starting to decrease from
the end of September. For the rest of the year, daily values remained below 500

Wh m2 d (Fig. 3.2h).

During January, November and December periods of high winds occurred, with
recurrent daily maximums above 10 m s and averages around 6.2 m s (Fig.
3.2i). In contrast, from April, wind speeds started to decline until October where
only two days were observed to exceed 10 m s gusts and daily averages

remained below 7 m s1.
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Fig 3.2 Time series of environmental conditions at the Data Buoy in Southampton Water in 2015.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a’ and (f) turbidity are presented as hourly values with dots e of different colours. In
(b), salinity values generated by a model are shown as grey dots e. In (d), the red dashed line —
— represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles A in different colours in (a) to (f).
7-day running mean of (g) surface irradiance lo and (h) mean water column irradiance I, are
presented as black lines —, with daily mean chlorophyll ‘a' concentration included as a green line
—. (i) Wind speed is represented as daily mean in vertical bars | and maximum daily values in
black circles e.
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3.2.3 Year 2016

In 2016, there were no major gaps in measurements across all parameters apart
from salinity (the probe became unreliable from May for the rest of the year).
However in May, chl ‘a’ displayed a 9-day disruption after filtering the data due to

erratic values being detected.

Water temperature varied from 6.8°C in March to 21.5°C in August (Fig. 3.3a)
with values initially decreasing throughout the first three months of the year then
started to rise at the end of March until they stabilised around 19.5°C for the
summer period (July to September). Temperature then slowly decreased until

reaching values of 9°C in December.

Salinity from the Data Buoy system is displayed until May; after that, values are
estimated from a model using Environment Agency data (Fig. 3.3b). The range

of values was from 28 to 32.8 psu, without any clear seasonal variation.

During the month of May, oxygen concentration showed higher values than the
rest of the year, with the maximum of 413.3 pmol Oz L in the first week of the
month during a peak that lasted 8 days (Fig. 3.3c). May and June presented
elevated daily variability, with the yearly minimum of 160 pmol Oz L in the middle
of June. The rest of the year showed relatively constant daily values, particularly
during the first four months. The period from July to September, displayed only
minimal daily variations in concentration. Regarding oxygen percentage, the
period from May to August displayed clear oversaturation conditions for
prolonged periods (~1 month); however, between June and July 30 days of
undersaturation values were also recorded (Fig. 3.3d). During other months,
oxygen remained slightly undersaturated and the yearly values ranged from

64.8% in June to 147.6% in May.
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Fig 3.3 Time series of environmental conditions at the Data Buoy in Southampton Water in 2016.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a’ and (f) turbidity are presented as hourly values with dots e of different colours. In
(b), salinity values generated by a model are shown as grey dots e. In (d), the red dashed line —
— represents 100% of saturation. In (e) and (f), the daily tidal range is indicated as a black line —
. Environmental agency sampling points are shown as triangles A in different colours in (a) to (f).
7-day running mean of (g) surface irradiance lo and (h) mean water column irradiance I, are
presented as black lines —, with daily mean chlorophyll ‘a' concentration included as a green line
—. (i) Wind speed is represented as daily mean in vertical bars | and maximum daily values in

black circles e.
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Chl *a’ showed a very distinct peak at the beginning of May, where the yearly
maximum value of 16.6 pug L* was detected (Fig. 3.3e). This spike in chl ‘a’
included an average value of 9.9 ug L for 2 days but data was then interrupted
and when recording restarted, concentrations above 5 ug L* were still detected
for another 3 days which suggested it was part of a prolonged peak. A small
chlorophyll peak was then identified at the end of May with an average value of
4.1 pg L. From July to September, some variability in chl ‘a’ concentration was

detected but with all values below 5 pg L.

February and March presented the highest monthly average turbidity values,
although, the maximum hourly value (22.7 FTU) was observed in April (Fig. 3.3f).
An extended period of low turbidity was detected from mid-April to mid-August,
where values did not exceed 9 FTU. From then onwards, turbidity increased
again but values were not as high as in the beginning of the year. A perceptible

correspondence pattern could be observed between turbidity and tidal range.

A seasonal variability was observed for I, with lower values in winter months
increasing towards the summer, until reaching a maximum of 2993 Wh m?2 dtin
July (Fig. 3.3g). The period between May and August presented values above

1950 Wh m2 d-t that were not observed during the rest of the year.

I, remained below 500 Wh m?2 d* until the end of March, when several peaks
occurred during the same period observed in November and December (Fig.
3.3h). In April, a large spike in In was observed where in 4 days with values
increasing from ~400 to ~1240 Wh m2 d1. Inmediately after, for 24 consecutive
days, daily values remained above 950 Wh m? d1. Regular peaks surpassing
this value were identified from the end of April to mid-August. The yearly

maximum I,,, value (1707.3 Wh m2 d!) occurred during a peak at the end of May.
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Daily wind speed oscillated between 0.7 and 11.9 m s throughout the year (Fig.
3.3i). January to March was the period with highest monthly averages (~5 m s?)
and variability, after that, daily averages remained under 10 m s, with the
exception of one day in August, and monthly average values were less than 4.3

m st
3.2.4 Year 2018

The Xylem data buoy commenced recordings in early March 2018. An extensive
sensor clean-up was performed in the first few days of September and the result
of some biofouling on the optical sensors can be noticed in parameters such as

chl ‘a’ and turbidity.

Temperature values varied between 4.7°C in March and 23.7°C in July (Fig.
3.4a), following a seasonal distribution with monthly high averages of ~20°C

during summer months (June to September).

Salinity presented an annual average of 30.6 = 0.9 psu, with a minimum of 28
psu and a maximum of 33.4 psu (Fig. 3.4b). Two important sensor positive drifts
were noticed, one at the end of October increasing subsequent values by ~1 psu
for around two weeks, and another in November where data dropped almost 4
psu in two days. This last event was reflected in the oxygen concentration data
since salinity and temperature values are used to calculate Oz concentration from

O2 saturation.

Oxygen concentration showed consistently higher values between March and
May, with a maximum of 337.8 pmol Oz L in April (Fig. 3.4c). Following this
period, concentration remained below 290 pmol O2 L* until mid-December. The

lowest concentration (152.3 pmol Oz L) was detected in July. For both oxygen
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parameters, concentration and saturation, daily variability was maximal from the
end of May to mid-August then much reduced from September onwards.
Saturation percentage exhibited a minimum value in July (67%) and a maximum
in May (127.1%). From May to August, saturation values fluctuated between
undersaturated and oversaturated conditions then from September, for the rest

of the year oxygen remained undersaturated (Fig. 3.4d).

Ten chl ‘a’ peaks with values reaching at least 5 pg L occurred between March
and October 2018 , with evidence of major production activity in July (Fig. 3.4e);
outside this period, the average concentration was 0.2 pg L. (i) The first bloom
of the year appeared at the end of March, lasting 9 days and presenting a mean
value of 5.6 pug L%; (i) two weeks later, a bloom with an average 3.7 ug L* was
sustained for 5 days, (iii) In May, an 11-day event was detected (4.1 ug L) and
(iv) three weeks later, in the middle of June, a bloom averaging 4.7 ug L* was
observed for 4 days. (v) during the first days of July, the most extended bloom of
the year was sustained for 19 days and presented an average of 4.1 pg Lt; (vi)
in the same month, just a week later, an 8-day bloom with a maximum value of
13.7 ug L* and an average of 4.9 ug L appeared. (vii) four days later a peak
lasting a week averaged 4.2 pg L (viii) The smallest bloom (3.5 pug L) was
identified at the end of August, lasting 2 days. (ix) The hourly year maximum (17.8
ug L) was observed during the bloom at the beginning of September, the data
for this event is for 6 days and ceased when the sensor cleaning occurred, and it
is believed that this was caused by sensor biofouling. (x) Finally, in October a
less clear bloom was noticed where within a week, 3 different days showed hourly

values exceeding 5 pg L1, however, daily values stayed below 2.3 pug L.
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From March to mid-May, turbidity maxima with hourly values greater than 12 FTU
were commonly observed (Fig. 3.4f). In May and early June an unusual 25-day
period where turbidity values remained below 5 FTU was detected. For the rest
of the year, only on two occasions did the daily mean values exceed 10 FTU; the
biofouling event starting at the end of August and finishing when sensors were

cleaned, and two days in the middle of December.

Periods from January to mid-April and October to December, showed daily sums
of I, below 1400 Wh m2 d (Fig. 3.4g). The highest values of the year were
noticed from May to August, where data remained constantly above 1900 Wh m-

2d, and the year daily maximum of 3739 Wh m?2 d! was observed in early July.

The largest variability in computed [,,, values was observed between the end of
May and the beginning of September (Fig. 3.4h), daily vales stayed consistently
under 600 Wh m2 d. In May, a significant peak in I,,, occurred when, within a
week, data values increased from ~212 Wh m2 d1 to the year maximum of 1509.8
Wh m2 d-1. Although this peak reduced after 7 days, a second peak then occurred
with values higher than 700 Wh m2 d! for a total of 23 days between May and

June.

Daily wind velocity values rarely surpassed 10 m s; although irregular wind gusts
during the year occasionally exceeded this value (Fig. 3.4i). A period of average
low wind (<7 m s1) was observed between May and July, and greater monthly

variation was during January and December.
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Fig 3.4 Time series of environmental conditions at the Data Buoy in Southampton Water in 2018.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots e of different colours. In
(d), the red dashed line — — represents 100% of saturation. In (e) * represent discrete chlorophyll
samples taken independently. In (e) and (f), the daily tidal range is indicated as a black line —.
Environmental agency sampling points are shown as triangles A in different colours in (a) to (f).
7-day running mean of (g) surface irradiance lp and (h) mean water column irradiance I, are
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line

—. (i) Wind speed is represented as daily mean in vertical bars | and maximum daily values in
black circles e.
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3.2.5 Year 2019

Measurements from all sensors were available for most of the 2019, but with two
noticeable short gaps. The first one of ~30 days between February and March
occurred when the probe was removed from the buoy for maintenance, and the

second gap of about 10 days was in late November.

The temperature reflected a seasonal warming, with monthly average values of
~7°C during January and February (Fig. 3.5a), then steadily increasing until
reaching an average of 20.3°C for July and August and later decreasing to a value

of 8.7°C in December 2019.

Salinity showed low variation across the whole year, with an average of 31.8 +
1.2 psu (Fig. 3.5b). Failure of the conductivity sensor during two periods required
salinity values to be estimated from the salinity model derived from Environmental

Agency samples: almost all dates in May and from early July to November.

Oxygen concentration presented a year minimum of 165 pumol Oz L during July
and a maximum of 450.4 umol Oz L in June (Fig. 3.5¢). Elevate daily values
were detected between April-July; however, periods before April and after July
showed more constant values. The oxygen concentration during the first 3
months remained at ~300 pmol Oz Lt while from August to December, a gradual
monthly average increase occurred, taking averages from 225.2 to 287.3 umol
Oz L1, An average value of oxygen saturation over the whole year of 100.8%
indicated an overall balance in the oxygen saturation (Fig. 3.5d). However,
oxygen percentage presented mainly oversaturated conditions between April and
July and, in the same way as oxygen concentration, consistently showed the
greatest daily variations, with the lowest value in July (71.1%), while the highest

in June (183.5%). During the rest of the year, saturation conditions remained
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mainly undersaturated. Both oxygen parameters displayed peaks during the high
productivity period, comprising days of continuous values above 115% saturation

and 300 pmol Oz L* concentration.

Chl 'a’ showed a clear period of increased concentration from late April to late
August (Fig. 3.5e). Outside of this period, average chl 'a’ concentration remained
below 1.5 pg L. During this augmented production activity period, four
phytoplankton bloom events of different duration and magnitude were observed:
() in late April, a peak was observed for 14 days with an overall average of 4.2
ug Lt and, (ii) at the end of May, a bloom was sustained for 15 days with an
average of 8.7 ug L and reached a maximum hourly value of 27.1 ug L. (iii)
The most prolonged bloom was observed for about 48 days during June-July,
presenting the year maximum value of 28.3 ug L* and an average of 7.5 pug L?
and finally, (iv) a short bloom event was observed at the end of August for 5 days
with a mean concentration of 5 pug Lt. The major bloom events in late April, early
June and late August developed following a spring tide and peaked during the
next neap tide. The more prolonged bloom in July started on a neap tide in late

June but was then sustained over two further spring/neap periods until late July.

Turbidity measurements ranged between 1.2 and 16.6 FTU, with a marked period
from May to July of low turbidity when daily averages remained below 6 FTU (Fig.
3.5f). Higher daily variation was observed from September to December, but this
could have been caused by some biofouling of the turbidity sensor while chl ‘a’
for this period remained unaffected. Highest turbidity values corresponded to

maximum tidal ranges, especially during spring tides.
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Fig 3.5 Time series of environmental conditions at the Data Buoy in Southampton Water in 2019.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a’ and (f) turbidity are presented as hourly values with dots e of different colours. In
(b), salinity values generated by a model are shown as grey dots e. In (d), the red dashed line —
— represents 100% of saturation. In (e) * represent discrete chlorophyll samples taken
independently. In (e) and (f), the daily tidal range is indicated as a black line —. Environmental
agency sampling points are shown as triangles A in different colours in (a) to (f). 7-day running
mean of (g) surface irradiance lp and (h) mean water column irradiance |, are presented as black
lines —, with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed
is represented as daily mean in vertical bars | and maximum daily values in black circles e.
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For I,, values ranged between 165.9 and 3313.6 Wh m2 d-! in January and July,
respectively (Fig. 3.5g). A sudden increase in values was observed at the end of
March, reaching slightly above 2000 Wh m d! but then decreasing to ~1300 Wh
m2 d- for two weeks, before increasing again and remaining mainly above 2000

Wh m? d-! for the period between April and August.

I, showed a large variation throughout the year, with a monthly range from 55.9
Wh m2 d-tin November to 1004.6 Wh m2d1in May (Fig. 3.5h). Sustained values
above the annual average of 321.4 Wh m d! were observed from April to late

September, after which a drop in values remained for the rest of the year.

An exceptionally high I,,, period occurred in late April and throughout the whole
of May, with three different events, lasting from 3 to 9 days, of sustained values

above 1000 Wh m2d1,

The first 15 days of March, showed high wind in comparison to the rest of the
year, with sustained daily values above 6 m s and gusts reaching up to ~16.8 m
s'L. Directly after those two weeks, a period lasting until the end of July of lower

wind intensity (>5 m s!) was identified (Fig. 3.5i).
3.2.6 Year 2020

In mid-April, temperature and conductivity sensors stopped logging data, and due
to COVID-19 social distancing restrictions, it was not possible to reach the Data
Buoy system until the end of August when the sensor was replaced. In order to
fill the ~4.5 month data gap, a daily average of all data buoy values for water
temperature and salinity from 2014 to 2019 for the same annual period were
used. Without these estimated data values, it would have not been possible to

calculate oxygen concentration for the productive period of the year. It should
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also be noted that there was no Environment Agency sampling between early

March and early October 2020 due to Covid restrictions.

The water temperature during the first 3 months of the year was ~8.5°C then
started to steadily increase from April, until reaching an estimated yearly
maximum of 21.6°C in July (Fig. 3.6a). From then on, temperature declined with
the monthly average of 9.2°C measured in December. It is possible to notice, at

the end of November, a negative drift with values decreasing suddenly ~1.0°C.

The salinity yearly average was 30.9 + 1.1 psu. Although greater daily variation
in the monthly averages can be observed from October to December, this was
less than 1.0 psu. An additional month of salinity data values was added from the
salinity model derived from Environment Agency data, from mid-March to mid-

April, since values recorded were drifting downward about ~10 psu (Fig. 3.6b).

A very pronounced oxygen concentration peak could be observed in the middle
of April, where values above 400 pmol Oz L were sustained for a week and the
yearly maximum of 542.4 umol Oz L was identified (Fig. 3.6c). The May to
August period showed greater daily variability and several other peaks, however,
none exceeded 370 pumol Oz L1. The lowest concentration of the year was
displayed during this period, 102.8 pumol Oz L in July. Oxygen in percentage
presented a very similar distribution pattern to oxygen concentration, with a major
peak in values in April (Fig. 3.6d), when the highest saturation of the year
(190.7%) was detected. Oversaturation conditions could be mainly observed from
April to August, although during July the lowest measurements of the year (~50%)
were detected. Outside this period, undersaturation prevailed with monthly

averages ranging from 91.0 to 98.8%.
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Fig 3.6 Time series of environmental conditions at the Data Buoy in Southampton Water in 2020.
(a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation, (e)
chlorophyll 'a' and (f) turbidity are presented as hourly values with dots e of different colours. In
(a) and (b), temperature and salinity values generated by a model are shown as grey dots e. In
(d), the red dashed line — — represents 100% of saturation. In (e) * represent discrete chlorophyll
samples taken independently. In (e) and (f), the daily tidal range is indicated as a black line —.
Environmental agency sampling points are shown as triangles A in different colours in (a) to (f).
7-day running mean of (g) surface irradiance lp and (h) mean water column irradiance I, are
presented as black lines —, with daily mean chlorophyll 'a' concentration included as a green line
—. (i) Wind speed is represented as daily mean in vertical bars | and maximum daily values in
black circles e.
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A significant peak of chl ‘a’ was identified in April, presenting the highest
concentration of the year (33.4 ug L) and this event averaged 8.2 pug L during
the 11 days it lasted (Fig. 3.6e). In addition, four minor blooms were identified
from June to August: (i) In mid-June a 11 days bloom could be observed,
averaging 2.5 ug L. (ii) Almost three weeks later, for 2 days, higher values were
described, reaching 12.4 ug L* and a mean of 2.1 pyg L. (iii) In early August, a
small bloom appeared, exceeding the 5 pg L threshold value for 1 day and
averaging 2.7 ug L, and a week later (iv) a 3-day event averaged 3.4 ug L.

Outside the April-August period, monthly mean values remained below 1 pg L.

The first three months of the year presented, in general, the most elevated values
for turbidity during the year, with peaks ranging from 13.4 to 18.6 FTU.
Nevertheless, the year maximum was recorded in a peak (19.4 FTU) during
October (Fig. 3.6f). April presented the lowest monthly average (2.5 FTU), and
from that month until June, peaks were observed every 30 days instead of every

15 days, like during the rest of the year.

Values for I, started increasing steadily from ~283 Wh m? d! in January, but at
the end of March a spike of ~1000 Wh m2 d-* took daily sums from 1240 to 2250
Wh m2 d? in about 9 days (Fig. 3.6g). After this, several peaks in I, were
observed with a major one at the end of May reaching 3639.4 Wh m2 d. In a
period of 8 days in mid-August, values dropped more than 1300 Wh m?2 d?

keeping daily sums for the rest of the year below 1800 Wh m2 d.

Distribution of I, for this year was very irregular, with the highest values
concentrated in 42 days between April and June, this being the only time when
daily sums exceeded 900 Wh m2 d-* during the year (Fig. 3.6h). However, within

this period of major activity, a pronounced decrease occurred in May with values
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as low as 250 Wh m2 d1. In addition, in early June, values exhibited a sudden
drop, from ~1480 to 290 Wh m2 d-tin less than a week, and then remained under
900 Wh m2 d until mid-September. After that, values remained below 350 Wh

m=2d-1.

February presented the highest monthly average wind speeds, with 7.6 m s on
average and gusts above 12 m s, especially in the last two weeks of the month
(Fig. 3.6i); August and October presented gusts surpassing 12 m s, but recorded
less often. From mid-March to the end of June, low wind conditions were

observed, with daily means staying, commonly, under 5.8 m s.
3.3 Christchurch Harbour time series of environmental factors

The data collected from the deployment of an EXO2 multi parameter sonde from

the Ferry Pontoon in Christchurch Harbour is available from 2014 to 2018.

For this study site, a chlorophyll ‘a’ (Chl ‘a’) major bloom was considered
whenever an hourly average value exceeded 10 pg L. Since the main analysis
has been based on daily mean values, any day where Chl ‘a’ concentration
exceeded the threshold value of 10 pg L't was included as a ‘bloom’ event. The
Environment Agency did not routinely sample in the Christchurch Harbour
estuary between 2014 and 2018 however some spot sampling was done
throughout the estuary including at the Ferry pontoon by the Christchurch

Harbour Macronutrients research team in 2014 (Panton et al., 2020).
3.3.1 Year 2014

For 2014, measurements recorded with the EXO2 probe in the estuary
commenced in May. A 5-day gap in data at the end of June affected all water

guality parameters and a second 5-day gap in mid-July disturbed both oxygen
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variables. From 30" July to 23" September 2014, data was collected every 2
hours instead of the 10 minutes displayed for the rest of the Christchurch Harbour

time series.

Water temperature values were not available due to sensor malfunction for
almost two months from July to September. In order to fill the gap, independent
measurements made about every two weeks with a similar probe were used to
produce a temperature model and predicted values were introduced into the time
series (Fig. 3.7a). These estimated temperature values were used to calculate
oxygen concentration (from percentage saturation) for the same period. During
the year, water temperature ranged between 4.2°C in December and 20.9°C in

August.

For the first month of measurements, between May and June, estimated salinity
only varied between 26.2 and 31.5 psu although this reflected high tide values
(Fig. 3.7b). However, during the rest of the year salinity often showed widely
fluctuating values between 0.3 to 31.3 psu within one day due to the daily tidal
fluctuations. This high variation resulted in a yearly average of 22.8 £ 7.7 psu at

the Christchurch Harbour site.

Oxygen concentration showed high daily and monthly variability during July and
August, and during these months the minimum (Aug) and maximum (Jul) values
were detected (189.9 and 636.4 umol Oz L™! respectively). July’s monthly average
of 380.2 umol Oz L1, was considerably higher than for other months, displaying
the maximum of 299 umol Oz L1; October presented the lowest monthly average
of 247.9 umol O2 L* (Fig. 3.7c). Both oxygen concentration and saturation

exhibited a sudden drop in values during the first week of August, and after that,
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concentration did not exceeded 355 pumol Oz L and saturation remained below

150%.

Oxygen saturation ranged from 70% in August to 242% in July. Oversaturated
conditions prevailed in June and July and were common in August and

September. Undersaturated conditions dominated during other months.

Chl ‘a’ registered a minimum of 0.1 ug L* in December and a maximum of 22.1
ug Lt in September, however, July monthly average was the highest of the year,
with 4.9 ug L. At the end of June, a small peak in Chl ‘a’ could be observed, with
only 1 day exceeding the threshold of 10 pg L. In addition, four major blooms
were detected between July and September as observed in Figure 3.7e. (i)
Lasting more than three weeks (24 days), the longest bloom of the year was
observed in July with an average of 5.1 pug L** and maximum hourly values up to
19 ug L. Approximately a week later, (ii) the second bloom was maintained for
6 days averaging 5.8 pg L. (iii) In early September, the bloom presented the
maximum average of 6.4 ug L%, lasted 9 days; and a week later (iv) a 3-day bloom

with an average of 5.3 pg L was detected.

From May to September, hourly values of turbidity remained below 20 FTU, with
the exception of a few days in August (Fig. 3.7f). During this period, monthly
average values did not exceed 7.5 FTU. However, from October to December,
the monthly values increased from 11.2 to 18.3 FTU, and a maximum of 77.2

FTU was observed in November.
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Fig 3.7 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry
Pontoon in 2014. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage
saturation, (e) chlorophyll ‘a' and (f) turbidity are presented as hourly values with dots e of different
colours. In (a), temperature values generated by a model are shown as grey dots e. In (d), the
red dashed line — — represents 100% of saturation. Measurements taken with an independent
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samples taken independently. 7-day running mean of (g) surface irradiance lp and (h) mean water
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maximum daily values in black circles e.
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I, steadily increased during the first three months of the year, until in early April
a peak of more than 1500 Wh m2 d? stirred values from ~900 to ~2600 Wh m?
d?in less than two weeks (Fig. 3.7g). From then until the end of August, daily
sums above 1750 Wh m= d! were commonly observed; unlike the rest of the
year when values did not reach this threshold. A maximum of 3556.9 Wh m2 d*

was detected in June.

Since I,,, is partly derived from turbidity, the time series for this parameter started
in May, with values around 2000 Wh m2 d-1. At the beginning of June, a big peak
was observed, moving daily sums from ~1100 to ~2800 Wh m d*. A second
peak appeared in late June, including the year maximum of 2824.9 Wh m2 d+
just as estimated values ceased due to a gap in turbidity data (Fig. 3.7h). Values

above 1550 Wh m2 d! were only identified between May and mid-August.

January, February and December exhibited higher daily wind speeds, which was
reflected in their monthly averages ~ 6 m s*. From these three months, February
presented the maximum gusts of wind, generally above 13 m s1. Moreover, in
May, a peak of high wind speed (>11 m s!) was identified for over a week (Fig.
3.71). On the contrary, June and July maintained daily values consistently below
6 m st with maximum values never exceeding 9 m s1. Moreover, September

presented the lowest monthly value of 2.5 m s,
3.3.2 Year 2015

In 2015, from mid-May to the end of August (105 days), data from the EXO2
sonde were not recorded due to a data logger malfunction. Additionally, data in
December was only collected during the first week of the month. However, this
year was included in the results since phytoplankton activity in the form of chl ‘&’

blooms were detected in months either side of this data gap.

78



Chapter 3 — Temporal variation of phytoplankton blooms

Temperature varied between 3.6 and 18.5°C, in February and September
respectively (Fig. 3.8a). Since data from the summer months were not available,
it can only be assumed that temperature did not go above 20°C because of

missing data during the generally warmest period of the year.

Regarding salinity, a minimum of 0.2 psu and a maximum of 37.4 psu was
observed during the year (Fig. 3.8b). During the first 3 months of the year salinity
values were often below 2 psu due to high freshwater river inputs to the estuary
then for a period of about 3 weeks, data remained above 7 psu. Once
measurements resumed in September, salinity appeared to displayed a negative
drift of ~1 psu for about a month, since before this period values did not exceed

35 psu.

Both oxygen parameters, concentration and percentage, showed a major peak in
values in April, when the year maximums (481.4 umol Oz L'* and 160.8%) were
detected. Oxygen concentration exhibited, on average, highest values in the first
months of the year, with monthly means of ~319 umol Oz L'* compared with ~284
umol Oz L from September onwards (Fig. 3.8c). In a similar way, data recorded
between January and March showed, mostly, undersaturated conditions, while
the rest of the year had larger daily variation, reflecting rapid within day changes

between over saturated and undersaturation in shortly periods (Fig. 3.8d).

Chl ‘a’ concentration increased in April and Oct but remained below 5 pug L? in
other monitored months. For 2015, seven major blooms were identified and are
displayed in Figure 3.8e. (i) The first one started in late March and lasted 7 days,
averaging 4.9 pug L. (i) During mid-April, the longest event (24 days) was
evident, presenting an 8.3 ug Lt average and the year maximum of 48.2 ug L.

Two days later, (iii) a smaller bloom (6.1 pg L) could be observed for about 3
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days. Almost a week after measurements restarted in September, (iv) an event
where for 12 days several hourly values exceed 10 pg L was identified. (v) The
bloom presenting the highest average of the year of 12.6 ug L, was observed
between September and October for over 12 days, and almost immediately a (vi)
smaller peak (5.8 ug L) appeared for 4 days. This last bloom could have been
due to the remnants of the larger one, but it is included as it was separated by
two days of lower concentrations. (vii) At the end of October, the last bloom of

the year was observed for 15 days and averaging 9.2 ug L.

Turbidity in October and November presented highest monthly values (>20 FTU)
compared to the rest of the year and the maximum value for the year (91.6 FTU)
was detected in November (Fig. 3.8f). However, during the first three months of

the year some high values were also detected with values as high as 66 FTU.

Higher daily sums for I, were observed between April and September (Fig. 3.89),
with values from 1228 to 2484 Wh m2 d-1. Until July, values stayed close to 2000
Wh m2 d?, and for the next 3 months daily peaks occurred from ~1350 to ~2900

Wh m2d?.

Similarly, to I,, a sudden increase to ~1000 Wh m-2 d* in early April, was detected
for I,,,. With the year maximum of 2350.2 Wh m2 d* appearing in the following
week (Fig. 3.8h). From April to mid-September, I,,, values exceeded 1370 Wh m-

2.d%, but it is worth noting that a 3-month gap within this period is shown.
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Fig 3.8 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry
Pontoon in 2015. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage
saturation, (e) chlorophyll ‘a' and (f) turbidity are presented as hourly values with dots e of different
colours. In (d), the red dashed line — — represents 100% of saturation. 7-day running mean of (g)
surface irradiance lp and (h) mean water column irradiance I, are presented as black lines —,
with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed is
represented as daily mean in vertical bars | | and maximum daily values in black circles e.
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Windier conditions were seen in November and December, when most maximum
daily gusts recorded were above 9 m s and monthly average ~5.8 m s,
Nevertheless, daily values above 10 m s with gusts >13 m s occurred at the
end of March (Fig. 3.8i). On the contrary, an extended period of lower measured
wind speeds were detected from June to October, presenting monthly values

~3.8 m st and gusts below 10.5 m s™.
3.3.3 Year 2016

Measurements for 2016 started in mid-February and finished at the end of

November, with no gaps during the period in-between.

Temperature varied seasonally, presenting higher monthly averages (~18.8°C)
in the summer months with a year maximum of 23.7°C in July (Fig. 3.9a). In
addition, February showed the coldest temperature of the year 5.3°C and the

lowest monthly value (7.8 °C).

From February to May, salinity showed a larger variation than for the rest of the
year, with peaks approximately every two weeks, as seen in Figure 3.9b. It is also
noticeable that from June to September, hourly values rarely dropped below 5
psu and, at the end of November, a similar decrease in salinity as detected in the

first few months, was observed.

Oxygen concentration exhibited higher values (~354 umol O2 L) from February
to May, but then in June started showing slightly lower values (~283 pmol Oz L-
1) for the rest of the year (Fig. 3.9¢). Several oxygen peaks could be observed
from May to August, but especially during May when the highest value of 485.3
umol O2 Lt was recorded. In terms of oxygen saturation, the year presented an

overall average oversaturation (107.1 + 9.0%), with most of the undersaturated
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conditions detected from May to September, but never lasting for extended

periods (Fig. 3.9d).

Chl ‘a’ concentrations in 2016, presented four different bloom events, with a
particularly extended one between May and June, as can be clearly seen in
Figure 3.9e. (i) The first bloom was detected at the end of April for about 5 days
and reached a mean value of 4.6 ug L. A week later, (ii) a substantial bloom was
recorded for a total of 45 days, averaging 14 pug L™ for the total event and reaching
a maximum value of 130 pg L. Following this, a period of about two months
remained with relatively low productivity, until August when two separate days
showed hourly values exceeding 10 pg L and presenting daily values of (iii) 3.5

ug L't and (iv) 5.3 ug L.

A clear period of low turbidity, with values never surpassing 30 FTU was detected
for about 4 months (Apr-Aug), in the middle of the year (Fig. 3.9f). Outside of this
period, turbidity presented regular peaks over 50 FTU, and even a major increase

in November reaching 84.1 FTU.

From February, I, showed a gradual increase in daily values (Fig. 3.99). The
period between April and August displayed several changes in the light intensity,
but values permanently remained above 1600 Wh m2 d-1. In May and July, peaks
increased to 2926.9 and 2946.1 Wh m d?, respectively. A decrease in values
later in the year was observed from mid-September when in 4 days values

declined from 1603.2 to 742.5 Wh m2 d-1,
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Fig 3.9 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry
Pontoon in 2016. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage
saturation, (e) chlorophyll 'a’ and (f) turbidity are presented as hourly values with dots e of different
colours. In (d), the red dashed line — — represents 100% of saturation. 7-day running mean of (g)
surface irradiance lp and (h) mean water column irradiance | are presented as black lines —,
with daily mean chlorophyll 'a’ concentration included as a green line —. (i) Wind speed is
represented as daily mean in vertical bars |  and maximum daily values in black circles e.
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I,,, calculations varied greatly across the year as seen in Figure 3.9h, showing
several spikes in values, with the maximum in July (2555.6 Wh m-? d). Although
peaks identified during May were only around 2250 Wh m2 d, this month

presented a very similar average to July, ~2000 Wh m-2 d-1.

During the first three months of the year, higher wind speeds were detected (Fig.
3.9i), with monthly averages of ~4.5 m s, and reaching gusts of up to 16 m s,
For the rest of the year, monthly averages never exceeded 3.9 m s and daily

values remained often below 7 m s1.
3.3.4 Year 2017

In 2017, there is missing water quality data for the first and the last week of the

year, as well as a 40-day gap between February and March.

Water temperature at the beginning of the year was ~6°C then started to
progressively increase from the end of January, until reaching a maximum of
24.8°C in June, to then decrease to temperatures near 7°C in December (Fig.

3.10a).

A considerable variability was observed in salinity, with values ranging from 0.3
to 34.8 psu (Fig. 3.10b). Early in the year large daily fluctuations in salinity are
evident due to higher river flows in the estuary and later from May salinity did not
decrease below about 10-15psu during reduced river flow rates and effect of tidal

water inputs to the estuary.

Large daily variability was detected from June to August in terms of oxygen
concentration (Fig. 3.10c). The yearly minimum (171.2 pmol O2 L1) and
maximum (462.7 umol Oz L) values were identified within this period, in July and

June respectively. Monthly averages showed September as the lowest (272.1
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umol Oz LY) and January as the month presenting the highest oxygen
concentration (357.6 umol Oz LY). Regarding oxygen saturation, overall the year
was oversaturated with a mean of 107.7 + 9.7%. Values below 100% saturation
were mainly detected from May onwards, and were less evident in the last few

months of the year, as seen in Figure 3.10d.

This year displayed a relatively low Chl ‘a’ concentration (Fig. 3.10e), with an
average of 2.8 + 1.3 ug L. Three different events reached the conditions
specified to be classified as major blooms at the Ferry Pontoon in the estuary. (i)
In early-June, over two days the hourly values reached the threshold of 10 pg L
1 and the bloom presented a mean of 3.1 pug L. Later in the summer, (ii) at the
beginning of August, a bloom was detected lasting 7 days and reaching a
maximum of 11.2 ug L%, however, the yearly maximum of 11.6 ug L? was
observed during (iii) the 3-day bloom in October. A few days after the last bloom,

a downward drift in data of about 1.1 pg L* was identified.

Peaks in turbidity exceeding 50 FTU were regularly detected during the year,
particularly in January and December when maximum values were close to 80
FTU (Fig. 3.10f). Nevertheless, long periods (>2 months) when turbidity remained

below 20 FTU were evident in April-May and June-August.

I, showed greater variation and several peaks, during the period between April
and August (Fig. 3.10g). Additionally, daily values remained above 1700 Wh m-?
d?. The maximum of 3509.1 Wh m2 d! was detected during the peak in the
middle of June, the same month that presented the highest monthly average of

2607.6 Whm=2d>.
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Fig 3.10 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry
Pontoon in 2017. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage
saturation, (e) chlorophyll ‘a' and (f) turbidity are presented as hourly values with dots e of different
colours. In (d), the red dashed line — — represents 100% of saturation. 7-day running mean of (g)
surface irradiance lp and (h) mean water column irradiance I, are presented as black lines —,
with daily mean chlorophyll 'a' concentration included as a green line —. (i) Wind speed is
represented as daily mean in vertical bars |  and maximum daily values in black circles e.
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In a very similar pattern to I,, calculations of I,,, varied significantly from April to
August (Fig. 3.10h). For this parameter, daily values surpassed 1300 Wh m2 d!
almost the whole time within this period, an exception could be observed in late
July, and a peak during June presented the highest value of the year (3055.8 Wh

m2 d),

Daily average wind speeds rarely exceeded 8 m s during the year, as it can be
seen in Figure 3.10i. Monthly averages remained below 5 m s for the whole
year, with the lowest in April (3.3 m s1) and the highest in March (4.7 m s?).
Periods of about two weeks, presenting higher gusts were measured in March

and December.
3.3.5 Year 2018

Water quality data was not available in 2018 until the last days of March, and at
the end of the year the probe stopped logging data two weeks before the end of

December.

Water temperature increased gradually from around 7 °C in March until reaching
a maximum of 24.3 °C in July, and then progressively decreased to values of
~6.5°C at the end of the year (Fig. 3.11a). However, in the last weeks of April an
unusual drop in temperature to near 8°C for a couple of days, to then rapidly

increase back to ~16.5°C.

Salinity is a widely variable parameter at this study site, ranging from 0.1 to 34
psu in this particular year, as shown Figure 3.11b. However, two periods where
data stayed consistently below 1 psu for days were observed. The first one lasting
14 days in early-April and the second period for almost all of July (28 days); these

are believed to be caused by a sensor failure. In addition, during the last three

88



Chapter 3 — Temporal variation of phytoplankton blooms

months of the year, values for salinity clearly drifted down steadily, again probably

due to sensor malfunction.

Oxygen concentration ranged from 176.6 pmol Oz L* in September to a value of
506.8 umol Oz Lt in July. Nevertheless, the first three months average above 340
umol Oz L't which made this the period with the highest concentration of oxygen
of the year (Fig. 3.11c). The period between June and August presented the
highest daily variability in oxygen saturation (Fig. 3.11d), with the yearly limit
values observed within this period: 64.2% in July and 187.1% in June. The year
presented a general oversaturated average (108.8 + 10.6%) with all monthly
averages above 100% saturation. Regular peaks in oxygen concentration and

saturation were identified from May to September.

From 11" August, Chl ‘a’ data had to be fitted since a drift of about ~1.0 pg L
every 2 weeks was detected; values revised by applying a linear model are
highlighted in Figure 3.11e. A total of seven peaks of Chl ‘a’ were distinguished
across the year, (i) with the first and longest from May to June (28 days),
presenting the year maximum of 38.1 pug L and bloom average of 8 pg L. (ii)
Very soon after, a peak lasting 6 days that could have still been part of the bigger
bloom was observed (3.9 pg LY. (iii) In July a 3-day bloom occurred and
averaged 4.3 pg L. After almost 2 months of no major productivity, (iv) in mid-
September a significant peak sustained for 21 days got a 6.8 pug L' mean value.
(v) In early November, a spike in Chl ‘a’ data was noticed for about 3 days,
although values above 10 pg L't mainly appeared during one day. This particular
peak, behaves more like a drift in the sensor data than a bloom since values
dropped from one hour to the next by almost 7.7 pug L. Two close peaks showed

in the last weeks of measurements; (vi) one for 7 days and averaging 9.2 ug L*
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and less than a week after (vii), a 5-day peak with a mean value of 8.5 ug L.
The last three peaks mentioned, appeared in a time of the year when blooms in
this estuary are not that common and were not reflected in the oxygen saturation

time series.

Several peaks of turbidity were observed in 2018, especially in the period from
November onwards (Fig 3.11f). The maximum value of the year (57.1 FTU) was
detected within this time, however, a spike in August reached 49.9 FTU and one
in April, 49.1 FTU. Turbidity presented a period of almost two months (June and

July) of values remaining below 18 FTU.

Daily values of I, remained under 1500 Wh m2 d until an increase that took
them to ~2440 Wh m2 d-%, in less than two weeks, in late-April (Figure 3.11g).
From then, until August, the maximum monthly averages (>1950 Wh m2 d-1) were
observed and the highest daily value of 3774.2 Wh m d! was identified as part
of the peak in late-June. Values after October mainly stayed below 1000 Wh m-?

dt.

I, calculations presented daily values above 1550 Wh m? d for the period
between May and early August, with the highest point of 3116.4 Wh m2 d in
June and being July the month with the highest average (2357.5 Wh m2 d?), just
as observed in Figure 3.11h. It is noticeable that during August; a similar range
of values seen across the first three months was detected from 2726 to 429 Wh

m2 d1in about 20 days.

The windiest month was January followed by December (Fig. 3.11i), both
presenting regular gusts above 11 m s'. From May to August, daily averages

remained below 7.5 m st and only two separate days surpassed 9 m s gusts.
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Fig 3.11 Time series of environmental conditions at the Data Buoy in Christchurch Harbour Ferry
Pontoon in 2018. (a) Temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage
saturation, (e) chlorophyll ‘a' and (f) turbidity are presented as hourly values with dots e of different
colours. In (d), the red dashed line — — represents 100% of saturation. In (e), chlorophyll ‘a’ values
generated by a model are shown as grey dots e. 7-day running mean of (g) surface irradiance lo
and (h) mean water column irradiance I, are presented as black lines —, with daily mean
chlorophyll 'a’ concentration included as a green line —. (i) Wind speed is represented as daily
mean in vertical bars | | and maximum daily values in black circles e.
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3.4 Seasonal and interannual trends and comparison between

estuaries

3.4.1 Phytoplankton correlation with abiotic parameters

The most frequently used parameter to measure or estimate changes in
phytoplankton biomass in marine and freshwater environments is the
concentration of chl ‘a’ (Cloern, 1996), and with the addition of hydrological and
meteorological parameters, spatial and temporal patterns can be inferred.
However, the relationship between chlorophyll and abiotic parameters is not fixed
but site-specific (Niu et al., 2016); it is often shown that it is not just one physical
factor controlling the initiation of blooms but instead interactions between
processes (Henson et al., 2006), hence the importance of monitoring as many
systems as possible and including a vast range of environmental parameters.
Spearman’s rank coefficients were used to understand the relationship between
chl ‘a’ concentration and various measured environmental parameters in both the
Southampton Water (SOT) and Christchurch Harbour (CHR) estuaries (Table

3.1).

Analysing the complete time series for the two systems, I, is revealed as the
parameter that correlates strongly with chl ‘a’ in SOT for the complete time series
(p=0.71) but less strongly in CHR (p=0.39). Considering individual years, all but
2020 (p=0.46) in SOT showed strong positive correlations to I, (p>0.55), and
similarly in CHR from 2014 to 2016 (p>0.55), whereas in 2017 (p=0.31), a weaker
correlation was observed. A very similar relationship among sites for the complete
time series could be observed for I,,,, with SOT presenting a strong correlation

(p=0.54) while CHR a weaker one (p=0.35). In SOT, 2014-2016 and 2019

92



Chapter 3 — Temporal variation of phytoplankton blooms

showed strong correlations (p>0.55), 2018 a moderate (p=0.49) and 2020 a
weaker relationship (p=0.32). Meanwhile, for CHR, only 2016 showed a strong
correlation with I,,, (p=0.62), while 2014 and 2015 a moderate (p=0.53 and p=50)
and 2017 a weak relationship (p=0.26). Noticeably, 2018 in CHR presented an
irregular negative correlation with both I, and I,,, (p=-0.30 and p=-0.24) which
certainly affected the degree of correlation for this site's complete time series
analysis. Light availability has previously been described as a critical driver of
bloom initiation for SOT (lriarte & Purdie, 1994) and correlations point at CHR

presenting the same behaviour.

Besides the parameters related to light availability, temperature showed, at both
sites, a significant correlation for the whole time series and at each individual
year. A strong correlation (p>0.55) between temperature and chlorophyll
concentration was present for the whole times series at SOT and most individual
years apart from 2018. At the CHR site, a less strong relationship was evident for
the whole time series (p=0.31) and with moderate relationships (0.40<p<0.54) for
2016 and 2017. For 2018 at CHR, a negative correlation (p=-0.25) between
temperature and Chl ‘a’ suggested that the chlorophyll data may have been less
accurate towards the end of the year. It is known that temperature affects
phytoplankton physiology and metabolic processes (Trombetta et al., 2019), and
in a previous study at a coastal site in the Western English Channel, it was
identified that phytoplankton biomass growth was potentially governed by
temperature control on enzymatic processes associated with carbon fixation

(Barnes et al., 2015).
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Table 3.1. Spearman's correlation coefficients relating chlorophyll concentration with environmental conditions.

Location Period lo Im Tidal Wind Temp Sal 0% Turb River
range speed flow
Southampton ~ Whole 0.71 0.54 ns -0.09 0.61 0.19 0.39 ns -0.32
Water TS
n= 2014 0.86 0.78 ns -0.16 92 0.44 0.56 -0.17 -0.42
2015 0.81 0.71 ns -0.12 79 0.70 0.25 -0.27 -0.65
2016 0.85 0.76 ns ns 73 ns 0.31 -0.40 -0.19
2018 0.76 0.49 ns -0.14 0.43 ns 0.43 0.29 0.18
2019 0.89 0.77 ns ns 0.76 0.25 0.44 -0.20 -0.65
2020 0.46 0.32 0.18 ns .62 0.49 -0.11 ns -0.56
Christchurch ~ Whole 0.39 0.35 ns 0.31 ns 0.35 -0.09 0.12
Harbour TS
n= 2014 0.61 0.53 ns 0.58 ns 0.57 -0.26 -0.35
2015 0.62 0.50 ns .66 0.45 0.31 0.27 -0.56
2016 0.65 0.62 ns 0.28 ns 0.50 -0.39 0.18
2017 0.31 0.26 0.12 0.38 ns ns ns ns
2018 -0.30 -0.24 0.18 -0.25 0.24 ns ns ns

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, p > 0.55.
ns = no significant relationship
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Fig 3.12 Principal Component Analysis (PCA) of environmental conditions for (a)
Southampton Water and (b) Christchurch Harbour Ferry Pontoon. Bloom events and years
have been used as factors to illustrate the clusters: No blooms in all years (grey circles o),
2014 blooms (red triangles A), 2015 blooms (yellow circles ¢), 2016 blooms (green squares
m), 2017 blooms (light blue hexagons @), 2018 blooms (blue diamonds ), 2019 blooms (pink
squares m) and 2020 blooms (orange hexagons @®). Arrows — represent the variable and the
direction of an arrow indicates its relation with the Principal Component (PC) and other
variables. Temp=temperature, Sal=salinity, Chl=chlorophyll ‘a’, 10=surface water irradiance,
Im=mean water column irradiance, 02%=DO in percentage saturation, [02]=DO
concentration, Wind=wind speed, Turb=turbidity and Tide=tidal range.
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Regarding oxygen parameters, oxygen saturation presented moderate positive
correlations with chlorophyll at both sites for the complete data set (SOT p=0.39
and CHR p=0.35). For 2014, a stronger (p>0.55) correlation was evident in both
systems. A moderate relation (0.40<p<0.54) was exhibited in SOT in 2018 and
2019 and CHR in 2016. Weaker correlations (p<0.39) were observed in SOT and
CHR in 2015 and 2016 only in SOT. Dissolved oxygen concentration in coastal
regions is controlled by physical processes such as atmospheric exchange and
ocean circulation as well as water temperature (Cravo et al., 2020). However, its
close relationship to phytoplankton biomass is due to its direct release and
consumption during photosynthesis and respiration respectively (Yuan et al.,

2016).

Chl ‘a’ showed no direct relationship with turbidity for the complete time series for
both sites; however, individual years at both sites presented some significant
correlations; e.g. in SOT negative correlations (p<-0.40) in 2015, 2016 and 2019
and a positive correlation (p=0.29) in 2018, while CHR presented negative
correlations (p<-0.39) in 2014 and 2016 and positive correlation for 2015
(p=0.27). Turbidity relates to decreasing phytoplankton biomass since it reduces
light availability, but variations in turbidity can be driven by interactions between

physical and biological processes such as wind and tides (e.g. May et al., 2003).

Daily rates of riverine inflow measurements from the River Test were used in the
analysis for SOT and from the River Avon for CHR. This parameter showed an
overall moderate negative correlation to Chl ‘a’ in SOT (p=-0.32) and a very weak
correlation in CHR (p=-0.12). However, considering individual years, data for
CHR in 2015 presented a strong negative correlation (p=-0.56), and in 2014 a

moderate one (p=-0.35). In the case of SOT, 2015, 2019 and 2020 showed strong
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negative correlations (p<-0.55) and 2014 a moderate relation (p=-0.42).
Freshwater inflow can favour phytoplankton growth; nevertheless, in small
estuarine systems, intense pulses of freshwater can flush out the phytoplankton

community (Cloern & Jassby, 2010; Peierls et al., 2012).

Influence of environmental conditions on major bloom events, at both estuaries,
for each year of study is shown in Figure 3.12. SOT being a deeper ecosystem
showed a closer relationship with I,,, and with Chl ‘a’, and an inverse connection
to turbidity, wind speed and tides, with Oz being more related (inversely) to
temperature and salinity. The shallower estuary (CHR), related strongly to Chl ‘&’
and to Oz, and slightly to I, and I,,;, and inversely to turbidity and wind with O2
related inversely to salinity as well. In terms of blooms, SOT has stronger
relationship to I, and Oz than CHR, which presents more spread in data and
weaker influence of Chl‘a’ in bloom event separation. The classification of blooms
through the PCA analysis did not reflect any major influence of tidal range,
turbidity, or wind speed; however, it was observed for both estuaries, that late-

year blooms in 2018 correlated with such parameters.
3.4.2 Timing of blooms

Temporal patterns of bloom distribution can be inferred from the PCA results (Fig.
3.12). The majority of days classified as within bloom events are explained by
parameters affected by seasonality (i.e. temperature, I, and I,,), indicating the
presence of warmer waters and extended hours of light availability, as well as
greater irradiance levels within the water column, favouring the appearance of

phytoplankton blooms in both estuaries.

The period when blooms were observed in CHR was longer than in SOT, with an

average duration of 153 (-5 months) and 121 (~4 months) days, respectively.
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CHR estuary shows (Fig. 3.13b) the typical dynamics of the coastal temperate
systems (e.g. Martellucci et al., 2021), which are characterised by spring and
autumn blooms and significant interannual variability; while SOT follows a
different pattern of bloom occurrence, particularly during spring and summer (Fig.
3.13a). Both estuaries showed blooms typically persisting for days or even weeks
during spring before dissipating, followed by additional biomass peaks in late
summer or autumn that may be stimulated by an excess in nutrients (Winder &

Cloern, 2010).

Riverine inflow (and possibly nutrients) increased in both estuaries during the
winter months through elevated riverine inflow (e.g. Nedwell et al., 2002).
Nevertheless, phytoplankton biomass remains low mainly due to limiting surface
light availability (Fig. 3.14 & 3.15). Spring blooms marked the beginning of the
productivity period each year at both locations, except for 2014 at both sites,
where data was not available from the autonomous monitoring until May.
Certainly, the most described seasonal pattern in coastal regions is the spring
bloom (e.g. Martellucci et al., 2021; Niu et al., 2016; Trombetta et al., 2019;
Zingone et al., 2010), and it is particularly pronounced in northern latitudes (e.g.
Henson et al., 2006). Previous work identified the existence of spring blooms in
the Southampton Water estuary (Iriarte & Purdie, 2004; Kifle & Purdie, 1993;
Wright et al., 1997) and an extended study on phytoplankton blooms in estuarine
coastal waters around the world (Carstensen et al., 2015) found that the spring
bloom was the most common seasonal bloom across all regions, occurring in
April-May in European coastal regions at similar latitudes to the ones studied in

the present research.

98



Chapter 3 — Temporal variation of phytoplankton blooms

A previous 5-year monitoring (1999-2003) of phytoplankton dynamics in SOT
characterised the system with distinctive spring and summer blooms (Holley et
al., 2007) and the main spring bloom occurring around May, similarly to that
observed in this research (Fig. 3.13a). In comparison, a study of the temporal
variation of chlorophyll ‘a’ in a coastal region in the Western English Channel
(Smyth et al., 2010) showed that the area presents distinct spring and autumn
phytoplankton blooms, just as seen for CHR in the present study (Fig. 3.13b).
This extended studied site is highly influenced by the Tamar estuary and presents
very well mixed waters during the autumn and winter months and a more stratified
water column in spring-summer. A similar temperature-driven stratification
process, but in much lesser magnitude, could be occurring in SOT since
temperature seems to play a major role in bloom initiation. However, in CHR,
given that years when autumn blooms were highly marked (2015 & 2018)
correlated with salinity, a possible stratification due to horizontal and vertical
density gradients generated by difference in salinity could be reducing turbulence

and enhancing resuspension (Zehrer et al., 2015).

Blooms are generated from a combination of different critical factors, and most of
the time, through interaction between them (e.g. Niu et al., 2016). The initiation
of the spring bloom in all years evaluated in SOT occurred when I, values were
above 1314 Wh m2 dt in combination with light penetration in the water column
(I, values) above 188 Wh m?2 d* as observed in Figure 3.14. A similar value of
I, (1245 Wh m2 d!) was identified for CHR spring bloom initiation, but as it can
be appreciated in Figure 3.15, for this system I,,, data was consistently above 640
Wh m? dt mostly due to the shallower water column. I, values are an indication

of patterns in bloom development shaped by the annual cycle of solar radiation
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(e.g. Rumyantseva et al., 2019), differing from I,,, which is affected by other
shorter timescale processes, like tidal currents. I, values found at the initiation of
blooms in SOT and CHR are above the range (500 — 800 Wh m-? d1) found by
Martellucci et al. (2021) for an ecosystem on the Italian coast with very marked
spring and autumn blooms, but below previous values reported for the
Southampton Water estuary by Iriarte & Purdie (2004) where blooms occurred
consistently with lo > 2000 Wh m2 d-1. Regarding I,,,, the critical theoretical value,
according to Riley (1967), for a sustained increase in phytoplankton biomass, in
temperate coastal and estuarine waters is 193 Wh m d%; with results from the
current study suggesting a similar value of I for SOT. However, for the CHR a
much larger value of Im above Riley’s value, was evident which could relate to the
shallower conditions in CHR since PAR within the water column varies according
to changes in depth (e.g. Cloern et al., 2014). Previous research done in the
Southampton Water estuary by Iriarte & Purdie (2004) reported that Chl ‘a’ levels
above 10 pg Lt occurred when I,,, averaged for the previous 7 days exceeded

380 Wh m2d?.

When considering turbidity measurements at the onset of blooms, <8.4 FTU for
SOT and <31.7 FTU for CHR, it is no surprise that a lower I,, value was
registered for SOT. Furthermore, CHR is a more turbid estuary presenting an
average during blooms of 11.2 £ 9.0 FTU, while SOT mean value was 4.1 + 2.7
FTU. Nevertheless, phytoplankton growth in CHR does not seem to be light-
limited since blooms initiate at a similar time of the year as in SOT; this is likely
to be due to its shallower water column depth that allows enough light energy
required for photosynthesis (e.g. Cloern, 1996), despite the elevated turbidity

present.
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Fig 3.13 Chlorophyll ‘a’ daily concentration during bloom events from 2014
to 2020 in (a) Southampton Water estuary and (b) Christchurch Harbour
Ferry Pontoon. The Spring and Autumn bloom periods have been
background shaded in light grey, while the Sumer bloom period has a white
background.

The temperature was also identified as a primary driver of the spring blooms, with
SOT events commonly appearing when water reached values >11.8°C and an
average of 12.2 £ 0.3°C, excluding 2014 when measurements started later in the
year (May), hence, by the time the first bloom was recorded temperature had
reached 17.7°C. For CHR, the temperature at the beginning of the spring bloom
ranged from 9.8°C in 2015 to 17.2°C in 2017, showing no clear set value to initiate
events. This wider range of water temperature can perhaps indicate that blooms

in this estuary are initiated by an increase in water temperature rather than a
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threshold temperature value, similar to that described by Trombetta et al. (2019)
for a Mediterranean shallow coastal lagoon with a similar yearly temperature

range to the CHR site.
3.4.3 The magnitude of blooms and interannual variability

Interannual variability of environmental conditions can affect, positively or
negatively, the magnitude of blooms within a system (e.g. Leterme et al., 2014).
Therefore, it is clear the importance of studying extended time series that allows

the comparison among years and permits the possibility of predictions.

SOT presented an average of daily Chl ‘a’ during bloom events and across the
time series of 5.6 + 3.2 ug L2, while CHR showed a mean value of 8.2 + 5.3 ug
L, approximately 1.5 times higher than the one calculated for SOT. Analysing
the range of data, a similar pattern was observed, where CHR (9.5 — 130 ug L)
presents, in general, higher biomass concentrations than SOT (4.9 — 33.4 ug L
1). With blooms detected in CHR occasionally reaching values above 30 pg L*
(17.2% of bloom observations), while in SOT only during the maximum peak of
2020, was this threshold exceeded (1.2% of bloom observations) as shown in

Figures 3.15 and 3.14, respectively.

Holley et al. (2007) review of the magnitude of phytoplankton blooms at a
Southampton Water mid-estuary location showed that maximum annual Chl ‘a’
values range from 17.2 to 38.2 ug L during their 5-year study (1999-2003). A
similar variation was observed in this study in SOT of 6.6 — 33.4 ug L%, especially
if considering that besides 2015, the other years maxima were above 16 ug L.
However, Holley et al. (2007) states these major peaks occurred around day 140

of the year, a pattern not observed in SOT but seen in CHR (Fig. 3.13b).
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A lower Chl ‘a’ concentration was used to describe a phytoplankton bloom in the
Southampton Water estuary, during the ~100-day monitoring done by Wright et
al. (1997), where values of 3.6 pug L represented an increase from the general
range detected of 0.5 — 1.0 pg L. This value is closer to the 5.0 pug L threshold
used to delimit blooms in the current work than the 10.0 ug L previously used
for the same location by Holley et al. (2007) and Iriarte & Purdie (1994). In the
same study by Wright et al. (1997), the bloom was identified in summer, the same
season where SOT higher Chl ‘a’ peaks were observed for most years studied

(Fig. 3.13a).

Previous measurements of Chl ‘a’ made at the L4 site in the Western Channel as
representative of coastal waters (~12 km offshore), defined a blooming pattern
dominated by autumn blooms from 4.0 ug L? (Kitidis et al., 2012) to 12.0 ug L*
(Smyth et al., 2010). Autumn blooms were present almost exclusively in CHR,
especially in 2015 and 2018, which could infer that the CHR system presents a
similar seasonality pattern to the Tamar estuary, although CHR is a much smaller
and shallower estuary than Tamar. Given the general lower biomass observed in
coastal waters, the overall lower concentrations of Chl ‘a’ in SOT could indicate

more oceanic waters entering the system compared to CHR.

The magnitude of coastal phytoplankton blooms is highly variable across the
world, ranging from coastal ecosystems with typically low concentrations of Chl
‘a’ such as the Mediterranean Thau Lagoon presenting mean values ~ 2 ug L?
during spring blooms and concentrations between 2.8 and 3.6 pug L while
experiencing winter blooms (Trombetta et al., 2019); to systems with marked
seasonal changes like the Mediterranean Lagoon and the Bay of Bizerte (Salhi

et al., 2018), displaying maximum mean values during a summer bloom of 15.8
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and 8.5 pug L2 It is also possible to find highly eutrophicated and stratified
systems like the Sundays Estuary in South Africa, where exceptional maximum
Chl ‘a’ values during autumn blooms above 100 pg L have been reported

(Lemley et al., 2018).

The highest concentration of biomass during a single bloom period in SOT was
observed in 2019 during summer when the longest event recorded (48 days)
coincided with the highest values of I, of the year (3313 Wh m? d?) and a
reduced moderate turbidity period (<8.8 FTU). However, the maximum
chlorophyll peak of the time series was observed in the spring of 2020 during a
period of low turbidity (<3.6 FTU), and low wind (<4.7 m s!) was detected at the
time of the year when [, started to increase, resulting in a rapid rise of I,,, values
(Figure 3.14). Unfortunately, there is no additional data to corroborate this
chlorophyll peak since there was no regular chlorophyll sampling from March to
June 2020 in SOT due to COVID restrictions and similarly, there is no EA data
available, as their sampling had also been stopped. In contrast, the lowest
chlorophyll values during a bloom in SOT were detected in 2015, although there
were no apparent major differences from other years, except a strong correlation
between Chl ‘a’ and salinity. This could indicate the effect of riverine inflow on the
system, given that 2015 was one of the two years presenting the highest
correlation with freshwater input (Table 3.1). Even though it is known that a high
freshwater runoff in estuarine systems can cause reduced phytoplankton
biomass by preventing the accumulation of cells in the mixed layer (Levasseur et
al., 1984; Peierls et al., 2012), this does not seem to be the case for SOT given

that although 2015 presented a low river inflow, the lowest annual flow recorded
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was in 2019 when the total biomass was much higher than the other years

analysed (Fig. 3.14e).

The maximum chlorophyll biomass and peak in CHR was observed in 2016, a
year that showed the highest correlation to low turbidity and elevated I,,,, which
was represented by the biggest peak appearing during an extended low turbidity
period (<9.6 FTU) and when the first values above 2000 Wh m=2 d? of I,
appeared in the year. Conversely, the smallest peak and the lower biomass
observed in CHR was during the following year, 2017, when daily turbidity varied
more (8.3 — 12.9 FTU) and was reflected in pronounced peaks of I,, (Figure
3.15). 2018 was an unusual year in CHR, presenting the latest autumn blooms
observed in Figure 3.13b. Although autumn blooms were identified previously in
the estuary in 2015, the correction performed to Chl ‘a’ 2018 data may be the
cause for such high concentrations later in the year, and the reason for such
unusual negative correlations between Chl ‘a’ and both light parameters and
temperature (see the previous section). Regarding riverine inflow, as in SOT, the
high flow was not a clear driver of higher phytoplankton biomass in CHR; where
the highest riverine annual flow, by almost double in magnitude, was observed in
2014, but the blooms during that year were not particularly higher or more

numerous (Fig. 3.15e).
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Fig 3.14 Time series of environmental conditions at the Data Buoy in Southampton Water from
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Both estuaries showed the highest blooms coinciding with prolonged periods
of low turbidity. High turbidity can limit phytoplankton growth by reducing light
availability in the water column. In shallow estuaries, the leading cause of
changes in turbidity is the tidal variation (e.g. Bucci et al., 2012), as can be

observed in SOT where frequent water level data was available.
3.4.4 Tidal analysis for Southampton Water

Water level data analysed for the Southampton Water estuary showed a
positive correlation (p=0.52) between tidal range and turbidity, indicating that
turbidity in the system generally increases with the presence of spring tides. In
shallow estuaries, the principal cause for changes in turbidity is the vertical

mixing driven by tidal currents (e.g. Bucci et al., 2012).

Despite the absence of a statistical relationship between Chl ‘a’ concentration
peaks, more specifically blooms, and tidal range in SOT (Table 3.1), individual
blooms were observed to develop mainly during neap tides to then dissipate
with the arrival of the following spring tide; this relation was well represented
in 2020, the only year of the time series where tidal range and Chl ‘a’ showed
a small but significant correlation (p=0.18); during this year, all five identified
blooms occurred during weak neap tides (Fig. 3.6). Bucci et al. (2012)
described a similar situation, where reported phytoplankton summer blooms in
the Sao Vicente estuary (Brazil) usually occurred towards the end of neap
tides, but no significant correlation to found. This lack of correlation to the tidal
range, in addition to the strong correlations between phytoplankton peaks and
I, and temperature (as discussed in previous sections), indicate that blooms

in SOT are not only regulated by turbulent mixing due to tides but a
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combination of factors affecting the solar radiation attenuation throughout the

water column (e.g. Cloern et al., 2014).

According to a previous study on the phytoplankton dynamics in Southampton
Water (Wright et al., 1997), the tidal range observed during spring tides in this
study (~ 5m) is high enough to decrease water column stability, inhibit growth,
and, perhaps, decrease retention time meaning a proportion of phytoplankton
can be flushed from the estuary. In most shallow estuaries where the neap-
spring cycle is present, like in SOT, fortnightly patterns of reduced mixing
during neap tides can be observed and it is during these periods that
phytoplankton net biomass growth is enhanced (e.g. Carstensen et al., 2015).
Such pattern has been extensively reported by Cloern (1996) in his
widespread review of phytoplankton bloom dynamics in the San Francisco

Bay, a system with a similar depth to SOT (~10m) and a 2m tidal range.

3.5 Conclusions

The collection of high-frequency water quality data combined with
meteorological information allowed an accurate and thoroughly comparison of
the relationship between physical environmental conditions with the

occurrence of phytoplankton blooms in two different temperate estuaries.

Phytoplankton distribution exhibited seasonal variability in both estuaries, with
bloom initiation being primarily related to periods of ~7 days when a sudden
increase in surface light availability (>800 Wh m?2 d?) was observed.
Temperatures above 11.8°C correlated with the appearance of blooms in

Southampton Water, while rising water temperature (<10°C) overlapping with

109



Chapter 3 — Temporal variation of phytoplankton bloom

values of solar radiation above 1245 Wh m~2 d1, seemed to initiate blooms at

the Christchurch Harbour estuary.

Despite being different in size, shape, average depth, tidal regime, and
discharge, both estuaries showed similarities regarding the timing of the spring
bloom, developing between April and May. However, whereas Christchurch
displayed the typical dynamics described for coastal temperate estuaries,
presenting mainly spring and autumn blooms, Southampton presented a

pattern with blooms in spring and summer.

Higher concentration of phytoplankton biomass during blooms was associated
with values of water column irradiance <188 Wh m2 d! for SOT and <640 Wh
m2 d for CHR), corresponding with lower turbidity (<8.4 FTU for SOT and

<31.7 FTU for CHR,) and daily wind speed average below 4.7 m s,

An additional analysis of the tidal cycle in the Southampton Water estuary
identified that blooms typically developed during neap tides and dissipated
during the following spring tide. This suggests that the tidal cycle creates
stronger mixing conditions during spring tides leading to increased turbidity
and creating lower mixing and possible stratification during neap tides that

enhance phytoplankton biomass growth.
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Chapter 4

Variability of net community production, gross
primary production, and ecosystem respiration in

two contrasting estuaries

Abstract

Measurements of primary production provide essential information about the
trophic status of aquatic ecosystems. In this chapter, the open water diel oxygen
method was applied to high-frequency water quality data collected from the
Southampton Water (2014 — 2020) and Christchurch Harbour estuaries (2014 —
2018) to estimate ecosystem respiration (ER), gross primary production (GPP),
and net community production (NCP). Trends in the overall trophic state of the
two estuaries were identified, with Southampton becoming more net
heterotrophic over the 7-year time series (from -1.3 to -48.7 mmol O2 m d?),
while Christchurch Harbour showed an increasing net autotrophic state -11.7 to
19.8 mmol O2 m? d1). A pattern was observed, where autotrophic conditions
prevailed during summer and spring due to the dominant factors driving metabolic
rates being related to seasonal changes in light availability, temperature, and
riverine flow. Threshold values for the Southampton estuary and Christchurch
Harbour of temperature (10.5 & 10.3 °C), surface water irradiance (1520 & 1240
Wh m=2 d1) and mean water column irradiance (415 & 950 Wh m2 d1) were

related to the appearance of extreme autotrophic and heterotrophic conditions.
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The relationship between ecosystem respiration and gross primary production
allowed classification of both estuaries between oligotrophic and mesotrophic
states, with Southampton particularly leaning to mesotrophic conditions. Variance
in Chl ‘a’ concentration during phytoplankton blooms was explained by NCP rates
in more than 75% for both estuaries. Regarding the methodology assumptions,
an overestimation of ER was related to higher air-water transfer rates calculated

through the model, due to high wind speeds.

4.1 Introduction

Almost half of global primary production occurs in the oceans (Cloern & Jassby,
2008). Furthermore, estuaries are one of the most productive marine ecosystems
(Golubkov et al., 2017), especially those receiving an important runoff of nutrients

from the basin (Butron et al., 2009; Hopkinson & Smith, 2005).

Phytoplankton account for most of ecosystem primary production in the
majority of coastal ecosystems (Paerl & Justic, 2013), with phytoplankton
primary production playing a central role in the ecological and biogeochemical
dynamics of estuaries (Cloern et al., 2014). In coastal ecosystems spatio-
temporal variability of primary production and phytoplankton biomass are the
result of the interaction of a number of factors such as irradiance (May et al.,
2003), temperature (Trombetta et al., 2019), nutrients (Davidson et al., 2012) and

horizontal and vertical water movements (Silkin et al., 2019).

Net community production, also known as net ecosystem metabolism (eg. Shen
et al., 2015), is a community-level process that integrates all of the processes
affecting the balance between production and consumption (Duarte & Regaudie-
De-Gioux, 2009; Garcia-Corral et al., 2021). It can be defined as the difference

between gross primary production (GPP) and ecosystem respiration (R) (Lee et
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al., 2022). When NCP>0, the ecosystem is net autotrophic, suggesting that the
internal production of organic matter dominates. In contrast, if NCP<O, this
indicates the system is net heterotrophic and depends on external sources of
organic matter (Agusti et al., 2018; Herrmann et al., 2020; Loken et al., 2021).
Estuaries are complex, open systems with the potential to be either autotrophic

or heterotrophic systems (Hopkinson & Smith, 2005).

In systems with relatively homogeneous water masses, clear signals of diel
changes in water-column Oz and CO2 concentration are often detectable and
associated with net community production (Testa et al., 2012). Thus, NCP can
be accurately estimated from the calculation of the oxygen flux at the air-sea
interface (e.g. Tilstone et al.,, 2009) employing the open water diel oxygen
method, first proposed by Odum (1956) and later modified to apply it to estuarine

systems (Caffrey, 2003, 2004; Emerson et al., 2008).

Interaction between physical and biological processes within estuaries tends to
vary over diurnal, semi-diurnal and sometimes episodic timescales (Cloern et al.,
2016, Nidzieko et al., 2014) making the open water diel oxygen method an
advantageous resource to measure the integrated metabolic activity of the entire
ecosystem over a short time period since Oz sensors can be deployed for weeks

or more, allowing long-term measurements (Testa et al., 2012).

In this chapter, productivity rates (GPP, ER and NCP) were derived from high-
frequency measurements of surface water dissolved oxygen concentration, for
Southampton Water and Christchurch Harbour, using the open water diel oxygen
method. The influence of environmental factors on productivity rates and their

implications on the aquatic trophic state were evaluated.
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4.2 Southampton Water time series analysis of ecosystem
respiration, gross primary production, and trophic state:

net community production.

Productivity rate calculations are derived from the dissolved oxygen,
temperature, salinity, and wind speed time series data presented in Chapter 3
section 1. Data from 2017 was not included in the following individual-year results

since only measurements for the first 3 months of the year were available.

Daily rates of net community production (NCP) can be either positive when gross
primary production (GPP) exceeds ecosystem respiration (ER) indicating a net
autotrophic state of the estuarine water column or negative reflecting a

heterotrophic state of the system (Shen et al., 2019b).
4.2.1 Year 2014

For 2014, calculated ER rates presented a high variability throughout the year,
ranging from 0.1 mmol O2 m? d? in September to 221.4 mmol O2 m2 d* in May,
as seen in figure 4.1a. A dynamic period was detected in May-June when the
average estimate was 40.4 mmol O2 m2 d, against 9.5 mmol O2 m2 d*! for the
rest of the year. Excluding this active period of ER, October and November
presented maximum values of ~ 64.0 mmol O2 m2 d, followed by 48.1 mmol O2
m2 dt in mid-August. September was the month with the lowest average value
of ER (3.0 mmol O2 m d1), while the mean value in May of 60.0 mmol O2 m? d-

1 was the monthly highest of the year.
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Fig 4.1 Time series for 2014 of (a) calculated daily respiration ER (red bars .) and gross primary
production GPP (green bars l) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars [), and positive
values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as a green line

GPP also exhibited noticeably higher calculations during May-June than for the
rest of the year, with a mean value of 43.0 mmol O2 m= d* during that period,
and the year maximum of 151.5 mmol O2 m2d* in June (Fig. 4.1a). From August
to December, an average of 7 mmol O2 m d! was estimated, and a maximum
daily value was observed in August (95.7 mmol O2 m? d1). May presented the
highest monthly mean of 47.3 mmol O2 m2 d%, followed closely by June with 40.2
mmol Oz m2 d*. GPP was low in December (3.0 mmol O2 m? d), and monthly

values remained consistently below 6.5 mmol Oz m2 d! from September.

Annual NCP daily average was -1.3 mmol O2 m? d?, indicating a slightly
heterotrophic state. During this year there was a noticeable increase in NCP

during spring, with the highest autotrophic (137.4 mmol Oz m?2 d?) and
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heterotrophic (-113.6 mmol O2 m d!) conditions of the year occurring within this
season, only 16 days apart (Fig. 4.1b). During spring NCP oscillated between the
two trophic states, but with autotrophic conditions dominating in late spring (+1.8
mmol O2 m? d?); indicating a greater balanced between GPP and ER than during
summer, which was more autotrophic (4.0 mmol O2 m2 d1) and autumn, that
showed a general heterotrophic state (-6.6 mmol O2 m2 d-1). During the summer,
positive NCP values matched up with Chl ‘a’ concentration peaks, particularly
during the middle of summer when from day 211 to 222 NCP averaged +22.4
mmol Oz m2 d1, and then later from summer to autumn when NCP was +11.2

mmol O2 m2d1.
4.2.2 Year 2015

ER in 2015 presented an average of 20.0 mmol O2 m*2 d?, with occasional
isolated high daily values from May to October (Fig. 4.2a), when the yearly
maximum of 167.5 mmol O2 m d! was observed in August, followed closely by
a peak in May of 160.3 mmol O2 m d1. However, it is important to highlight that
only 4.9% of ER observations in 2015 exceeded 70 mmol O2 m2 d, almost half
of them identified in December. March was the month with the lower average ER
estimate, of 9.0 mmol O2 m?2 d-1, while December showed a substantial increase
in overall daily values, which was reflected in an average value of 55.6 mmol Oz

m2 d-L,

A yearly estimate of 12.0 mmol Oz m d! was obtained for GPP in 2015. Values
remained consistently below 73 mmol O2 m~ d throughout the year, except for
one day in early-May that presented a value of 149.5 mmol O2m?2d?, as reflected

in figure 4.2a. Months showing an overall high GPP estimate were April (21.5
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mmol O2 m? d*) and June (22.4 mmol O2 m dt), meanwhile, the lowest monthly

mean value of 5.1 mmol O2 m2 d1 was in March.
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Fig 4.2 Time series for 2015 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars | ), and positive
values indicate net autotrophic state (blue bars [l}). Daily chlorophyll ‘a’ is shown as a green line

Negative NCP rates dominated for much of the year with an annual average value
of -8.2 mmol O2 m2 d*. Five daily values of high negative rates of NCP indicating
heterotrophic conditions (<-90 mmol O2 m= d') were observed mainly in spring
and summer, in addition to three days at the end of the year (Figure 4.2b).
Additional negative NCP values were observed throughout the year without a
clear pattern. One outstanding autotrophic daily value of +123.1 mmol O2 m?2 d*
was identified in the middle of spring just before the highest heterotrophic value
was estimated (-157.3 mmol O2 m? d1); unlike heterotrophic peaks, in the case

of positive NCP of this magnitude, it was an isolated event. A prolonged period
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of autotrophic conditions was observed for almost 25 days in the first half of the
spring season, averaging 8.8 mmol O2 m d1. In addition, a second extended
period of positive NCP daily values was calculated during the transition between

spring and summer for ~30 days, averaging 15.3 mmol O2 m= d1.
4.2.3 Year 2016

During 2016, ER showed a yearly average rate of 26.9 mmol O2 m? d%, and a
range of values from 0.1 mmol O2 m2 d? in April to a maximum of 244.9 mmol
02 m?2 d?in May (Figure 4.3a). A period of low rates of ER was observed in
March and April, when daily values remained below 52 mmol O2 m2 d-1, with only
one exceptional peak in March of 110.7 mmol O2 m? d1. January presented the
highest average rate of ER (45.4 mmol O2 m2 d?), followed closely by May (41.2
mmol O2 m2 d1) after which monthly values decreased until reaching 18.7 mmol

02 m2d?in December.

GPP rates in 2016 displayed a distinct period of increased values in May (97.9
mmol O2 m*? d1), with three daily values above 200.0 mmol O2 m?2 d, and in
addition a maximum of 334 mmol O2 m?2 d1, as seen in Figure 4.3a. In contrast,
in March, most of April, and from October to December average values below 7

mmol O2 m-2 d1 were estimated.

In 2016, over the whole year, the heterotrophic state dominated with an NCP
average of -7.9 mmol Oz m? d*. NCP values representing heterotrophic
conditions and exceeding -100 mmol O2 m? d, were mainly observed during
winter and some short periods in summer months (Fig. 4.3b). The main period of
autotrophic conditions was identified during spring, when for 40 continuous days

the NCP averaged 49.5 mmol O2 m? d* and the maximum of 179.2 mmol O2 m

118



Chapter 4 — Variability of productivity rates

2 dtwas observed. The beginning of this extended period of positive NCP values

coincided with increased Chl ‘a’ concentration.
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Fig 4.3 Time series for 2016 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars .) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars [), and positive
values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as a green line

4.2.4 Year 2018

During the first half of the 2018 (Figure 4.4a), ER estimated values remained
below 90 mmol O2 m? d, with April having the lowest monthly average value of
the year (8.1 mmol O2 m? d1). At the end of July, peaks in ER started to occur,
reaching the yearly daily maximum of 264.1 mmol Oz m d*in August; however,
the highest average monthly ER value was in December (53.2 mmol Oz m2 d1).
The annual average ER was 30.6 mmol O2 m? d, with two marked periods of
increased rates from March to July with values below 19 mmol O2 m d1, and the

second from August to December when values exceeded 45 mmol O2 m=? d1.
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Fig 4.4 Time series for 2018 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars [), and positive
values indicate net autotrophic state (blue bars I). Daily chlorophyll ‘a’ is shown as a green line

GPP in 2018 presented highly variable daily estimated rates, with peaks of
different magnitudes throughout the year, as can be seen in Figure 4.4. A yearly
average of 18.4 mmol O2 m?2 d* was estimated, with a range from 0.1 mmol O2
m2 d?, detected in June, to 143.7 mmol Oz m? d?, in July. Only ~2% of daily
observations were greater than 80 mmol O2 m? d! and these were registered in
July and August, however, the highest monthly value of 29.0 mmol O2 m? d*was
estimated for May, followed closely by the 28.4 mmol O2 m*? d! calculated for

July.

An NCP average of -12.3 mmol O2 m? d* was observed in 2018, indicative of an
overall annual heterotrophic state. The highest negative NCP values (>90 mmol

02 m? d1) were detected in the second half of summer and throughout autumn,
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as shown in figure 4.4b. It was during these two seasons when ~75% of all
negative NCP observations were calculated and reached a maximum of -192.8
mmol Oz m2 d1. Both summer and autumn presented overall heterotrophic states
with -12.2 and -30.5 mmol O2 m? d! respectively. Positive NCP values mainly
occurred during spring and early summer when ~85% of autotrophic daily
conditions were detected. Three extended periods (between 34 and 43 days) of
almost uninterrupted positive NCP values were identified, averaging 7.0 and 14.5

mmol O2 m? d* in spring, and 15.4 mmol O2 m?2 d* in early-summer.
4.2.5 Year 2019

Estimated daily values of ER for 2019 are presented in Figure 4.5a. Calculations
for this year ranged from 0.1 (June) to 437.5 (August) mmol O2 m? d! with a
yearly average of 37.6 mmol O2 m d1. ER rates did not show a particularly well
defined seasonality with occasional periods of ~7 days of peaks in activity
throughout the year, mainly from June to November. From August to October,
monthly values were above 50 mmol O2 m d1. Conversely, March presented a
particularly low monthly value of 2.9 mmol O2 m2 d* (although only 12 days of
estimates were available), with the next closest monthly average being for

January of 21.8 mmol O2 m=? dL.

GPP in 2019 presented an annual daily average of 36.8 mmol O2> m? d*! and
varied from 0.1 to 411.2 mmol O2 m2 d* with both values occurring in the second
half of June, only 11 days apart as seen, in Figure 4.5a. A period of increased
productivity was noted from late April to mid-August, with the average productivity
rate for this time being 58.6 mmol O2 m2 d*, compared to only 11.1 mmol Oz m"

2 d* for the rest of the year. In addition, daily values outside this period were
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below 100.0 mmol O2 m2 d-1, while ~20% of daily observations from April to May

were above this rate.
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Fig 4.5 Time series for 2019 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars [), and positive
values indicate net autotrophic state (blue bars I). Daily chlorophyll ‘a’ is shown as a green line

NCP calculated values for 2019 showed a year with a good balance between
GPP and ER rates reflected in an annual average of -0.8 mmol O2 m2 d-1. Positive
NCP estimations exhibited a seasonal pattern with a highly productive period
during spring and early summer (Fig. 4.5b), reflecting net autotrophic conditions
with averages of 22.7 and 10.7 mmol O2 m? d-! for each season. The maximum
autotrophic daily value (+229.6 mmol O2 m~ dt) matched with the maximum Chl
‘a’ peak registered in spring, almost at the end of a 57-day period of continuous
autotrophic conditions, that averaged +44.1 mmol O2 m? d1. This peak was

followed closely by a second observed at the beginning of summer (+197.1 mmol
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O2 m?2 d?), when another extended autotrophic period lasted for 29 days,
averaging +72.2 mmol O2 m d. Heterotrophic conditions were nearly absent
during spring, presenting less than ~15% of total observations in this season.
However, in summer some high negative rates of NCP were estimated (e.g. -
366.8 mmol O2 m2 d1) and in autumn (e.g. 309.8 mmol O2 m? d1). The winter
and autumn periods showed a heterotrophic state averaging -21.3 and -37.5

mmol O2 m? d1, respectively.
4.2.6 Year 2020

In 2020, ER estimated daily rates were the highest values of the whole time
series, with an annual average of 90.4 mmol O2 m? d. A notable period between
the end of June and the end of August presented the largest peaks (>425 mmol
02 m2d?) and an average of 202.0 mmol O2> m2 d, in contrast to the 64.6 mmol
O2 m? d! for the rest of the year (Fig. 4.6a). During July, the highest daily rates
of ER were estimated, yielding the maximum monthly value of 224.5 mmol Oz m-
2 d1. However, the maximum daily maximum (664.7 mmol Oz m2 d?) was
observed in August. In March a low average, of 37.9 mmol O2 m? d! was

estimated with most daily values below 100 mmol O2 m2 d-,

GPP in 2020 showed a similar pattern to ER, with peaks occurring in a range of
months, as shown in Figure 4.6a. The maximum values above 120 mmol O2 m-?
d* were described from mid-April to August and this almost 5-month period
averaged 72.3 mmol Oz m2 d, while the rest of the year showed an average of
18.1 mmol O2 m?2 dt. The maximum daily value was observed in April (395.4
mmol O2 m? d1), followed closely by a 389.6 mmol O2 m2 d! peak in May; even

so, the month with highest average GPP overall was July (95.7 mmol O2 m2 d1).
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Fig 4.6 Time series for 2020 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Southampton
Water. In (a) ecosystem respiration data are displayed as negative values for convenience of
graphing. In (b) negative values indicate net heterotrophic state (orange bars [ ), and positive
values indicate net autotrophic state (blue bars I). Daily chlorophyll ‘a’ is shown as a green line

A patrticularly strong heterotrophic state was calculated for 2020, as clearly seen
in figure 4.6b, with an annual daily average of -48.7 mmol O2 m-2 d-1. For this
year, all four seasons were classified as heterotrophic, with NCP rates ranging
from -13.6 mmol O2 m-2 d-1 during spring, to -84.99 mmol O2 m-2 d-1 in summer.
High heterotrophic daily values (>220 mmol O2 m-2 d-1) were observed
throughout summer, season where the year maximum of NCP of -428.3 mmol
02 m-2 d-1 was observed. Positive NCP values only represented 12% of total
daily observations in 2020, with almost two thirds of these during spring. The
maximum positive daily NCP rate of 111.7 mmol O2 m d! occurred at the same
time as the maximum peak in Chl ‘a’. It is important to note that NCP calculations
for this year, used temperature and salinity values estimated from daily averages

from time series from 2014 to 2019 due to problems with sensor failures and it
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being impossible to access the Data Buoy system due to national COVID-19

restrictions, as explained in Chapter 2, section 2.2.1.

4.3 Christchurch Harbour time series analysis of ecosystem
respiration, gross primary production, and trophic state:

net community production.

Productivity rate calculations within Christchurch Harbour are derived from the
dissolved oxygen, temperature, salinity, and wind speed time series data

presented in Chapter 3 section 2.

Daily rates of net community production (NCP) can be either positive when gross
primary production (GPP) exceeds ecosystem respiration (ER) indicating a net
autotrophic state of the estuarine water column or negative reflecting a

heterotrophic state of the system (e.g. Shen et al., 2019b).
4.3.1 Year 2014

In 2014, ER rates averaged 28.5 mmol Oz m d! and showed a minimum daily
value of 0.1 mmol O2 m2 d! in September, while the maximum (228.7 mmol O2
m-2 d1) was observed in the month of November. ER presented two periods of
consistent daily values below 50.0 mmol O2 m d-, the first from May to mid-July,
and the second during the whole of September (Fig 4.7a). However, during July
and August, higher ER calculations were described with monthly averages ~30.0
mmol O2 m? d?, but daily values never exceeded 110.0 mmol O2 m=2 d,
compared to the period from October to December when monthly means were

above 39.0 mmol O2 m?2d2.

An annual value of 29.0 mmol O2 m2 d! was estimated for GPP in 2014. At the

start of calculations, in May, daily values were ~5.8 mmol O2 m? d; then, in
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early-June GPP started to gradually increase, despite the two gaps in data in
June and July (Fig. 4.7a). By the middle of July, a 19-day period of high daily
rates of GPP was observed, reaching the yearly maximum of 239.0 mmol O2 m
d?! and averaging 155.9 mmol O> m2 dl. Immediately after this increased
productivity period, GPP dropped to ~45.0 mmol O2 m? d* and remained low
until showing a few peaks in October and November, but these were less than

75.0 mmol O2 m2d1.

Overall, for the months when data was available in 2014, a slightly autotrophic
state was determined, with an annual NCP of 0.6 mmol Oz m2 d-1. Positive NCP
rates (Fig. 4.7b) mostly occurred in summer months and averaged 35.9 mmol O2
m-2 d-* for the period with the highest positive daily NCP rate of the year of 182.9
mmol O2 m? d*. During summer, a period of particularly high rates of positive
NCP was evident (~49 days) and during this, more than 35% of the observations
were above 60 mmol O2 m2 d?! with an average of 90.1 mmol O2 m?2 d*
calculated. From mid-summer to the end of the year, positive NCP values
remained below 35.0 mmol O2 m2 d*. Although the two main Chl ‘a’ peaks
identified in the year corresponded to autotrophic conditions, only the first was
observed during increased NCP values (<100.0 mmol O2 m? d). Contrary,
heterotrophic conditions mainly occurred during autumn. NCP during this season
averaged -27.8 mmol Oz m2 d* and peaks of more than -85.0 mmol Oz m? d?
were commonly observed, including the maximum registered of -161.4 mmol Oz
m2 d. Greater values of phytoplankton biomass did not seem to shift conditions

to autotrophic during autumn, as compared to the summer.
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Fig 4.7 Time series for 2014 of (a) calculated daily respiration ER (red bars .) and gross primary
production GPP (green bars l) and (b) calculated net community production in Christchurch
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars | ),
and positive values indicate net autotrophic state (blue bars I). Daily chlorophyll ‘a’ is shown as
a green line —.

4.3.2 Year 2015

In 2015 there was a major gap in available data between May and September.
ER showed a different distribution between the two periods of available data;
between January and May and September and December, as seen in figure 4.8a.
Although the annual average of ER was 27.0 mmol O2 m?2 d, the period from
January to May presented a mean value of 35.4 mmol O2 m2 d* with the daily
maximum of 248.4 mmol Oz m2 d* in January, followed by a peak at the end of
March of 235.1 mmol O2 m d. Noticeably, during this period of increased ER,
estimations in April were observed mainly below 15.0 mmol O2 m d. For the

second part of the year (September to December), ER showed an average of
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11.8 mmol O2 m2 d* and two peaks of ~65.0 mmol O2 m2 d* in October and

November.
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Fig 4.8 Time series for 2015 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Christchurch
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars | ),
and positive values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as
a green line —.

In 2015, values of GPP ranged from 0.2 mmol O2 m dtin February to 82.5 mmol
02 m2 d?in April; however, only 3.7% of observations exceeded 50.0 mmol O2
m2 d* and half of these were identified in April and November (Fig 4.8a). The
period from January to May averaged 17.6 mmol O2 m? d* and included the
month with the highest value, April with 32.1 mmol Oz m2 d. In comparison the
period from September to December included the lowest monthly value of 6.8

mmol O2 m? d (October) and averaged 10.5 mmol O2 m? d1.

An overall heterotrophic state was calculated for 2015 (-11.7 mmol Oz m? d1).

However, it is important to note the large gap in available data between day 139
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and 245 (Fig. 4.8b), with the annual estimations affected by missing spring and
summer data. NCP rates remained mostly negative during the first 100 days of
the year, exhibiting values greater than -80.0 mmol O2 m? d?! approximately
every 20 days. During this period NCP averaged -29.5 mmol O2 m2 d* and a
maximum of -217.8 mmol Oz m2 d! was observed. Daily heterotrophic
estimations during summer and autumn stayed below -60 mmol O2 m d-1. During
spring, autotrophic conditions prevailed uninterrupted for 23 days, corresponding
with higher concentrations of Chl ‘a’. A mean of 27.2 mmol O2 m2 d* was
calculated for this period, and the highest NCP value observed was 80.5 mmol
O2 m2 d1. At the end of summer, a similar pattern was identified, with a 11-day
lapse averaged 19.7 mmol O2 m? d! but only reached 44.2 mmol O2 m? d.
Although Chl ‘a’ showed increased values in autumn, the autotrophic conditions
were not as high as during the spring. Two great peaks (>12 pug L) of Chl ‘@’
were observed in autumn, but only during the first peak, the trophic state shifted

from heterotrophic to autotrophic.
4.3.3 Year 2016

In 2016, ER daily values during the year remained below 90 mmol O2 m= d,
apart from only two days at the end of November (Fig. 4.9a) when peaks reached
183.36 and 158.13 mmol O2 m2 d. The year average was 11.1 mmol O2 m d-
1, but months of May and November presented mean values of 21.7 and 24.7
mmol O2 m? d?, respectively. Throughout the year, ER calculations showed a
bimonthly pattern where values start increasing until reaching a peak to then
reduce in magnitude abruptly, particularly noticeable up to August. From
September to mid-November, an extended period of low daily ER rates was

observed, with values below 25 mmol O2 m2 d1.
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Fig 4.9 Time series for 2016 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Christchurch
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars | ),
and positive values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as
a green line —.

GPP in 2016 presented a mean annual value of 28.4 mmol O2> m? d, however,
most of the productivity was concentrated between April and August (Fig. 4.9a).
Estimations of GPP rates averaged ~12.0 mmol O2 m2 d-* in February and March
then increased in mid-April lasting for about 45 days and averaging 71.8 mmol
O2 m2 d* with the year maximum of 261.5 mmol O2 m?d* in late May. Two other
periods when GPP calculations increased and peaked beyond 130.0 mmol O2 m-
2 d* were present in July and August, both lasting ~18 days and averaging 53.2
and 61.5 mmol O2 m d?, respectively. For the remaining months, daily GPP

remained below 40.0 mmol O2 m*? d1, except for one day in September.

2016 displayed a general net autotrophic state and an NCP average of 17.3 mmol

O2 m? d?i. Around 75% of NCP estimations corresponding to autotrophic
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conditions were identified during spring and summer (Fig. 4.9b). The spring
season averaged 29.1 mmol O2 m? d! of NCP and presented a daily maximum
of 189.3 mmol Oz m?2 d-1, while summer showed a mean value of 26.4 mmol Oz
m2 d! and a daily observation of 148.3 mmol Oz m? d! as the maximum.
Phytoplankton biomass displayed high concentrations at the end of the spring
season (>20 ug L), overlapping with the most autotrophic conditions overserved
through the year. Autotrophic conditions during winter did not exceed 45.0 mmol
O2 m2 d! and autumn displayed even lower values, with calculations remaining
below 25.0 mmol O2 m? d. Negative NCP values accounted for less than the
25% of the yearly calculations and were mainly identified during autumn, the only
season to show an overall heterotrophic state (-4.6 mmol O2 m? d?) in 2016. The
last few estimates in autumn were characterised by high negative NCP values
(>30.0 mmol O2 m dt), however, this weeklong heterotrophic period was only
disturbed for one day when NCP displayed 14.1 mmol O2 m d*, corresponding

to a minor rise in Chl ‘a’ concentration.
4.3.4 Year 2017

ER displayed an annual average of 11.7 mmol O2 m? d*in 2017, with the
maximum daily value (99.9 mmol Oz m? d?) identified at the beginning of
February (Fig. 4.10a) when 3 continuous days exceeded 85.1 mmol O2 m=2 d1.
Throughout the rest of the year the next maximum peak was observed in June
(89.4 mmol O2 m?2d?). It is notable that less than 3% of ER daily rate calculations
for 2017 surpassed 50 mmol O2 m? dt. June displayed the greatest monthly
average ER rate of 15.5 mmol O2 m= d?, followed closely by September with

14.1 mmol O2 m2d7.
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The average annual GPP rate in 2017 was 29.5 mmol O2 m2 d, but distribution
across the year was not even, as observed in figure 4.10a. Between April and
August most estimations were >60 mmol Oz m2 d! and the year maximum of
220.7 mmol O2 m?2 d! was detected in May, with an average of 50.5 mmol O2 m-
2.d-1, for said period. In March, September and October a rapid decline in values
was evident averaging 14.3 mmol O2 m2 d1. Lastly, months at the beginning and
end of the year (January, November and December), presented the lowest GPP

values of 3.6 mmol O2 m2d.
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Fig 4.10 Time series for 2017 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Christchurch
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars | ),
and positive values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as
a green line —.

An overall net autotrophic state was calculated for 2017, showing an average
NCP of 18.1 mmol Oz m2 d-*. During this year, more than 73% of the total NCP

estimations corresponded to autotrophic conditions and were present during
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spring and summer seasons, as clearly seen in figure 4.10b. Spring displayed the
highest daily NCP value of the year (158.1 mmol O2 m d!) and an average of
34.8 mmol O2 m?2 d-, although the summer season also exhibited an autotrophic
state, it was not as marked as the one for spring since the maximum value
observed was 88.5 mmol O2 m2 d* and presented a mean of 29.6 mmol O2 m~
d?. Autumn and winter showed weak daily autotrophic conditions, given that
values remained constantly below 25.0 mmol Oz m2 d-. It was during these two
seasons that heterotrophic conditions prevailed, with winter averaging -5.1 mmol
O2 m?2 d! and autumn -1.9 mmol O2 m d-1. However, peaks in negative NCP

were greater at the begging of the year, reaching -83.7 mmol Oz m=2 d2.
4.3.5 Year 2018

For 2018, ER annual daily average rate was 12.0 mmol O2 m d. Across the
year, daily values mostly remained less than 40.0 mmol O2 m2 d-1, with only 6.2%
of calculations exceeding this threshold, half of them in April and May, even
though the highest value of ER in the year (86.5 mmol O2 m? d1) was observed
in July (Fig. 4.11a). Despite April and May displaying peaks of ER, their monthly
averages (15.9 and 17.5 mmol O2 m d'!) were not as high as the one calculated
for December, 22.7 mmol O2 m* d-1. June to July was the longest uninterrupted

period showing values below 30 mmol O2 m2d-.

The GPP observed in 2018 was mainly concentrated between May and July (Fig
4.11a), months when two major periods of increased GPP were identified. Lasting
almost the entire month of May (22 days), a productivity lapse averaging 71.2
mmol O2 m? d? and reaching values above 140 mmol O2 m? d?, on two
occasions, was detected. A similar period appeared three weeks later, when for

27 days (between June and July), enhanced GPP daily values reached a
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maximum of 169.8 mmol O2 m? d* and displayed an average of 80.6 mmol O2
m2 d1. April, August and September seemed to act as transition periods given
that increasing values were observed towards the major production months;
monthly averages of them ranged from 21.8 to 28.8 mmol O2 m? d1. From
October to December GPP did not exceed 25 mmol O2 m2 d! and this three-

month period showed an average value of 6.5 mmol O2 m? d.
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Fig 4.11 Time series for 2018 of (a) calculated daily respiration ER (red bars l) and gross primary
production GPP (green bars l) and (b) calculated net community production in Christchurch
Harbour Ferry Pontoon. In (a) ecosystem respiration data are displayed as negative values for
convenience of graphing. In (b) negative values indicate net heterotrophic state (orange bars | ),
and positive values indicate net autotrophic state (blue bars l). Daily chlorophyll ‘a’ is shown as
a green line —.

In 2018, an autotrophic state dominated the year, represented with an average
NCP value of 19.8 mmol O2 m? d-1. Nearly 80% of total positive NCP daily values
were visible between spring and summer, as shown in figure 4.11b. Both seasons
reflected autotrophic states, with 24.3 and 36.1 mmol O2 m? d?! averages,

respectively, and a maximum of 132.5 mmol Oz m2 d* during spring and the
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years highest daily NCP value (159.3 mmol O2 m2 dt) in summer. However, the
period of the year when values of NCP above 70.0 mmol O2 m2 d! occurred, was
between day 142 and 209, taking place during the transition period between
spring and summer seasons. This period averaged 52.9 mmol O2 m? d* and did
not present any change to heterotrophic conditions. In addition, for the first 30
days it corresponded to the highest and prolonged increase in phytoplankton
biomass observed in the year. Heterotrophic conditions were mainly identified in
autumn, that averaged -2.5 mmol O2 m2 d but only presented values below -
45.0 mmol O2 m?2 dt. Unlike spring, that surpassed -50 mmol O2 m d on two
occasions and summer that showed a particular highly negative NCP value of -
77.0 mmol O2 m?2 d?! right after the long-positive NCP period mentioned
previously. At the end of summer and during autumn, increasing values of Chl ‘a’

seemed to help shift heterotrophic to autotrophic conditions.

4.4 Drivers of productivity rates

4.4.1 Environmental factors regulating productivity rates

There are many physical, chemical, and biological processes that regulate the
balance between production and consumption of organic matter in estuarine
ecosystems (Kemp & Testa, 2011). To assess the influence of different
environmental factors on productivity rates, Spearman’s correlation coefficient
was calculated (Table 4.1) for the Southampton Water estuary (SOT) and

Christchurch Harbour Ferry Pontoon (CHR).

Analysing the whole time series for SOT and CHR, both, NCP and GPP
correlated with parameters denoting light availability, I, and I,,, especially in

CHR (p>0.66). This is no surprise given that light availability is considered the
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critical driver for photosynthesis, hence, photosynthetic rates generally follow
daily and seasonal variations in solar intensity (e.g. Kemp & Testa, 2011).
However, ER showed very weak negative correlations with light parameters (p<-
0.16) agreeing with the open water diel oxygen method assumption that

respiration rates are constant during day and night (e.g. Caffrey et al., 2014).

Temperature in CHR showed a strong correlation with NCP (p=0.50) and a more
moderate correlation with GPP (p=0.47), while SOT only presented a weak
relationship between GPP and temperature (p=0.29). In temperate estuaries,
GPP generally shows a strong correlation with temperature by following closely
seasonal variations, while NCP can strongly be affected by seasonal and
interannual fluctuations that are sometimes difficult to detect (Kemp & Testa,

2011).

Chl*a’ has become the most widely used indicator of phytoplankton biomass even
though its relation to phytoplankton carbon changes significantly with light
intensity, nutrient availability, and species composition (e.g. Hopkinson & Smith,
2005). When analysing chlorophyll concentration in relation to productivity rates
in the estuarine systems studied here, positive correlations were observed for
both estuaries, SOT (p>0.30) and CHR (p>0.27), with NCP and GPP; meaning
that higher phytoplankton biomass was related to autotrophic conditions,

particularly between NCP and Chl ‘a’ in SOT (p=0.45).

Wind speed strongly correlates with ER in SOT (p=0.54) and CHR (p=0.51), and
moderately correlates with GPP (p>0.23). The negative correlations observed
between NCP and wind speed, are a clear indication of the influence of winds in

ER driving the trophic state into net heterotrophic. It has been reported that
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increased wind periods could drive sediment resuspension events and induce

apparent negative NCP (Hull et al., 2016; Staehr et al., 2012).

Oxygen saturation (O2%) negatively correlated with ER in SOT (p=-0.41) and
CHR (p=-0.30), while positively related to NCP in both estuaries (p>0.58) and
only to GPP in CHR (p=0.62). This relationship between O2% and conditions
more representative of net autotrophy, point towards the estuarine systems
releasing DO to the atmosphere (e.g. Haskell et al., 2019); a trend more clearly
observed in CHR than in SOT. Although DO variations in the water column of
coastal systems depend mainly on the balance between respiration and
photosynthesis (e.g. Alonso-Pérez et al.,, 2015), it has been reported that
atmospheric exchange of DO could represent about 10% of the estimation of DO
production and consumption, thought to be by biological processes (e.g. Cravo

et al., 2020).

In CHR, NCP and GPP declined (p=-0.49 and p=-0.30) as water clarity decayed,
while ER appeared to increase with turbidity (p=0.28). This correlation was only
apparent in CHR since being a much shallower system turbidity effects are
greater. It is known that water clarity is a critical factor influencing light availability
for photosynthesis (e.g. May et al., 2003) , moreover, in many shallow estuaries
there is a strong correlation between turbidity and suspended sediment

concentrations.

River inflow rates, similar to turbidity, was significantly correlated with NCP (p=-
0.22) and ER (p=0.23) in CHR, implicating that freshwater inflow, in this estuary,
seemed to not only determine light availability in the water column but also

enhanced respiration due to possible organic inputs (Azevedo et al., 2006).
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Table 4.1. Spearman’s correlation matrix relating environmental conditions and productivity rates in Southampton Water
and Christchurch Harbour Ferry Pontoon.

. Productivity Tidal Wind o L River
Location rates Iy Ly Range  Speed Temp Sal 0% Chl'a Turb flow
NCP 0.39 0.37 0.00 -0.27 0.12 0.00 0.58 0.45 -0.16 0.00

Southampton
Water GPP 0.39 0.25 0.01 0.35 0.29 0.09 0.08 0.30 0.00 -0.09
n=1668 ER -0.10 -0.16 0.00 0.54 0.04 0.04 -0.41 -0.18 0.13 -0.03
0.70 0.73 -0.17 0.50 0.08 .81 0.27 -0.49 -0.22

. NCP

Christchurch
Pontoon GPP 0.67 .66 0.23 0.47 -0.04 0.62 0.33 -0.30 -0.07
n=1241 ER -0.11 -0.16 --- 0.51 -0.13 -0.20 -0.30 0.03 0.28 0.23

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, p > 0.50.
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4.4.2 Site-specific variables regulating season effects on NCP, GPP

and ER

Seasonal patterns in primary production variability can be identified with
multivariate techniques such as principal component analysis (PCA) (Cloern,
1996). By considering daily rates throughout the complete time series, for both
estuaries, PCA analysis was performed to assess the relationship between the
seasonal distribution of productivity rates and environmental conditions as well
as the relative contributions of GPP and ER to NCP. Figure 4.12 shows a
representation of the first two principal components (PCs), accounting for ~46%
of the total variance in SOT and ~59% in CHR. Day rates have been labelled

based on season and trophic state.

For SOT, PC1 explained 26.5% of the total variability in the dataset and PC2
explained 19.5%. The main factors contributing to PC1 positive eigenvalues
(R?>0.40) were I,, temperature and I,,,, and to a lesser extent (R>>0.20) Chl ‘a,
salinity and NCP. PC1 negative values (R?>-0.22) were attributed to riverine
inflow and turbidity. The factor loading scores in biplots (Fig. 4.12a) show a
seasonal difference among daily rates following the gradient of PC1, with positive
values attributed to spring and summer and negative to autumn and winter. This
could denote an association with physical parameters dependent on seasonality,
favouring the appearance of higher phytoplankton biomass and primary
production due to warmer waters and extended hours of light availability. A similar
analysis in the Western English Channel (Barnes et al., 2015) revealed an
identical clustering of seasons and related it to stratification and primary
production governed by temperature control on enzymatic processes and

phytoplankton succession. Variables describing positive values for PC2 were ER
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and temperature (R?>0.30), followed by salinity and wind speed (R?>0.20). NCP,
02 %, dissolved oxygen concentration ([Oz]), and river inflow contributed to
negative eigenvalues (R?>-0.30) of PC2. Heterotrophic conditions were mainly
associated with positive values of PC2, while negative loadings related to an
autotrophic state (Fig. 4.12a). This indicates that ER correlates to irregular
events, like high wind periods, and drives NCP into a net heterotrophic state,
while increases in Oz saturation and concentration reflect a closer relation to
autotrophic conditions and, seemingly, to riverine inflow. This correlation between
ER and high wind speeds was demonstrated in the Spearman’s correlation
coefficient (Table 4.1). Moreover, it has been demonstrated that in large
estuaries, such as Chesapeake Bay (Winder & Cloern, 2010), high river flow can
deliver nutrients and freshwater to establish salinity stratification and enhance

phytoplankton blooms.

PCA analysis for CHR revealed that PC1 explained 38.6% of the total variance,
while PC2 explained 20.2%. Factors contributing positively to PC1 (R?>0.30)
were I,,,, I,, NCP, O2%, temperature and GPP (Fig. 4.12b). In comparison, river
flow and turbidity correlated with negative eigenvalues of PC1 (R?>-0.20). In the
same way as the pattern observed for SOT, CHR component loadings of PC1
associated positive eigenvalues to daily rates in spring and summer and negative
values to observations in autumn and winter. In addition, heterotrophic conditions

seemed to only correlate with negative values.
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Fig. 4.12 Principal Component Analysis (PCA) for (a) Southampton Water and (b)
Christchurch Harbour Ferry Pontoon. Seasons have been used as factors to illustrate the
clusters: winter (blue diamonds ¢), autumn (orange circles o), summer (green squares m) and
spring (yellow triangles A). Filled symbols designate autotrophic conditions while open
symbols indicate heterotrophic conditions. Arrows — represent the variable and the direction
of an arrow indicates its relation with the Principal Component (PC) and other variables.
Tem=temperature, Sal=salinity, Chl=chlorophyll ‘a’, 10=surface water irradiance, Im=mean
water column irradiance, 02%=DO in percentage saturation, [02]=DO concentration,
Wind=wind speed, Tur=turbidity, Tide=tidal range, River=river inflow, GPP=gross primary
production, ER=ecosystem respiration and NCP=net community production.
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Fig. 4.13 Net Community Production (NCP) compared with temperature (a, d), daily surface
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PCAs results in this study display a strong seasonal classification, however,
previous research on the factors controlling primary production in the Duoro
estuary, Portugal (Azevedo et al., 2006), described a distinct arrangement of
winter and summer samples in opposite extremes of PCs but a spring and fall
spreading across the middle of the factor loading biplot. PC1 for CHR indicates
that light availability and temperature increase relate to higher GPP, and in
turn the great influence of GPP on NCP in this estuary. This suggests that
seasonal fluctuations in phytoplankton biomass positively correlate with annual
cycles of temperature and solar radiation, a characteristic pattern usually
observed in coastal ecosystems (e.g. Leterme et al., 2014). Positive values of
PC2 were mainly described (R?>0.40) by [O2] and riverine inflow, followed by
GPP and O2% (R?>0.22). Conversely, salinity (R?=-0.49) and temperature
(R?=-0.26) contributed to negative eigenvalues (Fig. 4.12b). The seasonal
distribution of primary production in CHR appears to be a response to seasonal
fluctuations in the riverine inflow into the estuary and its influence on primary
production, as previously described by (Cloern, 1996) for San Francisco Bay,
USA. However, the relationship between phytoplankton primary production
and river discharge is complex and ecosystem specific (Cloern et al., 2014).
This intricate relation was highlighted in the comparison of two neighbouring,
shallow, microtidal estuaries in North Carolina, USA (Peierls et al., 2012),
where negative and positive responses between estuarine phytoplankton
biomass and river discharge were found in both estuaries, similarly to results

from the PCA in CHR.

The main factors limiting water column primary production in shallow coastal

systems located in temperate latitudes are light availability (e.g. Brito &
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Newton, 2013) and temperature (e.g. Trombetta et al., 2019), which are highly
seasonal parameters. A comparison between productivity rates against
temperature and light availability (Fig. 4.13) showed that, for SOT, a surface
water temperature threshold of 10.5 °C, I, values above 1520 Wh m?2 d* and
I, greater than 415 Wh m2 d-1, corresponded to the maximum NCP calculated
rates, meaning positive values above 100 mmol O2 m= d* and negative NCP
beyond -200 mmol O2 m2 d*. In CHR, this same comparison revealed that
NCP exceeding positive and negative values above 50 mmol O2 m2 d, were
consistent with the appearance of water temperatures above 10.3 °C, values
above 1240 Wh m2 d for I, and I,,, higher than 950 Wh m d, as seen in

Fig. 4.13.

In both studied estuaries, it was difficult to separate the effects of light and
temperature on primary production. The same covariance between these two
parameters was identified in the 3-year study of phytoplankton biomass
variability of two shallow (<5m), microtidal estuaries in North Carolina (USA)
(Peierls et al., 2012). Identifying these borderline values of temperature is an
important precedent since both community production and respiration will
increase in a possible scenario of sea temperature rise (Lopez-Urrutia et al.,
2011). While solar radiation is an important factor enhancing photosynthesis,
in coastal waters the light available for primary production depends on water
column light attenuation (e.g. Caffrey et al., 2014). This was particularly
recognised for CHR since it required a higher value of I,,, than SOT but a lower
I,, an indication of its shallower water column being affected by turbidity
increases due to suspended sediment associated to river flow (e.g. Hall et al.,

2015). Reduction in estuarine primary production has been linked to the
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increase in water turbidity promoted by dredging and differential sediment

transport (Bucci et al., 2012).

4.4.3 Relation between ecosystem respiration and gross primary

production: implications on aquatic trophic state

The concept of ‘trophic’ or ‘metabolic’ state of an aquatic system is based on
the metabolic theory of ecology (Lopez-Urrutia et al., 2011), and it is defined
as the ratio between GPP and ER, with a system being net autotrophic if it
produces more organic matter than it consumes it (GPP:ER > 1), and net
heterotrophic if organic matter consumption exceeds production (GPP:ER < 1)

(Caffrey, 2003; McKinnon et al., 2017).

Examination of the relationship between GPP and ER using Ordinary Least
Squares (OLS) allows the estimation of the threshold values of GPP necessary
to achieve metabolic balance (GPP:ER = 1) (Duarte & Regaudie-De-Gioux,
2009). The metabolic balance in SOT and CHR is described in Figure 4.14
where the solid line is the 1:1 relationship, the dashed line is the regression of
the log-transformed ER and GPP data, and where the lines intercept indicates

the threshold for metabolic balance (GPP:ER) for each system.
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Fig. 4.14 Relationship between daily ecosystem respiration (ER) and daily gross primary
production (GPP) for (a) Southampton Water estuary and (b) Christchurch Harbour Ferry

Pontoon. Both rates are expressed in mmol O2 m=2 d. Grey circles

show data for days

classified as No Blooms and blue squares = show data for days classified as Blooms (see
Chapter 3). The red dashed line --- represents the ordinary least-squares regression of the
log-transformed data: (a) ER = 5.74x%**, r?2 = 0.22, n = 1720, and (b) ER = 5.74x%%*, r2 =
0.06, n = 1249. The black continuous line — represents 1:1.
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For SOT, a GPP threshold of 22.4 mmol O2 m2 d! was calculated (Fig. 4.14a)
while for CHR, a value of 4.9 mmol O2 m d! was estimated (Fig. 4.14b). This
results implicate that the production needed to drive SOT towards net autotrophic
metabolism is higher than in CHR (Kemp & Testa, 2011). There is a considerable
variation in the GPP threshold among marine ecosystems, with the open ocean
considerably lower than coastal water as described by Duarte & Agusti (1998) in
their cross-comparative survey of metabolism in coastal and adjacent waters. In
this work, a GPP threshold of 12.96 mmol Oz m d! was about a factor of 10 or
higher in these environments compared to open-ocean waters. A comparable
value was reported as the primary production required to drive estuaries into a
net autotrophic state (12.8 mmol O2 m2 d!) by Duarte & Prairie (2005). Both of
these limits are lower than the one reported for SOT but higher than what was
calculated for CHR. Moreover, in a study of the coastal waters adjacent to
Northern Australia (McKinnon et al., 2017) the mean threshold of GPP was 45
mmol O2 m?2 d. Much elevated values than the ones calculated in the present
study have been reported for the whole European coast (Duarte & Regaudie-De-
Gioux, 2009), with 212.5 mmol O2 m? d** originated from experiments and 288.0
mmol Oz m?2 d* derived from a cross-comparative synthesis of different studies.
An even more significantly higher threshold was reported by Hopkinson & Smith
(2005) for whole-system metabolism of estuaries (500 mmol O2 m dt). The
discrepancy between some of the highest thresholds reported for estuarine and
coastal systems, and values found for CHR and SOT, can be related to the
amount and importance of allochthonous organic matter inputs received by the
estuaries (e.g. Serret et al., 2002). For SOT and CHR, riverine inflow seems to
not be as strongly correlated with productivity rates as some of the estuarine

systems included in the studies mentioned above (Table 4.1).
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An additional tool to describe the balance between the flow of organic matter
required to maintain community metabolic balance and that available for growth
or export away from the ecosystem (NCP) is the GPP/ER ratio (Caffrey, 2003).
The daily GPP/ER ratio for SOT was 0.63 while the value for CHR was 1.52,
indicating a state of heterotrophy for SOT and net autotrophy for CHR. A GPP/ER
ratio of 1.91 was described for Matilda Bay (Australia), a temperate estuary
located in Western Australia (Agusti et al., 2018). This ratio classifies the estuary
as autotrophic, and like in CHR, the system is influenced by riverine input but also
experiences significant inflow of oceanic waters. The GPP/ER ratio varies greatly
among ecosystems; examples of this fluctuation can be observed in the analysis
presented by Duarte & Agusti (1998) for global coastal waters (0.03 — 34.3), as
well as the range described for coastal and shelf waters adjacent to Northern
Australia (McKinnon et al., 2017) where the ratio ranged from 0.84 to 5.21.
Differences in GPP/ER ratios can be attributed to light and nutrient availability
and changes in phytoplankton community structure and cell size (e.g. McKinnon

et al., 2017).

In both systems, it was observed a prevalence of ER>GPP at lower rates, and
similarly, a tendency for GPP>ER at higher metabolic rates. This same pattern
has been recognised before for coastal waters, by Duarte & Prairie (2005) in their
study of metabolism in different aquatic systems, implying that ER takes longer
than GPP to decline, within less productive ecosystems. This observation that
less productive aquatic ecosystems tend to be more heterotrophic at lower
productivity rates, implies that these systems rely on allochthonous inputs of
organic matter (Azevedo et al., 2006; Duarte & Agusti, 1998) and that metabolic

balance of plankton communities in coastal areas is mainly regulated by factors
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controlling autotrophic processes, such as nutrient inputs and temperature (e.g.

Agusti et al., 2018).

Changes along the GPP:ER diagonal represent variations in ecosystem vitality,
thus, systems can be classified by their metabolic state ranging from oligotrophic
at low rates to eutrophic at high rates, with mesotrophic conditions being
intermediate (Kemp & Testa, 2011). Using this approach both estuaries seemed
to be situated between oligotrophic and mesotrophic states, with SOT particularly

leaning to mesotrophic conditions.

In order to apply the more traditional trophic classification based on the yearly
organic Carbon supply of an ecosystem (Nixon, 1995), NCP calculated in O2
needed to be converted to organic carbon equivalents. This can be accomplished
by using a productivity PQ and a respiratory quotients RQ; whereas the PQ
corresponds to the ratio of gross photosynthetic Oz production GPP to DIC
fixation, and the RQ reflects the ratio among Oz consumed during respiration ER
and DIC (Jeffrey et al., 2018; Taddei, Cuet, Frouin, Esbelin, & Clavier, 2008).
Often is assumed constant values for PQ and RQ, commonly ranging from 0.6 to
1.5 (Robinson, 2019). For the present study, the PQ and RQ were assumed equal
to 1 following the proposal for the European coastal zone proposed by Gazeau
et al., (2004). Using the coastal marine eutrophication classification proposed by
Nixon (1995), both estuaries were classified as mesotrophic (100-300 g C m?2y
1), with CHR positioned slightly higher (~131 g C m? y1) than SOT (~128gC m-
2y 1) on the scale.

The simplest model used to estimate primary production describes it as a linear

function of phytoplankton biomass, and is generally measured through values of

the concentration of Chl ‘a’ (e.g. Cloern et al., 2014). In Figure 4.14, daily rates
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classified as within Blooms in Chapter 3 were highlighted to assess the viability
of Chl ‘a’ as a predictor or primary production and trophic state, in the two
estuaries studied. The analysis was carried out under the premise that rates
classified as blooms would be below the metabolic balance line (GPP:ER = 1).
SOT presented 78.8% of total NCP observations explained by phytoplankton
biomass (Fig. 4.14a). In SOT, almost two thirds (64.3%) of the daily rates
classified as Blooms and identified as heterotrophic, were estimated for 2020.
Another implication of the NCP model not responding well to calculations based
on estimated salinity and temperature values assumed due to the 4.5-month gap
after temperature and conductivity sensors stopped logging data and were not
accessible because of COVID-19 social distancing restrictions. In CHR, 75.1% of
Bloom daily rates were related to positive values of NCP (Fig. 4.14b). Nearly half
of these estimations (47.8%) were documented in 2015, a year where data for
most of spring and summer is missing. Seasons that, according to the whole time

series, are the most productive in the estuary.

Phytoplankton biomass in estuarine ecosystems is highly variable and can
fluctuate up to 500-fold across these systems, as demonstrated in the compilation
by Cloern & Jassby (2008) of Chl ‘a’ measurements from more than 100 coastal
ecosystems representing the global diversity of marine habitats. Moreover,
coastal chlorophyll integrated primary production can differ by a factor of 3 to 4
against direct measurements of production (e.g. Chavez et al., 2011) since
interannual variability in biomass corresponds to even larger variability in primary
production (e.g. May et al., 2003). Nevertheless, results of NCP rates explained
by daily variation of phytoplankton biomass in SOT and CHR are better than the

prediction of variance in Chl ‘a’ from a pH/O2 model in Narragansett Bay
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(Oczkowski et al.,, 2016) where only 27-60% could be explained. A closer
explanation of the daily variability of phytoplankton productivity from fluctuations
of Chl ‘a’ is the 64% reported for the Saanich Inlet (Grundle et al., 2009) a British
Columbia fjord (Canada). Lastly, the highest variability of annual phytoplankton
primary production explained by oscillation of the annual mean of Chl ‘a’ found in
the literature review was 81%, as reported by (Keller et al., 2001) for the Boston

Harbor-Massachusetts Bay (USA).
4.4.4 Seasonal and interannual fluctuations of productivity rates

The PCA analysis presented in Figure 4.12, permitted a separation of productivity
rates by season. For SOT the metabolic balance among seasons, showed a net
autotrophic state only during spring (6.4 mmol O2 m? d1) with a few sporadic
daily rates during summer also presenting positive NCP values (Fig. 4.15b). This
reduced the average NCP for summer months to a less heterotrophic state (-16.9
mmol O2 m? d1) than that observed for autumn and winter (~ -25.0 mmol O2 m
d1). Spring and summer GPP rates (~33.5 mmol O2 m2 d1) were almost three
orders of magnitude higher than the rates for winter and autumn (~11.2 mmol Oz
m2 d1). However, spring showed a slightly lower rate of ER than the other
seasons which, in addition to the elevated GPP rates, derived in net autotrophic
conditions for spring. The trophic balance for CHR (Fig. 4.16b) described summer
and spring as net autotrophic (30.8 and 22.6 mmol O2 m? d, respectively), and
autumn as heterotrophic (-8.6 mmol Oz m?2 d?). Although winter was also
classified as heterotrophic, it is important to notice that NCP calculations for this
season were not available for 2014 and 2018, and more than half of observations
were found in 2015. Winter and spring were separated from autumn and summer

at CHR by the influence of riverine inflow which is higher during these seasons
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(see Fig. 3.15e, section 3.3). River runoff was also correlated to [O2] which the

open water diel oxygen method indicates is mainly driven by GPP.

In both estuaries, the dominant factors driving metabolic rates appeared to be
related to seasonal changes in light availability and temperature, with the addition
of freshwater flow affecting CHR rates. This produced a shift from heterotrophic
to autotrophic state associated with the season (Azevedo et al., 2006; Tang et
al., 2015). The same seasonal dominance over the trophic state by light and
temperature, was previously documented by Murrell et al. (2018) for a shallow,

river-dominated estuary in Pensacola Bay (USA).

Strong temperature effects on respiration rates have been reported in estuarine
systems (Caffrey, 2003; McKinnon et al., 2017), however, this was not the case
for the present study. Additionally, ecosystems in regions such as the north-
eastern Gulf of Mexico (Caffrey et al., 2014) and Matilda Bay (Australia) (Agusti
et al., 2018) have not found clear seasonal trends in either GPP or ER throughout

the year.

The extensive compilation of productivity rates in estuaries across the U.S. made
by Caffrey (2004) found that all ecosystems located in the mid-Atlantic region
exhibited summer production and respiration rates around 1.5-2 times higher
than in other seasons, similar in magnitude to GPP rates observed in SOT and

CHR, but not ER since rates were more evenly spread throughout the year.

Weaker heterotrophic conditions during spring and summer were observed in the
Ria Formosa Lagoon (Portugal), when the study area was considered slightly
autotrophic for very short periods (Cravo et al., 2020). In addition, a mainly

heterotrophic state was reported for winter in the shallow bank site at the mouth
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of the River Thames (Hull et al., 2016). These studies aligned with similar findings

for SOT and CHR.

ER magnitude seems to be increasing across the SOT time series by around
22% each year, with the exception of 2020 that increased by three orders of
magnitude against the previous years (Fig 4.15a). A similar trend was observed
for GPP but not to the same degree as ER, thus, annual net heterotrophic
conditions have been steadily increasing and were only brought to almost
metabolic balance in 2019 (Fig 4.15b). In comparison in CHR, the rate of GPP
has seen an increase throughout the time series, particularly from 2016 when
GPP doubled in comparison to the previous year, and after that, annual averages
remained above 28 mmol O2 m?2 dt. From 2015 to 2016, ER decreased by ~50%
and remained at similar values (11.6 mmol O2 m2 d1) until the end of the time
series (Fig. 4.16a). Therefore, a net autotrophic state has prevailed in the estuary
since 2015 (Fig. 4.16b). According to Cai (2011), research has strongly
suggested that the coastal ocean, and particularly estuarine ecosystems, are
significant sources of COz2 to the atmosphere, therefore, a net heterotrophic state
generally prevails. Moreover, it has been reported that increased nutrient inputs
to this region could shift ecosystems towards net heterotrophy (e.g. Mortazavi et

al., 2012).

153



Chapter 4 — Variability of productivity rates

400 - mmmm NCP
N ER
200
o
©
a0
S
N
O 00 4
[=]
£
1S
-400 +
-600 4
200 4 W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A w Sp Su A
b
100 ( )
"
o] 0
o F 24
£
o~ -100 &
o] 18 =
2 200 .
=R : : @
£ : ; F12 2
300 4 - : L
: : : L s S
oy : WJ\A‘ M :
HERN | SA A 0

2014 2015 2016 2017 2018 2019 2020
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Average ER in SOT (38.6 mmol O2 m? d') was more than two orders of
magnitude higher than the mean ER for CHR (16.5 mmol O2 m2 d-1). In addition,
ER across the time series ranged between 0.1 and 664.7 mmol O2 m2 dtin SOT,
and from 0.1 to 284.4 mmol Oz m? d! in CHR, with values for both estuaries in
agreement with the variation reported by Robinson & Williams (2005) for
community respiration in coastal areas (0.9 — 670 mmol O2 m d1). Furthermore,
on their review of open—water portion of estuaries, Hopkinson & Smith (2005)
reported ER based on Oz incubations (Feb—Sep 1972) for Southampton Water to
be an average of 93 mmol O2 m2 d* and have ranged from 0.1 to 246 mmol O2
m2 d1. Their higher ER average, compared to the result of this study, is perhaps
a result of incubations excluding less productive months (Oct—Jan), while a

smaller range is an indication of the interannual variability.

Even though GPP average was very similar for SOT and CHR (24.5 and 25.0
mmol Oz m2 d* respectively), the maximum observed in SOT of 411.2 mmol O2
m2 d* was almost double the peak observed in CHR (284. 4 mmol O2 m2d?). A
similar maximum GPP (256 mmol O2 m2 d!) to that in CHR was reported among
systems in the northeast coast of the U.S. (Caffrey, 2004), while only systems in

southern California matched the peak registered in SOT.

Annual NCP estimations for SOT (-48.7 to -0.9 mmol O2 m d!) are comparable
with ranges reported for other estuaries presenting mainly heterotrophic
conditions (-71.0 to -0.1 mmol O2 m? d!) (Caffrey, 2004; Cravo et al., 2020; Hull
et al., 2016; Mortazavi et al., 2012; Murrell et al., 2018). In contrast, CHR showed
a tendency to become more autotrophic and its annual NCP calculations (-11.7
to 19.8 mmol O2 m=2 d*) were comparable to the ones described for a eutrophic

ecosystem in Western Australia (-9.3 to 76.99 mmol O2 m2 d'1) (McKinnon et al.,
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2017). However, CHR is a considerable smaller, shallower estuary and does not
present sustained periods of high chl ‘a’ concentration or any other signs of

eutrophication in the outer estuary region (Huggett et al., 2021a).

Most research describing primary production, in terms of GPP and ER, has been
done in the northern hemisphere between 30°N and 50°N. However, these
measurements have been collected largely in the open ocean and coastal areas
(<20m) and mainly during the temperate and austral spring (e.g. Robinson &
Williams, 2005). This information highlights the necessity of estimations of NCP
including paired ER and GPP measurements to be made in estuaries, given that
these systems are highly dynamic, presenting fluctuations in primary production
over short temporal scales (days to hours) (e.g. Guenther et al.,, 2017) and
present an opportunity to evaluate the health of these areas in order to prevent

adverse effects such as eutrophication (e.g. Liu et al., 2015).
4.4.5 Open water diel oxygen method implications

The open water diel oxygen method coupled with high- frequency water quality
monitoring is a powerful tool to help understand the influence of physical and
biological processes on DO changes through time, particularly since the principal
biological process influencing the ocean's declining DO concentration is
phytoplankton respiration (Robinson, 2019). The increasing availability of
improved and affordable instrumentation has made it possible to create high-
frequency time-series from which more reliable estimations of net community
production can be derived and evaluate different scales of spatial and temporal

variability within ecosystems (Aristegi et al., 2009; Staehr et al., 2012).

As with any other method, assumptions must be made in order to apply the

approach to different ecosystems and data availability. Since it frames the
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possibility of applying the open water diel oxygen method to a particular
ecosystem, one of the main assumptions is that the water column monitored must
be reasonably homogenous and well mixed (e.g. Caffrey et al., 2014). Therefore,
vertical profiles of temperature, salinity and dissolved oxygen were made in SOT
in 2018 and 2019, with a different EXO2 sonde (see Chapter 2, section 2.6), this
analysis presented temperature differences between the surface and bottom
waters ranged from 0.1°C in late April to 2.0°C in July. DO saturation through the
water column presented higher variability in August (9%) and did not correspond
with the profile presenting the greater temperature variation or the highest
temperature (July). Both DO saturation and temperature showed less variability
through the water column than data in Murrell et al. (2018) study (26% and ~4°C)
where the open water diel oxygen method was applied in a shallow, river-

dominated estuary located in the northeaster Gulf of Mexico.

Among other complications previously encountered using this methodology, is
the necessity to separate air-sea Oz exchange (Staehr et al., 2012; J M Testa &
Kemp, 2011). Direct measurements of air-water exchange can present great
difficulty, and some past works have opted for assumed constant values for
similar systems (e.g. Caffrey, 2004). Since air-water exchange can vary with
fluctuations in surface turbulence, water viscosity and the solubility of Oz (e.g.
Holtgrieve et al., 2010); to minimised error propagation, in the present study it
was calculated for every time-step (1 hour) as a function of diffusion through
bubbles and gas transfer velocity, which in turn included the Schmidt number
encapsulating influences of water temperature and salinity. Contribution from
partially dissolved bubbles and overestimation in the air-water transfer has been

reported previously (Haskell et al., 2019; Liang et al., 2013), without explicit
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consideration of bubble-mediated supersaturation, NCP can be significantly

overestimated (e.g. Nicholson et al., 2015).
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Fig 4.17 Comparison of maximum daily wind speed and daily ecosystem
respiration (ER). Symbols and colours differentiate years: 2014 (red triangles A),
2015 (yellow circles ), 2016 (green squares m), 2017 (light blue hexagons @),
2018 (blue diamonds ), 2019 (pink squares m) and 2020 (orange hexagons @).
Linear regression is represented with a dash black line (—-) and prediction intervals
with a dotted line (...).

However, both estuaries showed a strong correlation between values of
calculated ER and wind speed (Table 4.1). In Fig. 4.17 it is noticeable that
isolated elevate ER calculations correspond to wind gusts above ~9 m s, thus,
inducing negative NCP and perhaps overestimating heterotrophic conditions.
Although it is known that in shallow ecosystems high wind gusts can induce rates
of sediment resuspension, affecting the magnitude and balance between GPP
and ER (Hull et al., 2016; Staehr et al., 2012; Testa & Kemp, 2011), in the current
study seems to be an overprediction of the biological oxygen production (BOP)
calculation due to the poor performance of the wind speed curve fitting at higher

winds (see Chapter 2, Fig. 2.3). Moreover, 2020 calculations for SOT, seemed to
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have worsen the BOP overestimation (Fig. 4.17) through DO approximations from

yearly averages of temperature and salinity (see Chapter 2, section 2.2.1).

A final generalisation is that ER rates are assumed constant through the diel cycle
since CO:z fixation through chemoautotrophic processes is usually smaller than
that fixed by photosynthesis. However, in systems where nitrification is an
important process, overlooking it could result in overestimating ER and
underestimating NCP (Hull et al., 2016; Murrell et al., 2018). Nitrification could
represent up to 20% of total organic matter production around the maximum
turbidity zone (e.g Gazeau et al., 2005c) and it can be increase by organic matter
inputs from water runoff (Hopkinson & Smith, 2005). Given the characteristics of
high light transparency and low nutrients in the estuaries studied, particularly
SOT, nitrification and photooxidation were assumed to be insignificant compared

to estimates of ‘night respiration’ (Demars et al., 2015; Kemp & Testa, 2011).

There are several methods to estimate aquatic primary production, but few
provide the opportunity to calculate direct continuous productivity rates for long
periods at a low cost and fieldwork intensity, and at the same time, make available
easy validation using independent estimations, like the open water diel oxygen
method (e.g. Briggs et al., 2018). Climate change and variability in environmental
conditions will have an effect on both ER and GPP and, consequently, on NCP
(Staehr et al., 2012), therefore, it is vital to increase understanding of how these
factors influence productivity rates across a broader range of coastal regions, and

in a scale that allows prevention and mitigation management in future years.

4.5 Conclusions

The present study identified trends suggesting between 2014 and 2020 the

Southampton Water estuary had become more net heterotrophic (from -1.3 to -
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48.7 mmol Oz m?2 d?), while between 2014 and 2018 Christchurch Harbour

seemed to be turning more net autotrophic (-11.7 to 19.8 mmol O2 m2 d?).

In both estuaries, the dominant factors driving metabolic rates were related to
seasonal changes in light availability and temperature, with the addition of riverine
inflow affecting Christchurch Harbour. This produced a shift from heterotrophic to

autotrophic state mainly in spring and summer.

An analysis between productivity, temperature and light availability showed that,
for Southampton, a surface water temperature threshold of 10.5 °C, surface water
irradiance above 1520 Wh m2 d! and mean water column irradiance greater than
415 Wh m2 d%, corresponded maximum NCP calculated rates, meaning positive
values above 100 mmol O2 m? d! and negative NCP beyond -200 mmol O2 m?
d?. Furthermore, the same analysis revealed that in Christchurch, NCP
exceeding positive and negative values beyond 50 mmol O2 m?2 d?, were
consistent with the appearance of water temperatures above 10.3 °C, values
above 1240 Wh m d? for surface water irradiance and mean water column
irradiance higher than 950 Wh m2 d-1. This analysis concluded that Christchurch
Harbour being a shallower and more turbid water column is more affected by

disturbances in the mean water column irradiance.

The examination of the relation between ecosystem respiration and gross primary
production permitted values for metabolic balance (GPP:ER) for each system to
be estimated (22.4 mmol O2 m=2 d-! for Southampton and 4.9 mmol O2 m=2 d* for
Christchurch). This results implicate that production needed to shift the
Southampton from net heterotrophy to net autotrophy is four orders of magnitude
higher than what is needed in Christchurch. This approach also allowed

classification of both estuaries between oligotrophic and mesotrophic states, with
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Southampton particularly leaning towards mesotrophic conditions. A tendency of
ecosystem respiration exceeding gross primary production at lower rates along
the metabolic balance (GPP:ER) analysis was observed, implying that metabolic
balance in these systems relies to some extent on allochthonous inputs of organic

matter.

A comparison between days classified as within bloom events, using chlorophyll
‘a’ concentration, and net autotrophic daily rates, highlighted the viability of
chlorophyll ‘a’ as a predictor or primary production and trophic state since more

than 75% observations overlapped.

The open water diel oxygen method proved to be a reliable technique to
integrated daily estimations of ecosystem production and respiration rates in both
estuaries. Ecosystem respiration showed no clear dependence on water
temperature, in agreement with the assumption that respiration rates are constant
during day and night. However, the methodology has the disadvantage of
requiring a very precise air-sea correction that can be easily disturbed by over or
underestimation of wind speed, which in turns results in uncertainty in the O2 air-
sea calculation. In the present study, in order to minimised error propagation, the
diffusive exchange of Oz across the air— sea interface was calculated for every
time-step (1 hour) as a function of diffusion through bubbles and gas transfer

velocity, instead of using a constant.
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Plankton carbon metabolism and air-sea CO:

fluxes at Southampton Water estuary

Abstract

Coastal zones account for about 20% of total ocean COz2 flux, nevertheless, a
comprehensive description and analysis of the spatial and temporal variability of
CO:z2 fluxes and their relation to environmental factors in estuaries is scarce. In
this chapter, an estimation of carbonate system parameters (CO:2 flux, partial
pressure of COz2, dissolved inorganic carbon, total alkalinity and pH) was carried
out at hourly intervals for a position in the Southampton Water estuary in 2019
and 2020 using the software CO2°¥¢, described in Chapter 2, using inputs of
discrete sampling of dissolved inorganic carbon and total alkalinity and the
continuous monitoring of pH. The estuary exhibited an annual average of 6.56 +
10.43 mmol C m?2 d, acting as a source of COz2 to the atmosphere and agreeing
with the overall net heterotrophic classification performed in Chapter 4.
Discrepancies among estimations were attributed to possible seasonal
stratification, wind speed affecting the calculation of Oz fluxes and estuarine
flushing times. Frequency and magnitude of riverine inputs influenced the
distribution of carbonate system parameters, presenting supersaturated CO:2
conditions in summer when there was reduced daily river discharge and
undersaturated CO2 corresponding to high riverine inflow during winter. Biological

processes were identified as a major factor controlling the pH/oxygen saturation
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dynamics and COz2 fluxes were observed to follow the pattern of DIC, indicating

its association with metabolic rates.

5.1 Introduction

Estuaries are one of the most biogeochemically active systems of the coastal
zone due to intense inputs of nutrients and carbon from land through rivers and
from the open ocean at continental margins (Borges et al., 2006). Yet, despite
the importance of dissolved gases in many of the biogeochemical cycles of
estuaries and coastal waters, only during the last two decades have large-scale
collaborative efforts addressed the importance of air-sea exchange in

estuaries (Bianchi, 2012).

The consensus regarding estuaries, is that they are considered net heterotrophic,
acting as sources of CO: to the atmosphere (Bianchi, 2012; Cai, 2011;
Frankignoulle et al., 1998; Hu et al., 2020; Yao et al., 2020), particularly in the
outer plume region (Bianchi, 2012). This is mainly attributed to the large inputs of
terrestrial organic carbon that these ecosystems receive (Guenther et al., 2017),
resulting in increased respiration of detrital organic matter, which in turn produces
large quantities of dissolved CO: that generate very high fluxes to the

atmosphere.

One of the main drivers of estuarine CO2 emissions to the atmosphere is the rate
of primary production (the photosynthetic production of carbon and oxygen)
(Frankignoulle & Middelburg, 2002), since it acts as a fundamental component of
the global carbon cycle and initiating the biogeochemical cycling of major

nutrients (Henderikx et al., 2020).
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It has been reported that air-sea COz2 fluxes and net community production (NCP)
in estuaries show a consistent pattern of being a source of CO2 coupled to net
heterotrophy (Borges et al., 2006; Gazeau et al., 2005c; Gupta et al., 2008;
Raymond et al., 2000), yet the link between the exchange of CO2 with the
atmosphere and the metabolic status is not direct since the variability of air-sea
CO:z2 fluxes is also a function of the physical settings of estuaries, in particular with
respect to the occurrence of vertical stratification, and residence time of the water
mass (Borges & Abril, 2011). To better understand how CO2 and O: are
transferred across the air—sea boundary, the environmental parameters driving

their dynamics in estuarine waters need to be examined (Shen et al., 2019a).

The aim of this chapter is to provide a depiction of the seasonal and interannual
carbonate chemistry parameters for the Southampton Water estuary and explore
drivers of the carbonate system parameters and its connection to net community

production.

5.2 Seasonal oscillation of the carbonate system in

Southampton Water

Parameters for the carbonate system in the Southampton Water estuary were
calculated using the program CO2°¢ (see Chapter 2, section 2.7.1). Time series

of hourly calculations are presented for 2019 and 2020 for Southampton Water.

5.2.1 Estuarine carbonate chemistry

pH
A strong seasonality was observed for pH across the 2-year time series (Fig.
5.1a), with both years showing the same general pattern. This parameter

presented the highest seasonal average during Winter (8.17 £ 0.01), to then start
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decreasing values throughout spring (8.10 £ 0.03). Observations reached the
lowest seasonal mean of 8.02 £ 0.01 in summer (Table 5.1). At the end of this
season, values started increasing continuously, a trend that prevailed all through
autumn (8.09 + 0.03). Although 2019 showed the maximum (8.21) and the
minimum (7.98) of the time series, the yearly averages were identical, with 2019
presenting 8.09 £ 0.04 and 2020 showing 8.09 + 0.07 as a mean value. Annual
minimum pH was detected for both years in July, while maximums were detected

in February.

pH variability was significantly higher during spring and autumn than in winter and
summer, indicating that spring and autumn were acting more as transitional
seasons (p<0.001, Table 5.2), whereas winter and summer appeared to be more
stable. However, winter in 2020 was considerably less variable than in 2019,

when a high peak pH value was observed (Fig. 5.1a).

Dissolved inorganic carbon and total alkalinity

Dissolved inorganic carbon (DIC) and total alkalinity (T, ) presented an
analogous fluctuation between the seasons and years, as can be seen in figure
5.1b & c. For both parameters, winter was the season showing the highest
average values, with 2413 + 68 umol kg for DIC and 2578 + 63 pumol kg for
T,k - During spring, values started to steadily decrease, particularly in 2020,
reaching season averages of 2365 + 32 pmol kg for DIC, and 2533 + 29 umol
kg for T, This trend extended throughout the summer season when the lowest
mean values were observed for DIC and Ty, (2295 + 30 and 2467 + 28 umol kg
1, respectively). At the end of summer, DIC and T, values started rising again.
However, hourly maximums did not reach those registered for winter in either of

the studied years (Table 5.1). Seasonal averages in autumn were 2360 £ 70 pmol
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kg for DIC, and 2529 + 66 umol kg for T,;,. For 2019 and 2020, maximum
values occurred in February, whereas minimums during September were

identified for both parameters.

Although spring and autumn presented very similar seasonal averages, the
variation among data was higher in autumn, particularly in 2020, where spring
showed a smaller fluctuation than in 2019 (Fig. 5.1b & c). Furthermore, winter in
2019 exhibited a marked peak in values in the middle of the season that was not
observed in 2020, when values oscillated greatly but between a very specific
range, 2329 — 2544 for DIC and 2497 — 2701 for T,;,. This made a significant
difference between winter within the two years studied (p<0.001, Table 5.2), and

favoured a larger influence in the seasonal average by the 2020 data.

Partial pressure of CO2 in the aguatic system

The estuarine partial pressure of CO2 (pC0,) showed a large seasonal variation
(Fig. 5.1d), with a similar annual pattern for 2019 and 2020. Starting with low
values throughout winter, reflected in the lowest seasonal average of 450.5 +
28.6 patm, pCO, started increasing continuously during spring and presented a
mean value of 544.8 £ 52.5 patm. Summer displayed the highest records of pC0,
with a 672.4 £ 27.5 patm average for the season (Table 5.1). At the end of
summer, values started to show a decline that continued throughout autumn
(557.1 £ 37.3 patm). Maximum values were identified during July, whilst

minimums were observed in February for the two years included.
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Fig 5.1 Seasonal variations of carbonate system parameters: (a) pH, (b) dissolved inorganic
carbon [DIC], (c) total alkalinity [Tax] and (d) partial pressure of CO2 [pCOz2], calculated with the
COxcac software for Southampton Water from 2019 to 2020. In (d) the black line represents the
atmospheric pCO2, data from the Ryan Institute's Mace Head Atmospheric Research Station

(Galway, Ireland). In (b) and (c) * indicate discrete samples.
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Table 5.1. Annual and seasonal average, standard errors and range of hourly hydrologic (O2%), carbonate system parameters (pH,
DIC, Tk, PCO3 4ir, pCO, 4), O2 (FO2) and CO2 (FCOy2) fluxes in Southampton Water from 2019 to 2020.

Parameter Annual Winter Spring Summer Autumn
n=730 n=181 n=183 n=184 n=182
y 8.09 £ 0.06 8.17 £ 0.01 8.10 +0.03 8.02+0.01 8.09 +0.03
p
(7.98 —8.21) (8.14 - 8.21) (8.04-8.17) (7.98 - 8.06) (8.04 — 8.15)
DIC 2351 + 65 2413 + 68 2365 + 32 2295 + 30 2360 + 70
(umol kg?) (2205 — 2544) (2282 — 2544) (2262 — 2508) (2216 - 2421) (2205 — 2541)
Talk 2520 + 61 2578 + 63 2533 + 29 2467 + 28 2529 + 66
(umol kg?) (2383 - 2700) (2456 — 2700) (2437 - 2667) (2394 - 2585) (2383 - 2698)
pCOy air 433.6 6.8 439.0+£2.5 438.7£2.1 425.4 £ 4.6 433.3+4.0
(natm) (415.8 — 449.6) (434.5 — 449.6) (431.9 - 447.7) (415.8 — 441.6) (423.2 - 447.8)
pCO; s 568.4 + 86.6 450.5 £ 28.6 544.8 +52.5 672.4+£27.4 557.1+37.3
(natm) (378.7 - 756.8) (378.8 — 509.0) (442.2 - 653.4) (589.9 — 756.8) (445.9 - 652.6)
FCO: -6.6 + 10.4 -1.7+4.1 -3.7%52 -11.5+£14.2 7.7+10.2
(mmol m2 d?) (-133.3-20.5) (-38.9-20.5) (-48.0-0.1) (-133.3--0.1) (-105.1-0.1)
FO2 13.3+18.5 23.9+285 8.9+10.5 10.2 £ 14.4 14.9+175
(mmol m2d?) (0.1-247.2) (0.1-247.2) (0.1-94.5) (0.1-116.1) (0.1-219.0)
02 % 98.9+ 135 97.2+1.4 107.1+15.9 96.1+17.8 93.4+2.2
(43.9-190.7) (91.9-101.1) (61.5-190.7) (43.9 - 183.5) (81.0-9.7)
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There was greater variance during spring and autumn than in winter and summer
(p<0.001, Table 5.2). Even though both years showed a similar range in values
through spring (~200 patm), autumn in 2019 varied ~200 patm while in 2020, only
~140 patm. Moreover, 2019 presented a wider annual range than 2020, with

~378 patm and ~300 patm, respectively.
5.2.2 Temporal variability of O> and CO: air-sea fluxes

02 flux

Annual mean air-sea Oz flux (FO2) was 13.3 + 18.5 mmol O2 m2 d* (Table 5.1).
The range of values during 2019 were from 0.1 to 219.0 mmol O2 m2 d* and an
average of 11.4 + 15.2 mmol O2 m? d* was calculated. The following year,
maximum value increased to 247.2 mmol O2 m2 d! and the mean value 1.3
orders of magnitude larger (15.2 = 20.9 mmol O2 m2 d1). The overall seasonal
tendency was for high values during winter (>50 mmol O2 m? d?), then
decreasing and remaining mainly below ~25 mmol O2 m? d* during spring and
summer, to then increase again (~30 mmol O2 m? d?) at the end of year

(autumn), although not as much as in winter.

A significant difference among the distribution of O2 flux between 2019 and 2020
was identified (p<0.001, Table 5.2). This was mainly driven by the variance
between the winter seasons in 2019 (14.2 + 20.0 mmol O2 m2 d1) and 2020 (30.5
+31.4 mmol O2 m2 d?), given that the average season value in 2020 was doubled
that for 2019. Additionally, data in winter for 2020 was distributed in several peaks
against just one perceivable peak identified in 2019 (Fig. 5.2a). A minor source
of variance was identified within 2020 (p<0.001, Table 5.2) since spring and
summer showed lower average values and lesser variation than winter and

autumn.
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CO2 flux

Air-sea COz flux (FCO2) presented and annual average of -6.6 £ 10.4 mmol C m"
2d. Averages among years investigated were very similar, with -6.6 + 11.2 mmol
C m?d?for 2019 and -6.5 + 9.7 mmol C m2 d* for 2020 (Table 5.1). However,
the range of values decreased from one year to another, from -133.3 to 20.5
mmol C m2d*to-100.7 to 5.6 mmol C m2 d. Positive values, indicating net flux
from the atmosphere to the aquatic system, were observed only during winter of
both years, and winter 2019 was the only season that averaged above zero,
presenting 0.7 + 2.1 mmol C m?2 d* (Fig. 5.2b). Summer was visibly the season
with the lowest values, showing an average of -11.5 + 14.2 mmol C m?2 dL. It was
followed by autumn, which did not present an average as decreased as summer
(-7.7 £ 10.2 mmol C m*? d?), although maximum values were close, and well
above the other seasons. Winter and spring averages remained above -4 mmol

C m2d*tin both years.

There was a significant difference between seasons but not between the years
studied (p<0.001, Table 5.2). This variance among seasons was mainly attributed
to the lower values observed in winter of 2019, when for a period of 18 days,
negative COz2 fluxes were recorded. An additional source of variance was credited
to the fluctuation of winter and spring averages within years, given that in 2019
the difference between seasons was 4.8 mmol C m=2 d, while in 2020, the

fluctuation reduced to 0.1 mmol C m2d1.
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Fig 5.2 Seasonal variation of air-sea (a) Oz (mmol m2 d1) and (b) CO2 (mmol m-2 d?1) fluxes in Southampton Water from
2019 to 2020. In (a) and (b) positive values indicate net flux from the atmosphere to the aquatic system. Oz fluxes were
calculated with the open water diel method. CO? fluxes were calculated with the COca¢ software.
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Table 5.2. Two-way ANOVA of daily carbonate system parameters, testing
for season (winter, spring, summer and autumn) and year (2019 and 2020)
effects, and their interactions.

Parameter Factor dF SS MS F P

pH Seasons 3 1.6 0.5 945.0 <0.001
Year 1 0.0 0.0 1.5 0.226

Seasons*Year 3 0.0 0.0 4.8 0.002
DIC Seasons 3 980755.0 326918.3 216.9 <0.001
Year 1 85119.2 85119.2 56.5 <0.001
Seasons*Year 3 165541.8 55180.6 36.6 <0.001
Tk Seasons 3 859044.3 286348.1 216.9 <0.001
Year 1 74555.8 74555.8 56.5 <0.001
Seasons*Year 3 144997.9 48332.6 36.6 <0.001
pCO; & Seasons 3 3743544.2 1247848.1 901.1 <0.001
Year 1 10298.6 10298.6 7.4 0.007
Seasons*Year 3 54519.2 18173.1 131 <0.001
FCO2 Seasons 3 8526.1 2842.0 48.5 <0.001
Year 1 44.8 44.8 0.8 0.382

Seasons*Year 3 526.7 175.6 3.0 0.03
FO2 Season 3 14594.4 4864.8 28.6 <0.001
Year 1 2545.1 2545.1 15.0 <0.001
Seasons*Year 3 5729.7 1909.9 11.2 <0.001

Holm-Sidak post hoc test p<0.05. dF=degrees of freedom, SS=sum of squares, MS=mean squares,
F=factorial test, and P= p-values for treatments (season and year).
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5.3 Analysis of variation in air-sea exchange from

biogeochemical processes

5.3.1 Main factors impacting air-sea O2 and CO: fluxes

Estuaries are a major boundary in the land-ocean interaction zone where the
gathering of different biogeochemical processes results in high air-sea O2 and
CO:z2 fluxes, making them more dynamic and complex than the open ocean (Cai,
2011; Duarte et al., 2013a). To assess the relationship between environmental
factors and carbonate chemistry parameters with FO2 and FCOz, the Spearman’s
correlation coefficient was calculated (Table 5.3) for the Southampton Water

estuary, for 2019 and 2020 individually, and the complete time series.

FO2 showed a strong correlation (p>0.97) with wind speed throughout the time
series. This is expected since wind is a key parameter in calculating the biological
oxygen production used to compute net community production (NCP). Although
it has been stated before that, in shallow ecosystems, high wind gusts can affect
the magnitude and balance between gross primary production (GPP) and
ecosystem respiration (ER) due to wind-induced mixing (Hull et al., 2016; Kemp
& Testa, 2011; Staehr et al., 2017), in this research, it was established that NCP
calculations were most likely overestimating heterotrophic conditions, and the
correlation between ER and wind, although present, was over amplified (see

Chapter 4, section 4.4.5).

A clear influence of the relations calculated for FO2 in 2020 on those estimated
for the complete time series is observed (Table 5.3), since patterns for both years
are more similar to those in 2020. Apart from wind and ER, FO2 in 2019 only

presented a moderate correlation (p=0.44) with GPP. Conversely, for 2020, a
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moderate positive correlation was found with ER (p=0.48) and river inflow
(p=0.42), while negative modest correlations were identified with I,,, (p=-0.51)
and NCP (p=-0.47). Weaker direct correlations (0.30<p<0.37) were observed
between FO2 and T, DIC, pH and GPP, whilst negative with pC0, ,, (p=-0.27),
Iy (p=-0.39) and temperature (p=-0.33). FO: is linked to primary production due
to the release of oxygen during photosynthesis and uptake during aerobic

respiration (Caffrey, 2003, 2004; Herrmann et al., 2020).

FCO2 was strongly negatively correlated to most of the carbonate system
parameters (Table 5.3); T,k (p=-0.69), DIC (p=-0.69) and pH (p=-0.99),
indicating that COz2 release to the atmosphere was closely related to increases in
those parameters. The correlation of p=1.0 between FCO2 and pCO0,,, was
anticipated since FCO: is estimated from the difference between CO:2 partial
pressure in seawater pC0,,, and the atmosphere pCO,,;, (see Chapter 2,
section 2.7.2). The close connection among the carbonate system parameters is
an expected outcome due to their participation in different states of the C
buffering process in aquatic systems (Duarte et al., 2013a, b; Millero, 2010).
However, data for 2020 showed a slightly higher relationship between FCO2, DIC

and T, than in 2019.

Regarding parameters related to primary production, FCO2 presented a strong
correlation with Chl ‘a’ in 2019 (p=0.73) and 2020 (p=0.60). In a similar pattern,
GPP had a stronger relation in 2019 (p=0.44) than in 2020 (p=0.38), but not as
elevated as Chl ‘a’ (Table 5.3). NCP was positively correlated in 2020 (p=0.27)
and negatively in 2020 with FCO2 (p=-0.30), possibly driven by ER which only

presented a substantial correlation with FCO:2 this year (p=0.37). It has been
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reported that NCP in estuaries shows a consistent pattern of a CO2 emission to

the atmosphere coupled to net heterotrophy (e.g. Borges & Abril, 2011).

Abiotic factors mainly affected by the annual cycle of solar radiation (I, p>0.55
and temperature p>0.98) showed strong correlations with FCO2 (Table 5.3); in
addition, I,,, a parameter also affected by light availability (I,), presented a
moderate relationship (p=0.47). Furthermore, oxygen concentration [O2]
negatively correlated in both years (p>-0.54), while oxygen saturation (02%) only
in 2019 (p=-0.57). The correlation between FCO2 and seasonal drivers of
phytoplankton bloom development (1, I,,, and temperature) (Rumyantseva et al.,
2019) and [Oz2], mainly occurs since CO:z is involved in various aspects of carbon
transport and metabolism in photosynthesis (e.g. Raven et al., 2020). Lastly, river
flow presented a strong correlation with FCO2 in 2019 (p=-0.93) and 2020 (p=-
0.90), which is credited to riverine input to the estuary being generally rich in

organic carbon (e.g. Salisbury et al., 2008a).

A PCA analysis was conducted to further investigate the seasonal variation of
carbonate chemistry parameters, productivity rates and environmental factors
affecting the response of FO2 and FCO2. Spatial and temporal variability in
carbonate chemistry parameters in estuaries has been identified before using
PCA (Shen et al., 2020; Uthicke et al., 2014). pCO0,, was omitted from this
analysis as it is directly correlated with FCO2. For the present work, daily
observations were classified within ‘seasons’ (autumn, spring, summer and
winter) and were noticeably grouped together in the PCA, as seen in figure 5.3.
The first two principal components (PCs) accounted for ~64% of the total variance
in data. PC1 explained 44.4% of the total variability while PC2 accounted for

19.3%.
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The main factors contributing to PC1 positive eigenvalues (R?>0.36) were
temperature and FCOz, and in a reduced magnitude (R?>0.14) Chl ‘a’, I, and I,,,.
PC1 negative values (R>>-0.31) were attributed to river flow, DIC, T,;, and pH.
Component loadings of PC1 showed a seasonal pattern associating positive
eigenvalues to daily observations during summer, while negative values were
attributed to winter days. PC1 variability is correlated to river discharge, given
that maximum FCO2 (83.1 mmol C m? d1) and temperature (22.0 °C) both
occurred in summer of 2019, when there was lower daily discharge (<5 m s),
and the highest DIC, T,;; (2660 and 2501 pmol kg, respectively) and pH (8.2)
values corresponded to high riverine inflow (> 30 m s*) during winter. Spring and
autumn data were situated right at the transition zone of PC1, given that river
discharge average for these seasons (11 m s!) was among values for summer
(6.7 m s'1) and winter (18.3 m s1). Salisbury (2008b) stated that most river plumes
are acidic relative to the adjacent ocean, and therefore, capable of significantly
depressing calcium carbonate saturation and increasing concentrations of COzin

the aquatic system within marine coastal zones (e.g. Cai et al., 2008).

Positive values of PC2 were mainly described by NCP (R?=0.44), followed by I,,,
and [O2] (R?>0.17). Conversely, wind speed (R?=-0.48), ER (R?=-0.46) and FO2
(R?=-0.45) contributed to negative eigenvalues (Fig. 5.3). Seasonal separation
was not as clear for PC2, even though positive values were mainly attributed to
spring, the other seasons were situated in the centre of the component axis. The
main drivers of high rates of ER were associated with negative values of PC2,
while positive loadings related to indicators of increased phytoplankton biomass
like light availability, [O2] and chlorophyll ‘a’ (Cloern et al., 2014). The correlation

between ER and high wind speeds, and their influence on FO2 was also
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recognised by the Spearman’s correlation coefficient and it can be observed at
the negative end of the PC2 (Fig. 5.3). Carbonate chemistry parameters were not
relevant in the description of variability by PC2, however, this does not mean that
NCP is not related to the carbonate system, but as Gazeau et al. (2005b) detailed,
besides NCP the carbonate system can be regulated by different biogeochemical
processes such as organic matter production/mineralisation and calcium

carbonate (CaCOs3) precipitation/dissolution.
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Fig. 5.3 Principal Component Analysis (PCA) for Southampton Water estuary (2019-2020).
Seasons have been used as factors to illustrate the clusters: winter (blue diamonds ¢), autumn
(orange circles o), summer (green squares m) and spring (yellow triangles A). Arrows —
represent the variable and the direction of an arrow indicates its relation with the Principal
Component (PC) and other variables. TAlk=total alkalinity, DIC=dissolved inorganic carbon,
pH=pH, FCO2=air-sea CO: flux, FO2=air-sea Oz2 flux, 10= surface water irradiance, Im= mean
water column irradiance, Wind=wind speed, Temp=temperature, [02]= DO concentration,
Chl= chlorophyll ‘a’, River=river inflow, NCP=net community production, GPP=gross primary
production, ER=ecosystem respiration.
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Table 5.3. Spearman’s correlation matrix relating O2 and CO:2 fluxes with carbonate system parameters, abiotic environmental
factors and primary production rates in the Southampton Water estuary.

Air-sea Carbonate system Abiotic environmental factors Primary production
fluxes Year Wind River

Taik DIC pH  pCO; g4 Iy Iy speed Temp 0% [O2] flow Chl'a" NCP  GPP ER
FO, Total 0.16 0.16 0.17 -0.14 -0.25 -0.33 0.98 -0.17 -0.06 0.03 0.20 -0.13 -0.36 0.37 0.56
2019 -0.12 -0.12 0.00 -0.01 -0.11 -0.16 0.98 0.00 -0.17 -0.10 -0.02 -0.07 -0.16 0.44 0.62
2020 0.37 0.37 0.32 -0.27 -0.39 -0.51 0.97 -0.33 0.08 0.12 0.42 -0.15 -0.47 0.30 0.48
FCO, Total -0.69 -0.69 -0.99 1.00 0.63 0.47 0.03 0.99 -0.32 -0.55 -0.84 0.65 0.00 0.41 0.22
2019 -0.59 -0.59 -0.99 1.00 0.70 0.49 0.11 0.99 -0.07 -0.54 -0.93 0.73 0.27 0.44 0.14
2020 -0.78 -0.78 -0.98 1.00 0.55 0.45 -0.16 0.98 -0.57 -0.60 -0.90 0.60 -0.30 0.38 0.37

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, p > 0.55.

179



Chapter 5 — Air-sea Oz and CO; fluxes

5.3.2 Relationship between air-sea CO> fluxes and net community

production

The trophic state of estuaries can be determined by calculating NCP in the
water column. NCP integrates all of the processes affecting the balance
between production (GPP) and consumption (ER) of organic matter (Duarte &
Agusti, 1998; Garcia-Corral et al., 2021). If the estimation of NCP is positive,
the ecosystem is considered net autotrophic and exports or stores the excess
organic carbon and is a potential sink for atmospheric CO2. Conversely, a net
heterotrophic ecosystem is characterised by a negative NCP, requires stored
or imported organic matter to maintain its metabolic state and acts as a net
CO:z source (Duarte & Agusti, 1998; Gazeau et al., 2004; Nidzieko et al., 2014;

Raymond et al., 2000).

However, the presumed link between FCO2 and the metabolic status of an
aguatic ecosystem is not as direct as expected in coastal environments (e.g.
Borges et al., 2006) as it can be masked by thermodynamic and hydrodynamic
effects on gas exchange and the anthropogenic perturbation of the CO2 budget
(Duarte & Prairie, 2005). Although NCP is the main regulator of air-sea FCO:2
(e.g. Borges & Frankignoulle, 2003), processes such as the exchange of water
masses with adjacent ecosystems, decoupling of organic carbon production
and the fluctuation of flushing times can alter FCO2 (Avila-Lopez et al., 2017;

Borges & Abril, 2011; Borges et al., 2006).

A comparison of monthly FCO2 and NCP estimates in Southampton Water was
carried out for 2019 and 2020, coupling months within seasons (Fig. 5.4). The

FCO:2 calculated was supported by NCP measurements for all of 2020 and
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2019 for the complete autumn season and two months of summer (August and
September). This indicated that the estuary was net heterotrophic and a
source of COz2 for most of the studied period, in agreement with the assumption
that most estuaries are net heterotrophic ecosystems where respiration rates
exceed gross rates of photosynthesis as stated by Cai (2011) and Raven et al.

(2020)

Contrary to the conceptual relationship between FCO2 and the trophic status,
values for spring and July (summer) in 2019 indicated that the ecosystem was
a source of CO2 while also classified as autotrophic by the NCP model (Fig.
5.4). This could be a result of the water column being stratified and FCO:2
driven partially by the mixed layer metabolic processes, as was described by
(Borges et al., 2006) in their evaluation of metabolic process rates and FCOz,
where the Bay of Palma showed positive NCP and an association to be a
source of COz2 due to the seasonally thermally stratification. In addition, NCP
is highly influenced by wind speed, hence, notable departures from the
relationship with FCO2 during the season with highest average wind speeds

(winter) was expected (e.g. Salisbury et al., 2009).

A different unbalance among estimations was observed in winter 2019, when
February and January were sinks of COz but showed negative NCP
(heterotrophy); nevertheless, March remained close to the equilibrium with
both methods (Fig. 5.4). This same discrepancy was reported by Guenther et
al. (2017) in their comparison of FCO2 and plankton metabolism in a
hypereutrophic estuary (Recife Harbor, Brazil), showing that an excess of CO:2
was entering the ecosystem but was not being entirely incorporated by the

primary producers and consequently was being exported to the atmosphere.
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Additionally, a numerical disagreement between the magnitude of the
metabolic rates was identified with estimations through the NCP model being
up to ~6.6 orders of magnitude higher than calculated from FCOz2, especially
during summer (Fig. 5.4). This magnitude of discrepancy was also found in the
Randers Fjord (Denmark) and in the Scheldt estuary where FCO2was 6 to 7

times higher than in the mixed layer NCP (Borges et al., 2006; Gazeau et al.,

2005a).
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Fig. 5.4 Monthly comparison between air-sea CO2 fluxes (FCO2) and net community
production (NCP). Seasons have been used as factors to illustrate the clusters: winter
(blue diamonds ¢), autumn (orange circles ), summer (green squares m) and spring
(yellow triangles ). Filled symbols correspond to 2019 while open symbols to 2020.

The water residence time can play a major role in uncoupling FCO2 and NCP
estimations in estuaries (Borges & Abril, 2011; Cai, 2011). In the current

research, months with riverine inflow below 10 m s showed the highest
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monthly DIC averages (> 2415 umol kgt), contrary to the findings of Gazeau
et al. (2005a), indicating that long residence times can lead to a built-up of DIC
in the water column and, therefore, higher emissions of CO2. This is most likely
because the system studied by Gazeau et al. (2005a) showed residence times
between 60 and 90 days, while Southampton Water estuary flushing times
range between 5 and 11 days (Shi, 2000), not giving enough time for DIC to
accumulate. However, FCO2 values >10 mmol C m=2 d*! corresponded to
summer, a season described previously with the most extended residence
times in the estuary (e.g. Shi, 2000), while averages below 5 mmol C m? d*
mostly matched to lower river inflow rates. It has been identified before that
short residence times, of a few of days, can flush the water mass quickly
enough that biological activity has little or no effect on FCO2 (e.g. Gazeau et

al., 2005b).
5.3.3 Metabolically driven pH and oxygen fluctuations

Whereas factors such as temperature, salinity and Ty, influence the pH of
coastal waters, rates of production and respiration, and the associated uptake
and release of DIC (Laurent et al., 2012), induce most of the daily and seasonal
changes of pH in estuarine ecosystems (e.g. Nixon et al., 2015). These
metabolic effects, tend to be higher in coastal systems than in the open ocean
due to hydrological processes dictating the mixing between the two water

masses and watershed inputs (e.g. Duarte et al., 2013b).

Since coastal pH fluctuations are primarily caused by variable metabolic rates,
they are necessarily accompanied by changes in dissolved oxygen
concentration (e.g. Baumann et al., 2015). Moreover, fluctuation in the

pH/dissolved oxygen dynamics can provide an indication of the balance
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between autotrophy and heterotrophy (Caffrey, 2004; Cloern, 1996; O’Boyle
et al., 2013). The strong correlation between pH and dissolved oxygen has
been used to broadly characterise the trophic status (Howland et al., 2000;
Laurent et al., 2012; O'Boyle et al., 2009) and trends in acidification (Cai, 2011,

Shen et al., 2019a; Wallace et al., 2014) of estuarine water bodies.

Continuous high-frequency pH and oxygen data can be a powerful tool in
determining the trophic status of estuarine ecosystems since it captures the
diel oscillation (e.g. O'Boyle et al., 2013); hence, it allows identification of the
cumulative effects of respiration over photosynthesis during the night, that
decrease [O2] and pH (e.g. Raven et al., 2020). Furthermore, using 02%
saturation as an alternative to [Oz] standardises the effects of temperature and
salinity variations (e.g. Baumann & Smith, 2018). Supersaturated conditions
can reflect the role of biological processes in the water column, just as O’Boyle
et al. (2009) indicated in their evaluation of estuarine and coastal waters in
Ireland, where values >130% correlated to high phytoplankton photosynthesis

rates.

Besides 02%, salinity has been reported to be a significant parameter in
explaining a substantial variation of pH in the water column and throughout
diel cycles in coastal ecosystems (e.g. Baumann et al., 2015). Water masses
of low salinity generally have lower alkalinity values and, thus, decreased CO:2
buffering capacity (e.g. Salisbury et al., 2009). However the rivers feeding into
Southampton water are derived from chalk streams and have higher alkalinity
values than the adjacent sea water. Ty, values above 2580 pmol kg in this

work were related to river inflow over 18 m s, therefore, to evaluate the
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influence of freshwater on pH variability in the estuary, an analysis was carried

out including salinity as a predictor of pH along with O2%.

In order to assess if trends in pH, O2% and salinity coupling remain valid across
similar ecosystems, an examination of the sensitivity of pH variation through
multiple regression analysis was undertaken. In figure 5.5 the regression using
O2% as a predictor of pH is plotted since the analysis using only 02% (R?=0.50)
performed, to some extent, better than the combination of O2% and salinity
(R?=0.48). In addition, the relationship between these two parameters from five
different estuaries that form part of the US National Estuarine Research
Reserve System (NERRS) was included in the comparison. They were
selected for being temperate ecosystems that, in the extensive analysis carried
out by Baumann & Smith (2018), better relate pH to O2% than also adding

salinity, like with Southampton Water (SOT).

A similar trend in the association of pH and O2% was observed with the Wellls
(WEL), Elkhom (ELK) and Delaware (DEL) estuaries (Fig. 5.5); systems with
a tidal range between 1 and 2.8 m and average depth ~3.5 m (Baumann et al.,
2015). WEL and DEL presented a comparable pH average (7.9 and 8.0,
respectively) to the one identified for SOT (8.1) but were undersaturated for
longer periods than SOT, reaching means of 87.8% and 85.6%
correspondingly, while SOT was on average close to the atmospheric
equilibrium (98.9%). Although DEL did not show a significant relation between
pH and salinity, clearly its more considerable range (21.3 psu) moved its

prediction to lower pH values.

Given that the comparison (Fig 5.5) included ecosystems with very similar

hydrologic characteristics, it is apparent that pH/O2% dynamics respond to
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local factors influencing aquatic metabolism. This highlights the importance of
including a broad range of ecosystems in coastal monitoring to enlarge the
understanding of the scales and magnitudes of fluctuations, as these are

highly complex ecosystems and will differ among global regions.
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Fig. 5.5 Comparative analysis of the relationship between pH and oxygen saturation (02%) in
estuarine ecosystems. Southampton Water (SOT), Wells (WEL), Delaware (DEL), Elkhorn
Slough (ELK), Weeks Bay (WKS) and Padilla Bay (PDB). Liner regression equations for the
US National Estuarine Research Reserve System estuaries were taken from Baumann &
Smith (2018).

5.3.4 Interannual and seasonal distribution of CO» air-sea fluxes

Coastal zones account for about 20% of total ocean FCO- (Avila-Lépez et al.,
2017); nevertheless, a comprehensive description and analysis of the spatial
and temporal variability of FCO2 and its relation to environmental factors in
estuaries is scarce (Raymond et al., 2000). When these summaries exist, they

tend to poorly represent the wide variety of ecosystems due to the strong
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spatial and temporal heterogeneity of coastal ecosystems (Avila-Lopez et al.,

2017).

There is no general agreement on the role of estuaries on the exchange of
CO2 with the atmosphere (Borges & Frankignoulle, 2003). Several studies
have indicated that estuaries are supersaturated with respect to CO:2
(heterotrophy) (Algesten et al., 2004; Avila-Lopez et al., 2017; Cai, 2011; Chen
et al., 2013; Raymond et al., 2000; Yao et al., 2020), while some others have
found a prevalence of undersaturated CO2 conditions (autotrophy) (Crosswell
et al., 2017; Guenther et al., 2017; Van Dam et al., 2018; Van Dam et al.,
2019). The above statement exacerbates the importance in defining the trophic

status of as many and diverse coastal ecosystems.

European estuaries have been reported to be CO2 sources by Borges et al.,
(2006), and to have a significant impact on the regional CO2 budget by
contributing to an average of 50 mol C m~2 y~1, equivalent to between 5-10%
of the total anthropogenic CO2 emissions from Western Europe, according to
Cai (2011). Moreover, Borges (2005) calculated that the average FCO2 from
mid-latitude (30-60°) estuaries is 46 mol C m=2 y~1, while Chen et al. (2013)
specified a lower value for estuaries north of 50°N (36 mol C m™2 y™1). Taking
the global open estuarine water area of 1.05 x 102 m?, proposed by Cai
(2011), and applying it to the results of this study (6.6 + 10.4 mmol C m=2 d™3),
SOT presents an overall FCO2 of 45.2 mol C m™2 y™%, in agreement with the

stated above estimate.

Furthermore, Borges & Frankignoulle (2003) found that the English Channel
was a small net source of CO2 (0.9 mmol C m~2d™1) and that the Eastern region

was strongly influenced by freshwater inputs of organic matter influencing
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respiration rates and probably accounting for higher levels of heterotrophy. In
contrast, Kitidis et al. (2012) found that the L4 site in the Western English
Channel, located ~12 km offshore of Plymouth, was a net sink for atmospheric
CO2 (-1.4 mmol C m~2 d™%) over an annual cycle. In some way, this agrees with
the widespread idea that estuarine mixing zones are considered as moderate
CO:2 sources, whereas the adjacent ocean behaves as a CO:2 sink (Borges &

Abril, 2011; Chen et al., 2013; Cotovicz et al., 2020; Frankignoulle et al., 1998).

In estuarine regions, a shift from an autotrophic to a heterotrophic state, mainly
related to seasonal changes in water temperature and light availability, has
been reported (Azevedo et al., 2006; Tang et al., 2015). In SOT, summer
increased values of pC0, ,, and FCO2 were consistent with lower DIC, T,;,and
pH values. In contrast, lower pCO, ¢, and FCO2 during winter corresponded to
high DIC, Talk and pH. Avila-Lépez et al. (2017) reported shifts from net
autotrophy in winter to net heterotrophy in summer in San Quintin Bay
(Mexico), driven by upwelling events enhanced by warmer waters. SOT
presented a similar change to autotrophy in winter of 2019, but in lesser
magnitude, agreeing with the observation made by Kemp & Testa (2011) that
the tropical ecosystems affected by upwelling season resemble many
temperate estuaries and shallow coastal lagoons, where NCP peaks in spring
influenced by annual light and temperature cycles. However, there is no
evidence that SOT becomes significantly stratified given that there is no
apparent CO2 release from bottom waters right after the major productivity
period and when temperatures start decreasing in autumn (e.g. Kitidis et al.,

2012).
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The analysis of seasonal variation in SOT (Table 5.2) found FCO:2 roughly
follows the pattern of DIC, indicating that biology is an important factor in
modulating CO2 exchange with the atmosphere (e.g. Salisbury et al., 2009).
The relationship between net heterotrophy from NCP and FCO: calculations
was evident in seasonal COz2 variation, especially in 2019, when maximum
FCO2 occurred in summer, corresponding to high temperatures, favouring
elevated rates of respiration. Moreover, minimum FCO:2 values were observed
in the winter when water temperatures are low and river discharge is high.
Similar seasonal patterns in CO2 were observed at the outer section of the
York River estuary (USA) (Raymond et al., 2000) and in the Mission-Arkansas
system (USA) (Yao et al., 2020). Lastly, a comparison with O2% showed that
at higher pCo0, ,,, 0Oxygen saturation was often less than 100%, indicating the
overall importance of respiration in the estuary. This same correlation was
reported by Howland et al. (2000), for the Tweed estuary (UK), in their excess

pCO0, model calculated from Ty, pH and temperature.

Although results from most studies agree that estuaries are sources of COg, it
is clear that coastal ecosystems can also be considered net sinks, either
seasonally or overall, since processes that modulate the carbonate chemistry

system are driven by regionality, thermal effects and biological activities.

5.4 Conclusions

Results from the present work has shown that high-frequency carbonate
system data in combination with meteorological and hydrological information,
allows the description of short-term variability and long-term changes of COz2

fluxes in the Southampton Water estuary.
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Defining the trophic state of an ecosystem can potentially predict if it behaves
as a sink or source of CO:2 to the atmosphere. In chapter 4, Southampton
Water was classified as net heterotrophic, suggesting the estuary is generally
supersaturated with CO2 and agreeing with the independent CO2z flux
calculation of -6.6 + 10.4 mmol C m= d, based on discrete sampling of DIC
and T,;x, and the continuous monitoring of pH. FCO2 estimations reinforced
net community production calculations made in 2020 and, in autumn and parts
of summer in 2019. Discrepancies between the estimations were attributed to
possible seasonal stratification and wind speed affecting the calculation of O2

fluxes and flushing times.

The frequency and magnitude of riverine inputs influenced the distribution of
carbonate system parameters, presenting high partial pressure of CO2 and
therefore, increased degassing of CO2 in summer when there was lower daily
river discharge, and the highest DIC, T,;;, and pH values corresponding to high

riverine inflow during winter.

CO: fluxes were observed to follow the pattern of DIC, indicating that biology
is an important controlling factor given the association with uptake and release
of DIC to metabolic rates. Analysis of the fluctuation of the pH/oxygen
saturation dynamics demonstrated that this relation can reflect the role of
biological processes in the water column and that these respond to local
factors. Although it is known that the rivers feeding into Southampton water
are derived from chalk streams and have higher alkalinity values than the
adjacent sea water, salinity was not a significant predictor of pH in the

Southampton Water system.
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Specific studies of the carbonate chemistry dynamics are needed for a global
understanding of the estuarine carbon system. Results from the current
research can be used as a baseline to assess future anthropogenic impacts
and climate change alterations to the CO:2 flux between the aquatic system

and the atmosphere in the Southampton Water estuary.
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Chapter 6

Synthesis and conclusions

This chapter draws together the major findings of research presented in this
thesis, and suggests the pending questions raised and future work where

these findings might be applied.

6.1 Synthesis and conclusions

Coastal zones represent only 7% of the total ocean surface area (Kanuri et al.,
2017) and within this region, estuaries can be highlighted due to their unique
biogeochemical and complex ecological interactions (Lemley et al., 2020;

Newton et al., 2014).

Phytoplankton communities are the basis of many marine ecosystems,
estuaries not being the exception (e.g. Leterme et al., 2014). Therefore, the
phytoplankton biomass distribution in an estuary can indicate the dynamics of
the seasonal and annual variability of the ecosystem properties such as water

quality and community metabolism (e.g. Cloern & Jasshy, 2010).

Net community production, also known as net ecosystem metabolism (NCP)
(e.g. Needoba et al., 2012), is a community-level process that integrates all
processes affecting the balance between gross primary production (GPP) and
ecosystem respiration (ER) (Duarte & Regaudie-De-Gioux, 2009; Garcia-
Corral et al.,, 2021). If the NCP estimation is positive, the ecosystem is

considered net autotrophic and exports or stores the excess organic carbon
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and is a potential sink for atmospheric CO2. Conversely, a net heterotrophic
ecosystem is characterised by a negative NCP, requires stored or imported
organic matter to maintain its metabolic state and acts as a net CO2 source
(Duarte & Agusti, 1998; Gazeau et al., 2005b; Nidzieko et al., 2014; Raymond

et al., 2000).

Although estuaries account for about 20% of total ocean CO:2 flux, a
comprehensive description and analysis of the spatial and temporal variability
of factors influencing primary production, and therefore, CO:2 fluxes is scarce.
Moreover, there is no general agreement on the ‘trophic’ state of estuaries
(Borges & Frankignoulle, 2003). Although some studies have shown that
estuaries are sources of CO:z (heterotrophic) (Algesten et al., 2004; Avila-
Lépez et al., 2017; Cai, 2011; C. T. A. Chen et al., 2013; Yao et al., 2020), it is
clear that coastal ecosystems can also be considered net sinks (autotrophic)
(Crosswell et al., 2017; Guenther et al., 2017; Van Dam et al., 2019), either
seasonally or overall, since processes that modulate primary production are

driven by regional factors, thermal effects and biological activities.

The overall aim of this study was to estimate interannual and seasonal
changes in the primary production of two contrasting temperate estuaries, the
Southampton Water estuary and Christchurch Harbour estuary, and identify
the environmental factors influencing its variability by using continuous high-
frequency environmental data. It was hypothesised that a net heterotrophic
state will dominate in the two estuaries, implying a depletion of organic C and
a net COz release to the atmosphere, and that a shift to autotrophy will only be
episodic and driven by phytoplankton blooms. This work was implemented

through the three following objectives:
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1. To investigate temporal phytoplankton bloom dynamics and the
environmental factors driving them in Southampton Water (2014 — 2020)

and Christchurch Harbour (2014 — 2018).

In chapter 3, an analysis of the correlation between phytoplankton blooms and
environmental conditions using high-frequency water quality data collected in
the Southampton Water (2014 — 2020) and Christchurch Harbour estuaries
(2014 — 2018) is presented. The study of these extended time series allowed
the identification of seasonal patterns, comparison among years and could

open the possibility for predictions.

Phytoplankton distribution exhibited a seasonal variability in both estuaries,
with the initiation of the spring bloom related to abrupt rises in the water column
light availability and temperature. Temperatures above 11.8°C correlated with
the appearance of blooms in Southampton Water, while rising water
temperature overlapping with increased solar radiation seemed to initiate

blooms in Christchurch Harbour.

Interannual variability in bloom magnitude was associated with sudden
increases in water column irradiance synchronised with lower turbidity and
wind speed periods. Christchurch Harbour displayed the typical dynamics
observed in coastal temperate systems with mainly spring and autumn blooms,
while Southampton Water presented a pattern with blooms in spring and

summer.

In addition, an analysis of the neap-spring tidal cycle in the Southampton Water
estuary identified that blooms typically developed during neap tides and

dissipated during the following spring tide. The tidal cycle creates stronger
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mixing conditions during spring tides leading to a turbidity increase and
creating lower mixing, with possible stratification during neap tides enhancing

phytoplankton biomass growth.

2. To examine seasonal and interannual variation in productivity rates and the
interactions between them and environmental variables in Southampton

Water (2014 — 2020) and Christchurch Harbour (2014 — 2018).

In chapter 4, the open water oxygen diel method was applied to the time series
analysed in chapter 3 for Southampton Water and Christchurch Harbour, in
order to estimate ecosystem respiration (ER), gross primary production (GPP),
and net community production (NCP). To my knowledge, this is the first study
to apply high-resolution oxygen diel data to calculate NCP and productivity

rates in both of these estuaries.

The open water diel oxygen method appeared to provide reasonable estimates
of ecosystem production and respiration rates in both estuaries. ER showed
no clear dependence on water temperature, in agreement with the assumption
that respiration rates are constant during day and night, however, an

overestimation in the air-water transfer due to high winds was found.

Trends in the overall trophic state of the two estuaries were identified, with
Southampton Water becoming more net heterotrophic over the 7-year time
series (from -1.3 to -48.7 mmol Oz m2 d-1), while Christchurch Harbour showed
an increasing net autotrophic state (-11.7 to 19.8 mmol O2 m? d?) in the 5

years studied.

In both estuaries, a pattern was observed where autotrophic conditions

prevailed during summer and spring due to the dominant factors driving
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metabolic rates being related to seasonal changes in light availability and

temperature, with the addition of riverine inflow affecting Christchurch Harbour.

Threshold values for the Southampton estuary and Christchurch Harbour of
temperature (10.5 & 10.3 °C), surface water irradiance (1520 & 1240 Wh m-?
d?) and mean water column irradiance (415 & 950 Wh m-2 d-) were related to
the appearance of extreme autotrophic and heterotrophic conditions.
Christchurch Harbour, being a shallower with a more turbid water column, is

more affected by disturbances in the mean water column irradiance.

The relationship between ecosystem respiration and gross primary production
allowed estimations of metabolic balance (GPP:ER). This showed that the
primary production needed to drive Southampton Water towards net
autotrophic metabolism is four orders of magnitude greater than that required
for the shallower Christchurch Harbour. This approach also allowed
classification of both estuaries between oligotrophic and mesotrophic states,

with Southampton particularly leaning towards mesotrophic conditions.

A prevalence of ER>GPP at lower rates and a tendency for GPP>ER at higher
metabolic rates was observed, implying that metabolic balance in these
systems relies to some extent on allochthonous inputs of organic matter.
Variance in Chl ‘a’ concentration during phytoplankton blooms was explained

by NCP rates in more than 75% for both estuaries.

3. To explore the primary controls and temporal variability of carbonate
system parameters in Southampton Water (2019 — 2020) and their

influence on air-sea CO: fluxes.
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In chapter 5, an estimation of carbonate systems parameters (CO:2 flux, partial
pressure of CO2 [pCO0,,], dissolved inorganic carbon [DIC], total alkalinity
[T,k ] and pH) was carried out at hourly intervals for a position in the
Southampton Water estuary in 2019 and 2020. The software CO2%@c, as
described in chapter 2, used inputs of discrete sample values of dissolved

inorganic carbon and total alkalinity and the continuous monitoring of pH.

The estuary presented an annual average of 6.6 + 10.4 mmol C m?2 d1, acting
as a source of CO2 to the atmosphere and agreeing with the overall net
heterotrophic classification result from chapter 4. CO2 flux estimations
reinforced net community production calculations made in 2020 and, in autumn
and parts of summer in 2019. Discrepancies among estimations were
attributed to possible seasonal stratification, wind speed affecting the

calculation of Oz fluxes and estuarine flushing times.

Frequency and magnitude of riverine inputs influenced the distribution of
carbonate system parameters, presenting high partial pressure of CO2 and
therefore, increased degassing of CO2 in summer when there was lower daily
river discharge, and the highest DIC, T,;, and pH values corresponding to high

riverine inflow during winter.

An analysis of the fluctuation of the pH/oxygen saturation dynamics
demonstrated that this relation can reflect the role of biological processes in
the water column and that these respond to local factors. Although it is known
that the rivers feeding into Southampton water are derived from chalk streams
and have higher alkalinity values than the adjacent seawater, salinity was not

a significant predictor of pH in the Southampton Water system.
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The high-resolution simulation of the carbonate chemistry dynamics presented
in this chapter is the first performed for the Southampton Water estuary and
can be used as a baseline to assess future anthropogenic impacts and climate
change alterations to the CO2 flux between the aquatic system and the

atmosphere in the ecosystem.

6.2 Recommendations

Open water diel oxygen method application

In this study, it was proven that the use of high frequency dissolved oxygen
measurements using optodes for estimating metabolic rates in estuaries,
through the open water diel oxygen method, is possible and reliable. However,
before applying this method to any ecosystem, a review of the underlying
assumptions and limitations needs to be done. For instance, in systems with
persistent stratification, calculations of surface and bottom layers are
necessary to estimate water column net community production more
accurately, since the method assumes homogeneous plankton
production/respiration rates throughout the water column depth. Another
important consideration recognised in this thesis, is that wind mixing leading
to Oz air—sea exchange is an important component of the metabolic rate
calculations, and it is especially important in shallow systems. It is
recommended to use time-specific gas transfer velocity coefficients instead of

using a constant, in order to minimised error propagation.
Coastal monitoring

Despite the ecological importance of estuaries, description and analysis of the

variability in relation to environmental factors of these ecosystems is limited.
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Furthermore, when these summaries exist, they tend to poorly represent the
variety of systems from around the globe adequately enough to support a
precise global synthesis, due to the strong spatial and temporal heterogeneity
of coastal areas. It is suggested to increase studies using high-frequency,
multi-parameter observations in estuarine systems, as long as they are
accompanied by consistent quality control and sensor calibration. This will
allow better understanding of local and regional primary production dynamics
and develop adequate long-term monitoring strategies. Itis also recommended
to analysed, when possible, several different sites in each estuary to extend
the spatial comprehension of freshwater and seawater mixing, and its

implications for metabolic rates.
Climate change response

Studies have tended to focus on those estuaries that receive substantial
anthropogenic alterations, providing much less attention to estuaries that
receive little human impact. However, increasing atmospheric CO2 conditions
will impact globally and given the ecological and economic importance of
shallow-water estuarine environments, further efforts to predict how these
alterations could disturb production-respiration balances are essential to the
effective management of these environments. Results from the current
research can be used as a baseline to assess future anthropogenic impacts
and climate change alterations to the aquatic trophic state in Southampton
Water and Christchurch Harbour estuaries. Understanding the heterogeneity
of coastal zones can provide a powerful tool to recognizing the symptoms of

developing change.
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6.3 Future work: advances in marine in Ssitu sensors

Advances in phytoplankton community assessment

In the present study, phytoplankton diversity was not measured. However, it is
known that by describing the phytoplankton community of a specific
ecosystem, and its relationship with biotic and abiotic factors, interpretation of
the ecosystem function and resilience can be improved (Campbell et al.,
2022). Phytoplankton dynamics in marine ecosystems has been advanced, in
the last decade, by using in situ molecular and imaging instrumentation
(Spanbauer et al., 2020). These tools provide the opportunity of determining
the impact of phytoplankton community structure on carbon export fluxes,
coastal water quality and surveillance of blooms, including harmful algal
blooms (HABs) (Baird et al., 2022). The vast majority of research effort in this
area is concentrated on ecogenomic sensors: ‘autonomous sensors, which
apply molecular technigues on an in situ platform that allows for remote sample
collection, processing, and molecular analyses’ (Smith et al., 2022). Projects

like TechOceanS (https://techoceans.eu/), are betting on developing

ecogenomic samplers that autonomously perform in situ molecular analyses
and provide real-time data with the idea of revolutionising ocean monitoring.
The possibility of a low-cost, in situ and automated systems for biological
sensing would enable covering a spatio-temporal resolution difficult to obtain
by manual sampling since conditions in estuaries can vary considerably within

days and even hours, as the present study corroborated
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Biochemical sensor development

It is clear that long-term observations and measurements of the marine
environment are needed to understand the variability caused by both
anthropogenic and natural processes. With an increasing number of nutrients
(e.g. NOs, PO4 and SiOg4), carbonate system parameters (pH, DIC, Tak and
pCO2) and other dissolved gases (e.g. Oz and CHas) to be monitored
(Nightingale, Beaton, & Mowlem, 2015), a need has been identified to design
and development multifunctional sensor systems capable of sharing data in
real-time (Precheur & Delory, 2018). Data from these systems, deployed
directly or on autonomous platforms, have changed our understanding of
marine systems and processes (e.g. D’asaro & Mcneil, 2013). Sensors are
clearly playing an major role in environmental monitoring and recent
technological advances are certain to facilitate the application of new sensing
devices (Pejcic et al., 2022). In order to miniaturised existing chemical
analytical methods so they can be easily deploy on moorings and mobile
platforms, the development of novel Lab-on-Chip microfluidic analysers has
been gaining momentum in the last few years (e.g. Nightingale et al., 2019).
Currently, this technology aims to reduce uncertainty in estimations of marine
macronutrient data (Birchill et al., 2019) and, hopefully, one day it will lead to
the integration of affordable and easily deployable carbonate system

measurements and, even primary productivity rate sensors.
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Appendix A

Nutrient data in Southampton Water estuary (2018 — 2020)
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Fig. A1 Temporal variation of (a) SiO2, (b) PO4 and (c) NOs at the Environment Agency Hound

Buoy sampling site and from discrete sampling part of the EuroHAB project at the Data Buoy
system (Southampton Water estuary) from 2018 to 2020.
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Appendix B

Salinity models for Southampton Water
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(b) 2015, (c) 2016 and (d) 2020.
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Appendix C

Temporal variability of phytoplankton biomass and net

community production in a macrotidal temperate estuary

At the time of submission of this thesis, data for the Southampton Water estuary

in 2019, included in Chapter 4 and Chapter 5, have been submitted as:

Gomez-Castillo, A.P., Panton A. & Purdie, D. A. 2022. Temporal variability of
phytoplankton biomass and net community production in a macrotidal temperate

estuary. Submitted to Estuarine, Coastal and Shelf Science.
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Abstract

Coastal zones play a significant role in Earth's biogeochemical processes. Within these
regions, estuaries are particularly important due to their complex ecological
interactions and spatial and temporal variability. The aim of this study was to apply a
year long high-frequency (15 minute) environmental data time series to identify both
the timing and factors influencing phytoplankton blooms in the Southampton Water
estuary. Dissolved oxygen measurements from an in situ deployed optode were applied
to the open diel oxygen method to estimate daily integrated rates of gross primary
production (GPP), ecosystem respiration (ER) and net community production (NCP).
Additional water quality data including temperature, salinity, chlorophyll
concentration and turbidity allowed the relationship between physical and biological
processes occurring over different time scales to be investigated. The occurrence of
major phytoplankton blooms during the spring-summer period were associated with
critical values of estuarine water temperature and mean water column irradiance. In
addition, neap tides were found to promote the initiation of phytoplankton blooms in
late spring and summer months. Annual daily average NCP for the estuarine ecosystem
presented an estimated net heterotrophic state (-0.8 mmol O, m? d?), although
seasonal productivity events shifted this state for several days and sometimes weeks
to net autotrophic conditions. The results of this study have demonstrated how high
frequency in situ dissolved oxygen measurements from an optode can make a valuable
contribution to understanding the key factors influencing bloom events in a temperate
macrotidal estuary. This approach if applied more widely to other coastal sites could
therefore contribute to consolidating global annual primary production budgets for

coastal regions.
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1. Introduction

Coastal zones represent around 7% of the total ocean surface area (Kanuri et al., 2017),
however, they are responsible for 14-33% of total oceanic production (Garcia-Corral
et al., 2021). Within these regions, estuaries play a major role in hydrographic and
biogeochemical processes of marine ecosystems (Mahoney & Bishop, 2017; Ruiz-
Ruiz et al., 2017) due to the mixing of riverine freshwater with seawater carried in by
the tides (Srichandan et al., 2015).

Given that phytoplankton communities form the base of most marine ecosystems
(Leterme et al., 2014), the phytoplankton biomass distribution in an estuary can
indicate the dynamics of the seasonal and annual variability of the system properties
such as water quality and the aquatic trophic state (Cloern & Jassby, 2010; Haskell et
al., 2019).

Several techniques are used to determine aquatic rates of net primary production, the
most common being measurements of radioactive carbon 14 isotope (**CO,)
incorporation by a natural community of microplankton incubated in bottles
(Oczkowski et al., 2016). Alternatively, changes in dissolved oxygen (DO) can be
measured in small volume glass bottle incubations in the dark and light to define rates
of planktonic respiration and net production (Langdon & Garcia-Martin, 2021). The

problems inherent in these short term, small volume incubation techniques however
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are exacerbated in the highly dynamic heterogeneous coastal zone, where the seasonal
oxygen change shows marked variability (Queste et al., 2016). Interaction between
physical and biological processes within estuaries tends to vary over diurnal, semi-
diurnal and sometimes episodic timescales, making acquiring frequent data critical to
accurately assess ecosystem health for these periods (Bianchi, 2012; Nidzieko et al.,
2014).

An alternative, more integrative, method to estimate primary production relies on the
calculation of the in situ oxygen mass-balance from continuous measurements of DO,
the open diel oxygen water method, first proposed by Odum (1956) and later modified
to apply it to estuarine systems (Caffrey, 2003, 2004; Emerson et al., 2008). This
method quantifies the in situ diel oscillations in DO concentration to estimate daily
integrated gross primary production (GPP), ecosystem respiration (ER) and net

community production (NCP), also known as net ecosystem metabolism (Demars et

al., 2015).
NCP is a community-level process that integrates all processes affecting the balance
between GPP and ER (Duarte & Regaudie-De-Gioux, 2009; Garcia-Corral et al.,

2021). If the NCP estimation is positive, the ecosystem is considered net autotrophic
and exports or stores the excess organic carbon and is a potential sink for atmospheric
CO2. Conversely, a net heterotrophic ecosystem is characterised by a negative NCP
that requires stored or imported organic matter to maintain its metabolic state and acts
as a net CO2 source (Feng et al., 2012; Nidzieko et al., 2014).

The aim of this study was to estimate daily and seasonal changes in estuarine primary
production and identify the environmental factors influencing its variability by using
continuous high-frequency environmental data in the macrotidal Southampton Water

estuary, over a period of one year. To our knowledge, this is the first study to apply
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high-resolution oxygen diel data to calculate productivity rates and relate them to
phytoplankton blooms in a UK estuarine system. While our study is regional, the
heterogeneity of coastal zones is of global concern and results from this study will
allow a better understanding of local and regional primary production dynamics as
well as provide a baseline to assess future anthropogenic impacts and climate change
alterations to the aquatic trophic state of the Southampton Water estuary.

2. Materials and methods

2.1 Study sites

The Southampton Water estuary is part of the Solent estuarine system, considered the
largest on the south coast of the UK (Fig. 1). It is an approximately linear body of
water about 2 km wide and 10 km long with a central channel continuously dredged
to a minimum depth of 12.2 m below the local Chart Datum. Three main rivers
discharge into Southampton water: the River Test and Itchen towards the head of the
estuary and the river Hamble, nearer to the mouth on the eastern side (Iriarte & Purdie,
2004).

The estuary is characterised by a semi-diurnal tidal regime where each tide consists of
a double high water, ~2 h apart, followed by a short ebb-tide. The tidal range varies
between 1.5 m on neaps and 5.0 m on springs (Crawford et al., 1997). It is considered
a partially mixed system, with minimal stratification occurring throughout the semi-
diurnal tidal cycle with the highest vertical density gradient occurring at low water and
well-mixed conditions at high water (Levasseur et al., 2007).

2.2 Data Sources

Water quality data were collected using a YSI EXO2 sonde deployed since 2018 on a
solar-powered Xylem Analytics UK EMM700 Data Buoy located at 50.871° N, -

1.373° W, in the Southampton Water estuary (Fig. 1). The sonde was placed into an
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open flow PVC tube fixed to the Data Buoy at a depth of 1.6m below the sea surface;
the average water depth at the site was 10m. Parameters recorded by the sonde
included dissolved oxygen (DO) concentration (mg L™?) and oxygen saturation (%),
temperature (°C), salinity, chlorophyll 'a' (ug L) and turbidity (FNU). The sonde is
connected to a Storm data logger situated within the Data Buoy system that regularly
uploads data, via a mobile phone connection, to a dedicated webpage within the Storm

Central cloud data collection service (https://stormcentral.waterlog.com/). Data was

recorded at high-frequency (every 15 minutes) from January 2019 to December 2019,
but with hourly averages calculated for the purpose of this study. Two gaps in data
collection occurred: the first between 13/02/2019 and 19/03/2019, caused by the sonde
being recovered while the Data Buoy mooring chain was replaced and the sonde and
PVC tube cleaned of biofouling and the second gap from 23/11/2019 to 04/12/2019
due to some problems backfilling data when the Storm Central server migrated from
one IP address to another. All data was carefully inspected for unreliable values, and
outliers plus negative or occasional inconsistent high magnitude values (typically
caused by biofouling) were discarded manually.

The Data Buoy system was originally fitted with a met sensor, but this stopped
recording on 12/09/18 due to damage from a boat collision. Hourly barometric
pressure measurements during 2019 were taken from a Met Office met station mounted
on the roof of the National Oceanography Centre (archived in the Met Office's MIDAS
database). Additionally, the National Oceanography Centre meteorological database
was used to obtained hourly wind speed and solar radiation values, measured at the
same site (50.892° N, -1.394° W).

A set of water quality measurements from the Southampton Water estuary was

acquired from the Environment Agency Water Quality  Archive
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(https://environment.data.gov.uk/water-quality/view/download/new). Data from the

Hound navigation Buoy sampling site (50.861° N, -1.358° W) was selected to compare
with the Xylem Analytics Data Buoy measurements due to its close proximity.
Environment Agency data included monthly surface records of DO (mg L™ and %
sat.), temperature (°C), salinity (psu), chlorophyll 'a’' (ug L), and turbidity (FNU).
The Associated British Ports (ABP) Marine Environmental Research provided minute-
interval sea surface elevation data measured with a Tidalite tide gauge located at Dock
Head, Eastern Docks Southampton (Fig. 1). Daily minimum and maximum values
were extracted from the raw time series, and the difference plotted to indicate changes
in the daily tidal range.

2.3 Field sampling

Discrete water samples were periodically collected using a Niskin bottle deployed at
2 m below the sea surface close to the Data Buoy from the RV Callista. Sets of three
replicate glass bottles (~60ml) were filled from the Niskin to measure DO
concentration on several dates during winter and spring 2019. The chemical
determination of oxygen concentration was based on the method first proposed by
Winkler (1888) and modified by Parsons et al. (1984). Winkler titrations were
performed using a photometric end-point detector (Carrit & Carpenter, 1966).
Surface water samples for phytoplankton analysis were collected biweekly from the
data buoy and 100 ml added to a darkened glass bottle and preserved in acidic Lugol's
iodine to a final concentration of 1%. For analysis, 10 ml of preserved sample was
settled in a glass sedimentation chamber for 24 h and cells then identified and counted
using a Leica inverted light microscope (Utermohl, 1958). Samples for later nutrient
analysis were filtered through a 25 mm diameter GF/F filter using an inline syringe

unit and then frozen in 50ml plastic bottles prior to analysis. Concentrations of nitrate
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plus nitrite, phosphate and silicate were determined on a QuAAtro segmented flow
nutrient analyser (SEAL Analytical, UK) as described by Panton et al. (2020).

2.4 Mean water column irradiance

Photosynthetic Active Radiation (PAR) within the water column varies according to
changes in surface incident solar irradiance, turbidity, and depth (Cloern et al., 2014).
Therefore, the mean water column irradiance (I,,) was calculated following Riley

(1967) as:

_ (1—e~kpParM)

1)

I kparh
where I, is the daily surface irradiance (W h m2 d ), kpar is the diffuse attenuation
coefficient (m™), and h is the mixed layer depth (10 m). The diffuse attenuation
coefficient was estimated from the slope of a linear regression of turbidity against
kp,r data previously generated for the estuary by Iriarte & Purdie (2004), with kp 4z

ranging between 0.2 and 2.0 m™.

2.5 Optode-based oxygen sensor validation

Semi-continuous oxygen measurements were determined from the EXO2 sonde
deployed optode. While optodes have proven useful in describing biogeochemical
processes (Bittig & Kortzinger, 2015), to ensure high quality dissolved oxygen data
were being recorded, we compared the optode data to measurements made on discrete
water samples (Haskell et al., 2019; Uchida et al., 2008). The following correction
steps were therefore made prior to using the oxygen time-series data to calculate NCP
rates: (i) Some missing salinity measurements from the time series were estimated
since the optode DO sensor installed on the EXO2 sonde measures oxygen saturation
and then salinity and temperature data are used to calculate DO concentration. During
2019, the salinity sensor on the sonde showed some periods of drifting, and a more

reliable sensor was not replaced until November. Thus, Environment Agency
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measured salinity data was compared against existing and reliable salinity data from
the EXO2 sonde, and an equation from that correlation was used to substitute missing
salinity data. (ii) Recalculating DO concentration values from polynomial temperature
and salinity dependant equations (Feistel, 2008). (iii) Lastly, discrete oxygen
measurements from Winkler titrations and Environment Agency collected
measurements were used to formulate a standard linear regression (see supplementary
material Fig. A.1) model to correct optode derived DO concentration values.

2.6 Open diel oxygen method

The open diel method (Needoba et al., 2012) was applied to calculate daily NCP by
calculating oxygen mass-balance in the surface mixed layer (see supplementary
material). An essential assumption of this model is that all measurements come from
a well-mixed water column; therefore, the water mass recorded presents the same
metabolic history (Caffrey et al., 2014).

The hourly biological oxygen production (BOP) calculation incorporated equations
used by Hull et al. (2016) and Murrell et al. (2018). In Eq. (2) C, is the oxygen
concentration at t = 0 and C; oxygen concentration at the time step (for the present
study, 1 hour), and it is analytically solved by using the air-sea diffusion flux
calculation F and a transfer velocity correction t, caused by wind-induced turbulence

in the mixed water column (h).

BOP = th ( GCo 4 co) — Fh )

1-e

The diffusive exchange of gases across the air— sea interface F (Eg. 3) was calculated
as a function of gas transfer velocity k,, (EQ. 4) and diffusion through bubbles B. Py,
corresponds to an atmospheric pressure standard value of 101,325 Pa, P, is the

atmospheric air pressure at sea level, C* is the calculated oxygen concentration in
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equilibrium with the atmosphere as a function of temperature and salinity (Feistel,

2008) and C is the oxygen concentration in the surface mixed layer.

_ kw o Pstp | LR
F=22CQA+B) ==+ 020C 3)

k, (Eqg. 4) is the parameterisation proposed by Wanninkhof (2014), as function of
salinity and temperature through the relation between the Schmidt number Sch,, for
oxygen and the normalised Schmidt number for CO, at 20°C and salinity of 35
(constant value of 660 in Eq. 4). U corresponds to wind speed measured at 10m above
sea level but as stated above can be considered the same as at sea level at the position

of the Data Buoy .

-0.5
ky = 0.25107% (2222) (4)

BOP data were averaged separately into “day” and “night” periods using light data
from the MIDAS Met station. Respiration rates were assumed to be constant during a
diel cycle; thus, respiration was extrapolated to 24 hours to obtain daily ecosystem
respiration (ER). Finally, daily NCP (Eqg. 5) was calculated as a function of the

difference between daily gross primary production (GPP) and ER.
NCP = GPP — ER (5)

2.7 Statistical analysis

None of the environmental data nor productivity rates were normally distributed,
despite different transforms being applied. Consequently, the non-parametric
Spearman’'s Rank-Order Correlation Coefficient (p<0.05) was used to evaluate the
strength of associations among calculated productivity rates and measured

environmental variables throughout the study period (Table 1). Data were divided into

218



234

235

236

237

238

239

240

241

242

243
244
245
246
247
248

separate groups (Table 2), and the Kruskal-Wallis One Way Analysis of Variance on
Ranks (p<0.05) and the all pairwise Dunn's test (p<0.05) were used to evaluate whether
environmental conditions and productivity rates changed between major bloom event
periods and the remaining days over the 12-month period. In order to explain the
sources of variability in bloom events, Principal Component Analysis was applied.
This method allows reducing the dimensionality of large datasets without losing its
variability by transforming original variables into a new and smaller set of uncorrelated
variables (Jollife & Cadima, 2016). Statistical analysis was performed using the

statistical package in SigmaPlot version 13.0.
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Fig. 1. Map of the Southampton Water estuary located on the south coast of The UK (inset). Data sets
were collected from the Meteorological station at the National Oceanography Centre (green circle o),
tide gauge data from ABP Marine Environmental Research (orange circle o), Xylem Analytics Data

Buoy system (blue circle @) and Environment Agency samples from Hound navigation buoy (red circle

o).
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3 Results

3.1 Variation of environmental conditions

The estuarine water temperature reflected a seasonal warming, with monthly average
values of ~7°C during January and February (Fig. 2a), then steadily increasing until
reaching an average of 20.3°C for July and August and later decreasing to a value of
8.7°C in December 20109.

Salinity showed low variation across the whole year, with an average of 31.8 = 1.2
(Fig. 2b). Some differences, although not significant, were found over 24 hr periods,
but as seen in previous studies (Levasseur et al., 2007), salinity at this point of the
estuary is mainly driven by the semi-diurnal tidal cycle and typically ranges between
28.0 and 32.9.

Oxygen concentration presented a year minimum of 165 pumol L during July and a
maximum of 450.4 umol L? in June (Fig. 2c). Elevated daily concentrations were
detected between April-July; however, periods before April and after July showed
more constant values. The oxygen concentration during the first 3 months remained at
~300 umol L1, while from August to December, a gradual monthly average increase
occurred, with averages from 225.2 to 287.3 umol L. An average value of oxygen
saturation over the whole year of 100.8% indicated an overall balance in the oxygen
saturation (Fig. 2d). Oxygen percentage presented mainly oversaturated conditions
between April and July and similar to oxygen concentration, consistently showed the
greatest daily variations, with the lowest value in July (71.1%), while the highest in
June (183.5%). During the rest of the year, oxygen conditions remained slightly

undersaturated. Both oxygen parameters displayed peaks during the high productivity
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period, comprising days of continuous values >115% saturation and >300 pumol L
concentration.

Chl 'a' showed a clear period of increased concentration from late April to late August
(Fig. 2e). Outside of this period, average Chl 'a' concentration remained below 1.5 pg
L. Four phytoplankton bloom events of different duration and magnitude were
observed (Table 1): (i) in late April, a peak dominated by the colonial phytoplankton
Phaeocystis was observed for 14 days with an overall average of 4.2 pg L™ and, (ii) at
the end of May, a bloom comprising of the diatom Guinardia delicatula was sustained
for 15 days with an average of 8.7 pug L™ and reached a maximum hourly value of 27.1
ug L. (iii) The most prolonged bloom was observed for about 48 days during June-
July and was mainly attributed to the photosynthetic ciliate Mesodinium rubrum,
presenting the hourly year maximum value of 28.3 pug L and an event average of 7.5
ug Lt and finally, (iv) a short bloom was observed at the end of August for 5 days
with a mean concentration of 5 pug L. The major bloom events in late April, early
June and late August developed following a spring tide and peaked during the next
neap tide (Fig. 2). The more prolonged bloom dominated by Mesodinium rubrum in
July started on a neap tide in late June but was then sustained over two further
spring/neap periods until late July.

Turbidity measurements ranged between 1.2 and 16.6 FTU, with a marked period from
May to July of low turbidity when daily averages remained below 6 FTU (Fig. 2f).
Increased daily variation in turbidity was observed from September to December, but
this could have been caused by some biofouling of the turbidity sensor since Chl ‘a’
for this period remained unaffected. Highest turbidity values corresponded to

maximum tidal ranges during peak spring tides (Fig. 2f).
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The first two weeks of March, showed high wind speeds in comparison to the rest of
the year, with sustained daily values above 6 m s and gusts reaching up to 16.8 ms°
!, Following this a period lasting until the end of July of lower wind speeds (>5 m s*)
was identified (Fig. 29).

For I,, values ranged between 165.9 and 3313.6 W h m? d* in January and July,
respectively (Fig. 3a). A sudden increase in values was observed at the end of March,
reaching slightly above 2000 W h m d! but then decreasing to ~1300 W h m d*! for
two weeks, before increasing again and remaining mainly above 2000 W h m? d* for
the period between April and August.

I,,, showed a large variation throughout the year, with a monthly range from 55.9 W h
m2d? in November to 1004.6 W h m2 d* in May (Fig. 3.b). Sustained values above
the annual average of 321.4 W h m? d* were observed from April to late September,
after which a drop in values remained for the rest of the year. An exceptionally high
I,,, period occurred in late April and throughout the whole of May, with three different
events, lasting from 3 to 9 days, of sustained values above 1000 W h m2 d™.

3.2 Fluctuation of productivity rates

Estimated daily values of ER are presented in Figure 4. Calculated values ranged from
0.1 (June) to 437.5 (August) mmol O, m d with a yearly average of 37.6 mmol O
m2 d?. ER rates did not show a particularly well defined seasonality with occasional
periods of ~7 days of peaks in activity throughout the year, notably from May to
November. From August to October, monthly values were above 50.0 mmol O, m2 d-
! Conversely, March presented a particularly low monthly value of 2.9 mmol Oz m
d* (although only 12 days of estimates were available).

GPP presented an annual daily average of 36.7 mmol Oz m2 d* and varied from 0.1

to 411.2 mmol O, m d! with both values occurring in the second half of June, only
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11 days apart, as seen in Figure 4. A period of increased productivity was noted from
late April to mid-August, with the average productivity rate for this time being 58.6
mmol O, m? d, compared to only 11.1 mmol O, m d* for the rest of the year. In
addition, daily values outside this period were below 100.0 mmol Oz m d?, while
~20% of daily observations from April to May were above this rate.

Positive daily values of NCP indicate net autotrophy within the water column while
negative values suggest net heterotrophy. NCP showed a relatively balanced annual
average of -0.8 mmol O, m2d. Positive NCP estimations exhibited a seasonal pattern
with a highly productive period from April to July (Fig. 4), reflecting net autotrophic
conditions with an average of +34.8 mmol O, m? d* across the 4-month period. The
highest positive NCP value of the year (+229.6 mmol O, m? d) was observed at the
end of a 57-day period of continuous autotrophic conditions, that averaged +44.1 mmol
02 m2d?, and matched the peak in Chl ‘a’ concentration at the end of May. This peak
was followed closely by a second observed in late-June (+197.1 mmol O; m2 d?),
when an additional extended autotrophic period (29 days) averaged +72.2 mmol O, m
2 d. Heterotrophic conditions were nearly absent from March to May, presenting less
than ~15% of total observations in this period. However, in August (-366.8 mmol O>
m2 d1) and October (-309.8 mmol O, m? d!) some high negative daily rates of NCP
were estimated. From August to November, a heterotrophic state averaging -30.0
mmol O2 m? d* was calculated.

3.3 Relation between environmental conditions and bloom events

Spearman’s rank coefficients analysis (Table 1, p<0.05) showed that NCP was strongly
positively (p>0.55) correlated with I,,,, DO in percentage and concentration of Chl 'a’
and negatively correlated (p=0.43) with turbidity. GPP showed a strong positive

correlation (p>0.55) with Chl 'a’ concentration. Moderate positive correlations were
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also found between GPP and I, (p=0.40), average wind speed (p=0.47) and
temperature (p=0.41). ER was found to strongly negatively correlate with average
wind speed (p>0.55).

For this study, a major bloom was considered when 1-hour average values of Chl ‘a’
concentration were sustained above 10 pg L? and when the biomass gain
corresponded to NCP values >+20 mmol Oz m? dX. In order to evaluate differences
among parameters during bloom events and the rest of the days studied (identified as
low productivity periods LPP), a Kruskal-Wallis analysis (p<0.05) was conducted,
paired with Dunn's test (p<0.05) to identify specific groups (Table 2). Both Chl 'a’ and
I, showed a clear separation between bloom groups and LPP, presenting higher
average values during bloom events, particularly during Bloom 2. On average,
oversaturated oxygen values were observed during Bloom 1, 2 and 3, while during
Bloom 4 and LPP water was slightly undersaturated. For NCP, Bloom 4 and LPP
presented average values closer to production balance (=0), while Bloom 1, 2 and 3
showed mean values reflecting a more autotrophic state (>0). Bloom 4 was grouped
with LPP for GPP data due to its lower mean value. For ER, Bloom 4 presented a
tighter range and lower average than the other groups; hence was separated. Grouping
blooms based on temperature placed those occurring during summer (Bloom 3 and 4)
and those in winter-spring periods (LPP and Bloom 1) in different groups, with Bloom
2 (late spring) overlapping among the two groups (Table 2).

Further analysis of how individual environmental conditions contribute to each major
bloom event is shown in the PCA (Fig. 5). The first two principal components
accounted for ~58% of the total variance. PC1 explained 32.82% of the total variability
in the dataset while PC2 described 25.54%. The main factors contributing to PC1

positive eigenvalues (R?>0.80) were I, I,,,, O2% and Chl ‘a’. In comparison, river
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flow and turbidity correlated with negative eigenvalues of PC1 (R*>-0.41), and to a
lesser extend (R?>-0.20) tidal range, wind speed and ER. Trophic state was associated
with PC1, with blooms being mainly associated to positive loadings, correlating to
autotrophic conditions. Positive values of PC2 were mainly described (R?>0.84) by
temperature and salinity, followed by ER, turbidity, I, and wind speed (R?>0.33).
Conversely, river inflow and [O2] were the main contributors (R?<-0.81) to negative
eigenvalues. PC2 described the influence of river input to the estuary, associating
Bloom 1 and Bloom 2 (Fig. 5) with higher freshwater flow while Bloom 3 and Bloom

4 were distributed across daily rates during lower riverine inflow.

Table 1

Spearman's correlation coefficients relating environmental conditions and productivity rates

L, Tidal Wind Temp. Sal. 02% [O2] Chl'a®  Turb.

Range Speed

NCP 0.61 -0.10 -0.15 0.24 -0.19 0.60 0.37 0.61 -0.43
GPP 0.40 -0.10 0.47 0.41 0.10 0.28 0.12 0.57 -0.15
ER 0.21 -0.00 -0.66 -0.12 -0.22 0.27 0.15 0.04 -0.24

Values in bold p < 0.05. Values underlined represent absolute coefficient with strong correlation, p

>0.55.
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385 Table 2

386 Average and range of daily measured environmental conditions and calculated productivity rates for different major bloom events (continuous chlorophyll' a' concentration values higher than 10 pg L)
and low productivity perio studied days without blooms).
387 dl ductivity period LPP (studied d ithout bl )
Tidal Wind
Iy Temp. Sal. 0,% [02] Chl ‘o’ Turb. NCP GPP ER
range speed
LPP 221.7° 3.32 4.3 12.7° 31.7° 95.92 274.8° 0.92 5.42 -21.2° 18.0° -39.3°
(283) (26.9:2001.9) (1.6:4.8) (1.1:13.1) (5.7 :22.0) (28.8 :33.6) (81.5:116.9) (205.8 :361.4) (0.1:3.3) (1.8:10.9) (-366.8 :91.9) (0.2:117.9) (-437.5:-0.2)
Bloom 1 625.1° 3.0%® 4.2 12.9° 31.3° 120.6° 330.7° 4.2° 3.82 59.9° 110.2° -50.3°
(111-124) (188.3:1337.6) (1.7:4.4) (2.0:8.9) (12.3:13.5) (29.9:31.7) (113.4:129.1) (310.3:356.1) (3.0:5.5) (1.9:7.4) (20.6 : 154.0) (39.1:284.2) (-212.6:-4.9)
Bloom 2 1006.6° 2.9% 4.0 15.9%° 31.8° 120.3° 312.3% 8.7° 2.3 87.0° 123.1° -36.1°
(142-156)  (650.3:1388.9)  (2.0:3.9) (2.7:5.1) (15.0: 16.7) (30.9.: 32.4) (104.2:134.5)  (269.7:355.0)  (2.0:14.3) (1.9:2.8) (7.9:229.6) (9.1:277.9) (-80.0:-1.3)
Bloom 3 426.4° 3.2% 3.6 19.9° 32.3® 113.5° 270.0° 7.50 4.62 44.3b 74.5° -30.1°
(169-216)  (136.3:783.5) (2.0: 4.4) (1.5:9.7) (16.5: 22.0) (30.8 : 33.5) (84.6 : 146.8) (202.7:349.8)  (2.6:16.2) (2.9:8.8) (-172.1:197.1)  (0.1:411.2) (-214.1:-0.1)
Bloom 4 698.6° 2.3° 2.8 20.5° 33.6° 96.8% 237.6° 5.0° 3.1 2.2% 6.42 -4.2b
(236-240)  (570.7:817.6) (1.9:3.1) (2.0: 4.4) (19.7 : 20.9) (33.6: 33.6) (94.4:99.1) (2343:2417)  (3.3:6.5) (2.8:3.4) (-1.2:6.2) (1.6:12.0) (-6.6:-2.5)

Included mean water column irradiance I,,, (W h m2d-1), tidal range (m), wind speed (m s1), temperature (°C), salinity, dissolved oxygen (% and pmol L), chlorophyll 'a' (ug L) and turbidity (FNU). Calculated
productivity rates: NCP, GPP and ER in mmol O, m2d.
Letters in superscript indicate a significant difference from one/all other groups (Dunn's test; p<0.05).
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Fig. 2. Hourly time series of environmental conditions at the Xylem Data Buoy in Southampton Water
in 2019: (a) temperature, (b) salinity, (c) DO in concentration and (d) DO in percentage saturation , (e)
chlorophyll 'a', (f) turbidity and (g) wind speed, represented as daily mean in vertical bars I and
maximum daily values in black circles e. In a to g, the 4 major blooms identified are shown as a grey
background = . Ind, the red dashed line —— represents 100% of saturation. In ¢, d and f discrete samples

are shown as * in different colours. In e and f, the daily tidal range is indicated with a black line. In a

to f, Environmental agency sampling points are shown as triangles A in different colours.
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Fig. 4. Calculated daily net community production NCP (vertical bars | ), ecosystem respiration ER
(red circles @) and gross primary production GPP (green circles ). Respiration data are displayed as

negative values. Change in the daily tidal range is indicated — as a black continuous line.
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Fig. 5. Principal Component Analysis (PCA) of environmental conditions. The data clustering and the
primary (PC1: 32.82% of the variance) and secondary (PC2: 25.54% of the variance) axes represent
58.36% of the total variance. Bloom events have been used as factors to illustrate the clusters: Bloom 1
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). Tem=temperature, Sal=salinity, Chl=chlorophyll ‘a’, I0=surface water irradiance, Im=mean water
column irradiance, O2%=DO in percentage saturation, [02]=DO concentration, Wind=wind speed,
Tur=turbidity, Tide=tidal range, River=river inflow, GPP=gross primary production, ER=ecosystem

respiration and NCP=net community production.
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421
422 4 Discussion
423 4.1 Drivers of phytoplankton bloom events
424  Blooms are a fundamental feature of phytoplankton dynamics, defined as events of
425  fast growth and accumulation of biomass, occurring at different magnitudes and
426  duration according to environmental conditions (Shi et al., 2016). Three major
427  phytoplankton bloom events were observed in the mid Southampton Water estuary
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between late April and the beginning of August 2019, plus a fourth minor bloom
detected at the end of August.

Daily peaks in Chl ’a’ recorded during bloom events in the present study compare well
with previous observations in the estuary (Iriarte & Purdie, 2004; Torres-Valdés &
Purdie, 2006), where values reached nearly 20 pug L™ during spring blooms. The
magnitude of coastal phytoplankton blooms is highly variable across the world;
ranging from coastal ecosystems with typically low concentrations of Chl ‘a’ such as
the Thau Lagoon (France) presenting mean values between 2.8 and 3.6 pg L™ during
intense bloom events (Trombetta et al., 2019) to the Lagoon and Bay of Bizerte
(Tunisia) described by Salhi et al. (2018) displaying more comparable maximum mean
values during a summer bloom (15.8 and 8.5 pg L™2). It is also possible to find highly
eutrophicated systems like the Sundays Estuary in South Africa where exceptional
maximum chlorophyll values during blooms above 100 pg L™ have been reported
(Lemley et al., 2018).

Nutrient input from runoff can supply ecosystems with nutrients, stimulating
phytoplankton production and leading to the accumulation of biomass and bloom
formation (Cloern & Jassby, 2010; Trombetta et al., 2019). However, in the present
study nutrient measurements from surface water samples collected from near the data
Buoy showed no clear relationship to appearance of blooms although nitrate,
phosphate and silicate concentrations reached minimum levels in late May following
the Guinardia delicatula bloom (see supplementary Figure A.2). Nutrient
concentrations then increased during June with nitrate and phosphate concentrations
declining to almost undetectable levels for the first 3 weeks of July during the

Mesodinium rubrum bloom.
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One of the main factors limiting water column primary production is light availability,
in shallow and turbid coastal systems (Brito & Newton, 2013). A comparison between
the temporal variation of average daily Chl ‘a’ concentration and I,,, (Fig. 6a), showed
that Chl ‘a’ values above 10 pg L™ only occurred when 1,,, was greater than 280 W h
m2d. A similar comparison between NCP values and I (Fig. 6b) resulted in positive
values, therefore production exceeding respiration, when I,,, was above 450 W h m
d . Riley (1967), proposed a theoretical I,,, critical value for a sustained increase in
phytoplankton biomass, in temperate coastal and estuarine waters, of 200 W h m2 d*,
a threshold value below that found in the present study. However, previous research
in Southampton Water (Iriarte & Purdie, 2004) found that Chl “a’ levels above 10 ug
L occurred, when I,,, averaged for the previous 7 days exceeded 380 W h m?2 d.

In temperate latitudes, water temperature is a critical parameter influencing
phytoplankton bloom development (Lemley et al., 2018b; Trombetta et al., 2019).
Furthermore, phytoplankton growth rates increase with temperature, almost doubling
with each 10 °C rise (Rose & Caron, 2007). Given the range of temperature observed
during 2019 in Southampton Water (5.7 — 22 °C), phytoplankton growth rates will
have increased by more than double during the annual period studied. A comparison
of temporal variation in water temperature against daily average Chl ‘a’ concentration
(Fig. 6¢) and NCP (Fig. 6d) found that bloom conditions only occurred when
temperature values were above 11.9 °C for both parameters. A similar result was
reported by (Iriarte & Purdie, 2004) in their previous 5-year study where all major
bloom events in Southampton Water occurred when water temperature was greater
than 12 °C. An identical reference value of 12 °C was found by (Carstensen et al.,
2015) for coastal sites in the Rhine-Meuse-Scheldt delta and the Wadden Sea,

indicating phytoplankton communities of temperate coastal ecosystems, at comparable
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latitudes, tend to bloom at around the similar threshold temperature. When compared
against a coastal ecosystem at a lower latitude (southern France), the spring bloom
generally occurred at a slightly increased temperature of 14 °C (Trombetta et al.,
2019).

Water level data analysed showed a positive correlation (data not shown) between tidal
range and turbidity, indicating that turbidity in the system generally increased during
spring tides. Bucci et al. (2012) reported phytoplankton summer blooms in the S&o
Vicente estuary (Brazil) usually occurred towards the end of neap tides, but no
significant correlation with tidal cycles was found. This lack of correlation with tidal
range, in addition to the strong correlations between phytoplankton peaks and I,,, and
temperature, indicate that blooms in the Southampton Water estuary are not only
regulated by turbulent mixing due to tides but a combination of factors affecting the
solar radiation attenuation throughout the water column (Cloern et al., 2014). In most
shallow estuaries where the neap-spring cycle is present, fortnightly patterns of
reduced mixing during neap tides can be observed (Carstensen et al., 2015), and it is
during these periods that phytoplankton net biomass growth is enhanced. A similar
pattern was reported by Cloern (1996) in his review of phytoplankton bloom dynamics
in the San Francisco Bay, a system with a similar depth (~10m) to the Southampton
Water estuary, but with a smaller tidal range (2m).

4.2 Net community production

High-frequency DO measurements represent a useful opportunity to link productivity
rate dynamics and net community production response to short-period changes in
environmental conditions, as well as episodic events, such as storms or increased river
inputs (Staehr et al., 2012). The annual average rate of NCP for Southampton Water

of -0.8 mmol 0> m?2 d* showed an overall more or less balance between GPP and ER,
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leaning slightly towards a heterotrophic state. A more heterotrophic annual average
value of -5 mmol O, m? d* was reported for a shallow bank in the mouth of the
Thames estuary, calculated using the open diel method (Hull et al., 2016). Reports of
more highly heterotrophic ecosystems are widely described in the literature: such as
the Ria Formosa Lagoon, South Portugal with DO dynamics used to calculate an
annual value of -244 mmol O, m?2 d* (Cravo et al., 2020) and the use of the LOICZ
biogeochemical model applied to four different coastal lagoons in the Gulf of
California reported all of them to be heterotrophic for the time studied (Valenzuela-
Siu et al., 2007). Caffrey et al. (2014) calculated the annual NCP, for three different
estuaries in the Gulf of Mexico, and found all sites were net heterotrophic for most of
the year with the greatest heterotrophy during the summer. On the other hand, an
example of an ecosystem inclining to an autotrophic state is that reported by Haskell
et al. (2019) in a productive coastal zone in southern California where NCP values of
+0.16 and +0.18 mmol O, m d* were calculated for 2013 and 2014, respectively
through glider-measured oxygen concentrations.

Results from the current study showed a noticeable pattern of NCP behaving more
similarly to GPP than to ER, and both showing a strong correlation to Chl ‘a’
concentration (Table 1), suggesting productivity rates could be regulated by factors
influencing autotrophic processes. The same tendency of GPP influencing NCP trends
more strongly and correlations with Chl *a’ were observed by Agusti et al. (2018) in
their study of the productive Matilda Bay in Australia, where they found that over an
annual period, ER rates were less variable than GPP rates. Lack of correlation between
ER and Chl “a’, while presenting a strong relation to GPP, was also observed by
Murrell et al. (2018) in their study of a river-dominated estuary located in the Gulf of

Mexico.

234



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

o547

548

549

550

ER showed no clear seasonal pattern, while GPP produced maximum rates during the
spring-summer period (Fig. 4). This was reflected in moderate correlations between
GPP and temperature and I,,, (Table 1), with higher values converging during summer.
Since NCP closely reflected GPP trends, the highest positive NCP calculated value of
175 mmol O, m2 d%, was observed in the middle of the spring-summer period. This
maximum value is lower than others have reported during spring-summer NCP peaks
in the Ria de Vigo, Spain (Alonso-Pérez et al., 2015) and in the mouth of the River
Thames (Hull et al., 2016), of ~300 mmol O m? d* and 485 mmol O, m? d*,
respectively.

Photosynthetic rates generally present a close relation to light availability in the water
column, although coastal ecosystem respiration is sometimes unaffected directly by
light levels (Kemp & Testa, 2011). An analysis of NCP and light availability (Fig. 6b)
showed that when I,, reached values of 450 W h m? d?! and above, NCP was
consistently positive, indicating at these levels of I,,,, productivity was consistently
exceeding respiration; hence, the system was net autotrophic.

As shown with Chl ‘a’ concentration peaks, NCP daily values during the high
productivity period (April to August) were related to neap tides (Fig. 4). During this
time, NCP showed a biweekly pattern peaking during the monthly low neap tide. This
reveals the system was strongly autotrophic during these tides and moving to a less
autotrophic state or, sometimes, even shifting to heterotrophic conditions with the
onset of the spring tide. The closest comparison to these results was the two-month
study done by Nidzieko et al. (2014) in a tidal creek/marsh area in the deeper main
channel of Elkhorn Slough, California, where they found net heterotrophic conditions

during spring tides and mostly in balance conditions during neap tides.
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Although our results showed that the Southampton Water estuary presented an overall
net heterotrophic annual state in 2019, where input of external organic matter is
needed, and CO; is released to the atmosphere (Tang et al.,, 2015), seasonal
productivity events shifted this state for a few days and sometimes weeks to
autotrophic conditions, particularly during the highly productive period in spring-
summer. This change meant that for brief periods, the ecosystem was a strong CO-
sink and a source of organic matter and oxygen (Lee et al., 2017), consistent with the
hypothesis that primary production during these brief episodes is a substantial
component of annual primary production (Cloern et al., 2014).

4.3 Method implications

The open diel oxygen method coupled with high-frequency water quality monitoring
is a powerful tool to help understand the influence of physical and biological processes
on DO changes through time, particularly since the principal biological process
influencing the ocean's declining DO concentration is phytoplankton respiration
(Robinson, 2019). The increasing availability of improved and affordable
instrumentation has made it possible to create high-frequency time-series from which
more reliable estimations of net community production can be derived and evaluate
different spatial and temporal variability within ecosystems (Aristegi et al., 2009;
Staehr et al., 2012).

As with any method, assumptions must be made in order to apply the approach to
different ecosystems and data availability. Since it frames the possibility of applying
the open diel method to a particular ecosystem, one of the main assumptions is that the
water column monitored must be reasonably homogenous and well mixed (Caffrey et
al., 2014). Vertical profiles of temperature, salinity and DO% made previous to the

2019 data time series (see supplementary Figure A.3) presented temperature
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differences between the surface and bottom waters that ranged from 0.1°C in late April
to 2.0°C in July. DO saturation throughout the water column presented higher
variability in August (9%) and did not correspond with the profile presenting the
greater temperature variation or the highest temperature (July). Both DO saturation
and temperature showed less variability through the water column than data in Murrell
et al. (2018) study (26% and ~4°C). Among other complications previously
encountered using this methodology is the necessity to separate air-sea O2 exchange
(Staehr et al., 2012). Direct measurements of air-water exchange can present great
difficulty, and some past works have opted for assumed constant values for similar
systems (Caffrey, 2004). Since air-water exchange varies due to surface turbulence,
water viscosity and the solubility of O, (Holtgrieve et al., 2010); to minimize error
propagation, in the present study it was calculated for every time-step (1 hour) as a
function of diffusion through bubbles and gas transfer velocity, which in turn included
the Schmidt number encapsulating influences of water temperature and salinity.
However, a correlation between values of calculated ER and wind speed (Table 1)
suggest highly negative NCP rates related to wind gusts above 9 m s (data not shown)
and, although it is known that in shallow ecosystems, wind stress can induce rates of
sediment resuspension stimulating ER and reducing GPP (Kemp & Testa, 2011), this
seems to be an overestimating heterotrophic condition from the bubble supersaturation
term.

Contributions from partially dissolved bubbles and overestimation in the air-water
transfer has been reported previously (Haskell et al., 2019; Hull et al., 2016; Liang et
al., 2013). A final generalisation is that ER rates are assumed constant through the diel
cycle since CO> fixation through chemoautotrophic processes is usually smaller than

that fixed by photosynthesis. In most coastal ecosystems (Testa et al., 2012), processes
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such as nitrification and photooxidation are assumed to be insignificant compared to
estimates of ‘night respiration” (Demars et al., 2015).

There are several methods available to estimate aquatic primary production, but few
provide the opportunity to calculate directly continuous productivity rates for long
periods at a low cost and fieldwork intensity, and at the same time, make available
easy validation using independent estimations, like the open diel oxygen method
(Briggs et al., 2018). Climate change and variability in environmental conditions will
have an effect on both ER and GPP and, consequently, on NCP (Staehr et al., 2012),
therefore, it is vital to increase understanding of how these factors influence
productivity rates across a broader range of coastal regions, and at a scale that allows
prevention and mitigation management in future years.

5 Conclusions

The collection of high-frequency estuarine water quality data allowed the correlation
of abiotic environmental conditions with biological rate processes occurring over
different time scales. Two independent variables were used to identify major
phytoplankton bloom events in the Southampton Water estuary; Chl “a’ concentration
and calculated rates of NCP from high frequency dissolved oxygen concentrations.
The initiation of major phytoplankton bloom events during the spring-summer period
were correlated with critical values of temperature above 12 °C and mean water
column irradiance I,,, greater than 280 W h m? d. Additionally, an analysis of the
neap-spring tidal cycle identified that blooms typically developed during neap tides
and dissipated during the following spring tide. The tidal cycle creates stronger mixing
conditions during spring tides leading to increased turbidity compared with lower
mixing, and possible stratification, during neap tides enhancing phytoplankton

biomass growth. Annual daily average NCP for the estuary detailed a net heterotrophic
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state (-0.8 mmol O, m d?)) but seasonal productive events, shifted this state for
several days and sometimes weeks to net autotrophic conditions. The results of this
study have demonstrated the opportunity of coupling high-frequency data on estuarine
water quality and the use of the open oxygen diel method for a broader understanding
of the bloom phenomenon in estuarine and coastal waters. Collectively, these studies
can provide predictors of future phytoplankton bloom occurrence across a diversity of
aquatic ecosystems.
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