The University of Southampton
University of Southampton Institutional Repository

Subwavelength waveguide structures for optical interconnects

Subwavelength waveguide structures for optical interconnects
Subwavelength waveguide structures for optical interconnects
We report our advances in development of subwavelength engineered waveguide structures. This unique NRC patented technology [1,2] allows synthesis of a metamaterial with an unprecedented control of material properties, constituting a powerful tool for a designer of photonic integrated circuits. We have demonstrated a number of subwavelength engineered devices operating at telecom wavelengths [3-7], for example fibre-chip couplers, waveguide crossings, WDM multiplexers, ultra-fast optical switches, athermal waveguides, evanescent field sensors, polarization rotators, transceiver hybrids and ultra-broadband interference couplers. The subwavelength metamaterial concept has been adopted by industry (IBM) for fibre-chip coupling and subwavelength structures are likely to become key building blocks for the next generation of integrated photonic circuits. Here we present an overview of recent examples of our subwavelength engineered structures, with an emphasis on couplers for optical interconnects and evanescent field sensors. We demonstrate an unprecedented control over the light coupling between optical fibers and silicon chips by constructing metamaterial couplers operating at telecom (1.55 μm) and datacom (1.3 μm) wavelengths. We also show that by subwavelength patterning of silicon-wire waveguides the field delocalization can be engineered to increase the sensitivity of evanescent field waveguide sensors [8]. Finally, we discuss some emerging applications of subwavelength engineered structures in mid-infrared photonics.
Mo.D3.1-2
Cheben, P.
9a2e25a5-6aa0-414e-a061-23416efedebc
Benediković, D.
1ae5b7b3-770d-4919-8581-f37180e9d830
Alonso-Ramos, C.
81ef371b-5744-490d-bdf3-5c840a996901
Schmid, J. H.
de954bee-9975-423f-8e10-0d35a4759f02
Pápeš, M.
9572460c-e72f-4006-888b-d0747e8b4cdb
Xu, D.-X
f728dc6e-eed8-422a-ae87-f9d34bc269dc
Janz, S.
13ac48fa-d2a2-4eca-b1a3-72dacbd88ecb
Wang, S.
8bce5bdb-420c-4b22-b009-8f4ce1febaa8
Vachon, M.
6033d188-3ad1-40e1-aa15-59c251f5e1aa
Wangüemert-Pérez, G.
229f6978-0222-49e5-a707-905992ee8e63
Halir, R.
e3f8d90b-0067-4e1a-a6b1-0217c342dd55
Ortega-Moñux, A.
2187ad4e-6b90-4354-83ce-da964b85e0fe
Molina-Fernández, I.
156ad1de-c209-43ce-91e4-e4106dcb1edf
Fédéli, J.-M
b3397c70-0c20-452e-8b96-f0c47dd88645
Čtyroký, J.
39f0ba9e-dbe6-4c5d-9a43-fee44e177565
Soler Penadés, J.
f18f3619-0d71-4547-95fd-dd38c37b7adb
Nedeljković, Miloš
b64e21c2-1b95-479d-a35c-3456dff8c796
Mashanovich, G. Z.
c806e262-af80-4836-b96f-319425060051
Ye, W.
d1b033ff-c5fc-4146-9b30-bb7cbf47b9eb
Calvo, M. L.
7624ea93-6e3e-43a0-916e-f1725b3c346b
Dado, M.
dd871472-3843-4070-88aa-17d3466dbf1a
Müllerová, J.
687e1ce7-506d-454c-a311-a6933a220cf9
Vasinek, V.
a427edf2-47c3-44ca-8b3b-dd1df0cce30e
Cheben, P.
9a2e25a5-6aa0-414e-a061-23416efedebc
Benediković, D.
1ae5b7b3-770d-4919-8581-f37180e9d830
Alonso-Ramos, C.
81ef371b-5744-490d-bdf3-5c840a996901
Schmid, J. H.
de954bee-9975-423f-8e10-0d35a4759f02
Pápeš, M.
9572460c-e72f-4006-888b-d0747e8b4cdb
Xu, D.-X
f728dc6e-eed8-422a-ae87-f9d34bc269dc
Janz, S.
13ac48fa-d2a2-4eca-b1a3-72dacbd88ecb
Wang, S.
8bce5bdb-420c-4b22-b009-8f4ce1febaa8
Vachon, M.
6033d188-3ad1-40e1-aa15-59c251f5e1aa
Wangüemert-Pérez, G.
229f6978-0222-49e5-a707-905992ee8e63
Halir, R.
e3f8d90b-0067-4e1a-a6b1-0217c342dd55
Ortega-Moñux, A.
2187ad4e-6b90-4354-83ce-da964b85e0fe
Molina-Fernández, I.
156ad1de-c209-43ce-91e4-e4106dcb1edf
Fédéli, J.-M
b3397c70-0c20-452e-8b96-f0c47dd88645
Čtyroký, J.
39f0ba9e-dbe6-4c5d-9a43-fee44e177565
Soler Penadés, J.
f18f3619-0d71-4547-95fd-dd38c37b7adb
Nedeljković, Miloš
b64e21c2-1b95-479d-a35c-3456dff8c796
Mashanovich, G. Z.
c806e262-af80-4836-b96f-319425060051
Ye, W.
d1b033ff-c5fc-4146-9b30-bb7cbf47b9eb
Calvo, M. L.
7624ea93-6e3e-43a0-916e-f1725b3c346b
Dado, M.
dd871472-3843-4070-88aa-17d3466dbf1a
Müllerová, J.
687e1ce7-506d-454c-a311-a6933a220cf9
Vasinek, V.
a427edf2-47c3-44ca-8b3b-dd1df0cce30e

Cheben, P., Benediković, D., Alonso-Ramos, C., Schmid, J. H., Pápeš, M., Xu, D.-X, Janz, S., Wang, S., Vachon, M., Wangüemert-Pérez, G., Halir, R., Ortega-Moñux, A., Molina-Fernández, I., Fédéli, J.-M, Čtyroký, J., Soler Penadés, J., Nedeljković, Miloš, Mashanovich, G. Z., Ye, W., Calvo, M. L., Dado, M., Müllerová, J. and Vasinek, V. (2015) Subwavelength waveguide structures for optical interconnects. International Conference on Transparent Optical Network: ICTON 2015, Budapest, Hungary. 05 - 09 Jul 2015. Mo.D3.1-2 . (doi:10.1109/icton.2015.7193369).

Record type: Conference or Workshop Item (Paper)

Abstract

We report our advances in development of subwavelength engineered waveguide structures. This unique NRC patented technology [1,2] allows synthesis of a metamaterial with an unprecedented control of material properties, constituting a powerful tool for a designer of photonic integrated circuits. We have demonstrated a number of subwavelength engineered devices operating at telecom wavelengths [3-7], for example fibre-chip couplers, waveguide crossings, WDM multiplexers, ultra-fast optical switches, athermal waveguides, evanescent field sensors, polarization rotators, transceiver hybrids and ultra-broadband interference couplers. The subwavelength metamaterial concept has been adopted by industry (IBM) for fibre-chip coupling and subwavelength structures are likely to become key building blocks for the next generation of integrated photonic circuits. Here we present an overview of recent examples of our subwavelength engineered structures, with an emphasis on couplers for optical interconnects and evanescent field sensors. We demonstrate an unprecedented control over the light coupling between optical fibers and silicon chips by constructing metamaterial couplers operating at telecom (1.55 μm) and datacom (1.3 μm) wavelengths. We also show that by subwavelength patterning of silicon-wire waveguides the field delocalization can be engineered to increase the sensitivity of evanescent field waveguide sensors [8]. Finally, we discuss some emerging applications of subwavelength engineered structures in mid-infrared photonics.

This record has no associated files available for download.

More information

Published date: 13 August 2015
Venue - Dates: International Conference on Transparent Optical Network: ICTON 2015, Budapest, Hungary, 2015-07-05 - 2015-07-09

Identifiers

Local EPrints ID: 471941
URI: http://eprints.soton.ac.uk/id/eprint/471941
PURE UUID: c80fd9bb-fed8-4977-b69b-f9b1640e5871
ORCID for J. Soler Penadés: ORCID iD orcid.org/0000-0002-1706-8533
ORCID for Miloš Nedeljković: ORCID iD orcid.org/0000-0002-9170-7911

Catalogue record

Date deposited: 22 Nov 2022 18:00
Last modified: 17 Mar 2024 03:35

Export record

Altmetrics

Contributors

Author: P. Cheben
Author: D. Benediković
Author: C. Alonso-Ramos
Author: J. H. Schmid
Author: M. Pápeš
Author: D.-X Xu
Author: S. Janz
Author: S. Wang
Author: M. Vachon
Author: G. Wangüemert-Pérez
Author: R. Halir
Author: A. Ortega-Moñux
Author: I. Molina-Fernández
Author: J.-M Fédéli
Author: J. Čtyroký
Author: J. Soler Penadés ORCID iD
Author: W. Ye
Author: M. L. Calvo
Author: M. Dado
Author: J. Müllerová
Author: V. Vasinek

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×