
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
Mathematical Sciences

Formulations and Solution Methods for a
Mixed-Integer Non-Linear Bilevel Pricing

Problem

by

Karl-Matthias Steinborn-Busse

A thesis for the degree of
Doctor of Philosophy

August 2022

http://www.southampton.ac.uk
ksb1g13@soton.ac.uk

University of Southampton

Abstract

Faculty of Social Sciences
Mathematical Sciences

Doctor of Philosophy

Formulations and Solution Methods for a Mixed-Integer Non-Linear Bilevel
Pricing Problem

by Karl-Matthias Steinborn-Busse

http://www.southampton.ac.uk
ksb1g13@soton.ac.uk

iv

Since the turn of the 21st century, interest in bilevel optimisation has been rapidly in-
creasing. With a vast array of bilevel applications in energy and transport industries,
interest has always existed, however, the solution methods, combined with our com-
putational powers, meant many sizeable bilevel problems were out of reach. Most
solution methods focused on very simplistic cases, continuous variables with linear
constraints, whereas many problems of interest included non-linear constraints along
with integer variables.

In this thesis, we study a Mixed-Integer Non-Linear Bilevel Problem, MINLBP, based
upon a commodity pricing problem. The objective of the followers is to purchase a set
of commodities, that satisfy some combinatorial constraints, at the minimum cost while
the leader wishes to maximise their profit by introducing a taxation to commodities.
We shall present three formulations; unit supply and single follower, unit supply and
multiple followers and non-unit supply and multiple followers. Unit and non-unit
supply relates to the quantity of each commodity available for both the leader and
follower to purchase. As it shall be shown, the unit and non-unit supply scenarios
must be treated differently as it drastically affects the reaction of the follower. With the
single supply case, should a feasible follower reaction include commodity j, then they
shall purchase that commodity. However, in the non-unit supply case, the follower can
select the cheapest version of commodity j available to them. Thus, should the leader
have applied a taxation to one version of j, then the follower would purchase an un-
taxed version instead. As a result we observe that, as the result of a max operator in
both the leader and follower objective functions, we can reformulate the problem, using
two methods that we call the ȳ and γ reformulations. Following this, we shall linearise
our formulations to produce a Mixed-Integer Linear Problem, MILP, using McCormick
envelopes, along with binary expansions when necessary.

We then address various solution methods to be used in conjunction with the formu-
lations described. We discuss how a simple cutting-plane approach, used within a
branch-and-cut framework can easily be implemented for the unit supply case, but
cannot be directly applied for the more general non-unit supply case. This is a result
of the followers feasible region no longer being completely independent of the leaders
variables. Therefore, we demonstrate four solution methods for the general case; two
of these use a variable generation approach to introduce variables, which ensure the
value function constraint is only active for the necessary sections of the feasible region,
with the latter two using a sophisticated branching strategy to achieve the same results
without the need for any additional variables.

We also present further solution methods focused on solving instances where the fol-
lowers are restricted to a subset of responses. The first solution method is split into two
parts. The first of which iteratively solves the case where the followers must respond
from a set Y, adding reactions to Y with every bilevel infeasible solution. The second

v

stage then solves the case where we assume that the followers respond with a solu-
tion outside of Y. Following this, we shall present a branching strategy which aims to
encompass this solution method within a single Branch-and-Cut framework.

Three sets of instances are generated to compare the performances of both the formu-
lations and solution methods. Each focus their attention on certain parameters of the
bilevel problem including the number of commodities, the maximum taxation and the
leaders budget.

vii

Contents

List of Figures ix

List of Tables xi

Definitions and Abbreviations xiii

Acknowledgements xv

1 Introduction 1

2 Literature Review 5
2.1 Properties of Bilevel Problems . 5
2.2 Applications . 11

2.2.1 Facility Location . 11
2.2.2 Interdiction Problems . 12
2.2.3 Pricing Problems . 12

2.3 Solution Methods . 13
2.3.1 Reformulation Methods . 14

2.3.1.1 Optimality Conditions 14
2.3.1.2 Optimal Value Function 18
2.3.1.3 Reaction Set Mapping . 19

2.3.2 Enumeration Techniques . 20
2.3.2.1 Vertex Enumeration . 20
2.3.2.2 Evolutionary Techniques 20

2.4 Integer Bilevel Problems . 21

3 Mixed-Integer Linear Bilevel Problems 29
3.1 Motivation . 29
3.2 Single Follower, Unit Supply . 30
3.3 Multiple Followers . 34
3.4 Non-Unit Supply . 37
3.5 Dichotomic Formulation . 39
3.6 Max Value Formulation . 40
3.7 Linearisation . 42

3.7.1 A note on the results of Dempe & Kue 44
3.7.2 McCormick over Summations . 47

3.7.2.1 y Constraint . 50
3.7.2.2 McCormick Linearisations 50

viii CONTENTS

4 Solution Methods 51
4.1 Unit Supply . 52
4.2 Non-Unit Supply . 54

4.2.1 Non-Symmetry-Free Cutting Plane 54
4.2.2 Symmetry-Free Cutting Plane . 58
4.2.3 n-ary Branching . 60
4.2.4 Improved n-ary Branching . 64

4.3 “Pre-Computed Follower Solutions” Methods 64
4.3.1 Single MINLBP Method . 64

4.3.1.1 KKT Reformulation . 68
4.3.1.2 Value Function Reformulation 69
4.3.1.3 Strong Duality Reformulation 70

4.3.2 Double MINLBP Method . 71
4.3.2.1 Y Selection . 72

4.3.3 Known Solution Branching (KSB) Method 75

5 Computational Results 77
5.1 Results for Instance Set A . 79
5.2 Results for Instance Set B . 84
5.3 Results for Instance Set C . 87
5.4 Results Overall . 88

6 Conclusions 89

Appendix A Linear Formulations 95
Appendix A.1 Unit Supply . 95

Appendix A.1.1 Unit Supply Formulation 95
Appendix A.1.1.1 Direct McCormick 95
Appendix A.1.1.2 Summation McCormick 96

Appendix A.1.2 Known Solution Formulations 97
Appendix A.1.2.1 KKT . 97
Appendix A.1.2.2 Value Function 98

Appendix A.2 Non-Unit Supply . 99
Appendix A.2.1 Dichotomic Formulation 99

Appendix A.2.1.1 Direct McCormick 99
Appendix A.2.1.2 Summation McCormick 100

Appendix A.2.2 Max Value Formulation 101
Appendix A.2.3 Double MINLBP Formulation 103

Appendix A.2.3.1 KKT . 103
Appendix A.2.3.2 Value Function 104

References 105

ix

List of Figures

2.1 Example of how the inclusion of the followers objective alters the opti-
mal solution [14]. 8

2.2 Feasible region when the linking constraints are in the leaders problem. 11
2.3 Feasible region when the linking constraints are in the followers problem. 11
2.4 Example of how first-order fails with non-convex followers objectives [?]. 16
2.5 The Inducible Regions for the four types of variable classifications. . . . 23

3.1 Outline of the problem to be solved . 30
3.2 Example of a team that satisfies an SBC. Here, there are restrictions on

how many nationalities and leagues must appear in the team, along with
specific values for the teams rating and chemistry. 31

4.1 n-ary branching strategy . 62
4.2 n-ary branching for when we can have at most 2 branches from a single

node. 63
4.3 Branching strategy for KSB method using exact solutions. 76

5.1 Set A results w.r.t computational time. 80
5.2 Proportion of instances solved within a given time for Set A. 80
5.3 Set A results w.r.t the number of nodes solved. 81
5.4 Set A results w.r.t the number of times the followers problem is solved. . 81
5.5 Set A results w.r.t the computational time with the unit supply instances. 83
5.6 Set B results for dsum vs Time. 84
5.7 Set B results for scoef vs Time. 85
5.8 Proportion of instances solved within a given time for Set B. 85
5.9 Set B results for SMC and DMC formulations. 86
5.10 Set C results as the leaders budget varied. 87
5.11 Set C results as the maximum taxation is varied. 88

xi

List of Tables

3.1 Leader solutions for Example 3.3 . 36

5.1 List of abbreviations used to distinguish between formulations, McCormick
linearisation techniques and solution methods. 78

5.2 Average time for the KSB solution methods within Set A. 82

xiii

Definitions and Abbreviations

MILP Mixed Integer Linear Problem
MINLBP Mixed Integer Non-Linear Bilevel Problem
FU Leader Objective
FL Follower Objective
GU Leader Constraints
GL Follower Constraints
ψ Optimal Reaction Set
φ Optimal Value Function
x Taxation applied by the leader
x̄ Leaders binary decision to purchase commodities
y Followers binary decision to purchase commodities
B Leader budget constraints
M Maximum taxation
n Number of commodities
J Indices for commodities
I Indices for groups of followers
d Number of followers in each group
s Supply for each commodity
ȳ Followers binary decision to purchase commodities from the leader
γ Follower binary decision if they have to purchase commodities from the leader
z Amount of each commodity the follower shall purchase from the leader
MC(x3, x1, x2) McCormick constraints where x3 = x1x2

DMC Direct McCormick Envelopes
SMC Summation McCormick Envelopes
DI Dichotomic
MV Max Value
DM Double MINLBP
YSol Set of follower responses
SFCP Symmetry Free Cutting Plane
NSFCP Non-Symmetry Free Cutting Plane
nB n-ary Branching
KSB Known Solution Branching

xv

Acknowledgements

Firstly, I would like to thank my supervisors Joerg Fliege and Stefano Coniglio. Through-
out my PhD they have provided me with guidance for all aspects of PhD life, without
which, I would not have been able to complete my PhD and I shall always be grateful
for.

I would like to thank all of my fellow PhD students, of which there are too many to
name, for the endless coffee/crossword/lunch breaks that made the Ketley room such
an enjoyable place to be. I would like to especially thank Ruth, Simos, Laura, Tom, Mar-
ton and Walton (Young CORMSIS plus Tom) for talking football, replacing my ‘Red-
ding’ mug and making my PhD experience one that I will always have fond memories
of.

To Joe, Alex and Saif of Smallspark Space Systems. The chance to work with you in my
first proper job not only allowed me to see how OR worked in the real world, but also
gave me the motivation to finish my PhD and get it over the line so that I can get back
to working with you full time.

Thanks to my parents: Mum for always being there to help me whenever I may ask
for it (especially when I block a drain or dont know how to cook something) and Dad
for constantly pushing me, both academically and with football. To my fiancée Jess.
We started my PhD watching Jeremey Kyle on beanbags and now we are planning our
wedding together. We have both come a long way over the last four years and I cannot
wait to spend the rest of my life with you. These three people are the bedrock of my
life and without them I honestly don’t know what I would do.

xvii

To . . .

1

Chapter 1

Introduction

Standard mathematical programs consider problems in which there exists a single de-
cision maker, aiming to optimise a single set of variables. Bilevel optimisation is a spe-
cific branch of optimisation, where the variables are partitioned into two sets. These
variables values are decided in a sequential manner, from individual decision mak-
ers, traditionally known as the leader and follower, or upper and lower levels, each
with their own constraints and objective functions. The leader determines the values of
their variables first, with the follower responding to the leaders actions by solving their
own problem, which is parameterised by the leaders variables. The inclusion of the fol-
lower dramatically increases the complexity for bilevel programs compared to standard
mathematical programs, as points are only considered bilevel feasible if they represent
an optimal response for the follower. Additionally, the introduction of discrete vari-
ables, along with non-linear terms, levitate the complexity even further. In this thesis,
we aim to formulate and solve a Mixed-Integer Non-Linear Bilevel Problem, MINLBP,
based upon a pricing problem. Firstly, we shall provide non-linear formulations of the
problem before using a combination of binary expansions and McCormick envelopes
to provide exact linear formulations, before demonstrating how sophisticated solution
techniques can be used with current readily available state-of-the-art solvers. In the rest
of this chapter, we give a brief background to bilevel optimisation, whilst discussing
our objectives and aims of this thesis.

Bilevel optimisation, or Stackelberg games, can be dated back to 1934, when Heinrich
Freiherr von Stackelberg discussed game theory in an economics setting [158]. Stackel-
berg games consist of multiple players, each of which act in a sequential manner, with
the aim of optimising their own objectives. The case just two players, the leader and
follower, was first described as a bilevel problem by J.Bracken and J.McGill in 1973 [26],
who discuss bilevel optimisation with the application to a military setting. Although
stemming from the 1930’s, bilevel optimisation did not receive a significant amount of
attention during the 20th century, largely due to the computational resources available
at the time. The majority of research papers focused on bilevel problems with specific

2 Chapter 1. Introduction

properties, such as linearity [163, 22, 33, 11, 108, 86, 114, 52, 52, 5, 20, 166, 124, 107, 66,
155, 38, 110], and any computational results had to be scaled down to small size prob-
lems. However, with the advancement of technology, the pool of solution methods and
feasible applications has increased.

As already mentioned, bilevel problems are significantly harder to solve than standard
mathematical programs [91, 14, 57], resulting in a large proportion of the literature,
and solutions methods, focusing on cases with assumptions, such as convexity and
continuity. As a result, in general, problems which include binary, or integer variables,
in the lower level, have far fewer solution methods available. This is clearly an issue,
given that we can find an abundance of real world instances, which can be formulated
as a Bilevel Problem with discrete variables in the lower level.

In this thesis, we shall formulate a bilevel pricing problem, based around the existence
of a set of commodities, which the follower wishes to purchase, to satisfy some combi-
natorial constraints. Meanwhile, the leaders objective is to apply some form of taxation,
by purchasing these commodities and selling them to the follower at an inflated price,
whilst conforming to their own budget constraints. We start with the basic formulation
where there is a single follower and commodities are unique with no duplicates. This
has the property that the followers feasible region is independent of the leaders vari-
ables. We then build up to the general case with multiple followers and commodities
can have a supply greater than 1, which we shall call the non-unit supple case. When
there are multiple versions of each commodity, should the follower wish to purchase
commodity j as part of their reaction, then they have sj many versions of j to purchase
from and shall select the cheapest version. Thus, we discover that the followers feasi-
ble region is perturbed by the leaders variables and therefore, must be reflected in the
solution methods used.

Clearly, one of the most relevant subjects with bilevel problems, are price setting prob-
lems [63, 98, 85, 59, 55, 67, 30, 59, 27]. . Due to the sequential nature, a majority of
problems that can be described as one party defining prices for commodities, whilst
another party decides which commodities to purchase can be formulated as a bilevel
problem. Possibly the most common example of this, is the network pricing, or toll set-
ting problems [85, 98, 55], where the leader can apply a taxation to a subset of arcs on
a graph, whilst the followers objective is to travel between their origin and destination
nodes in the cheapest way possible. In this scenario, the followers feasible region can be
found to be totally unimodular and reformulation techniques, usually reserved for in-
stances with non-discrete follower variables, can be applied to generate the single-level
reformulation used with solution methods. However, in general, this is not always the
case. For a more general approach, we wish to look at the case where we only know
the existence of the followers constraints and nothing about their structure, nor their
properties. With this model, we aim to generate linear formulations along with solution
methods which can be used with state-of-the-art solvers such as CPLEX.

3

This thesis is structured as follows; in Chapter 2, we provide the reader with a liter-
ature review on bilevel optimisation. We begin by outlining basic definitions used to
help with the understanding and formulation of our bilevel problem. Following this
we discuss three applications of bilevel optimisation: Facility Location; Interdiction and
Pricing problems, which appear most frequently in the literature, before outlining some
fundamental bilevel properties. We then present some existing solution methods, start-
ing with the continuous case, focusing on reformulation and enumeration techniques,
followed by integer solution methods.

In Chapter 3, we provide formulations for the bilevel pricing problem’s which can be
described as MINLBP’s. We begin with the simplest case where there is a unit sup-
ply and a single follower, increasing the complexity to a non-unit supply and multiple
followers who act collectively together rather than competing against each other. In
the literature, multiple followers are commonly mentioned, however a non-unit sup-
ply, causing the followers to decide between two identical commodities with varying
costs is rarely discussed. Here, we discover a max operator in the leader and followers
objectives, which causes us to perform further reformulations. The formulations up to
this point shall be non-linear, however, we generate the linear versions by using com-
binations of binary expansions and McCormick envelopes. Furthermore, we discuss a
cutting-plane reformulation method used in [53] and show how using McCormick en-
velopes could have tightened the feasible region. We then make an observation about
how ∑n

j=1 ∑m
i=1 yijxj can be linearised with McCormick envelopes in two ways, which

we shall describe as Summation and Direct.

In Chapter 4, we outline the various solution methods that can be used for the problem
formulated in Chapter 3, distinguishing between the unit and non-unit supply cases.
For the unit supply case, we demonstrate how a simple cutting-plane procedure can be
used in conjunction with the “standard” branch-and-cut framework commonly used
with Mixed Integer Bilevel Problems. Following this, we shall show that by having a
non-unit supply, this cutting-plane approach can no longer be directly applied, as the
cutting planes are no longer globally valid, because of the followers’ feasible region
becoming dependent on the leaders variables. As a result, this leads us towards four
solution methods. The first two are variable generation approaches. As the cutting
planes are only valid under specific circumstances, we introduce a series of variables
which indicate when such cutting planes can be applied. In this setup, we also discuss
how the existence of symmetric solutions can lead to a high number of variables be-
ing generated, even though the followers reactions are somewhat “unchanged”. This
brings us to introduce a symmetry-free method, where the cutting plane focus on the
commodities rather than the exact responses of the followers. For the latter two solution
methods, instead of introducing additional variables, we perform a tailored branching
strategy which partitions the feasible region into multiple sub-regions and only one of
which is the cutting plane valid and is thus applied locally.

4 Chapter 1. Introduction

Additionally, we also discuss three solution methods that can take advantage of the
leader having pre-computed a subset of follower solutions. The first solution method,
has two stages, the first of which we assume the leader knows a predefined subset Y
of possible follower solutions and the follower responds with a solution from this set.
This acts as a relaxed formulation of the original bilevel problem, therefore we must
then solve the case where the follower responds with a solution not from Y. The second
stage can be solved by using the cutting plane or branching strategies just mentioned,
with the additional constraints that the followers response must not be contained in
Y. However, for the first step, as the follower must respond from a pre-defined subset,
we can formulate the bilevel problem such that the follower’s feasible region is totally
unimodular. As a result of this characteristic, we can use reformulation techniques
such as the KKT or strong-duality conditions, which were previously unavailable. The
final solution method, tries to encompass these two stages into a single formulation,
by performing a Known-Solution-Branching, KSB, strategy, where |Y|+ 1 many child
nodes are created from the root node, with |Y| many fixing the followers response to
one in Y and the final node giving the follower free choice. This KSB strategy can be
also be used in conjunction with the four solution methods discussed in the previous
paragraph.

In Chapter 5, we present the computational tests conducted along with their results.
Three sets of instances were generated to compare the performances of the formula-
tions along with their solution methods, as well as demonstrating how the problems
parameters affect their performance. In the first set, we vary the number of commodi-
ties along with the supply for each commodity. In the second set, we shall modify the
number of followers and the supply of each commodity, which will allow us to com-
pare the Direct and Summation McCormick formulations. Then, finally in the third set,
we shall adjust the leaders budget, B and the maximum taxation the leader can apply
M.

Finally, Chapter 6 contains our conclusions and discusses future research avenues aris-
ing from this work. Appendix A provides the reader with the linear formulations dis-
cussed throughout with [149] providing results and additional plots receptively from
our computational study in Chapter 5.

5

Chapter 2

Literature Review

In this chapter, we shall provide the reader with a background into the literature which
focuses on bilevel optimisation. We shall begin by giving basic definitions and proper-
ties commonly used when discussing a bilevel problem, which help to understand the
solution methods discussed later. Following this we shall highlight three applications
where bilevel optimisation appears regularly, including pricing problems, which is the
basis of this thesis. Section 2.3 shall focus on existing solution methods used for solv-
ing bilevel problems with continuous variables. Although the formulations generated
in Chapter 3 are for a Mixed-Integer Bilevel Pricing Problem, we a present solution
method in Chapter 4 which assumes a totally unimodular lower level feasible region,
which allows for the use of solution methods such as the KKT reformulation which are
most commonly used for continuous bilevel problems. Lastly we move onto Integer
Bilevel Problems, discussing how integer variables affect the inducible region along
with their solution methods.

2.1 Properties of Bilevel Problems

Bilevel optimisation can be dated back to 1934 when Stackelberg games (non-cooperative
sequential games) were introduced, with applications to economics [158]. Stackelberg
games consist of multiple players, each of which act in a sequential manner, with the
aim of optimising their own objectives. In the simplest case, where there are two play-
ers, the first decision maker is referred to as the leader, with the second being the fol-
lower. This first described as a bilevel problem by Bracken and McGill in 1973 [26]. The
general bilevel problem, BLP, can be formulated as

6 Chapter 2. Literature Review

max
x,y

FU(x, y) (2.1a)

s.t. GU
i (x, y) ≤ 0 ∀i, (2.1b)

y ∈ arg min
y
{FL(x, y) : GL

j (x, y) ≤ 0 ∀j}, (2.1c)

where FU and GU are the leader’s objective and constraints respectively and FL and GL

are the follower’s objective and constraints respectively. Using (2.1), we can define the
constraint region as

Ω = {(x, y) : GU
i (x, y) ≤ 0, GL

j (x, y) ≤ 0 ∀i, j}, (2.2)

which is the set of points that satisfy both the leader’s and the follower’s constraints.
Using Ω, we can define the projection onto the leader’s feasible region as

Ωx = {x : ∃y s.t. (x, y) ∈ Ω}, (2.3)

which is the set of possible leader variables, such that there exists a feasible response
for the follower. Given that the follower’s problem is parameterised by the leader’s
variables, for every x we define the follower’s feasible region as

Ω(x) = {y : GL
j (x, y) ≤ 0 ∀j}. (2.4)

Using (2.3) and (2.4), we can rewrite the BLP, still in a two level format, as

max
x,y
{FU(x, y) : x ∈ Ωx, y ∈ arg min

y
{FL(x, y) : y ∈ Ω(x)}}. (2.5)

For a point (x, y) to be feasible for (2.1), we must have that y is the optimal solution for
the follower’s problem. Therefore, for a given x, we can define the set of reactions that
are optimal for the follower as

ψ(x) = {y : y ∈ arg min
y
{FL(x, y) : y ∈ Ω(x)}}, (2.6)

and the optimal value function as

φ(x) = min
y
{FL(x, y) : y ∈ Ω(x)}. (2.7)

2.1. Properties of Bilevel Problems 7

Although Ω contains the points that are feasible for the constraints, this is not equiva-
lent to the feasible region of (2.1). This is given by

IR = {(x, y) : x ∈ Ωx, y ∈ ψ(x)}, (2.8)

which, is labelled as the inducible region [13], the set of all points (x, y) such that for the
leaders variable x, there exists some follower response and y is the optimal response
of the follower. Alternatively, we could have defined the inducible region as IR =

{(x, y) : x ∈ Ωx, y ∈ Ω(x), FL(x, y) − φ(x) = 0}, where we focus on the followers
objective values rather than their reaction set. For any follower reaction y ∈ ψ(x), we
must have FL(x, y) = φ(x), so clearly these two descriptions of IR are the same. (2.1)
can therefore be rewritten as the single level problem

max
x,y

FU(x, y) (2.9a)

s.t. (x, y) ∈ IR (2.9b)

Figure 2.1 highlights how the inducible region and Ω can differ [14]. Here, the problem
being solved is given by (2.10). The constraint region Ω is outlined by both the solid
and the dashed line, whereas the inducible region IR, is the piecewise linear dashed
line. We can see that the inclusion of the followers objective function has dramatically
altered the optimal solution. Without the follower’s objective the optimal solution can
be found at (2, 4) with an objective value of−42. Whereas, with the follower’s objective
the optimal solution is at (8, 1) with an optimal value of −18.

min
x

− x− 10y (2.10a)

s.t. y ∈ arg min
y
{y : (2.10b)

s.t. − 25x + 20y ≤ 30 (2.10c)

x + 2y ≤ 10 (2.10d)

2x− y ≤ 15 (2.10e)

2x + 10y ≥ 15}. (2.10f)

Even when all functions are linear and the variables are continuous, the BLP is ex-
tremely difficult to solve even for relatively small problem sizes. When the leader and
follower problems admit convexity, the resulting BLP can still be non-convex and was

8 Chapter 2. Literature Review

FIGURE 2.1: Example of how the inclusion of the followers objective alters the optimal
solution [14].

shown to be NP-Hard by [91] and [14] with the mixed integer bilevel linear program
shown to be ∑P

2 -hard [57].

As can be seen in [145], interest in bilevel optimisation has dramatically increased since
the start of the 21st century. As a result, solution methods have developed over time,
with reviews of solution methods [157, 42, 145, 95, 163, 49] showing the advancements
being made.

These reviews provide a good insight into how not only methods are being developed
for solving BLP’s, but also the instances of problems that can be attempted given the
improvement of methods. [95] is one of the earliest reviews of bilevel optimisation,
covering both applications and solution methods. They acknowledge that most of the
algorithms present at the time can be partitioned into three categories; extreme point
search, Karush-Kuhn-Tucker (KKT) and descent methods. They note that without ‘sig-
nificant restrictions’ on the follower’s problem, due to the lack of good solution meth-
ods, it will be difficult to obtain a global optimum, possibly one of the reasons why
problems containing integer variables have not been discussed here.

The review [163] also disucss Vertex Enumeration, along with the KKT approach, whilst
briefly mentioning work being done on discrete bielvel programs. [112, 165] both pro-
vide branch and bound frameworks, specifically for BLP that contain binary variables.
Additionally, [165] produces a heuristic, which can solve the binary BLP to near opti-
mality in linear computation time as the number of binary leader variables increases
linearly.

[145] introduce how evolutionary methods can be used for solving BLP, focusing on
three specific branches: nested, single level reduction and metamodeling.

[66] originally developed theorems and properties for the maxmin problem

2.1. Properties of Bilevel Problems 9

max
x

min
y
{F(x, y) : G(x, y) ≤ 0 ∀j}. (2.11)

More specifically, they focus on the linear maxmin problem, where F(x, y) = cx + dy
and the constraints are By ≤ b− Ax. [13] extended these to the linear bilevel problem,
LBLP, given by

max
x≥0

a>x + b>y (2.12a)

s.t. max
y≥0
{c>x + d>y : Ax + By ≥ b̄} (2.12b)

The following theorems about the geometry of the solution space for (2.12) can be found
in both [10] and [13]

Theorem 2.1. The LBLP is equivalent to maximising ax + by over a feasible region comprised
of a piecewise linear equality constraint.

Given that the follower reacts after the leader, we can assume c = 0. Therefore, the fol-
lowers problem becomes maxy{dy : By ≥ b̄− Ax, y ≥ 0}. As we can see, this is a linear
program and therefore, should we not have unboundedness and the constraints admit
a feasible solution, then the solution occurs at a vertex of a piecewise linear function.
Thus, the solution to the LBLP must satisfy maxy{dy : By ≥ b̄− Ax, y ≥ 0} − dy = 0,
which is a piecewise linear equality constraint. This can also be seen in Figure 2.1
where the optimal solution lies on the dashed line which is given by 2x − y− 15 = 0
for x ∈ [0, 7.5] and 2x + 10y− 15 = 0 for x ∈ [7.5, 8].

Corollary 2.2. A solution to the LBLP occurs at a vertex of IR.

This result was given in [21] who also stated that the LBLP’s feasible region could be
described as (x, y) ∈ coIR, where coIR is the convex hull of the inducible region.

Theorem 2.3. The solution of the LBLP occurs at a vertex of Ω.

The proof to this is stated in both [21] and [10]. Following this, they authors note that
any vertex of the inducible region is also a vertex of Ω, leading to Corollary 2.4. From
this result, algorithms have been developed to solve LBLP using extreme point search
procedures.

Corollary 2.4. If x is an extreme point of IR then it is an extreme point of Ω.

Throughout [13], they have assumed the existance and uniqueness of a solution, how-
ever this is not always the case. As such, if |ψ(x)| > 1 there may be a follower solution

10 Chapter 2. Literature Review

which the leader would prefer the follower to choose, as it will give the leader a bet-
ter objective. This would imply that there is some cooperation between the leader and
follower, possibly through some side payments [167], which is somewhat contradic-
tory to the structure of bilevel optimisation. These scenarios, where the leader can
determine which response from ψ(x) the follower takes, are defined as Optimistic, or
strong, bilevel optimisation.

In contrast, for Pessimistic, or weak, bilevel optimisation, the leader anticipates the
worst case scenario, where the follower selects the response in ψ(x) that gives the leader
the worst objective. The BLP is then rewritten as a three level problem

max
x

min
y
{FU(x, y) : x ∈ Ωx, y ∈ Ω(x), y ∈ ψ(x)}. (2.13)

Modelling a problem as either an Optimistic or Pessimistic one can drastically affect the
optimal solution. [167] demonstrates the contrast in objective functions values with the
example minx{x : x ≥ y, y ∈ arg miny{−y2 : y ∈ [−1, 1]}}. As the followers problem
is independent of the leaders variables, the leader is forced to give x a value of at least
1, resulting in an optimal objective value of 1, in the Pessimistic case. Whereas, in the
Optimistic setting, x must have a value of at least -1, giving an optimal objective value
of -1. [154] focus their attention to the independent Pessimistic problem, where the
feasible region of the leader and follower are separate from each other.

It is assumed that the leader has full knowledge of the followers problem, however we
do not assume the reverse. Should the leader contain constraints that include both the
leader and follower variables, known as coupling constraints, then there is a possibility
that the followers optimal response to x is one that violates some GU

i . Therefore, it is the
responsibility of the leader to ensure that the followers optimal reaction is upper-level
feasible. One may assume that any coupling constraints can be shifted from the upper
level to the lower, to ensure feasibility. However, Figures 2.2 and 2.3 show how the
feasible points before and after shifting constraints are not necessarily the same and that
the optimal solution prior to the shifting can potentially be no longer feasible. Here, the
bilevel problem is given by (2.14), which can be found in [110], and has two coupling
constraints, (2.14b) and (2.14c), in the leaders feasible region. When these constraints
are part of the leaders problem, the inducible region is disconnected, with the optimal
solution found at C, (8, 6), giving a leader objective value of −20. Should the leader
have chosen a value of x such that 3 < x < 8, the follower would have reacted with a y,
which would be above the triangle ABC. This would have been an infeasible solution
for the leader, as at least one of their constraints would be violated, which means they
have to select an x such that x ≤ 3 or x ≥ 8. However, when (2.14b) and (2.14c) are
moved to the follower’s problem, the inducible region is no longer disconnected, the
leader can select and value of x and the optimal solution can be found at B, (6, 8), with
a leader objective value of −22.

2.2. Applications 11

min
x

− x− 2y (2.14a)

s.t. 2x− 3y ≥ −12 (2.14b)

x + y ≤ 14 (2.14c)

y ∈ arg min
y
{−y : (2.14d)

− 3x + y ≤ −3 (2.14e)

3x + y ≤ 30}. (2.14f)

FIGURE 2.2: Feasible region when the
linking constraints are in the leaders

problem.

FIGURE 2.3: Feasible region when the
linking constraints are in the follow-

ers problem.

2.2 Applications

As a result of the sequential nature of multi-level programs, we can find an abundance
of applications which can be modelled using the bilevel framework. [50] gives a com-
prehensive list of applications that have been investigated thus far. Examining this list,
we can see that Electricity Markets and Networks, Facility Location and Production
Problems, Problems over a Network and Interdiction Problems have received signifi-
cant attention.

2.2.1 Facility Location

As discussed in [47], one of the earliest works in facility location can be found in [162],
who consider the introduction of a single facility to minimise the distance between
facility and customer. Applications of facility location problems include emergency
medical service bases [131, 92], warehouse location [171, 80], school bus routing [123]
and waste management [135].

12 Chapter 2. Literature Review

There are two types of facility location problems, classical and competitive. In classical
facility location problems, the leader is planning on introducing a number of facilities
to the market, with the objective of minimising their costs, which combine the prices of
creating the new facilities plus some costs relating to the customers for each facility. The
customers, who act as the followers, will have a preference as to which facility they will
use [34, 82, 83], a parameter usually based upon, but not limited to, distance. [39, 40]
provide theorems related to valid inequalities and facets within the location problem,
with [75] presenting a branch and peg algorithm and [111] heuristically solving the
dual of the relaxation.

The competitive facility locations problems are the same as classical, with facilities be-
ing introduced and the follower selecting their preferred option. However, we now
allow for competitors in the decision space of the follower, meaning the leader’s facili-
ties will have to compete for the market [125]. Within this subsection of facility location
problems, there exist further subsections: static competition, competition with foresight
and dynamic competition [127].

2.2.2 Interdiction Problems

Problems where the leader and follower have the same objective function, but wish to
optimise in opposite directions, are often labelled as interdiction, or maxmin problems.
Examples of these problems include the shortest path interdiction problem [57, 90],
the binary knapsack interdiction problem [179] and project interdiction problems [29].
From this list of examples, we find applications to networks [148, 153], where the leader
intends to hinder the followers objective by the removal of arcs and/or nodes [168].

Applications of interdiction problems can be found in military settings, where the
leader aims to hinder enemy movement and effectivness by means of destruction or
damage. [169] gives examples of interdictions problems relating to a military setting,
dating as far back as 479BC.

2.2.3 Pricing Problems

As a result of their sequential nature, pricing problems cover a large area of the ap-
plications of bilevel optimisation. In general, the leader wishes to determine the price
of some commodities with the aim of maximising their revenue, knowing that the fol-
lower will purchase items that minimise their objective, usually total cost. An early
example of a pricing problem can be found in [22], who focus on a linear pricing prob-
lem. A classical example of this type of problem is the toll setting problem, [63, 98, 100,
99, 85, 59], where the leader determines some tolls across a set of arcs in a network,

2.3. Solution Methods 13

with the followers problem being that they wish to travel from their origin to their des-
tination at the minimum cost. [98] show that for the case where the leader has control
of a single arc, the bilevel problem can be solved in polynomial time.

Within pricing problems, there are a multitude of different leader and follower charac-
teristics that can influence what commodities are available to the follower, along with
their purchasing strategy, [152]. [60, 61, 93, 96, 139] focus their attention on models
based on reservation prices, where the followers give an initial valuation of how much
they are willing to pay for each product, purchasing the commodities who give them
the most value for money. Envy-free pricing is where the leader also takes into account
the fairness of the pricing to each customer, as studied in [27, 79, 67], however can only
applicable when the supply is limited, [30].

2.3 Solution Methods

The majority of solution methods for bilevel optimisation can be partitioned into two
groups, see [134]. The first of which are reformulation methods. The inclusion of the
follower problem within the leaders constraints is what causes BLP to be significantly
hard to solve. As a result, a large amount of research has been focused on creating a
single-level problem, by giving the leader control of the follower’s variables and re-
placing the followers problem with a set of constraints that inform the leader how the
follower would react. These reformulation approaches ensure that, even though the
leader has control of the follower’s variables, the constraints that have replaced the
follower’s problem are only satisfied if the followers variables represent a true reac-
tion of the follower. To do so, there are predominantly three approaches: Optimality
Conditions; Optimal Reaction Set Mapping and Optimal Value Function [141].

By using these reformulations, the leader is left with a single-level problem, which can
be solved using state-of-the-art solvers, whose solution methods have been adjusted
which can be done using callbacks. However, there are drawbacks to using these meth-
ods. The mapping and function required for the Optimal Reaction Set Mapping and
Optimal Value Function approaches respectively, are seldomly available. Therefore,
in most cases, approximations need to be made, which are iteratively improved as a
result of the previous iteration providing an incorrect reaction of the follower. Opti-
mality conditions also have their drawbacks. There exists optimality conditions that
can only be applied to follower’s problems that admit a specific structure, such as lin-
earity, meaning not all optimality conditions can be applied to all problems, unlike the
Optimal Reaction Set and Value Function methods.

The second group of solution methods can be described as enumeration techniques.
Such techniques can be defined as repeatidly solving programs and/or subprograms
until they terminate at a solution. A large proportion of these techniques rely on the

14 Chapter 2. Literature Review

property that the solution of an LBLP lies at a vertex of the feasible region created by
taking the union of the constraints from the leaders and followers problems. From this
property, numerous algorithms [12, 15, 22, 38, 122, 155] have been developed with the
“Kth-Best” algorithm being the most recognisable.

2.3.1 Reformulation Methods

With the difficulty of BLP’s stemming from the presence of an optimisation problem
within the constraints, a large amount of research has been carried out in creating
equivalent single-level problems. The goal is to generate an equivalent single-level
problem, which can then be solved with existing solution methods.

Fundamentally, such reformulation methods belong to one of three categories: Opti-
mality Conditions, Optimal Value Function and Reaction Set Mapping. With the Op-
timality Conditions, the aim is to replace the lower-level problem with a set of con-
straints that are necessary and sufficient for follower optimality. The Karush-Kuhn-
Tucker, KKT, are widely used for this purpose. However, as we shall show, they are
only necessary and sufficient when the followers problem meets specific requirements.
Although the Optimal Value Function and Reaction Set Mapping reformulation meth-
ods technically come under Optimality Conditions, their wide spread use allows them
to have their own category.

2.3.1.1 Optimality Conditions

Arguably the most common optimality conditions are the KKT conditions. These re-
place the follower’s problem with a set of constraints that are only satisfied by a local
minimum of the followers problem [56]. The single-level formulation is given by

max
x,y,λ

FU(x, y) (2.15a)

s.t. GU
i (x, y) ≤ 0 ∀i ∈ 1, . . . , qU , (2.15b)

GL
j (x, y) ≤ 0 ∀j ∈ 1, . . . , qL, (2.15c)

∇yL(x, y, λ) = 0, (2.15d)

λjGL
j (x, y) = 0 ∀j, (2.15e)

λj ≥ 0 ∀j, (2.15f)

where

2.3. Solution Methods 15

L(x, y, λ) = FL(x, y) +
m

∑
j=1

λjGL
j (x, y), (2.16)

and is commonly referred to as the Lagrangian. However, these KKT optimality con-
ditions can only be applied to problems that satisfy specific qualifications such as the
Mangasarian-Fromowitz constraint qualification (MFCQ) or the Linear Independence
Constraint Qualification (LICQ) [94]. Along with these, [18, 19] showed how we can
also include Cottle, Abadie, Kuhn-Tucker, Zangwill, Arrow-Hurwicz-Uzawa and Slat-
ter constraint qualifications to this list.

From [177] and [51] we get the following theorem.

Theorem 2.5. Let GU be independent from y and FL(x, ·) GL
j (x, ·) for all j be convex and C1

for all x ∈ Ω(X). Then, the following statements hold:

(i) Let (x̄, ȳ) be globally (resp. locally) optimal for (2.1) and the LMFCQ be satisfied at
(x̄, y), y ∈ arg min{FL(x̄, y) : GL

j (x̄, y) ≤ 0, ∀j}. Then, for each z ∈ Λ(x̄, ȳ), the point
(x̄, ȳ, z) is a global (resp. local) optimal solution of (2.15).

(ii) Let the LMFCQ hold at all (x, y), y ∈ arg min{FL(x̄, y) : GL
j (x, y) ≤ 0, ∀j}, x ∈ Ω(x)

(resp. at (x̄, y), y ∈ arg min{FL(x̄, y) : GL
j (x̄, y) ≤ 0, ∀j}) and (x̄, ȳ, z) be a global

(resp. local) optimal solution (resp. for all z ∈ Λ(x̄, ȳ)) of (2.15), then the point (x̄, ȳ) is
a global (resp. local) optimal solution of problem (2.1).

Here C1 is the class of functions whose derivates are continuous and LMFCQ refers to
the lower-level Mangasarian-Fromowitz constraint qualification which holds at (x̄, ȳ)

if there exists d such that

∇yGL
j (x̄, ȳ)> < 0 ∀j ∈ I2(x̄, ȳ), (2.17)

where I2(x̄, ȳ) = {j : GL
j (x̄, ȳ) = 0} and

Λ(x, y) := {z ∈ RqL |∇yL(x, y, z) = 0, z ≥ 0, GL(x, y) ≤ 0, z>GL(x, y) = 0}. (2.18)

From this theorem we learn that should the LMFCQ hold at the appropriate points,
for every globally (locally) optimal solution to the original bilevel problem then the
corresponding point is an optimal solution to (2.15) and vice versa. As discussed in
[177], this theorem can be very sensitive to the convexity and constraint qualifications,
with example 2.1 in [177] highlighting this with (2.15) not having a solution.

Likewise, should the follower’s problem not satisfy these qualifications, then the solu-
tions of the KKT conditions may not coincide with the local minima of the follower’s

16 Chapter 2. Literature Review

problem, as seen in Figure 2.4. Here, the bilevel problem is given by (2.19), and can
be found in [?], whose optimal solution is given by (0.957, 1). Taking the first-order

derivative of the follower’s objective function we get the equation x =
1− y
1 + y

e4y, which

is plotted in Figure 2.4. In this figure, the red sections of the line represent the in-
ducible region. However, using the KKT approach, we would get three (y, x) solutions,
(−0.98, 1.98), (0.42, 2.19) and (0.895, 1.99), with only (−0.98, 1.98) belonging to the in-
ducible region. Therefore, using the KKT approach would result in (0.895, 1.99) being
returned as the solution, which is neither feasible nor optimal.

min
x

(x− 2)2 + (y− 1)2 (2.19a)

s.t. y ∈ arg min
y
{−xe−(y+1)2 − e−(y−1)2}. (2.19b)

FIGURE 2.4: Example of how first-order fails with non-convex followers objectives [?
].

(2.15) is a mathematical program with complementarity constraints, MPCC, due to
λjGL

j (x, y) = 0, meaning that this single-level problem is nonconvex and therefore still
one which is difficult to solve [146]. Even so, there are existing methods that aim to deal
with these complementarity constraints. [15, 64] use a KKT reformulation, however by
dropping the complementarity constraints and solving the relaxed problem, nodes are
created when the complementarity conditions are not satisfied, with one node enforc-
ing λj = 0 and the other GL

j (x, y) = 0, for some j. Alternatively, [73] show that by
introducing additional binary variables and using big-M notation, the resulting MILP
can be directly implemented using readily available state of the art solvers, such as
CPLEX. However, as is the drawback with big-M’s, finding the goldilocks value for
M, where it is neither too large nor too small, can be a challenge in itself. [140] showed

2.3. Solution Methods 17

that using Special Ordered Sets, SOS, of type 1 give the same result as the big-M formu-
lation, without needing the corresponding big-M reformulation. SOS constraints can
also be handled by state-of-the-art solvers, also making this method advantageous by
its easy implementation, however the use of SOS constraints can be computationally
expensive [124].

The MPCC can be treated as a nonlinear program by relaxing the complementary con-
straints, such that the left hand side can take any value between 0 and t for some small
positive t [130, 136]. Obviously, when t = 0, the non-linear program is equivalent to
the KKT reformulation. The parameterised non-linear program typically satisfies some
constraint qualification and is therefore easier to solve [124]. Algorithms, generally,
iteratively solve the nonlinear program to optimality, while converging t towards 0.

[88, 107] provide penalty function approaches. Dropping the complementary con-
straints and incorporating them into the objective of the leader via a penalty function,
any solution that is bilevel infeasible will now appear as one with an unattractive ob-
jective function.

The algorithm presented by [124] aims to tune the big-M values by using the solu-
tions to the relaxed nonlinear programs, similar to [130, 136]. The resulting algorithm
is one which utilises the advantages described above which deal with the complemen-
tary constraints, whilst being easily implemented with readily available state-of-the-
art-solvers.

An alternative approach to the KKT reformulation is to use the strong-duality condi-
tion. For every linear programming problem, there exists its corresponding dual prob-
lem. Using the relevant theorems from [10], we can see that an optimal solution of a lin-
ear program occurs when the primal and dual objectives are equal for primal and dual
feasible variables. Therefore, should the followers problem be linear, it can be replaced
by the strong-duality condition. [119, 8] present reformulations of bilevel problems,
where the follower’s problem admits convexity. Generally, using the Lagrangian dual
leads to a single-level problem that is not generally differentiable due to the comple-
mentary slackness constraints. However, the authors of [119] present a reformulation
using an ε approximation of the bilevel problem using a regularised constrained La-
grangian dual function, which has the advantage of being differentiable and satisfying
the Mangasarian- Fromovitz Constraint Qualification, MFCQ.

[181] transform a weak linear bilevel program, using strong duality and show that the
solution of the resulting single level, with bilinear terms, is a solution to either one of
two disjoint bilinear programs. [5, 20, 166] demonstrate the use of a penalty function
approach, where the duality gap is penalised in the leaders objective.

18 Chapter 2. Literature Review

2.3.1.2 Optimal Value Function

For every leader variable x, we define φ(x) = infy{FL(x, y) : GL
j (x, y) ≤ 0 ∀j} as the

optimal value function. Shown in [120], the BLP can be reformulated as

max
x,y

FU(x, y) (2.20a)

s.t. GU
i (x, y) ≤ 0 ∀i, (2.20b)

GL
j (x, y) ≤ 0 ∀j, (2.20c)

FL(x, y) ≤ φ(x), (2.20d)

where it can easily be shown that the optimal solution to (2.20) is also optimal for (2.1).
Although (2.20) is a single-level problem and would appear to be easier to solve, this
is not always the case. φ is not easily computable and in general non-differentiable.
Similarly, at every feasible point, (2.20d) is an equality and therefore the constraint
qualifications, such as the MFCQ, are violated [173]. As a result, [173] discuss calmness
and partially calmness conditions, along with their relationship with the solution of
(2.20), with partial calmness first introduced in [41]. They also demonstrate the rela-
tionship between solutions that are partially calm and penalty programs where (2.20d)
is absorbed by the objective function.

[53, 97] use the value function reformulation for a specific problem type, where the
feasible regions of the leader and follower depend only on their respective variables, i.e.
Ω = {(x, y) : GU

i (x) ≤ 0, GL
j (y) ≤ 0 ∀i, j}. As the feasible regions are independent, the

solutions for the follower are never made infeasible by the leader variables. Therefore,
let Y = {y ∈ {0, 1}m : GL

j (x, y) ≤ 0}, where m is the number of follower variables,
be the set of all points contained in the followers feasible region, then (2.20d) can be
replaced by

max
x,y

FU(x, y) (2.21a)

s.t. GU
i (x, y) ≤ 0 ∀i (2.21b)

GL
j (x, y) ≤ 0 ∀j (2.21c)

FL(x, y) ≤ FL(x, yk) ∀yk ∈ Y. (2.21d)

[53, 97]’s definition of Y means that there is a finite number of follower points. Should
|Y| = inf, constraint (2.21d) can not be implemented and using a subset of Y would
be a relaxation of the original bilevel problem. Using this formulation [97, 53, 55, 52]

2.3. Solution Methods 19

present algorithms that repeatedly solve (2.21) to get the solution (x̄, ȳ) and then solve
the followers problem to get ψ(x̄). If ȳ ∈ ψ(x̄), then (x̄, ȳ) is optimal, else Y is updated
to include the solution ȳ and the process is repeated. [55, 52] show that from their
algorithm, not only will the accumulated point be globally optimal, but if the polyhe-
dron from the follower’s feasible region is compact, then only its vertices need to be
considered and thus the algorithm shall stop after a finite number of iterations.

This method can be expanded to cases where the feasible regions of the leader or fol-
lower contain variables from the other level, however, additional checks have to be
implemented as FL(x, y) ≤ FL(x, yk) is not a valid cutting plane globally for every
follower solution in Y.

For BLP’s, where a subset of the lower-level variables must take integer values, many
of the optimality conditions, such as KKT and strong duality, cannot be applied. Hence,
the optimal value function approach is a popular reformulation as it is satisfied for both
discrete and continuous problems. In [68, 70, 71, 69], Fischetti et al. present methods
using the high point relaxation, HPR, where constraint (2.20d) is dropped. The work
by Fischetti et al. is initially based on the work by [159, 172], who presented their
Watermelon Algorithm. As a result of being able to apply the optimal value function
with integer variable problems, we use this method in the solution methods found in
Chapter 4

2.3.1.3 Reaction Set Mapping

For the reaction set mapping approach, rather than achieving bilevel feasibility through
the followers objective value, we use rational responses of the lower level. Similar to
how we defined φ(x), the optimal reaction map ψ(x) is the set of reactions that are
optimal for the follower, i.e. ψ(x) = arg miny{FL(x, y) : GL

j (x, y) ≤ 0 ∀j}. Hence the
single-level formulation is

max
x,y

FU(x, y) (2.22a)

s.t. GU
i (x, y) ∀i, (2.22b)

y ∈ ψ(x). (2.22c)

Should the leader know completely how the follower will react, then this single-level
problem is exact and provide the optimal solution to the original BLP. However, full
knowledge of the follower’s reaction is very rare [145]. [144, 142, 143] present evolu-
tionary algorithms that approximate the lower-level optimal reaction as a function of
the leaders variables. Figures 1 and 2 in [141] show how ψ(x) can be approximated as
both a single valued map and as a set.

20 Chapter 2. Literature Review

Comparing the optimal value function and reaction set mapping, we find that the op-
timal value approach is less complicated as φ(x) shall always be a scalar value irre-
spective to the structure of the followers problem. Whereas φ can become complicated
when the follower’s reaction set is not singular. However, conversely, by computing ψ

we no longer need to compute the followers variables as they have already been gener-
ated within ψ, something which still needs to be done with the optimal value function.

2.3.2 Enumeration Techniques

2.3.2.1 Vertex Enumeration

Discussed by [22] and earlier by [33, 11], an important property about the location of
an optimal solution is presented. Let the leader and the follower objectives both be
linear and let S be the feasible region defined by the constraints from the upper and
lower levels. Then the optimal solutions to the linear bilevel problems occurs at an
extreme points of S. [22] present four algorithms based on vertex enumeration, with
the “Kth-Best” algorithm possibly being the most famous [33]. [83] outline a branching
algorithm for a linear bilevel program, based on which constraints must be active at an
optimal solution. [66] also present a vertex enumeration algorithm within a branch and
bound framework.

2.3.2.2 Evolutionary Techniques

Many of the reformulation techniques that have been described thus far rely on spe-
cific assumptions, such as linearity and convexity, which limits the applications these
algorithms can be applied to. However, genetic algorithms don’t heavily depend on
such assumptions and therefore are an alternative solution method. For example, the
algorithm in [161] is able to handle a non-differentiable leader objective function and
a non-convex follower’s problem. One of the first evolutionary algorithms for bilevel
optimisation can be found in [108], who use a genetic algorithm for the upper level and
linear programming in the lower level. A similar approach can be found in [174], who
instead use a Franke-Wolfe algorithm to solve the lower-level problem. Such methods
are often referred to as nested methods, where the lower-level problem is solved for a
population of upper-level points.

Along with nested methods, evolutionary methods can be used in conjunction with
classical techniques. [86, 114] both present genetic algorithms that solve the single-
level reformulation, after replacing the lower level with its KKT optimality constraints.
The latter solves the program by introducing binary variables to tackle the complemen-
tary constraints. [160] similarly solve the KKT reformulation of a non-linear bilevel
problem by solving a specific two-objective program using a genetic algorithm where

2.4. Integer Bilevel Problems 21

FU and GU are both non-differentiable and non-convex, whereas FL and GL are dif-
ferentiable and convex for fixed leader variables. The multi-objective reformulation is
created by the lower level being replaced with its KKT conditions, with the second ob-
jective coming as a penalty function. The standard evolutionary techniques, mutation,
crossover and selection, are iteratively applied to a population. The authors note that
after these processes, a population may contain points that violate one of the constraints
and are therefore infeasible. To handle this, they invoke a constraint-handling proce-
dure, which first makes the infeasible point feasible for the linear constraints, then the
equality constraints and finally the non-linear constraints. [31] use a genetic algorithm
along with the knowledge that a solution occurs at a vertex of the inducible region to
create a genetic algorithm that solves the bilevel program with linear objective func-
tions and IR is a polyhedron.

[102] focus on non-linear bilevel problems where FU and FL are non-convex, FL is a
function of the linear expressions of all variables and the constraints in GL are convex
with respect to the followers variables. They recognise that a point (x, y) is only bilevel
feasible if y is the optimal response for the follower, therefore, when creating a popu-
lation, there is a high chance that a large proportion of points will be infeasible. Thus,
they create their own population for the leader’s variables and then solve the follower’s
problem using a decomposition scheme, to obtain a population that is approximately
bilevel feasible. From this population, they use the standard crossover and mutation
techniques to generate the new population, where the fitness function continues the
work by [137]

Should ψ or φ be known, then the bilevel program can be reduced to their correspond-
ing single level. [142] presents an evolutionary algorithm that creates a mapping for ψ

which is improved at each iteration.

The disadvantage with evolutionary techniques is the computational expense. By gen-
erating a large pool of upper-level solutions, each of which has a nested optimisation
problem, the computation required for bilevel problems even with a relatively small
number of variables can still be large [142].

2.4 Integer Bilevel Problems

In many of the applications that have been listed earlier, there is a need for a subset
of variables to take integer values. For example, in the facility location and toll setting
problems, we can find binary variables which act as decisions, whether a facility is
constructed or if an arc is traversed by the follower, respectively. Similar to single-level
optimisation, the inclusion of discrete variables can mean that the feasible region is no
longer continuous and in general makes the problem much more difficult to solve. For
bilevel optimisation, we can categorise any problem into one of four classifications:

22 Chapter 2. Literature Review

1. Continuous-Continuous. All leader and follower variables are continuous and
have no integrality constraints.

2. Continuous-Integer. All of the leader’s variables are continuous, with a subset of
the follower’s variables having integrality constraints.

3. Integer-Continuous. A subset of leader variables have integrality constraints and
all of the follower’s variables are continuous.

4. Integer-Integer. A subset of both leader and follower variables have integrality
constraints.

Of course, we can have Mixed-Integer Problems in both the upper and lower level,
however, these classifications are just used to demonstrate how integrality constraints
can dramatically alter the inducible region. Figure 2.5, [156], illustrates the inducible
region for a problem where the lower level is given by

min
y

y (2.23a)

s.t. x + y ≤ 2 (2.23b)

− x + y ≤ 2 (2.23c)

5x− 4y ≤ 10 (2.23d)

− 5x− 4y ≤ 10. (2.23e)

Let IRi be the inducible region of classification i. [156] shows that IR3 ⊂ IR1 and
IR4 ⊂ IR2. These two relationships are very useful for computing upper and lower
bounds, similar to how bounds are discovered for standard single-level MIPs. The
general mixed-integer linear bilevel program, MILBLP, can be formulated as

maxxC ,xI cU
C xC + cU

I xI + dU
C yC + dU

I yI (2.24a)

s.t. AU
C xC + AU

I xI + BU
C yC + BU

I yI ≤ bU , (2.24b)

(yC, yI) ∈ arg min
yC ,yI
{dL

CyC + dL
I yI :

AL
CxC + AL

I xI + BL
CyC + BL

I yI ≤ bL},
(2.24c)

where xC, xI are the leader’s continuous and integer variables respectively, and simi-
larly for the follower’s variables yC, yI . Unlike MILPs, MILBLPs are ∑P

2 -hard. Gener-
ally, a problem in the ∑P

k class can be solved in a non-deterministic polynomial time if
there exists some oracle for solving problems in the ∑P

k−1 class [104]. This implies that

2.4. Integer Bilevel Problems 23

FIGURE 2.5: The Inducible Regions for the four types of variable classifications.

MILBLPs can be solved in a non-deterministic polynomial time if there exists an oracle
for solving problems in the ∑P

1 class, which is NP .

As we have presented, it is common practise to reduce the bilevel problem to a sin-
gle level. When the follower’s problem is continuous, cases 1 and 3, we can use the
reformuation techniques that have already been described, such as the KKT or strong-
duality methods, which is the case in [176]. [165] present exact methods, using branch
and bound for the case where the upper levels integer variables are binary. [164] use a
simple tabu search, which again only allows for binary leader variables. [65] rewrite the
follower’s problem using multiparametric programming, from which they obtain the
rational reaction set of the follower, which is used to create the single-level formulation.

Generally, integer follower variables lead to a non-convex feasible region and there-
fore some of the reformulation approaches that rely on gradients and duality cannot
be applied. The first set of heuristics developed for solving MILBLPs with continu-
ous and integer leader and follower variables can be found in [113], who use a branch
and bound framework with adjusted MILP fathoming rules. Branching is common
practise for solving MILPs, where child nodes are created as a result of fractional so-
lutions. With MILPs, bounds can be obtained using the relaxation at the node, which
can then be used to fathom unexplored nodes, reducing the computational expense.
However, with a BLP, not all fathoming rules for MILPs can be directly applied. As
a results, [113] discussed three observations. 1) The solution of the relaxed BLP does
not provide a valid bound on the solution of the mixed-integer BLP, 2) solutions to the
relaxed BLP in the inducible region cannot in general be fathomed and 3) all integer

24 Chapter 2. Literature Review

solutions to the replaced BLP with some of the followers variables restricted cannot in
general be fathomed. [113, 16, 15, 64] present branch and bound algorithms. [15, 64] use
a KKT reformulation, by dropping the complementary terms and branching if neces-
sary. [113] present a depth-first approach, whereas [16] present both bredth-and depth-
search techniques. As a result of the fathoming rules a branch and bound heuristic may
not provide tight bounds.

Similar to branch and bound, branch and cut methods have been used for MILBLP’s
in [151, 159, 172, 68, 70, 71, 69]. Branch and cut methods for MILBLPs have the same
concept as for MILPs and will introduce cuts locally, or globally, to remove any un-
wanted solutions. [151] generalises the cuts for bilevel problems into three categories:
feasibility cuts, optimality cuts and projected optimality cuts.

An early example of a branch and cut algorithm can be found in [48] who use a Chvátal–
Gomory cut to remove a solution to the relaxed bilevel problem should the solution not
meet the integrality requirements.

[159] call their algorithm the “Watermelon Algorithm” as a result of its resemblance
to how one may eat a watermelon, whereby unwanted integer solutions are pips that
are not to be eaten and must be removed from the feasible region. Using a branch
and bound framework, at every node k of the tree, the HPR, (2.20a)–(2.20c) is solved.
The node solution (x, y)k is then part of a feasibility check to see if it is bilevel feasible.
If the point is infeasible, then (2.20d) is violated. Wang and Xu create a polyhedron
C(t), containing the point (x, y)k and no integer points that are bilevel feasible. They
minimise the distance between the facets of this infeasible polyhedron to the facets of
the feasible region, given by GU and GL. C(t) is locally removed by partitioning the
feasible regions into m + 1 sections, where m is the number of facets of C(t) and m
branches are created to be explored further.

The work by [68, 70, 71, 69] is very similar to that in [159, 172]. They too begin by using
a branching tree, solving each node problem and creating an infeasible polyhedron if
(2.20d) is not satisfied. However, instead of creating m child nodes, they remove a por-
tion of this infeasible region by using an intersection cut, between C(t) and the feasible
region. The results from their tests show that their solver ‘consistently outperforms’
the alternative methods, even those that exploit problem specific information.

[129, 58] establish that inequalities that remove fractional points remain valid in the
bilevel context. Therefore, they employ a ‘standard’ branch and cut procedure until
an integer point is reached. The cuts used in [35] are non-linear and are only applied
at points which have been discovered to be bilevel infeasible. Although the cuts are
non-linear, they remove more than one bilevel infeasible integer point, unlike [58]. In
[58], the inequality used to remove the infeasible solution is

2.4. Integer Bilevel Problems 25

∑
j∈I

GL
j (x, y) ≤ −1 (2.25)

where I is the set of binding inequalities at the infeasible point. As they discuss, the
resulting feasibility cut ensures that bilevel infeasible solutions are not generated from
their algorithm, however this cut shall only remove a single integer point.

[53, 97] also use a branch and cut framework, using a relaxed value function. Given
that the follower’s variables are binary and thus bounded, there exists a finite num-
ber of solutions available, denoted as Y = {y1, . . . , ym}, thus formulation (2.21) can be
applied. However, even though the number of follower solutions is finite, Y grows ex-
ponentiually as the number of lower-level variables increases. Therefore, enumerating
all possible solutions would be expensive. The authors choose to construct a relaxed
value function by only considering a proportion of Y.

These branch-and-cut frameworks provide a great basis for solving bilevel problems
containing integer variables. In Chapter 4 we present our solution methods for a bilevel
pricing problem, a majority of which focus on solving the HPR using a branch-and-cut
method.

[175] extend the work by [178], by allowing for follower variables to appear in the
leaders constraints. Their algorithms are based on a column and constraint generation
approach, which iteratively adds integer follower solutions to a relaxed single-level re-
formulation of the original MILBLP. To create the single level, they use the value func-
tion approach similar to [53, 97], by only enforcing optimality with respect to a subset
of follower solutions in Y. In contrast to [53, 97], they allow for the leader and follower
decision spaces to contain continuous variables. As the follower’s integer variables act
as parameters, the continuous part of φ can be treated as an LP, with the KKT conditions
enforcing optimality. As they show, including the KKT conditions for every point in Y
can lead to an infeasible single-level problem if the original MILBLP does not satisfy the
relatively complete response property, which states that for any (xC, xI , yI) there must
exist a feasible and finite yC for the follower. Rather than restricting themselves to this
specific type of problem, they adjust the structure of their single-level problem so that
the KKT conditions are only enforced for leaders variables (xC, xI) if for yI ∈ Y there
exists a feasible and finite yC. This single-level problem is known as the master prob-
lem, with two other sub-problems contained within the algorithm. The first of which is
a follower optimality check, where for a given (xC, xI), the solve the followers problem
to get (yC, yI). The latter, checks upper-level feasibility for the solution (yC, yI), whilst
simultaneously searching for follower solutions that have the same follower objective
but provide the leader with a better objective. Solution yI is added to the set Y, unless
there exists a solution to the second sub-problem, in which case that solution is added
to Y and the algorithm begins the next iteration.

26 Chapter 2. Literature Review

[9] use a multi-parametric approach to partition the original MILBLP into a series of sin-
gle level ILP’s that can be solved in parallel. Their method can also be applied to mixed-
integer quadratic bilevel problems, following on from the work by [115, 116] who use
McCormick inequalities to linearise any bilinear terms. [62] also use McCormick en-
velopes to linearise their reformulation. Taking the lower-level problem, they obtain
an LP by multiplying the constraints by a polynomial of the follower’s variables and
linearising using McCormick envelopes. From this single level, they too use multi-
parametric programming to obtain numerous integer programs which are solved inde-
pendently. Although the integer programs are relatively easy to solve, compared to the
MILBLPs, the large amount of them can lead to an excessive runtime. [128] recognise
this in one of their examples and instead propose a Lagrangian reformulation method
to obtain feasible solutions that can be used to generate good bounds and strong cuts.

[126] focus on a specific type of MILBLPs where there exists a single constraint in the
upper level which includes follower variables and coefficients are the same as the fol-
lower’s objective function. They highlight two assumptions, that are present in the ap-
plications of the power edge set problem and the minimum zero forcing set problem. A
cut generation algorithm is presented for when these assumptions are relevant, along
with a more general row and column generation algorithm for when the assumptions
do not hold.

[54] transform a specific discrete bilevel problem into a single-level continuous problem
using the optimal value reformulation and a penalty function, taken from [106] but
originally formulated in [132]. More specifically, the bilevel problem they focus on has
a continuous upper level, discrete lower-level, a bilinear lower-level objective but linear
with respect to the follower’s variables and independent upper and follower feasible
regions. They then provide necessary conditions for both the optimistic and pessimistic
cases under the assumption that the leader’s objective and constraints are continuously
differentiable and the follower feasible region is non-empty.

Due to the difficulties encountered with standard MILBLPs, a large proportion of re-
search has been focused towards formulations whose discrete variables are binary.
However, we can transform MILBLPs into a binary one by converting the integer vari-
ables to a set of binary variables [77], a method also used in [62].

Decomposition methods focus on breaking down the difficult MILBLP into much more
manageable sub-problems. Within these sub-problems, there will exist a master sub-
problem which will be the focus of the algorithm, with smaller slave sub-problems
that will provide useful information, such as cuts, bounds, variables fixings, etc. to
be applied to the Master sub-problem. Such a method is heavily associated with Ben-
ders Decomposition, see [24] for details. [36, 134, 72] use decomposition approaches
to solve MILBLPs that have integer and continuous upper- and lower-level variables
respectively. [134] is based on a Benders decomposition method, where cuts are added

2.4. Integer Bilevel Problems 27

to a restricted master problem until convergence to the optimal solution. They use the
KKT reformulation approach and active constraints strategy [76] to create a single-level
formulation in their sub-problems. [36] use a similar approach, but allow for leader
constraints.

As mentioned previously, the majority of methods are restricted to assumptions such
as linearity and convexity. Evolutionary methods can be useful for MILBLPs as these
do not meet convexity assumptions. [7] use a standard genetic algorithm to solve an
interdiction problem based on the electricity grid. [3, 32] focus on the facility loca-
tion problem, the former using a tabu search matheuristic and the latter applying a
genetic algorithm to the single-level problem created after strong duality has been en-
forced. [37] use a genetic algorithm in both the upper and lower level. Firstly, they
decompose the upper level into clusters that span the leaders feasible region, which
are evolved in parallel and the best solutions from the clusters are exchanged with a
crossover procedure. To evaluate the fitness of the upper-level variables, they solve the
lower-level problem, with the leader’s variables as parameters, using the same genetic
algorithm procedure. [81] tackle the profitable tour problem with a genetic algorithm,
where, rather than enumerating the follower’s optimal solutions for each leader solu-
tion from scratch, they use a subset of possible follower solutionsK. For each candidate
leader solution, they use knowledge filtering to select the best response from K along
with knowledge assimilation, where they carry out a local search to find a follower
response which is a more meaningful estimate. [84] discuss a genetic algorithm that
can handle non-linear mixed-integer bilevel problems using exponential and gaussian
distributions for the crossover and mutation procedures respectively. [101] present a
co-evolutionary algorithm, following the work from [117].

[103] propose a genetic algorithm that solves linear bilevel programming problems,
with purely integer variables in the upper and lower level. The general approach for
using genetic algorithms with bilevel optimisation is to generate a population of leader
feasible solutions and then solve the corresponding follower’s problem, using a stan-
dard integer programming technique, in this case they use branch and bound. How-
ever, the authors recognise that this can be computationally expensive when the size
of the population is large. Therefore, they invoke a roulette wheel selection method.
Taking the population, they solve the relaxed follower’s problem, where integrality is
dropped. The fitness of each of these points is given by the leader’s objective. Proba-
bilities are then given to each point, with the best fitness having the largest probability
and the worst fitness having the smallest probability, with the roulette wheels selection
determining which points to solve to optimality.

29

Chapter 3

Mixed-Integer Linear Bilevel
Problems

In this chapter, we introduce the problem which is the focus of this thesis. The problem
is based upon a pricing situation, where there exists some set of commodities that can
be bought from a market by the leader and the follower. The leader shall purchase
commodities from the market at their base cost and re-list them, back on the market,
with some taxation added to the cost. The follower’s objective is to purchase a set
of commodities, which satisfy come combinatorial constraints they may have, in the
cheapest manner possible. Figure 3.1 illustrates the problem, along with the order in
which the leader and followers actions are taken.

The problem itself is similar to the joint design and pricing model found in [28], which
models the leader gaining a revenue by applying a taxation to a subset of arcs in a
graph, incurring a cost for any arcs in which a taxation is added, with the follower aim-
ing to traverse between their origin and destination nodes in the cheapest manner. In
our case, we assume that the follower’s variables are binary and that their feasible re-
gion is unaffected by the leader’s variables, with the leader’s variables only appearing
in the follower’s objective function. Also, in [28], the arcs that the leader can apply a
taxation to are fixed, whereas in our problem they are not.

3.1 Motivation

The original motivation for this problem stemmed from the popular football simula-
tion game FIFA. In FIFA, there exists a game mode where real-life football players are
represented by cards. These cards can be used by gamers to create teams to play with
against other gamers. To acquire these cards the gamers can purchase them from other

30 Chapter 3. Mixed-Integer Linear Bilevel Problems

Market

Commodities

j1
j2
...
jn

Leader

Follower

1. Leader Buys from
Market

2. Leader Lists on
Market

3. Follower Buys
from Market

FIGURE 3.1: Outline of the problem to be solved

gamers, who are selling, from the transfer market. The transfer market has an EBAY-
like structure, where everyone can buy and sell cards.

One of the game modes is titled squad building challenges, SBC. Here, the gamers will
exchange a team of cards for some rewards, with a series of constraints on which cards
can be submitted, restricting their choices and thus creating the challenge. Figure 3.2
gives an example of a challenge. Here, the constraints are restricting how many differ-
ent nationalities and leagues can be used along with the team rating and chemistry, an
in-game function which affects the performance of a team.

Gamers try to complete these challenges in the cheapest way possible, making the re-
wards more appealing. As such, they will try and purchase the cheapest set of players
from the transfer market that satisfy the SBC’s constraints. These gamers represent
the followers in our formulation. Meanwhile, other gamers shall recognise that they
can purchase the same players from the transfer market and re-list them at an inflated
price and the follower will still purchase them so long that they are part of the cheapest
solution. These gamers represent the leader in our formulation.

This problem admits similarities to arbitrage problems, where commodities are instan-
taneously bought and sold at higher prices to generate profit. Examples of arbitrage
can be found in [170, 45, 2, 180], which relate to energy markets and day-ahead prices.

3.2 Single Follower, Unit Supply

In this section, we shall focus on the simplest case, where there exists just a single
follower and there a single version of each commodity. The formulation for this is
given by

3.2. Single Follower, Unit Supply 31

FIGURE 3.2: Example of a team that satisfies an SBC. Here, there are restrictions on
how many nationalities and leagues must appear in the team, along with specific val-

ues for the teams rating and chemistry.

max
x,x̄ ∑

j∈J
(yj x̄j(xj + cj)− x̄jcj) (3.1a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (3.1b)

∑
j∈J

x̄jcj ≤ B, (3.1c)

x ∈ [0, M]n, (3.1d)

x̄ ∈ {0, 1}n, (3.1e)

y ∈ arg min
y
{∑

j∈J
yj(xj + cj), (3.1f)

Ay> ≤ b, (3.1g)

y ∈ {0, 1}n}. (3.1h)

Here, x and x̄ are the leader’s variables, with xj being the taxation applied to commod-
ity j, where J is the index set of the commodities, |J | = n, and x̄j is the leaders binary
decision as to whether the leader should buy commodity j, to allow them to apply a
taxation to generate profit. y are the follower’s variables, where yj is a binary variable
as to whether they purchase commodity j. cj is the base cost for each commodity j, M
is the maximum taxation that the leader can apply and B represents the budget of the
leader.

The leader’s objective, (3.1a), has two parts, yj x̄j(xj + cj) and−x̄jcj, which represent the

32 Chapter 3. Mixed-Integer Linear Bilevel Problems

leader’s income and expenditure, respectively. The leaders income on a commodity j
is equal to the base cost, cj, plus the taxation, xj, that they have applied. However,
they shall only receive this if they have purchased the commodity, i.e x̄j = 1, and if the
follower also purchases this commodity, i.e. yj = 1, resulting in yj x̄j(xj + cj). This can
be reduced to yj(xj + x̄jcj) as when x̄j = 0 then xj = 0, due to constraint (3.1b), thus
the quadratic yjxj is equal to the cubic yj x̄jxj. The leaders expenditure is the sum of
the commodities that they have bought at their initial cost, giving ∑j∈J x̄jcj. Constraint
(3.1b) is an implied upper bound constraint and ensures that the leader cannot apply
any taxation to a commodity that they have not bought. (3.1c) is the leaders budget
constraint. (3.1d) limits the taxation range, only allowing non-negative taxation. (3.1f)
is the follower’s objective function and is the product of the follower’s decision variable
and the final price of the commodities, after any taxation from the leader is added and
(3.1g) is the set of combinatorial constraints that limit the choice of the follower.

Comparing this formulation to the generic bilevel formulation (2.1), we can see that
the constraint regions for the leader and follower are independent. The leader is only
constrained by their own budget, as to which commodities they can purchase and the
follower is only constrained by their own combinatorial constraints. This means that
for any point (x, x̄) generated by the leader, there will always exist a solution y that
the follower can respond with, assuming that the follower’s feasible region is non-
empty. This feature shall become useful later, when we introduce a solution method
that utilises cutting planes.

In similar bilevel problems, an assumption is made in that there exists some non-
taxable commodities, always available for the follower to purchase. The purpose of
this is to stop the leader just assigning unlimited taxations, causing infinite objectives
for both the leader and follower. In our case, there are no commodities which are un-
available to the leader, but we have prevented the infinite objective in two ways. First,
the leader has a budget constraint given by (3.1c). In most realistic cases, this means
that the leader will not be able to purchase every commodity, so there should exist
some commodities which have no taxation. Second, and possibly most importantly,
we have capped the taxation that can be applied to any commodity to M. This means
that the leaders objective function is upper bounded to Mn, which can only be achieved
if the leader buys every commodity, applied the maximum taxation and the follower
then buys every commodity. Likewise, the follower’s objective has an upper bound of
min{yj(M + cj) : Ay> ≤ b, y ∈ {0, 1}n} which is clearly finite given that y is a binary
variable and n is also finite.

In some bilevel problems, we have to state whether we are considering the optimistic
or the pessimistic case, when the follower can react in more than one way, each produc-
ing the same follower objective, but differing leader objectives. In our case, we assume
the optimistic case, however, we can also show that, similar to many other pessimistic

3.2. Single Follower, Unit Supply 33

problems, such as the one in section 2.2 of [17], should we assume pessimism, the maxi-
mum objective turns into a supremum. This supremum is thus a value which the leader
can always improve towards but never reach. As a result of the continuous taxation,
in the pessimistic case, should there be multiple solutions producing an equal objective
for the follower, the leader can reduce the total taxation being applied to the one that
gives the leader a better objective function by some ε. This now leaves the follower
with a single optimal response and the leader will have only lost ε from their objective
function. For the case where the taxation can only take integer values, this is clearly not
the case.

As mentioned, the leaders objective function has two parts, their income yj x̄j(xj + cj)

and their expenditure −x̄jcj. The leader shall only receive income for a commodity j
when x̄j = 1 and yj = 1, i.e., both the leader and follower have purchased j. Therefore,
one may assume that in the optimal solution there will not exist some j such that x̄j = 1
and yj = 0, however Example 3.1 illustrates that this is not the case.

Example 3.1. Lets assume that there are 2 commodities, j1 and j2 with costs of cj1 and cj2

respectively, with cj1 < cj2 . We also assume that the leader’s budget constraint allows for the
leader to purchase both commodities, i.e. B ≥ cj1 + cj2 and that the only follower constraint is
that they must purchase at least one of the commodities. If the leader purchases j2 only, then,
because taxation is only positive, the follower will always react by purchasing j1, giving the
leader an objective value of 0 − c2 = −c2. If the leader purchases commodity j1 only, then
the maximum taxation they can apply is cj2 − cj1 , as any more than this and the follower will
respond by purchasing j2, which gives the leader an objective value of ((cj2 − cj1) + cj1)− cj1 =

(cj2 − cj1). However, if the leader purchases both j1 and j2, the leader can keep increasing the
taxation on j1 to M as they are able to also increase the price of j2, such that j1 always remains
the cheaper option. So, if the leader sets xj1 = M and xj2 ≥ M− (cj2 − cj1), j1 shall remain
the cheapest commodity and the follower will purchase it, with the leader getting an objective
value of (M + cj1)− (cj1 + cj2) = M− cj2 , which is the optimal solution even though we have
x̄j2 = 1 and yj2 = 0.

We also obtain the following observations.

Observation 3.1. For any instance of (3.1), the leaders optimal objective function is lower
bounded by 0.

Proof. For any instance, the leader has the option to do nothing, i.e. x = x̄ = {0}n. This
means that they have 0 expenditure, because they have not bought anything and they
have no income because they have nothing to apply a taxation to. Therefore, they can
always achieve an objective of 0 and will never have a negative objective.

Observation 3.2. For a given solution (x, x̄, y), if there exists some j ∈ J such that x̄j = 1
and xj = 0, then the leader can improve their objective by cj by setting x̄j = 0.

34 Chapter 3. Mixed-Integer Linear Bilevel Problems

Proof. If there exists some j ∈ J such that x̄j = 1 and xj = 0, then the leader has pur-
chased a commodity but has not applied any taxation to it, thus the commodities price
has remained unchanged. Therefore, by not buying it, the final cost of the followers
solutions remain unchanged, so their response remains the same and the leader has cj

less expenditure.

Observation 3.3. For the formulation (3.1), the optimal objective value for the leader is the
same for when we allow the leader to apply negative taxation, i.e. x ∈ [−M, M].

Proof. Let’s assume that in (3.1) we have replaced constraint (3.1d) with x ∈ [−M, M]

and that the optimal solution is (x∗, x̄∗, y∗), where we define X− = {j ∈ J : x∗j <

0} as the set of indices where negative taxation has been applied. First, if for all j ∈
J , such that y∗j = 1, we have x∗j ≥ 0, then clearly we can place 0 as a lower bound
on x. Secondly, if there exists some j ∈ X−, such that y∗j = 0, then this is not an
optimal solution. The leader has bought a commodity and then applied a negative
taxation, which does the opposite to that described in Example 3.1, which means they
can improve their objective by ∑j∈X− cj by not purchasing the commodities in X−.

Lastly, if there exists some j ∈ X−, such that y∗j = 1, then there exists an alternative
solution (x′, x̄′, y∗), which gives the leader the same objective function, but for all j ∈ J ,
x′j ≥ 0. As already shown, we have a lower bound of 0 on the leaders optimal objective.

Thus, by defining X+ = {j ∈ J : x∗j > 0}, we must have that ∑j∈X+ y∗j x∗j ≥ ∑j∈X− |y∗j x∗j |,
i.e., the amount of income the leaders receive from the positive taxation must be greater
than the absolute of the negative taxations. If this is the case, then, by defining x′ and
x̄′ such that

x′j =

0, j ∈ X−,

x∗j −
∑j∈X− |x∗j |
|X−| , j ∈ X+,

(3.2a)

x̄′ =

0, j ∈ X−,

1, j ∈ X+,
(3.2b)

the leader should achieve a better objective as, although the amount of income from
taxation remains the same, they have less expenditure with x̄′ than with x̄∗.

3.3 Multiple Followers

In (3.1), we assumed that there was a single follower, with a single set of constraints.
Now, we shall expand the formulation by assuming there exists multiple followers, that

3.3. Multiple Followers 35

can be partitioned into groups, each with their own unique set of constraints to satisfy.
As such, we get the following formulation

max
x,x̄ ∑

j∈J

(
∑
i∈I

di

∑
k=1

yik
j (xj + x̄jcj)− x̄jcj

)
(3.3a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (3.3b)

∑
j∈J

x̄jcj ≤ B, (3.3c)

x ∈ [0, M]n, (3.3d)

x̄ ∈ {0, 1}n, (3.3e)

y ∈ arg min
y
{∑

i∈I

di

∑
k=1

∑
j∈J

yik
j (xj + cj) (3.3f)

Aiyik ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (3.3g)

∑
i∈I

di

∑
k=1

yik
j ≤ 1 ∀j ∈ J , (3.3h)

yik ∈ {0, 1}n}. (3.3i)

The constraints for the leader remain unchanged, with just the objective function being
altered to reflect that income can come from any one of the followers from each group.
I is the index set of groups that the followers can be partitioned into, with |I| = m,
and di is the number of followers that belong to group i. yik is a binary vector, of length
n, that represents the response of the kth follower in group i. For example, yik

j = 1 if
and only if the kth follower from the ith group purchases commodity j. The objective
function (3.3f) is now the original cost, plus any taxation applied by the leader, for each
commodity across every follower within every group. (3.3g) represents the combinato-
rial constraints that limit the follower response, with Ai and bi being the constraints for
group i respectively. (3.3h) ensures that each commodity can only be selected at most
once across all followers.

With the introduction of multiple followers, we assume that they act collectively as
one and do not compete for commodities. Should the followers be competing for com-
modities, there would be an order to their reactions, which can cause the sum of the
followers reaction to be greater than if they were working collectively.

Example 3.2. Let i = 2 and d1 = d2 = 1, i.e., two followers with differing constraints.
Assume there are three commodities, A, B and C, whose prices are given by (2, 1, 100) and the
feasible responses for follower one and two are {A, B} and {B, C} respectively. Should we use
(3.3) and the followers work together, then their responses would be A and B respectively which
gives a total cost to the followers of 3. However, should follower one respond first, then they

36 Chapter 3. Mixed-Integer Linear Bilevel Problems

TABLE 3.1: Leader solutions for Example 3.3

x ∈ [0, M]3 x ∈ [−M, M]3

x̄ x FU x FU

(0, 0, 0) (0, 0, 0) 0 (0, 0, 0) 0
(1, 0, 0) (1, 0, 0) 1 (1, 0, 0) 1
(1, 1, 0) (M, M, 0) M− 1.5 (M, M, 0) M− 1.5
(1, 0, 1) (M, 0, M) M− 1 (M, 0, M) M− 1
(0, 1, 0) (0, 0, 0) −1.5 (0, 0, 0) −2
(0, 1, 1) (0, M, M) M− 1.5 (0,−0.5, M) M− 0.5
(0, 0, 1) (0, 0, 1) 1 (0, 0, 1) 1

would react by purchasing B, as 1 < 2, leaving the second follower to purchase C, giving a total
cost to the followers of 101.

By allowing this order in the followers reactions, we have discovered a Stakelberg so-
lution, where neither follower wants to, or can in the second followers case, deviate
from their reaction as it would give them a worse payoff, individually. However, col-
lectively they could have achieved a much smaller cost, commonly referred to as the
social optimal solution. Along with this, should the followers respond in an order then
Observation 3.3 no longer holds, as outlined by Example 3.3

Example 3.3. Similar to before, let i = 2 and d1 = d2 = 1. Let there be three commodities,
(A, B, C), whose prices are given by (1, 1.5, 1), the feasible responses of the followers are {A, B}
and {B, C} respectively, with the first follower reacting first and the leader has a budget of 3.
As such, the leader has seven possible ways they can purchase the commodities, given by Table
3.1. As we can see, in six out of the seven possible choices for x̄, the leader would act the same
irrespective of if negative taxation is allowed. However, when x̄ = (0, 1, 1) this is not the case.
When x ∈ [0, M]3, as the base cost of commodity B is greater than that of commodity A, the
first follower shall always react by purchasing commodity A. Thus the second follower can
choose between the cheapest of commodity B or C. Therefore, as the leader has purchased both of
these commodities, they can apply the maximum taxation to both and the second follower will
still have to purchase commodity C. Hence, the leader shall receive (M + 1) from the second
follower, have a total expenditure of 2.5, giving them a final objective of M− 1.5.

However, the leader can achieve a greater objective by introducing negative taxations. When
x ∈ [−M, M]3 and x̄ = (0, 1, 1), the optimal solution for the leader is x = (0,−0.5, M). By
applying the negative taxation to B, both A and B have an equal cost for the first follower, thus
they can choose either commodity. But, given that we are assuming the optimistic case, they
shall select B (this can also be achieved by setting the taxation to −(1 + ε), for some small ε).
As the first follower has responded by purchasing B, the second follower is only left to purchase
C, thus the leader can apply the maximum taxation. Overall, this means that the leaders income
is (−0.5 + 1.5) + (M + 1) and their expenditure is 2.5, giving a final objective of M− 0.5.

3.4. Non-Unit Supply 37

In Example 3.3 we find that x̄ = (0, 1, 1) and x̄ = (1, 0, 1) are similar, in that they are
trying to force the first follower to select commodity B such that the second follower
is left with commodity C. When x̄ = (1, 0, 1), the leader shall inflate the price of A to
make B appealing whereas in x̄ = (0, 1, 1) the leader reduces the price of B. When the
prices of the commodities are set to (1, 1.5, 1) we can achieve a better objective with
x ∈ [−M, M] because the amount of negative taxation is less than the cost of A, i.e.
0.5 < 1. Should the prices of the commodities have been (1, 2.5, 1), and the leaders
budget been 3.5, then x̄ = (0, 1, 1) and x̄ = (1, 0, 1) would have optimal objective
function values of M− 1.5 and M− 1 respectively. Thus, the leader would not want to
apply a negative taxation because the negative taxation they would have to apply to B
is greater than the cost of A, i.e. 1.5 > 1.

For the remainder of this thesis, we shall assume that the followers are trying to achieve
a socially optimal solution and work collectively. Real-world examples of this can arise
where we have a single follower with numerous separate combinatorial constraints
they must satisfy. If the constraints are independent we can treat each as a separate
follower and the objective will be to find the socially optimal solution. As such, we
shall also assume that only positive taxation is allowed.

We have also opened up the possibility for symmetric solutions. These solutions occur,
when variables can be interchanged, without changing the structure of the problem
[74]. In this case, we can see that the followers for each group can be arranged in
any order and the problem remains the same. Likewise, for any follower solution, the
way in which commodities are distributed amongst the followers has no impact on the
leader, as the leader is only interested in the fact that commodities are bought from
them.

3.4 Non-Unit Supply

We shall now assume that each commodity is no longer unique and that there can exist
multiple duplicates of the same commodity. By increasing the supply, the structure of
the bilevel problem has been altered. Previously, because there was a single version of
each commodity, if the leader had bought a commodity that the follower also wanted,
then the follower would have to pay the taxation applied. However, now there are
duplicate commodities, if the follower wants a commodity, they can decide between
ones that have been bought by the leader and ones that have not. Clearly, as there
is only positive taxation being applied, the follower will always get commodities the
leader has not bought before purchasing from the leader. Thus, the bilevel problem
now becomes

38 Chapter 3. Mixed-Integer Linear Bilevel Problems

max
x,x̄ ∑

j∈J

(
max{0, ∑

i∈I

di

∑
k=1

yik
j − (sj − x̄j)}(xj + cj)− x̄jcj

)
(3.4a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (3.4b)

∑
j∈J

x̄jcj ≤ B, (3.4c)

x̄j ≤ sj ∀j ∈ J , (3.4d)

x ∈ [0, M]n, (3.4e)

x̄ ∈ Zn
≥0, (3.4f)

y ∈ arg min
y
{∑

j∈J

(
max{0, ∑

i∈I

di

∑
k=1

yik
j − (sj − x̄j)}xj + ∑

i∈I

di

∑
k=1

yik
j cj

)
: (3.4g)

Aiyik ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (3.4h)

∑
i∈I

di

∑
k=1

yik
j ≤ sj ∀j ∈ J , (3.4i)

yik ∈ {0, 1}n}. (3.4j)

The max operator, in the leader and follower objectives, ensure that the follower will
only purchase from the leader if they must. sj − x̄j is the amount of commodity j that
has not been bought by the leader. Therefore, if ∑i∈I ∑di

k=1 yik
j ≤ (sj − x̄j), then the

follower does not need to purchase j from the leader. However, if ∑i∈I ∑di

k=1 yik
j ≥

(sj − x̄j), the commodities not bought by the leader do not fulfil the followers needs,
therefore the follower must purchase from the leader and pay the taxation applied. This
max operation could have been included in the single supply case, however, we can see
that if sj = 1, then the max operation can only take the value 1 when yik

j = x̄j = 1 and
is 0 otherwise, thus the max operation can be represented by yik

j x̄j.

As the leader can now purchase multiple versions of each commodity, then x̄ must go
from a binary variable to an integer one, whose upper bound is the supply for each
commodity (3.4d). Likewise, the number of each commodity j that the followers pur-
chase, must have an upper bound equal to the supply for that commodity, (3.4i).

The max operator is one which we cannot use directly with most state-of-the-art solvers.
Therefore, we shall present two further formulations, which we shall call the dichotomic
and max value formulations.

In these formulations, we remove the max operator and introduce additional variables
and constraints. In both dichotomic and max value formulations, the new variables
are considered to be follower variables and the constraints are placed in the followers
problem only. The max operator is a representation of how the follower reacts given
the commodities that the leader has purchased, i.e. the follower can only purchase

3.5. Dichotomic Formulation 39

commodities from the leader if the leader has already bought them. Thus, given that
the max operator is used to represent the followers reaction, any variables and con-
straints used to replace the max operator are considered to be follower variables and
constraints.

3.5 Dichotomic Formulation

In (3.4), we find a max operation in both the leaders and followers objective function,
where this determines the quantity of each commodity that the follower chooses to buy
from the leader. Given that the max operation arises because we have to distinguish
between commodities that the follower buys from the leader and not from the leader,
we shall introduce an additional set of variables that does exactly this. Let ȳ be the
follower variable for commodities bought from the leader and y for commodities that
are not bought from the leader. The bilevel formulation then becomes

max
x,x̄ ∑

j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj)− x̄jcj

)
(3.5a)

s.t. (3.4b)− (3.4f), (3.5b)

(y, ȳ) ∈ arg min
y,ȳ
{∑

j∈J
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + yik

j cj : (3.5c)

Ai(ȳik + yik) ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (3.5d)

∑
i∈I

di

∑
k=1

(ȳik
j + yik

j) ≤ sj ∀j ∈ J , (3.5e)

∑
i∈I

di

∑
k=1

ȳik
j ≤ x̄j ∀j ∈ J , (3.5f)

∑
i∈I

di

∑
k=1

yik
j ≤ sj − x̄j ∀j ∈ J , (3.5g)

ȳik
j + yik

j ≤ 1 ∀j ∈ J , ∀i ∈ I , ∀k ∈ {1, . . . , di}, (3.5h)

ȳik, yik ∈ {0, 1}n}. (3.5i)

As we can see, the leader’s objective function is still in two parts, the income and ex-
penditure. However, the income is purely determined by the final price of commodities
that the follower decides to purchase from the leader. Constraints (3.5d) and (3.5e) are
the same as before, but are adjusted slightly to account for y being spread over two
variables now. Constraint (3.5f) limits the number of commodities that the follower
assigns to purchasing from the leader by the amount that the leader has bought. (3.5g)
limits the number of commodities the followers doesn’t purchase from the leader to

40 Chapter 3. Mixed-Integer Linear Bilevel Problems

the amount that the leader has not purchased. Lastly, constraint (3.5h) ensures that a
follower cannot purchase the same commodity from both the leader and the market.

By introducing ȳ, we have dissolved the max operator. However, now the follower’s
feasible region depends on the leader’s variable x̄ by constraints (3.5f) and (3.5g). This
now means that the feasible region for the follower is perturbed by the leaders vari-
ables, which can cause complications in the solution methods presented later. Note, a
set of commodities shall always provide a feasible solution for the follower. The depen-
dency only affects whether the follower purchases these commodities from the leader
or the market.

Given that the max operator was in the leaders objective, then one may assume that
the constraints (3.5f),(3.5g) should also be leader constraints. However, we have re-
modelled the max operator as a follower variable, ȳ, which is dependent on a leader
variable, x̄. Therefore, the corresponding constraints belong in the followers problem.
Likewise, placing these constraints in the leaders problem would be counter-intuitive
with respect to how we have modelled our problem. Should these constraints be in
the leaders problem, we are implying that the reaction of the follower should directly
determine the quantity of each commodity that the leader should purchase. However,
in Figure 3.1, we state the the leader purchases commodities before the follower, thus
cannot be directly influenced by the followers reaction.

3.6 Max Value Formulation

Another way to handle the max operator is to introduce two additional variables, z and
γ, where z shall take the value of the max operation and γ shall be a binary variable
that determines whether z = 0 or z = ∑i∈I ∑di

k=1 yik
j − (sj − x̄j). We define γ in the

following way

γj = 1 =⇒ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) ≥ 0, (3.6a)

γj = 0 =⇒ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) ≤ 0, (3.6b)

for all j. (3.6a) and (3.6a) imply that when γ = 1, the followers purchase more com-
modities than the amount the leader has not bought and therefore must purchase some
commodities from the leader. This can be achieved linearly using the Big-M constraints

3.6. Max Value Formulation 41

M̄(1− γj) ≥ −
(

∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j)

)
, (3.7a)

M̄γj ≥ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j), (3.7b)

for all j ∈ J , with a sufficiently large M̄, which in this case can be set to sj. When

∑i∈I ∑di

k=1 yik
j > sj − x̄j, (3.7b) ensures that γ = 1, when ∑i∈I ∑di

k=1 yik
j < sj − x̄j, (3.7a)

enforces γ = 0 and when ∑i∈I ∑di

k=1 yik
j = sj − x̄j, γ can take either value, which is not

an issue because in this case we have max{0, 0}, whose result is always 0. We then
define zj = max{0, ∑i∈I ∑di

k=1 yik
j − (sj − x̄j)} by introducing the constraints

zj ≥ 0, (3.8a)

zj ≥ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j), (3.8b)

zj ≤ sjγj, (3.8c)

zj ≤ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) + sj(1− γj), (3.8d)

for all j ∈ J , which enforce zj = ∑i∈I ∑di

k=1 yik
j − (sj− x̄j) when γj = 1 and zj = 0 when

γj = 0. As discussed, when ∑i∈I ∑di

k=1 yik
j = sj − x̄j, although γj can be either 0 or 1,

both values produce zj = 0. The bilevel formulation then becomes

max
x,x̄,z ∑

j∈J
zj(xj + cj)− x̄jcj (3.9a)

s.t. (3.4b)− (3.4f), (3.9b)

z ∈ arg min
y,γ,z
{∑

j∈J
zjxj + ∑

i∈I

di

∑
k=1

yik
j cj : (3.9c)

(3.4h)− (3.4j), (3.9d)

(3.7), (3.8) ∀j ∈ J , (3.9e)

zj ≤ sj ∀j ∈ J , (3.9f)

γ ∈ {0, 1}n, (3.9g)

z ∈ Zn
≥0}. (3.9h)

42 Chapter 3. Mixed-Integer Linear Bilevel Problems

One may assume that because the follower is minimising then we do not need the
upper bound (3.8d). However, although removing this constraint would not affect the
follower’s objective, it will affect the leader’s. As we can see, in the leader’s objective
we have the product zjxj and zjcj and in the follower’s objective we just have zjxj. Thus,
when xj = 0 only the zjcj term can be non-zero. Therefore, by not applying the upper
bound (3.8d) the leaders objective can be increased giving an incorrect objective.

3.7 Linearisation

Thus far, the formulations that have been created have included non-linear elements,
which can provide difficulty in solving. Therefore we shall present a linearisation
method based on the McCormick envelopes.

First described in [109] and shown to be envelopes in [4], the McCormick constraints
can relax a bi-linear program. Given two variables x1, x2 ∈ R such that xi ∈ [li, ui] for
i = 1, 2, the McCormick constraints of the bilinear product x3 = x1x2 are given by

x3 ≥ l1x2 + l2x1 − l1l2, (3.10a)

x3 ≥ u1x2 + u2x1 − u1u2, (3.10b)

x3 ≤ u1x2 + l2x1 − u1l2, (3.10c)

x3 ≤ l1x2 + u2x1 − l1u2. (3.10d)

These constraints work as pairs, providing over- and under-estimations for x3. An
advantages that comes with the McCormick constraints is that should either one of x1

or x2 be binary, then the relaxation becomes exact. For example, if x1 ∈ {0, 1} then the
constraints (3.10) become x3 ≥ 0, x3 ≥ x2 − u2, x3 ≤ x2 − l2 and x3 ≤ 0. When x1 = 0,
these can only be satisfied with x3 = 0. Likewise, when x1 = 1, the constraints become
x3 ≥ l2, x3 ≥ x2, x3 ≤ x2 and x3 ≤ u2, which can only be satisfied with x3 = x2. For
ease of writing, we shall define the set of McCormick constraints, given by (3.10), by
MC(x3, x1, x2), where we define x3 = x1x2.

For situations where one of the variables takes an integer value, the McCormick con-
straints are not exact and provide a relaxation. However, by performing a binary ex-
pansion on the integer variable, we can transform the single non-linear term in many
non-linear terms that include a binary variable, for which the McCormick envelopes
shall be exact. As before, lets take the product x3 = x1x2 and assume that x1 ∈ Z. We

3.7. Linearisation 43

shall define our binary expansion, often referred to as a logarithmic-binarisation, of x1

as

x1 =
blog2 u1c+1

∑
i=1

2i−1αi αi ∈ {0, 1} ∀i ∈ [1, blog2 u1c+ 1]. (3.11a)

Thus, the non-linear formulation becomes linear by substituting x3 for any x1x2 and
introducing the constraints

x1 =
blog2 u1c+1

∑
i=1

2i−1αi, (3.12a)

αi ∈ {0, 1} ∀i ∈ [1, blog2 u1c+ 1], (3.12b)

MC(βi, αi, x2) ∀i ∈ {1, blog2 u1c+ 1}, (3.12c)

x3 =
blog2 u1c+1

∑
i=1

2i−1βi. (3.12d)

Alternative binarisation techniques can be found in [46]. Firstly, the full-binarisation,
which is given by

x1 =
u1

∑
i=1

izi, (3.13a)

u1

∑
i=1

zi ≤ 1, (3.13b)

zi ∈ {0, 1} ∀i ∈ [1, u1], (3.13c)

and, secondly, the unary-binarisation is given by

x1 =
u1

∑
i=1

zi, (3.14a)

1 ≥ z1 ≥ z2 ≥ · · · ≥ zu1 ≥ 0, (3.14b)

zi ∈ {0, 1} ∀i ∈ [1, u1]. (3.14c)

[46] briefly mention these binarisation techniques, explaining how the full technique is
studied in [138], [6] and [78], unary is discussed in [133] and [25] and logarithmic can

44 Chapter 3. Mixed-Integer Linear Bilevel Problems

be found in [121] and [78]. However, [46] conclude by discussing the lack of computa-
tional results which compare the performances of these binarisation techniques.

3.7.1 A note on the results of Dempe & Kue

[53] focus their attention to a specific MILBLP, which can be reformulated as the fol-
lowing single-level formulation after using the value function approach;

max
x

d>1 x + d>2 y (3.15a)

s.t. Dx ≤ d, (3.15b)

Ay ≤ b, (3.15c)

x, y ∈ {0, 1}n, (3.15d)

x>y ≤ x>yi ∀yi ∈ Y , (3.15e)

where Y is the finite set of all feasible solutions for the follower. Very similar to our
unit supply problem, (3.15) has a bi-linear follower objective x>y, which is linear w.r.t.
the followers variables and a follower feasible region Ay ≤ b, which is not perturbed
by the leader’s variables.

They replace the non-linear value functions constraints (3.15e) with a relaxed linear
constraint. The advantage of doing so means that no additional variables or constraints
need to be added to the problem, unlike the McCormick approach. However, they have
increased the size of the convex hull, which now contains binary points that are not
feasible solutions to the origin bilevel problem. In what follows, we will show how,
by using a McCormick reformulation, we can generate a tighter feasible region than
that in [53]. To begin with, we define the constraints in their relaxation as follows.
Let X and Y be the indices for variables x and y, respectively. Let N+ = {1, . . . , n},
Li = {j ∈ Y : yi

j = 1} and Ni = N+ ∪ Li. A set M ⊂ Ni is defined to be a cover of the
ith value function constraint if |M| > |Li|. M can be partitioned into two sets, MN+ and
MLi , corresponding to the indices in M that come from the sets N+ and Li, respectively.
Note, if M is a cover for the ith value function, then the set MN+ cannot be empty. Using
these definitions, [53] produce the following lemma

Lemma 3.4. If x>y ≤ x>yi holds, then

∑
j∈MN+

(1− xj) + ∑
j∈MN+

(1− yj) + ∑
j∈MLi

xj ≥ 1. (3.16)

Proof. The proof for this lemma can be found in the appendix of [53]

3.7. Linearisation 45

Using Lemma (3.4), we can make the following observations, not found in [53].

Observation 3.5. If there exists some j ∈ {1, . . . , n} such that j ∈ MN+ and j ∈ MLi , then
(3.16) holds for all x, y.

Proof. We can rewrite (3.16) as

∑
j∈MN+\MLi

(1− xi) + ∑
j∈MN+

(1− yj) + ∑
j∈MLi\MN+

xj + ∑
j∈MN+∩MLi

((1− xj) + xj) ≥ 1.

(3.17)

In the last component, the xj’s cancel out, meaning the last summation is equal to the
cardinality of the intersection between MN+ and MLi . As the variables x and y have
binary bounds, the first 3 summations are all positive and therefore the last summation
can act as a lower bound. Hence, if |MN+ ∩MLi | ≥ 1, then (3.16) automatically holds
for all x, y.

Observation 3.6. If there exists some j ∈ MN+ such that xj + yj ≤ 1, then (3.16) holds.

Proof. (3.16) is equivalent to

∑
j∈MN+

(2− xj − yj) + ∑
j∈MLi

xj ≥ 1. (3.18)

If there exists some j ∈ MN+ such that xj + yj ≤ 1 then 2− xj − yj ≥ 1, implying the
above equation holds, thus (3.16) holds.

Rather than using the relaxation in (3.16), [53] could have used the McCormick con-
straints to create a linear single-level problem. To do so, let zj = xjyj for all j. (3.15e) is
then replaced with

n

∑
j=1

zj ≤ x>yi yi ∈ Y , (3.19a)

zj ≥ 0 ∀j ∈ {1, . . . , n}, (3.19b)

zj ≥ xj + yj − 1 ∀j ∈ {1, . . . , n}, (3.19c)

zj ≤ xj ∀j ∈ {1, . . . , n}, (3.19d)

zj ≤ yj ∀j ∈ {1, . . . , n}. (3.19e)

46 Chapter 3. Mixed-Integer Linear Bilevel Problems

We want to show that by using the McCormick constraints, although there will be an
additional set of variables, the feasible region is at least as tight as that in [53]. To show
this, we show that any point infeasible for (3.16) is also infeasible for (3.19).

Theorem 3.7. Let FD = {(x, y) ∈ [0, 1]n : (3.15b), (3.15c), (3.16) all hold} be the feasible
region of (3.15) and FMC = {(x, y) ∈ [0, 1]n : (3.15b), (3.15c), (3.19) all hold} be the feasible
region if [53] had used the McCormick constraints, for when the integrality constraints have
been dropped. If there exists a solution (x, y) /∈ FD, then (x, y) /∈ FMC.

Proof. By assumption, let (x, y) /∈ FD. Therefore, (x, y) must violate at least one of
(3.15b), (3.15c), (3.16).

If (x, y) violates either (3.15b) or (3.15c) then clearly (x, y) /∈ FMc.

If (x, y) only violates (3.16), then

∑
j∈MN+

(1− xj) + ∑
j∈MN+

(1− yj) + ∑
j∈MLi

xj < 1, (3.20)

which can be re-arranged to

∑
j∈MN+

1 + ∑
j∈MLi

xj < 1 + ∑
j∈MN+

(xj + yj − 1). (3.21)

By defining α = |MN+ | − 1 and using the lower bound zj ≥ xj + yj − 1 we get

α + ∑
j∈MLi

xj < ∑
j∈MN+

zj. (3.22)

By definition, MLi ⊂ Li and ∑n
j=1 zj = ∑j∈N+ zj. Thus, given that MN+ ∩ MLi = ∅,

using Lemma 3.5 with the fact (x, y) that is infeasible, we get

∑
j∈Li

xj = ∑
j∈MLi

xj + ∑
j∈Li\MLi

xj, (3.23a)

∑
j∈N+

zj = ∑
j∈MN+

zj + ∑
j∈MLi

zj + ∑
j∈N+\{MN+∪MLi}

zj. (3.23b)

If the point (x, y) is feasible for the McCormick constraints, then we must have ∑j∈N+ zj ≤
∑j∈Li

xj. Using this along with (3.23), (3.22) becomes

3.7. Linearisation 47

∑
j∈Li\MLi

xj − α > ∑
j∈MLi

zj + ∑
N+\{MN+∪MLi}

zj. (3.24)

Given that MN+ ∩ MLi = ∅, then |M| = |MN+ | + |MLi |. As M is a cover of Li, then
|M| > |Li|, which implies |MN+ |+ |MLi | ≥ |Li|+ 1. As x is binary, then

∑
j∈Li\MLi

xj ≤ |Li\MLi | = |Li| − |MLi | ≤ |MN+ | − 1 = α. (3.25)

Thus, ∑j∈Li\MLi
xj − α ≤ 0. However, the right-hand side of (3.24) consists of only

positive elements, meaning ∑j∈Li\MLi
xj − α > 0. This is clearly a contradiction, there-

fore ∑j∈N+ zj ≤ ∑j∈Li
xj must not hold and the point (x, y) does not satisfy all of the

McCormick constraints and (x, y) /∈ FD.

Theorem 3.7 shows that any point not in the feasible region FMc must also not be in
the feasible region FD. As such, we have that FMc ⊆ FD. However, we can present
examples whereFMc ⊂ FD and there exists some points (x, y) ∈ FD and (x, y) /∈ FMc.

Example 3.4. Assume we are solving the problem (3.26) , i.e. there are no leader or follower
constraints and Y = {y′} where y′ = (0, 1, 1, . . . , 1). By Lemma 3.5, if the cover M is such
that there exists some j ∈ MN+ and j ∈ MLi then all (x, y) satisfy (3.16). Thus, construct such
an M and observe the point (x, y) where x = y = (1, . . . , 1). By Lemma 3.5 (x, y) ∈ FD.
However, using the McCormick constraints we get z = (1, . . . , 1), which causes the value
function constraint to be n ≤ n− 1. Thus, the point (x, y) /∈ FMc.

max
x

d>1 x + d>2 y (3.26a)

s.t. x, y ∈ {0, 1}n (3.26b)

x>y ≤ x>yi ∀yi ∈ Y . (3.26c)

3.7.2 McCormick over Summations

Lets assume that there exists some variables, x and y, where x ∈ [0, M]n and y ∈
{0, 1}m×n and we have the product w = ∑n

j=1 ∑m
i=1 yijxj. As we can see, x does not

depend on i, so we can write w as either ∑n
j=1 ∑m

i=1(yijxj) or ∑n
j=1 xj(∑m

i=1 yij), where in
the first case we take the product between x and y then sum over j and i and in the
latter we take the product between x and the summation of y over i before taking the
sum over j. Therefore, if we wish to linearise this expression using the McCormick
envelopes, we can either 1) apply them directly using the product between yik

j xj or

48 Chapter 3. Mixed-Integer Linear Bilevel Problems

2) perform a binary expansion on ∑m
i=1 yij and then apply the McCormick envelopes

between x and the generated binary variables.

Applying the McCormick constraints directly, we get

zij ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, (3.27a)

zij ≥ xj −M(1− yij) ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, (3.27b)

zij ≤ xj ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, (3.27c)

zij ≤ Myij ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, (3.27d)

w =
m

∑
i=1

n

∑
j=1

zij, (3.27e)

whereas performing a binary expansion and then the McCormick envelopes, we get

m

∑
i=1

yij =
blog2 mc+1

∑
l=1

2l−1αl j ∀j ∈ {1, . . . , n}, (3.28a)

zl j ≥ 0 ∀l ∈ {1, . . . , blog2 mc+ 1}, j ∈ {1, . . . , n}, (3.28b)

zl j ≥ xj −M(1− αl j) ∀l ∈ {1, . . . , blog2 mc+ 1}, j ∈ {1, . . . , n}, (3.28c)

zl j ≤ xj ∀l ∈ {1, . . . , blog2 mc+ 1}, j ∈ {1, . . . , n}, (3.28d)

zl j ≤ Mαl j ∀l ∈ {1, . . . , blog2 mc+ 1}, j ∈ {1, . . . , n}, (3.28e)

w =
n

∑
j=1

blog2 mc+1

∑
l=1

2l−1zl j. (3.28f)

From here on in, we shall refer to (3.27) as Direct McCormicks, DMC, and (3.28) as
Summation McCormicks, SMC. In the DMC, we have introduced mn many additional
variables, whereas using the SMC method, we have introduced 2(blog2 mc+ 1)n many
variables, with (blog2 mc+ 1)n many coming from α and the other (blog2 mc+ 1)n com-
ing from z. Likewise, with the DMC method we would be introducing an additional
4mn constraints, whereas in the SMC we would be introducing 4(blog2 mc + 1)n + n
constraints.

Now, we want to compare the polyhedra created by both of these methods and see if we
can deduce, which is tighter. To do this, we shall perform Fourier–Motzkin elimination,
leaving us with an upper and lower bound for w, for both methods, which we can
compare. Substituting (3.27a)–(3.27d) into (3.27e), we get the bounds for the DMC to
be

3.7. Linearisation 49

w ≥ 0, (3.29a)

w ≥
n

∑
j=1

m

∑
i=1

(xj −M(1− yij)), (3.29b)

w ≤
n

∑
j=1

m

∑
i=1

xj, (3.29c)

w ≤
n

∑
j=1

m

∑
i=1

Myij, (3.29d)

and substituting (3.28b)–(3.28e) into (3.28f), we get the bounds for SMC to be

w ≥ 0, (3.30a)

w ≥
n

∑
j=1

blog2 mc+1

∑
l=1

2l−1(xj −M(1− αl j)), (3.30b)

w ≤
n

∑
j=1

blog2 mc+1

∑
l=1

2l−1xj, (3.30c)

w ≤
n

∑
j=1

blog2 mc+1

∑
l=1

2l−1Mαij. (3.30d)

In both sets of bounds, we have w ≥ 0, so this can be ignored. Likewise, if we substitute
(3.28a) into (3.30d), we get w ≤ ∑n

j=1 ∑m
i=1 Myij, which is the same as (3.29d) and thus,

can also be ignored. This leaves us to compare the lower bounds (3.29b) and (3.30b)
plus the upper bounds (3.29c) and (3.30c).

Focusing on the upper bounds, (3.29c) can be written as m ∑n
j=1 xj, as x is indepen-

dent of i and (3.30c) can be written as (∑
blog2 mc+1
l=1 2l−1) ∑n

j=1 xj for the same reasons,
with respect to l. Now we can see that the tightness is dependent on which of m and

∑
blog2 mc+1
l=1 2l−1 is smaller. Given that we achieved the latter as a result of the binary ex-

pansion of y, we can see that, if m = 2k − 1, for some k ∈ N, then m = ∑
blog2 mc+1
l=1 2l−1

and both DMC and SMC provide the same upper bounds on w. Otherwise, we must
have m < ∑

blog2 mc+1
l=1 2l−1 and thus the DMC shall provide a tighter upper bound.

For the lower bounds, in (3.30b) we can substitute in (3.28a), to get w ≥
∑n

j=1 ∑
blog2 mc+1
l=1 2l−1(xj − M) + M ∑m

i=1 yij, which means, after cancelling out the last

term, we are comparing m ∑n
j=1(xj − M) and (∑

blog2 mc+1
l=1 2l−1) ∑n

j=1(xj − M) for the
lower bounds of DMC and SMC respectively. Once again, we get the terms m and

∑
blog2 mc+1
l=1 2l−1, however, because we are now observing the tightness with respect to

the lower bound, we want to use which of these is larger. As before, if m = 2k − 1, for

50 Chapter 3. Mixed-Integer Linear Bilevel Problems

some k ∈ N then they both achieve the same tightness, otherwise m < ∑
blog2 mc+1
l=1 2l−1

and the SMC shall provide a tighter lower bound.

Now, if we look at the absolute gap between the upper and lower bounds, we find that
for DMC the difference between the upper and lower bound is nMm−M ∑n

j=1 ∑m
i=1 yij

and nM ∑
blog2 mc+1
l=1 2l−1 − M ∑n

j=1 ∑m
i=1 yij for SMC. Therefore, if m = 2k − 1, for some

k ∈ N, the gap between the upper and lower bounds are the same in both DMC and
SMC, otherwise, DMC has a tighter gap.

In conclusion, if m = 2k − 1, for some k ∈ N, then both DMC and SMC provide the
same bounds, otherwise, if we are maximising w, we want a tighter upper bound and
thus would prefer DMC, whereas if we are minimising we would want a tighter lower
bound and would prefer SMC.

3.7.2.1 y Constraint

Should there exist some constraint ∑m
i=1 yij ≤ s for all j, then when we perform the

binary expansion on y, we would perform the summation between l = 1 and l =

blog2 sc + 1 rather than m. Therefore, should such a constraint exist, we can use the
same argument to deduce that, if s ≤ 2blog2(m+1)c − 1, then by the same arguments we
have just presented, SMC shall provide an upper bound at least as strong as DMC and
DMC shall provide a lower bound at least as strong as SMC.

In the following chapter, we present solution methods for solving the unit and non-
unit supply cases. A majority of these solution methods focus around using the HPR,
which shall be solved using sophisticated techniques. As such, the problem which is to
be solved, the HPR, is a maximisation problem. Therefore, when s < 2blog2(m+1)c − 1,
we would predict the SMC formulation to reach a solution quicker than the DMC and
visa versa when s > 2blog2(m+1)c − 1. At equality, they should both provide the same
upper bound and should have similar computational times.

3.7.2.2 McCormick Linearisations

Thus far we have developed a single formulation, (3.3), for the unit supply case and
2 formulations, (3.5) and (3.9) for the non-unit supply case. For (3.3) and (3.5), we
have the non-linear terms ∑j∈J ∑i∈I ∑di

k=1 yik
j xj and ∑j∈J ∑i∈I ∑di

k=1 ȳik
j xj respectively.

In both of these cases, we have a product between 2 variables, over 3 summations when
x only depends on j. Therefore we can apply both the DMC and SMC linearisation
methods to compare their performance. As such, (A.1) and (A.2) represent the unit
supply reformulations using DMC and SMC, respectively, and (A.5) and (A.6) represent
the DMC and SMC reformulations of (3.5), respectively. For formulation (3.9) we have
no need for any SMC’s and thus only use DMC’s in (A.7).

51

Chapter 4

Solution Methods

In this chapter, we present various solution methods for solving the bilevel pricing
problems presented in Chapter 3. To begin with, we shall present solution methods
for both the unit and non-unit supply cases that primarily use cutting planes. These
methods begin by solving the HPR within a Branch-and-Cut framework, where value
function cutting planes are introduced with the discovery of all bilevel infeasible solu-
tions. For the unit supply case, this translates as a simple cutting plane algorithm as
the feasible regions of the followers are independent of the leader’s variables and thus
unperturbed. However, for the non-unit supply case these cutting planes are not glob-
ally valid, and therefore we must introduce additional variables to indicate when these
constraints should be active. As such, we introduce two variable generation methods,
where the cutting planes either focus on the exact response of the followers or rather the
set of commodities. Following this, we also demonstrate how we can achieve the same
results by using sophisticated branching strategies that remove the need for additional
variables.

After this, we present solution methods focused around the leader having pre-
computed a subset of follower solutions. These methods break the bilevel problem
into two sub-problems. In the first one, we assume that the followers respond with a
solution contained with the pre-computed subset. As the followers possible responses
have been pre-computed, we can show that the resulting sub-problem admits a totally
unimodular follower’s problem, allowing for a wider range of reformulation methods,
other than just the value function approach. For the second sub-problem, we assume
the followers react with solutions not in the subset. This can be solved using one of the
variable generation or branching solution methods just described.

Finally, we demonstrate how we can contain the “pre-computed” solution method
within a single problem using another branching strategy.

In Chapter 5 we present computational results comparing the performance of the for-
mulations presented in the previous chapter and the proceeding solution methods.

52 Chapter 4. Solution Methods

All of these solution methods stem from solving the HPR and using cutting planes or
branching strategies to reach the bilevel solution. As such, we use the state-of-the-art
solver CPLEX to solve the HPR, given its use of callback functions [89].

Cutting planes are introduced using the LazyConstraintCallback, which CPLEX calls at
every integer point. Within this callback, we can introduce a linear constraint globally
using the add function, which shall be used for constraint (4.1) in Algorithm CP.

For the n-ary, Improved n-ary and KSB methods, we use a sophisticated branching
strategy which is performed using BranchCallback. This callback is called at every node
CPLEX wants to branch on. At nodes we wish to deviate from CPLEX’s branching
strategy, we use the make branch function, which allows the user to create two branches
with user-defined local constraints for each child node. Here, we introduce the con-
straints (4.11) for the n-ary and Improved n-ary methods and the constraint given in
Figure 4.3 for the KSB method.

When introducing these branches, we need to make sure that we are at the correct
node, as we do not alter CPLEX’s node selection. To do this, we use the get node data
and set node data functions, which allow us to set, and read, a label to a node, which
can be used to ensure the correct branches are being created.

For nodes where we do not wish to invoke any specific branching strategy and would
like CPLEX to carry on with their usual procedures, i.e. fractional nodes, we can use
the make cplex branch function.

We also use the IncumbentCallback to ignore any integer feasible solution which CPLEX
may appear during a branching process. This can occur when we are implementing a
n-ary branching strategy and CPLEX discovers an integer solution before we have gen-
erated all n branches. In such instances, we want to ignore the incumbent, which can be
done using the reject function, and then continue to generate the remaining branches.

4.1 Unit Supply

For the unit supply case, as we have already discussed, the follower’s feasible region
is independent of the leader’s variables. As a result, we can solve the bilevel problem
by solving the value function reformulation given by (2.21). Note, as a result of the
independent feasible region, constraints (2.21b) and (2.21b) are actually GU

i (x) ≤ 0 for
all i and GL

j (y) ≤ 0 for all j, respectively. If y is continuous, our problem admits similar-
ities with Semi-Infinite Programming, SIP, and the proceeding cutting plane algorithm
would is similar the general algorithm found in [23]. However, generating all of the
feasible solutions for the followers is clearly computationally expensive. Thus, we pro-
pose an approach, where we introduce cutting planes on the fly until we reach a bilevel

4.1. Unit Supply 53

feasible solution. Although this solution method can be used with either formulations
(A.1) or (A.2), where the non-linear components of the cutting plane can be linearised
in the necessary fashion, we shall refer to the non-linear formulation (3.3) for ease of
reading.

We begin by solving the HPR of (3.3) using a standard Branch-and-Cut approach. At
any integer solution (x∗, x̄∗, y∗) discovered, we check for bilevel feasibility by solving
the corresponding follower’s problem. If we discover that for (x∗, x̄∗, y∗) there exists
a better response ỹ for the follower, we need to introduce a cutting plane of the form
FL(x, y) ≤ FL(x, ỹ). Should (x∗, x̄∗, y∗) be bilevel feasible then we update the incum-
bent and bounds if necessary and continue through the tree.

Algorithm CP (Cutting plane)

1. Create the HPR of (3.3) and begin solving using a Branch-and-Cut framework.

2. Let (x∗, x̄∗, y∗) be the solution at any given node. If (x∗, x̄∗, y∗) is fractional, then
carry on with the Branch-and-Cut process. Else, solve the follower’s problem
miny{(3.3f) : (3.3g)− (3.3i)} for fixed (x, x̄) = (x∗, x̄∗) and let ỹ be the solution.

3. If ∑i∈I ∑di

k=1 ∑j∈J y∗ ik
j (x∗j + cj) ≤ ∑i∈I ∑di

k=1 ∑j∈J ỹik
j (x∗j + cj) then the solution

(x∗, x̄∗, y∗) is bilevel feasible, the upper/lower bounds, along with the incumbent,
can be updated if necessary and we continue with the Branch-and-Cut process.

4. Else, (x∗, x̄∗, y∗) is bilevel infeasible and we remove it from the feasible region by
introducing, globally, the cutting plane

∑
i∈I

di

∑
k=1

∑
j∈J

yik
j (xj + cj) ≤ ∑

i∈I

di

∑
k=1

∑
j∈J

ỹik
j (xj + cj), (4.1)

where ỹ ∈ ψ(x∗, x̄∗). Carry on with the Branch-and-Cut approach and return to
Step 2 when necessary.

Proposition 4.1. The CP algorithm will terminate at an optimal bilevel solution of (3.3) in a
finite number of steps.

Proof. As discussed, the HPR of (3.3) is just a relaxation of single level value function
reformulation. If the optimal solution to the HPR is bilevel feasible then it is also the
optimal solution to the original bilevel problem. In the worst case scenario, we would
iterate through CP until we have the cutting plane (4.1) for every feasible follower so-
lution. At which point, the HPR is now equivalent to the value function reformulation
and the optimal solution will also be the optimal solution to the bilevel problem.

In terms of the number of iterations that may be needed, as we have assumed that
the feasible region for the follower is bounded and discrete, as the variables are binary,

54 Chapter 4. Solution Methods

then this implies that there are a finite number of solutions. Therefore, there will always
be a finite number of maximum cutting planes that will be needed to reach the value
function reformulation.

4.2 Non-Unit Supply

In Section 4.1, the cutting plane (4.1) introduced within the Branch-and-Cut framework
restricted the value of the follower’s objective function to that of a feasible follower so-
lution that has been found. In the context of the unit supply case, the feasible regions
of the followers are independent of the leaders choice, thus any follower solution dis-
covered is always a feasible response for the follower and the corresponding cutting
plane, for each discovered solutions will always be globally valid.

However, once we have introduced duplicate commodities, we have to distinguish
between commodities that the follower purchases from the leader, and from the market,
which clearly depends on the amount that the leader has bought. This leads us to using
the max operator in (3.4). If we want to use the same cutting plane method, using (4.1),
we would need to embed the max operator on both the LHS and RHS to give us

∑
j∈J

(
max{0, ∑

i∈I

di

∑
k=1

yik
j − (sj − x̄j)}xj + ∑

i∈I

di

∑
k=1

yik
j cj

)

≤ ∑
j∈J

(
max{0, ∑

i∈I

di

∑
k=1

y′ ikj − (sj − x̄j)}xj + ∑
i∈I

di

∑
k=1

y′ ikj cj

)
∀y′ ∈ ψ(x∗, x̄∗).

(4.2)

In the previous chapter, we presented two formulations to handle the max operator on
the left-hand side. However, the max operator on the right-hand side is new, as the
only variable is x̄, as y′ is fixed. As such, we cannot directly use this constraint within
the cutting plane procedure described previously. Thus, we present four further solu-
tion methods which shall use either a column generation approach or a sophisticated
branching strategy.

Note, the following solution methods can both be used for the reformulations given by
(3.5) and (3.9), however, we shall focus our attention to the dichotomic formulation.

4.2.1 Non-Symmetry-Free Cutting Plane

Assume that the HPR of (3.5) is being solved within a Branch-and-Cut framework and
we discover an integer solution (x∗, x̄∗, ȳ∗, y∗). In solving the follower’s problem, pa-
rameterised by (x∗, x̄∗), we discover that (˜̄y, ỹ) returns a smaller follower’s objective.

4.2. Non-Unit Supply 55

As a result of the follower’s feasible region no longer being independent of the lead-
ers variables, the equivalent value function constraint we presented earlier is no longer
globally valid. Thus, we can only apply this constraint to parts of the feasible region
that allow the follower to reply with the solution (˜̄y, ỹ), i.e.,

∑
j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + ∑

i∈I

di

∑
k=1

yik
j cj

)
≤ ∑

j∈J

(
∑
i∈I

di

∑
k=1

˜̄yik
j (xj + cj) + ∑

i∈I

di

∑
k=1

ỹik
j cj

)

⇐⇒ ∀j ∈ J ∑
i∈I

di

∑
k=1

˜̄yik
j ≤ x̄j ∧∑

i∈I

di

∑
k=1

ỹik
j ≤ sj − x̄j.

(4.3)

On the left-hand side, we have the value function constraint which states that the cost
of the followers response (ȳ, y) must be less than or equal to the cost of the solution
(˜̄y, ỹ). However, this constraint should only be active for the parts of the feasible region
where (˜̄y, ỹ) is a feasible follower response. Remembering that ˜̄y represents the number
of commodities that the follower purchases from the leader, then clearly (˜̄y, ỹ) is only
feasible when the leader owns more commodities than ˜̄y, i.e. ∑i∈I ∑di

k=1 ˜̄yik
j ≤ x̄j for all

j ∈ J . Likewise, we can employ the same argument for the commodities the follower
does not purchase from the leader, giving us ∑i∈I ∑di

k=1 ỹik
j ≤ sj − x̄j for all j ∈ J .

For the Non-Symmetry Free Cutting Plane, NSFCP, method, we shall enforce this con-
straint by introducing three sets of binary variables, δ, δỹ and δ ˜̄y, which shall be used as
triggers for when the first part of (4.3) should be active, where

δ
˜̄y
j = 1 =⇒ ∑

i∈I

di

∑
k=1

˜̄yik
j ≤ x̄j, (4.4a)

δ
˜̄y
j = 0 =⇒ ∑

i∈I

di

∑
k=1

˜̄yik
j ≥ x̄j + 1, (4.4b)

δ
ỹ
j = 1 =⇒ ∑

i∈I

di

∑
k=1

ỹik
j ≤ sj − x̄j, (4.4c)

δ
ỹ
j = 0 =⇒ ∑

i∈I

di

∑
k=1

ỹik
j ≥ sj − x̄j + 1, (4.4d)

δj = δ
ỹ
j δ

˜̄y
j , (4.4e)

for all j ∈ J . This can be done using the linear constraints

56 Chapter 4. Solution Methods

M̄δ
˜̄y
j ≥ x̄j + 0.5−∑

i∈I

di

∑
k=1

˜̄yik
j , (4.5a)

M̄(1− δ
˜̄y
j) ≥ −

(
x̄j + 0.5−∑

i∈I

di

∑
k=1

˜̄yik
j

)
, (4.5b)

M̄δ
ỹ
j ≥ sj − x̄j + 0.5−∑

i∈I

di

∑
k=1

ỹik
j , (4.5c)

M̄(1− δ
ỹ
j) ≥ −

(
sj − x̄j + 0.5−∑

i∈I

di

∑
k=1

ỹik
j

)
, (4.5d)

MC(δj, δ
ỹ
j , δ

˜̄y
j), (4.5e)

for all j ∈ J . The value of M̄ must be such that M̄ is always greater than the right
hand side of both (4.5a) and (4.5c), which can be done by defining M̄ = max{sj : j ∈
1, . . . , n}+ 1. Thus, the cutting plane to be introduced is

∑
j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + ∑

i∈I

di

∑
k=1

yik
j cj

)
≤ ∑

j∈J

(
∑
i∈I

di

∑
k=1

˜̄yik
j (xj + cj) + ∑

i∈I

di

∑
k=1

ỹik
j cj

)
+Mδ

(
∑
j∈J

(1− δj)
) (4.6)

where Mδ is a constant that is large enough such that if ∑j∈J (1− δj) ≥ 1, the right-
hand side of the cutting plane is sufficiently large that all solutions are feasible and this
constraint is effectively inactive. Calculating a value for Mδ can be found by setting
Mδ > Mδ+ −Mδ− where

Mδ+ = max
x,x̄ ∑

j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + yik

j cj

)
(4.7a)

s.t. (3.4b)− (3.4f) (4.7b)

(3.5d)− (3.5i) (4.7c)

(4.7d)

and

4.2. Non-Unit Supply 57

Mδ = min
y ∑

j∈J

(
∑
i∈I

di

∑
k=1

yik
j cj

)
(4.8a)

s.t. (3.5d)− (3.5i). (4.8b)

(4.8) is very similar to the HPR, however its objective is the followers rather than the
leaders, with Mδ+ equalling the maximum possible objective for the follower. Whereas
Mδ− is the minimum possible objective for the follower, meaning that Mδ+ −Mδ− is a
sufficient lower bound for Mδ.

If ∑j∈J (1− δj) = 0, i.e. x̄ allows for (˜̄y, ỹ) to be a feasible solution for the follower, we
have constrained the followers objective to be less than that achieved with (˜̄y, ỹ). Thus,
the NSFCP solution method can be described as follows.

Algorithm NSFCP (Non-Symmetry Free Cutting Plane)

1. Create the HPR of (3.5) and solve using a Branch-and-Cut framework.

2. Let (x∗, x̄∗, ȳ∗, y∗) be the solution at any given node. If (x∗, x̄∗, ȳ∗, y∗) is fractional,
then carry on with the Branch-and-Cut process. Else, solve the follower’s prob-
lem miny{(3.5c) : (3.5d)− (3.5i)} and let φ(x∗, x̄∗) be an optimal objective value
and (˜̄y, ỹ) be the optimal response.

3. If ∑j∈J ∑i∈I ∑di

k=1

(
ȳ∗ ik

j (x∗j + cj) + y∗ ik
j cj

)
≤ φ(x∗, x̄∗), then the solution

(x∗, x̄∗, ȳ∗, y∗) is bilevel feasible, the upper/lower bounds, along with the incum-
bent can be updated if necessary and we continue with the Branch-and-Cut pro-
cess.

4. Else, (x∗, x̄∗, ȳ∗, y∗) is bilevel infeasible and we stop the Branch-and-Cut frame-
work. We introduce the variables δ, δỹδ ˜̄y, along with the constraints (4.5) and (4.6),
restart the Branch-and-Cut framework with the new variables and constraints
and return to Step 2 when necessary.

This approach is similar to that of [105] who also use a relaxed formulation of their
original bilevel problem, introducing cutting planes on the fly along with additional
variables to indicate whether or not such cutting planes should be active. In [44] we can
find an application to a trilevel problem related to airlines, which uses binary variables
to force constraints to have slack.

With this solution method, we solve the follower’s problem with every integer solution
discovered in the Branch-and-Cut tree used to solve the HPR. Should this solution be
bilevel infeasible, then we halt the solving of this HPR and generate a new one with
the necessary value function constraint and variables. In other solution methods, the

58 Chapter 4. Solution Methods

followers problem is only solved once the HPR has been solved to optimality [105, 159].
In not solving the HPR to optimality, we hope that the algorithm shall reach an HPR
with a sufficient number of value function constraint such that we can obtain the bilevel
optimal solution quicker.

Using our variable generation approach, for every bilevel infeasible solution, we in-
troduce 3n binary variables along with 8n + 1 constraints, 8n from (4.5) and the single
value function constraint (4.6). Once again, similar to the CP algorithm, assuming the
follower’s region is bounded, then there exists a finite number of follower solutions
and thus the algorithm shall terminate in a finite number of steps.

4.2.2 Symmetry-Free Cutting Plane

With the NSFCP method, the right-hand side of (4.6) is fixed to the cost of the exact
response that the follower selected for the leader’s given variables (x, x̄) and the ad-
ditional δ, δỹδ ˜̄y variables are used to indicate when this cutting plane shall be active.
This means that we could potentially have a situation where we have multiple cutting
planes that consist of the same subset of commodities, but because a different amount
was purchased from the leader in these solutions, we have had to treat them separately.

For example, assume there exists an instance that for a given set of leader’s variables,
when checking bilevel feasibility the follower purchases commodity j1 from the leader
and commodity j2 from the market. We then perform the column generation and in-
troduce the cutting plane (4.6). Now, at another bilevel feasibility check, the follower
responds by purchasing commodity j1 from the market and commodity j2 from the
leader. In reality, the follower has purchased the same two commodities in both re-
sponses. However, as they have bought differing amount from the leader, using the
above method, we would have to treat these responses separately and thus introduce
two cutting planes, along with two sets of variables.

Therefore, the aim of the Symmetry-Free Cutting Plane, SFCP, method is to focus on the
set of commodities in the solution (˜̄y, ỹ), rather than the exact response (˜̄y, ỹ). Note, al-
though the follower’s feasible region is technically dependent on the leaders variables,
any set of commodities that provides a feasible solution for the follower’s problem shall
always be a feasible set. Thus, for a given follower solution (˜̄y, ỹ) we introduce the in-
teger variables (v̄, v) which represent how the follower’s should react if restricted to
the commodities in (˜̄y, ỹ). Here, v̄ represents the commodities that would have been
bought from the leader and v from the market. This can be enforced using the con-
straints

4.2. Non-Unit Supply 59

v̄j + vj = ∑
i∈I

di

∑
k=1

(˜̄yik
j + ỹik

j) ∀j ∈ J , (4.9a)

(sj − x̄j)− vj ≤ sj(1− δj) ∀j ∈ J , (4.9b)

v̄j ≤ δj x̄j ∀j ∈ J , (4.9c)

vj ≤ sj − x̄j ∀j ∈ J . (4.9d)

Constraint (4.9a) ensures that the same commodities which appear in the solution (˜̄y, ỹ)

shall also appear in (v̄, v). As before, the follower shall only purchase commodities
from the leader if the amount they require is greater than what the leader has not
bought. Hence v̄j > 0 ⇐⇒ vj = sj − x̄j. Therefore, to know when this happens
we have introduced another variable δ along with constraint (4.9b). When vj < sj − x̄j,
i.e. the follower would not need to purchase commodity j from the leader, the left-hand
side of (4.9b) is greater than 0, forcing δj = 0. However, when vj = sj− x̄, δj’s value can
be either 0 or 1, but because we are maximising the leaders objective, δj shall be equal to
1 as this gives the leader an objective at least as large as when δj = 0. Constraints (4.9c)
and (4.9d) ensure that the follower would not purchase more from the leader/market
than what the leader/market have, respectively. The resulting cutting plane to be used
is given by

∑
j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + ∑

i∈I

di

∑
k=1

yik
j cj

)
≤ ∑

j∈J

(
v̄j(xj + cj) + vjcj

)
. (4.10)

On the left-hand side, we have the followers objective, given the leaders taxation x.
Whereas on the right-hand side, we have the cost of the optimal response for the fol-
lower if they were restricted to the commodities in (˜̄y, ỹ). In contrast to the cutting
plane given by (4.3), this is globally valid and does not require any additional Big-M
components. Hence, the SFCP solution method can be described as follows.

60 Chapter 4. Solution Methods

Algorithm SFCP

1. Create the HPR of (3.5) and solve using a Branch-and-Cut framework.

2. Let (x∗, x̄∗, ȳ∗, y∗) be the solution at any given node. If (x∗, x̄∗, ȳ∗, y∗) is fractional,
then carry on with the Branch-and-Cut process. Else, solve the followers problem
miny{(3.5c) : (3.5d)− (3.5i)} and let φ(x∗, x̄∗) be the optimal objective value and
(˜̄y, ỹ) be the optimal response.

3. If ∑j∈J ∑i∈I ∑di

k=1

(
ȳ∗ ik

j (x∗j + cj) + y∗ ik
j cj

)
≤ φ(x∗, x̄∗), then the solution

(x∗, x̄∗, ȳ∗, y∗) is bilevel feasible, the upper/lower bounds, along with the incum-
bent can be updated if necessary and we continue with the Branch-and-Cut pro-
cess.

4. Else, (x∗, x̄∗, ȳ∗, y∗) is bilevel infeasible and we stop the Branch-and-Cut frame-
work. We introduce the variables v̄j, vj, δ, along with the constraints (4.9) and
(4.10), restart the Branch-and-Cut framework with the new variables and con-
straints and return to Step 2 when necessary.

With every bilevel infeasible solution found, we are introducing n(1 + 2 ∑i∈I di) many
variables along with 4n + 1 many constraints. Therefore i = 1 and d1 = 1 is the only
instance where the SFCP method shall introduce fewer variables with every cutting
plane. Whereas, the SFCP shall introduce 4n fewer constraints with every cutting plane
compared to the NSFCP method.

4.2.3 n-ary Branching

With the NSFCP and SFCP methods, to enforce the relevant value function constraints,
we have had to introduce a series of variables and constraints. As such, we have to
repeatedly generate and solve MILPs until we reach the bilevel optimal solution. How-
ever, rather than introducing any additional variables, we can invoke a sophisticated
branching strategy, which can solve our problem within a single Branch-and-Cut tree,
where we branch on the δỹ and δ ˜̄y variables from the NSFCP method, without adding
the variables. This method is similar to that found in [43], where they present a Branch-
and-Bound algorithm.

Let us assume we are solving the HPR of (3.5) and at some node S we discover an
integer solution (x∗, x̄∗, ȳ∗, y∗) which is bilevel infeasible as the follower has a better
response in the form of (˜̄y, ỹ). As shown in (4.3), we can only apply the value function
constraint if ∑i∈I ∑di

k=1 ˜̄yik
j ≤ x̄j and ∑i∈I ∑di

k=1 ỹik
j ≤ (sj − x̄j) are satisfied for all j ∈

J . Should there exist a single j ∈ J where these conditions are not satisfied, then
we cannot apply the value function constraint. Therefore, we shall branch from S,
generating 2n + 1 child nodes, with the local constraints described by Figure 4.1. As

4.2. Non-Unit Supply 61

we can see, for the first 2n nodes, there exists a single local constraint which implies
(˜̄y, ỹ) is an infeasible response for the follower and therefore we do not need to apply
the necessary cutting plane. Whereas at the final node, the local constraints imply that
(˜̄y, ỹ) is feasible and we thus can apply the cutting plane locally. However, some solvers
do not allow for more than 2 branches from a single node. Therefore, to recreate Figure
4.1, we use Figure 4.2 instead, with the local constraints at each node given by

Sl , 1 =

∑i∈I ∑di

k=1 ˜̄yik
j − x̄j ≤ 0 ∀j ∈ {1, . . . , l − 1},

∑i∈I ∑di

k=1 ˜̄yik
l − x̄l ≥ 1,

(4.11a)

Sl , 2 =
{

∑i∈I ∑di

k=1 ˜̄yik
j − x̄j ≤ 0 ∀j ∈ {1, . . . , l}, (4.11b)

Sn+l , 1 =

∑i∈I ∑di

k=1 ˜̄yik
j − x̄j ≤ 0 ∀j ∈ {1, . . . , l},

∑i∈I ∑di

k=1 ỹik
j − (sj − x̄j) ≤ 0 ∀j ∈ {1, . . . , l − 1},

∑i∈I ∑di

k=1 ỹik
l − (sl − x̄l) ≥ 1,

(4.11c)

Sn+l , 2 =

∑i∈I ∑di

k=1 ˜̄yik
j − x̄j ≤ 0 ∀j ∈ {1, . . . , l},

∑i∈I ∑di

k=1 ỹik
j − (sj − x̄j) ≤ 0 ∀j ∈ {1, . . . , l},

(4.12),

(4.11d)

where

∑
j∈J

(
∑
i∈I

di

∑
k=1

ȳik
j (xj + cj) + ∑

i∈I

di

∑
k=1

yik
j cj

)
≤ ∑

j∈J

(
∑
i∈I

di

∑
k=1

˜̄yik
j (xj + cj) + ∑

i∈I

di

∑
k=1

ỹik
j cj

)
(4.12)

is the value function constraint. As we can see, at a node Sl , 1 for some l ∈ {1, . . . , 2n},
there exists a local constraint that implies the solution (˜̄y, ỹ) is invalid and these nodes
correspond the node l in Figure 4.1. The nodes Sl , 2 for some l ∈ {1, . . . , 2n − 1} can
be thought of as dummy nodes, which are needed to perform this branching strategy,
should we be using a solver which requires a maximum of two branches when branch-
ing. The final node S2n, 2 is the only node where the solution (˜̄y, ỹ) is locally feasible
and therefore is the node where we enforce the constraint (4.12).

This branching strategy is performed at every node of the tree where we discover an
integer bilevel infeasible solution, which will result in a large number of nodes being
generated, which could affect the computational performance. Thus, we propose an
improved strategy with the aim of generating fewer nodes.

62 Chapter 4. Solution Methods

S

1
2

n
n

+
1

2n
2n

+
1

...
...

∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≥

1
∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≤

0

∑i∈
I

d i

∑k=
1

˜̄y ik2
−

x̄
2
≥

1

∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≤

0

...

∑i∈
I

d i

∑k=
1

˜̄y ikn−
1 −

x̄
n−

1
≤

0

∑i∈
I

d i

∑k=
1

˜̄y ikn
−

x̄
n
≥

1

∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≤

0

...

∑i∈
I

d i

∑k=
1

˜̄y ikn
−

x̄
n
≤

0

∑i∈
I

d i

∑k=
1 ỹ

ik1
−

(s1 −
x̄

1)≥
1

∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≤

0

...

∑i∈
I

d i

∑k=
1

˜̄y ikn
−

x̄
n
≤

0

∑i∈
I

d i

∑k=
1 ỹ

ik1
−

(s1 −
x̄

1)≤
0

...

∑i∈
I

d i

∑k=
1 ỹ

ikn−
1 −

(s1 −
x̄

n−
1)≤

0

∑i∈
I

d i

∑k=
1 ỹ

ikn
−

(sn −
x̄

n)≥
1

∑i∈
I

d i

∑k=
1

˜̄y ik1
−

x̄
1
≤

0

...

∑i∈
I

d i

∑k=
1

˜̄y ikn
−

x̄
n
≤

0

∑i∈
I

d i

∑k=
1 ỹ

ik1
−

(s1 −
x̄

1)≤
0

...

∑i∈
I

d i

∑k=
1 ỹ

ikn
−

(sn −
x̄

n)≤
0

(4.12)

F
IG

U
R

E
4.1:n-ary

branching
strategy

4.2. Non-Unit Supply 63

S

S1, 1

∑i∈I ∑di

k=1 ˜̄yik
1 − x̄1 ≥ 1

S1, 2

S2, 1

∑i∈I ∑di

k=1 ˜̄yik
2 − x̄2 ≥ 1

S2, 2

Sn−1, 2

Sn, 1

∑i∈I ∑di

k=1 ˜̄yik
n − x̄n ≥ 1

Sn, 2

∑i∈I ∑di

k=1 ˜̄yik
n − x̄n ≤ 0

. . .

∑i∈I ∑di

k=1 ˜̄yik
2 − x̄2 ≤ 0

∑i∈I ∑di

k=1 ˜̄yik
1 − x̄1 ≤ 0

Sn, 2

Sn+1, 1

∑i∈I ∑di

k=1 ỹik
1 − (s1 − x̄1) ≥ 1

Sn+1, 2

Sn+2, 1

∑i∈I ∑di

k=1 ỹik
2 − (s2 − x̄2) ≥ 1

Sn+2, 2

S2n−1, 2

S2n, 1

∑i∈I ∑di

k=1 ỹik
n − (sn − x̄n) ≥ 1

S2n, 2

∑i∈I ∑di

k=1 ỹik
n − (sn − x̄n) ≤ 0 and (4.12)

. . .

∑i∈I ∑di

k=1 ỹik
2 − (s2 − x̄2) ≤ 0

∑i∈I ∑di

k=1 ỹik
1 − (s1 − x̄1) ≤ 0

FIGURE 4.2: n-ary branching for when we can have at most 2 branches from a single
node.

64 Chapter 4. Solution Methods

4.2.4 Improved n-ary Branching

Although correct, the n-ary Branching method could unnecessarily generate a large
number of nodes which shall always be infeasible. For example, assume that for the
solution (˜̄y, ỹ), there exists some j ∈ J such that ∑i∈I ∑di

k=1 ˜̄yik
j = 0, i.e., commodity j is

not purchased from the leader. Using the n-ary Branching, we would need to generate
two nodes, with the local constraints −x̄j ≥ 1 and −x̄j ≤ 0 respectively. As x̄ ≥ 0,
then the node with the constraint −x̄j ≥ 1 shall always be infeasible and the node with
the constraint −x̄j ≤ 0 shall always be feasible. Thus, this branch was unnecessary.
Likewise, for any j ∈ J such that ∑i∈I ∑di

k=1 ỹik
j = 0, the local constraints are −(sj −

x̄j) ≥ 1 and −(sj − x̄j) ≤ 0, which shall always be infeasible and feasible, respectively.
Therefore, rather than performing the n-ary Branching for every commodity, we would
only branch on commodities purchased by the follower, i.e., x̄j > 0. In doing this,
we should hopefully reduce the number of nodes generated at every bilevel infeasible
solution and thus reduce the computational time and expense.

4.3 “Pre-Computed Follower Solutions” Methods

Thus far, the solution methods presented have been general and have not assumed
the leader has any extra information other than the follower’s objective and feasible
region. Should the leader have already pre-computed a subset of follower points then
intuitively we want to take advantage of this information. In the following, we present
formulations and solution methods which utilize any pre-computed follower points.
We shall focus our attention to the non-unit supply case, however, the relevant unit
supply formulations can be found in Appendix A.

4.3.1 Single MINLBP Method

For the single MINLBP method, we shall be assuming that all of the follower’s feasible
points have been pre-computed and are available to the leader. We begin by defining
YSol as a subset of all feasible points for the follower, i.e.,

YSol ⊆ {y :Aiyik ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di},

∑
i∈I

di

∑
k=1

yik
j ≤ sj ∀j ∈ J ,

yik ∈ {0, 1}n},

(4.13)

4.3. “Pre-Computed Follower Solutions” Methods 65

where we assume that the set YSol only contains points that are unique from the per-
spective of the leader, i.e.,

∑
i∈I

di

∑
k=1

yik
j = ∑

i∈I

di

∑
k=1

y′ ik
j ∀j ∈ J ⇐⇒ y = y′ ∀y, y′ ∈ YSol . (4.14)

By making this assumption we can reduce the size of YSol without compromising the
validity of the method. This is because the leader is only interested in which commodi-
ties are bought by the leaders and not by how they are distributed. I.e. a follower
reaction where follower k1 purchases commodity j and another reaction where k2 pur-
chases commodity j are the same in the eyes of the leader because all they care about is
that commodity j was bought by somebody.

Should YSol be known, then the follower’s problem can be re-defined, such that rather
than optimising y, they optimise the binary vector λ, which determines which point
from YSol they respond with. As such, the non-unit supply bilevel problem can be
formulated as

max
x,x̄,λ

|YSol |

∑
l=1

λl

(
∑
j∈J

max{0, ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j)}(xj + cj)

)
− ∑

j∈J
x̄jcj (4.15a)

s.t. (3.4b)− (3.4f), (4.15b)

λ ∈ arg min
λ
{
|YSol |

∑
l=1

λl ∑
j∈J

(
max{0, ∑

i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j)}xj + ∑

i∈I

di

∑
k=1

yl
ik
j cj

)
:

(4.15c)

|YSol |

∑
l=1

λl = 1, (4.15d)

λ ∈ {0, 1}|YSol |}, (4.15e)

where yl ∈ YSol . The variable λ now indicates which one of the solutions in YSol

the follower’s responds with, with λl = 1 if and only if the follower’s reacts with yl .
Constraint (4.15d) ensures that the follower must select exactly 1 response from YSol .

To handle the max operator, we shall use a similar method to the Max Value formula-
tion by introducing the binary variables γ such that

66 Chapter 4. Solution Methods

γl j = 1→ ∑
i∈I

di

∑
k=1

yl
ik
j ≥ sj − x̄j, (4.16a)

γl j = 0→ ∑
i∈I

di

∑
k=1

yl
ik
j ≤ sj − x̄j, (4.16b)

which can be enforced by using the constraints

M̄(1− γl j) ≥ −
(

∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j)

)
, (4.17a)

M̄γl j ≥ ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j), (4.17b)

for all l ∈ {1, . . . , |YSol |}, j ∈ J . The value of M̄ can be calculated similar to that in
(4.5) by defining M̄ = max{sj : j ∈ 1, . . . , n}+ 1. Once again, when ∑i∈I ∑di

k=1 yl
ik
j =

(sj − x̄j), γ can be either 0 or 1. We then introduce the variable z, for which we define
zl j = max{0, ∑i∈I ∑di

k=1 yl
ik
j − (sj − x̄j)} by using the constraints

zl j ≥ 0, (4.18a)

zl j ≥ ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j), (4.18b)

zl j ≤ sjγl j, (4.18c)

zl j ≤ ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j) + sj(1− γl j). (4.18d)

The constraints (4.17) and (4.18) only contain leader variables, thus are considered lead-
ers constraints and as such they shall define the leaders feasible region. Hence, the
bilevel formulation becomes

4.3. “Pre-Computed Follower Solutions” Methods 67

max
x,x̄,γ,z,λ

|YSol |

∑
l=1

λl

(
∑
j∈J

zl j(xj + cj)
)
− ∑

j∈J
x̄jcj (4.19a)

s.t. (3.4b)− (3.4f), (4.19b)

(4.17)− (4.18) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (4.19c)

γl ∈ {0, 1}n ∀l ∈ {1, . . . , |YSol |}, (4.19d)

zl ∈ Zn ∀l ∈ {1, . . . , |YSol |}, (4.19e)

λ ∈ arg min
λ
{
|YSol |

∑
l=1

λl

(
∑
j∈J

(
zl jxj + ∑

i∈I

di

∑
k=1

yl
ik
j cj

))
: (4.19f)

|YSol |

∑
l=1

λl = 1, (4.19g)

λ ∈ {0, 1}|YSol |}. (4.19h)

In previous single level reformulations, we have been unable to use approaches such as
KKT-conditions, or strong duality, as a result of the integrality constraints in the lower
level. However, if we can show that all the vertices of the follower’s feasible region
satisfy the integrality constraints, then we can relax the follower’s problem to just an LP
and use the relevant reformulation techniques. From [10] we get the following theorem.

Theorem 4.2. Let A be an integer matrix. The following statements are equivalent:

1. A is totally unimodular.

2. The extreme points (if any) of S(b) = {x : Ax ≤ b, x ≤ 0} are integer for arbitrary b.

3. Every square nonsingular submatrix of A has an integer inverse.

Thus, if we can show that the constraint matrix for the follower problem is totally uni-
modular, then we have shown that the extreme points are integer, meaning we can
relax the integrality constraints. As such, we can reduce the bilevel problem to a single
level by using optimality conditions used for continuous problems, such as KKT and
strong duality, rather than just the value function approach. Rewriting the follower’s
problem in standard form, we get

min
λ

d1λ1 + · · ·+ d|YSol |λ|YSol | (4.20a)

s.t. λ1 + · · ·+ λ|YSol | − 1 = 0, (4.20b)

λi ≥ 0 ∀i ∈ {1, . . . , |YSol |}, (4.20c)

68 Chapter 4. Solution Methods

where dl =
(

∑j∈J

(
zl jxj + ∑i∈I ∑di

k=1 yl
ik
j cj

))
and λ is the reaction of the follower, such

that if the follower reacts with solution i then λi = 0. Note, λ ∈ [0, 1]|Y
Sol | but we have

not explicitly stated λ’s upper bound in (4.20). This is because (4.20b) automatically
enforces an upper bound of 1 on all λ. Should there exist some λi > 1, then (4.20b)
would be violated.

We can quickly and easily show that the constraint matrix for this problem is totally
unimodular by using the consecuative one’s property [87].

Theorem 4.3. (Consecutive One’s Property) If A is a 0-1 matrix, in which every row, the 1’s
appear consecutively, then A is totally unimodular.

This is clearly the case for (4.20), thus we can use KKT, duality and value function
approaches to produce the single level formulation

4.3.1.1 KKT Reformulation

To carry out a KKT reformulation, we must first define the Lagrangian function. The
g(x) ≤ 0 constraints are given by −λi ≤ 0 and our single h(x) = 0 constraint is given
by λ1 + · · ·+ λ|| − 1 = 0. So the Lagrangian is given by

L(λ, µ, ν) =d1λ1 + · · ·+ d|YSol |λ|YSol | + µ1(−λ1) + · · ·+

µ|YSol |(−λ|YSol |) + ν(λ1 + · · ·+ λ|YSol | − 1),
(4.21)

which produces the following KKT conditions

0 = dl − µl + ν ∀l ∈ {1, . . . , |YSol |}, (4.22a)

0 = µlλl ∀l ∈ {1, . . . , |YSol |}, (4.22b)

0 = λ1 + · · ·+ λ|YSol | − 1, (4.22c)

0 ≤ λ, µ, (4.22d)

ν free, (4.22e)

resulting in the KKT formulation to be

4.3. “Pre-Computed Follower Solutions” Methods 69

max
x,x̄,λ, µ,ν

|YSol |

∑
l=1

λl

(
∑
j∈J

zl j(xj + cj)
)
− ∑

j∈J
x̄jcj (4.23a)

s.t. (3.4b)− (3.4f), (4.23b)

(4.17), (4.18) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (4.23c)

0 = ∑
j∈J

(
zl jxj + ∑

i∈I

di

∑
k=1

yl
ik
j cj

)
− µl + ν ∀l ∈ {1, . . . , |YSol |}, (4.23d)

0 = µlλl ∀l ∈ {1, . . . , |YSol |}, (4.23e)

0 = λ1 + · · ·+ λ|YSol | − 1, (4.23f)

λ, µ ≥ 0, (4.23g)

ν free. (4.23h)

This formulation is non-linear, however, we can linearise most of it by using the Mc-
Cormick and binary expansion techniques that have been described previously. In
(4.23) we have the quadratic terms zl jxj, λlzl j and µlλl and the cubic term λlzl jxj. As z
is an integer variable and xj is a continuous one, we can represent their product using
the McCormick constraints, after performing a binary expansion on z to get the binary
variable α and defining pl jm = αl jmxj. For λlzl j, we shall define rl j = λlzl j and use the
McCormick constraints directly as λ is binary. Following this, λlzl jxj can be written as

the product between λl and ∑
blog2 zl jc
m=1 2m−1 pl jm, which, once again, can be linearised us-

ing the McCormick constraints, as λ is a binary variable and p is continuous, defining
ql jm = λl pl jm. Linearising µlλl is much trickier as µl is continuous and does not have
an upper bound. Work can be done to create upper and lower bounds for this vari-
able, by analysing the dual problem, or we could use a relaxation method that utilises
NCP-functions [150]. However, with some state-of-the-art solvers, such as CPLEX, we
can define variables as a Special Ordered Set (SOS) Type 1, which implies that at most
one variable can be non-zero. The solver then implements a special branching strategy
which limits the number of non-zero elements. By defining |YSol |-many SOS Type 1
constraints, we will have enforced the complementarity constraints of the KKT con-
ditions. The linear KKT formulations for the unit and non-unit supplies are given by
(A.3) and (A.8) respectively.

4.3.1.2 Value Function Reformulation

As discussed in Chapter 2, the value function reformulations moves the follower’s vari-
ables and constraints into the leader’s problem, whilst simultaneously introducing ad-
ditional constraints that force the follower’s variables to represent the followers true

70 Chapter 4. Solution Methods

reaction. Given that YSol is known, we can enforce the value function constraint by
using

|YSol |

∑
l=1

λl ∑
j∈J

(zl jxj + ∑
i∈I

di

∑
k=1

yl
ik
j cj) ≤ ∑

j∈J
(zojxj + ∑

i∈I

di

∑
k=1

yo
ik
j cj) ∀o ∈ {1, . . . , |YSol |}.

(4.24)

Similar to before, we still have the quadratic terms zl jxj, λlzl j and the cubic terms
λlzl jxj, which are linearised using the same combinations of binary expansions and
McCormick constraints. The linear value function formulations for the unit and non-
unit supplies are given by (A.4) and (A.9) respectively.

4.3.1.3 Strong Duality Reformulation

As we have shown, we can use the KKT conditions to transform the bilevel problem
to a single level because we reformulated the follower’s problem, such that it is totally
unimodular. Likewise, because of this unimodularity, we can use the strong duality
conditions. Given the linear program (4.20), the corresponding dual is given by

max
π

π (4.25a)

s.t. π ≤ di ∀i ∈ {1, . . . , |YSol |}, (4.25b)

π free. (4.25c)

The strong-duality conditions that would be used to ensure follower optimality are
given by

|YSol |

∑
l=1

λl ∑
j∈J

(zl jxj + ∑
i∈I

di

∑
k=1

yl
ik
j cj) = π (4.26a)

π ≤ ∑
j∈J

(zojxj + ∑
i∈I

di

∑
k=1

yo
ik
j cj) ∀o ∈ {1, . . . , |YSol |} (4.26b)

π free, (4.26c)

where (4.26a) ensures the strong-duality property and (4.26b) enforces dual feasibility.
In this scenario, we can see that the constraints (4.26a) and (4.26b) can be merged, to
project out π, leaving us with a constraint exactly the same as if we used the value

4.3. “Pre-Computed Follower Solutions” Methods 71

function approach. Thus, the duality formulation is the same as the value function
formulation.

4.3.2 Double MINLBP Method

We have just demonstrated how the bilevel problem can be reduced to a single-level
formulation by using the KKT, value function and strong duality conditions, when all
feasible follower solutions have been computed. However, this information is seldom
known and, to calculate, would be far to expensive computationally for any non-trivial
problem. Therefore, we present solution methods, which use a relaxation of the pre-
sented formulations, by using a subset Y of YSol .

Let DM(Y) be the formulation of (4.15) where instead of using YSol we use the subset
Y and let DMKKT(Y) and DMVF(Y) be the single-level reformulations using the KKT
and value function method respectively. Clearly, if |Y| < |YSol |, then DMKKT(Y) and
DMVF(Y) are relaxations of the original bilevel problem and may not provide a bilevel
feasible solution, let alone the optimal solution. Although these reformulations force
the follower’s choice of solution to be the cheapest from the set Y, there may exist a
solution not within Y, which, given the leader’s choice of variables, would produce
a smaller objective for the follower or a larger objective for the leader. Therefore, we
present the following Known Solution’s Algorithm (KSA) solution method.

Algorithm KSA

1. Create an initial set Y ⊂ YSol .

2. Repeat Steps 2-6 until we discover a bilevel feasible solution.

3. Generate the formulation DMKKT(Y) or DMVF(Y) and solve to get the solution
(x∗, x̄∗, λ∗) with the leader and follower objectives FU∗ and FL∗ respectively.

4. Solve the followers problem parameterised by (x∗, x̄∗) to get φ(x∗, x̄∗) and
ψ(x∗, x̄∗).

5. If FL∗ ≤ φ(x∗, x̄∗) we have a bilevel feasible solution and go to step 7.

6. Else, add the solutions found in ψ(x∗, x̄∗) to Y and return to step 3.

7. Solve the original bilevel problem (3.4) with with the added constraints that y /∈ Y
and FU ≥ FU∗ and, if feasible, get the solution (x′, x̄′, y′).

8. If the solution to step 7 is infeasible, then the optimal leader variables are (x∗, x̄∗)
else (x′, x̄′) is the optimal solution.

72 Chapter 4. Solution Methods

In the above algorithm, we repeatedly solve the relaxation using the set Y. If the so-
lution to DMKKT(Y) or DMVF(Y) is not bilevel feasible, because there exists a better
response for the follower, we introduce this new solution to Y and repeat the process
until we discover a bilevel feasible solution. Once we have a bilevel feasible solution,
we go back to the general formulation and restrict the follower to responding with a
solution not from Y.

Forcing the follower to a point not in Y can be achieved by using a no-good cut. For the
unit-supply case, we use the single constraint

∑
i∈I

di

∑
k=1

(
∑

j∈Y0

yik
j + ∑

j∈Y1

(1− yik
j)
)
≥ 1 (4.27)

for every y
′ ∈ Y where Y0 := {j ∈ J : ∑i∈I ∑di

k=1 y
′ ik
j = 0} and Y1 := {j ∈ J :

∑i∈I ∑di

k=1 y
′ ik
j = 1}. For the non-unit supply case, for each every y

′ ∈ Y we introduce

n-many binary variables which are equal to 0 if ∑i∈I ∑di

k=1 yik
j = ∑i∈I ∑di

k=1 y
′ ik
j for the

given j and 1 otherwise. We then force the summation of these binary variables to be
greater than 0, forcing the followers to purchase a differing amount for some commod-
ity j.

Along with this, we place a lower bound on the leader’s objective value, hoping to find
a better solution for the leader. Ideally, the solution from the last iteration of DMKKT(Y)
or DMVF(Y) should provide a bilevel solution, which causes the second problem to be
either infeasible, or much easier to solve. As one can imagine, the number of iterations
between steps 2 and 6 shall depend on both the size and contents of the initial set Y.

4.3.2.1 Y Selection

Determining Y is clearly an important process that can affect the overall performance
of KSA. Selecting a large set Y will result in solving the follower’s problem many times,
which is computationally expensive, but can provide better solutions and stronger
bounds for step 7 of the algorithm. Whereas, a small set Y will be much more man-
ageable computationally, but may not produce enough useful information. However,
its not just the size of Y that should be carefully calculated but also the contents, i.e.
the feasible points for the follower. Ideally, we want to construct Y in such a manner
that each of its elements have a high probability of being the optimal solution whilst
keeping the size of Y relatively small. To begin with, we shall assume that all of the
solutions within YSol are ordered by their cost when there is no taxation, i.e.,

∑
j∈J

∑
i∈I

di

∑
k=1

y1
ik
j ≤ ∑

j∈J
∑
i∈I

di

∑
k=1

y2
ik
j ≤ · · · ≤ ∑

j∈J
∑
i∈I

di

∑
k=1

y|YSol |
ik
j

. (4.28)

4.3. “Pre-Computed Follower Solutions” Methods 73

This leads us into the following lemmata.

Lemma 4.4. If the leader does not purchase a commodity that belongs to the solution y1, i.e. for
all j ∈ J , x̄j = 0 if ∑i∈I ∑di

k=1 y1
ik
j ≥ 1, then the maximum objective value they can achieve is

0.

Proof. Firstly, as y1 is the cheapest follower solution when 0 taxation is applied and
all taxation is non-negative, then if no commodity belonging to y1 has any taxation
applied to it, then y1 shall remain the cheapest solution for the follower. Thus, the
follower shall always respond with y1. Therefore, if the leader has not purchased one
of these commodities, then they cannot achieve any income and thus the maximum
objective value they can achieve is 0, if they purchase no commodities at all.

Lemma 4.5. For all l ∈ {1, . . . , |YSol |} such that

∑
i∈I

di

∑
k=1

y1
ik
j (M + cj) ≤ ∑

i∈I

di

∑
k=1

yl
ik
j cj, (4.29)

yl will never be an optimal response for the follower.

Proof. By definition, the follower responds to the leader’s action by selecting the cheap-
est response. ∑i∈I ∑di

k=1 y1
ik
j (M + cj) is the maximum price that the solution y1 can

possibly have. Therefore, any solution yl , whose minimum price, ∑i∈I ∑di

k=1 yl
ik
j cj, is

strictly greater than the maximum price of y1 will never be an optimal response for the
follower.

For the solutions yl , where ∑i∈I ∑di

k=1 y1
ik
j (M + cj) = ∑i∈I ∑di

k=1 yl
ik
j cj, the case may

arise that the final costs for y1 and yl are equal. In which case, the follower shall have
no preference on which solution they choose. However, we have been focusing on the
optimistic bilevel setting, which means that in such a case, the leader shall assume that
the follower selects the solutions that provides them with the largest objective. This
corresponds to the solution y1 as they have no income from the solution yl , meaning
the maximum objective they can achieve is 0.

Lemma 4.6. Following on from Lemma 4.5, for all l ∈ {1, . . . , |YSol |} such that

z ≤ ∑
i∈I

di

∑
k=1

yl
ik
j cj, (4.30)

where

74 Chapter 4. Solution Methods

z = max
x,x̄ ∑

i∈I

di

∑
k=1

y1
ik
j (xj + cj) (4.31a)

s.t. (3.4b)− (3.4f), (4.31b)

yl will never be an optimal response for the follower.

Proof. Similar to to Lemma 4.5, we show that any solution yl whose cost without any
taxation is greater than the maximum price of y1, shall never be part of the optimal
solution. Whereas before, we just took the price of y1 where every commodity had
maximum taxation, we now take into account the leaders budget constraints and use
the maximum price that the leader could possibly make y1 have.

Using these Lemmas we achieve the following.

Theorem 4.7. If Y ⊆ YSol is such that for all l ∈ {1, . . . , |YSol |} if ∑i∈I ∑di

k=1 yl
ik
j cj ≤ z,

where z is the optimal solution to (4.31), then yl ∈ Y, the optimal solution to DM(Y), is the
optimal solution to original bilevel problem.

Proof. For the set Y as described, any solution that is not part of this set will never be
part of the optimal solution by Lemma 4.31. Therefore, we can solve the original bilevel
problem by fixing the follower’s variables to only those that appear in Y.

In Chapter 5, Y is generated by repeatedly solving the followers problem, when no
taxation is being applied, and introducing a no-good-cut. By doing this m-many times
we shall generate the m cheapest follower reactions when no taxation has been applied.
This means that Y contains follower points which are most likely to be affected by the
leaders taxations but may not represent Y found by Theorem 4.7.

In relation to the motivation of this problem, the initial set Y may not have to be gen-
erated. Many websites, such as [1], have dedicated forums for gamers to display and
compare their solutions to these SBC’s. Here, users will upload feasible teams to the
SBC’s, which are ordered by their price, using the current value of the commodities.
Although gamers can submit any team that satisfies the constraints, they tend to up-
load solutions with the goal of trying to find the cheapest team. Thus, taking the top
m-many teams from the top can be considered as taking the m-many cheapest teams
without leader taxation.

4.3. “Pre-Computed Follower Solutions” Methods 75

4.3.3 Known Solution Branching (KSB) Method

With the DM(Y) method, we have to solve two MINLBP’s, one where we assume the
follower reacts within a known set of responses and the other when their decision is not
within the set. Similar to the intuition behind the n-ary Branching, once again we want
to find a way in which we can contain these MILPs within a single Branch-and-Cut
framework.

Let us assume that a bilevel problem is being solved with one of the solution methods
presented in Section 4.1 and 4.2 and we have a known set of follower responses Y. If,
at the root node, the methods from 4.1 and 4.2 decide to branch, then we shall force
the solver to perform the branching outlined by Figure 4.3. We have generated |Y|+ 1
many child nodes from the root node, with |Y| many fixing the followers response
and the final node allowing the follower a free choice. The first |Y| nodes replicate the
DM(Y) problem in step 3 of the KSA algorithm and node S|Y|+1 acts as the MINLBP
solved in step 7.

With the unit supply case, the KSB solution method may be used alongside the CP
method. For the non-unit supply case, the KSB method can be used with both di-
chotomic and max value formulations. However, we shall only use it with the n-ary
Branching method. The purpose of the KSB method is to encompass the simpler bilevel
problems, where we have fixed the follower’s response, within a single Branch-and-
Cut framework. With the NSFCP and SFCP solution methods, additional variables
need to be introduced with every infeasible bilevel solution. Therefore combining the
KSB method with either the NSFCP or SFCP methods can be seen as counter intuitive.

76 Chapter 4. Solution Methods

S

S
1

S
2

S
|Y|

S
|Y|+

1

(y,ȳ
)

=
(y

1 ,ȳ
1)

(y,ȳ
)

=
(y

2 ,ȳ
2)

(y,ȳ
)

=
(y|Y| ,ȳ|Y|)

y
/∈

Y

...

...

F
IG

U
R

E
4.3:Branching

strategy
for

K
SB

m
ethod

using
exactsolutions.

77

Chapter 5

Computational Results

The primary goal of this chapter is to compare the performances of the solution meth-
ods presented in Chapter 4 along with the different formulations from Chapter 3. Our
experiments are performed on a single node of the IRIDIS 5 cluster, equipped with
40 dual 2.0GHz Intel Skylake processors and 192GB of DDR4 memory, running each
computation in a single thread [118]. All formulations and instances were coded in
Python3.6, using CPLEX 20.10 as the solver for every HPR. As discussed in Chapter 4,
we use the LazyConstraintCallback, BranchCallback and IncumbentCallback’s to integrate
our solution methods with CPLEX.

To compare the formulations and solution methods, we used three sets of instances.
In Set A, we varied the number of commodities along with the supply for each com-
modity. For Set B, we changed the supply for each commodity along with the number
of followers and in Set C the instances were generated with varying M and B values.
The results from all instances can be found at [149], along with additional plots not
contained within this these.

In the remainder of this chapter, when referring to a specific formulation and solution
method, we shall use (X, Y, Z) where X is the formulation, Y is the McCormick lineari-
sation being used and Z is the solution method. Table 5.1 gives the abbreviations to
be used. For example, (DI, DMC, SFCP) shall represent the dichotomic formulation
with direct mcCormick linearisation used with the symmetry free cutting plane solu-
tion method.

Note, in this chapter we do not compare our solution methods directly with any other
methods. This is due to a lack of algorithms being available to download and use.
We did however discover one solver which was downloadable [147], which follows the
work in [68, 70, 71]. This solver follows a similar method to our solution methods, using
CPLEX as the main integer solver and introducing the necessary procedures to achieve
a bilevel solution. When trying to use this solver for the instances we have generated,

78 Chapter 5. Computational Results

TABLE 5.1: List of abbreviations used to distinguish between formulations, Mc-
Cormick linearisation techniques and solution methods.

Abbr Meaning
Formulation US Unit Supply formulation

DI Dichotomic formulation
MV Max Value formulation
DMKKT Double MINLBP KKT Formulation
DMVF Double MINLBP VF Formulation

McCormick SMC Summation McCormick
DMC Direct McCormick

Solution Method CP Cutting plane
KSBCP Known Solution Branching Cutting Plane
SFCP Symmetry Free Cutting Plane
NSFCP Non-Symmetry Free Cutting Plane
nB n-ary Branching
nB+ n-ary Branching plus
KSBnB Known Solution Branching with n-ary Branching
KSBnB+ Known Solution Branching with n-ary Branching plus
KSA Known Solution Algorithm

we encountered two problems. Firstly, [147] required an older version of CPLEX, 12.7,
which although is available to download, may skew the results. And secondly, but
most importantly, we found that when [147] was applied to our instances it took much
longer to solve than our solution methods. This was most notable where our solvers
were able to solve instances in seconds and [147] was over 10 minutes without reaching
the solution. As such, we have not compared our solution methods to [147], nor any
other solution methods.

5.1. Results for Instance Set A 79

5.1 Results for Instance Set A

For Set A, we varied the number of commodities, n, along with the supply for each
commodity, s. We allowed n to take values from the set {100, 125, 150, . . . , 500} and
defined s as an random integer vector, where sj ∈ [1, smax] for j ∈ {1, . . . , n} and smax ∈
{1, 2, 4, 8}. M and B are both fixed to 25 along with i = 1 and d1 = 3.

Figures 5.1, 5.3 and 5.4 demonstrate the performance of the formulations and solution
methods w.r.t the computational time, the number of nodes solved and the total num-
ber of follower problems solved. In Figure 5.1 we can see that for the both Dichotomic
formulations and the Max Value formulation the nB+ solution method performes best,
closely followed by the KSBnB+. Across these three formulations, there was only the
instance of n = 300 with the Dichotomic formulation and Summation McCormick’s
where the nB+ solution method was not the quickest.

Given these results, for the KSA solution method we used the Max Value formulation
along with the nB+ solution method for the second stage. The plot, in the bottom
right of Figure 5.1, shows how the KSA algorithm performed with both the KKT and
VF formulations. As we can see, the KSA algorithm performed better than the other
solution methods, achieving average computational times of 545.057 and 557.330 for
the VF and KKT formulations respectively, compared to the (MV, DMC, nB+)’s average
time of 621.898. One of the reasons behind this could be that across the 340 instances
performed with the KSA algorithm, the second stage was infeasible for 304 and 305 of
these instances for the VF and KKT formulations respectively. Meaning the optimal
solution was discovered in the DM(Y) problem in 90% of the instances.

Figure 5.2 presents the performance profile for each solution method and formulation.
With these plots, we have presented the ratio of problems solved within a given time,
for each formulation and solution method. Here, we can see that the nB+ solution
method is consistently solving a greater proportion of problems than the other solution
methods across the Dichotomic and Max Value formulations, solving 92.6% and 92.4%
within the 3600s time limit. With the Double MINLBP formulations, we can see that the
KKT and VF formulations solve a similar ratio of problems within a given time. The
VF formulation manages to solve 92.6% of the instances within the time limit, with the
KKT formulation performing slightly better and solving 92.9%.

As expected, in Figure 5.3 we can see that although the nB+ and KSBnB+ solution meth-
ods are the best w.r.t the computational time, they produce more nodes than both the
NSFCP and SFCP solution methods, which is expected, given that the solution meth-
ods force the solver to branch. Likewise, we can see that the nB and KSBnB produce
significantly more nodes than all other formulations.

Figure 5.4 provides the number of times the follower’s problem is solved with each
solution method and formulation. Surprisingly, we can see that the NSFCP and SFCP

80 Chapter 5. Computational Results

FIGURE 5.1: Set A results w.r.t computational time.

FIGURE 5.2: Proportion of instances solved within a given time for Set A.

solution methods solve the follower’s problem fewer times than the branching meth-
ods for each formulation. As a result, we may find that for problems where the fol-
lower’s problem is far more computationally expensive, the NSFCP and SFCP solution
methods may provide optimal solutions quicker.

Note, for the solution methods that use KSB, we allow the solver to branch from the
root node with 1, 2, 4 and 8 solutions. Table 5.2 provides the average times for each
KSB solution method, with each formulation. As we can see, the timings are very close,
however across all instances, when the number of KSB solutions equals 1 we achieve
the quickest times. Thus, in Figures 5.1–5.4 only the results where the number of KSB
solutions equals 1 are shown.

5.1. Results for Instance Set A 81

FIGURE 5.3: Set A results w.r.t the number of nodes solved.

FIGURE 5.4: Set A results w.r.t the number of times the followers problem is solved.

With Set A, we also compared the performances of the unit supply formulation and so-
lution methods. Alongside comparing them with each other, we can also measure their
performances with the non-unit supply formulations and solutions methods when the
supply for each commodity was set to 1.

Figure 5.5 presents the computational times for the unit supply instances. Similar to
the non-unit supply cases, we find that the nB+ and KSBnB+ solution methods per-
form best with the Dichotomic and Max Value formulations and both KKT and VF
formulations perform well compared to the other solution methods. However, these
results are dwarfed by the unit supply formulation and solution methods.

Note, in Figure 5.5 the y-axis for the non-unit supply methods ranges between 0 and

82 Chapter 5. Computational Results

TABLE 5.2: Average time for the KSB solution methods within Set A.

No. KSB Solutions
Formulation McCormick Algorithm 1 2 4 8
DI DMC KSBnB 2387 2433 2422 2445

KSBnB+ 1310 1350 1389 1400
SMC KSBnB 1858 1883 1906 1918

KSBnB+ 935 949 948 973
MV DMC KSBnB 1686 1724 1744 1754

KSBnB+ 923 951 943 972

3600, where as the (US, DMC), (US, SMC) and (DM, DMC) formulations range between
0 and 150, 25 and 25 respectively. As we can see, both the CP and KSBCP solution meth-
ods with the (US, SMC) formulation massively outperform all other solution methods,
taking on average less than 5 seconds across all instances. Both solution methods be-
have similarly, with the CP method performing better in just the n = 300, 325, 350 and
425 instances.

With the Double MINLBP formulation, we used the (US, SMC) formulation with the CP
solution method for the second stage of the KSA method. The timings here are not as
good as the (US, SMC, CP) times, however, we find that the VF formulation performed
much better than the KKT formulation.

5.1. Results for Instance Set A 83

FIGURE 5.5: Set A results w.r.t the computational time with the unit supply instances.

84 Chapter 5. Computational Results

5.2 Results for Instance Set B

For the instances in Set B, we shall vary the supply of each commodity along with
the number of followers. i shall remain fixed to 1, however we shall allow for d ∈
{5, 10, 15, 20, 25}. s shall be an integer vector, where s = b[(2blog2(d+1)c − 1)scoef]cwhere
scoef ∈ {0.5, 0.55, . . . , 1.5}. The follower’s combinatorial constraints are the same as
described in Set A and the parameters n, M and B shall be fixed to 200, 25 and 25
respectively. In doing so, we should be able to compare the performances of the Direct
and Summation McCormick methods and see if they coincide with our predictions
from Section 3.7.2.1.

Figures 5.6 and 5.7 show how the solution methods perform, with respect to computa-
tional time, for varying values of d and scoef, respectively, with Figure 5.8 providing a
performance plot across all instances. In this set of instances, we can see that the timings
for each solution method are a lot more compact than with Set A. For the Dichotomic
Direct McCormick and Max Value formulations we still have that the nB+ solution
methods provides the least computational time. However with the Dichotomic Sum-
mation McCormick we find that in some instances the SFCP solution method performs
best.

FIGURE 5.6: Set B results for dsum vs Time.

Once again though, we find that the KSA solution method with the Double MINLBP
formulations outperform the solution methods used with the Dichotomic and Max
Value formulations. The Value Function formulation achieved an average time of
2327.641, with the KKT formulation improving on this with a time of 2324.355. Both of
which were faster than using nB+ with the Max Value formulation, the quickest method
from the Dichotomic and Max Value formulations.

5.2. Results for Instance Set B 85

Figure 5.8 presents the proportion of instances solved within a given time. The (DI,
SMC, SFCP), (DM, DMC, KKT) and (DM, DMC, VF) perform best, solving 45.1%, 45.3%
and 45.5% of all instances within the time limit, respectively. From the Dichotomic Di-
rect McCormick formulation the NSFCP solution method solved the greatest propor-
tion of instances, however it was only able to solve 24% of instances, significantly less
than the other formulations. Most of these performance plots appear to flatten as we
approach the time limit, apart from (DI,SMC,SFCP). This indicates that if we increase
the time limit then we may find that (DI,SMC,SFCP) solves a larger proportion of in-
stances than the other formulations and solution methods.

FIGURE 5.7: Set B results for scoef vs Time.

FIGURE 5.8: Proportion of instances solved within a given time for Set B.

Figure 5.9 presents the computational times for the solution methods when used with
the Direct and Summation McCormicks. From Section 3.7.2.1, we predicted that when

86 Chapter 5. Computational Results

FIGURE 5.9: Set B results for SMC and DMC formulations.

s < 2blog2(m+1)c − 1, the SMC formulations should reach the solution quicker, when
s > 2blog2(m+1)c − 1, the DMC formulations should reach a solution quicker and at
equality they should perform the same. For this set of instances, these three situations
correspond to when scoef = {0.5, 0.75}, scoef = {1.25, 1.5} and scoef = 1 respectively.
Thus, we would expect the lines in Figure 5.9 to cross over at the point scoef = 1. Note,
for this comparison only the Dichotomic formulations have been used. Although the
Max Value and Double MINLBP formulations use the Direct McCormick formulations,
we cannot use the Summation McCormick and have thus omitted these from this com-
parison.

For the SFCP and NSFCP solution methods we can see that the Summation McCormick
formulation is consistently faster than the Direct, achieving a smaller computational
time for all values of scoef. A similar outcome occurs with the nB+ solution method,
with the Summation McCormick performing quicker for all values of scoef except
scoef = 1.5, where the Direct McCormick method is marginally faster. For the remain-
ing solution methods, we can spot a general pattern. For scoef ≤ 0.95, the Summation
McCormick is faster and for scoef ≥ 1 the times become very similar, with the nB, KS-
BnB, and KSBnB+ solution methods having average times, for scoef ≥ 1, of 3054.300,
3157.000 and 2921.793 and 2999.925, 3198.784 and 2856.874 for the Direct and Summa-
tion McCormicks respectively.

These results contradict our predictions from Section 3.7.2.1. As expected the Summa-
tion McCornicks are faster for values of scoef < 1. However they tend to still be faster
for scoef ≥ 1, with the difference between the Direct and Summations becoming smaller.

5.3. Results for Instance Set C 87

5.3 Results for Instance Set C

For the instances in Set C, we varied the maximum taxation the leader could apply,
M along with the budget of the leader, B. As such, we allowed for both M and B to
take values from {10, 15, 20, . . . , 75}. For the other parameters we have n = 200, i = 1,
d1 = 3 and the supply for each commodity took the same approach as in Set A, with
smax fixed to 8.

Figures 5.10 and 5.11 show how the solution methods perform with each formulation
as the values of B and M changed respectively, with respect to time. In Figure 5.10 we
can see that, generally, as the leader’s budget increases, so does the computational time.
There appears to be a significant increase in the computational time between B = 35
and 40. The most likely reasoning for this “step” is that the possible commodities that
the leader could purchase with a budget of 40 is far greater than with a budget of 35. For
values of B > 40, we can see that the times flatten out, implying that the commodities
that the leader could purchase with a budget greater than 40 is the roughly the same
than at 40.

FIGURE 5.10: Set C results as the leaders budget varied.

In the dichotomic and max value formulations we find that generally the nB+ solution
methods performs best, closely followed by the KSBnB+ method. However, the KSA
method with both the KKT and value function formulations performs significantly bet-
ter than the other solution methods where B ≥ 40. In contrast, we do not find the
“step” around B = 40 and instead find that the computational time acts quite linearly.

Figure 5.11 shows how the computational times for each formulation as M is varied.
As we can see, the computational times remain relatively consistent over all values of
M. From the additional plots in [149], we can see that for each value of B, the compu-
tational time remains relatively constant for all values of M. However, as each value

88 Chapter 5. Computational Results

of B increases, the constant value also increases. This behaviour implies that the lead-
ers budget constraint has a much larger impact on the computational times than the
maximum taxation does.

FIGURE 5.11: Set C results as the maximum taxation is varied.

In Figure 5.11 we can see that, once again, with the dichotomic and max value for-
mulations, the nB+ and KSBnB+ solution methods perform best with respect to com-
putational time. It would also appear that for small values of M, the KSA, method
with either the KKT or value function formulations, perform quickest. However, when
B ≤ 35, we find that the KSA method is competitive for when M = 10 or 15, however,
for larger values of M, the nB+ solution method with the max value formulation is con-
siderably quicker. Yet, when B ≥ 40, the KSA method is consistantly quicker than all
other solution methods with both the dichotomic and max value formulations.

5.4 Results Overall

Across all three instances we see that the KSA algorithm performs extremely well com-
pared to the other solution methods presented. Not only did it solve the highest pro-
portion of problems in Set A with the non-unit supply instances, its computational time
was drastically smaller with unit supply problems. In Set B, KSA achieved the fastest
computational times along with the highest proportion of instances solved and was
fastest in Set C for B ≥ 40 and for B ≤ 35 when M = 10 or 15.

89

Chapter 6

Conclusions

Bilevel optimisation problems emerge from a vast variety of applications across multi-
ple industries. In this thesis, we have focused on a specific bilevel problem based upon
commodities being bought from a market. The follower’s objective is to purchase a set
of commodities which satisfy some combinatorial constraints in the cheapest manor
possible. Whilst the leader aims to generate profit by purchasing commodities from
the market and then selling them to the follower at some inflated price. Due to the
binary decisions of the follower, the resulting problem can be described as a Mixed In-
teger Non-Linear Bilevel Optimisation problem. As there already exists state-of-the-art
solvers readily available, the aim was to reformulate our MINLBP into a single-level
MILP, solved using tailored solution methods which could be carried out by using the
solvers built in callbacks.

In Chapter 2 we conducted a literature review discussing properties, applications and
solution methods of bilevel problems. To begin with we introduced some basic termi-
nology with regards to the feasible regions of a bilevel problem compared to a standard
MILP. Following this, we discussed the applications and focused on Facility Location,
Interdiction and Pricing problems as a large proportion of the literature was focused
to these special cases. Following this, we discussed some bilevel properties before
moving on to existing solution methods. A majority of the solution methods for the
non-integer problems focused on reformulating the bilevel problem to a single level
using methods such as KKT, value function constraints and reaction set mapping, to
name a few. However, for problems containing integer variables, there was a large fo-
cus towards using Branch-and-Bound or Branch-and-Cut frameworks with modified
fathoming rules along with tailored cutting planes.

In Chapter 3 we introduce the Bilevel Pricing Problem we wish to solve. We begin
by focusing on the unit supply case with a single follower and introduced theorems
relating to the bound on the leader’s objective and the lack of need for negative taxa-
tions. Then, after providing the unit supply case with multiple followers, we moved

90 Chapter 6. Conclusions

on to the more general case with multiple followers and a non-unit supply for each
commodity. Here we discover that as the followers must decide which commodities to
purchase from the leader or the market, we had to introduce a max operator to both the
leader and follower objective functions. As most readily available solvers would not
be able to handle this max operator, we have to find a way of removing it. Thus, we
presented two reformulation methods which we named the dicotomic and max value
formulations. In the dicotomic formulation we introduced an additional set of follower
variables which indicate the commodities bought from the leader or market. Whereas
in the max value formulation we introduce a binary variables which determined which
part of the max operation took the greater value.

Up until this point, all of our formulations have been non-linear. To linearise our formu-
lations, we used McCormick envelopes along with binary expansions if necessary. Af-
ter briefly discussing how [53] could have generated a smaller feasible region using Mc-
Cormick envelopes and a value function constraint rather than their own cutting plane,
which did not require any additional variables, we move onto discussing McCormick
envelopes when used within a summation. We discussed how X = ∑n

j=1 ∑m
i=1 yijxj can

be linearised using either a direct McCormick or a summation McCormick because of x
being independent of i. We discovered that the DMC and SMC would provide tighter
upper and lower bounds, respectively, for all values of m expect when m = 2k − 1 for
some k ∈ N, in which case the bounds would be equal. Likewise, we showed how, if
there exists the constraint ∑m

i=1 yij ≤ s, should s ≤ 2blog2(m+1)c − 1, then the SMC shall
provide an upper bound at least as tight as DMC and visa versa for the lower bound.

In Chapter 4, after providing several formulations for our bilevel problem, we move
towards solution methods. For the unit supply case, we noticed that the feasible region
of the follower’s problem was completely independent of the leader’s variables, which
meant that we could perform a simple cutting-plane algorithm within a branch-and-
cut framework. At every integer solution (x∗, x̄∗, y∗) discovered, we simply solve the
follower’s problem, parameterised by the corresponding leader’s variables, and if we
discover a solution which provides a better objective for the follower we introduce the
relevant value function cutting plane. As a result of the independence of the follower’s
feasible region, this cutting-plane was globally valid and could be enforced globally.
However, in the more general non-unit supply case, applying the same cutting-plane
solution method would provide an incorrect solution.

In the non-unit supply scenario, should the follower wish to purchase a commodity,
they have the choice between purchasing from the leader or the market. In such case,
given that we have only assumed positive taxation by the leader, the follower shall
only purchase commodity j from the leader if the amount they need is greater than
the amount the leader has not purchased, i.e., what is left on the market. As a result,
the follower’s decision now relies on the leader’s variables and we have lost the in-
dependence between the feasible regions. Thus, the cutting plane method cannot be

91

used directly as the cutting planes are no longer globally valid. Therefore, we devise
four solution methods, two of which use a column generation approach with the other
two using a sophisticated branching strategy. The first column generation approach fo-
cused on the exact solution that needed to be removed, whereas the latter concentrate
on the set of commodities, which should require fewer cutting planes and thus column
generations. With the branching strategies, rather than introducing variables to indi-
cate when a constraint should be active, we partition the feasible region into multiple
sections, one of which we would apply our cutting plane.

Following this, we discuss solution methods where the leader has already computed
all feasible follower solutions and how this information can be used with specific so-
lution methods. Initially we introduced reformulations for when the leader knows of
all feasible follower solutions and demonstrated how the resulting formulations have a
totally unimodular follower’s problem. This allows us to use techniques such as KKT
and strong duality, which are usually unavailable for problems which contain integer
variables in the lower level. However, computing all of the follower’s feasible solutions
is unattainable in the majority of cases. Therefore we introduce the KSA algorithm in
which we assume the follower’s responds with a solution from a subset of feasible
points. At every bilevel infeasible point, we would add any new follower points to
the subset until we reach a bilevel feasible solution. At which point we shall solve the
bilevel problem using one of the previous solution methods, applying a lower bound
on the objective function and forcing the follower to select a response outside of the
subset.

The downside of the KSA algorithm is that we have to generate and solve two for-
mulations, whereas ideally we want to encompass the whole process within a single
framework, which can be done with the KSB method. With the KSB method, whilst
using any of the unit or non-unit supply solution methods, should the solver decide to
branch from the root node, we would generate a subset Y of feasible follower solutions
and generate |Y|+ 1 child nodes, where we have either fixed the followers response to
one from Y or stopped them from using a solution in Y, i.e., y /∈ Y.

Finally, in Chapter 5 we presented the computational results from three sets of in-
stances. For Set A, we varied the number of commodities along with the supply for each
commodity. For the non-unit supply case, we found that the KSA algorithm with the
value function formulation performs best with respect to time, with the nB+ solution
methods performing best with the dichotomic and max value formulations. Along with
this, we found that the double MINLBP method solves the follower’s problem far fewer
times than the nB+ solution method. Thus, for problems where the follower’s problem
is much more complicated, the double MINLBP method is much more preferable. For
the unit supply case we discovered that the CP solution method with the summation
McCormick formulation performs the best across all instances. It is expected that the

92 Chapter 6. Conclusions

unit supply solution methods would outperform the non-unit supply solution meth-
ods when applied to the unit supply case. However, the difference between the times
are far greater than we predicted, with the CP method with the summation McCormick
formulation averaging below 2 seconds for all instances.

For Set B, we varied the number of followers along with the supply of each commod-
ity. Once again, we found that the nB+ solution method performs very well with both
dichotomic and max value formulations, with the KSA solution method providing the
quickest computational times. Set B was designed to compare the performances of the
direct and summation McCormick formulations and see if the computational results
match our predictions from Section 3.7.2.1. From our predictions, we expected the
summation McCormick to be quicker than the direct formulation when scoef < 1, vice
versa for scoef > 1 and both formulations to be the same at scoef = 1. However, we dis-
cover that for the NSFCP, SFCP and nB+ solutions methods the summation McCormick
formulation is consistently faster than its direct counterpart for all values of scoef. With
the remaining solution methods, the summation McCormick was always quicker when
scoef < 1 with some instances of the direct being quicker when scoef > 1.

With Set C, we want to observe how the values of M and B affect the performance of the
formulations and solution methods. From our results, we discover that B had a much
greater impact on the computational times as increasing B can drastically increase the
possible combinations of commodities that the leader can purchase. In general, we
once again find that the KSA algorithm perform very well overall. However, when
B ≤ 35 we see that the nB+ solution method with the max value formulation actually
achieve solutions faster than the KSA method. This implies that for the “harder” prob-
lems, with a higher leader budget the KSA method should be chosen, however with
the “easier” smaller budget problems, it is advantageous to contain everything within
a single Branch-and-Cut framework.

There are a number of avenues to be explored relating to this thesis. Firstly, from our
computational results we found that the KSA method performs very well, with the
first MINLBP attaining the optimal bilevel solution in a high proportion of instances.
The initial set Y was just computed as the |Y|-many cheapest solutions for the follower
when there is zero taxation applied. By developing a more sophisticated strategy for
generating Y, using Section 4.3.2.1 as a starting point, we may be able to show that only
the first MINLBP is needed. This can also be used with the Known Solution Branch-
ing method from Section 4.3.3 to improve the KSBnB and KSBnB+ solution methods.
Secondly, we can explore the summation McCormicks even further. In our formula-
tions and computational results we focus our attention to the logarithmic reformula-
tion. However, as discussed in Section 3.7, there exists two additional binarisation
techniques. Ideally, we would perform the same computational results from Sets A, B
and C, with full and unary to determine which summation McCormick method would

93

have the best performance. Lastly, in Examples 3.2 and 3.3 we show how when the fol-
lower’s respond in an order, and do not act collectively, then the optimal solution is not
the same. Thus, in any future works we want to explore this case, to see if the solution
methods presented can be directly applied and if so do they perform similarly to our
instances. Likewise, we should also explore formulations and solution methods for the
negative taxation setting, given that Example 3.3 demonstrates how this can increase
the objective value for the leader.

95

Appendix A

Linear Formulations

A.1 Unit Supply

A.1.1 Unit Supply Formulation

A.1.1.1 Direct McCormick

max
x,x̄ ∑

j∈J

(
∑
i∈I

di

∑
k=1

(pik
j + qik

j cj)− x̄jcj

)
(A.1a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.1b)

∑
j∈J

x̄jcj ≤ B, (A.1c)

MC(pik
j , yik

j , xj) ∀j ∈ J , i ∈ I , k ∈ {1, . . . , di} (A.1d)

MC(qik
j , yik

j , x̄j) ∀j ∈ J , i ∈ I , k ∈ {1, . . . , di}, (A.1e)

x ∈ [0, M]n, (A.1f)

x̄ ∈ {0, 1}n, (A.1g)

pik ∈ [0, M]n ∀i ∈ I , k ∈ {1, . . . , di}, (A.1h)

qik ∈ {0, 1}n ∀i ∈ I , k ∈ {1, . . . , di}, (A.1i)

y ∈ arg min
y
{∑

j∈J
∑
i∈I

di

∑
k=1

(pik
j + yik

j cj) : (A.1j)

Aiyik
j ≤ bi ∀i ∈ I , k ∈ {0, . . . , di}, (A.1k)

∑
i∈I

di

∑
k=1

yik
j ≤ 1 ∀j ∈ J , (A.1l)

yik ∈ {0, 1}n ∀i ∈ I , k ∈ {1, . . . , di}}. (A.1m)

96 Chapter A. Linear Formulations

A.1.1.2 Summation McCormick

max
x,x̄ ∑

j∈J

(
pj + qjcj − x̄jcj

)
(A.2a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.2b)

∑
j∈J

x̄jcj ≤ B, (A.2c)

MC(pj, ∑
i∈I

di

∑
k=1

yik
j , xj) ∀j ∈ J , (A.2d)

MC(qj, ∑
i∈I

di

∑
k=1

yik
j , x̄j) ∀j ∈ J , (A.2e)

x ∈ [0, M]n, (A.2f)

x̄ ∈ {0, 1}n, (A.2g)

p ∈ [0, M]n ∀j ∈ J , (A.2h)

q ∈ {0, 1}n ∀j ∈ J , (A.2i)

y ∈ arg min
y
{∑

j∈J
∑
i∈I

di

∑
k=1

(pik
j + yik

j cj) : (A.2j)

Aiyik
j ≤ bi ∀i ∈ I , k ∈ {0, . . . , di}, (A.2k)

∑
i∈I

di

∑
k=1

yik
j ≤ 1 ∀j ∈ J , (A.2l)

yik ∈ {0, 1}n ∀i ∈ I , k ∈ {1, . . . , di}}. (A.2m)

A.1. Unit Supply 97

A.1.2 Known Solution Formulations

A.1.2.1 KKT

max
x,x̄

|YSol |

∑
l=1

(
∑
j∈J

∑
i∈I

di

∑
k=1

yl
ik
j (pl j + ql jcj)

)
− ∑

j∈J
x̄jcj (A.3a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.3b)

∑
j∈J

x̄jcj ≤ B, (A.3c)

MC(pl j, λl , xj) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.3d)

MC(ql j, λl , x̄j) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.3e)

0 = ∑
j∈J

∑
i∈I

di

∑
k=1

yl
ik
j (xj + cj)− µl + ν ∀l ∈ {1, . . . , |YSol |}, (A.3f)

SOS Type 1(µl , λl) ∀l ∈ {1, . . . , |YSol |}, (A.3g)

0 = λ1 + · · ·+ λ|YSol | − 1, (A.3h)

x ∈ [0, M]n, (A.3i)

x̄ ∈ {0, 1}n, (A.3j)

λ, µ ≥ 0, (A.3k)

ν f ree, (A.3l)

pl ∈ [0, M]n ∀l ∈ {1, . . . , |YSol |}, (A.3m)

ql ∈ [0, sj]
n ∀l ∈ {1, . . . , |YSol |}. (A.3n)

98 Chapter A. Linear Formulations

A.1.2.2 Value Function

max
x,x̄

|YSol |

∑
l=1

∑
j∈J

∑
i∈I

di

∑
k=1

yl
ik
j (pl j + ql jcj)− ∑

j∈J
x̄jcj (A.4a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.4b)

∑
j∈J

x̄jcj ≤ B, (A.4c)

MC(pl j, λl , xj) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.4d)

MC(ql j, λl , x̄j) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.4e)

|YSol |

∑
l=1

∑
j∈J

∑
i∈I

di

∑
k=1

yl
ik
j (pl j + λlcj) ≤ ∑

j∈J
∑
i∈I

di

∑
k=1

yo
ik
j (xj + cj) ∀o ∈ {1, . . . , |YSol |},

(A.4f)

0 = λ1 + · · ·+ λ|YSol | − 1, (A.4g)

x ∈ [0, M]n, (A.4h)

x̄ ∈ {0, 1}n, (A.4i)

pl ∈ [0, M]n ∀l ∈ {1, . . . , |YSol |}, (A.4j)

ql ∈ [0, sj]
n ∀l ∈ {1, . . . , |YSol |}. (A.4k)

A.2. Non-Unit Supply 99

A.2 Non-Unit Supply

A.2.1 Dichotomic Formulation

A.2.1.1 Direct McCormick

max
x,x̄ ∑

j∈J

(
∑
i∈I

di

∑
k=1

pik
j + ȳik

j cj

)
− x̄jcj (A.5a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.5b)

∑
j∈J

x̄jcj ≤ B, (A.5c)

x̄j ≤ sj ∀j ∈ J , (A.5d)

MC(pik
j , ȳik

j , xj) ∀j ∈ J , ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.5e)

pik
j ∈ [0, M] ∀j ∈ J , ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.5f)

x ∈ [0, M]n, (A.5g)

x̄ ∈ Zn
≥0, (A.5h)

y, ȳ ∈ arg min
y,ȳ
{∑

j∈J
∑
i∈I

di

∑
k=1

pik
j + ȳik

j cj + yik
j cj : (A.5i)

Ai(ȳik + yik) ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.5j)

∑
i∈I

di

∑
k=1

ȳik
j + yik

j ≤ sj ∀j ∈ J , (A.5k)

∑
i∈I

di

∑
k=1

ȳik
j ≤ x̄j ∀j ∈ J , (A.5l)

∑
i∈I

di

∑
k=1

yik
j ≤ sj − x̄j ∀j ∈ J , (A.5m)

ȳik
j + yik

j ≤ 1 ∀j ∈ J , ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.5n)

ȳik, yik ∈ {0, 1}n}. (A.5o)

100 Chapter A. Linear Formulations

A.2.1.2 Summation McCormick

max
x,x̄ ∑

j∈J

(blog2 sjc+1

∑
l=1

2l−1 pjl + ∑
i∈I

di

∑
k=1

ȳik
j cj − x̄jcj

)
(A.6a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.6b)

∑
j∈J

x̄jcj ≤ B, (A.6c)

x̄j ≤ sj ∀j ∈ J , (A.6d)

∑
i∈I

di

∑
k=1

ȳik
j =

blog2 sjc+1

∑
l=1

2l−1αjl ∀j ∈ J , (A.6e)

MC(pjl , αjl , xj) ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.6f)

αjl ∈ {0, 1} ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.6g)

pjl ∈ [0, M] ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.6h)

x ∈ [0, M]n, (A.6i)

x̄ ∈ Zn
≥0, (A.6j)

y, ȳ ∈ arg min
y,ȳ
{∑

j∈J

(blog2 sjc+1

∑
l=1

2l−1 pjl + ∑
i∈I

di

∑
k=1

ȳik
j cj + yik

j cj

)
: (A.6k)

Ai(ȳik + yik) ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.6l)

∑
i∈I

di

∑
k=1

ȳik
j + yik

j ≤ sj ∀j ∈ J , (A.6m)

∑
i∈I

di

∑
k=1

ȳik
j ≤ x̄j ∀j ∈ J , (A.6n)

∑
i∈I

di

∑
k=1

yik
j ≤ sj − x̄j ∀j ∈ J , (A.6o)

ȳik
j + yik

j ≤ 1 ∀j ∈ J , ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.6p)

ȳik, yik ∈ {0, 1}n}. (A.6q)

A.2. Non-Unit Supply 101

A.2.2 Max Value Formulation

max
x,x̄,w,α,β

∑
j∈J

(blog2 sjc+1

∑
l=1

2l−1 pjl

)
+ zjcj − x̄jcj (A.7a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.7b)

∑
j∈J

x̄jcj ≤ B, (A.7c)

x̄j ≤ sj ∀j ∈ J , (A.7d)

zj =
blog2 sjc+1

∑
i=1

2l−1αjl ∀j ∈ J , (A.7e)

MC(pl j, αjl , xj) ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.7f)

αjl ∈ {0, 1} ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.7g)

pjl ∈ [0, M] ∀j ∈ J , ∀l ∈ {1, . . . , blog2 sjc+ 1}, (A.7h)

x ∈ [0, M]n, (A.7i)

x̄ ∈ Zn
≥0, (A.7j)

y, γ, z ∈ arg min
y,γ,z
{∑

j∈J

(blog2 sjc+1

∑
l=1

2l−1 pjl

)
+ ∑

i∈I

di

∑
k=1

yik
j cj : (A.7k)

Aiyik ≤ bi ∀i ∈ I , ∀k ∈ {1, . . . , di}, (A.7l)

∑
i∈I

di

∑
k=1

yik
j ≤ sj ∀j ∈ J , (A.7m)

M̄(1− γj) ≥ −
(

∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j)

)
∀j ∈ J , (A.7n)

M̄γj ≥ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) ∀j ∈ J , (A.7o)

zj ≥ 0 ∀j ∈ J , (A.7p)

zj ≥ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) ∀j ∈ J , (A.7q)

zj ≤ sjγj ∀j ∈ J , (A.7r)

zj ≤ ∑
i∈I

di

∑
k=1

yik
j − (sj − x̄j) + sj(1− γj) ∀j ∈ J , (A.7s)

γ ∈ {0, 1}n, (A.7t)

z ∈ Zn
≥0}. (A.7u)

102 Chapter A. Linear Formulations

A.2. Non-Unit Supply 103

A.2.3 Double MINLBP Formulation

A.2.3.1 KKT

max
x,x̄,λ,γ,z,µ,ν,α,p,q

|YSol |

∑
l=1

(
∑
j∈J

blog2 zl jc

∑
m=1

2m−1ql jm + rl jcj

)
− ∑

j∈J
x̄jcj (A.8a)

s.t. xj ≤ Mx̄j ∀j ∈ J , (A.8b)

∑
j∈J

x̄jcj ≤ B, (A.8c)

x̄j ≤ sj ∀j ∈ J , (A.8d)

M̄(1− γl j) ≥ −
(

∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j)

)
∀j ∈ J , (A.8e)

M̄γl j ≥ ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j) ∀j ∈ J , (A.8f)

MC(zl j, ∑
i∈I

di

∑
k=1

yl
ik
j − (sj − x̄j), γl j) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J ,

(A.8g)

zl j =
blog2 zl jc+1

∑
m=1

2m−1αl jm ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.8h)

MC(pl jm, αl jm, xj) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , ∀m ∈ {1, . . . , blog2 zl jc+ 1},
(A.8i)

MC(rl j, λl , zl j) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.8j)

MC(ql jm, λl , pl jm) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , ∀m ∈ {1, . . . , blog2 zl jc+ 1},
(A.8k)

0 = ∑
j∈J

(blog2 zl jc+1

∑
m=1

2m−1 pl jm

)
+ ∑

i∈I

di

∑
k=1

yl
ik
j cj)− µl + ν ∀l ∈ {1, . . . , |YSol |},

(A.8l)

SOS Type 1(µl , λl) ∀l ∈ {1, . . . , |YSol |}, (A.8m)

0 = λ1 + · · ·+ λ|YSol | − 1, (A.8n)

x ∈ [0, M]n, (A.8o)

x̄ ∈ Zn
≥0, (A.8p)

λ, µ ≥ 0, (A.8q)

γl ∈ {0, 1}n ∀l ∈ {1, . . . , |YSol |}, (A.8r)

zl ∈ Zn
≥0 ∀l ∈ {1, . . . , |YSol |}, (A.8s)

ν free, (A.8t)

pl j, ql j ∈ [0, M]blog2 zl jc+1 ∀l ∈ {1, . . . , |YSol |}, j ∈ J , (A.8u)

rl ∈ [0, M]n ∀l ∈ {1, . . . , |YSol |}. (A.8v)

104 Chapter A. Linear Formulations

A.2.3.2 Value Function

max
x,x̄,λ,z,γ,α,p,q,r

|YSol |

∑
l=1

(
∑
j∈J

blog2 zl jc

∑
m=1

2m−1ql jm + rl jcj

)
− ∑

j∈J
x̄jcj (A.9a)

s.t. (3.4b)−−(3.4f), (A.9b)

(4.17)− (4.18) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.9c)

zl j =
blog2 zl jc

∑
m=1

2m−1αl jm ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.9d)

MC(pl jm, αl jm, xj) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , ∀m ∈ {1, . . . , blog2 zl jc},
(A.9e)

MC(rl j, λl , zl j) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , (A.9f)

MC(ql jm, λl , pl jm) ∀l ∈ {1, . . . , |YSol |}, ∀j ∈ J , ∀m ∈ {1, . . . , blog2 zl jc},
(A.9g)

YSol

∑
l=1

λl = 1, (A.9h)

|YSol |

∑
l=1

∑
j∈J

blog2 zl jc

∑
m=1

(
2m−1ql jm

)
+ λl

(
∑
i∈I

di

∑
k=1

yl
ik
j

)
cj ≤,

∑
j∈J

blog2 zl jc

∑
m=1

(
2m−1 pojm

)
+ ∑

i∈I

di

∑
k=1

yo
ik
j cj ∀o ∈ {1, . . . , |YSol |}, (A.9i)

λ ∈ {0, 1}|YSol |, (A.9j)

pl j, ql j ∈ [0, M]blog2 zl jc+1 ∀l ∈ {1, . . . , |YSol |}, j ∈ J , (A.9k)

rl ∈ [0, M]n. (A.9l)

105

References

[1] MS Windows NT kernel description. https://www.futbin.com/

squad-building-challenges/ALL/2482/Adebayo%20Akinfenwa. Accessed:
11-05-2022.

[2] A. Akbari-Dibavar, B. Mohammadi-Ivatloo, and K. Zare. Optimal stochastic
bilevel scheduling of pumped hydro storage systems in a pay-as-bid energy mar-
ket environment. Journal of Energy Storage, 31:101608, 2020.

[3] D. Aksen and N. Aras. A matheuristic for leader-follower games involving fa-
cility location-protection-interdiction decisions. In Metaheuristics for Bi-level Opti-
mization, pages 115–151. Springer, 2013.

[4] F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Math-
ematics of Operations Research, 8(2):273–286, 1983.

[5] G. Anandalingam and D. White. A solution method for the linear static stack-
elberg problem using penalty functions. IEEE Transactions on Automatic Control,
35(10):1170–1173, 1990.

[6] G. Angulo and M. Van Vyve. Fixed-charge transportation problems on trees.
Operations Research Letters, 45(3):275–281, 2017.

[7] J. M. Arroyo and F. J. Fernández. A genetic algorithm approach for the analysis of
electric grid interdiction with line switching. In 2009 15th International Conference
on Intelligent System Applications to Power Systems, pages 1–6. IEEE, 2009.

[8] A. Aswani, Z.-J. Shen, and A. Siddiq. Inverse optimization with noisy data. Op-
erations Research, 66(3):870–892, 2018.

[9] S. Avraamidou and E. N. Pistikopoulos. A multi-parametric optimization ap-
proach for bilevel mixed-integer linear and quadratic programming problems.
Computers & Chemical Engineering, 125:98–113, 2019.

[10] J. Bard and B. Golany. Preface-book reviews-practical bilevel optimization: Al-
gorithms and applications. IIE Transactions, 31(9):921, 1999.

https://www.futbin.com/squad-building-challenges/ALL/2482/Adebayo%20Akinfenwa
https://www.futbin.com/squad-building-challenges/ALL/2482/Adebayo%20Akinfenwa

106 REFERENCES

[11] J. F. Bard. An efficient point algorithm for a linear two-stage optimization prob-
lem. Operations Research, 31(4):670–684, 1983.

[12] J. F. Bard. An investigation of the linear three level programming problem. IEEE
Transactions on Systems, Man, and Cybernetics, (5):711–717, 1984.

[13] J. F. Bard. Optimality conditions for the bilevel programming problem. Naval
research logistics quarterly, 31(1):13–26, 1984.

[14] J. F. Bard. Some properties of the bilevel programming problem. Journal of opti-
mization theory and applications, 68(2):371–378, 1991.

[15] J. F. Bard and J. T. Moore. A branch and bound algorithm for the bilevel program-
ming problem. SIAM Journal on Scientific and Statistical Computing, 11(2):281–292,
1990.

[16] J. F. Bard and J. T. Moore. An algorithm for the discrete bilevel programming
problem. Naval Research Logistics (NRL), 39(3):419–435, 1992.

[17] N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi. Bilevel programming ap-
proaches to the computation of optimistic and pessimistic single-leader-multi-
follower equilibria. In SEA, volume 75, pages 1–14. Schloss Dagstuhl-Leibniz-
Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2017.

[18] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and
algorithms. John Wiley & Sons, 2013.

[19] R. Bergmann and R. Herzog. Intrinsic formulation of kkt conditions and
constraint qualifications on smooth manifolds. SIAM Journal on Optimization,
29(4):2423–2444, 2019.

[20] Z. Bi, P. Calamai, and A. Conn. An exact penalty function approach for the linear
bilevel programming problem. Dept. Syst. Design Eng., Univ. Waterlo, Waterloo,
ON, Canada, Rep, 1989.

[21] W. Bialas and M. Karwan. On two-level optimization. IEEE transactions on auto-
matic control, 27(1):211–214, 1982.

[22] W. F. Bialas and M. H. Karwan. Two-level linear programming. Management
science, 30(8):1004–1020, 1984.

[23] J. W. Blankenship and J. E. Falk. Infinitely constrained optimization problems.
Journal of Optimization Theory and Applications, 19(2):261–281, 1976.

[24] J. BnnoBRs. Partitioning procedures for solving mixed-variables programming
problems ‘. 1962.

REFERENCES 107

[25] P. Bonami and F. Margot. Cut generation through binarization. In International
Conference on Integer Programming and Combinatorial Optimization, pages 174–185.
Springer, 2014.

[26] J. Bracken and J. T. McGill. Mathematical programs with optimization problems
in the constraints. Operations Research, 21(1):37–44, 1973.

[27] P. Briest. Uniform budgets and the envy-free pricing problem. In International
Colloquium on Automata, Languages, and Programming, pages 808–819. Springer,
2008.

[28] L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard. Joint design and pricing on a
network. Operations research, 56(5):1104–1115, 2008.

[29] G. G. Brown, W. M. Carlyle, R. C. Harney, E. M. Skroch, and R. K. Wood. Inter-
dicting a nuclear-weapons project. Operations Research, 57(4):866–877, 2009.

[30] H. I. Calvete, C. Domı́nguez, C. Galé, M. Labbé, and A. Marin. The rank pric-
ing problem: models and branch-and-cut algorithms. Computers & Operations
Research, 105:12–31, 2019.

[31] H. I. Calvete, C. Gale, and P. M. Mateo. A new approach for solving linear
bilevel problems using genetic algorithms. European Journal of Operational Re-
search, 188(1):14–28, 2008.

[32] J.-F. Camacho-Vallejo, Á. E. Cordero-Franco, and R. G. González-Ramı́rez. Solv-
ing the bilevel facility location problem under preferences by a stackelberg-
evolutionary algorithm. Mathematical Problems in Engineering, 2014, 2014.

[33] W. Candler and R. Townsley. A linear two-level programming problem. Comput-
ers & Operations Research, 9(1):59–76, 1982.

[34] L. CáNovas, S. Garcı́A, M. Labbé, and A. Marı́N. A strengthened formulation
for the simple plant location problem with order. Operations Research Letters,
35(2):141–150, 2007.

[35] M. Caramia and R. Mari. Enhanced exact algorithms for discrete bilevel linear
problems. Optimization Letters, 9(7):1447–1468, 2015.

[36] M. Caramia and R. Mari. A decomposition approach to solve a bilevel capacitated
facility location problem with equity constraints. Optimization Letters, 10(5):997–
1019, 2016.

[37] A. Chaabani, S. Bechikh, and L. B. Said. A new co-evolutionary decomposition-
based algorithm for bi-level combinatorial optimization. Applied Intelligence,
48(9):2847–2872, 2018.

108 REFERENCES

[38] Y. Chen and M. Florian. On the geometric structure of linear bilevel programs: a
dual approach. Centre De Recherche Sur Les Transports Publication, (867), 1992.

[39] D. C. Cho, E. L. Johnson, M. Padberg, and M. Rao. On the uncapacitated plant lo-
cation problem. i: valid inequalities and facets. Mathematics of Operations Research,
8(4):579–589, 1983.

[40] D. C. Cho, M. W. Padberg, and M. Rao. On the uncapacitated plant location prob-
lem. ii: facets and lifting theorems. Mathematics of Operations Research, 8(4):590–
612, 1983.

[41] F. Clarke. Optimization and non-smooth analysis, classics in applied mathemat-
ics, vol. 5, society for industrial and applied mathematics (siam), philadelphia,
pa, 1990. J. Convex Anal, 2(1-2):117–144, 1990.

[42] B. Colson, P. Marcotte, and G. Savard. Bilevel programming: A survey. 4or,
3(2):87–107, 2005.

[43] S. Coniglio, N. Gatti, and A. Marchesi. Computing a pessimistic stackelberg equi-
librium with multiple followers: The mixed-pure case. Algorithmica, 82(5):1189–
1238, 2020.

[44] S. Coniglio, M. Sirvent, and M. Weibelzahl. Airport capacity extension, fleet in-
vestment, and optimal aircraft scheduling in a multilevel market model: quanti-
fying the costs of imperfect markets. OR Spectrum, 43(2):367–408, 2021.

[45] H. Cui, F. Li, X. Fang, H. Chen, and H. Wang. Bilevel arbitrage potential evalu-
ation for grid-scale energy storage considering wind power and lmp smoothing
effect. IEEE Transactions on Sustainable Energy, 9(2):707–718, 2017.

[46] S. Dash, O. Günlük, and R. Hildebrand. Binary extended formulations of poly-
hedral mixed-integer sets. Mathematical Programming, 170(1):207–236, 2018.

[47] M. S. Daskin. What you should know about location modeling. Naval Research
Logistics (NRL), 55(4):283–294, 2008.

[48] S. Dempe. Discrete bilevel optimization problems. Inst. für Wirtschaftsinformatik,
1996.

[49] S. Dempe. Annotated bibliography on bilevel programming and mathematical
programs with equilibrium constraints. 2003.

[50] S. Dempe. Bilevel optimization: theory, algorithms and applications. TU
Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2018.

[51] S. Dempe and J. Dutta. Is bilevel programming a special case of a mathemat-
ical program with complementarity constraints? Mathematical programming,
131(1):37–48, 2012.

REFERENCES 109

[52] S. Dempe and S. Franke. Solution algorithm for an optimistic linear stackelberg
problem. Computers & Operations Research, 41:277–281, 2014.

[53] S. Dempe and F. M. Kue. Solving discrete linear bilevel optimization problems
using the optimal value reformulation. Journal of Global Optimization, 68(2):255–
277, 2017.

[54] S. Dempe, F. Mefo Kue, and P. Mehlitz. Optimality conditions for mixed discrete
bilevel optimization problems. Optimization, 67(6):737–756, 2018.

[55] S. Dempe and A. B. Zemkoho. Bilevel road pricing: theoretical analysis and
optimality conditions. Annals of Operations Research, 196(1):223–240, 2012.

[56] S. Dempe and A. B. Zemkoho. The bilevel programming problem: reformula-
tions, constraint qualifications and optimality conditions. Mathematical Program-
ming, 138(1-2):447–473, 2013.

[57] S. DeNegre. Interdiction and discrete bilevel linear programming. Lehigh University
PhD, 2011.

[58] S. T. DeNegre and T. K. Ralphs. A branch-and-cut algorithm for integer bilevel
linear programs. In Operations research and cyber-infrastructure, pages 65–78.
Springer, 2009.

[59] S. Dewez, M. Labbé, P. Marcotte, and G. Savard. New formulations and valid
inequalities for a bilevel pricing problem. Operations research letters, 36(2):141–
149, 2008.

[60] G. Dobson and S. Kalish. Positioning and pricing a product line. Marketing Sci-
ence, 7(2):107–125, 1988.

[61] G. Dobson and S. Kalish. Heuristics for pricing and positioning a product-line
using conjoint and cost data. Management Science, 39(2):160–175, 1993.

[62] L. F. Domı́nguez and E. N. Pistikopoulos. Multiparametric programming based
algorithms for pure integer and mixed-integer bilevel programming problems.
Computers & Chemical Engineering, 34(12):2097–2106, 2010.

[63] J.-P. Dussault, P. Marcotte, S. Roch, and G. Savard. A smoothing heuristic for
a bilevel pricing problem. European Journal of Operational Research, 174(3):1396–
1413, 2006.

[64] T. A. Edmunds and J. F. Bard. An algorithm for the mixed-integer nonlinear
bilevel programming problem. Annals of Operations Research, 34(1):149–162, 1992.

[65] N. P. Faı́sca, V. Dua, B. Rustem, P. M. Saraiva, and E. N. Pistikopoulos. Paramet-
ric global optimisation for bilevel programming. Journal of Global Optimization,
38(4):609–623, 2007.

110 REFERENCES

[66] J. E. Falk. A linear max—min problem. Mathematical Programming, 5(1):169–188,
1973.

[67] C. G. Fernandes, C. E. Ferreira, A. J. Franco, and R. C. Schouery. The envy-free
pricing problem, unit-demand markets and connections with the network pric-
ing problem. Discrete Optimization, 22:141–161, 2016.

[68] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. Intersection cuts for bilevel
optimization. In International Conference on Integer Programming and Combinatorial
Optimization, pages 77–88. Springer, 2016.

[69] M. Fischetti, I. Ljubic, M. Monaci, and M. Sinnl. Instances and solver software for
mixed-integer bilevel linear problems, 2017.

[70] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algo-
rithm for mixed-integer bilevel linear programs. Operations Research, 65(6):1615–
1637, 2017.

[71] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. On the use of intersection cuts
for bilevel optimization. Mathematical Programming, 172(1-2):77–103, 2018.

[72] P. Fontaine and S. Minner. Benders decomposition for discrete–continuous lin-
ear bilevel problems with application to traffic network design. Transportation
Research Part B: Methodological, 70:163–172, 2014.

[73] J. Fortuny-Amat and B. McCarl. A representation and economic interpretation
of a two-level programming problem. Journal of the operational Research Society,
32(9):783–792, 1981.

[74] B. Fu, C. Ouyang, C. Li, J. Wang, and E. Gul. An improved mixed integer linear
programming approach based on symmetry diminishing for unit commitment of
hybrid power system. Energies, 12(5):833, 2019.

[75] B. Goldengorin, D. Ghosh, and G. Sierksma. Branch and peg algorithms for the
simple plant location problem. Computers & Operations Research, 31(2):241–255,
2004.

[76] I. E. Grossmann and C. A. Floudas. Active constraint strategy for flexibility anal-
ysis in chemical processes. Computers & Chemical Engineering, 11(6):675–693, 1987.

[77] Z. H. Gümüş and C. A. Floudas. Global optimization of mixed-integer bilevel
programming problems. Computational Management Science, 2(3):181–212, 2005.

[78] A. Gupte, S. Ahmed, M. S. Cheon, and S. Dey. Solving mixed integer bilinear
problems using milp formulations. SIAM Journal on Optimization, 23(2):721–744,
2013.

REFERENCES 111

[79] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSh-
erry. On profit-maximizing envy-free pricing. In SODA, volume 5, pages 1164–
1173. Citeseer, 2005.

[80] W. J. Gutjahr and N. Dzubur. Bi-objective bilevel optimization of distribution cen-
ter locations considering user equilibria. Transportation Research Part E: Logistics
and Transportation Review, 85:1–22, 2016.

[81] S. D. Handoko, L. H. Chuin, A. Gupta, O. Y. Soon, H. C. Kim, and T. P. Siew.
Solving multi-vehicle profitable tour problem via knowledge adoption in evolu-
tionary bi-level programming. In 2015 IEEE Congress on Evolutionary Computation
(CEC), pages 2713–2720. IEEE, 2015.

[82] P. Hanjoul and D. Peeters. A facility location problem with clients’ preference
orderings. Regional Science and Urban Economics, 17(3):451–473, 1987.

[83] P. Hansen, Y. Kochetov, and N. Mladenovi. Lower bounds for the uncapacitated
facility location problem with user preferences. Groupe d’études et de recherche en
analyse des décisions, HEC Montréal, 2004.

[84] L. Hecheng and W. Yuping. Exponential distribution-based genetic algorithm for
solving mixed-integer bilevel programming problems. Journal of Systems Engi-
neering and Electronics, 19(6):1157–1164, 2008.

[85] G. Heilporn, M. Labbé, P. Marcotte, and G. Savard. A polyhedral study of the
network pricing problem with connected toll arcs. Networks: An International
Journal, 55(3):234–246, 2010.

[86] S. R. Hejazi, A. Memariani, G. Jahanshahloo, and M. M. Sepehri. Linear bilevel
programming solution by genetic algorithm. Computers & Operations Research,
29(13):1913–1925, 2002.

[87] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra.
In 50 Years of integer programming 1958-2008, pages 49–76. Springer, 2010.

[88] X. Hu and D. Ralph. Convergence of a penalty method for mathematical pro-
gramming with complementarity constraints. Journal of Optimization Theory and
Applications, 123(2):365–390, 2004.

[89] IBM. Module callbacks, https://www.ibm.com/docs/en/icos/12.10.0?topic=manual-
cplexcallbacks, 2010-09-30.

[90] E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks: An
International Journal, 40(2):97–111, 2002.

[91] R. G. Jeroslow. The polynomial hierarchy and a simple model for competitive
analysis. Mathematical programming, 32(2):146–164, 1985.

112 REFERENCES

[92] H. Jia, F. Ordóñez, and M. Dessouky. A modeling framework for facility location
of medical services for large-scale emergencies. IIE transactions, 39(1):41–55, 2007.

[93] S. Kalish and P. Nelson. A comparison of ranking, rating and reservation price
measurement in conjoint analysis. Marketing Letters, 2(4):327–335, 1991.

[94] P.-M. Kleniati and C. S. Adjiman. Branch-and-sandwich: a deterministic global
optimization algorithm for optimistic bilevel programming problems. part i: The-
oretical development. Journal of Global Optimization, 60(3):425–458, 2014.

[95] C. D. Kolstad. A review of the literature on bi-level mathematical programming.
Technical report, Los Alamos National Laboratory Los Alamos, NM, 1985.

[96] U. G. Kraus and C. A. Yano. Product line selection and pricing under a share-
of-surplus choice model. European Journal of Operational Research, 150(3):653–671,
2003.

[97] F. M. Kue. Mixed integer bilevel programming problems. 2017.

[98] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its appli-
cation to optimal highway pricing. Management science, 44(12-part-1):1608–1622,
1998.

[99] M. Labbé, P. Marcotte, and G. Savard. On a class of bilevel programs. In Nonlinear
optimization and related topics, pages 183–206. Springer, 2000.

[100] M. Labbé and A. Violin. Bilevel programming and price setting problems. Annals
of Operations Research, 240(1):141–169, 2016.

[101] F. Legillon, A. Liefooghe, and E.-G. Talbi. Cobra: A cooperative coevolutionary
algorithm for bi-level optimization. In 2012 IEEE Congress on evolutionary compu-
tation, pages 1–8. IEEE, 2012.

[102] H. Li and Y. Wang. An evolutionary algorithm based on a new decomposition
scheme for nonlinear bilevel programming problems. IJCNS, 3(1):87–93, 2010.

[103] Y. Liu, H. Li, and H. Chen. A genetic algorithm for solving linear integer bilevel
programming problems. In 2018 14th International Conference on Computational
Intelligence and Security (CIS), pages 40–44. IEEE, 2018.

[104] A. Lodi, T. K. Ralphs, and G. J. Woeginger. Bilevel programming and the separa-
tion problem. Mathematical Programming, 146(1-2):437–458, 2014.

[105] L. Lozano and J. Smith. A value-function-based exact approach for the bilevel
mixed-integer programming problem. Operations Research, 65(3):768–786, 2017.

[106] S. Lucidi and F. Rinaldi. Exact penalty functions for nonlinear integer program-
ming problems. Journal of optimization theory and applications, 145(3):479–488, 2010.

REFERENCES 113

[107] Y. Lv, T. Hu, G. Wang, and Z. Wan. A penalty function method based on kuhn–
tucker condition for solving linear bilevel programming. Applied Mathematics and
Computation, 188(1):808–813, 2007.

[108] R. Mathieu, L. Pittard, and G. Anandalingam. Genetic algorithm based ap-
proach to bi-level linear programming. RAIRO-Operations Research-Recherche
Opérationnelle, 28(1):1–21, 1994.

[109] G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems. Mathematical programming,
10(1):147–175, 1976.

[110] A. G. Mersha and S. Dempe. Linear bilevel programming with upper level con-
straints depending on the lower level solution. Applied mathematics and computa-
tion, 180(1):247–254, 2006.

[111] N. Mladenović, J. Brimberg, and P. Hansen. A note on duality gap in the sim-
ple plant location problem. European Journal of Operational Research, 174(1):11–22,
2006.

[112] J. Moore and J. Bard. An algorithm for the zero-one bilevel programming prob-
lem. Department of Mechanical Engineering, University of Texas, Austin, 1987.

[113] J. T. Moore and J. F. Bard. The mixed integer linear bilevel programming problem.
Operations research, 38(5):911–921, 1990.

[114] I. Nishizaki, M. Sakawa, K. Niwa, and Y. Kitaguchi. A computational method
using genetic algorithms for obtaining stackelberg solutions to two-level linear
programming problems. Electronics and Communications in Japan (Part III: Funda-
mental Electronic Science), 85(6):55–62, 2002.

[115] R. Oberdieck and E. N. Pistikopoulos. Explicit hybrid model-predictive control:
The exact solution. Automatica, 58:152–159, 2015.

[116] R. Oberdieck, M. Wittmann-Hohlbein, and E. N. Pistikopoulos. A branch and
bound method for the solution of multiparametric mixed integer linear program-
ming problems. Journal of Global Optimization, 59(2-3):527–543, 2014.

[117] V. Oduguwa and R. Roy. Bi-level optimisation using genetic algorithm. In Pro-
ceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS
2002), pages 322–327. IEEE, 2002.

[118] U. of Southampton. The iridis compute cluster, 2021.

[119] A. Ouattara and A. Aswani. Duality approach to bilevel programs with a convex
lower level. In 2018 Annual American Control Conference (ACC), pages 1388–1395.
IEEE, 2018.

114 REFERENCES

[120] J. V. Outrata. A note on the usage of nondifferentiable exact penalties in some
special optimization problems. Kybernetika, 24(4):251–258, 1988.

[121] J. H. Owen and S. Mehrotra. On the value of binary expansions for general
mixed-integer linear programs. Operations Research, 50(5):810–819, 2002.

[122] G. P. Papavassilopoulos. Algorithms for static stackelberg games with linear costs
and polyhedra constraints. In 1982 21st IEEE Conference on Decision and Control,
pages 647–652. IEEE, 1982.

[123] S. P. Parvasi, M. Mahmoodjanloo, and M. Setak. A bi-level school bus routing
problem with bus stops selection and possibility of demand outsourcing. Applied
Soft Computing, 61:222–238, 2017.

[124] S. Pineda, H. Bylling, and J. Morales. Efficiently solving linear bilevel program-
ming problems using off-the-shelf optimization software. Optimization and Engi-
neering, 19(1):187–211, 2018.

[125] F. Plastria. Static competitive facility location: an overview of optimisation ap-
proaches. European Journal of Operational Research, 129(3):461–470, 2001.

[126] P.-L. Poirion, S. Toubaline, C. D’Ambrosio, and L. Liberti. Algorithms and appli-
cations for a class of bilevel milps. Discrete Applied Mathematics, 272:75–89, 2020.

[127] M. Qi, M. Xia, Y. Zhang, and L. Miao. Competitive facility location problem
with foresight considering service distance limitations. Computers & Industrial
Engineering, 112:483–491, 2017.

[128] A. Rahmani and S. MirHassani. Lagrangean relaxation-based algorithm for bi-
level problems. Optimization Methods and Software, 30(1):1–14, 2015.

[129] A. Rahmani and M. Yousefikhoshbakht. An effective branch-and-cut algorithm
in order to solve the mixed integer bi-level programming. International Journal of
Production Management and Engineering, 5(1):1–10, 2017.

[130] D. Ralph* and S. J. Wright. Some properties of regularization and penalization
schemes for mpecs. Optimization Methods and Software, 19(5):527–556, 2004.

[131] C. ReVelle, D. Bigman, D. Schilling, J. Cohon, and R. Church. Facility location: a
review of context-free and ems models. Health Services Research, 12(2):129, 1977.

[132] F. Rinaldi. New results on the equivalence between zero-one programming and
continuous concave programming. Optimization Letters, 3(3):377–386, 2009.

[133] J.-S. Roy. “binarize and project” to generate cuts for general mixed-integer pro-
grams. Algorithmic Operations Research, 2(1):37–51, 2007.

REFERENCES 115

[134] G. K. Saharidis and M. G. Ierapetritou. Resolution method for mixed integer
bi-level linear problems based on decomposition technique. Journal of Global Op-
timization, 44(1):29–51, 2009.

[135] S. Saranwong and C. Likasiri. Product distribution via a bi-level programming
approach: Algorithms and a case study in municipal waste system. Expert Sys-
tems with Applications, 44:78–91, 2016.

[136] S. Scholtes. Convergence properties of a regularization scheme for mathemati-
cal programs with complementarity constraints. SIAM Journal on Optimization,
11(4):918–936, 2001.

[137] B. V. Sheela and P.Ramamoorthy. Swift—a new constrained optimization tech-
nique. Computer Methods in Applied Mechanics and Engineering, 6(3):309–317, 1975.

[138] H. D. Sherali and W. P. Adams. A reformulation-linearization technique for solving
discrete and continuous nonconvex problems, volume 31. Springer Science & Busi-
ness Media, 2013.

[139] R. Shioda, L. Tunçel, and T. G. Myklebust. Maximum utility product pricing
models and algorithms based on reservation price. Computational Optimization
and Applications, 48(2):157–198, 2011.

[140] S. Siddiqui and S. A. Gabriel. An sos1-based approach for solving mpecs with
a natural gas market application. Networks and Spatial Economics, 13(2):205–227,
2013.

[141] A. Sinha, Z. Lu, K. Deb, and P. Malo. Bilevel optimization based on iterative
approximation of multiple mappings. Journal of Heuristics, 26(2):151–185, 2020.

[142] A. Sinha, P. Malo, and K. Deb. Efficient evolutionary algorithm for single-
objective bilevel optimization. arXiv preprint arXiv:1303.3901, 2013.

[143] A. Sinha, P. Malo, and K. Deb. An improved bilevel evolutionary algorithm based
on quadratic approximations. In 2014 IEEE Congress on Evolutionary Computation
(CEC), pages 1870–1877. IEEE, 2014.

[144] A. Sinha, P. Malo, and K. Deb. Evolutionary algorithm for bilevel optimization
using approximations of the lower level optimal solution mapping. European
Journal of Operational Research, 257(2):395–411, 2017.

[145] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: from classical
to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2017.

[146] A. Sinha, T. Soun, and K. Deb. Using karush-kuhn-tucker proximity measure
for solving bilevel optimization problems. Swarm and evolutionary computation,
44:496–510, 2019.

116 REFERENCES

[147] M. Sinnl. Bilevel integer programming and interdiction problems.

[148] J. Smith and Y. Song. A survey of network interdiction models and algorithms.
European Journal of Operational Research, 283(3):797–811, 2020.

[149] K.-M. Steinborn-Busse. Mixed-integer non-linear bilevel pricing problem. https:
//gitlab.com/KSB_1871/minlbpp, 2022.

[150] D. Sun and L. Qi. On ncp-functions. Computational Optimization and Applications,
13(1):201–220, 1999.

[151] S. Tahernejad, T. K. Ralphs, and S. T. DeNegre. A branch-and-cut algorithm
for mixed integer bilevel linear optimization problems and its implementation.
Mathematical Programming Computation, 12(4):529–568, 2020.

[152] K. T. Talluri and G. J. Van Ryzin. The theory and practice of revenue management,
vol. 68 springer science & business media. 2006.

[153] E. Towle. Formulations and Valid Inequalities for Network Interdiction Problems and
Reverse Convex Sets. The University of Wisconsin-Madison, 2019.

[154] A. Tsoukalas, W. Wiesemann, B. Rustem, et al. Global optimisation of pessimistic
bi-level problems. Lectures on global optimization, 55:215–243, 2009.

[155] H. Tuy, A. Migdalas, and P. Värbrand. A global optimization approach for the
linear two-level program. Journal of Global Optimization, 3(1):1–23, 1993.

[156] L. Vicente, G. Savard, and J. Judice. Discrete linear bilevel programming problem.
Journal of optimization theory and applications, 89(3):597–614, 1996.

[157] L. N. Vicente and P. H. Calamai. Bilevel and multilevel programming: A bibliog-
raphy review. Journal of Global optimization, 5(3):291–306, 1994.

[158] H. F. von Stackelberg. Market structure and equilibrium. Springer Science & Busi-
ness Media, 2010. Translated from the original Marktform und Gleichgewicht, Vi-
enna 1934.

[159] L. Wang and P. Xu. The watermelon algorithm for the bilevel integer linear pro-
gramming problem. SIAM Journal on Optimization, 27(3):1403–1430, 2017.

[160] Y. Wang, Y.-C. Jiao, and H. Li. An evolutionary algorithm for solving nonlinear
bilevel programming based on a new constraint-handling scheme. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(2):221–
232, 2005.

[161] Y. Wang, H. Li, and C. Dang. A new evolutionary algorithm for a class of nonlin-
ear bilevel programming problems and its global convergence. INFORMS Journal
on Computing, 23(4):618–629, 2011.

https://gitlab.com/KSB_1871/minlbpp
https://gitlab.com/KSB_1871/minlbpp

REFERENCES 117

[162] A. Weber. Theory of the Location of Industries. University of Chicago Press, 1929.

[163] U.-P. Wen and S.-T. Hsu. Linear bi-level programming problems—a review. Jour-
nal of the Operational Research Society, 42(2):125–133, 1991.

[164] U.-P. Wen and A. Huang. A simple tabu search method to solve the mixed-integer
linear bilevel programming problem. European Journal of Operational Research,
88(3):563–571, 1996.

[165] U.-P. Wen and Y. Yang. Algorithms for solving the mixed integer two-level linear
programming problem. Computers & Operations Research, 17(2):133–142, 1990.

[166] D. J. White and G. Anandalingam. A penalty function approach for solving bi-
level linear programs. Journal of Global Optimization, 3(4):397–419, 1993.

[167] W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem. Pessimistic bilevel
optimization. SIAM Journal on Optimization, 23(1):353–380, 2013.

[168] R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940,
1964.

[169] K. Wood. Bilevel network interdiction models: Formulations and solutions. Wiley
encyclopedia of operations research and management science, 2010.

[170] Y. Wu, T. Xu, H. Meng, W. Wei, S. Cai, and L. Guo. Energy storage capacity
allocation for distribution grid applications considering the influence of ambient
temperature. IET Energy Systems Integration, 4(1):143–156, 2022.

[171] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song. A bi-level optimization model for
grouping constrained storage location assignment problems. IEEE transactions on
cybernetics, 48(1):385–398, 2016.

[172] P. Xu. Three essays on bilevel optimization algorithms and applications. 2012.

[173] J. J. Ye and D. Zhu. Optimality conditions for bilevel programming problems.
Optimization, 33(1):9–27, 1995.

[174] Y. Yin. Genetic-algorithms-based approach for bilevel programming models.
Journal of transportation engineering, 126(2):115–120, 2000.

[175] D. Yue, J. Gao, B. Zeng, and F. You. A projection-based reformulation and de-
composition algorithm for global optimization of a class of mixed integer bilevel
linear programs. Journal of Global Optimization, 73(1):27–57, 2019.

[176] H. Zare, J. S. Borrero, B. Zeng, and O. A. Prokopyev. A note on linearized re-
formulations for a class of bilevel linear integer problems. Annals of Operations
Research, 272(1-2):99–117, 2019.

118 REFERENCES

[177] A. B. Zemkoho and S. Zhou. Theoretical and numerical comparison of the
karush–kuhn–tucker and value function reformulations in bilevel optimization.
Computational Optimization and Applications, 78(2):625–674, 2021.

[178] B. Zeng and Y. An. Solving bilevel mixed integer program by reformulations and
decomposition. Optimization online, pages 1–34, 2014.

[179] R. Zenklusen. Matching interdiction. Discrete Applied Mathematics, 158(15):1676–
1690, 2010.

[180] R. Zhang, T. Jiang, G. Li, X. Li, and H. Chen. Stochastic optimal energy man-
agement and pricing for load serving entity with aggregated tcls of smart build-
ings: A stackelberg game approach. IEEE Transactions on industrial informatics,
17(3):1821–1830, 2020.

[181] Y. Zheng, G. Zhang, Z. Zhang, and J. Lu. A reducibility method for the weak
linear bilevel programming problems and a case study in principal-agent. Infor-
mation Sciences, 454:46–58, 2018.

	List of Figures
	List of Tables
	Definitions and Abbreviations
	Acknowledgements
	1 Introduction
	2 Literature Review
	2.1 Properties of Bilevel Problems
	2.2 Applications
	2.2.1 Facility Location
	2.2.2 Interdiction Problems
	2.2.3 Pricing Problems

	2.3 Solution Methods
	2.3.1 Reformulation Methods
	2.3.1.1 Optimality Conditions
	2.3.1.2 Optimal Value Function
	2.3.1.3 Reaction Set Mapping

	2.3.2 Enumeration Techniques
	2.3.2.1 Vertex Enumeration
	2.3.2.2 Evolutionary Techniques

	2.4 Integer Bilevel Problems

	3 Mixed-Integer Linear Bilevel Problems
	3.1 Motivation
	3.2 Single Follower, Unit Supply
	3.3 Multiple Followers
	3.4 Non-Unit Supply
	3.5 Dichotomic Formulation
	3.6 Max Value Formulation
	3.7 Linearisation
	3.7.1 A note on the results of Dempe & Kue
	3.7.2 McCormick over Summations
	3.7.2.1 y Constraint
	3.7.2.2 McCormick Linearisations

	4 Solution Methods
	4.1 Unit Supply
	4.2 Non-Unit Supply
	4.2.1 Non-Symmetry-Free Cutting Plane
	4.2.2 Symmetry-Free Cutting Plane
	4.2.3 n-ary Branching
	4.2.4 Improved n-ary Branching

	4.3 ``Pre-Computed Follower Solutions'' Methods
	4.3.1 Single MINLBP Method
	4.3.1.1 KKT Reformulation
	4.3.1.2 Value Function Reformulation
	4.3.1.3 Strong Duality Reformulation

	4.3.2 Double MINLBP Method
	4.3.2.1 Y Selection

	4.3.3 Known Solution Branching (KSB) Method

	5 Computational Results
	5.1 Results for Instance Set A
	5.2 Results for Instance Set B
	5.3 Results for Instance Set C
	5.4 Results Overall

	6 Conclusions
	Appendix A Linear Formulations
	Appendix A.1 Unit Supply
	Appendix A.1.1 Unit Supply Formulation
	Appendix A.1.1.1 Direct McCormick
	Appendix A.1.1.2 Summation McCormick

	Appendix A.1.2 Known Solution Formulations
	Appendix A.1.2.1 KKT
	Appendix A.1.2.2 Value Function

	Appendix A.2 Non-Unit Supply
	Appendix A.2.1 Dichotomic Formulation
	Appendix A.2.1.1 Direct McCormick
	Appendix A.2.1.2 Summation McCormick

	Appendix A.2.2 Max Value Formulation
	Appendix A.2.3 Double MINLBP Formulation
	Appendix A.2.3.1 KKT
	Appendix A.2.3.2 Value Function

	References

