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Pure spinor formulation of the superstring and
its applications

Nathan Berkovits and Carlos R. Mafra

Abstract The pure spinor formalism for the superstring has the advantage over the
more conventional Ramond-Neveu-Schwarz formalism of being manifestly space-
time supersymmetric, which simplifies the computation of multiparticle and mul-
tiloop amplitudes and allows the description of Ramond-Ramond backgrounds. In
addition to the worldsheet variables of the Green-Schwarz-Siegel action, the pure
spinor formalism includes bosonic ghost variables which are constrained spacetime
spinors and are needed for covariant quantization using a nilpotent BRST operator.

In this review, several applications of the formalism are described including the
explicit computation in D=10 superspace of the general disk amplitude with an ar-
bitrary number of external massless states, genus one amplitudes with up to seven
external states, genus two amplitudes with up to five external states, and the low-
energy limit of the genus three amplitude with up to four external states. The pure
spinor formalism has also been used to covariantly quantize the superstring in an
AdSs x S° background and might be useful for proving the AdS-CFT correspon-
dence in the limit of small AdS radius.
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1 Introduction

At the present time, superstring theory is the only formalism available for com-
puting perturbative scattering amplitudes of gravitons without ultraviolet quantum-
mechanical divergences. Although comparing these scattering amplitudes with ex-
periments is unlikely in the near future, various properties of these amplitudes such
as spacetime supersymmetry and duality symmetry might have testable low-energy
implications.

Using the conventional Ramond-Neveu-Schwarz (RNS) formalism of the super-
string, the complicated nature of vertex operators for spacetime fermions and the
need to sum over spin structures has made it difficult to compute amplitudes in-
volving external fermions or to compute muiltiloop amplitudes. Furthermore, back-
grounds involving Ramond-Ramond fields necessary for the AdS-CFT correspon-
dence are difficult to describe in the RNS formalism.

In 2000, a new formalism for the superstring was constructed in which spacetime
supersymmetry is manifest and there is no need to sum over spin structures [1]. In
addition to the worldsheet variables (x,0%) of the Green-Schwarz formalism [2]
form =0to9 and o = 1 to 16, this new formalism includes the fermionic momenta
variables d of Siegel [3] as well as bosonic ghost variables (A%, w,) constrained
to satisfy Ay”A = 0. This constraint implies that A% is a D = 10 “pure spinor” as
defined by Cartan with 11 independent components, and the conformal anomaly
contribution of 422 from (A%, wg) cancels the conformal anomaly contribution of
+10—32= —22 from x" and (6%,dy). Generalizing a supersymmetric field theory
observation of Howe [4, 5], physical superstring states in this “pure spinor formal-
ism” are defined using the nilpotent BRST operator Q = ¢ dzA%d, and, unlike in
the Green-Schwarz formalism, covariant quantization is straightforward. A similar
BRST operator is useful for describing d = 11 supergravity [6, 7, 8], and more de-
tails on pure spinor applications in supersymmetric field theories can be found in
the review of Martin Cederwall [9].

Over the last 20 years, this pure spinor formalism has been used to compute var-
ious multiparticle and multiloop amplitudes in superstring theory including several
amplitudes which have not yet been computed using the RNS formalism. All ampli-
tudes computed using both the RNS and pure spinor formalisms have been shown
to coincide, however, the pure spinor computations are typically much more effi-
cient since there is no sum over spin structures and amplitudes are automatically
expressed in D = 10 superspace. Nevertheless, a proof of equivalence of the RNS
and pure spinor formalisms for the superstring is still lacking.

A promising approach towards proving this equivalence involves a recently con-
structed formalism for the superstring which includes 6% and an unconstrained
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bosonic spacetime spinor worldsheet variable A%, in addition to the usual N=1
worldsheet supersymmetric RNS matter and ghost variables. [10, | 1] This new for-
malism, named the B-RNS-GSS formalism since it combines features of the RNS,
Green-Schwarz-Siegel and pure spinor formalisms, is both N=1 worldsheet super-
symmetric and D=10 spacetime supersymmetric and acts as a bridge between the
RNS and pure spinor formalisms. It can be related to the RNS formalism by treating
(0% A%) as non-minimal variables which decouple from the BRST cohomology,
and can be related to the pure spinor formalism by “twisting” the N=1 superconfor-
mal generators into N=2 superconformal generators so that all worldsheet variables
carry integer conformal weight. Work is in progress on computing scattering am-
plitudes using the B-RNS-GSS formalism and proving that the amplitudes coincide
with those computed using the RNS and pure spinor formalisms. Since multiloop
amplitude computations using the RNS and pure spinor formalism have different
types of subtleties, it is expected that the B-RNS-GSS formalism will be useful for
relating these subtleties.

Just as the RNS formalism for the superstring can be described in any curved
background which preserves N=1 worldsheet supersymmetry, the pure spinor for-
malism can be described in any curved background in which the BRST current
A%dy remains nilpotent and holomorphic [12]. This allows not only the Calabi-
Yau backgrounds which can be described using the RNS formalism, but also any
curved supergravity background in which the D=10 supergravity equations of mo-
tion are satisfied to lowest order in o’. For example, unlike the RNS formalism,
the pure spinor formalism can be used to covariantly quantize the superstring in
an AdSs x S5 Ramond-Ramond background which is dual to .4 =4 D = 4 super-
Yang-Mills through the AdS-CFT correspondence.

Although this important application will not be discussed in later sections of the
review, quantum consistency of the AdSs x S background has been proven [13]
using the pure spinor formalism. To prove quantum consistency to all orders in o,
it was shown using symmetry arguments that any potential BRST anomalies coming
from quantum corrections can be cancelled by the addition of local counterterms to
the worldsheet action. It was also shown using BRST arguments that the classical
non-local conserved currents related to integrability can be extended to quantum
non-local conserved currents.

The construction of BRST-invariant vertex operators for half-BPS states in an
AdSs x §° background was recently achieved [14, 15, 16], and work is in progress on
using these vertex operators for the computation of scattering amplitudes. The struc-
ture of the vertex operators and the pure spinor worldsheet action in an AdSs x §°
background is more complicated than in a flat background, however, the manifest
PSU(2,2|4) isometry of the construction should be useful in simplifying the am-
plitude computations. An important open question is how to generalize the super-
Poincaré invariant BRST cohomology methods which are described in this review
to BRST cohomology methods with PSU (2,2|4) invariance.

In the limit of small AdS radius, the pure spinor version of the AdSs x S world-
sheet action has been shown to reduce to a BRST-trivial topological action plus a
small PSU(2,2|4)-invariant deformation term [17, 18]. In this limit, the dual the-
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ory is A4 =4 D = 4 super-Yang-Mills at weak coupling, and it has been conjec-
tured that the topological action describes free super-Yang-Mills and the deforma-
tion describes the cubic super-Yang-Mills interaction term. The topological action
and deformation term are constructed by combining the x™ and A% bosonic world-
sheet variables of the pure spinor formalism into a twistor-like variable which trans-
forms linearly under the SO(4,2) x SO(6) bosonic subgroup of PSU (2,2|4). Similar
twistor variables have been extremely useful for computing perturbative scattering
amplitudes of .4~ =4 D = 4 super-Yang-Mills [19], and it would not be surprising if
the two types of twistor variables are related through the AdS-CFT correspondence.

If this conjecture could be verified, it would provide a proof of the AdS-CFT cor-
respondence in the case of AdSs x S. A proof of the AdS-CFT correspondence in
the simpler case of AdS3 x > was established by Eberhardt, Gaberdiel and Gopaku-
mar in [20] using a “hybrid” formalism of the superstring which can be interpreted
as a six-dimensional version of the D = 10 pure spinor formalism. It is very sug-
gestive that twistor-like variables were used in their proof, and that Gaberdiel and
Gopakumar were recently able to generalize their twistor-like construction of the
spectrum of AdS3 x 3 at zero radius to the more interesting case of AdSs x S° at
zero radius [21].

After a brief review of the pure spinor formalism and the superspace formulation
of ten-dimensional super Yang-Mills theory in sections (2.1) and (2.2), section (2.3)
will showcase its applications to the computation of scattering amplitudes in a flat
background. From the complete genus-zero amplitudes with an arbitrary number of
external massless states to the low-energy limit of the massless four-point amplitude
at genus three, the pure spinor formalism and related techniques played a crucial
role in determining their manifestly supersymmetric forms. Finally, section (2.4)
will discuss how these amplitudes have been used to test S-duality conjectures.

2 The pure spinor formalism and scattering amplitudes

2.1 Ten-dimensional super-Yang-Mills theory in superspace

There is a super-Poincaré description of D = 10 super-Yang-Mills (SYM) in su-
perspace [80, 79] that describes the gluon and gluino states via Lie algebra-valued
superfield connections Ay (x,0) and A, (x,0) satisfying the non-linear constraint
{Va, Vﬁ} = 7{;13 V., where Vo = Do — Ag and V,, = 9, — A, are supercovariant
derivatives and

d 1
Da: W‘FE(Vne)aam (1)

is the superspace derivative satisfying {Do,Dg} = Yap Jmn- The ten-dimensional su-

perspace coordinates (x, 8) are composed of a SO(9, 1) Lorentz vector x”, where
m=1,...,10, and a Weyl spinor 6%, where o = 1,...,16. In ten dimensions, the
Lorentz group has two inequivalent spinor representations, denoted Weyl and anti-
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Weyl. They are distinguished by the position of the spinor index, upstairs for Weyl
Y% and downstairs for anti-Weyl y which cannot be raised or lowered. The gamma
matrices ﬁﬁ and y,ffﬁ are the 16 x 16 off-diagonal symmetric Pauli matrices of the
32 x 32 Dirac matrices I'™ of the SO(9, 1) Clifford algebra {I"", I"" } = 211" I35 32.
They satisfy Y&"ﬁ(}/’)ﬁp + Y(’)"ﬁ(}'m)ﬁp =2m"™8h.

The non-linear equations of motion following from the above constraint have lin-

earized counterparts written in terms of linearized superfield connections A¢/(x, 0),
A™(x,0) and their field-strengths W% (x, ), and F""(x, 6),

DaAﬁ +DﬁAa = ’)/anﬁAi’n7 DgAy = (YmW)a + InAa
1
DaFom = O (1 W) DaWP = ("o Fon. @

These linearized superfields will enter the expressions for the massless vertex oper-
ators of the pure spinor formalism and will be the main actors in the composition
of pure spinor superspace expressions to be reviewed below. In this context, it is
essential to know how these superfields are expanded in a series of 8 variables.

The linearized superfields can be expanded in the so-called Harnad-Shnider
gauge 0%Aq(x,0) = 0 in terms of the gluon ¢ and gluino x* polarizations of a
particle state labelled by i [78]. For convenience we strip off the universal plane-
wave factor ¢* that carries all the x dependence from the superfields and define
their 6-dependent factor as A%, (x,0) = Al (8)e** etc. One can show that

AL(0) = 5 (Om)a] + 5 (O3)a(07"70) — 55 (0O3) (07" 6) 1, 3)

+ 25 (O)a(07"0)k (x/7,6) + 11152<eym> (07" 6) (07 0K 11+
A:~"<e>=e'~"+<eu/"xf>—§<eu/"""e>ff’q Loy ™o (uy0)
T ONOT O~ 155 (07, 0)(07 , O KKL (1716) +

NI'—‘

192
M“(9)=xz“+z(97’”")“ ) (Gymn)“km(xnf’e)——(eym )*(0%upO)KT" £
1
_ gy POy s myn ¢Pq

FI™(0) = £ — k" (17" 6) + (eypq o)k} £ — (9qu[’"9)k§”kf’(m"9)

Y [ P
5 OT" ORI 7(07,0) + 225 (07" OIAK! (17 6)(07,,0) +
where fi"" = k™el! —k"e}" is the linearized field strength of the ith gluon and the
terms in the ellipsis of order 6> will not contribute in pure spinor superspace ex-
pressions to be reviewed below.
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2.2 Non-minimal pure spinor formalism

It is customary to distinguish two very closely related versions of the pure spinor
formalism: minimal [25] and non-minimal [22]. Both are based on the ideas of [1]
but the non-minimal incarnation introduces new variables on the worldsheet and
admits a simpler “topological” multiloop amplitude prescription.

The left-moving sector of the non-minimal pure spinor formalism is composed of
the fields X", po, W, s* of conformal weight one and of 6% A%, 44, rq of confor-
mal weight zero, where m=0,1...,9 and @ = 1,...,16 are the vector and spinorial
indices of SO(10). The world-sheet action is

1

S p—
2ro!

/dzz (8)«,’"§xm + 0 ped0% — a'wedA* — A W¥ Ao + (X’sagra) ,

“)
and o denotes the inverse string tension. The field A% is bosonic and satisfies the
pure spinor constraint

A% YagAP =0. (5)
The field A is bosonic while rq is fermionic and they satisfy the constraints
2a¥P2p =0, AayPrs=0. (6)
The OPEs of the matter variables are given by

m(_ = — o m 2 B 55
X"(2,2) X (w, W) ~—75,, In|z—w|", Pa(2)0” (w) ~ p— (7)

while the OPEs of the ghost variables do not follow from a free-field calculation due
to the constraints above. In certain circumstances, however, the variables (wg, A %)
can be viewed as a conjugate pair with canonical OPE. The Green—Schwarz con-
straint dy(z), the supersymmetric momentum IT™(z) have conformal weight +1
and are given by

(7"0)adm — 107 (7"0)a(01a26), ®

I17(2) = 0" + 3(07"96).

1
do(2) = pa — o

These fields satisfy the following OPEs

’){x" 11, mn
da(2)dg(w) ~ =2 IR () ~ —(Z’l—w)z, ©
da(Z)Hm(W) ~ (}’:fi?v)a’

In addition, if f(x(w),8(w)) does not depend on derivatives d*x nor 90
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Al Fx(w),0w)) ~ 220 117(2) fx(w), B(w)) ~

—w —w

(10)
The non-minimal BRST charge
sz(l“daw“ra), (11

can be shown to be nilpotent Q? = 0 using the OPEs (8) and the pure spinor con-
straint (5). Physical states are required to be in the cohomology of (11) and it will
be shown below that the cohomology is independent on the quartet of non-minimal
variables (W%, A ¢, 5%, rq).

The constraint (5) implies that the conjugate momentum wy, to the pure spinor
A% can only appear in gauge-invariant combinations under

Owa(z) = Qu(2)(Y"A)a- (12)

The basic gauge-invariant quantities are the current J, , the energy momentum tensor
T, and the Lorentz current N, given by

1
Jy(z) = wa A%, Ty (z) = wed A%, N™(z) = E(WV"”A). (13)
Since the conjugate pair (A%, wq) is not free due to the pure spinor constraint, the

OPEs of these gauge invariants are computed using the U(5) parameterization of
A%, with the SO(10)-covariant result [ 1],

Liymnp ey, oy
@A ~ 2D gy 20 (14
N™ (21, () ~ regular, R 0) ~

Ny (w) -8 Iy, (w)
Nm"(Z)Tl (W) ~ m’ Jl (Z)Tl (W) ~ (Z_W)3 + (Z—W)Z )

N85 = N8+ N8 — N85 3(887' — 8,8y")
2 Y

N™(2)Npg(w) ~ —w (z—w)

11 2T,1 (W) aT;L (W)

TA(Z)TZ(W)N (Z—W)4 (Z—W)z —w

Similarly, the constraints (6) imply that the conjugates w* and s* of conformal
weight +1 can only appear in gauge-invariant combinations under

ow* :ﬁm(wx)a_(pm(?/n")av 0s% = ¢m(7/"7)°‘7 (15)

where Q,, and ¢,, are arbitrary parameters. The non-minimal counterparts of the
gauge invariants (13) are given by [22],
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— 1 — _ — _
N,,,,,:E(W}/m,,l—sym,,r), Jr=Ww'Ao —5%q, Tr=w"dAq—s%drq, (16)

with additional gauge invariants

1 —
Spn = Es}/m,,l, S=5%q. a7
The above gauge invariants are related via the BRST charge
Non = QSun, T7r=0S, Tr=0(s“02q), (18)

Therefore, the operator g = ¢ 77 counting the non-minimal variables is BRST exact,

and satisfies ﬁIa = Ia and gry, = rg. Therefore if a BRST-closed state Q¥ = 0 has
non-vanishing non-minimal g charge g¥ = n'¥ with n # 0, it is also BRST-exact;
¥ = 4% And since S and §"" are not closed and (Nm,,jx, T;;) are exact, the quartet

(W*, Ag,s% ro) of non-minimal variables decouples from the cohomology in what
is known as the Kugo-Ojima quartet mechanism.
Moreover, the energy-momentum tensor,

1 —
T(z)= —E&C’"axm—paaea—l—wa&la+Waala—saara, (19)
is related to the BRST charge through the b ghost as {Q,b(z)} = T'(z), where

b= 59T+ — e [20T" (X pud) — Num(7™36) — 1, (106) — (19°6)]

4(AR)
(Rymrr) pof
———= | = (dYnpd) + 24N, 11
192(11)2[2( Yrnpd) p}
_ 1/ (rymnlir) (X,)/nd)an + ﬁ/ (rymnlir) (I},pqrr)Nmanr (20)
2 16(AL)3 2 128(A )4 '
After extracting the non-minimal U (1) ghost-number current
2((20 d 2
J(2) = wad® — s%rg — ((AOA)+(rd®)) +2(lr)(189) 21

(27) (27)?

from the double pole of the b ghost with the integrand A *dy, + W%rq of the BRST
charge, the non-minimal pure spinor formalism was shown in [22] to be a critical
N = 2 topological string. More precisely, using the terminology G (z) = (A%dy, +
®%ry), G~ (z) = b(z) one can show that T(z), G*(z), G~ (z) and J(z) satisfy the
OPEs [22, 83]

(22)
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+ +
T(2)G" (w) ~ (wa)z + (Za_GW)
2G~ G~

C—w? )
3 J T
Cwp Wl e-w)

T(z)J(w) C—wp =W a=w)
Gj:

J(2)GE(w) ~ + —

JEI) ~ =

G*(2)G* (w) ~ regular,

which identifies them as the generators of a ¢ =3 N = 2 twisted topological confor-
mal algebra. As such, not only the BRST charge has to be nilpotent but also the b
ghost (see e.g. [85]). A proof that b?* = 0 with (20) can be found in [83, 84]. Note
that the simpler BRST-equivalent U (1) charge J(z) = wgA%* — %A 4 was show in
[22] to preserve the essential features of the topological string and therefore can be
used instead of (21) to define the ghost-number of pure spinor operators.

2.2.1 Vertex operators and amplitude prescription

Vertex operators for massless open-string states are constructed from the linearized
SYM superfields of (2) as

V=A% (x,0), (23)

1
U=00%y(x,0)+IT"A;,(x,0) + deW*(x,0) + ENm,,Fm”(x, 0)

and are independent on the non-minimal variables using the quartet mechanism dis-
cussed above. V is called the unintegrated vertex and has conformal weight zero and
U is called the integrated vertex and has conformal weight 4-1. They are related via
the BRST charge (11) by QU = 9V, so the integrated vertex is BRST closed up to a
total derivative on the worldsheet. The unintegrated vertex is BRST closed as a con-
sequence of (10), the equation of motion (2), as well as the pure spinor constraint

Q)
1
QV = A%APDoAp = E?L“Q{x"ﬁ/'LﬁAm =0. (24)

Their closed-string versions are obtained by a double-copy of the open-string vertex
operators with the plane-wave factor stripped off, that is |V |> =V (8)V (8)e** where
V(0) = A%Aq(0) with A(0) as in (3), and similarly for |U|%.

The prescription to calculate n-point closed-string amplitudes at genus g is
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Ay = K'e / Hdzz, HAGVL(O)U; (2 V1 (1)Vi(0)) (25)
%ﬂZEW/ o T2l O, ) 26)

2,.///1 j=2

1 3g—
%>1_Kneﬂ(1_§5g,2>/2 4% 3'L'Hdzz, (U;(z;) H b)) 27

g j

where U (z) is the integrated vertex operator (23), t; for I = 1,...,3g — 3 are the
complex Teichmiiller parameters with p; their associated Beltrami differentials, the
b ghost is given by (20) and

(b, ) = / Pbpii, 28)

A is the regularization factor (36) responsible for convergence as (/'LI) — o0, K 1S
the normalization of the vertex operators (k> = et /o 2 by unitarity) and e2e=1)A
is the string coupling constant as in [43]. The factor of 1/2 in the genus-two ampli-
tude is required because all genus-two curves have a Z; symmetry [86]. In addition,
|.|? signifies the holomorphic square of the integrand with the plane waves of the
vertex operators dealt with as described above, and it is important to emphasize that
all calculations are done in the left- and right-moving sectors separately using the
chiral splitting formalism explained below.

Integration of non-zero modes The OPEs in a genus g Riemann surface are used
to integrate out the non-zero modes of the fields of conformal weight +1. To do this,
we first separate off the zero modes as (using dy(z) to illustrate the procedure)

g
do(z) =da(z)+ Y dy o (2), A dog =0 (29)
I=1 1
where @ (z) are g holomorphic one-forms satisfying §, @;(z)dz = 6;; and A; rep-
resents the A cycles of the Riemann surface. Then the non-zero modes (indicated by
hats) are integrated out via their OPEs. For example,

pa(2) 0P (v) ~ 0. InE(2,y) 8

a(2) K (x(y),0(y)) ~ 9. InE(z,y) DaK (x(y),0(y)) (30)
11, (Z) (x(1),0(y)) ~ =0 InE(z,) K (x(v), 8(»))

where E(z,y) is the prime form and K (x, 0) is an arbitrary superfield depending on x

and 6, but not on the worldsheet derivatives of these fields. In the limit where z — y,

the prime form behaves as E(z,y) ~ z—y and the propagator 0, In E(z,y) displays its
distinctive singular structure ~ 1/(z —y) seen in (8). The OPE of the x™(z,Z) fields



Pure spinor formulation of the superstring and its applications 11

/

(04
X"(2,2) X0 (W, W) ~ —75,;"G(z,w), (€2))
with G(z,w) the genus-g Green function, couples the left- and right-movers and
motivates the chiral splitting techniques developed by D’Hoker and Phong.

Zero-mode integrations The zero-mode integrations that remain after integrating
out the non-zero modes via OPEs are performed using

8
(...)= / [d6](dr][dA)[dA] [ [[da"|[ds")[dw] [dw'] .. (32)
=1
where [45]

(2] Tay .5 = €2 (8 d" )y .5 - [dw] = ey (T & d"'w)

[dA)T" % =c5(e-d"" 2)™ “s, [dr] = ¢, (T -e-9!)

[dW] Ty, cw(e-d"W)a. as [ds') = ¢, (T - € 8:,1)

[d0] = cd'%0 [dd") = cgd"®d". (33)
with the shorthand (&-d"'1) g, o5 = ﬁe oy dA% .. dA%6, and its contraction
(T-e-d"A) = 7 T 5 (- d“?L) . with similar expressions for the others.
The expressions of Ty, ...¢s and T% are given by

Tal 0030405 — (Ayn)al (}“7/[)&2 (Ayp)% (Ymnp)omots (34)

TSRS (L") () (T8 ()

and they can be shown to be totally antisymmetric due to the pure spinor constraints
and satisfy T -T = 5!2%(A1)>. Finally, the normalizations are given by

o /
a=(3) )" e
)T el )
e N o)
o < AR (o PP
;X o
66:(7) (%) «w=(3) @

where Ay = [ d*z,/3 is the area of the genus-g Riemann surface. Moreover, Z, =
1/4/det(2Im Q) where £y, is the period matrix, and R is a free parameter that is
used to choose the normalization of the three-point amplitude at genus zero (af-
ter which the normalization of all genus-g n-point amplitudes is fixed). As shown
in [45], the closed-string amplitudes are independent on the area Ag because the
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number of bosonic and fermionic variables of conformal weight O is the same, and
independent on the choice of normalization of the holomorphic one-forms because
the number of bosonic and fermionic variables of conformal weight +1 is the same.
The factor

= 23: o (AT = (W' )~(r0)+(sd") (36)
=1
regulates the zero-mode integrations over the non-compact spaces of the bosonic
variables 1%, A and w%, Wy as (A1) — oo and (W) — oo in a manner explained
in [22]. The formula for the integration over the pure spinor variables was found in
[47] using techniques from algebraic geometry

Ag)llf(8+n)

[lanjamazye 0 = (££) 22,

o 37

where I"(x) is the gamma function. The b ghost (20) has factors of 1/ (AA) which
are not regularized by the regulator (36) as (AA) — 0. It was shown in [22] that

as long as the integrands diverge slower than 1/ (AS+3gI”) the amplitudes are still

well-defined due to a compensating factor of Ast37 ! arising from (.4"...) in (32).
As explained in [22], this issue is closely related to the existence of the operator

11 "
fo_(20) __(20) 5 <<re>> G8)

(AA)+(r6)  (A4) ;=\ (A2)

where the Taylor expansion ends at n = 11 because there are only 11 degrees of
freedom in ry due to the constraint (6). This operator trivializes the cohomology as

Q& = 1 but (#'E(A36°)) diverges faster than 1/(7LS+3gI“), therefore if the inte-
grands were allowed to diverge too fast they would also be BRST-exact. Forbidding
such pathological behavior restricts the amplitude prescription to contain at most
three b ghosts, or in other words, up to genus two. By regularizing the b ghost to re-
move the singularity as (/'LI) — 0, an alternative prescription that allows amplitudes
at arbitrary genus to be well defined was proposed in [26].

As emphasized in [45], after the integration over [dd!][ds'][dw][dW'] has been
performed, the remaining integrations over l“,Iﬁ, 6% and ry are the same ones
appearing in the prescription of the tree-level amplitudes, and therefore give rise to
(non-minimal) pure spinor superspace expressions.

Chiral splitting To address the mixing of left- and right-movers via OPE contrac-
tions — an issue that prevents writing the closed-string correlator as an holomorphic
square — the chiral splitting procedure [38, 39, 75] introduces loop momenta £}’

= ¢ dII"(z) (39)
Aq

in order to rewrite conformal correlators of the x”-field in terms of an integral over
{;. The integrand then becomes a product of left- and right-movers of schematic
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form %, (zi, ki, )% (zi, —ki, — 1), denoted chiral blocks. Chiral blocks have a uni-
versal monodromy behavior as the points are moved around one another or circled
around the homology cycles of the surface, and these properties can be exploited'
to propose pure spinor superstring integrands [64, 41]. More precisely, decompos-
ing the chiral blocks into chiral kinematic correlators .# (z;,¢') and a chiral Koba-
Nielsen factor ., (to be displayed below) as . = (J#,).%,, the expression for the
chiral correlator must be invariant under the combined homology shifts of vertex
positions z; and loop momenta ¢/ around the A; or B; cycles:

Hn(ziyki 1) = Jn(zi + 8;A 7, ki €1) (40)
%(Ziakiafl) = (zi+ S[ij,k,‘,él — 271?5]ij) .

When viewed as a constraint on the chiral correlator, these invariances can be used
as a guide to obtain superstring correlators [62, 63, 64, 41, 42].

2.2.2 Pure spinor superspace

After all the non-zero modes of the worldsheet fields have been integrated out using
OPEs, the correlator contains only the zero modes of conformal-weight zero vari-
ables. In the minimal pure spinor formalism of [25] that means the zero modes of
A% and 6%, while in the non-minimal formalism they can also include Aq and rq
variables. In the latter case, one can show that ry can be converted to supersymmet-
ric derivatives Dy, while the pure spinors A can always be arranged to contract 1%
to produce scalar factors of (A1) which change the normalization factor. Therefore
the zero mode integration (with a constant number of (AA) factors) can be done
with the prescription [ 1]

(AY"0)(AY'0)(AY’0)(0Ymnpb)) = 2880. 41)

This motivates the notion of pure spinor superspace [27], defined as expressions
containing three pure spinors and an arbitrary number of SYM superfields com-
posed of polarizations, momenta and 6% variables. The prescription (41) justifies
the previous claim that terms of order 8> in (3) could be safely ignored. As a
simple example of pure spinor superspace one can consider extracting the super-
symmetric expression of the massless open-string three-point amplitude at genus
zero,

(VivaVz) = ékie},eﬁe?<()L')/‘9)()LYT9)()L,YPG)(eypmn9)>

+ 15 (AmO) (A1,0) (A1,0)(67 1)(87 7)) +eyelic(1,2,3)

! Of course, the monodromy of the chiral blocks play a central role in calculations with the RN'S
formalism, see e.g.[40], but in this review we will focus on the pure spinor formalism.
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1 .
= Self3" e + e, (027" 23) + eyelie(1,2,3).. (42)
where we plugged in the 6 expansions of (3) and kept only the terms with 6°.
Moreover, we used

(AY'0)(AY'0)(17,0)(07"™0)) = 643, (43)
(AmB)(A10)(A7,0)(0Y'x2) (Y x3)) = 18(x2Y" X3),

which can be derived from group-theory considerations (see appendix of [28]), mo-
mentum conservation k7' + %' + k%' = 0 and the transversality condition (k; -e;) = 0.

2.2.3 Multiparticle superfields

While four-point scattering amplitudes at one and two can be written down using
the (single-particle) SYM superfields, the OPE contractions present at higher points
lead to linear combinations of SYM superfields whose patterns are captured by so-
called multiparticle superfields, describing multiple strings at the same time. Not
only they encode the numerators associated to OPE singularities, but they are also
designed in a way that removes BRST-exact pieces and total derivatives. The end re-
sult displays covariant BRST transformations and generalized Jacobi identities [3 1]
— the latter property is particularly useful for describing Bern-Carrasco-Johansson
color/kinematics duality [29].

The two-particle superfields generalizing the standard superfields of (2) are given
by [66]

I— 9l

A2 = L[A2 (k- Ar) + A5 (3 W) o — (1 5 2)]

T = 2[AY (ko - Ay) + A ES™ + (Wi Y"Wa) — (1 45 2)]
W = 3 (BunW2) *F™ + W3 (k2 - A1) = (1 45 2), (44)
' = F" (ko Ay) + 5B B 1" (Wi ' Wa) = (1 .2),

and satisfy

DoAF + DAy’ = VagAy + (ki - ko) (AgAf +ABAG), (45)

DoAYy = Vg WhHHKBAR + (ki k) (AL AT —AZAT),
DaWfy = 4 () o FY + (ko ko) (AL WS — AZWE),
DaF = k(Y Wi)g + (k- ko) [ALE™ + Al (W) o — (1 65 2)].

These equations of motion have the same form as in the single-particle case (2) with
additional corrections proportional to (k! - k?). The construction of (local) multi-
particle superfields of arbitrary multiplicity leads to superfields labelled by words
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P = pipap3... or by arbitrary nested commutators P = [...[[p1, p2], p3],--.] (e.g.
Ay, o1 F[rlm[lzs}]) and can be found in [66, 32].

2.3 Superstring amplitudes with pure spinors

The pure spinor prescription to compute genus-g amplitudes relies on the basic fact
that the OPE analysis of primary operators determines a meromorphic function of
the vertex positions due to its poles and residues. In the absence of monodromy such
as at genus zero, this completely determines the correlator, but this is no longer true
at higher genus. On a surface of higher genus, the existence of holomorphic one-
forms implies that the knowledge of the positions and residues of the poles from the
OPE analysis no longer suffices to completely determine the correlator; the regular
terms contain non-trivial information. In principle, the zero modes provide the addi-
tional information to find the complete correlator [74]. However, sometimes this is
impractical to follow systematically and the calculation benefits from the practical
requirements of homology and BRST invariance” constraints to be discussed below.

Homology invariance The introduction of loop momentum integrals with the chiral
splitting formalism had to pass the consistency check that the integrated amplitudes
were single-valued as a function f (z;) of the vertex positions z; after the loop mo-
mentum was integrated out [39]. However, a stronger constraint was proposed” in
[67, 63]: that the chiral infegrands, viewed as a function f(¢;,z;) of both the loop
momenta ¢; and vertex positions z; should be strictly single-valued under the mon-
odromies of the loop momentum and the vertex positions as they move around A;
and By cycles:

Apcycle:  (Z,05) = (zi+ 6;As,4r)

/7£/ = i?é )
Sty) =S Gt) Bj-cycle: (z},0)) = (zi+ 8By, {1 — 2mid/k;)

(46)

That is, the chiral integrands should be single-valued before the loop momentum
is integrated out. This requirement interlocks the different sectors of the integrands
with different powers of loop momenta with predictive consequences: it can be used
to constrain and obtain the superstring integrands themselves.

This requirement of homology invariance was used in [62, 63, 64] to determine
the integrands of the five, six and seven-point massless amplitudes at genus one, and
in [41] to obtain the massless five-point integrand at genus two.

2 It is worth mentioning that several amplitudes computed in this manner used the “minimal” pure
spinor formalism and its simpler pure spinor superspace expressions depending only on the zero
modes of A% and 6% (the expressions in the non-minimal formalism also depend on Ay, 7y in
intermediate stages).

3 It was initially dubbed “monodromy invariance” and it led to the development of generalized
elliptic integrands (GEI) in the context of genus-one string amplitudes [63].
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BRST invariance Superstring scattering amplitudes must be spacetime supersym-
metric and gauge invariant. As explained in detail in [ ], the cohomology prescrip-
tion (41) to integrate out the pure spinor zero modes leads to gauge-invariant and
supersymmetric expressions if the pure spinor superspace expression is BRST in-
variant. Recall that when the BRST charge (11) acts on superfield expressions con-
taining only x™, 8% (and possibly A%), the OPE (30) implies

OK(x,0) = A*DgK(x,6) (47

where Dy, is the superspace derivative (1) and A% is the pure spinor. As we
will see, this equation plays an important role in the study of the BRST co-
homology properties of string scattering amplitudes. More precisely, if the out-
come of the OPEs among the vertices is written in pure spinor superspace as
(lalﬁlgfaﬁy(ei,ki, &:,0)) where ¢;,&; and k; represent a collection of bosonic and
fermionic polarizations and their momenta, then the amplitude prescription will give
rise to gauge invariant and supersymmetric expressions if

Q(Aalﬁlgfaﬁ'y(eivkivéiv6)) = 07 (48)
Aalﬁlgfaﬁy(eivkivéive) # QQ

This implies that the superspace expressions of arbitrary scattering amplitudes must
be in the cohomology of the BRST charge. This requirement together with the OPE
structure of the genus-zero pure spinor prescription is enough to completely deter-
mine the tree-level scattering amplitudes of ten-dimensional SYM theory [59, 60].

2.3.1 Genus zero

SYM tree amplitudes The knowledge that the genus-zero superstring amplitudes
reduce to ten-dimensional SYM tree amplitudes [81] has a powerful consequence:
the tree amplitudes in field theory have the same superfield structure as their string
theory counterparts. This led to the suggestion that the BRST cohomology struc-
ture of pure spinor superspace expressions inspired by the pure spinor prescription
could be used to completely fix the form of the SYM tree amplitudes [59]. Using
multiparticle superfields, the first non-vanishing tree amplitudes were found to be

A(17273) = <V1V2V3>7 (49)
V12 V3V, ViVa3V.
A(1,2,3,4):< 12V3 4>+< 1Va3 4>7
S12 23
Vi23V4V V321 V4V Vi2 Va4 V- ViVas4 Ve Vi Va3,V
A(1,2,3,4,5):< 123V4 5>+< 321 V4 5>+< 12V34 5>+< 1V234 5>+< 1Vazo 5>_
512545 $23545 512834 $23851 $34851

The regular structure of the BRST variation of certain non-local multiparticle super-
field building blocks Mp, the Berends-Giele currents, and various other hints led to
the general n-point expression for SYM tree amplitudes in [60]:
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A(Pn) =Y (MxMyM,) (50)
XY=P

where XY = P represents the sum over all deconcatenations of the word P into the
words X and Y (including the empty word provided we define My := 0). In this
language, the amplitudes (49) become

A(1,2,3) = (MM M3) (&2))
A(1,2,3,4) = (MioM3My) + (MiM3My) ,
A(1,2,3,4,5) = (M123MaMs) + (M12M34Ms) + (M1 Maz4Ms) .

The explicit expressions for the Berends-Giele currents in terms of multiparticle
superfields, the first of which are given by

Via Vi3 V321
M =V, Mp=—, My = + ; (52)
512 5125123 $235123

can be constructed in a multitude of ways (see [82]). Their BRST variation admit a
simple all-order form

OMp= Y MxMy, (53)

XY=P

from which it easily follows that the superfield expression in (50) is BRST closed.
It is also not BRST exact, and therefore it is in the cohomology of the BRST charge.
To see this, note that Mp contains a divergent propagator 1/sp in the phase space
of |P|+1 = n massless particles, so one cannot write the superfields in (50) as
O(MpM,,). In other words, MpM, is not an allowable BRST ancestor, which ex-
plains why (Y.xy_p MxMyM,) # 0.

The n-point superstring disk correlator The general n-point disk correlator of
massless string states was computed in [61] using multiparticle superfield tech-
niques to capture the OPE singularities of vertex operators. The result can be written
as a sum over (n— 3)! SYM field-theory tree amplitudes (50) as follows

n—2k—1

%(P): (Za/)ﬂ3/du;’l)|:n Z SikA(lvzv'"7n)+perm(2737"'7n_2) ) (54)
k=2m=1 <mk

where [dup is a shorthand for the integration over the vertex positions with
integration domain D(P) and weighted by the genus-zero Koba-Nielsen factor
Inp) H.’]’-;g dz; H'f;}<j |2i;| 2%/ This result motivated the development of a method

35] to obtain the & expansion of the integrals in (54). In addition, the conclusion
that there is a (n — 3)! basis of tree amplitudes in the work of Bern, Carrasco and
Johansson [29] becomes manifest as the left-hand side must reduce, in the limit
as @’ — 0, to a color-ordered SYM tree amplitude A(P) with arbitrary ordering P,
which in turn is expanded in terms of (n —3)! tree amplitudes on the right-hand side.
For an in-depth discussion of these matters, see [82].
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2.3.2 Genus one

We are now going to showcase some of the results obtained with the pure spinor
formalism at genus one. For the open string, the amplitudes have the general form

=Y Cop [ drdzzdzs .z [ 01201 0A0), 59

top

with (...) denoting the zero-mode integration prescription (32), which will be pre-
sented in the examples below as pure spinor superspace expressions in terms of
zero modes of A% and 6%. The integration domains Dy, for the modular parameter
T and vertex positions z; must be chosen according to the topologies of a cylinder or
a Mobius strip with associated color factors Cyop. The integration over loop momenta
¢ must be performed as a consequence of the chiral-splitting method, which, in turn,
allows to derive massless closed-string one-loop amplitudes from an integrand of
double-copy form

My / Prdod’z ... d*2, / dPL| IO (A0 (Fn(—0)),  (56)
y/f,‘

with .% denoting the fundamental domain for inequivalent tori with respect to
the modular group. Both expressions (55) and (56) involve the universal one-loop
Koba—Nielsen factor

Iu(0) _exp(Zs,,log&(Zu, T)+ Zz, (€-kj) 4;/2), (57)

<j

with light-like external momenta k; and s;; = k; - k; as well as z;; = z; — z;.

The Eisenstein-Kronecker series As pointed out above, knowing the singularity
structure of the superstring correlators is not enough to reconstruct the full mero-
morphic integrand as a function of the vertex positions, as crucial information from
the non-singular parts is needed. In [34], a generating series of worldsheet functions
was proposed that contained an infinite tower of functions g(”> (z) forn >0 onacom-
plex elliptic curve describing a genus-one surface with modulus 7. These functions
turn out to have the correct properties to capture both the singular part of super-
string correlators with g(!) as well as the non-singular pieces with g, n > 2. More
precisely, these functions are constructed via the Laurent series of the Eisenstein-
Kronecker series F(z,a, T) [30]

0/(0,7)01(z+ 0o, 7) & 1
F 1 n— (n
(z.a,7) 81(.7)01 (0. 7) Z o (z,7) (58)

n=|

where 6 (z, 7) is the odd Jacobi theta function (¢ = ¢>*%)

= =

) H(l _ eZmz H 72mz , (59)

J=1 J=1

0,(z,7) = 2ig"/®sin(nz)
j

:1
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satisfying 01 (z+ 1,7) = —0;(z,7) and 0)(z+ 7,7) = —e ™% 2720, (7, 7) as z is
moved around the A or B cycle. In addition, 8] (z,T) = d,6) (z, 7). The functions g
for the first few cases are g0 (z,7) = 1,

¢W(z,7) = dlog(z,7), g?(z, ‘L'):% (910g6;(z,7))* — Pz, f)], (60)

where @(z,7) = —9%1og 0 (z,7) — G2 (1) is the Weierstrass function and Go () are
holomorphic Eisenstein series.

The function g(!)(z, ) is singular as z — 0 while all g (z, 7) with n > 2 are non-
singular in this limit. In addition, all g")(z, 7) are single-valued around the A-cycle
as z — z+ 1 but have non-trivial monodromy around the B-cycle as z — z+ T

n(—2mi)k
€tz =) ! 5 Tz, (61)
k=0 :

For instance, g(V)(z+ 1,7) = —27i and g (z +7,7) = —2migW(z,7) + 3 (2mi)>.
The singularity structure of these functions as well as their monodromies in a genus-
one surface provided valuable information to constrain and obtain [62, 63, 64] the
genus-one n-point superstring correlators for n < 7 using the homology invariance
principle discussed above. The shorthand gl(»;’) := g (z; — zj,7) will be used below
and it will be convenient to define a linearized B-cycle monodromy operator D

D=-—Y Q5 (62)

where £ are formal variables that capture the B-cycle monodromies around z; gen-
(n—1)
m
for n > 1 as well as 5,g5?,3 =0 and 5jg§:l) =0 for all i,m # j. As discussed in [63],
there is a remarkable duality relating the operator D with the BRST charge Q.

erated by the formal operator §; with action 6;¢ = —2mik; and 5jg§-'fn) = —2mig

BRST building blocks The other ingredient used to obtain the genus-one super-
string correlators was the BRST invariance property of the integrands. This was ad-
dressed by the construction of BRST building blocks with covariant BRST transfor-
mations, using multiparticle superfields techniques in combination with pure spinor
zero-mode analysis and group theory to constrain the appearance of superfields.
This led to the definition of multiple BRST building blocks with different BRST
transformation properties allowing for the construction of BRST invariants in the
pure spinor cohomology.

For instance, the zero-mode sector with four dy zero modes from the b ghost
suggests the scalar building blocks

1
TA,B,C = 3 ()y’)/mWA)(l’)/nWB)Fénn + CyCliC(A,B, C) . (63)
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in terms of multiparticle superfields labelled by words A, B, C. Their BRST variation
following (47) is given by (kg = 0)

OTypc= Y, (kx k;)[VxrTjs,p.c — VirTxspc] + (A« B,C), (64)
A=XjY
Y=RwiS

where LU denotes the shuffle product defined iteratively by [73]
OWP=PWLO:=P, iPLjO :=i(PWwjO)+j(QWiP), (65)

for letters i and j, words P and Q with 0 representing the empty word. For example,
1123 =123 4213 +231.

For an illustration of (64), the BRST variations of all T4 g ¢ up to multiplicity five
are given by

OT1,53=0, (66)
OTi234= (ki ko) [ViTo34 — VaTi34]
OTi2345 = (ki ko) [ViTo3 45+ Vi3Toas — VaTizas — VasTi 5]
+ (k12 k3) [ViaT3.45 — V3Tinas)
OTi2345 = (ki ko) [ViTo 345 — Vol 3a5] + (12 > 34).
Other zero-mode contributions from the b ghost give rise to tensorial building blocks

with an arbitrary number of vector indices. For simplicity, the vector building block
has the form

Ti'scp = [AXTscp+ (A< B,C,D)| + Wi'scp (67)

with
1
Wilsc.o = 75 (A1 Wa) (A7, W) (Wey™""Wp) + (A, BIA,B,C,D)  (68)

with the notation (4;,...,4,|Aj,...,A,) instructing to sum over all possible ways to
choose p elements Aj,A,,...,A, out of the set {Ay,...,A,}, for a total of (Z) terms.
The BRST transformation of (67) is given by

OTs cp=KkiVaTzcn+ Y, (kx-kj) [VxrT}$ p.c.p—VirTxsg.cp] + (A B,C,D),

A=XjY
Y=RLIS
(69)
for example,
QTIVTIZ,3,4 = k’inVI T2’3!4 + (1 <~ 2, 3,4) 5 (70)

OT(5345= (K5ViaT3.45+ (12 4 3,4,5)| 4 (ki -k2) (Vi 545~ V2T1r,"3,4,5) .

Other building blocks were defined in [62] to capture the gauge anomaly of the
field-theory SYM integrands that disappear in the SO(32) superstring [49, 50].
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Four points At genus one, the simplest scattering amplitude with four massless
states computed in 1982 by Green and Schwarz [58] was reproduced in a 2004
calculation using the minimal pure spinor formalism [25]. A salient feature of this
calculation is the absence of OPE singularities among the vertices; the amplitude is
completely determined by the pure spinor zero modes. The result of the correlator
in the conventions of (55) is given by

Ha(l) =ViTr34, (71)

and its zero-mode evaluation can be written in terms of the tree-level SYM ampli-
tude ASYM as follows

(ViTh34) = s1253A5Y™M(1,2,3,4). (72)

For Neveu-Schwarz external states, the zero-mode evaluation of (72) yields the fa-
mous fg tensor, (V153 4) = %lg (f1, /2, f3,f4) where

8(f1, /2,13, fa) = e(f1f2f3/4) — %tr(flfz)tr(f3f4) +cyclic(2,3,4), (73)

and tr represents a trace over Lorentz indices, for example tr(fi, f>) = f"" f3"".

Five points At five points, an analysis of the structure of the superstring correla-
tor arising from the pure spinor prescription (26) reveals that the it is composed of
two sectors: one containing a loop momentum contracting a vectorial combination
of superfields and no OPE singularities, and another with no loop momentum and
with singularities as vertex positions collide multiplying a collection of superfields
with no free vector indices. Combining this information with the BRST transfor-
mation properties of scalar (64) and vectorial building blocks (69) as well as the
monodromy properties of the functions g*) (z,7) and £™, yields the proposal for the
five-point correlator

H5(8,zi) =ViTy5 450" 74
+ V12T3,4,58512) +(243,4,5)
+ViThasesy +(2,32,3,4,5).

This is BRST invariant up to total worldsheet derivatives since

05(0,2) I5(0) = =V iVaTs 45((0 - ka) + S21g(211) + S23g(213) + S24g§a) + stggls))

0
= —V1V2T3,4,58—Z2f5 (), (75)

where %5 () is the Koba-Nielsen factor (57).
The correlator (74) is also homology invariant up to BRST-exact terms, around
both A and B cycles as a function of ¢ and z;. In other words, .#5(¢,z;) is an example

of a generalized elliptic integrand [63]. To see this note that /" and gg?) are single-
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valued around A cycles while (" — (" —27ik’" and gl(}) — —27i as z; is moved
around the B cycle (with T — 74 1). That is, under the action of the monodromy

operator (62) we get
DA () = (k’{‘Vl T a5+ VieTas+2 ¢ 3,4,5]) (76)
+Q (k'z"Vl T 45+ VaTas+ Vilsas+3 < 4,5]) +(243,4,5),

which can be shown to be BRST-exact [62] as it is BRST closed and a local five-
point expression.

Six points Similar considerations of the zero-mode structure from the pure spinor
prescription together with BRST and homology invariance were used to determine
the six-point correlator at genus one in [64]. The result can be written as*

1
Ho(l,zi) = EVI Tz’?’t47576 301%3747576 7

+ViaT3y 562153456+ (242 3,4,5,6)

+ViTHh 456213456+ (2,3(2,3,4,5,6)

+Vi3Ta 562923456+ VizoTu 56232456+ (2,3]2,3,4,5,6)
+ViT34562123456+ VT3 5621 24356+ (2,3,4(2,3,4,5,6)
+ [(Vi2T3a5.6 Z12.34,5.6 + €yc(2,3,4)) + (2,3,4/2,3,4,5,6)]

+ [(Vl T5 34,5621 2,34,56 + CyC(3,4,5)) +2+ 3,4,5,6)} ,

where the shorthand for the worldsheet functions are
2123456 = gilz)g%) +g§22> —|—g%> —g%)a (78)
2123456 = gglz)ggt) —i—g%) "’ggt) - gﬁ) - gg) )
gD @)y @O L3 a5 6
12,3456 81 + (K —KiNgiy + [K3 (815 — g3 ) + (3 ¢+ 4,5,6)] ,
F 456 = L0+ (KRS + KRS )81 +(1,211,2,3,4,5,6)]

After a lenghty calculation, the correlator (77) was shown to be homology invariant
up to vanishing BRST-exact terms therefore constituting a six-point example of a
generalized elliptic integrand. The analysis of BRST invariance is more subtle as
the six-point open-string correlator at genus one is anomalous before summing over
the different worldsheet topologies including the Mobius strip [49, 50]. Since gauge
invariance is reflected on BRST invariance, to study anomalous correlators the con-
cept of BRST pseudo invariance was introduced in [70]. The idea is that the BRST
variation of pseudo-invariant superfields generate anomalous superfields

4 As discussed in [64], there is a beautiful Lie-polynomial compact representation of higher-point
genus-one correlators which reveals a common structure with genus zero correlators and eluci-
dates the combinatorics of (77). However, as the notation requires concepts such as the decreasing
Lyndon factorization of words and Lie polynomials [73] we chose to omit it here for brevity.
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1
YapcpE= 3 (AY"Wa) (LY W) (XYW ) (WD YounpWE) (79

generalizing the pure-spinor superspace expression found in the six-point anomaly
analysis of [28], (AY"Wa)(AY"W3)(AYPW4)(WsYunpWs), with parity-odd compo-
nent expansion

1
(AP W) AV Ws) AP W) Wsng W) = = €16 "2, Fi (80)
This is captured by the correlator (77) as its BRST variation, after discarding total
worldsheet derivatives, is given by

0
0K5(L,zi) I6(0) = —2miViYo3 4565

=~ log A4(0). @1)

Thus, the BRST variation is a boundary term in moduli space [37] and vanishes
due to the anomaly cancellation effect of summing over the different worldsheet
topologies when the gauge group is SO(32) [49, 50].

Seven points A seven-point open-string correlator at genus one was also obtained
in [64] and can be written using various kinds of generalized elliptic integrands E -
discussed at length in [63]

1

H(lz) = ViTsT GEN (82)
1
T3 ViT334 5676 3 4567+ (2,312,3,4,5,6,7)

ViT334567E 034,567 T V11243 5.6 7E 1043 5, 67) +1(2,3,42,3,4,5,6,7)
V1133 45.6.7E1 123 45 67+CYC(27374)} (6,7(2,3,4,5,6,7)

1 T034.56.7E1 234,567 + V1T243.56 1E 1243 56,7 + €y<(5,6,7)] +(2,3,4[2,3,4,5,6,7)

+[
+[
+ [ViTa345,67E1 2345 6,7 + perm(3,4,5)] + (2,3,4,52,3,4,5,6,7)
+[v
+[

ViT23 4567E1(23.45,67 + €y¢(4,5,6)] + (3 <+ 4,5,6,7)
—Vi334567E ppasert (24 3,4,5,6,7)
~Vidnus67E1 234,567+ (2,312,3,4,5,6,7)
— VihpaserEipaaser +cye(2,3,4)] +(2,3,42,3,4,5,6,7).

This was shown to be BRST (pseudo) invariant and also homology invariant up to
BRST-exact terms and total derivatives in the worldsheet and in moduli space.
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2.3.3 One-loop SYM integrands from the cohomology of pure spinor
superspace

Another application of the pure spinor formalism and related ideas resulted in ex-
pressions for the 1-loop integrands of ten-dimensional SYM theory [65]. The idea
is to use the zero-mode structure suggested by the pure spinor prescription, i.e.,
after removing non-zero modes via OPEs leading to multiparticle superfields, to
directly propose SYM 1-loop integrands A(1,2,...,n|¢) governing the integrated
single-trace amplitude via

- dPe

A(1,2,3,...,n)=/W(A(l,2,3,...,n|€)>. (83)

More precisely, the 1-loop integrands are expanded in terms of cubic graphs I;

N;i(£)
A(L2,3,...n[0) =)y ——————, 84
( 0= L P ®

where the sum is over all 1-loop cubic graphs from boxes to n-gons, excluding
triangles, bubbles and tadpoles [30]. Note that the superspace numerators N;(¢) and
the propagators Py ;(¢) not only depend on the external kinematics but also on the
loop momentum £. In proposing the integrand (84), one respects the supersymmetry
constraint that the numerators of a p-gon diagram contain at most p —4 powers of /.
Furthermore, it is not difficult to be convinced that overall BRST invariance of the
integrand can be achieved only if each term of QON;(¢) has a factor of P ;(¢) with
k=1,2,...,n. Schematically,

ONi(0) =Y Pei(...), (85)

for some subset of k with the ellipsis representing combinations of (multiparticle)
superfields. Integrands up to six points were found in [65] following these lines.

Four point integrand The integrand of the color-ordered amplitude is expressed in
terms of a single box with a BRST-invariant numerator:

2 3

_ ViTh3.4
C(0—ky)> (£ —k12)> (£ — ki23)*

A

1 4

This integrand is manifestly BRST invariant using (66) and agrees with the result
obtained by Green, Brink and Schwarz [57] from the field-theory limit of string
theory.

Five point integrand The integrand of the SYM five-point one-loop amplitude is
expanded in terms of five boxes and one pentagon:
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3

3 1
2 4
A(1,2,3,4,5/0) = + eyclic(12345) + ﬁ (87)
92— 1 \5 17 7 \5

1
= Abox(luzu 37475) +Apent(172737475|€)
with the corresponding pure spinor superspace expressions given by

VioT3 45

Apox(1,2,3,4,3) = (ki 4+ k)22 (0 — k12)? (€ — k123)? (€ — k1234)? (59)
" ViTzas
(ko + k3)202 (€ — k1) (£ — k123)% (£ — k1234)?
n ViTr 345
(k3 +ka)202(0 — k1)2 (£ — k12)2 (€ — k1234)?
n ViT2 3,45
(ks + ks) 202 (0 — k1)? (€ — k12)? (£ — k123)?
n V51153 4
(ki 4 ks) (£ — k1) (0 — k12)? (£ — k123)* (£ — k1234)2
Nisas(0)
Apen(1,2,3,4,310) = (0 —Fkp)* (€~ k12‘)2(’f’— k123)? (£ — k1234)* )
and pentagon numerator
N 345 (D) = LaVi TS 45+ % [ViaTs.45+ (2 < 3,4,5)] (90)

1
+ 3 ViThas+(2,312,3,4,5)].

To see that this integrand is BRST invariant note that the BRST variation of the local
pentagon numerator satisfies the criterion of canceling pentagon propagators as

1
QN1(\52),3,4,5 () = 5ViVaTs a5 (0= ki2)* = (0= k)?] oD
1
+ §V1V3T2,4,5 [(£—kin3)* = (¢ = k12)?]

1
+ §V1V4T2,3,5 [(¢— kio3a)* — (£ — k123)2}

1
+ §V1V5T2,3,4 (02 — (€ — k1234)*]
implies that QApenc(1,2,3,4,5|¢) becomes a sum of boxes of the same type as con-
tained in Apox(1,2,3,4,5). In turn, the BRST variation of the boxes cancels the
external propagators with external momenta k; in (88) rather than the internal prop-
agators with loop momentum. Therefore the BRST variation of QApox(1,2,3,4,5)
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is still a sum of boxes,

OApox(1,2,3,4,5) =

ViVaT3 45 < 1
202(0—k123)? (0 —k1234)> \ (L —ki2)> (0 — k12

ViVaTaus < 1 >
252(4 ki)2(0—kipza)? \ (€ —ki23)?  (L— klz )?
ViVaTh 35 ( 1 >

202(0 —ki)2(0—ki2)? \ (€ —kioza)?  (£— k123 )?

n ViVsTa 34 ( 1 )
20— ki)2(0 —ki2)2 (0 —kio3)2 \ 2 (€—k1234) '

which ultimately cancels the variation of the pentagon (89), leading to an overall
BRST invariant five-point one-loop integrand. This example illustrates the mecha-
nism that the BRST variation of a numerator must be engineered to cancel either
internal or external propagators in order to achieve overall BRST invariance.

It is worth mentioning that the proposal (88) obtained from BRST considerations
alone in 2014 [65] has been derived in 2021 [33] from the field-theory limit of the
Kronecker-Eisenstein coefficient functions appearing in the genus-one chiral corre-
lators derived in 2018 [64] using arguments from BRST and homology invariance.

Six point integrand The six point integrand is composed of 21 boxes, 6 pentagons
and | hexagon

A(1,2,...,6|0) = Apox(1,2,...,6) + Apent(1,2,...,6[) + Apex(1,2,...,6[0), (92)

whose superspace expressions can be found in [65]. A noteworthy feature of the
pure spinor superspace proposal for (92) is that it leads to an anomalous integrated
BRST variation

o
/dDKQA(1,2,3,4,5,6|£) L ViYas4ss, (93)
240
signaling the well-known fact that the ten-dimensional SYM theory is anomalous at
one loop, see [65] for more details.
Note that the six-point one-loop integrand was recently derived in [33] in a pa-
rameterization satisfying the one-loop color-kinematics duality.

2.3.4 Genus two

After the pioneering genus-two calculation with four massless NS states with the
RNS formalism in [40], the pure spinor formalism was used in [23, 22] to extend
the computation to the supersymmetric graviton multiplet (see also [24, 68, 45]
for explicit component expansions and the overall normalization factor). For five
massless closed-string states, the supersymmetric amplitudes were computed in the
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low-energy approximation including their overall normalization in [48] and later
extended to all orders in &’ in [41, 42].

The n-point amplitude prescription (27) gives rise to a chiral amplitude .%,, which
factorizes into a Koba-Nielsen factor (in conventions where s;; = k; - k)

_ 1 l pJ :
fn—exp( = ut! - ;1

k) [Cort Y smEGs) O
20

i<j

and a chiral correlator .%;, (¢!, z;) carrying the dependence on loop momenta, vertex
operator positions and the polarizations and external momenta of the string states.
Since the vertex positions will be integrated over the Riemann surface one is free
to use chiral correlators which differ by total derivatives as representing the same
amplitude under integration by parts (IBP). For instance, the logarithmic derivative
of the Koba-Nielsen factor is a primary example of an IBP generator:

Ory InIs = — (- k) @y (z1) + s12M12 + 5131013 + S1aM14 + 515715 - (95)

BRST invariance The integration of the zero modes of pure spinor fields together
with considerations from group theory to piece together Lorentz-invariant combina-
tions of superfields initially led to the introduction of pure spinor superfield building
blocks with four external states in [24]

1 ' )
Tyapa = o3 Mmpar AV F™ E [F (A3 Wa) + Ff* (W) + (1,2 5 3,4) 96)

Considerations involving the BRST variations of suitable multiparticle superfields
allowed an all-multiplicity generalization of (96) to be found in [69]. Using the
language of (minimal) pure spinor superspace, these generalizations have the form
[69]

1
Ty pcp= a(l?’mnpqu)Fznggq [FE(AysWp) + Fp (AysWe) | + (A,B > C,D)

7
In addition, starting from the five-point correlator there are additional Lorentz scalar
and tensorial building blocks

T\ a5 = AT o345 + A3 T35 T AT T 00 s + W 5 s, (98)
1
Tiopp45 = 3 ((k’fl‘i'k?—kg")Tflz,gM,s + 12345+ T3 0145+ T23,1\4,5) ;

where W{TLZS\ 45 18 designed in a way as to give the desired BRST variation and
symmetry properties to T1’,nz,3\ 4.5» see below. Its explicit form can be found in [69].
The BRST variation of the four-point building block is given by

OTi534=0, 99)
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while the BRST variation of the five-point building blocks are given by

OTi2345 = 512V1Ta 315 — VaT1 345) (100)
OT1213a5 =512V1Ta 3145,
OT\" 3145 = kKiViTa 345+ k3 VaTi 5145+ k5'V3T gja s -

Furthermore, these building blocks satisfy various crucial identities to capture the
correct features of the integrand

Ty Bic.o =Tpaco =Tepaps Tasep+Tscap+Tcapp=0 (101)
T35 =T 23y s (Th3us) = Tasno+Daspist Haspa)
Tiopas = Tiopisas  (Tiopas + Tioass + Tiojsiza) =0
(k3" (T 3145+ Ty 5112) — Tisojas — Doz njas + Taasjia+ Tasapn o) =0
ki"T1r,"2,3\4,5 = Toappas + Daipojas
(kST 314.5) = (Ti51ap2,3 + Tosspan 3+ Taisjap o)
T213a5 — 113145 = T12,3)4,5
(Tsappa+ Tsoupat Tsaanz + Tsappn2) =0

where the identities that hold only in the cohomology have been indicated by the
pure spinor bracket.

Homology invariance The genus two integrands up to five points can be written
in terms of the holomorphic differentials @; and loop momenta ¢}, the prime form
E(zj,zj), and single derivatives of its logarithm d;InE(z;,zj). Note that the prime
form E(z,w) is holomorphic in z and w, odd under z <> w, and has a unique simple
zero at z = w. Both the loop momentum and the prime form are single valued when z
is moved around A; cycles, but they have non-trivial monodromy around a By cycle
[39]

4
E(z+B,w) = —exp(—in.Q” —2m’/ a)1>E(z,w) (102)
Jw
0. InE(z+ Bj,w) = 0;InE(z,w) — 2miay(z)
0;InE(z,w+ B;) = d;InE(z,w) 4+ 2miwy(z)

7= —2mik!

In order to avoid clutter in the formulas below, it is convenient to define the genus-
two propagator as

d
nij = a—zlnE(Zi,Zj). (103)
Basis of holomorphic one-forms At genus two the holomorphic one-forms @y (z;)
are labelled by 7 = 1,2 and modular invariance of the string amplitude suggests that
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they form SL(2) invariant singlets®, where @y (z) is the (1) of SL(2). At four points,
the tensor decomposition (1) ® (1) ® (1) ® (1) =2(0) ®3(2) ® (4) [77] shows that
there are two scalars in the decomposition of a four-fold product of @y (z;). Using
the definition

Aij = e oy (z)ay(z)) (104)

the two-dimensional basis of scalars composed of four holomorphic one-forms can
be taken in a cyclic arrangement of labels:

ApAzg, A3y (105)

A third scalar Aj3A,4 is not independent as the antisymmetrization over three indices
vanish

0=¢e'Vektay(21) 0y (22) 0k (22) 01 (24) — A13Aa = A1pAsy — Agi Az (106)
At five points, the decomposition (1) ® (1) ® (1)@ (1)@ (1) =5(1) ®4(3) @ (5)
shows that there exists a five-dimensional basis of a five-fold product of one-forms.
These can be taken in a cyclic basis [4 ] 10

01(21)A3A45,  O(22)Als1,  @r(23)As5412, (107)
07 (z4)As1423,  @y(z5)A12434.

Four points The massless four-point chiral integrand was obtained using the min-
imal pure spinor formalism in [23] and using the non-minimal formalism in [22].
Luckily, both versions of the formalism imply that the chiral integrand is obtained
purely from the zero modes of pure spinor variables. A short analysis of the zero-
mode structure of the contributing SYM superfields together with a group theory
analysis of SO(10) scalars in pure spinor superspace using a U (5) decomposition of
pure spinors implies [23]

Ky = (T 23.4)A01403 + (T4 12,3)A12434 (108)

where T; j;; is the kinematic factor (96) in the minimal pure spinor formalism and
A;j is defined in (104). It is easy to see that the chiral correlator (108) is BRST
closed using (100). Moreover, it is manifestly single valued as it only depends on
the vertex positions via A;;.

It was shown in [68] via pure spinor BRST cohomology identities that the genus-
two kinematic factor (96) is proportional to the four-point tree amplitude (50):

5 Discussions with Oliver Schlotterer are warmly acknowledged at this point.

6 An algorithm to arrive at this basis uses the two identities AijAu = —AjAyj — AijAy and
0 (z)Ajr = —op(z)Aij — @y(2j)Ari repeatedly until all factors are in cyclic order. It can be
shown that the two identities 0)1(Z1)A24A35 = 7601(15)A12A34 — CO[(Z2)A51A34 + 0)1(Z1)A23A45
and @y(z1)AxsAzs = —y(25)A12431 — 0(22)A344As; as well as their permutations are enough to
rewrite all products of five one-forms in the basis (107).
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(Thpp3a) = s15523A(1,2,3,4). (109)

Five points Several equivalent expressions for the five-point chiral integrand, em-
phasizing different properties, were given in [41]. For instance,

H5(0,z0) = [0, T 34 sAs1 01 (22) Asa +cyel(1,2,3,4,5)] (110)

+ [Tllz Tiop1a,5804A35 + Ty0jap3 5023 A45) + (1,2|1,2,3,4,5)}

+ [7721 (To1j3j4,5A14435 + Ty jaj3 5A13445) + (152|172737475)}

where the notation +(i, j|1,2,3,4,5) means a sum over all ordered choices of i and
j from the set {1,2,3,4,5} for a total of (g) terms.

BRST invariance Using the BRST variation (100) of the building blocks, the BRST
variation of the chiral correlator (110) can be written as
05, z) =V, T5 23,4423 45 (0" ky)or(z1) (111)
+ViTy 345812434 (0 - ky) oy (zs)
+ViTy 345851434 (0 - ky) oy (z2)
+Vi(T 314 58044835 + T 43 5A23A4s) $12712
+ V(T3 014 5834805 + T3 40, sA32Ass) $13M13
+Vi(Ty o3 5843805 + Ty 30,5A424A35) s14714
+Wi (T572\374A53A24 + T573\274A52A34)8157715 +cyce(1,2,3,4,5)

To see that the terms proportional to V) are zero up to a total derivative with respect
to z1, after replacing

AAss (0 k) oy (z5) = —As1 4340 k) @y (22) — AosAsa (U - kr) oy (z1)  (112)
the terms containing the loop momenta simplify to
(ViTs o3 482345 — Vi T 314 5405834 ) (¢ Ky ) oy (1) = (113)
(ViTs 2534423045 — V1T 314, 5A25A34) (512712 + $13M13 + S14M14 + 515715)

where the IBP relation (95) — (¢ -ky) @y (z1) + 512112 +513M13 +514M14 + 51515 =0
has been used. Plugging this into (111), the terms containing s12712 become

s12N2Vi (T2,3\4,5(A24A35 —Ao5A34) + (To 43,5+ T2,5\3,4)A23A45) =0 (114)

where we used the kinematic Jacobi identity 75 435 + T2 534 = —12 34,5 as well
as the worldsheet Jacobi identity AyqA35 — ArsA3q4 — ArzAg5 = 0. The analysis of
the other terms s1;1;; for j = 3,4,5 is similar and the vanishing of the full BRST
variation (111) follows from the cyclic permutations.
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Homology invariance Using the monodromies in (102) one can show that the chiral
correlator (110) is single-valued as a function of ¢; and z;. For instance, moving z;
around the B; cycle and writing the result in terms of the cyclic basis (107) implies
that (110) is single valued around z; provided

(KI'T3y 5112 — T3a2a5 — Taapp.s — Tsaappsa) =0 (115)
(KT'T"™ 3145+ Tiapsios + Tisjaps + Tiogas + Tizas) =0
which can be verified to be true using the identities in (101). Alternatively, their

validity also follows from the fact that these are BRST-closed linear combinations
of local building blocks and that the five-point local cohomology is empty.

2.3.5 Genus three

Four points The chiral correlator for four external massless states was determined
in [46] up to terms that have no singularities on the worldsheet’. It can be written as
Ha(0) = T\ py3lnaWi Aoza + T3y 3 0awa Arsa + T3y o b3 A1 (116)

+ Thg314d234 N2 + T1312aA324 13 + Tiapp3A423 M4

+ 1311144314 M23 + Toa)1 34413 24 + T34)124412 34
1K

where A;jx = €% @y (zi) s (zs) 0k (zx) for I,J,K = 1,2,3 and 7;; is a worldsheet
function depending on the genus-three prime form E(z;,z;)

0
Nij = 8_zilnE(Zi’Z'i)' (117)

The building blocks above depend on non-minimal pure spinor fields. The vectorial
building block is constructed as follows

5
Tioss = Lisup + Lo54y + 551"234 (118)

where SYy3, =S 512)311 +S 522)311 -S (1221(3" and

Siont = 2V V1) Ay on ) Minanas) AV s?) A g pa ) A imsnsps7)
X (A 2MIMIPINS )Y () A3Man2P2ms ) ) () p13MANAPANS ) )
X (W sw?) (A yrs W) (AyPsw)
(119)

5522)32’! =96 (I)/n Y"A) (X’}/ml nipi r) (Iymznzﬂz r) (Iym3n3ﬂ3 r) (Iymwuu r) (zymsnsﬂs r)

7 We note a recent [87] conjecture for the full bosonic correlator obtained from matching its field-
theory limit with the .#” = 8 integrand in a BCJ parameterization.
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( V"lmznzpzmsl)()”/73"14'14174”5/1)
(WIW JAP WA AP W) (AW
= (r) (' r) (REr) Ry r) (Rprr) (Ry )
x( wdffmx (APHR)APTIR)AY W AP W) AY WA

The scalar building block is given by

ljkl_ )L,)/lbL QL’)/jef )L,yghl )L,)/nnp )L,},qrs /'L,J/uv (120)
X (AT B) (AP R) (P ) (A W) (AP We) (A7 W)

The presence of the non-minimal fields Ia,rﬁ in these building blocks leads to
technical challenges that do not exist when dealing with “minimal” pure spinor
superspace expressions. The rg fields can be straightforwardly converted into su-

perspace derivatives Dg but the handling of A is not so immediate. But luckily, as
proven in the appendix of [46], there exists a procedure to convert an arbitrary non-
minimal pure spinor superspace expression containing A A3 pure spinors with
n > 1 into an expression in which the A, are contracted with A% yielding “mini-
mal” pure spinor superspace expressions with (A4)"A3. As the (AL)" factor only
affects the normalization of the zero-mode integration, one can consider these non-
minimal pure spinor superspace expressions more or less in the same footing as
their minimal counterparts. It is worth mentioning that there is a proposal for these
building blocks directly in minimal pure spinor superspace using higher-mass SYM
superfields as [71]

Ti234 = (A1Wi2) AW, DARWE))
Ti334 = (A(I T 34+(M’MW )Ly 3.4) 121
Lyss= %(M”Wq)(MﬂWp) >

where Wj'* represents a local superfield of higher-mass dimension as defined in
[71]; when P =i is a single letter it reduces to W/"* = k"W but when P is a word
there are non-trivial contact-term corrections. The component expansion of these
building blocks is not exactly the same as their non-minimal counterparts but they
yield the same D®R* components as discussed below.

After approximating the Koba-Nielsen factor to one in the low-energy limit and
integrating over the volume of moduli space, the holomorphic square of the inte-
grand

|T12,3,4]?
S12

+ [ T{sal* + (1,2]1,2,3,4) (122)

is proportional to the D°R* interaction of type IIB when expanded in bosonic com-
ponents, regardless of the minimal vs non-minimal representations of the building
blocks. One can show that the low-energy contribution (122) is BRST closed, but
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not the chiral correlator (116). A BRST-closed and single-valued chiral correlator to
all orders in &’ has since been found [76].

It is worth noting that the computations of [46] were done keeping track of the
absolute normalizations coming from the pure spinor prescription with the integra-
tion formulas from [47]. As will be reviewed below, these calculations matched the
predictions to the D°R* type IIB interaction arising from the S-duality considera-
tions of Green and Vanhove [54].

2.4 Verifying S-duality conjectures

The scattering amplitudes computed with pure spinor formalism have provided an
independent check on the S-duality predictions of type IIB interactions.

2.4.1 S-duality and four-point amplitudes

On the one hand, the SL(2,7Z)-duality prediction for the perturbative four-graviton
type IIB effective action in the string frame is given by [51, 52, 53, 54]

- _ 8
Sth= [ax/ g [ReGe ™ +40) + DRI G + 500 (129
48 8
+D"R4(4C329’2¢+8§2C3+?§§e2¢+§§6e4¢)+...],

where the shorthands R*, D*R* and D°R* denote contractions of covariant deriva-
tives D and Riemann curvature tensors R whose precise structure does not affect
the analysis. Factors of e(2¢~2)¢ are associated with the genus-g order in string per-
turbation theory. The key idea of the S-duality analysis was to associate the coef-
ficients of the R* interaction with the zero-modes of non-holomorphic Eisenstein
series E3 (P, @) and those of D*R* with Es)> (@, P), where

E3pp(®,B) =25e 2 445 + - (124)

Es)y (@, ®) = 2se 592 1 §C4€3¢/2+ .

where @ depends on the complex axio-dilaton field @ = Cy +ie 9.

On the other hand, the &’ expansion of perturbative string scattering amplitude
calculations performed with the non-minimal pure spinor formalism with the abso-
lute normalization techniques from [47, 45, 46] for the four-point massless closed
string states are given by

a3 ~ 3 2
M§0> _ (27:)10510(k)(7) K4e*m27rKK(a+2C3+C562+§C3203+"')
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~

MY — (2n)10610(k)(%)3x4(24 -137r)KK(1 n %03 +)
M2 - (2%)1061°(k)(%/)3x4e2’1 (m)l{k (02+305+-)
M = (275)10510(")(067/)31{464/l (21‘5 : 36‘1.5.77r5)KK (03:4:+) (129
where )
0n= (5 ) ha+sls+ i) (126)

are dimensionless symmetric polynomials of Mandelstam invariants s;; = (k; - k;),

e(2872)A is the string genus-g coupling constant, K is the supersymmetric kinematic
factor®
K = s12553A5™(1,2,3,4) (127)

and « is the normalization of the vertex operators fixed to k> = et /o 2 by unitar-
ity [48].

It is easy to see the one-to-one correspondence of the genus- and o'-orders in the
amplitudes (125) with the curvature couplings in the action (123)

28294 1y (28D KR, . (128)

Therefore, matching the ratio (genus one)/(genus zero) of the R* interactions in the
effective action with the corresponding ratio of the amplitudes

4LRY 0n? (KK)/(2*3m) & (129)
286 29RY 3G (KR)amlze 2+~ 26312¢;
relates the coupling constants ¢? and e,
et =274 (130)

D*R* interaction at genus two One can now compare the predicted D*R* interac-

tion terms from the type IIB effective action (123) with the first principles string

calculations. Taking the genus-two/genus-zero ratio of the KK o, term from the am-
plitudes gives

A 24 etd

213357485 3355

(131)

8 For bosonic external states, note that —23Khere = 0503 from [43] and that Khere ghere — %(0)

from [48]. In addition, the amplitudes in (125) were computed using the tree-level normalization
convention encoded by R? = &> /2> used in [48] where R is a normalization parameter appearing
in the zero-mode measures [dr] and [ds']. In [46] the normalization R* = /2/(2'°r) was chosen,
such that the genus g amplitudes A}*%® of [46] are related by x'~8A 3% = M3 to the amplitudes

M&}SO“ of [48] with x = /221076 after considering that K1308K1308 = 26,}{,2(0). In (127) the bracket
notation indicates a trace over the vector indices of the field strength F/"" = k"e}! — kel
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where we used (130) in the right-hand side. This is the same ratio of the D*R*
terms in (123) at the corresponding loop order: 8&4¢*? /(68s) = 2n*e*? /(3%5¢5) as
L=n%/(2-32.5).

DPR* interaction at genus three Similarly, the ratio (genus three) /(genus one) cor-
rection KK o3 matches perfectly with the S-duality result in (123). The ratio of the
amplitudes is given by e**/(2!1.3%.5.774¢3) while in the effective action it is
given by se*? /(94,&3), and these two numbers match after using the conversion
(130) and {s = n%/(3%-5-7).

DPR* interaction at genus two The coefficient of KKo3 at genus-two was com-
puted in [44] and allowed the comparison between the string scattering ampli-
tude result at genus two with the S-duality prediction in the action (123). The
(genus two)/(genus one) ratio of the correction KK o3 is given by e?* /(2°57283)
which matches the S-duality (genus two)/(genus one) ratio of the D®R* interaction,
given by 6{,¢%? /(583) after using the conversion (130) and {, = 72/6.

2.4.2 S-duality and five-point amplitudes

The pure spinor formalism also allowed to check the S-duality proposals for five
graviton interactions as well as four gravitons and one dilaton. For five gravitons
the S-duality effective action contains the same ratios appearing in the four graviton
action (123); the extension is straightforward with four-curvature corrections D*R*
followed by a tail of operators D*(K~P)R*+P although there might be novel D*R>>
couplings without a four-field counterpart such as the DR’ interaction at genus one
[55]. These S-duality tails such as (D*R* + D?R) are confirmed by the data of the

genus-g amplitudes M§g> at five points’ [48]
MgO) _ (‘; ) 5 72&(27’[)2%( ) (132)
5 ) :
) (a’ ) K (o)‘ 1 :five gravitons
M; == )= - X
|“B 2724375 g —% : four gravitons, one dilaton
!

o
M(z |llB - (7

) K3t of 1 five gravitons
2933572 s —% : four gravitons, one dilaton

(0)

where the tree-level factor 75 is given by

%(>_A54SO [1+2C3( )M3+2C5( I)M5+2C3( )MZ"‘ﬁ( )}'A45,
(133)

° To avoid cluttering, we omit the universal factor of (27r)'°8'%(k) from the right-hand side of
(132).
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where A5T4 and A4s are two-component vectors of SYM tree-amplitudes

~ - AYM(1727375,4) - AYM(1,2,3,4,5)
A54:(AYM(1737275,4) c As= 1 3045)) 13

So denotes the KLT matrix and the 2 x 2 matrices M, were introduced in [72].

Since the calculations in the pure spinor formalism are supersymmetric and done
exploiting pure spinor superspace, the scattering of any state in the graviton super-
multiplet can be systematically obtained once the superspace expression is calcu-
lated. As can be seen in (132), the ratios of the string amplitudes depend on the
R-symmetry charges of the external type IIB states, as trading one graviton for a
dilaton gives the additional factors of —% or —%.

These numbers can be explained by the following argument [56]: scattering pro-
cesses which violate the R-symmetry of type IIB supergravity are associated with
operators which transform with modular weight under S-duality, therefore by modu-
lar invariance of the type IIB action, they must be accompanied by modular forms of
opposite weights to preserve the modular invariance of the type IIB effective action.
These modular forms can be generated as DE; where D is the modular covariant
derivative such that De??® = q- €99 and E; a Eisenstein series. For example,

DEs)5(®,B) = (— %)2&_:353‘1’/% (%)4§2e¢/z+ . (135)
D5 o(,8) = (- §)2C5e75¢/2+ (%) §C4e3¢/2+ -

Thus the ratio between tree-level and higher-genus contributions is deformed by by
—% and —% in cases of E3 5 and Ejs ), suggesting that the type IIB effective action
contains the terms

[ dxy=g[0R (3¢ 2 126 + ODRA(=SLse 2 +4Le*)] (136

in the string frame'? and explaining the relative coefficients in the scattering ampli-
tudes (132).
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