
Les vertus des défauts:
The scientific works of the late Mr Maurice Kleman analysed, discussed and

placed in historical context, with particular stress on dislocation, disclination

and other manner of local material disbehaviour

Timothy J. Sluckin,

School of Mathematical Sciences, University of Southampton
Highfield, Southampton SO17 1BJ, U.K. ∗

and

Dipartimento di Fisica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Submitted  27/05/2022
Accepted    17/08/2022

Abstract

In memory of Maurice Kleman: Over the last half century, Maurice Kleman was the High
Priest of the science of defects in condensed matter. I discuss some aspects of the history
of dislocations, disclinations, and defects in liquid crystals, together with some of Maurice’s
other work. In so doing, I combine intellectual strands coming from pure and applied math-
ematics, physics, material science, and biology.

Key Words: Liquid Crystals; Kleman; Defects; Disclination; Dislocation; Topology; Homotopy.
Orcid ID: 0000-0002-9163-0061: No. of words: 40,791

∗permanent address

1

To be published in Liquid Crystals Reviews 2022
Link to published paper DOI: 10.1080/21680396.2022.2115417



Contents

1 Introduction 3

2 Biography 7

3 Prolegomena: Defects before 1960 10
3.1 Dislocations and distorsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Distorsions and dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Dislocation physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5 Final remarks on dislocations . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Sir Charles Frank and disclinations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Career 25
4.1 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Escape in the third dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Focal Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Dynamic Phenomena and Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Non-linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3 Instabilities and Phase Shifts . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Aperiodic solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Amorphous solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.2 Quasi-crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Reviews and Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 More about Topology 44
5.1 Parallel work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 A glance in the rear mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Subsequent Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Defects in Biology 54
6.1 Biological preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 D’Arcy Thompson and biological symmetry . . . . . . . . . . . . . . . . . . . . . 55
6.3 Yves Bouligand and frozen liquid crystalline structure . . . . . . . . . . . . . . . 57
6.4 Defects, Active Matter and Cell Biology . . . . . . . . . . . . . . . . . . . . . . . 59

7 Afterword 64

Notes and Acknowledgments 65
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 67

2



1 Introduction

Crystals, as is now even taught to schoolchildren, consist – mainly – of arrays of regularly spaced
atoms. This hypothesis was confirmed by classic X-ray scattering experiments by von Laue and
collaborators [1,2] and by the Braggs [3] in the period 1910-1915. Many crystalline properties –
acoustic, electrical, thermal – depend, as one might expect, on the fact that the arrays are indeed
regular. Early theoreticians of the solid state – Einstein [4], Born and von Kàrmàn [5], Debye [6],
Felix Bloch [7] – were much encouraged by their success in reconciling theory and experiment.
But some other crystalline properties, and in particular the ability of a crystal to withstand
aggressive forces which seek to crush it, damage it or tear it apart, are not so amenable. In
order to understand these properties, it turns out to be necessary to take account of the caveat
“mainly” in the first sentence of this paragraph. Dislocations are defects – irregularities – in
the regular arrays. Their intellectual history will be described in more detail below. The key
progress here dates from the period 1930-1960.

Liquid crystals, are not, as we seem obliged to explain perennially to passing journalists and
beginning graduate students, crystals at all. In the 1890s and early 1900s, the founding fathers,
and preeminently Otto Lehmann (1855-1922), took evidence for anisotropy as evidence for crys-
tallinity at a time when the “lattice theory of solids” (as it was then known, with what appears
to us now as archaic charm) was merely a theory and not yet established fact. After much pro-
fessional debate and not a little professional antagonism, the liquid crystals were not renamed as
mesomorphic materials, even though everyone agreed that this sobriquet would have conformed
more closely to scientific verity. But despite their uncrystalline status, the liquid crystals re-
tained some regularities. Their primary optical signatures, however, were not these regularities,
but rather the irregularities. Irregularities which were recognised as defects, and defects which
carried many analogies to the defects in solids, defects which in some cases came to be known as
disclinations by analogy with the much studied solid dislocations mentioned above.

It was Maurice Kleman, who died on January 29 2021, who converted the investigation of defects
in various materials, and particularly in liquid crystals, from a set of accidental and unconnected
studies – albeit extremly interesting studies – into a professional and coherent science of defects.
His distinguished career lasted more than half a century, with at least one article in the press at
the time of his death. In this article I celebrate his scientific contribution by giving some account
of his personal background, briefly reviewing some of the highlights of his own work, and also,
perhaps primarily, by trying to place his work in a larger scientific context. A particular feature
of this context is the wide set of scientific fields in which the concept of defect either makes
a significant contribution or is required in order to construct a conceptual framework. These
fields range from the pure mathematical algebraic topology, through standard ideas of partial
differential equations in applied mathematics, continuum mechanics in physics, material science
and metallurgy, as well as physical chemistry and finally as we shall see, rather more surprisingly,
into various aspects of biology.

We start by quoting verbatim an extract from the abstract of a review of the field written by
Maurice in 1989 [8]:

Defects are local breakings of symmetry in an ordered medium. The physics of defects
has long been reduced to the study of dislocations in solids, and to the main physical phe-
nomena they are responsible for, like plastic deformation. Dislocations break translational
symmetries. Disclinations break rotational symmetries and are the basic defects of media
with continuous symmetries, like liquid crystals. In this review, it is stressed how their
study has contributed to a renewal of the physics of defects . . .
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To summarise, in order that there be defects, there must first be (global) broken symmetry, and
then, the broken symmetry must itself (locally) be broken. In the context of condensed matter
the symmetry of free space is broken because the temperature has been lowered. Analogous
physics appears, as we shall see below, in cosmology and fundamental particle physics, albeit
usually with a different group structure. And then because the symmetry is locally broken, the
manner of the breaking can change from place to place. Under suitable circumstances, this can
lead to defects, which can be points, lines, or surfaces. Like knots in a rope, exactly like knots in
a rope (as again we shall see), they cannot be untied, without moving the offending object out
of the spatial domain of interest.

Our narrative will introduce a number of dramatis personae, whose historical influence on Maurice
and his work will become clear in the course of this essay. Jacques Friedel (1921-2014) (Fig.1,
left), in his time President of the Académie des Sciences, was Maurice’s Ph.D supervisor. Friedel
and he remained close throughout Maurice’s career. Maurice’s first paper on liquid crystals
(although subsequent to his Ph.D) was a collaboration with Friedel [9]; it deals with dislocation
lines in cholesteric liquid crystals, and is reviewed elsewhere in this volume. It is perhaps not
as often read as it ought to be, partly because it is written in French just as the dominance of
English was beginning to overcome the power of even other world languages. Their collaborative
review article “Disclinations, dislocations, and continuous defects: A reappraisal” appeared (this
time in English!) in the prestigious Reviews of Modern Physics as late as 2008 (when Maurice
was 74 years old, and Friedel was 87!).

Friedel is regarded as a major figure in material science, and was showered with honours and
prizes both at home and abroad. His 1956 textbook on dislocations [10], translated into English
in 1964 [11] was immensely influential. He is also of interest in a more general cultural context.
His partly historical, partly autobiographical Graine de Mandarin [12] is a fascinating memoir
on his life and those of some of his illustrious forebears (see also e.g. [13]). It was this cultural
hinterland which motivated him to encourage Maurice also to chronicle his own life in science [14].

 

 
 
 
Frank, F C  RA'46, RF'48, Rdr'51, Prof '54, HoD '69-76; Dean '61-64; FRS ’54; 
 1946-76  Kt '77. Dislocations; liquid xtls; geophys, etc.  6.3.11-5.4.98      (W) 
 

55 

Figure 1: Left: Jacques Friedel (left) and Maurice Kleman (right), 2007. [Courtesy of Kleman
family.] Right: F.C. (from 1977 Sir Charles) Frank. [Photograph by R.A. Philpott. Courtesy of
University of Bristol School of Physics; c©University of Bristol].

Friedel learned his craft as a solid state physics PhD student in Bristol, England, which in
the immediate postwar period had become a major centre in dislocation research. The leading
figure in this school was F.C.(Charles) Frank (1911-98) (Fig.1, right). It was Frank who in 1958
at a Faraday Discussion meeting in Leeds, UK, launched the rebirth in the interest in liquid
crystals which led directly to our current view. In this paper he outlined problems in nematic
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liquid crystals, used methods derived from elasticity theory to derive equivalent “Frank” elastic
constants, and introduced the term “disinclination” to describe the elementary nematic liquid
crystal defect line. Frank and Maurice met for the first time in a conference in Montpelier
in 1969, and on numerous occasions subsequently, including at conferences jointly organised.
Although they have no papers in common, a measure of Frank’s huge intellectual influence on
Maurice is that his autobiography [14] mentions Frank 86 times in 232 pages, thus more than
once in every 3 pages.

Edmond Friedel (1895-1972) (Fig. 2, left) was the father of Jacques Friedel, and Director of the
École des Mines when Maurice was studying there in the late 1950s (I postpone a more detailed
biography to a later section). It was Edmond, when faced with an enthusiastic student who
had nevertheless somehow lost his academic way, who suggested that Maurice turn to his son
Jacques for some professional guidance: a suggestion which in the end was professionally the
foundation of his career. Of further interest in the context of liquid crystals, however, is that
it was Edmond who, in 1923 in the private laboratory of Maurice de Broglie (older brother of
the quantum pioneer Louis of wavelength fame), carried out the X-ray scattering experimentum
crucis on a smectic liquid crystal sample confirming its lamellar status [15,16].

Figure 2: Left: Edmond Friedel. Centre: Georges Friedel. [Both courtesy of Friedel family];
Right: Otto Lehmann. [Courtesy of Deutsche Bunsen Gesellschaft]

The Friedel liquid crystal lineage, however, extends a generation further back, to Edmond’s father
Georges Friedel (1866-1933)(Fig. 2, centre). We note in passing that as a scientific family, the
family Friedel rivals the Huxleys and Darwins in the UK in the eminence of its scions. Not only
was Georges’ father the distinguished chemist Charles Friedel (he of the Friedel-Crafts reaction),
but according to that reliable purveyor of information, the French edition of Wikipedia, Jacques
Friedel’s direct ancestry extends as far as the eminent Swiss mathematician Johann Bernoulli
(1667-1748).

It is to Georges Friedel that we owe the terms “nematic”,“smectic”,“cholesteric” and “mesomor-
phic”. The last of these he advocated as “more correct” terminology, which should replace the “liq-
uid crystals” so-named by his German rival Otto Lehmann (1855-1922) (Fig. 2, right). Lehmann
was the grand pioneer of liquid crystals (see e.g. [16, 18]); his monograph of 1904 includes an
enormous number of photographs and diagrams, both of his apparatus and of his observations.
We show in Fig. 3 some representative photographs which show what we now understand to
be defects in the nematic orienation field (“disclinations”) and the focal conic structures which
appear in the smectic liquid crystals. Of course, at the time, no-one was quite sure whether the
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Figure 3: Photographs of liquid crystalline defects appearing in Otto Lehmann’s famous 1904
monograph on liquid crystals [17]. Left: disclination lines in nematic liquid crystals (in
Lehmann’s classification, flüssige Kristalle). In Friedel’s classification these were structures à
fils. Centre: The well-known Schlieren texture (so labelled by Ludwig Gatterman as early as
1890), labelled by Friedel as structures à noyaux. The Kernpunkten (hard points) in the centre
of the brushes remain unaltered when the crossed polars are rotated. Right: Conic structures
appearing in Lehmann’s fliessende Kristalle, later identified by Georges Friedel as conic sections
associated with grain boundaries of differently oriented smectics.

structures were objects (i.e. like a colloidal aggregate, for example) or patterns, or whether they
were situated in the bulk of the material or somehow attached to the sample surface.

Figure 4: Extracts from Georges Friedel’s magisterial 1922 paper Les états mésomorphes de la
matière [19]. Left: photograph of focal conic sections. Centre, Right: Drawings designed to
show that non-uniform smectic domains inevitably gave rise to defect lines in the form of conic
sections at which there would be strong discontinuities in the extraordinary refractive index, and
hence light scattering.

Georges Friedel authored a 1922 review article [19] which stamped its mark on the field in such
a solid fashion that it remains one of the most cited liquid crystal papers of all time, rivalled in
the present day only by standard textbooks such as that by Pierre-Gilles de Gennes [20]. This
paper labelled the liquid crystal phases so convincingly that within a decade even his opponents
adopted his nomenclature. His geometric arguments were persuasive that the conical structures
appearing in a microscopic view of the smectic liquid crystals were large-scale signatures of a
layered structure: an imperfect layered structure, to be sure, but locally layered nevertheless. We
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show in Fig.4 his photographs and the geometric reasoning which led to this conclusion. The conic
section texture seemed very common, implying an equal frequency of grossly imperfect samples.
Thus one might expect that it would be a non-trivial task to prepare a sample sufficiently well-
ordered that the layered structure would appear clearly in the X-ray scattering signature. It was
therefore somewhat of a surprise to Georges and Edmond Friedel that this turned out not to be
the case [21].

The point here is merely that the defects so carefully studied by Maurice can be found in the very
earliest observations on liquid crystals in the optical microscope. Indeed they were used, albeit
in somewhat haphazard fashion, to establish the key properties of those phases. But somehow
they were not thought of as objects worthy of study in and of themselves. It was only fruitful to
return to the defects themselves, once one was sure that the structures of the phases themselves
were well-established and well-understood.

The structure of this essay is as follows. In section 2 we relate some brief biographical details
of Maurice’s life. In section 3, we give a historical discussion of the development of the ideas of
dislocation and disclination in the first half of the 20th century. In section 4 we present some
of the academic highlights of Maurice’s career. In section 5 we expand on a particular aspect
of Maurice’s career, that of the introduction of ideas from topology to the analysis of defects in
condensed matter physics. In this section we trace some of the subsequent developments in this
area.

In section 6 we glance at developments over the last two decades concerning the role and function
of defects in biological systems. These were somewhat unforeseen developments mainly occurring
after Maurice’s main body of work. However, they do follow-up and extend the work of Maurice’s
close colleague Yves Bouligand. Moreover they serve to underline the broad academic extent,
and at the same time coherent unity, of the set of interests that encapsulate Maurice’s career.

The main conclusion we can already state here, and it will echo throughout this article. That
conclusion is of Maurice’s “life well-lived”. But to say this will not require a separate section.
Instead we finish with an Afterword, focussing on the distinguished Early Modern philosopher
Benedict Spinoza – one of Maurice’s amateur, but nevertheless profound, interests.

2 Biography

Maurice Kleman seemed to outsiders typically French. However, his almost parodic Maurice
Chevalier accent in English – albeit hidden by a fine style when it came to the written word
– belied his origins. For both his parents were born in Poland, speaking Yiddish as their first
language. His father Zelman (transformed into Jules once in France) was born in 1903, while
his mother Shara – frenchified into Simone (née Goldberg) – was born in Czȩstochowa in 1910.
Both parents came to France as children with families who were seeking a better life in a more
tolerant society.

Jules and Simone were married in Paris in 1930, where Maurice, their first-born, first saw the
light of day on August 11 1934. Both parents were in the rag trade. Later Jules became a
celebrity tailor, Jules Kleyman. Sometimes the surname was Klajman or Kleimann; spellings
differ. The “Kléman/Kleman” version dates only from Jules’s naturalisation in 1952 [22].

The family, mother, father, Maurice and his younger brother Roger, lived in a large apartment
above the shop, opposite the famous Hôtel Drouot auction house in the 9th arrondissement (his
younger sister France was born after the War). Maurice was brought up speaking only French,
but the language of his parents’ generation remained almost exclusively Yiddish. One of his
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enduring sorrows was that although this language always seemed familiar, he was never happy
in it. The family was not particularly religious; in adulthood Maurice, while deeply conscious of
his cultural background, regarded himself as completely secular.

When Maurice was only five years old, the family’s world was suddenly upended by the Nazi
invasion of France and occupation of Paris in May 1940. There followed a period of extreme
peripatetism. The family fled to that part of France that remained, at least until November
1942, unoccupied. They were endeavouring, successfully as it turned out, to avoid the fate of
many co-ethnics who were deported to Concentration Camps in the east. The last part of the war
was spent, lying low, in the small village of Le Chambon-sur-Lignon in the mountainous central
region of France, between Le Puy and Valence. In 1990 this village, which had been primarily
Protestant – and hence in a French context anti-Establishment – since the 17th century, was
recognised by Yad Vashem in Jerusalem as collectively “Righteous among Nations”. During the
Nazi period, in addition to the Kleman family, this commune had sheltered many thousands of
fugitive Jews.

Figure 5: Left: Maurice aged about 11. Centre: Maurice aged about 18, with his childhood
sweatheart (and future wife) Jacqueline Blioch. Right: Maurice in 1954, dressed in his Polytech-
nicien uniform. Courtesy of the Kleman family.

At the end of the war the family returned to Paris. At the lycée (High School), which he entered
more or less on his return to Paris, he studied Latin, Greek, History and the Exact Sciences.
He claimed that it was not German culture, nor yet the recent bad experiences of Germans, but
rather the Gothic script, that put him off studying the German language. Quite evenhandedly,
he disappointed the rabbi who had been entrusted with training him for his Bar Mitzvah by
preferring the scholarship of Homer and Virgil to that of the Hebrew prophets. His successful
school academic career was crowned by the prépas. This is an extremely academically demanding
two-year targetted preparation period for the elite Grandes Écoles. Maurice successfully navi-
gated this hurdle and entered the École Polytechnique in September 1954, aged just 20 (see Fig.
5 for a photograph of Maurice in his Polyechnicien uniform).

The Grandes Écoles carry both social status and academic power analogous to that of Ivy League
universities in the US or Oxbridge in the UK. Traditionally the future leadership of the French
institutions, whether in the private or the public sector, are recruited from their graduates. The
École Polytechnique (or simply l’X ) was founded by the celebrated mathematician Gaspard
Monge (1746-1818), and is a military school, explaining the uniform in Fig.5. It specialised in
engineering and science. There are so many distinguished graduates that we can mention here
but a few, such as Sadi Carnot (1796-1832, X1812) of thermodynamics, Augustin Cauchy (1789-
1857, X1805) of continuum mechanics and residues, or Henri Poincaré (1854-1912, X1873), of
well, almost everything really. Traditionally the date after the X marks the year of admission.
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Those who studied in it carried an obligation to provide several years of public service before
embarking on an independent career.

Having graduated from l’X in 1956, Maurice would have liked to proceed to a research career,
although at that time he had little idea of exactly what he wanted to do in research. But first he
had to fulfil his duties to the state, which involved in his case an attachment with the Corps des
Mines, a kind of state engineering service with a mining and mineralological orientation. This
was an exclusive posting, for which a high classification in the final examinations at l’X was
required. Attendance at l’X counted for two out of three years of required military service at the
time. The third he spent in the Air Force; as the war in Algeria was raging at the time, he was
lucky to avoid being put into the firing line. He then spent a year in the École des Mines (School
of Mines) in Paris, actually a rather high status and powered school, taking more specialised
courses.

The Director of the School of Mines was Edmond Friedel (X1914), scion of the famous French
scientific family. This was the first time that Maurice was to meet a Friedel. As we have already
noted, sensing some disaffection in this student, Edmond Friedel directed Maurice toward his
son Jacques Friedel (X1942). Their later interaction was probably to be the Maurice’s most
important scientific influence. He wished to proceed directly to a research post. Unfortunately,
high as it had been, his ranking at the Polytechnique had not been quite high enough to be
permitted to follow this route (two higher-ranking students had been placed above him on the
list). However, the Deputy Director of the School placed Maurice on a two-year waiting list. One
year was spent carrying out X-ray analysis of rocks. In 1958 de Gaulle had just reassumed office
as President of France, but not yet abandoned the idea of Algérie française. A by-product of this
vain pursuit was that the next year found Maurice at the Algerian Bureau of Mining Research
close to Algiers.

A special scheme allowed members of the Corps des Mines to fulfil their obligatory duties by
studying toward a Ph.D. Embarking within this scheme, and after some hesitation and false
starts, Maurice enrolled as a graduate student at IRSID (Institut de recherche de la sidérurgie,
Steel industry research institute) at Saint-Germain-en-Laye, about 25km to the north-west of
Paris. There he was to stay between 1961 and 1967, as a student of Jacques Friedel. His work
uncharacteristically in the context of contemporary hyperspecialisation, involved both theory
and experiment. He defended his thesis Contribution á l’étude des propriétés des lames minces
ferromagnétiques et à la théorie de la magnétostriction (Contribution to the study of the prop-
erties of thin ferromagnetic films and to the theory of magnetostriction) in June 1967. It is of
relevance to recall that Friedel had himself finished his PhD in Bristol in 1952, and thus knew
the British “dislocation community” well.

Following his PhD, Friedel arranged for Maurice to spend a year in Peter Hirsch’s laboratory
(the Department of Metallurgy) in Oxford, where he continued to work on the interactions be-
tween magnetism and defects in solids. A year later, he was able to exchange his civil service
Mining Engineer position for a much less lucrative post as a CNRS (the national research organ-
isation) researcher at the Laboratoire de physique des solides (LPS; Solid state physics lab) at
the Université Paris-Sud in Orsay, just south of Paris. He was 34 years old, and it was his first
permanent academic post.

We postpone a more detailed discussion of Maurice’s work, other than to note that academically
the next few years were extremely fruitful for him. At Orsay he enjoyed a successful career,
including directing the laboratory between 1982 and 1984. He left LPS in 1993, moving to the
Laboratoire de Minéralogie et de Cristallographie de Paris (LMCP), where he remained until he
retired in 1999 and beyond.

One measure of the success of Maurice’s career were the prizes and distinctions awarded to him.
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These included the Silver medal of CNRS (1975), the Jean Ricard Prize of the French Phys-
ical Society (1980), and the Grand prix du Commissariat à l’énergie atomique (Académie des
Sciences) (2007). He felt particularly honoured in 2018 by his election, as an international hon-
orary member, to AAAS (Anerican Academy of Arts and Sciences), the distinguished American
learned society dating back almost to colonial times.

My impression was that he appreciated the attention and the acknowledgment. He certainly felt
indignation when others were rewarded for what he felt that he had achieved himself. He was an
essentially kind person, sometimes carelessly rude, but only deliberately so when he felt that he
had first been slighted. But without doubt his primary motivation, throughout his career, was
an insatiable curiosity and thirst for knowledge, and a genuine joy in intellectual exchange with
whomever he came into contact.

He married his childhood sweetheart Jacqueline Blioch in 1958. She predeceased him in 2015.
There were three children of the marriage: Agnès (1962) and Jean-Philippe (1967), who survive
him, and Laure (1965), who died within a few hours of birth, and whom he remembered with
sadness the whole of his life. Toward the end of his life his partner was Madeleine Veyssié, with
whom he shared the Covid-induced confinement. In late 2020 Maurice was struck down by a
rapidly-growing brain tumour. The support given to him by Madeleine during this final illness
was much appreciated by the family.

The deterioration in his health was very rapid after his diagnosis. After some weeks in hospital
he was transferred to a hospice, concentrating on palliative care. His indomitable and enduring
academic spirit was epitomised by his request as the transfer was being organised. He knew how
sick he was. His powers of concentration were much reduced as a result of his illness. But in
the short time he had left, there were still ideas to be worked through, and there was still the
necessity to remain in contact with the extended scientific community. Just in case, he asked,
just in case I have a chance to do some work, do they have broadband, and a table where I can
work? A week later he was dead.

3 Prolegomena: Defects before 1960

3.1 Dislocations and distorsions

3.1.1 Preliminaries

Maurice’s work involved both dislocations in solids and disclinations in liquid crystals. But in
fact of course the concept of disclinations itself, as we shall see further below, developed out
of that of dislocations. It was Charles Frank who coined a specific term for angular defects in
nematic liquid crystals. In so doing, he was drawing analogies with the theory of defects in solids,
an area in which he was then one of the leading exponents.

Telling the story of the development of the theory of dislocations illustrates some key themes in
the history of scientific ideas. Firstly we see how concepts in macroscopic physics are extended
to phenomena on scales on which they were not originally intended to apply. Secondly we see an
interplay of theory and experiment which enables the original ideas to be refined and transformed
to a point at which in their new articulation they seem almost unrecognisable. Thirdly we see how
the transformed ideas can then be applied in related areas of physics. And fourthly, although we
shall not dwell on this point, the benefit of hindsight allows experienced practitioners to realise
that if only they had known, well back into the 19th century there had been numerous hints of
the new physics in the literature.

10



The roots are usually traced back to work by the distinguished Italian mathematician Vito
Volterra (1860-1940) in the early years of the last century. As it happens, Volterra was only the
most distinguished and influential of these founding fathers. As so often is the case (and will
also occur in our discussion of Maurice’s contribution to the use of homotopy in the discussion
of defect stability), parallel ideas were developed independently, because in some sense, the time
was right.

The notion of a Volterra process enters Maurice’s work on numerous occasions. So before con-
tinuing with the story of dislocations, we take a brief diversion to discuss Volterra, who was
one of the most important Italian mathematician of the modern era. He has been the subject of
numerous technical scientific biographies in Italian (see e.g. [23]) and one recent major biography
concentrating on his human relationships [24] in English. His work on dislocations was but a
minor part of his total mathematical oeuvre.

Contemporary mathematics contains frequent echos of Volterra’s contributions. There are, for
example, (different) Volterra processes both in material science and in control theory. Volterra
integral equations and integro-differential equations not only crop up in the theory of elastic me-
dia but are also prominent on the pages of every textbook on integral equations. All theoretical
ecologists are familiar with Lotka-Volterra systems, although sometimes the mathematics is dis-
guised as the Volterra population equation. Elsewhere we find Volterra systems, Volterra series,
Volterra operators, Volterra kernels, Volterra filters, Volterra spaces, and Volterra functionals.
The Volterra crater in the northern hemisphere of the far side of the moon celebrates his astro-
nomical work. And the founders of the Volterra Consulting Group may well have been unaware
of his mathematical importance, for they are celebrating his influence on the early stages of the
quantification of economic theory (see e.g. [25]).

3.1.2 Distorsions and dislocations

The discontinuities in crystal lattices which have come to be called dislocations, derive somewhat
indirectly from the set of papers written by Volterra in 1905. As the reader will be aware, in
1905, neither the fact that most solids are built up from regular arrays of atoms (i.e. the lattice
theory of crystals), nor the connection between the regular facets of observable crystals and the
lattice theory of solids, had been established.

In 1905 the definitive experiments proving the structure of crystals, due to von Laue [2] and
Bragg père et fils [3] were still eight years into the future. Even the atomic nature of matter
required Einstein’s famous insight into Brownian motion [26], and Perrin’s subsequent experiment
[27], rather than the mere spatial imagination of chemists. And in any case, Volterra was a
mathematician with interests in continuum mechanics. There is no record of him pursuing
mechanics at molecular length scales.

Nevertheless, curiously, there is an intellectual route leading directly from Volterra’s purely
macroscopic studies of elastic continua, to the current profound understanding of the molecular
properties of materials. The observational key to the transfer of Volterra’s ideas from everyday
to atomic length scales lay thirty years ahead. The puzzle concerned the flow of elastic solids
when subject to extreme tension. In that sense Volterra’s most enduring legacy to this kind
of elasticity lay in the field of ‘soft solids’. But at what point does a soft solid become a hard
liquid? This is a question impossible to answer precisely. All we can say is that, in a sense, both
of these contributions have been fruitful in the interregnum where the formal theory of elasticity
has given out, but that of hydrodynamics does not yet hold sway.

But all this was far from Volterra’s mind when, around 1904, he began to consider the properties
of elastic materials in multiply-connected bodies. The property of connectedness in a region of
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space is much considered by pure mathematicians and geometers. Let us briefly recapitulate
the key ideas. A region is simply connected if any closed curve or surface inside it can be
smoothly shrunk to a point. An example would be the inside of a sphere. A multiply connected
region does not share this property. The simplest example is the inside of a donut (known as a
torus to mathematicians). In this case a closed curve stretching around the axis of the donut is
unshrinkable. Examples are shown in Fig. 6 below.

The study and classification of such objects is now known (although not yet really in Volterra’s
day) as topology. Topologists can divide all closed regions into classes, depending, roughly
speaking, on how many holes or handles the region encompasses. We shall return to a more
comprehensive study of topology below, as it will turn out to be important, in a rather different
way, in Maurice’s work also.

The initiating step in Volterra’s study seems to have been a 1901 paper in the Proceedings of
the Accademia Lincei by the prominent German differential geometer Julius Weingarten (1836-
1908) entitled “On discontinuity surfaces in solid body elasticity theory” [28]. Weingarten had
been elected in 1899 as a Foreign Member of the Accademia Lincei, the Italian equivalent of the
Royal Society. This paper, published under the moniker Giulio Weingarten (and in Italian) was
read in Rome when the award was bestowed upon him. He was a specialist in the geometric
study of surfaces and his (rather short) paper was concerned with surfaces of discontinuity in
elastic theory. Weingarten spotted that if the region was multiply connected something peculiar
happens to elastic theory.

The peculiar elastic effect noticed by Weingarten concerned the internal state of stress and
strain within a body. Suppose first of all that forces are imposed on the exterior of a body (i.e.
external forces). Then the material elasticity transmits the forces to the interior of the body.
The existence of these interior forces is expressed mathematically in terms of a non-zero stress
tensor. But Hooke’s law requires that non-zero stresses imply non-zero strains. These non-zero
strains should be integrable, yielding the local (unique) local displacement. The story is clear
and unambiguous, and indeed apparently not only obvious but unassailable. External forces
imply local internal displacements. Their absence, by contrast, implies no displacements, thus
no internal strains, and hence no internal stresses.

Weingarten’s theorem states that this is no longer true if the body is multiply-connected.
Volterra’s attention was drawn to Weingarten’s paper, and indeed they exchanged considerable
correspondence on the subject. We know that he had some doubts over some of Weingarten’s
points. Moreover, Volterra realized that the four pages devoted to the subject by Weingarten
were insufficient to do the subject justice. And thus started his researches in this area. The key
point was that a multiply connected body could sustain internal stresses and strains without any
external force being applied.

With the benefit of hindsight this is not so surprising. Volterra’s clear explanation is as follows.
Consider a simply connected cylinder. All material points start in their “proper” places. Now
remove a minuscule cylinder along the axis, just large enough to ensure that the body is no longer
simply connected. He is introducing a short-range cut-off, which is common contemporary trick
to avoid singularities in continuum theory which cannot exist on a molecular scale. Here the
motivation is not exactly the same. But in Volterra’s time, it was new. In any case, the hole did
not have to be microscopic, only relatively small.

At this stage there are no stresses, strains, or displacements, only a hole in the middle. Now
Volterra cuts out a small slice, all the way from the hole in the middle to the outside of the
cylinder. Then he throws it away. Still no stresses, still no strains, still no displacement. Then
(and this is the key step) he takes what is left, pulls it so that the cylinder is closed again
(apart from the hole in the middle). And then he glues it together (see Fig. 6). The join is
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so good that the position of the original cut can no longer be determined. Note that this is a
thought experiment, which establishes a principle, rather than a practical suggestion. But as
with Einstein’s trains, all that is required is a thought experiment.

Now what? The surface forces which we imposed when we were pulling the cylinder closed have
disappeared. Now there are only internal forces. But in order to close the cylinder, we had to
move some points – in fact we probably had to move them all. So now we have a body with
no external forces, but still it has internal stresses, internal strains and internal displacements,
which depend, at least partly, on the way in which we glued the cylinder together.

A B
C

Figure 6: A: A simply connected region. In two dimensions, a closed loop inside this region can
be shrunk to a point. In three dimensions, the analogous requirement is that a closed surface be
so shrinkable. B: A multiply connected region in two dimensions. A closed loop which circum-
navigates the hole in the middle cannot be shrunk to a point. Multiply connected regions contain
either holes, handles, or both. C: Example of a Volterra cut. The centre of the circular region is
excised, and a cut made from the centre to the outside. The dotted lines (just visible here along
the cut) the cut are then glued together, leaving a multiply connected region.

This construction will in material science forever be associated with Volterra’s name: it is the
Volterra process; making a Volterra cut with a Volterra knife.

The paradoxical nature of the resulting strains is as follows. In usual elastic problems, integrating
the strain from one point to another yields the relative displacement of the points as a result of
the stress field. Integrate the strain round a closed circuit returns one to the same point. The
relative displacement of a point with respect to itself is of course zero. Here, by contrast, because
of the way that the strain fields have been set up, integrating around a circuit including the hole,
does not return one to the beginning, but rather requires a subtraction of the initial displacement
made by the “Volterra cut”. Thus the internal displacements are no longer well-defined. The
multiple-connectedness, the internal stress and the impossibility of defining uniquely the material
displacements are all connected.

More formally, either the displacement is not a unique solution of the equations (polydrome in
Volterra’s language), or the displacement field is discontinuous across a cut made somewhere
from the hole to the outside. Either one, or the other (you can choose whichever you prefer; they
are mathematically equivalent). But neither is quite what one expects in a well-behaved theory.
Whenever you get this phenomenon, Volterra says you have una distorsione (in Italian) or une
distorsion (in French).

It turned out that there are mathematical analogies between field theories for fluids, solids and
electromagnetism. For example, an attempt to construct a magnetic scalar potential for a field
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induced by a current leads to the same ambiguity. Likewise in a fluid, a state of constant flow
can exits in an annulus, even in the absence of a body force, as pointed out by Lamb [29] in his
classic book on hydrodynamics.

Volterra presented this work originally in Italian in the Proceedings of Accademia Lincei in a
series of papers appearing in rapid succession in 1905 [30]. They were translated with little
change into French [31, 32] (and therefore accessible to a much wider readership) in 1907, and
published, together with some new material, in the Annals of the École Normale Supérieure. The
exposition is long and detailed. It is not helped by the fact that Volterra does not always use the
modern suffix notation; this notation, employed by Einstein in his work on General Relativity,
and by all modern workers in continuum mechanics, allows the genius of Volterra (or Rayleigh,
Maxwell, etc.) to be reproduced by the merely talented.

The length of the exposition is also partly explained by the need to consider systematically
different kinds of distortion, i.e. different ways of gluing together the cut after the material has
been cut out. Each involves a different kind of solution for the internal stresses and strains. A
diagram showing the different types of distortion (Volterra called them ‘distortions of the nth

order’) can be found in Fig. 7, taken from the book on the subject started by Vito Volterra in 1938
[33], but only finished by his son Enrico in 1960. There were originally six non-trivially different
types of distortion, though by clever argument, Volterra was able to prove the equivalence of
some of these types.

Figure 7: Distorsioni of orders 1 to 6 (reproduced from Volterra and Volterra [33]). The dif-
ferent “orders" (really classes, in modern language) correspond to qualitatively different relative
positional or angular displacements after following the circumnavigation of a closed loop, and
hence different types of Volterra process. For a recent sophisticated discussion, see [34].
Figure reproduced courtesy of the Volterra family

Volterra then encouraged a number of experimentalists to build apparatus to test his results.
In the 1907 paper in French, he reports work by a Dr. Rolla, from the Physics Department
at the University of Genoa. The internal strains could be seen because of the resulting optical
anisotropy; a birefringence experiment should be able to detect them. Photographs of Rolla’s
apparatus (6cm tall, 5cm outer radius, 2 cm inner radius) are presented in the paper, and the
theory is declared confirmed.
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Volterra’s long articles aroused considerable interest, leading to several more experimental and
theoretical papers in the Italian scientific literature, by Cesàro, Maggi, Corbino, Trabacchi,
as well as several by Colonnetti and later, by Volterra’s distinguished close colleague Carlo
Somigliana [35].

The 1907 paper in French is punctilious in reporting parallel work on the same subject in a
1905 Göttingen thesis by a Dr Timpe, about which Volterra had originally been unaware. The
background to this is as follows. There had been a previous contribution in 1899 from the
Australian mathematician John Henry Michell (1863-1940) from the University of Melbourne.
He had formerly been a student in Cambridge, England, and very much a part of the English
applied mathematics tradition) had published a paper [36] using the Airy Stress function to
derive stress fields in a bulk material given some boundary conditions. This is essentially a
potential obeying a simple differential equation from which the stress can be derived. He had
already noted that problems arose when the body in question was multiply connected.

Anton Aloys Timpe (1882-1959) was a graduate student of Felix Klein in Göttingen; his thesis [37]
was entitled “Stress distribution problems in planar systems, easily resolved using Airy functions”.
The resulting academic paper appeared in the Zeitschrift für Mathematik und Physik [38] is in-
fluenced by Michell’s methods. He notes that . . .

(this method). . . which oddly still seems to be rather unfamiliar, and which my distinguished
teacher Herr Professor F. Klein drew to my attention, turns out to be extremely fruitful.

The last section of this paper is entitled “Artificial self-tension”, and is concerned with the stress
in an annular ring as it is progressively closed. Unsurprisingly he encounters difficulties. There
is a rather sad footnote, recording a nightmare scenario for any finishing graduate student:

My dissertation, on which this work is based, was submitted on 14 December 1904. Sub-
sequently an in-depth study of self-tension by V. Volterra, Atti Acc. Linc. Rend. (5), vol
14 (1905) was published.

It may have been the Italian papers on distorsioni that attracted the interest of the English
mathematician A.E.H. Love (1863-1940). More likely, it was Volterra’s visit to England in the
course of war work in 1917-18, during which time they interacted strongly. In 1892 Love had
written a monograph on elasticity [39]. Subsequent editions appeared in 1906, 1920 and 1927,
by which time it had become (as it remains!) the standard work. He also had been the Secretary
of the London Mathematical Society when Michell’s paper had been communicated twenty years
earlier, and no doubt the interaction with Volterra jogged the fading memory of these peculiar
multiply-connected effects.

By the time 4th edition of “Love” appeared in 1927, it had acquired an entirely new section
entitled “Volterra’s theory of dislocations”. Love is generous in also giving credit in the text
to Michell, Timpe and Weingarten. He even notes that the great J.C. Maxwell had addressed
the problem of multiple-connectedness in the (posthumously published) second edition of his
Treatise on Electricity and Magnetism as long ago as 1881 (it is also actually in the previous
1873 edition).

But apparently arbitrarily, and with little excuse, Love, in his own words, “rendered (distorsioni)
into English as dislocations”. Why this apparently deliberate mistranslation? Perhaps it was
that “distorsione” is the opposite of ‘torsione”, and although there is a torsion in English, there
is only a distort ion: not quite the opposite concept. In any case, any book on elastic theory is
necessarily awash with all manner of distortion. Love may have thought that an extra Volterra
distortion would be a twist too far. And, of course, for us in the liquid crystal world, the
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linguistic dislocation is a happy one; we draw strong distinction to be drawn between dislocation
and distortion.

The revised English term, whatever the reason for inventing it, became the standard. From
then on, dislocations it was. The presence of a section on this subject in Love’s book elevated
the study from a scientific bywater to the mainstream. Specifically, when phenomena elsewhere
required new analyses, there was a ready-made technology and language to describe them.

We have now covered the antiquity of dislocations. The problem to be solved was a continuum
problem: that of determining stress and hence strain inside a body, given some boundary con-
ditions. Usually the further question as to whether there is a set of displacements consistent
with the strain involves some further compatibility equations. For Volterra and other workers in
continuum mechanics, complications arose when the body was no longer simply connected (in-
cidentally a topological concept, although it took some time for the term “topology” to become
established). Experimentally the existence of distorsioni had been confirmed.

But as yet, there is no hint of a crystalline lattice, still less of imperfections in said lattice
requiring explanation. No connection, in fact, to what we understand nowadays as dislocation
physics. For this connection to emerge, however, only a short wait would be required.

3.1.3 Dislocation physics

Dislocation physics, as we now understand it, now almost a hundred years on, involves micro-
scopic scales and irregularities in the crystal lattice. The evidence, as opposed merely to the
suspicion, that the fundamental particles in a crystal are arranged in a regular lattice, comes
from X-ray scattering experiments [2, 3] carried out in 1912-13.

The “lattice picture of solids”, however, considered as a theory, rather than as established fact is
much older. If we ignore speculations of ancient philosophers such as Leucippus and Democritus,
whose beliefs were based more on metaphysics than on what modern scientists would regard as
proper empirical evidence, then we can trace the atomic lattice to the French crystallographer
René-Just Haüy (1743-1822)]. He developed the idea of a fundamental crystal shape and “atomic”
crystalline unit which cannot be further broken down. His student Gabriel Delafosse (1796-1878)
was the first to suggest the idea of a unit cell and lattice spacing, which in turn influenced Auguste
Bravais (1811-63) to investigate his eponymous fundamental set of lattices. In a parallel narrative,
the English chemist John Dalton (1766-1844) proposed an atomic theory using evidence based on
chemical reactions. Later chemists then proposed molecular properties requiring real molecular
shapes. The two strands together provided further circumstantial evidence for the lattice theory
of solids. Given its importance for current world views, the subject has been intensively discussed
by historians of science; for further discussion of these issues, see e.g. [40–42]).

The physics of crystalline solids is a big topic, still, we need not even mention, the subject of
much research. It is not surprising that it took some time to get going. A theory should connect
the interparticle forces to (a) the (melting) temperature at which the forces between the atoms
are no longer strong enough to hold the lattice together, (b) the elastic moduli (i.e. the elastic
response to forces imposed upon the crystal), and (c) the yield strength (i.e. how hard you have
to pull in order that the crystalline lattice break apart).

The Russian physicist Yakov Frenkel (1894-1952) [43], estimated that the yield strength should
be of the order of the elastic modulus. For a strain of order unity, the atoms are roughly twice
as far apart as they should be. If they are this far apart, more or less, Frenkel suggests, this will
be a trigger for the crystal no longer to hold together. The argument is approximate, because
at this strain the stress-strain relation will no longer be. Nevertheless for an order of magnitude
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estimate it should be OK.

Frenkel actually considered shear stresses, which in a fluid would cause shear flow, but in a
solid usually only cause shear distortions, in which atoms in neighbouring layers are pulled in
opposite directions within the layers. Crystal failure, at a critical stress known as the shear
strength, occurs when neighbouring layers slide rather than merely distort. Frenkel’s intuition
was sensible and should have worked. But this quantitative estimate for the shear strength in
metals was more than an order of magnitude too high.

One cannot place too much trust in calculations of this kind. There is no detailed mechanical
model and at the end of the day, they are indeed merely estimates. However, a disparity of two
orders of magnitude between theory and experiment was strong circumstantial evidence that
something was awry with the physical picture. The naïve picture of crystal breakdown, in which
the lattice is literally torn apart, must be wrong. This observation was coupled with a further
observation that when the crystal did slide, it did so not smoothly, but in a series of little jumps.

But why and how? The first attempt at an explanation was made in 1929 by the German
theoretical physicist Ulrich Dehlinger (1901-83) [44]. In a shear field, he reasoned, one layer of
the crystal must slide by the next, periodically getting stuck when the crystal is well-ordered.
His picture involved little hooks (Verhakungen) on one crystal plane which were grasping the
atoms in the next plane, only to release their hold when the sliding force became large enough
again. Qualitatively, but only phenomenologically, this would explain the jerky sliding motion.
But why did the shear force have to be concentrated in some places, in just such a way that the
local, and hence the global, failure mechanism involved the little jump?

The key idea was presented in three almost simultaneous papers in 1934 by the English physi-
cist G.I. Taylor (1886-1975) [45], and the Hungarian chemists Egon Orowan (1901-89) [46] and
Michael Polanyi (1891-1976) [47]. In Material Science, the story so far is regarded as the prehis-
tory of dislocations. The history, as properly understood, starts with Taylor (later Sir Geoffrey,
and the doyen of British fluid mechanics), Orowan (who later emigrated to the U.K., and then
in 1950 to the U.S., subsequently finishing his career at M.I.T.) and Polanyi (who in 1934 had
just arrived in Manchester, and later had a distinguished career as a philosopher of science). All
three contributions identified irregularities in the crystal lattice as the fundamental elements of
the solution.

The idea was that inside a crystal there are regions where the lattice changes its point of reference.
All three papers identify lines along which an extra row of atoms is introduced into the lattice,
shown in Fig. 8.

So now, in most of the crystal the lattice is regular and well-behaved, apart, maybe, from a little
strain, which you detect by a departure of the regular crystal cell from its proper shape. In this
case you take a circuit in the lattice: n atoms to the left, m atoms up, n atoms to the right, and
finally m atoms down again. Where do you finish up? Back where you started, of course.

But if your circuit contains the line where you have added the extra row of atoms, you don’t
finish up where you started. You finish up one atom to the right. G.I. Taylor recognized what
was going on; he knew his Love, he was familiar with the new section on Volterra’s dislocations,
and in any case he had met Volterra during the first world war. Taylor, unlike Polanyi and
Orowan, cited Volterra, explaining that Volterra’s mathematics held the key to understanding
these new objects.

The full microscopic mathematical formalism was provided by the Dutch theoretical physicist
Johannes Martinus Burgers (1895-1981) [48, 49]. Burgers borrowed copiously (as he openly
recorded in later life to those who might have mistaken – indeed, did mistake – the required
mathematical virtuosity for his own). The key element in mapping the Volterra theory onto
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Figure 8: G.I. Taylor’s picture of slip along the glide plane, showing how planes slip against each
other through dislocation movement/. Reproduced from Taylor’s paper [45].

the molecular problem is the cutting-out process. Because the lattice must match everywhere
away from the dislocation line, only certain kinds of cuts can be made before the Volterra gluing
begins.

There are different kinds of possible processes, corresponding to Volterra’s distorsioni of different
order, or associated with different vectors which occur on making a circuit. Thus we get different
kinds of dislocation – the edge dislocation is the one appearing in Taylor’s seminal 1934 paper,
whereas Burgers also introduced the screw dislocation, in which the vector shift on one circuit
is parallel to the dislocation line.

The idea was so plausible that even absent direct experimental evidence, dislocations almost
immediately entered the material science canon. Already in 1938 Frenkel and his student Tatiana
Kontorova (1911-1977) produced an impressive set of papers with a detailed mathematical model
of the sliding jumps [50, 51]. The resulting equation was a difference equation in space and a
second order differential equation in time, of sufficient mathematical complexity that it is still
attracting the attention of contemporary mathematicians (see e.g. [52]). Prompted by his lodger
Orowan [53], Rudolf Peierls (1907-1995) took time off from building a nuclear bomb in 1940 to
calculate the size of the dislocation-induced deformed region within the lattice, and the critical
stress required to move the dislocation [54]. Peierls emphasised that his quantitative estimates
should not be taken too seriously. It was just as well. His calculation of the required critical
stress contained an error of a factor of 2, but the effect of the error on the critical stress was
an overestimate by a factor of approximately 1000. The error was corrected by Frank Nabarro
(1916-2006) [53, 55] in 1947 (people were too busy with other matters during the 1939-45 war
to worry about attempting to move dislocations), which is why it has come to be called the
Peierls-Nabarro stress.

The phenomenon of work-hardening in which the yield strength increases after bashing the
material around a bit, because (roughly speaking) the dislocations become entangled, locking
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up some further energy [56]. The Peach-Koehler force [57] (1950) is regarded as a force on
a dislocation thought of as an object in itself, rather than as a pattern superimposed on an
underlying atomic or molecular structure.

By 1947 Nabarro was a research fellow in Bristol, which had become a major centre for dislocation
research. The central figures, apart from Nabarro, were J.F. Nye (1923-2019), J.D. Eshelby
(1916-1981), but in particular and more relevant to this essay, Jacques Friedel and Charles
Frank. Frank and collaborators were particularly fruitful in the postwar period, producing a
stream of fundamental papers. These papers were not only extraordinarily imaginative from a
physical point of view, but also mathematically sophisticated, using ideas ranging from functional
analysis to differential geometry. A continuum simplification of the Frenkel-Kontorova picture of
slip [58], led to the Frank-van der Merwe equation, better known nowadays as the Sine-Gordon
equation [59]. An explanation of crystal growth from the melt [60–62] depended on a spare
misaligned layer at the crystal-melt interface for the new atoms to attach to. Work hardening
was explained in terms of the Frank net of dislocations, which had multiplied in a material under
stress as a result of the Frank-Read mechanism [63,64]. It was above all Frank, who in 1951 in an
article entitled “Crystal dislocations: Elementary concepts and definitions” [65] drew the various
ideas together. Fig.9 shows a circuit around the crystal defect lines consisting of n steps up and
down, and m steps to the left and right. The anomalous nature of the crystal defect is articulated
in the fact that one does not return to the original position, and an extra vector b is required
to close the circuit. It was this vector (which had rather been defined by a triad of lattice steps
by Burgers) which Frank labelled as the Burgers vector [66]. We note also a fundamental paper
from Nye [67], which introduced the idea of dislocation density, acting a source of stress and of
curvature.

b 

Figure 9: An edge dislocation, showing the Burgers circuit and Burgers vector b, the glide plane,
and the extra plane of atoms above the dislocation. Atoms are blue circles, and the dislocation
itself is shown as a red square. The edge dislocation corresponds to a distorsione of orders 1 or 2
in Fig. 7. The Burgers vector and circuit discussed in the text were essentially topological ideas.

3.1.4 Creep

The initial clue to the existence of microscopic dislocations in solid bodies, we have seen in the
previous subsection, is the rather low value of the yield stress, which can only be interpreted in
terms of layer slip and the Peierls-Nabarro phenomenon. What happens if that stress is exceeded?
Sometimes the solid cracks before breaking, but sometimes it flows like a liquid. This kind of
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situation occurs in moving glaciers, or when rocks distort in geophysical contexts, or when, as
during the collapse of the World Trade Centre Towers on 9/11, the heat from fires cause the
yield strength of the steel in reinforced concrete to reduce dramatically. This is termed plastic
flow or more prosaically, simply simply creep.

Undistorted solid under shear stress

Low shear stress distorts  shape

Undistorted solid under shear stress

High shear stress induces plastic flow = creep

Figure 10: Low shear stress σ induces a static distortion of a solid body, i.e. a strain γ(σ), as
shown bottom left. Above a critical yield stress σc, the distorted body begins to flow, i.e. γ̇(σ).

Let us consider, for definiteness, a case in which the solid is subject to a shear stress, as car-
icatured in Fig. 10. The objects of interest are the stress σ, the strain γ = ∇u, where u is
the solid displacement from equilibrium, and the rate of strain γ̇ = ∂γ/∂t = ∇v, where v is
the local velocity. In the general case these quantities are tensors, but in the shear case under
consideration, they can be considered as scalars. In an elastic solid γ ∝ σ, so long as σ < σc,
the yield stress. In a simple liquid, on the other hand, γ̇ ∝ σ, although the proportionality law
no longer holds in so-called viscoelastic fluids. Beyond σc γ̇ is a function of (σ − σc), although
sufficiently close to the solid melting temperature, there is a large viscoelastic region in which
we can effectively ignore σc.

There are several different kinds of creep. Primary creep occurs because at low stress, the
solid response is not immediate. Once the solid particle displacements have settled down to
their equilibrium values the dynamic response stops. In tertiary creep the strain grows without
bound, and ends only with the failure of the solid. Only in secondary creep is there a viscoelastic
liquid-like reponse; this is the case on which I want to concentrate.

A more detailed background discussion, although fascinating, will take us too far from our
primary topic. All textbooks of material science contain extensive sections on creep, including
that of Jacques Friedel [10,11]. This author is unable to identify the origin of the technical term,
other than to note its obvious transfer from ordinary language. It was already used in 1924
for beyond-yield-strength flow in a review by E.C. Bingham [68] (whom we shall meet again),
whereas other contemporary workers use “creep” (with the quotation marks) [69]. But in 1910
E.N. da C. Andrade [70] merely talked of “plastic flow” of solid metals under stress, even though
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later workers when citing this paper explicitly mentioned Andrade’s studies of creep.

Sir Neville Mott [71] speculated in 1953 that some creep features might be explicable in terms of
dislocation motion. Characteristic properties of the secondary creep in Aluminium were eluci-
dated by John Dorn (1909-71) in 1955 [72]. His key result was that under suitable circumstances
(intermediate stresses) γ̇ ∝ σm exp(E0/kBT ), for temperatures close to the melting temperature,
with kB the Boltzmann constant, E0 some material-dependent property, and m some more or
less constant parameter in the range 3-4. The proportionality of γ̇ with a power of σ, together
with its relationship with dislocation motion, is often known as the Orowan Law, though its
genesis, as we see here, involved several other researchers in addition.

The following year Johannes Weertman (1925-2018), building on Mott’s intuition, built a theory
of creep in metals and simple alloys [73]. This yielded the Dorn rule for stresses which which were
not too large. The details are too complicated to discuss here, save to remark that the key idea
involved dislocation pile up, energy barriers which needed overcoming (hence the exponential
term) and the creation of “Frank-Read” sources [63], as discussed in the previous subsection.
The theory was subsequently refined [74]; the mechanism is consequently usually identified in
the literature as Harper-Dorn creep. There has been much discussion in the literature as to its
range of validity, the materials in which it might prevail over other creep modes, the accuracy or
otherwise of numerical estimates of quantities entering the theory, and so forth (see e.g. [75,76]).

Finally we note that other modes of creep, not involving dislocation motion, such as sliding of
grain boundaries or diffusion of vacancies do exist and can dominate. The relevance of dislocation-
induced creep to our story will become clear in Section 4.5.

3.1.5 Final remarks on dislocations

We leave the early story of dislocations here, for it will be the influence of Frank and Friedel,
educated as they were by studies of dislocations, on defects in liquid crystals that primarily
interests us. However, before we turn to disclinations, a few final remarks are in order.

Experiment: An enormous amount of early theory was developed based in indirect or cir-
cumstantial evidence of the existence of dislocations. There was clearly some pressure to pro-
duce some experimental confirmation. John Nye (Section 3.1.3 had been a research student of
Orowan’s in Cambridge. With Sir Lawrence Bragg, the head of the laboratory, he carried out an
experiment on arrays of bubbles which exhibited wedge dislocations [77]. These are shown in Fig.
11. Technically, of course, although this experiment is rather persuasive, these are not atomic
crystals but merely colloidal analogues.However, optical observations in the transparent AgBr by
Hedges and Mitchell (1953) [78] exhibited crystallite grain boundaries which could be interpreted
as a dislocation lattice, while Hirsch and coworkers (1956) [79] created electron micrographs of
stressed aluminium with features only interpretable in terms of dislocation structures.

Antecedents: Hirth [80] reports a number of old observations, dating as far back as the 19th
century, which would nowadays be interpreted in terms of dislocaiton-mediated grain boundaries.
And Frank himself [81] interpreted some old puzzling micrographs by Menzies and Sloat [82],
which could also easily be understood in terms of dislocations.

Material Science: Nowadays, the study of dislocations is a central part of all undergraduate
materials science courses, leaking out into physics as well. All the standard textbooks, at least all
those who dare subject their readers to more than Mickey Mouse mathematics, lean heavily on the
treatment provided by Volterra to the readers of the Annales de l’École Normale Supérieure. In
geophysics too, the study of dislocation stress fields is central to the understanding of earthquake
genesis and dynamics.
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Figure 11: Photographs reproduced from Bragg and Nye [77]. Left: Perfect crystal. Right:
Crystal with wedge dislocation. The dislocation is three bubbles down in the middle of the
photograph. In each cases, only the central part of the photographs appearing in Ref. [77] has
been reproduced, in order to identify the key features more easily.

Relationship with Volterra’s original distorsioni : Burgers’s application and extension of
the Volterra theory came too late in Volterra’s life for him to respond in the literature, so we
do not know how he would have reacted to this intellectual distortion of his work. In their joint
book on the subject [33], his son Enrico Volterra (1905-1973) is ambivalent. Partly he is proud
on his father’s behalf. And partly, he regrets that these are no longer their distortions. However,
in any case, there remain macrosopic applications, particularly in his own speciality of civil
engineering. Arches, he points out, are primitive examples of non-simply connected structures
which are maintained in a state of stress without external forces. The well-known stability of
arches is a consequence just of distortion theory.

3.2 Sir Charles Frank and disclinations

We have seen in the previous section the influential role played by Charles Frank in the devel-
opment of the theory of dislocations in the immediate postwar period. So influential were his
contributions that Jacques Friedel in his memoirs [12] went so far as to claim that so high was
the quality of his work that he had been unjustly denied a Nobel Prize. From his interest in
hard solids came also an interest in softer solids (the Bristol polymer group was a fruit of this
interest), and thus, eventually, in liquid crystals.

In 1958 Frank was invited to deliver the keynote lecture at a Faraday Discussion Meeting in Leeds
on liquid crystals and macromolecular systems. The resulting article [83] recapitulated points
made by the Swedish theoretical physicist Carl Wilhelm Oseen (1879-1944) in a similar Discussion
Meeting in London in 1933 [84]. The article sets out, with Frank’s usual clarity, his view of the
continuum theory of liquid crystals. This was pioneered, though not entirely completed, by
Oseen in the 1920s (see e.g. [85]), but not completed until Frank Leslie’s formulation of the
Ericksen-Leslie theory in 1968 [86]. It also, significantly for our purpose here, enumerrated types
of nematic defect, as shown in Fig. 12.

Oseen had already studied Lehmann’s Kernpunkte and Konvergenzpunkte in his 1929 monograph
[85]. If the elastic constants were equal, all that was required was to solve Laplace’s equation
for φ, the director orientation in the x − y plane (but note that the term “director” in a liquid
crystal context was only introduced by Frank Leslie in the 1960s). The solution ψ = cψ+αz+β
is readily derived, where c = n/2, with n an integer. The αz term describes possible torsion of
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At the time Friedel and Oseen wrote their papers, the values of the disinclina
tion strength n which had been observed were - 2, I, 1, 2. Since then the 
case n 4 has been observed by Robinson s in the radial singularity of a choles
teric "spherulite". The non-occurrence of high values of I n I is explained by 
the fact that the energy is proportional to n2. The fact that higher values than 
one occur indicates a relatively high energy in the disorderly core of the disinclin
ation line, which must be as large as its field energy so that it becomes profitable 
for a pair of disinclinations to share the same core. 

f(!! ~ 
~~ 

"# 2 

n• .. , 

qi--f'I' 

FIG. 2. 

5. kz4 

Let us leave aside the question of how to determine k14 , necessarily involving 
the observation of three-dimensional curvatures, until we have better information 
about the moduli of plane curvature, ku, kz2 and k33· 

6. RELATIONSHIP TO THE ORDINARY ELASTIC CONSTANTS 

Let us take note that the molecular interactions giving rise to liquid crystal 
properties must also be present in solids. This indicates that conventional elastic 
theory is incomplete: the direct curvature-strain moduli should also be included. 
This is true, but does not seriously invalidate the accepted theory of elasticity. 
Consider the bending of a beam, of thickness 2a, to a radius R. Then the stored 
free energy according to ordinary elasticity theory is KE Ea2/24R2, where E 

Figure 12: Charles Frank’s sketches [83] of the configurations around a defect line in a nematic
liquid crystal. The defect line is perpendicular to the page; the joined-up lines are ‘lines of force’,
i.e. everywhere parallel to the director. Each subfigure is labelled by index n, and configuration,
in which φ is the local director orientation and ψ the azimuthal angle. Frank drew an immediate
analogy between what he called ‘disinclinations’ and the dislocation theories which he had been
developing in the decade preceding his famous 1958 paper. .
Note that in the literature the definitions and nomenclature for ψ, φ, n are not consistent. Often
the index n is replaced by winding number S = n/2, and the meanings of φ and ψ are reversed.
Reproduced from [83] with permission from the Royal Society of Chemistry.
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the defect line.

Frank in 1958 cites and borrows Oseen’s solutions, although as far as I can see the pictures are
new, and he does not discuss torsion. His paper does stress that his main goal is to rekindle
interest in liquid crystals, which has fallen by the wayside since the War. We remark that this
is not Frank’s first paper on liquid crystals; he already written a short note [87] on the subject
when a postdoc in Debye’s lab in Berlin in 1938, so he was returning to a favourite topic.

Probably Frank’s most imaginative contribution was his analogy with with the dislocations on
which he was by now one of the world’s leading experts, which led him to introduce the term
“disinclination”. The existence of a a dislocation on a line involved going round a circuit and
finding oneself, as it were, somewhere else. Likewise Frank thought of a disinclination as going
round a circuit and finding oneself pointing, at least in some sense, “somewhere else”.

With the benefit of hindsight, we can notice what we might think of as ‘folk topology’. Frank’s
classification is through a winding or turning number (the idea goes back to Möbius in 1836),
i.e. the number of times the director rotates as a one traverses a circuit around the defect line.
It is implicit in Frank’s work that all configurations with the same n can be distorted into each
other, are therefore in some sense equivalent, and choosing the equilibrium texture will involve
detailed elastic energy considerations. More modern homotopic classifications, of course, identify
but two possibilities, with the original n even and n odd classes mapping into “not-defect”, and
“defect” classes. But the naïve classification would be correct if the director were constrained to
lie in the plane, and may be of help under some circumstances.

I repeat here (see also [88, 89]) the curious and amusing tale whereby Frank’s “disinclinations”
became merely “disclinations”. I do so because the story actively involves Maurice, and also
because in a relaxed moment, he and I discussed it at some length. In 1969, the powerful
combination of Jacques Friedel and Pierre-Gilles de Gennes published a paper in the Comptes
Rendus de I’Académie des Sciences entitled Boucles de Disclination dans les Cristaux Liquides’
(Disclination loops in liquid crystals) [90]. With a Bristol PhD, Friedel was a close colleague of
Frank’s, and also had a very successful textbook on dislocations under his belt [10]. No doubt
he would have wanted to use the Frank nomenclature, but this article was in French and a
translation of the neologism was required. “Disclination” was a piece of imaginative translation
from English into French. However, at roughly the same time an article in the Journal de
Physique from the Orsay Liquid Crystal Group (in those revolutionary times, in order to avoid
the cult of personality, the Orsay group published under a group pseudonym) [91], was referring
to dèsinclinaisons, which is another possible translation. And in the very next paper in the same
journal Maurice himself, in a paper jointly authored with Jacques Friedel [9] on cholesteric liquid
crystals, discussed at some length by Pieranski in this volume, were referring to disinclinaisons,
another possible natural translation.

By the following year, however Maurice [92], seems to have converged upon the standard French
terminology of disinclinaisons. But the journal now required him to provide an abstract also
in English, and his English translation is.... ‘disclination’. And disclination it seems to have
remained. Maurice and I discussed this important lexicographic question. He thought for a
moment, searched back long in his memory, hummed and hawed a bit, stroked his beard several
times, and finally pronounced, somewhat uncertainly:

I think it was de Gennes who said he was disinclined to be disinclined.

Before proceeding further let us note a historical irony. Dislocations, at least as as we now
understand them, are primarily microscopic phenomena (see e.g. the pictures in Figs. 9,11). In
real solids it is now possible to obtain direct images of the dislocations, using, e.g. atomic force
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microscopy. But these pictures are recent; the development of the idea proceeded from theory
to experiment, in evidential terms, from the circumstantial to the direct. Experiment follows
theory.

On the other hand disclinations, indeed all liquid crystalline defects (see e.g. Fig. 3) cry out
to the eye immediately. Of their existence there is absolutely no doubt. Experiment precedes
theory. The problem is the interpretation.

However, despite this contrast, the theoretical interpretive route travels from dislocations to
disclinations. This is probably because solids are ubiquitous, while liquid crystals are (relatively)
rare. As such the greater theoretical effort on solids meant that that when the time was ready
to prepare detailed theories of liquid crystals, some preparatory work on crystals proper was
already in place.

4 Career

Physicists in our day are usually divided into hard-core theoreticians and confirmed experimen-
talists. A striking feature of Maurice’s career was that he defied this simple demarcation. Aside
from his theoretical work, he always kept a laboratory where collaborators were able to pursue
experimental studies of one kind or another. In this section I shall, not very scientifically, but
with a sly glance at the Citation Index (which, of course, we have learnt not to take too seriously),
select some highlights from Maurice’s career.

4.1 Magnetism

A considerable part of Maurice’s early career, following his PhD in the same area, concerned the
interaction of defects in magnetic structures and the underlying lattice. There are twelve such
papers, between 1966 and 1981. We choose Maurice’s collaboration with Schlenker [93] “The use
of dislocation theory in magnetoelasticity” as an example. The idea is as follows. Evidently the
spins in ferromagnetic solids affect the interatomic interaction, causing dilation or compression in
the atomic lattice. This phenomenon is known as magnetostriction, and there are magnetistric-
tion constants which link lattice strains to the local magnetisation direction. In the presence
of an inhomogeneous magnetisation (e.g. because of a domain wall) these strains will change
from place to place. The insight here, originally due to Kröner [94], is that the magnetoelastic
strains, together with some fictitious effective stresses, can be replaced for calculational purposes
by a density of infinitesimal quasidislocations of the type introduced by Nye [67] to account for
curvature in solids. This is represented by a tensor α0

ij which generates the closure failure bj of a

Burgers loop, by the relation bj =
∮
C
du0j =

∫
α0
ijdSi. To this author, at least, the mathematics

seems fearsome, and worthy of considerable admiration. The final result, see Fig.13, is that
Bloch walls (magnetic domain walls in which the magnetisation within the wall is in the plane
of the wall) sometimes distort to a zig-zag form.

4.2 Escape in the third dimension

The classification of possible disclination lines in nematic liquid crystals is clearly an important
problem. Consider a configuration winding around a disclination line in the ±z direction, and
which which far from the line lies in the x−y plane. Frank (see Section 3.2) had examined this in
1958 [83], and generated a set of configurations (see Fig.12). The configurations are classified by
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Figure 13: Figure from [93], showing the development of a kink structure in a magnetic domain 
wall as a result of magnetostriction.
Reproduced with permission, ©c 1972 American Institute of Physics

their “strength” , or winding number S, where the director far from the disclination line rotates S 
times over a trajectory which surrounds the line. Given that the  polarity of the nematic director is 
indefinite, S can be half-integer or integer. There is also an extra degree of freedom, in that φ = Sψ
+β, where φ gives the local director orientation, ψ = tan−1(y/x) is the azimuthal direction, and β 
parameterises the extra degree of freedom.

Frank’s calculation made some simplifying assumptions, however, neither of which might be 
expected to affect the qualitative status of the solution. One assumption was to suppose that 
the (“Frank-Oseen”) elastic constants K11, K22, K33 were equal. The other was to suppose that 
if the director far from the disclination line was confined t o t he x y p lane, t hen t his condition 
would apply everywhere. In 1970 the distinguished Russian physicist Igor Dzyaloshinskii (1931-
2021) had extended Frank’s calculation, now allowing the elastic constants to differ from each 
other [95]. Frank’s solution with arbitrary β is not robust; for S = 1 only the solutions with 
β = 0, π/2 survive.

However it turned out that the other assumption, in which the director remained in-plane, while 
extremely plausible, was not correct. There is indeed an in-plane solution to the relevant equa-
tions, with a singularity along the disclination line. But unless the radial boundary conditions 
are imposed in a cylinder with a very low radius, this solution is a saddle-point and not a free 
energy minimum. Of course within the Frank-Oseen theory the in-plane condition and con-
sequent logarithmic energy singularity along the defect line requires a cutoff minimum radius 
in order that energies may sensibly be compared. However a solution discovered by Patricia 
Cladis (1938-2017) and Maurice [96], which bends out of plane, has no singularity at all, and 
simply points along the direction of the (vanished) disclination line. The theory was immediately 
experimentally verified in the same laboratory by Claudine Williams et al [97].

The solution is mathematically interesting in that, being out-of-plane, it does not retain the 
in-plane symmetry of the boundary conditions. It is a broken symmetry solution, with an asso-
ciated polarity. Necessarily there are two equivalent solutions with opposite polarity, separated 
by another (“saddle-point”) solution to the relevant equations with unbroken symmetry, which, 
however, is not a free energy minimum.
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Figure 14: Left: The key figure in ref. [96], comparing the non-singular Cladis-Kleman disclina-
tion director configuration with that of Frank [83], Fig.12. Note that n = 2 in Fig.12 corresponds
to S = 1 in this figure. [Reproduced from ref. [96] with permission]. Right: Director configura-
tions shown in cross-section across the cylindrical sample. The two configurations shown possess
opposite polarities; they escape into the third dimension by bending in opposite directions. If
they exist in different sections of the same sample, they will be separated spatially by a point
singularity, shown in the figure by the black dot.

In Fig. 14, we show the key figures in the Cladis-Kleman paper [96]. The paper is exhaustive in its
continuum treatment of the liquid crystal director, and also addresses, somewhat inconclusively,
how to manage the problem of the disclination core where the continuum treatment fails. Cladis
and Kleman remark that they are unable to construct a “coreless” solution for the S = 1/2
disclinations, and also remark that they have observed (experimentally) two (coreless) S = 1/2
disclination lines combine, which then subsequently decay into a singularity-free regime. The
point was emphasised in parallel work by Bob Meyer, then at Harvard University, who noted that
in fact all integer winding number disclinations could similarly be conjured into disappearance
by out-of-plane distortion [98]. It was Meyer who coined the visually evocative term “escape into
the third dimension” to describe this phenomenon. .

The failure to find a coreless half-integer disclination could, of course, be ascribed to a lack of
imagination. The authors suspect not, as they present a figure in which they depict a “topological
scheme to demonstrate the necessity of a core” in this situation. But as pure mathematicians
and lawyers are wont to emphasise (and politicians sadly seem blissfully unaware), absence of
evidence is not the same thing as evidence of absence. Meyer [98] was less bashful. His paper
mentions “topology” on numerous occasions, and speculates that a proof can be found, without
finding (or even really seeking) a route toward any rigorous demonstration.

4.3 Topology

The search for a more profound reason underlying the “existence” of the half-integral defects,
and the “non-existence” of their integral homologues, led in unexpected directions. Let us first
summarise the implications of escape into the third dimension. It is reasonably obvious from
Frank’s pictures in Fig.12 that nearby +1/2 and a −1/2 disclinations can cancel each other out,
in the sense that (a) far from a pair of such disclination lines, the director configuration tends to
uniformity, and (b) the director travelling around such a line does not rotate at all overall. Frank
identifies these disclinations lines as being topologically distinct, and classifies them according
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to the number of half-integer rotations. But magically, the escape in the third dimension has
conjured away the S = 1 disclination, and Meyer has shown that this applies to any integer S.
Intuitively if 1/2 − 1/2 = 0 and 1/2 + 1/2 also = 0, it must follow that really, so to speak, in
disclination algebra, if there were to exist such a thing, 1/2 = −1/2. Maurice teamed up with
his Orsay colleague Gérard Toulouse and tried to construct an argument.

The celebrated mathematician René Thom (1923-2002) is known to the world for his Catastrophe
Theory. To his fellow pure mathematicians, by contrast, he is distinguished (inter alia) for the
Dold-Thom Theorem, the Thom Conjecture, the Pontryagin-Thom Construction (etc. etc.). It
was a lucky break that Thom worked nearby in Bures-sur-Yvette, sufficiently close to Orsay that
their intellectual-geographical clusters overlapped. For it was Thom who explained to Toulouse
that what he and Maurice were doing was algebraic topology, and specifically homotopy, but
unfortunately without realising it.

The ensuing realisation brought the mathematicians Louis Michel (1923-99) and Valentin Poé-
naru into the collaboration. Poénaru, like Thom, was a coincidental collaborator, for he was
a neighbour of Claudine Williams, who was a key experimental associate in the paper which
confirmed the escape into the third dimension [97]. The consequence was a series of papers
on the homotopic classification of defect structures. The first paper, authored by Kléman and
Toulouse, submitted on New Year’s Day 1976 and published in June, was entitled Principles of
a classification of defects in ordered media [99]. A second more detailed paper, adding Louis
Michel to the author list, maintained its general focus [100]. Later papers dealt with disloca-
tions in solids [101], and then smectic liquid crystals [102]. There followed further papers on the
foundations of the theory from other members of the team [103,104].

The topological defect classification stands on two key foundation stones. The first pillar is the
manifold V on which the relevant order parameter lives. This is related to Landau’s idea of
symmetry-breaking at phase transitions, introduced in classic papers in 1938 [105–107] (for a
more comprehensive review see the textbook by Toledano and Toledano [108]). This much was
already part of the toolbox of all condensed matter theorists in the 1970s.

The second pillar concerns the connectedness of the manifold V. Conceptually, this is the same
thing as the physical connectedness which Volterra considered when discussing the physical space
which his solid inhabited, and whose lack of simple connection gave rise to dislocations. But
in this case it is the abstract space in which the order parameter lives which is the focus of
interest. We postpone to the next section a longer (but still incomplete) historical discussion.
The important point here is that algebraic topologists – pure mathematicians – had ready-made
tools to consider just this kind of problem.

Theoretical physicists and engineers learn much mathematics in order to practice their trade.
The École Polytechnique, for example, taught generations of students classical geometry – not
only Euclid, but also developments of more modern practitioners from the 17th to the 19th
century. The liquid crystal pioneer Georges Friedel (X1885) had learnt it at l’X because, well,
because engineers need to know geometry. It was this geometrical training that enabled him to
know that the collision of sets of parallel planes in space would give rise to conic sections and
Dupin cyclides. So if he spotted conic sections under the microscope in a material with unknown
structure, Georges Friedel could reasonably, although of course not absolutely conclusively, infer
that spatially colliding sets of parallel surfaces were the responsible culprits. And hence deduce
the likely nature of his smectic phase.

But algebraic topology and homotopy theory were not (at least not necessarily) part of the X
syllabus. This mathematics was pure et dure; no-one could have anticipated how useful it would
be. As we shall see, this statement is an exaggeration, but it is at least a decent excuse for
Maurice’s lack of relevant professional formation.
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A full treatment of this mathematics is long and complex, with many subtle arguments and
fine points. David Mermin’s much-cited 1979 tutorial article in Reviews of Modern Physics
[109] is 58 pages long, and that article largely avoids the lemmas and proofs so beloved by
pure mathematicians (and so anathema to physicists!). Let us try to caricature the argument,
concentrating on line defects in nematics, as produced by Toulouse and Kléman in 1976 [99].

For a nematic liquid crystal, the manifold V = RP 2, the 2-sphere (i.e. the surface of a three-
dimensional sphere) with antipodal (mathematese for opposite) points identified. Mathematically
equivalent chracterisations are either (a) the projective plane (from which comes the RP 2), or
(b) the set of lines through the origin. Recall that we identify a disclination by taking a trip
around a loop in real space, and finding that along that loop, the director has rotated by some
integer number of half turns. At each point the director n̂(r) is a function of position. The
mathematical way of saying this is that there is a mapping from R3 → RP 2; from any point one
can construct loops taking routes through real space.

Now actually both R3 and RP 2 have a metric structure (i.e. you can move continuously around
them from point to point, and you know how far you‘ve gone; strictly speaking only the continuity
is necessary), and in general so is the function (“mapping”) n̂(r). So one can continuously
deform one loop into another, and also change the start/end point. If one does this, one gets
an “equivalent” loop, and thus classes of equivalent loops, known as homotopy classes. Then one
can combine loops, and do them backwards, and keep the loop as it was. At the end of the day,
the classes of loops can be thought of as elements of a group, with the unit element consisting of
“staying where you are”. The group element “staying where you are” consists of all loops which
can be continuously shrunk to a point.

And it turns out this group has already been given a name by the topologists – actually two
names, either the fundamental group or the first homotopic group – as well as a notation by which
it is recognised: π1(V). And in addition, for a given V, there are standard ways of calculating
π1(V). Using this technology, one can read off the number of “homotopically distinct” defect
lines for particular types of order parameter. For statistical mechanicians, some other frequently
occurring systems are the XY magnet (with two independent degrees of freedom orientationally
uncoupled to the underlying lattice) (V = S1, a circle), and the Heisenberg ferromagnet, with
three degrees of freedom (V = S2, the surface of a sphere).

Then reading off the fundamental groups, one finds that:

π1(S1) = Z; π1(S2) = 0; π1(RP 2) = Z2.

This is not quite the whole of the paper, but is the key easily explainable result. Let us briefly
discuss it. The homotopic classification links different defect line configurations which can be
deformed into each other. On the other hand, it makes no statement about which configuration
within a class is the most stable. The interpretation is as follows:

(a) For XY spins with two components, the manifold of possible spin orientations is the circle
S1. The class of defect lines then corresponds to the integers Z. Each integer is the winding
number : i.e. the number of times the spin direction rotates along a closed loop surrounding
the offending line. For each class, the winding number is a conserved variable.

(b) For Heisenberg spins with three components, the manifold of possible spin orientations is
the surface of the sphere S2. Now the class of defect lines is trivial ; this is the meaning of
π1(S2) = 0. In ordinary language, there are no homotopically conserved defect lines.

One might think that one had identified a defect line. But one would in some sense be
mistaken; it can be conjured out of existence by suitably deforming the configurations locally.
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Of course, the Cladis-Kleman-Meyer argument about escape into the third dimension applies
in this case also, and it is just this escape which permits the apparent defect to disappear
into thin air.

(c) As we have seen above, the manifold RP2 corresponds to the case of nematic liquid crystals.
The defects are described by elements of the group Z2, the so-called cyclic group of order
2. There are two elements;{0, 1}. The unit element is 0, the other element is 1, with a
combination rule that says that 1 + 1 = 0, or equivalently 1 = −1. Just, in fact, as we
expected from the continuum mechanics argument employed by Cladis and Maurice a few
years earlier and discussed above in section 4.2.

The “error” Charles Frank [83] had made in 1958 was to classify the nematic defect lines supposing
that the director remained “in-plane”, i.e. that the order parameter manifold had been S1,
rather than P2. This leads to an incorrect fundamental group and hence a different homotopic
classification. The 1958 paper mention “topology” on three occasions, but the use of the term
is informal. There is no appeal to topology as a mathematical discipline. Frank is closing his
eyes and using his “common sense”. Frank’s common sense, of course, was uncommonly reliable
– almost to the extent of genius – in general; he had a spectacular three-dimensional intuition.
It half-fails him here; half, because one could use a Volterra process to define the defect line,
rather than the homotopic classification.

As we have seen, Maurice and Patricia Cladis had discovered a new continuuum configuration
(which as it happens, breaks the planar symmetry) and hence are able to infer the correct
classification. But the deep reason comes from the homotopy, and not, say, from the broken
planar symmetry. It is possible that a S = 1/2 defect would also break the planar symmetry.
But even if this is possible, unlike the S = 1 line, the S = 1/2 defect cannot be wished away by
reconfiguration, exactly as Maurice and Pat had suspected in 1972. The corollary is that there
must be a smooth distortion of Frank’s +1/2 disclination into the opposite −1/2 disclination.
And so there is, although it takes rather more geometrical intuition to “see” it than to see the
escape into the third dimension.

There is a final important social point. Solving the continuum mechanics was a feasible task for a
theoretical physicist. But the task of determining the fundamental group has been subcontracted
to mathematicians, and for the everyday physicist the formal reasoning (as opposed to the
intuition) becomes a task for the specialist.

To finish this section on Maurice’s work, we remark that the idea that homotopy and topological
methods drawn from pure mathematics can be used to describe defects in ordered phases emerged
in several places – Moscow, Paris, Warsaw, London (at least) – at more or less the same time. We
here continue with our discussion of Maurice’s scientific contributions. We postpone to Section 5
mention of other parallel contributors to the “Homotopic Revolution”, as well as some discussion
of its consequences and antecedents.

4.4 Focal Conics

Maurice devoted almost a score of papers to the study of focal conics, beginning with a collab-
oration with Claudine Williams in 1976, and ending almost in the last year of his life. Among
collaborators were Claire Meyer, Iannis Lelidis, Christophe Blanc and perhaps most importantly
Oleg Lavrentovich, who has developed this theme in more detail in another article in this issue.

Some historical background: As we have seen in Fig. 3, what we now recognise as focal conics
were recorded by Lehmann in his 1904 book [17] what he called fliessende Kristalle (flowing
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crystals). But he does not draw attention to them, and is distracted by what he takes to be a
veritable menagerie of different types of crystallite. A propaganda visit by Lehmann to Paris in
1909 excited interest in “Lehmann’s liquid crystals” amongst several leading French mineralogists
(see e.g. Ref. [16,18,110] for more details), including Frédéric Wallérant (1858-1936) and Charles
Mauguin (1878-1958) at the Sorbonne, as well as by Georges Friedel and his assistant Jean
Grandjean (1882-1975) at the St. Étienne School of Mines.

The “focal conic liquids,” as Friedel and Grandjean called them to begin with, first saw the light
of day in 1910. A short article in the proceedings of the Academy of Sciences [111], was followed
up by a long and exhaustive study in the Bulletin of the French Mineralogical Society [112]. We
might add that there were several other liquid crystal papers with a different focus that year
from the same stable. Indeed, it seems surprising that they found time to sleep, so productive
were they in this period. Some of the most pictorial results from this article are shown in Fig.
15. The tag “focal” indicates that the authors realised that what they were seeing was an optical
phenomenon. But the inference of a non-uniform layered system, with the lines associated with
layering singularities, had to wait until Friedel’s famous 1922 review [19].
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Figure 16: Another figure from Friedel and Grandjean [112], apparently demonstrating the exis-
tence of crystallites. Friedel labelled them as “pseudocrystals”.
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Digression: We take a brief diversion at this point, because this Friedel-Grandjean paper [112]
was part of a not-so-friendly exchange between them and Lehmann about the fundamental na-
ture of liquid crystals. Just after it [113] we find them replying to a previous paper by Lehmann
as follows [my, rather free, translation]:

Monsieur Lehmann wrongly believes that we are defining crystals as bodies which
are both birefringent and uniform. . . .We define crystalline matter as that which
possesses discontinuous vector properties governed by Ha uy’s Law. A crystal is
a uniform piece of crystalline matter. . . . If one doesn’t use (this definition) of
crystalline matter, then there is no satisfactory definition of the crystalline state.

Monsieur Lehmann thinks that we regard the concept of a liquid crystal as
absurd. We don’t look at it that way. The idea of liquid crystals seems to us
perfectly admissible. However . . . .. it is simply that this theoretical concept does
not apply to these liquids . . .

By 1922, however, Friedel was taking a much harder line. “Liquid crystals”, as reasonably under-
stood, had indeed become ridiculous. Professionally, the experimenta cruces of von Laue and the
Braggs had pinpointed the microscopic difference between liquid and crystals. And personally,
Lehmann was dead, so the pretence of politeness was no longer necessary. Now, having under-
stood why the focal conics were occurring, he abandoned “focal conic liquids” for the “smectic
phase”.

Back to Georges Friedel: There were other unexplained signatures of the fliessende Kristalle.
The exotic shapes in Fig. 16 are reminiscent of architectural spandrels, or alternatively like three-
dimensional snowflakes. In the absence of alternative evidence, observers are easily persuaded
that what they see in their microscope objective are elaborate crystals. And then there are the
mysterious “oily streaks” already found by Lehmann in these materials. Neither are immediately
explicable in terms of a layered material. However, once one is committed to the idea of a
layered structure, it is possible to construct arguments that these other textures are explicable
in terms of the “layer paradigm” According to Friedel, the pseudocrystals are elaborate complex
multi-focal-conic edifices, while (in modern language) the oily streaks are disclination pairs or
combinations thereof.

Some general physical speculations: So much for the development of the paradigm in the
first place. We can also think about the problem starting with modern understanding. Crystalline
solids, as we have seen in Section 3, would normally be divided into (three dimensional) domains
in each of which the atomic structure is regular, but between which the regular pattern breaks.
They are normally separated from each other by (two-dimensional) grain boundaries. There are
also (one dimensional) dislocations, and occasionally coherent dislocation patterns can so-to-
speak condense into a grain boundary.

Nematic liquid crystals possess no positional order whatsoever, but can reorient as one moves
from place to place. The sharp grain boundaries which occur in solids do not occur, as the
director changes can spread themselves over whatever space is available. But disclinations (defect
lines) and hedgehogs (defect points) can occur, are localised, and do stabilise spatial director
reorientation.

Smectic (A) liquid crystals are in between. They possess one-dimensional crystalline order (an-
other way of saying that they are layered), and of course, retain the nematic orientational order.
It would be a sensible question to ask, do the domains and domain boundaries behave more
like the nematic, or more like the crystal? What do grain boundaries look like in smectic liquid
crystals? And the answer is, well, as one might expect, a bit of one and a bit of the other. (Two-
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dimensional) grain boundaries between smectic regions with layer normals in different directions
can exist, for example when strong boundary conditions legislate this.

However, more usually, the freedom of smectic layer normals to wander in space is limited,
because they are constrained by the obligation to remain (more or less) an equal distance apart.
But nevertheless what freedom remains is sufficient almost to eliminate the grain boundaries.
What remains are the (line, rather than plane) disclinations from the nematics, the focal conics
(which are new), and dislocations of various types which can be carried over from solids. A
problem is that space is often not filled by the domains generated by the focal conics. This is
what is happening in Fig. 15 with the large and small ellipses. The extra space is filled by
smaller (and then even smaller, and smaller than that, and so on . . . ) focal conic domains, with
grain boundaries separating the different regions.

Forward to the 1970s: After Georges Friedel’s 1922 paper, these problems were largely ne-
glected until the liquid crystal renaissance in the 1970s. Two early papers from the Orsay group
are worthy of mention. One was by the distinguished biological physicist (or, originally, physical
zoologist) Yves Bouligand (1935-2011) (of whom more later) [114]. This paper harks back to
Friedel and Grandjean, noting that not all problems were solved by them: not all conics are quite
focal, requiring, inter alia, a density of screw dislocations in the smectic bulk. The other is is
by Pierre-Gilles de Gennes and collaborators [115], and is concerned precisely with a statistical
treatment of the nesting of ellipses shown in Fig.15.

Work by Maurice and collaborators: Here we give a brief taster, and for a more com-
prehensive overview refer the reader to the beautifully illustrated review by Maurice and Oleg
Lavrentovich in 2009 [116]. An important early paper [117] concerned the energy of a focal conic
domain. Using curvilinear coordinates, Maurice finds it to be logarithmic in the semi-major
axis of the ellipse. The mathematics is impressive, although once standard and now rather out-
of-fashion – presumably replaced in the present day by some engineering finite element code.
The main reference was a textbook by the distinguished differential geometer Gaston Darboux
(1843-1917), published in 1888 and by chance, just not available in English. This was the main
tool for a number of other studies. An important theoretical conclusion is that most focal conic
domains are toric (TFCD), i.e.the smectic layers forming the TFCD are curved in the shape of
half-tori. The half-tori layers possess one positive and one negative curvature, such that their
sum is almost zero. This is not a geometric but rather an energetic property; one of the terms
in the local free energy depends on the mean curvature (that is, the sum of the two inverse radii
of curvature).

Another important point made by Maurice and collaborators [116] is that indeed the “liquids
with conics” possess them because of their layered structure. However, the conics are the result
of fitting layers of equal separation, and implicitly suppose long-scale properties. On shorter
scales, we can allow layer mismatch (i.e. dislocations), or layer dilation/expansion. And of
course, the dislocations and focal conics interact. So other textures which appear reflect this
complex reality. Among the most obvious are the oily streaks first identified by Lehmann. In
in Lα lyotropic liquid crystals, joint work with Lavrentovich and Boltenhagen [118] showed that
these were clusters of parallel edge dislocations with giant Burgers vectors. In collaboration with
Jim Sethna of Cornell University, Maurice showed that objects like Friedel’s bâtonnets can be
built up from densely packed clusters of focal conic domains [119]. But the focal conic domains
do not fill (“tile”) space, and the gaps that remain between the domains are filled with layers of
spherical curvature. Lavrentovich [120] showed that an important factor in focal conic formation
is the anisotropy of the surface tension. Later Fournier and Durand [121] showed also that this
factor both stabilises the bâtonnets into rod-like shapes and leads to faceting of the focal conic
domains. This is the underlying cause of the beautiful structures which Friedel first found long
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ago, which are shown in Fig.16.

One focus was to deepen understanding of focal conic domains in general Smectic A systems.
Another was to investigate the interaction between the focal conic defects and smectic disloca-
tions, disclinations and grain boundaries. In nematic terms, the focal conic structure consists
of an S = 1 defect associated with the hyperbola, and an S = 1/2 defect associated with the
ellipse. Above the smectic-nematic transition the former is unstable, and the latter reduces to
a wedge disclination loop. Furthermore, as noted above, Bouligand had suggested that screw
dislocations could cluster around the hyperbolic axis of a focal conic domain. A early article
by Claudine Williams and Maurice had confirmed this [122]. Much later papers with Nastishin
and Claire Meyer [123,124] addressed pre-transitional phenomena close to the nematic-smecticA
transition. One observation was that now the focal conic lines were bent (sometimes out of plane,
sometimes in plane) or broken. There is confirmation of work by others that in the immediate
neighbourhood of the transition to the nematic phase, dislocations multiply, and the focal conics
decrease in size, eventually disappearing, with the smallest disappearing first. These experiments
also make contact with influential theoretical work [125]

Other pieces of work included a paper on the smectic C phase (which necessarily has a more
complex defect structure) (e.g. [126]), as well as a discussion of grain boundaries between smectic
domains tilted relative to each other. These are sometimes known as chevron walls (see e.g
the review [127]), in which the director may curve if the angle between the normals is low.
Alternatively, the wall may split into a dislocation lattice, if the angle between the layers is low.

We have only mentioned a selection of Maurice’s work on focal conics here. The extent of these
studies was very wide, involving both experiment and theory, and also collaboration with a large
number of colleagues from across the world. A particularly interesting feature is that during
the late 1970s, a particularly fruitful period, he was producing more or less contemporaneously,
influential studies of focal conics, topology, quasicrystals and magnetism.

4.5 Dynamic Phenomena and Rheology

4.5.1 Background

In a set of papers between the late 1970s and the early 2000s, Maurice and collaborators carried
out experiments on, and provided theories for, dynamic phenomena in smectic and structurally
similar lyotropic layered (= lamellar) phases . We recall here important work in two areas. A first
concerns the manner in which the spatial velocity gradients respond to an applied force, and the
relationship between this response and that of solids; this work may properly be called rheology
[128–135]. The second involves phase and textural changes induced by shear fields [136–140].
In fact, chronologically speaking, the second of these precedes the first, but we prefer this order
from a conceptual viewpoint. But in all this work, a central theme is the role played by defects
of one sort or another in the phenomenon in question.

To put Maurice’s work in its proper rheological context we have first to go back to the 19th

century. The first articulation of continuum theories of both liquids and solids can be traced
back to Claude-Louis Navier (1785-1836) [141] in the early 1820s; see the book on the history of
hydrodynamics by by Olivier Darrigol [142] for a more detailed discussion. Most contemporary
description of Navier’s papers rewrites his cumbersome longhand equations in the much more
compact tensor form. The key advance over the earlier theories of Euler and D’Alembert was
his introduction of viscosity, although on the one occasion when the term is used here by Navier,
it does not have its modern meaning. To modern eyes the development looks rather forced
and makes use of a microscopic particle model which at that time would have been grossly
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speculative. The stress is proportional to the velocity gradient, and their ratio is (or rather will
be) the viscosity.

Essentially the same equations were also derived by the Irish (but removed to Cambridge!) math-
ematician George Gabriel Stokes (1819-1903) [143]. Stokes’s development looks more recognisable
to us, although he uses the term “friction” for what soon came to be called the viscosity. Ex-
periments showed that it applied for “low” velocities. In this regime, the viscosity equation is
σ = ηγ̇, where σ is a force (per unit area) or stress, η is the viscosity and γ̇ is the rate of strain
field (i.e. the gradient of the velocity).

Stigler’s law of eponymy (that if a law is named after someone, then that someone was not the
discoverer) only partly applies here. For somehow in the telling, the tale of the Navier-Stokes
equation has lost (at least!) Cauchy, Poisson and St-Venant (see [142] chapter 3). For the record,
there was no Dr Navier-Stokes. By contrast, when it comes to the Levi-Civita symbol εijk you
can search in vain for Levi and Civita separately in the annals of applied mathematics. The
famed antisymmetric object was due to but a single double-barrelled tensor pioneer. There was
no team, no disputed discoverer, just Tullio (1873-1941) himself.

More complex materials are non-Newtonian (why, will divert us too far!), and the stress is
no longer proportional to the strain. Often in this case in practice the force is the independent
variable, and the relation is written γ̇ = Cσm. We can define an effective viscosity by η = ∂γ̇/∂σ.
In this case, there will also be a power law relation: η ∼ γ̇−α. Then by comparing powers,
α = 1 − 1/m ⇒ (m > 1⇔ α > 0). Note that this dependence is the same as the so-called
Orowan Law in solid creep discussed in Section 3.1.4.

Now (by definition) if α > 0 – and hence if m > 1 – the material is shear-thinning. Informally,
it becomes easier to move the harder one pushes. The general subject – that of flow in complex
fluids – is known as rheology, a term coined in 1920 by the American physical chemist E.C.
Bingham (1878-1945) from the Ancient Greek word for flowing.

Liquid crystals have long presented rheological puzzles. Reinitzer’s and Lehmann’s first obser-
vations in the late 1880s were optical: a cloudy fluid phase interposed itself as one heated a
crystal, before a clear liquid appeared. But Lehmann soon subdivided his new materials into
flüssigen Kristalle (fluid/liquid crystals) and fließenden Kristalle (flowing crystals) [16]. The
flowing crystals were more viscous, and produced the textures that were later identified with
the smectic phase. Indeed Lehmann was tempted to distinguish the two types of liquid crystal
using the viscosity as the more important criterion, “foolishness” for which he was later chided
in insulting terms by Georges Friedel [19], who saw (correctly) phase change as the key driver.
Lehmann, who in earlier exchanges with Friedel and Grandjean had been just as intemperate,
would no doubt have given as good as he received, had he not been called to meet his Maker a
few months earlier.

In the early years of the 20th century it was no surprise to Otto Schenck [144] that the liquid
viscosity underwent a discontinuity at the transition from ordinary liquid to liquid crystal. But
by contrast it was a big surprise – indeed it seemed rather counter-intuitive – that in several
materials, the liquid crystal just below the transition flowed more easily (i.e. the viscosity jump
was positive on increasing temperature). In the 1930s Miȩsowicz [145,146] reported inconsistent
viscosity results from other workers as compared to his own experiments (see also the essay by
Carlsson and Leslie [147] on the development of theories for flow in nematic liquid crystals).
Miȩsowicz was able to produce consistent linear rheological behaviour in the presence a strong
fields which compel the liquid crystal director to remain constant. This enabled him to identify
three different viscosities, depending on the director orientation relative to a shear direction. The
final “ ‘settled” nematodynamic theory of Ericksen and Leslie (see e.g. [148]) – with five indepen-
dent viscosities – grew out of work by Oseen [84,85]. Apparently non-Newtonian behaviour was
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the consequence of interaction between director and velocity gradients. But even this theory fails
to include disclination lines endogenously; when boundary conditions and flow field are antag-
onistic, the consequence is “low Reynolds number” turbulence, as defects continuously peel off
boundaries.

So even the rheology of nematic liquid crystals is hard. Smectic liquid crystals present further
difficulties because they are layered, and hence something between a liquid and a crystal. De
Gennes [20,149] developed a Newtonian theory for smectic A, which works if the smectic layers
maintain their integrity in a single domain with flat surfaces. But as the presence of exotic
textures tells us that they often do not, the question of the actual rheological behaviour remained
open.

4.5.2 Non-linear response

This series of papers [128–135] examined the non-linear stress-strain relation in smectics and
lyotropic lamellar systems which might be expected to be structurally similar. The lyotropic
system used in these studies is a mixture of soap, brine and two complex hydrocarbons. This
4-component system (other workers, see e.g. [150], showed that the precise makeup was not so
important) has a very complicated phase diagram. By varying the hydrocarbon concentrations
one can produce a set of phases, only some of which are the layered phases under consideration
here.

The experiments yielded results with γ̇ ∝ σm, with two different values of m, one with m ≈ 1.7,
and the other with m ≈ 4.8. Which value obtained depended on the observed texture. The
m = 1.7 case corresponded to “oily streak” textures, aligned in the direction of flow. These
occurred in both the smectic and the lyotropic lamellar systems under shear; in the lyotropic
case, this sometimes occurred only at low shear. The m = 4.8 case was associated with the other
observed texture. This was the so-called “onion state”, which occurred only in the lyotropic
system, and then only in a limited concentration regime. More formally the onion state consists
of a close-packed, space-filling, aggregate of spherical supramolecular particles. Each particle
consists of a set of spherical layers, packed in a ball, like the layers in an onion. The technical
term is multilamellar vesicles (MLV’s); vesicles because they are closed droplets surrounded by
an interface, and multilamellar because there are many layers.

These power law results for the dynamic response to a shear stress are reminiscent of the Harper-
Dorn creep mode in metals and other materials, discussed in Section 3.1.4, although the exact
power laws themselves differ. However, the resemblance is sufficiently strong that in both cases,
a dislocation mechanism seemed a sensible place to start. The Orowan Law in smectics connect-
ing dislocation velocity to stress rate was demonstrated experimentally by Lelidis, Kleman and
Martin [130]. The m ≈ 1.7 case could be explained in terms of dislocation climb within smectic
layers; a calculation [129] yielded m = 5/3 ≈ 1.67, which is rather close to 1.7. The m = 5 case
was a rather tougher nut to crack. Ref. [129] speculates that here the key dislocations no longer
lie within the smectic phase itself, but rather within the superlattice created by the MLV’s. The
presence of screw dislocations in the stressed smectic-A phase, and the yield stress as a function
of screw dislocation density was observed by Lelidis, Blanc and Kleman [135].

4.5.3 Instabilities and Phase Shifts

It is well-known, of course, that in statistical mechanics, external fields can induce instabilities,
and even move phase boundaries. In the smectic A phase, a dilatation, tending to increase the
layer thickness provides an example of this general phenomenon. In a completely free system,
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eventually the material would permeate through the layers in such a way that the “correct” layer
thickness would be reestablished. But systems are not completely free. Is there some way for
the system to maintain the equilibrium layer width without such a radical layer rearrangement?
One answer is very easy to see: an undulation instability, with the end-result a zig-zag layer
arrangement, as shown in Fig. 17. The layer tilt compensates for the “wrong” layer width.
However, the price to be paid is the existence of so-called “herring-bone” grain boundaries which
cost free energy.

In the figure we see a cross-section, so the grain boundaries form planes. To summarise: a free
energy problem is caused by the incorrect layer width. It is resolved by the zig-zag layer tilt,
which gives rise to two-dimensional defects: grain boundaries at the herring bone tips. However,
the existence of focal conics in smectics bears witness to an alternative resolution. The focal
conics curve the smectic layers in such a way as to reduce the dimension of the layer mismatches:
the defects become lines rather than planes. Here too this option is available. Now the instability
may be to focal parabolae, as shown in Fig. 18, as observed first by Rosenblatt et al [151].

a a (1+ε)

a (1+ε)

A: Equilibrium layer width. B: Dilated layer width C: Bent  layers beyond instability.
cosθ= 1/(1+ ε)

θ

Figure 17: Possible dilatation instability smectic A liquid crystal layers.

In [136], Horn and Kleman (see also a follow-up article with Oswald and Béhar [137]) considered
a small molecule smectic A liquid crystal in a shear flow field. This turns out to have a similar
effect to that of dilatation. A two-dimensional superlattice is formed, with one principal lattice
direction parallel to the flow, and one perpendicular to it. Some results are shown in Fig.18.

A number of theorists later addressed this problem [152–155], and were able to explain these
experimental results, at least qualitatively. The question of whether there is a simple intuitive
picture of the shear-induced layer instability, matching that of the layer dilatation, is more
elusive. To this author, there seems at least a prima facie analogy with the surface instability
enabling winds to generate storms on the sea. A recent review is given by Fujii et al. [156].

The next example is an interesting problem in which Maurice and colleagues became involved in
a debate as to the correctness of their experiments. Lyotropic amphiphilic solutions consisting
of a surfactant and co-surfactant can exhibit a rich phase diagram as the relative concentration
of surfactant to co-surfactant changes (see e.g. [157–159]). Two neighbouring phases which
frequently occur are the so-called Lα and L3 phases.

Lα is an orientionally ordered layered phase, structurally analogous to the smectic A. However
in the Lα phase, the orientational order can be considered to be derivative. The primary effect
is an attempt by the system to phase separate between oil-like and water-like regions, which
is frustrated by molecular geometry, and which is resolved by dividing the unlike regions into
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Figure 18: Results of shear flow experiments [136,137] in the smectic A 8CB. Sample thickness:
350µ.
Left: Cross-section of sample showing fully developed focal parabolae. Flow field shown schemat-
ically on left of picture.
Right: Enhanced photograph of two-dimensional focal parabola superlattice seen through
crossed polars. Note that the lattice contains several dislocations.
Figures from Oswald et al. [137], with permission c©1982 Taylor and Francis.

layers. The L3 phase, by contrast, is a bicontinuous phase, often known as the Sponge phase.
Once again the driver is a failed attempt to phase separate. In this phase space is divided, not
into layers, but rather disjointly into two interpenetrating continuous regions, one water-like and
the other oil-like. A caricature of the two different configurations is shown in Fig. 19.

The question was, how does a shear flow affect the phase boundary between the two phases as
external conditions vary? Does the L3 advance with respect to the Lα phase or vice versa? We
remark that theoretically this problem is a challenge. In the presence of an extensional stress,
for example, it is possible to write the force as a gradient of a potential. The consequence is that
the conditions for phase equilibrium can be written in terms of the equality of thermodynamic
potentials. All that one requires to figure out the phase transition shift are good approximations
for the free energy of the two phases in question. If the relevant thermodynamic potentials
are equal, then it is guaranteed that at the phase transition there will be equilibrium solutions
side-by-side, with a stationary interface between them.

Not so if the forces cannot be written in terms of a potential. Then the sole condition for
phase equilibrium is the existence of the stationary interface between the side-by-side phases.
In principle, the bulk conditions for a stationary interface could depend on the orientational
relationship between the stationary surface and the external stress. Unlike in the stationary
potential case, there are in general no bulk criteria. On the other hand, one can seek a flow-
induced instability. This does not comment directly on equilibrium, and is analogous to finding
a spinodal point in equilibrium thermodynamics.

The experimental question had come to the fore, because there had been conflicting predictions
concerning the effect of a shear flow on the L3 − Lα transition. Calculations by Cates and
Milner [162] had found that the Lα phase would be stabilised relative to the L3 phase. Not
so, said Bruinsma and Rabin [163], exactly the reverse! Experimental Studies by Maurice and
collaborators starting in 1996 [138–140] suggested that the shear flow induced birefringence, i.e.
that the Lα phase was preferentially stabilised. However, the Cates-Milner prediction for the
critical shear rate was quantitatively an order of magnitude too great.

We do not go into the subsequent rather copious literature here, nor hold a rigorous view about
the rightness (or universality) of either case (but see the review by Butler [164]). However,
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A: Sponge phase B: Lamellar phase

Figure 19: Schematic representation of A: the isotropic L3 sponge phase, and B: orientationally
ordered Lα bilayer lamellar phase. Sponge phase after Iñiguez-Palomares et al [160]. Lamellar
phase after Garvey et al [161]. In each case, space is divided into two disjoint regions, with
amphiphilic molecules straddling the interface between them. Defects in the lamellar phase can
consist of holes in the layers, linking up adjacent layers. In some sense the sponge phase occurs
when the lamellar bilayer defects condense, so that all layers become topologically linked.
A is reprinted with permission from: R. Iñiguez-Palomares, H. Acuna-Campa, and A. Maldonado, Phys. Rev.
E 84, 011604 (2011). c©2011 by the American Physical Society. B is covered by a Creative Commons CC By
license.
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we do remark on a comment submitted in 2002 to Physical Review Letters by Butler and col-
leagues [165], reporting on attempts to repeat the Kleman group experiments [139]. They were,
unfortunately, (only) partially successful. Partially, in that their experiments gave irreproducible
results for the critical shear rate. Indeed, a better predictor for the L3 − Lα transition was the
time spent in the cell. They observed a biphasic region (not unexpectedly, in the view of this
author; the boundary condition at an interface is equality of shear stress, rather than of γ̇.).
The Butler group view was that the Kleman group transition to a biphasic region was driven
primarily not by shear, but rather by cosurfactant (hexanol) evaporation, for which (they al-
leged) the Kleman group had not controlled. The Butler group experiments were, they averred,
quantitatively consistent with the Cates-Milner picture.

Not so quick, replied immediately Maurice and friends! Butler et.al. have not specified the point
in the phase diagram at which they did the experiments. They should be embarrassed ! Our
transition only occurs when the brine concentration is sufficiently high (and by implication,
hlButler and his coworkers had done their experiments in the wrong concentration regime).
Anyway, say Maurice and colleagues, we have done some new experiments which are consistent
with our previous results. Even if there is some hexanol evaporation, it will have negligible
effect on our results. But we do admit that careful temperature control is more important than
we had realised, and this may account for some of the discrepancy with other authors’ work.
The Cates-Milner prediction is still incorrect by an order of magnitude, although in the right
direction....

Regardless of who is correct, this is the scientific method at its best. Not all variables can be
controlled. A change in experimental procedure (I have not discussed this in detail here) can
reveal features of the problem which had previously not been understood. Changes which had
been thought to be irrelevant may turn out to be relevant. And so on. We observe here Maurice
as philosopher-scientist, arguing his case vigorously, but at the same time (for we are scientists!),
always bearing in mind the possibility of having to abandon one’s position in the face of new
evidence.

4.6 Aperiodic solids

4.6.1 Amorphous solids

In a 1989 review article [166], summarising some of his work in this area, Maurice draws the
reader’s attention to the principal geometric reason for disorder in solids:

Pentagonal symmetry is forbidden in usual crystals, which are invariant under a
set of three-dimensional translational symmetries. It has been well known for a
long time that supercooled liquids (Frank 1952) [167], liquids of simple spheres
(Bernal 1964) [168] and probably amorphous metals (Sadoc et al. 1973) [169] are
disordered because of a local tendency towards pentagonal symmetry (in the form
of icosahedral dusters of atoms. [This] local symmetry, as stated by Frank as early
as 1952, satisfies compacity requirements (the local density is higher than in a f.c.c,
arrangement of hard spheres). [It also] provides for vibrational entropy since the 12
spheres which surround the central atom must not be in contact. [Thus it could
possess] a smaller internal energy than f.c.c, or h.c.p. arrangements.
(Citation numbers in square brackets are references in this paper)

In other words, the local geometry (or physics) is attempting to impose an order which cannot be
repeated uniformly throughout space, leading to frustration. Here this frustration is manifested
by a lack of consistency between global order (something, anything, that could be continued, e.g.
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cubes) and local order (in the case discussed here by Maurice, it is icosahedral). The prototypical
example of frustration involves spin glasses [170], in which the bonds linking neighbouring spins
cannot all be satisfied at the same time, while other examples give rise to exotic magnetic
structures, or complex non-uniform phases in liquid crystals.

The result is a compromise. In this compromise one of two situations obtains. Sometimes there
is an amorphous solid, and sometimes a quasi-crystal, which we shall discuss further below. In
amorphous solids the atoms (or more generally elementary units) in this class exhibit no positional
order whatsoever. The neutron or X-ray scattering signature exhibits peaks and troughs, but no
spots, and for many purposes the static positional correlations are indistinguishable from those
of a liquid. The structure is frozen and the particles vibrate around their equilibrium positions,
whereas in liquids they are mobile. Such solids are generally glasses, the understanding of the
properties of which have challenged theorists for more than a century, principally because they
seem not to conform to the usual Gibbs-Boltzmann statistical mechanical paradigm.

Figure 20: LEFT: A dodecahedron, which contains 12 pentagonal faces. Each vertex of the
pentagon subtends an angle of 3π/5 = 108◦. In the dodecahedron, as a result of the curvature,
each vertex is touched by just three faces. RIGHT: (Failed) attempt to tile space using regular
pentagons. In a flat space, it is impossible to construct a vertex touched by an integral num-
ber of faces. Unfolding the dodecahedron, or tiling two-dimensional space with a collection of
pentagons, however it is done, inevitably introduces irregularities, which can be identified with
disclinations. Each pentagon contains a blue square at its centre. The red circles are at the
centres of diamond shapes which must be inserted to restore the regularity.

An early collaboration with Jean-François Sadoc [171], and a number of subsequent papers
(e.g. [172, 173]) dealt, using rather non-trivial geometry and group theory, with the structure
of amorphous solids. A key part of these papers involved translating between curved spaces, in
which it is possible to insert the local coordination, and the flat space in which we find ourselves.
The idea can be seen in caricature in Fig. 20.

Fig.20 shows pentagons failing to tile a two dimensional space. The idea extends to three
dimensions, with pentagons replaced by icosahedra. However, imagining it without the aid of
group theory is almost impossible. The curved spaces may have positive curvature and thus
be elliptic spaces, or negative curvature (hyperbolic spaces). In the curved space, there are
crystallographic groups analogous to those of Euclidean space, and the difficulty involves the
imperfect mapping between the space groups in the curved and flat spaces. In [172], inter alia
Maurice wrestles with some apparently universal features of glassy materials, including the linear
specific heat at low temperatures, which should be related to the existence of low lying acoustic
modes which he suggested were analogous to the rotons found in liquid Helium.
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4.6.2 Quasi-crystals

In later work in this general area Maurice turned his attention to quasicrystals [174–178], see
also the reviews [166, 179]. Quasicrystals were discovered by Schechtman et al. [180]; for this
work Schechtman received the 2011 Nobel Prize in Chemistry. They were so labelled by Levine
and Steinhardt [181]. These materials exhibit local symmetries which appear, at least according
to previous ideas in solid state physics, incompatible with the tiling of space, and thus im-
possible. Examples of such symmetries are pentagonal in two dimensions, and icosahedral in
three dimensions. Such solids do exhibit sharp crystal-like spots in X-ray or neutron scattering.
Thus, interestingly and anomalously, they are crystalline in reciprocal space, but apparently
“amorphous” in real space.

As a new crystallographic paradigm, this idea had been anticipated by Mackay [182], when con-
sidering the tilings introduced in 1974 by Penrose [183], at that stage mainly as a mathematically-
based aesthetic curiosity. There is some local rotational symmetry; the compromise is achieved
using two basic lengths which are incommensurate with each other (i.e. the ratio is an irrational
number). This is shown schematically in Fig. 21.
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Figure 21: Example of a two-dimensional quasicrystal. Left: Penrose tiles. Right: Penrose
tiling. The space-filling tiling is achieved using the two basic tiles with mutually incommensurate
dimensions. This results in the observed locally pentagonal symmetry, which repeats but is
nevertheless not periodic. From Kleman and Pavlovitch [174], reproduced with permission EDP.

The term “quasi-crystalline” is a transfer from the mathematical concept of quasi-periodicity.
This occurs, for example, in studying rotations in astronomy, when bodies are undergoing several
different periodic motions the periods of which are incommensurate with each other. The result
is a dynamical system which never quite repeats exactly.

On the other hand, often there are non-linear effects which induce, in the long-term, a secular
change in the motion toward phase-locking, in which the ratio between periods of the two motions
tends to some simple rational number. The period of the moon’s rotation around the earth and
in space, for example, have phase-locked, with the result that from earth we never see the “far”
side of the moon. But the period of the earth’s rotation in space and around the sun have
not phase-locked, causing over the years immense problems for priests, farmers and latterly
metrologists.

The analogy to this phase-locking in solids is to replace the quasi-crystal by a superlattice. In
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this case the system possesses periodicity on scales much longer than the interatomic distance.
Maurice was initially less keen on the term “quasi-crystalline”. He first (1986) refers to “aperiodic
crystals” [174]. Later the same year [175], we find him referring to “non-Haüyan crystallography”,
a term suggested by Sir Charles Frank, and which commemorates the (French) René-Just Haüy
who introduced the idea of the atomic lattice and the unit cell.

Much of the work conducted by Maurice and collaborators was concerned with the development of
a theory of topological defects in quasicrystalline media, [166,174–179], using some mathematics
developed by the distinguished Dutch mathematician Nicolaas Govert de Bruijn (1918-2012) and
some (to this author) fearful mathematics. One key idea, used extensively in the development of
ideas about lattice defects in these systems [177], and originally due to Kramer and Neri [184],
involved the insight that quasi-crystals could be thought of as projections of a regular hyperlattice
at an incommensurate angle from a higher dimension to a lower spatial dimension.

For a d = 3 quasi-crystal the hyperlattice has dimension 6, whereas for a d = 2 quasi-crystals
such as a Penrose tiling, the hyperlattice has dimension 5. The process is shown schematically
in Fig.22. The projection is not unique, reflecting the lack of periodicity in the quasi-crystal.
Indeed the projecting cross-section can even vary periodically through the high dimensional
lattice, giving rise to the idea of a phason, which act as a localised excitations of the system. A
particular type of topological defect peculiar to quasicrystals is known as a disvection

A final set of papers in the quasi-crystal field, in collaboration with Dmitrienko [185,186], dealt
with some specific examples in semiconductors. Here it turned out that some particular types of
crystal with local tetrahedral coordination possess atomic arrangements very close to icosahedral
quasicrystalline order. In particular the atomic positions were very close to projections from a 6-
dimensional hyperlattice, but subject to a phason distortion. In the language of the present essay
this may be thought of as “phase-locking” of the quasicrystalline phase to a nearby crystalline
lattice. This subject has been the focus of an enormous amount of research; for a more recent
review see Steurer [187].

2432

1. Introduction.

The crystallographic description of an aperiodic crystal (quasicrystal) makes use of a d-
dimensional Euclidean crystal Zd c Ed (Ed : d-dimensional Euclidean space), in which a
dl -dimensional planar cut PII is performed. This cut has some irrational orientation with
respect to the lattice. A restricted set of vertices of Zd is projected on Pli ; they constitute the
quasicrystal in question. Pli is indeed thought of as the physical space, with dll = 3 or
dl = 2 according to the case. The hyperlattice is a hypercubic lattice, with d = 6,
dll = 3 (resp. d = 5, dll = 2) for the icosahedral crystal (resp. the pentagonal crystal).
Pjj is a subspace of Ed which is globally invariant under the icosahedral group, which is a
subgroup of the hyperoctahedral group in d = 6 (resp. the pentagonal group, which is a
subgroup of the hyperoctahedral group in d = 5). For more detail, see references [1-3].
The quasicrystal which is obtained by the above process depends of course on the restricted

set of vertices of Zd which is selected. A most usual choice is to select the vertices which
belong to a d-dimensional strip parallel to Pli and whose breadth spans a unit cell of the high
dimensional crystal as in figure 1. A more general construction employs the device of the so-
called « atomic surface » S. This is a dl = d - d dimensional manifold made of equal pieces
(motifs) attached to all the equivalent vertices of the hyperlattice [4]. S is therefore invariant
by the translations of the hyperlattice and has a global icosahedral symmetry (resp.
pentagonal symmetry). The quasicrystal is the set of the zero dimensional intersections of the
motifs and of Pli. Note that the two methods are equivalent if the motif is a copy of

Pi, the orthogonal complement of Pli in Ed (Ed = pl, x P J.. ).

Fig. 1. - The case d = 2, d.L = 1 which illustrates the construction of the strip of selected vertices.

Whatever the method used, the structure of the quasicrystal depends globally on the exact
position of P)j, which can be moved parallel to itself in Ed. The related change of structure will
be referred to as a global phase shift (GPS), and is easily analyzable as a sum of independent
localized phase shifts (LPS), also called phasons, when the displacement of Pli is small.
The physical nature of phasons (an example is given in Fig. 2 for the dp = 2 case) is far from

being understood, but it is by all means clear that they play an important role in the structural
changes which affect quasicrystals [5, 6], and in the processes of plastic deformation [7, 8].

Figure 22: Schematic of the projection of a high dimensional hyperlattice into a lower dimensional
space, from Kléman [177] (reproduced with permission EDP). Here for simplicity the projection
is d = 2 → d = 1. The lattice points which survive the projection lie within a region of the
dimension of a lattice constant in the direction P||. They are marked on the diagram, together
with the projection direction P⊥.
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4.7 Reviews and Books

Maurice was a prolific author who contributed not only original research, but a continuing series
of influential reviews and books. His first review of liquid crystal defects was in the Bulletin de
la Société française de Minéralogie et de Cristallographie, continuing the long French tradition of
considering the study of liquid crystals as a branch of mineralogy [188]. At the time the world-
wide liquid crystal community was rather small, and so the article has to start by introducing
elementary ideas in liquid crystals, both theoretical and experimental, before explaining the
Volterra process, adapted for microscopic purposes from that described in Fig. 7. The article
summarises the work of his laboratory in this area over the previous few years. It was however
in French, which unfortunately limited its scientific influence. In his autobiography [14] Maurice
admits, a little shamefacedly, that for his first paper in English, submitted during his postdoctoral
period in Oxford, he had to wait until his 17th scientific publication.

Further comprehensive reviews of the subject followed in 1989 [8], with Lavrentovich and Nas-
tishin in 2004 [127], with Friedel in 2008 [189], and with special reference to point defects, with
Lavrentovich in 2006 [190]. In addition, we have mentioned above his exhaustive reviews of
aspects of the quasicrystal problem [166,179].

Perhaps above all, the excellently reviewed 1977 Points, Lignes, Parois (Points, Line andWalls...)
[191] was a “must-read” for all in the field. Later, when talking about the impact of this book
on paradigms in the liquid crystal field, Maurice told the present author that he regretted not
writing it initially in English; it took five years for the translation to appear. We also mention
his 2002 Soft Matter textbook cowritten with Lavrentovich [192].

5 More about Topology

We devote a separate section to this subject. This is only partly the result of the significance
of the “homotopy revolution” to the study of defects in condensed matter and, as it turned
out, other physical systems as well. It is partly, implicitly, due to the more recent attention
given to the importance of topology in physics in general, athough we shall not here address
this aspect. This attention was highlighted by the award of the 2015 Nobel Prize for Physics
to Duncan Haldane, David Thouless and Michael Kosterlitz, as well as Giorgio Parisi’s share in
the 2021 Nobel Prize; each of these workers used topological ideas in constructing theories of
low temperature phases in condensed matter. And partly, precisely because of the intellectual
separation between mathematics as applied to science and engineering and pure mathematics
which has developed over the last century, many readers of this article will have no insight into
the roots of the theory. It will turn out that physics and topology have surprisingly driven along
parallel and to some extent intersecting paths, which are worth exploring.

Nevertheless, I emphasise that in its historical aspects, this section is little more than a sketch,
containing details which will at the same time escape experimentalists and annoy serious mathe-
maticians. Serious students of the history of mathematics are referred to, e.g. the volume edited
by James [193], within which, the essay by Charles Nash [194] relating topology and physics will
be of particular interest.

We start this section by discussing work on defect classification carried out more or less in parallel
with that of the Paris group.
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5.1 Parallel work

Original and important as the Toulouse-Kléman paper was, it turned out that the use of homo-
topy theory to classify defects in condensed matter was an idea whose time had come. Papers
by Russian mathematical physicists interested in gauge theories of fundamental particles, using
homotopic classification, had appeared in the previous year [195, 196]. The symmetry group V
was different from that appearing in condensed matter theory, but the idea was the same.

The mathematical background of the Russian scientists was stronger and their explanations
were briefer than those of Toulouse and Kléman. The brevity was partly due to the rather
elitist attitude common in the Soviet school (make the reader think !), and partly, so Economic
Historians tell us, due to the chronic paper shortage in the Soviet Union at the time. The
latter, in particular, prohibited extended narratives, even from the naturally verbose. One of
the Russian mathematicians in question, the late Misha Monastyrskii, later distinguished (see
e..g. [197]) author of several important texts in the field [198,199], was in fact often not short of
words. But nevertheless, for whatever reason, even he was able to squeeze his extended argument
into a single page.

Only a few months after appearance of the Toulouse-Kléman paper, and independently of it,
the Monastyrsky work was picked up by Vladimir Mineev and Grigory Volovik at the Landau
Institute for Theoretical Physics at the USSR Academy of Sciences in Moscow [200–202]. They
were studying defects in low temperature phases of superfluid He3. These phases (He3-A and
He3-B) are analogous to complex superconductors. At the time there was intense interest in
superfluid helium phases; the superfluid He4 phase has been known since the late 1930s, and it
has a low temperature phase whose order parameter has the symmetry of the XY model. He3 is
fermionic and hence expected at low temperatures to behave differently from the bosonic He4.
The defects in He4 are well-studied superfluid vortices, and this is consistent with the predictions
of homotopy theory. But the He3 phases are more complex – indeed they are often described as
complex liquid crystalline phases – and their defects require much more detailed study.

Further parallel and independent work on the classification of dislocations in solids was carried
out by Dominik Rogula in Warsaw [203]. A particularly influential paper was written by the
distinguished British cosmologist and quantum field theorist T.W.B. Kibble (1932-2016) [204].
This paper, entitled “Topology of cosmic domains and strings”, dealt with cosmic strings in gauge
theories, as well as domain walls and “monopoles”, which we would identify as point defects. There
are theoretical analogies between the gauge fields which were being developed to describe the
properties of the early universe and those simpler version describing broken symmetry condensed
matter phases. They are not exact, but are close enough for cosmologists to feel that experiments
of orientational domain formation in liquid crystals can fruitfully be used as a model “cosmology
in a lab” [205].

Before we delve into deep history, we can note that many of the homotopic ideas in fundamental
physics were anticipated by an influential 1966 paper by David Finkelstein of Yeshiva University
simply entitled “Kinks” [206]. Finkelstein’s goal was to seek the origin of conservation rules in
elementary particle physics. The paper is so exquisitely worded that extracts are worth quoting:
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The strict conservation laws of elementary particle physics correspond to exact
symmetries of the underlying quantum field. In some cases the symmetries have
an obvious universal significance, and the correspondence is an especially fruitful
one, such as for angular momentum and charge, understood in terms of Lorentz
and gauge invariance. In other cases the correspondence serves as little more than
a convenient transcription of our experimental knowledge. . . .

. . . In sufficiently nonlinear field theories, there are also objects whose num-
ber is strictly conserved because of continuity, (a continuity, however, of the basic
fields rather than of trajectories). We call these conserved objects kinks, and seek
properties that the underlying field must possess for kinks to exist . . .

The italics are mine. Firstly, some conservation rules come from obvious symmetries, whereas
some symmetries have, so to speak, to be invented in order that the correspondence between
gauge symmetry and conservation law can be maintained. And secondly, the non-linear theories
lead to other kinds of conservation rules, which later in the paper he identifies with so-called
homotopic variables. Finkelstein’s kinks are condensed matter’s defects, and much of the tech-
nology which appears later in the paper later became part of the condensed matter defect canon.

Mainly for aesthetic reasons, I cannot avoid quoting (this time without comment) from two fur-
ther paragraphs in Finkelstein’s introduction:

To avoid misunderstanding, I explicitly abjure two heresies:
The topological heresy: In this theory, particles are not topological deformities
of space-time. To be sure, kinks are topological in some sense. But the kinks treated
here have nothing to do with any topological deformity of space-time. On the other
hand, kinks still occur and indeed in greater variety, if there are admitted topological
space-time deformities.
The quantum heresy: This is not a classical theory of quantum effects. To
be sure, kinks are "quantized" in some sense: they are discrete in number. But
their behavior exhibits no trace of quantum mechanics when it is described
in a completely classical field theory. On the other hand, kinks still occur if
complementarity is explicitly taken into account and the field is treated quantum
mechanically; then, of course, they exhibit the usual quantum effects.

However, when Maurice started to analyse the structure of liquid crystalline defects he was un-
aware of Finkelstein’s paper and the resulting field theory literature. Finkelstein was publishing
in the Journal of Mathematical Physics, which would not in general, we hazard a guess, be light
reading for condensed matter theorists. However, the final section of Toulouse-Kléman includes
this extract:

During the course of our study, we have discovered that topological concepts have
been previously used in field theory by quite a few people, the emphasis being
mainly on point singularities [A] or on global configurations of the whole space
[B]. Actually, this similarity of concepts in the study of elementary particles and of
defects in ordered media appears as a very promising feature.

By the end of the study, Toulouse and Kleman had been informed of the preceding literature.
Ref [A] here includes a much-cited paper [207] on magnetic monopoles in field theories by the cel-
ebrated Nobel Prize winner Gerard t’Hooft, as well as the already-cited Monastyrsky-Perelomov
paper [195], while ref [B] is Finkelstein’s paper [206]. The italicised sentence expresses a positive
sentiment as to the mathematical relationship between the condensed matter defects and the
elementary particle kinks: not as a threat but as an opportunity.
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5.2 A glance in the rear mirror

A proper history of algebraic topology and homotopy is well beyond our scope. We refer the
reader e.g. to the book by James [193], a shorter earlier article by him [208] and the article by
Hilton [209]. The earliest mathematical relationship recognised (in hindsight) as topological is
Euler’s polyhedron formula, dating from 1752:

V − E + F = χ = 2, (1)

where, in the polyhedron, V is the number of vertices, E the number of edges and F the number
of faces. The quantity χ is the Euler characteristic, and if the polyhedron has no holes or
handles χ = 2. Always. Or rather, almost always, for if we include some handles or holes inside
it (equivalently, we make it multiply connected), then χ will in general no longer be equal to 2. If,
for example the polyhedron takes the form of a torus, then χ = 0. Gauss in later life speculated
that there were many more discoveries in this field to be made.

The terminology is relatively recent; according to Google n-gram, “topology” takes off around
1920. Earlier terms are geometria situs (Gauss) and analysis situs (Poincaré). The term itself
was introduced in 1848 by the German mathematician Johann Benedikt Listing (1808-1882),
a student of Gauss [210] (for a historical discussion, see [211]). Other terms relevant here are
homology and homotopy. The ideas of homotopy are introduced in a set of articles by the
mathematical polymath Henri Poincaré (1854-1912), the most important of which appeared in
1895 [212]. In 1922 Oswald Veblen’s (1880-1960) book [213] was concerned with Analysis Situs,
but by 1935 the new textbook by Pavel Alexandroff (1896-1982) and Heinz Hopf (1894-1971)[not
the Hopf of bifurcations, that was Eberhard!] was on topology.

To some extent, topology consists of the study of what remains of geometrical relationships
when we distort shapes but allow parts to remain in the same relative relationships; hence
Gauss’s geometria situs = “geometry of position”. One important aspect of topology is the study
of knots. Alexander the Great is said to have cut the Gordian knot, instead of untying it. Clearly
it was cheating, but before modern mathematicians, it was difficult to define exactly how.

It turns out that knots are of some interest in the context of the history of 19th century physics,
and also of relevance in our study of liquid crystal defects. By that time it was well-known
that materials were associated with characteristic spectral lines. The atomic theory of matter
was likewise accepted by chemists. But the atoms themselves (which we have discussed above)
remained mysterious and inaccessible. We now know that reaching the relevant length scales were
well beyond available technology. The spectral lines were supposed – sensibly, but incorrectly as
it turned out – to be associated with some kind of resonance, by analogy with the acoustics of
stringed musical instruments. But how?

The German physicist/physician Hermann von Helmholtz (1821-1894) had made some calcula-
tions on the hydrodynamic structure of vortices, and observed that the theoretical properties
matched those observed in smoke rings. In 1867 the Scottish physicist William Thomson (1824-
1907) – after 1892 Lord Kelvin, under which name he is better known – was responding to
this work (Helmholtz and Thomson were personal friends as well as colleagues). Helmholtz had
calculated the dynamical properties of vortex rings (see Fig.23, and Thomson [214] speculated
that some structures in the ether along these lines, more complex vortex lines perhaps, were
responsible for the different kinds of atom.

The “vortex atom” speculation, however, needed some mathematical flesh to graft onto its imag-
inative bones. Thomson in Glasgow was able to recruit the professor of mathematical physics
at nearby Edinburgh, Peter Guthrie Tait (1831-1901) to investigate the possibility. What fol-
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Figure 23: Fluid streamlines in the cross-section of a vortex ring, as calculated by Helmholtz.
Reproduced from Thomson’s paper in 1867 [214]. From a contemporary viewpoint, vortices may
be regarded as defects in a hydrodynamic velocity field.

lowed, some time later – three papers appearing in 1877, 1884 and 1885 – was a painstaking
enumeration of different kinds of simple knots. The enumeration involved counting the number
of times the string crossed itself, and as can be seen from Fig. 24, eventually runs out of steam;
the method is not practical for complicated knots. More extensive discussions of vortex atom
theories, knot chemistry, the relationship between Tait, Maxwell and Kelvin, and the like, can
be found in an early biography of Tait [215] and in more recent the history of science literature;
see e.g. [216–219].

Both Thomson and Tait subsequently turned their attention (and achieved fame) elsewhere.
These papers presented an ingenious, but premature, attempt to understand the microscopic
basis of atoms. Both the mathematics and the physics was flawed. The next serious attempt
to understand knots, by Max Dehn (1878-1952) in 1910 [221] (see also the commentary by
Peifer [222]) used the more sophisticated group theoretical methods introduced by Poincaré [212],
and indeed the subject is still active.

However, in the course of his investigation of knots, Tait discovered Listing’s work on topology.
The discovery was in fact due to his former school classmate, and subsequent close colleague,
James Clerk Maxwell (1831-79). After Listing’s death on Christmas Eve 1882, Tait wrote a very
appreciative obituary in Nature [223], finishing with:
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Plate. IV

.

Figure 24: Different knot configurations enumerated by P.G. Tait. Reproduced from [220].
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In most works on Trigonometry there is given what is called Euler’sTheoremabout
polyhedra: – viz. that if S be the number of solid angles of a polyhedron (not self-
cutting), F the number of its faces, and E the number of its edges, then

S + F = E + 2,

The puzzle with us, when we were beginning mathematics, used to be "What is
this mysterious 2, and how came it into the formula?" Listing shows that this is
a mere case of a much more general theorem in which corners, edges, faces, and
regions of space, have a homogeneous numerical relation. Thus the mysterious
2, in Euler’s formula, belongs to the two regions of space:– the one enclosed by
the polyhedron, the other (the Amplexum, as Listing calls it) being the rest of
infinite space. The reader, who wishes to have an elementary notion of the higher
forms of problems treated by Listing, is advised to investigate the modification
which Euler’s formula would undergo if the polyhedron were (on the whole) ring-
shaped: – as, for instance, an anchor-ring, or a plane slice of a thick cylindrical tube.

His subsequent lecture on Listing’s work to the Edinburgh Mathematical Society [223] includes
the following extract, which draws attention to the difference between the almost immediate
transmission of academic publication nowadays, with an accepted linguistic standard, and the
difficulties faced by Tait in following up publications of interest (italics here copied from the
original):

I ought not to omit to say, before proceeding to our business, that it is by no
means creditable to British science to find that Listing’s papers on this subject –
the Vorstudien zur Topologie (Göttinger Studien, 1847), and Der Census räumlicher
Complexe (Göttingen Abhandlungen, 1861) – have not yet been rescued from their
most undeserved obscurity, and published in an English dress, especially when so
much that is comparatively worthless, or at least not so worthy, has already secured
these honours. I was altogether ignorant of the existence of the Vorstudien till it
was pointed out to me by Clerk–Maxwell, after I had sent him one of my earlier
papers on Knots; and I had to seek, in the Cambridge University Library, what was
perhaps the only then accessible copy.

5.3 Subsequent Progress

We now return to the present day, or rather to the late 1970s, the period immediately after
the homotopic revolution in condensed matter physics. It is not our purpose here to provide a
review, for we cannot improve on recent comprehensive professional reviews [224–226]. Rather
we wish to give the naive reader some feeling for the recent research narrative in the area, and
also to point to some amusing historical analogies.

It goes without saying that a new paradigm attracts a whole set of workers with different skill
sets, addressing new problems. We have seen earlier that the mathematicians (loosely defined!)
Poénaru and Michel were attracted to the field in order to provide some rigour. Poénaru confided
to this author that after some time the attraction faded, as he felt that the mathematical problems
were “trivial” and hence less interesting than his, so to speak, day job.

To the mathematical reviews [104, 227–229], we may add the general influential tutorial review
by Mermin [109]. Poénaru and Toulouse [103] pointed out that the homotopy group of biaxial
nematic liquid crystals was non-Abelian. The significance of this was that when two defect lines
were combined, it mattered how they approached each other, whereas the combination rules
for uniaxial line defects (or XY defects) involved in some sense simple addition (albeit in a
cyclic group sometimes). The mathematical interest of the biaxial nematics was unfortunately
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subverted by a disappointing Almighty, who seemed unhelpfully reticent in the production of
useful experimental examples [230].

One of the key workers in the renaissance of interest in the experimental study has been Oleg
Lavrentovich, whose 1988 review paper [231] connected experiment and homotopy. As readers
will be aware, he later became Maurice’s most frequent collaborator. The capacity of homotopy
for classifying defects elevated interest in point defects: charges in an electric field theory, or
monopoles in a magnetic field theory. In uniaxial nematic liquid crystals (and in some other
fields) they have come to be known as hedgehogs. A hedgehog can be radial or hyperbolic [190],
and in biaxial liquid crystals necessarily it sits at one end of a disclination line. Hedgehog defects
were particularly evident inside spherical containers with homeotropic boundary conditions.

But if the boundary condition of the same container were to be planar degenerate, then a uniform
nematic configuration over the surface would be impossible, and hence surface director defects
are obligatory. This is sometimes known as the “Hairy Ball Theorem” and is due to Poincaré.
Equivalently when combing one’s hair there has to be a “hair whorl”, or “cowlick”, where one’s
hair sticks up, rather than along. In my case, regrettably, the hair whorl has “decayed” into a
rather large bald patch; the local singularity is only avoided by placing the hair in a (global)
non-simply connected manifold.

David Mermin labelled such a point as a ‘boojum”. The term is drawn, imaginatively or ab-
surdly according to one’s point of view, from a poem by the British Victorian mathematician 
and writer Lewis Carroll, author of “Alice’s adventures in Wonderland”. Mermin has given an 
entertaining account [232] of his struggles to coax an unwilling editor into accepting his lexico-
graphic innovation (see also Fig. 27). A.M. Polyakov, who introduced the term ‘hedgehog” (or 
rather �� [yozh], its Russian equivalent) in 1975 when studying similar problems in quantum 
field theory [233], reported no such d ifficulties. Perhaps the editorial staff at ZhETF were more 
laid back than those at Physical Review . . .

The confluence i n i nterest i n defects by Maurice and o ther c ondensed matter physicists on the 
one hand, and by fundamental physicists on the other, also turned out to be fruitful. In 1976 
Kibble [204] had studied defects in fields of cosmological interest, with a view to the possible 
importance of “cosmic strings” in the early universe. Zurek [234] suggested that He4 might 
be a suitable terrestrial model in which to look for string formation in a quench in which the 
temperature is suddenly lowered, by analogy with the dynamics of the early universe.

This came to be known as the “Kibble-Zurek” mechanism, and has attracted much interest in 
both communities. Chuang and coworkers [205] suggested that He4 was not the most suitable 
material with which to work, as it requires extremely low temperatures and is available only in 
small quantities. But nematic liquid crystals, by contrast, were sufficiently similar to cosmological 
models and much easier to work with. In later papers, both by the same workers [235] and others 
(e.g. Bowick et al [236]), it was possible to carry through this “Cosmology in the Laboratory” 
programme, and make estimates of the rates of defect string formation in quenched liquid crystals.

Finally, a particularly current topic concerns aggregates of disclination loops. Let us recall that 
a disclination line, like a piece of string, must either end at a surface, or form a closed loop. 
Sometimes the loops are macroscopic. But sometimes, they are the result of an instability in 
a point defect. Long ago, the present author tried hard (but failed!) [237] to determine the 
conditions under which a hedgehog point defect would look microscopically like a S = 1/2 
disclination ring. The problem was examined more closely by Mkaddem and Gartland [238], 
who found that in fact there were three possibilities, shown in Fig.25

The existence of the disclination ring in Fig.25, macroscopically but not microscopically equiv-
alent to a point defect, begs the question of how this idea can be extended, and how the equiv-
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A: split core B: microscopic hedgehog C:  S=1/2 disclination ring

Figure 25: Different possibilities for the fine structure of a hedgehog core in a nematic liquid
crystal, after Mkaddem and Gartland [238]. The pictures show a cross-section of a sphere, with
director orientations indicated by lines. Depending on the ratios of the elastic constants and the
temperature, the naïve hedgehog core given by B, may be split into the line A or the disclination
ring C. However, this ring has a particularly simple structure. . .
Redrawn with permission from: S. Mkaddem and E. C. Gartland Jr, Phys. Rev. E 62, 6694-6675 (2000). c©2000
by the American Physical Society.

alences may be established homotopically. To establish the idea, but not the details, let us first
consider a single closed disclination loop. What kind of complications might crop up? In prin-
ciple, all nematic disclinations are known to be homotopically equivalent, so at first sight there
should be no possible complications.

However a closer look shows that this is not the case. The disclination line in Fig. 25C is a
so-called S=1/2 wedge disclination line, by which we mean that the director rotates through +π
around an axis everywhere tangent to the disclination line. Furthermore, as one travels along
the line the director configuration is transported parallel to the line without rotation. Now the
possible complications become clearer. By the time we have circumnavigated the disclination
loop, the local director structure must be reestablished. . .

But on the way, things may be different. First of all the director configuration could be rotated
with respect to the dragged coordinated system. In this case, a rotation of π in the plane
perpendicular to the disclination line serves to close the loop. And secondly, the direction
around which the rotation occurs may change; equivalently the plane of rotation may tumble.
If it tumbles through π, for example, then the S = +1/2 disclination is transformed into an
S = −1/2 disclination. Of course, both may change at the same time. By now, the intuition
of even the most imaginative geometer will be exhausted, and recourse to formal topological
methods is necessary. To make a full classification of all the possibilities one needs to know
which rotations are irreducible.

Furthermore, if that were not enough, even simple geometry suffices for it become clear that some
of these classes require that the loop be threaded with at least one other disclination line. And if
another line may thread my original line, why not the original line threading itself – equivalently
a knot. So the general mathematical problem becomes, how do we classify a localised knotted
interlinked set of possibly twisted and tumbled disclination lines, which ones are permitted, and
what is the long-range signature of such a localised aggregate?
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This problem was first addressed by Jänich [239]. More recently there has been significant
progress; there is a review by Alexander et al [224], see also [225, 226, 240–242]. However, all
this might have remained a mathematical backwater, had not experimental progress been made
in constructing such assemblages. The key idea here is that the boundary condition on colloidal
particles in a nematic medium are often, if not always, inconsistent with a uniform nematic
director. The resulting antagonism is resolved by introducing a defect. One possibility, shown
in Fig. 26, is a disclination ring, in some sense merely an inside-out version of the ring at the
hedgehog core [243,244].

Monte Carlo simulation of topological defects in the nematic liquid crystal matrix
around a spherical colloid particle

R. W. Ruhwandl and E. M. Terentjev
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 24 March 1997!

We use a Monte Carlo algorithm to simulate the director field around a spherical inclusion in a uniform
nematic liquid crystal matrix. The resulting structure crucially depends on the relative strength of the nematic
bulk elasticity and the director anchoring on the particle surface. When this anchoring is weak, the director
field perturbations are small and have quadrupolar symmetry. With increasing strength of anchoring two
topologically nontrivial situations are possible: a dipolar configuration with a satellite point defect~hedgehog!
near the particle pole, or a quadrupolar configuration with a ‘‘Saturn ring’’ of disclination around the particle
equator.@S1063-651X~97!01311-1#

PACS number~s!: 61.30.Jf, 61.30.Gd, 64.70.Md, 61.20.Ja

FIG. 1. ~a! The director field in the case of weak anchoring. As
the effective anchoring strength increases, there are two possibili-
ties: the liquid crystal can form a quadrupolar Saturn ring structure
~b! or a dipolar structure with a satellite defect~c!.
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To outline, briefly, how our classification result follows:
after passing to the vector field n̂, the equivalence relation
n ∼ −n is restated as a compatibility condition with respect
to the deck transformation, t, of the covering space (that
moves us from a point x on one sheet of the cover to the
equivalent point of the other)

n̂ðtxÞ ¼ −n̂ðxÞ: ð1Þ

Such vector fields are said to be equivariant. Before
imposing equivariance, unit vector fields on the cyclic
double cover are classified by the induced map on second
cohomology and, hence, by the group H2ðΣ̂ðLÞÞ ≅
H1ðΣ̂ðLÞ; ∂Σ̂ðLÞÞ [37]. The elements of this group are
cycles that entangle the knot and tethers that connect
various link components, illustrated in Fig. 2. Restricting
to equivariant maps only allows cycles of the form ðe − teÞ.
Equivalence between a pair of cycles ðe − teÞ and ðe0 − te0Þ
is established by considering equivariant homotopies that
exchange cycles across any branching surface between the
two sheets of Σ̂ðLÞ. These conditions reduce the group
H1ðΣ̂ðLÞ; ∂Σ̂ðLÞÞ to H1ðΣðLÞÞ, the first homology group
of the double branched cover of S3 over L. The order of this
group (if finite) is known as the knot determinant and
counts the number of topologically distinct nematic tex-
tures associated to a given link, L [38]. In addition to a
finite number of states for knots (see Fig. 1), some links
support an infinite number of states, the (4,4) torus link [see
Fig. 1(c)], for example, has H1ðΣðLÞÞ ¼ Z2⊕Z2, meaning
that the state is described by three integers, one of which is
defined mod 2.
We can use this result to understand the topology of

multiple knotted and linked defects in a nematic. If a given
link L is split (meaning that it has multiple components that
can each be surrounded by a measuring sphere in the space)
into say L1;…; Ln, shown in Fig. 1(a), then H1ðΣðLÞÞ
splits as a direct sum [30]

H1ðΣðLÞÞ ¼ Zn−1⊕
�
⨁
n

i¼1

H1ðΣðLiÞÞ
�
: ð2Þ

This equation encodes the topological interaction between
a collection of knots and links. Indeed, one can think of
each split component as a knotted “particle,” the internal
states of which are given by H1ðΣðLiÞÞ, i.e., the determi-
nant of the component on its own. This interpretation,
reminiscent of Kelvin’s “vortex atoms” [40], is supple-
mented by a topological interaction between the compo-
nents. This is specified by an integer associated to each
component, interpreted as the usual “hedgehog charge” that
identifies point defects. This gives the factor of Zn−1 in (2),
there being only n − 1 degrees of freedom due to the
conserved total charge imposed by the uniform far-field
boundary conditions. Each factor of Z can be calculated in
the usual way by considering the director field on a

measuring sphere and computing the degree of the
map [35,39].
To complement this topological classification, we give a

physical interpretation of these states and describe methods
to identify knots produced experimentally or in simulation.
This is provided by the Pontryagin-Thom (PT) construc-
tion, illustrated in Fig. 2, which allows the different states to
be distinguished by a combination of “Skyrmion tubes” and
relative disclination orientation. This construction has been
implemented experimentally [18], and its employment
should enable the identification of knotted defects in the
laboratory. The PT construction gives a rigorous and
succinct way of viewing the global topological data
encoded in a director field [41,42]. One draws the surface
consisting of all points where the director is perpendicular
to a chosen orientation d. For a given d, any π rotation of
the director will be perpendicular to d at least once and so,
for line defects, this construction produces a surface whose
boundaries are disclination lines, shown in Fig. 2(d). An
additional degree of freedom, corresponding to the director
orientation in the plane perpendicular to d, is used to color
the surface, as in Fig. 2(b). While the PT surface need not

FIG. 1 (color online). (a) “Particle” based picture of knotted
defects in liquid crystals. Each link (L − R: trefoil knot, unknot,
and Hopf link) has an internal degree of freedom given by an
element of H1ðΣðLÞÞ, the size of which is detðLÞ. Each split
component then carries a hedgehog charge, calculated using the
degree of the texture on the measuring spheres [35,39], which is
constrained by charge conservation. (b) Borromean rings; for this
link H1ðΣðLÞÞ ¼ Z4⊕Z4 giving a total of 16 distinct states.
(c) (4,4) torus link; this link has H1ðΣðLÞÞ ¼ Z2⊕Z2, and, thus,
supports an infinite number of states.
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Figure 26: Left A: The Saturn Ring structure, one possible way of resolving the antagonism
between the local homeotropic surface order on the surface of a colloid particle, and a long-
range uniform texture. After Ruhwandl and Terentjev [243]. Right B: Complex confined
knotted structures, after Machon and Alexander [240]. The original diagram includes a detailed
topological commentary, which we have omitted and to which we refer the interested reader. A
more detailed set of similar diagrams can be found in Tkalec et al [245] arising from colloidal
aggregates.
A: reproduced with permission from: R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 56, 5561–5565 (1997).
c©1997 by the American Physical Society. B: reproduced with permission from: T. Machon and G.P. Alexander,
Phys. Rev. Lett. 113, 027801 (2014). c©2014 by the American Physical Society.

More elaborate versions of this involve the use of entangled defect lines to tie together colloidal
particles [246]; see also the review by Smalyukh [247]. Eventually, when several colloidal particles
are involved, one obtains complex knots of different types, as shown in Fig. 26. The long-range
structure of the nematic would be due to the defects alone.

The reader is now invited to compare Figs. 24 from 1877, and 26B from 2014. Although the
necessary mathematics to analyse these knots exhaustively was not available to Tait in the
1870s and 1880s, we recall that Tait was pursuing Kelvin’s idea from the 1850s that macroscopic
particle structure, together with associated conservation rules, were related to an internal knotted
structure of the aether. Here we have, after 170 years, a physical manifestation of that concept,
and just possibly, as a result, a renewal of interest in the idea that some fundamental particle
properties are related to knotted effects of the underlying field.
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6 Defects in Biology

. . . liquid crystals (have) emerged as a burgeoning new frontier in cell biology . . . [248]

6.1 Biological preamble

Maurice’s published work was primarily concerned with defects in material science, rather than
in biology. But his close colleague Yves Bouligand started life as a zoologist, and turned to liquid
crystals in order to make sense of specific sets of observations, as we shall discuss further below.
Maurice long held the view that defects in liquid crystals are linked with the biological world,
before it was fashionable, perhaps even before there was strong evidence to sustain his view.
Indeed he and Bouligand spent many hours discussing this very subject [249], discussions which
informed much of Bouligand’s later work.

Out of these discussions came, as far as we are aware, one single-authored paper by Maurice,
published in 1985, with the rather innocent title of “On the coexistence of cholesteric and 2-di-
mensional orders" [250]. Although its title is rather coy on this matter, indeed anodyne, the
paper presents a model of the molecular organisation of DNA in a particular type of microorgan-
ism studied by Bouligand. The model involves molecular order on two length scales, one much
longer than the other. In retrospect it resembles the so-called supercoiling [251] – coils within
coils within coils – which is now known to govern the chromatin molecular order within a living
cell.

In recent years, the domain of “soft matter physics” has steadily invaded the biological sciences.
Liquid crystals have played a major part in the artillery driving that advance. This section
presents a rather personal view of some of the scientific discourse which may link Maurice’s
studies of defects with biology. I aim for a link with biological function. In biology, as opposed to
mere inorganic physics and chemistry, we always ask the questions: "why is there? "what does
it do?"

All sorts of physical effects pop up, almost by accident, in biological materials. Nature is a
promiscuous engineer, recruiting all sorts of convenient physical phenomena and materials in an
apparently creative urge, formerly interpreted in terms of the Divine, and now in terms of the
more prosaic but still miraculous process of Darwinian selection. When we see a link between a
physical property and a biological function, then we can insert the property into some kind of con-
tingency. Then, absent the physical property, absent the biological process under investigation.

The motivation for this section is twofold. Firstly, this subject is “in the air”, so to speak, and
a genuine review (we make no claim here that this essay represents such a review), as the quote
at the head of the chapter [248] indicates, could not fail to include it. Secondly, our view is that,
notwithstanding his few publications in this area, given a career lasting another half-century,
this is the direction that Maurice would have taken. He had a great interest in philosophy; both
physical form (independent of the specific material underlying that form) and biological function
(independent of the specific goal of the biological process in question) represented for him related
philosophical concepts.

Given the presence of liquid crystals in biological materials, we may reasonably ask a number of
questions of defects. Firstly, are they there? Secondly, if there, do they play a functional role?
And thirdly, if they do play a role, what is the context? For in the present day, we seek physical
mechanisms in (at least) developmental biology (i.e. how does the organism come to have the
form that it does) and cell/organism biology (i.e. how do the harmless and thought-free laws of
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physics and chemistry combine to allow the organism to do whatever it does).

In physics, liquid crystals are examples of phases with broken symmetry, and defects, we recall,
break that broken symmetry. When we search in biology for defects, we first of all seek a bro-
ken symmetry, before seeking some local disobedience to that symmetry breaking. The broken
symmetry is not so hard to find. The zygote – the original fertilised cell which initiates the life
of a multicellular individual – is, more or less, spherical. But after repeated division, the aggre-
gate of cells forming the individual has acquired a shape. This shape contains some symmetry
elements, which vary between different phyla (the groups used to classify species, which also rep-
resent ancient evolutionary branching points). The reader, the writer, his pets and the insects
that bite them, more or less, possess bilateral symmetry; some jellyfish are radially symmetric,
although Aurelia marginalis has 4-fold symmetry. And starfish (and other members of phylum
Echinodermata) as well as the flowers of many plants are basically pentagonal.

Somewhere along the embryological pathway between zygote and adult, the original spherical
symmetry has been lost. Some organisms have other symmetries associated with repetition,
for example the segments of insects, or the spirals of shellfish. Bateson’s Rule of Secondary
Symmetry, dating from 1894 [252], stated that “extra limb(s) or parts of a limb are themselves
morphologically double” made an embryological statement which biology was not at the time
able to incorporate. In our discussion, therefore, we start at the level of macroscopic symmetry.

6.2 D’Arcy Thompson and biological symmetry

All, well, almost all, contemporary studies of symmetry in biology lead back to the classic On
Growth and Form [253] by the Scottish biologist D’Arcy Wentworth Thompson (1860-1948).
This was first published in 1917 to only moderate acclaim, then reprinted rather grudgingly five
years later after 500 copies had been sold. But nevertheless, for the last 100 years, more or less,
it has never been out of print.

D’Arcy Thompson (almost universally so named, not merely “Thompson”, who could, after all,
be Lord Kelvin, or J.J. Thomson or some other random Thomson/Thompson) was by trade a
naturalist, from his family he was no mean classicist, and by avocation an intellectual. He would
not have described himself as a mathematician or physicist, and a hundred years on would be
surprised to know that he is remembered primarily for his expertise in those disciplines. In some
sense, just as Francis Bacon is remembered as the High Priest of the scientific method merely
for having established a programme, D’Arcy Thompson can be remembered for normalisation of
physical biology. Not for Thompson the magic of vitalism. The default, the “Bayesian Prior”, as
we might say, was that physiology would be explicable in terms of physics and chemistry, using
mathematics as the medium of argument. And he looked for “growth and form” as the basis for
this understanding.

Part of D’Arcy Thompson’s magic – notwithstanding his strong denial of any scientific role for
magic – is his almost supernatural anticipation of future trends. I cannot resist quoting from
the part of his text where he foresees the application of topology in biological applications:
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The rules and principles which we have arrived at from the point of view of surface tension
have a much wider bearing than is at once suggested by the problems to which we have
apphed them; for in this study of a segmenting egg we are on the verge of a subject
adumbrated by Leibniz, studied more deeply by Euler, and greatly developed of recent
years. It is the Geometria Situs of Gauss, the Analysis Situs of Riemann, the Theory of
Partitions of Cayley, of Spatial Complexes or Topology of Johann Benedict Listing. It
begins with regions, boundaries and neighbourhoods, but leads to abstruse developments
in modern mathematics. Leibniz had pointed out that there was room for an analysis of
mere position, apart from magnitude: “je croy qu’il nous faut encor une autre analyse,
qui nous exprime directement situm, comme l’Algèbre exprime magnitudinem.” There
were many things to which the new Geometria Situs could be applied. Leibniz used it to
explain the game of sohtaire, Euler to explain the knight’s move on the chess-board, or
the routes over the bridges of a town. Vandermonde created a géometrie de tissage, which
Leibniz himself had foreseen, to describe the intricate complexity of interwoven threads in
a satin or a brocade. Listing, in a famous paper, admired by Maxwell, Cayley and Tait,
gave a new name to this new "algorithm," and shewed its apphcation to the curvature
of a twining stem or tendril, the aestivation of a flower, the spiral of a snail-shell, the
scales on a fir-cone, and many other common things. The theory of “spatial complexes,”
as illustrated especially by knots, is a large part of the subject.

Topological analysis seems somewhat superfluous here; but it may come into use
some day to describe and classify such complicated, and diagnostic, patterns as are seen
in the wings of a butterfly or a fly . . .

In cell biology, the so-called mitotic spindle describes the state of a eukaryotic cell during cell
division. We remind the reader that eukaryotes are often (not always, although the reverse is
the case) multi-cellular organisms with the property that the genetic material (chromosomes are
contained inside a nucleus which is bounded by the nuclear envelope consisting a lipid bilayer.
During cell division microtubules (long polymers) align between two spindle poles which act as
the organising centres for the new nuclei. The separated (“single helix”) chromosomes travel
along the aligned microtubules to the spindle poles, eventually creating identical daughter cells.

D’Arcy Thompson includes in his tome, not only a photograph of a dividing cell, but also some
carefully drawn diagrams exhibting the dividing cell at various stages. We now know that the
aligned microtubules are active nematic liquid crystals.

The microtubule nematic director structure during the mitotic spindle phase closely resembles
that of a director of a nematic in a spherical droplet with tangential boundary conditions. In
this case, the nematic is usually more or less aligned inside the droplet. A complete tangential
arrangement of the nematic director at the surface is of course forbidden on topological grounds.
One resolution of this frustration is to create two so-called surface defects (each of which is
boojum) at each pole. This analogy is demonstrated in Fig. 27.

The resemblance to liquid crystals, although not known explicitly to D’Arcy Thompson, would
not have surprised him. “Our” Otto Lehmann is mentioned 26 times in the 750 pages of ‘On
Growth and Form”; both he and Lehmann were strong materialists seeking, albeit prematurely,
physical law to explain the apparent purpose in living organisms. Here again is D’Arcy in full
speculation mode:

. . . ... the phenomenon of “liquid crystallisation” does not destroy the distinction between
crystalline and colloidal forms , but gives added unity and continuity to the whole series
of phenomena. Lehmann has also demonstrated phenomena within the crystal, known for
instance as transcrystallisation, which shew us that we must not speak unguardedly of
the growth of crystals as limited to deposition upon a surface, and Bütschli has already
pointed out the possible great importance to the biologist of the various phenomena which
Lehmann has described . . .

Note to editor: do not edit D’Arcy! His 100-word sentences and archaic spellings (e.g. “shew”)

56



STRUCTURE OF THE CELL 1G9 

cell: of forces which, whatever may be their specific nature, at lea:;;t 
are capable of polarisation, and of producing consequent attraction 
or l'epnlsion heh\ een charged particles of matter. The opposing 
forces which were distribute<l i11 equilibrium throughout the sub
stance of the cell become focussed at two "centrm;omes," which 
may or may 11ot be already distinguished as visible portions of 
matter; in the egg, one of these is always near to, and the other 
remote from, the "animal pole'' of the egg, which pole is visibly 
as well as chemicall_\' different from the other, and is the region in 
which the more rapid and conspicuous developmental changes will 
presently begin. Between the two centroso111es, a spindle-shaped 

figure appears, whose striking resemblance to the lines of force 
made \'isible by iron-filings between the poles of a magnet, was at 
once recognised by Hermann Fol, when in 1873 he witnessed for 
the first time the phenomenon in question. On the farther side 
of the centrosomes are seen star-like figures, or "asters,'' in which 
we can without difficulty recognise the broken lines of force which 
run externally to those stronger lines which lie nearer to the polar 
axis and which constitute the '' spindle.'' The lines of force arP 
rendered visible or "material," just as i11 the experiment of the 
iron-fil ngs, by the fact that, in the heterogeneous substance of 
the cell, certain portions of matter are more "permeable" to the 
acting force than the rest, become themselves polarised after the 

STRUCTURE OF THE CELL liG 

(Fig. 50). They fuse together and form OllCC' lllOre an alveolar reti
culum and may occaRionally at this stage form another spiremc·. 

'nurl,wf ·..1 �p!d cbrcmo,nr.n:: 

Fi_e;. -IS. 

. 
-

� Clr::o/t,1----;-

Fig. -!!l. 

A boundary or surface wall is no\\· developed round each recon
strncted nuclear mass, and the spindle-fibres disappear (Fig. 51). 
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7. On the central spindle, in the position of the equatorial
plate, there has appeared during the migration of the chromosome,;, 
a "cell-plate" of deeply staining thickenings (Figs. 50, Gl ). This 
is more conspicuous in plant-cells. 
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Figure 27: Left: Mitotic spindle: (Very!) old photograph reproduced from “On Growth and
Form” [253] of the dividing cell within a trout egg. Centre: Idealised sketch of the mitotic spindle
by Thompson reproduced [253]. The mitotic spindle is a self-organised, but non-equilibrium,
bipolar array of microtubules. The chromosomes segregate and travel along the microtubules
toward the centrosome organisers at each pole. See Ref. [254] for a more detailed modern picture
with extensive discussion. Right: Cartoon of nematic droplet with a boojum at each pole.
The boojum defect, is a surface director singularity of integer index. In this case, the + and -
correspond to oppositely charged electric poles, causing an electric field from the negative to the
positive electric pole. The arrows are double-headed because the nematic director points along
the electric field lines, independent of polarity.

are there to be savoured rather than suffered, for he is at once literature, art, science, philosophy,
speculation, and great learning. And if nowadays we are unfamiliar with “transcrystallisation”,
well, it was early days . . .

More recently (e.g. [255]) the dividing cell has been examined more closely, to determine whether
similar features can occur in a physicochemical system. And indeed they can, both quasi-
biologically in the absence of the centrosome poles which attract the separating chromosomes,
and in numerical simulations in model “active” systems.

6.3 Yves Bouligand and frozen liquid crystalline structure

It was the French zoologist and naturalist Yves Bouligand who was the first to examine in close
detail the relationship between biological materials and liquid crystals. Curiously enough here
we see an example of a defect which turns out to be not (at least not necessarily) a defect. The
observation was that in various organic materials – the outer skeletons of various insects [256],
so-called Haversian systems in human bone [257,258], chromosomes of some microplankton [259]–
what seemed to be the same twisted bow-shaped fibres appeared under the microscope or electron
microscope. Examples are shown in Fig.28.

Bouligand was able to interpret this structure a frozen cholesteric liquid crystalline structure. The
normal to the microscope slide, however, was not identical to the direction of the cholesteric axis
along which the twist was occurring. The resulting section gave rise to peculiar patterns whose
interpetation was far from obvious. Developmentally, Bouligand reasoned, the material first
aligned into a (polymeric) cholesteric liquid crystal, which then solidifies, retaining its frozen-in
orientational signature.
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A B C

Figure 28: A: Drawing of the curious bow-shaped structures within fibres seen in many organic
materials (Plate IIe from [258]). B: Same as A, but on a finer scale, reproduced from [259].
C: Diagrams from Ref. [259] demonstrating that the observations are explicable in terms of a
material with cholesteric structure, but with the the sample at an angle to the viewing direction.
Subfigure A reproduced from [258] with permission Comptes Rendus.
Subfigures B, C reproduced from [259] with permission; c©1968 Springer-Nature.

Cl-332 Y. BOULIGAND

FIG. 1. - Defects appearing in thin section in various biological 
materials. a) Fibrous network in the chorion of the moth : 
Hyalophora cecropia ; schematic drawing after an unpublished 
micrograph by Smith, Telfer and Neville [14]. The cholesteric 
axis of the twisted plywood lies normal to the section. This - rr 
disclination corresponds to a screw-dislocation. b) A Dino
flagellate chromosome observed in a slightly oblique sec
tion ; schematic drawing after a micrograph published by 
M.-0. Soyer [15]. The cholesteric axis is almost parallel to the 
cutting plane ; this defect corresponds to a screw-dislocation 
located along the axis of the chromosome. c) Diagram of a - rr 
disclination in the twisted arrangement of the D. N. A. filaments 
in a Dinoflagellatc chromosome ( averaged from several micro
graphs by J. and M. Cachon ; see reference [161). d) ;.2+ disclina
tion in cross-section, in a twisted body of a root nodule of Vicia

(after a micrograph communicated by P. Gourret). 

sections. One recognizes that a screw-dislocation 
changes rapidly its position with respect to the choles
teric layering and lies along the axis [15]. 

Edge-dislocations have been proved to exist in the 
Locust tibia [1] but this defect is probably very 
frequent in many materials. 

2.2 FOCAL CURVES OR LINES OF FLARE. - The focal 
lines have been discovered by Friedel and Grand
jean [3] in smectics and in cholesterics. The smectic 
parallel layers form Dupin's cyclides showing conical 
singular points, located along two conics (ellipse and 
hyperbola) in focal position. In cholesterics, the 
layering is conical around such lines but without any 
singular points : the apexes of the cones are replaced 
by narrow areas of strong curvature [12]. Such a 
situation occurs very probably in smectics but has 
never been proved. 

Such lines of conical distortion are not always 
conics. They show varied shapes in cholesterics. In 
certain cases, the focal curves are conics, but are not 
tn focal position. The terminology focal curve is confus
ing and we prefer to use line of flare, an expression 
which seems to be more appropriate and refers to the 
trumpet-shape of the stacked laminae around these 
lines. The lines of flare show a polarity defined by the 

orientation of the apexes of the cones. In the case of 
focal conics, the polarity is inverted when the curves 
meet their plane of symmetry. 

The lines of flare are very common in the Arthropod 
cuticle (crabs, beetles, etc ... ) and they have been 
observed in synthetic polymerized liquid crystals [l, 13]. 

2. 3 DISCLINATIONS. - These lines have been first
observed by Lehmann [2] in cholesterics showing an 
helicoidal pitch of several microns. Disclinations are 
of the + nor - n types and belong to the}, category, 
in the terminology of Friedel and Kleman [6]. The 
director distribution of such systems is continuous. 
Disclinations - n are frequent in Dinoflage!late chro
mosomes (Fig. I c), but the A or r nature of such defects 
is not easy to establish. Their functional significance 
is not clear. These disclinations have been supposed 
to be involved in the splitting and the segregation of 
chromosomes during the cell-division [l 6]. In fact, 
figures of coalescence and disclinations are frequent 
between several different chromosomes in the cell 
nucleus [I 7]. 

Examples of A - disclinations have been found in the 
collagen distribution in the connective tissue of certain 
marine sponges [18]. This cholesteric pseudomorpho
sis envelops very young buds of the sponge. Gour
ret [19] has observed ,1,2 + disclinations (Fig. ld) in 
twisted bodies floating in vacuoles of certain plant 
cells (root nodules of Vicia). These twisted bodies 
nucleate from the A.2+ axis. Such disclinations are rare 
in the true liquid crystals. 

3. Textures. - The distribution of defects can be
considered as the texture frame. The cholesteric liquids 
show three main textures [20], which can be called : 

I) Fan-shaped textures (with disclinations, focal
curves and translation dislocations) ; 

2) Polygonal fields (with focal curves and dislo
cations) ; 

3) Planar texture (with dislocations only).

Disclinations are defects of high energy and occur 
mainly in the vicinity of the isotropic transition. 
Accordingly, the periphery of a cholesteric phase is 
mostly a fan-shaped texture. The cholesteric layering 
is less distorted in the polygons and in the planar 
texture. 

In several cases, the twisted plywood of the Arthro
pod cuticle is more or less related to the polygonal 
fields or to the planar texture. However, some strong 
differences can be evidenced by comparing the density 
of the focal curves of distinct polarities and their 
spatial arrangement. In thecrab-cuticle(dorsal cephalo
thorax of Carcinus maenas and Cancer pagurus), all 
the focal curves lying vertical (normal to the cuticle) 
have the same polarity ; there are very few exceptions. 
In the exocuticle of the beetle Plusiotis gloriosa [21 ], it 
clearly appears (after a document communicated by 
Dr. A. Pace) that the ratio is ½ for the two opposite 
polarities ; 44 lines of flare are oriented in one sense 

b

Figure 29: Defects appearing in thin section in various biological materials, from Ref. [260]
(reproduced with permission EDP). More accurate details and sources given in original paper.
(a) −π disclination, equivalent to a screw dislocation, in a placental moth membrane; (b) screw
dislocation in a microplankton chromosome; (c) −π disclination in microplankton DNA; (d)
So-called λ2+ disclination in root nodule of a Vicia legume.

To see this required not inconsiderable geometric intuition. What directed Bouligand toward
liquid crystals, and whence came his intuition? The answer is that Bouligand was no ordinary
naturalist, for he came with significant genetic academic and academic pedigree. On the one
hand his father was the distinguished mathematician Georges Bouligand (1889-1979), one of
whose specialities was differential geometry. And on the other, as a zoological microscopist,
he was acquainted with François Grandjean, liquid crystal pioneer from the early years of the
century and colleague of Georges Friedel. Bouligand would author Grandjean’s obituary when he
died in 1975 at the age of 93 [261]. After leaving the liquid crystal field in the 1920s, Grandjean
was to become the world expert in acarology (the study of mites). Thus was Bouligand directed
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also toward a purer study of liquid crystalline textures, with several collaborative papers with
Maurice [92, 262], and other physicist liquid crystal colleagues; see especially the frighteningly
mathematical ref. [262].

In 1975 Bouligand addressed specifically the question of defects in what he called the “cholesteric
analogues” in biological systems [260]. He was able to interpret micrographs from a number of
different authors in terms of specifically cholesteric liquid crystalline textures, as shown in Fig.29.
For a more recent overview of the role of cholesteric liquid crystals in living material, we refer
the reader to Michel Mitov’s review [263].

6.4 Defects, Active Matter and Cell Biology

This is an area of an enormous amount of current research. Any attempt at a complete review
would thus be out of place. The best we can do in such an active field is to swoop on recent
examples which may (or may not!) demonstrate some key principles. Our purpose here is twofold.
One the one hand we wish to convince the sceptical reader that ideas developed in the physical
sciences and pure mathematics look like they may develop a second life in the biological sciences.
Secondly, we make here a specific link between liquid crystalline defects on the one hand and
biological function on the other.

For a general theoretical background on active matter, readers are referred to the review by
Marchetti et al [264]. The role of liquid crystals in cell biology seems to be a particular current
“hot topic”. The subject was reviewed a decade ago by Rey [265]; indication of the considerable
subsequent progress can be seen in the reviews by Zhao et al [266] and by Doostmohamadi and
Ladoux [248].

Spatially inhomogeneous periodic chemical reactions:
We first stress that defects are not, of course, exclusive to liquid crystals. Simple multi-component
chemical reaction equations of the much-cited Belousov-Zhabotinski type admit periodic solutions
(e.g. [267]). These are essentially non-equilibrium models, involving constant material input and
output. Such mathematical models are regarded as caricatures of periodic biological phenomena,
such as the circadian rhythm, the heartbeat of many multicellular animals, brain waves, or the
menstrual-oestral cycle occurring in some mammals. Mathematically the periodic solutions are
limit cycles. When in its steady-state limit cycle, at any given time t the system can in principle
be defined by a phase φ = ωt, where ω is the angular frequency of the oscillation.

If now we suppose the system may in principle extend in space, and add differential material
diffusion to the mix then we have no guarantee that the periodic oscillations at different points in
space will coincide. The local limit cycle will have an amplitude (roughly speaking, the distance
in parameter space from an unstable equilibrium). There will be points at which the amplitude
is zero, the phase is undefined, and round which a closed path changes the phase by multiples of
2nπ, where the commonest values of n are ±1. We show in Fig.30 an experimental realisation
of this phenomenon [268].

The defects at which φ is undefined are temporal analogues of S = ±1 defects in magnetic models
or superfluid He4. But the time aspects complicate the story significantly. At the very least, the
defects are not stationary and spiral waves of advance emerge from them.

In fact, even if a chemical system would otherwise admit no particularly anomalous behaviour,
the introduction of differential material diffusion can give rise to pattern formation. This idea
was introduced in the classic and enormously influential paper by the renowned polymath Alan
Turing (1912-54) in 1952 [269, 270], explicitly as a caricature of a model for biological morpho-
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Figure 30: Digital image of defect acting as an organising centre for a spiral wave in the Belousov-
Zhabotinski reaction in two dimensions. The sample is in a thin Petri dish. Left image: trans-
mitted light intensity; Right image: the pseudocolour indicates contours of constant chemical
concentrations, or equivalently the phase contours of the local Belousov-Zhabotinski oscillation.
The dots (added by present author) in the centres of the diagram are locations where the phase
is not defined.
Figure reproduced from S.C. Müller et al [268] with permission c©1985 AAAS.

genesis. Turing was strongly influenced by D’Arcy Thompson (whom he cites in the liteature,
but does not otherwise mention!). More complicated systems are chaotic, with long-lasting
quasi-periodicity, and this has been a subject of much interest. Mathematical approaches to e.g.
epilepsy or heart failure, have speculated about the anomalous development of defects in the
organ in question.

Active Matter:
From a theoretical perspective a very important innovation is the development of theories of so-
called “active matter”. To put this in context, recall that in usual (dissipative) fluid mechanics,
turbulence causes long-wave fluctutations to dissipate into smaller and smaller eddies, before
dissipation finally transforms fluid mechanical into thermal energy. This is known as the Kol-
mogorov cascade (see e.g. [271]). Although we do not pursue the analogy here, an eddy is, of
course, a defect line or ring in the fluid velocity field.

But in living organisms we know that systems, although in (quasi) steady state, they are not in
thermodynamic equilibrium. Energy is introduced into the organism; chemists know the mecha-
nism, but physicists only need to know that it occurs. The energy is released through a molecular
chemical process – a short scale process – and then, somehow this energy is transformed into
something coherent which takes place on a longer length scale. This reversal of the Kolmogorov
cascade seems to be a universal feature in living organisms.

Active hydrodynamcs is a theoretical framework which describes how this can occur. What
happens when energy instead of disappearing locally in the form of heat (which can often be
essentially ignored), instead appears locally? One can now model fluid equations simply a set of
boundary conditions and some active forces or stress tensors.

This much is general to all hydrodynamic systems. Introducing polar or nematic order adds
another degree of complication. The standard approach to the macroscopic dynamics of nematic
liquid crystals is the Ericksen-Leslie-Parodi (ELP) theory (see e.g. [148]). This theory uses the
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director n̂ as the key state variable. The drawback when studying defects is that the defects often
are points or lines of singularity of n̂, and thus dissipation functions which include its gradients
and derivatives may not capture some key features. This is particularly true close to defects,
when gradients of the liquid crystal order parameter govern the dissipation.

The alternative approach is the so-called Q-tensor theory [272–274] (for an accessible introduc-
tion, see [275]). The mathematical disadvantage now is that outside any defect region, a system
is constrained to lie on the equilibrium manifold, not by a hard constraint, but rather by a
Landau free energy energy functional with a low valley along the “equilibrium” manifold. In the
case of polar systems, likewise it is sensible to use a vector order parameter p = |p|n̂.

Depending on the parameters of the system and the boundary conditions, an enormous variety
of defect states can exist, and in addition there can be spontaneous defect motion. Examples,
abstracted from Elgeti et al [276] are shown in Fig. 31

Aster Vortex Spiral

Figure 31: Polar defects in two dimensional active matter, idealised from theoretical results by
Elgeti et al [276]. Arrows show field directions. If we identify field directions close to the defect
with eigenvector directions at a critical point of a dynamical system, the different types of polar
defect correspond to nodes, centres and stable/unstable foci respectively.

Alternatively one can examine specifically nematic models. Ravnik and Yeomans [277] stud-
ied flow patterns of an active nematic confined to a cylindrical capillary. The idea here is to
postulate an active stress tensor proportional to the order paramater Qij , so that order param-
eter inhomogeneities drive flows. In simple non-nematic passive fluids subject to a differential
pressure, this is the standard “flow in a tube” problem, studied experimentally by Poiseuille in
1838 and solved theoretically by Sir George Stokes in 1845. So it is a certainly a sensible place
to start. The flow fields and nematic configurations are strongly coupled, with, for example,
under some circumstances spontaneous formation of disclination rings. These are coupled but
not coterminous with hydrodynamic vortices.

A related work [278], motivated by some experimental work on a fluid consisting of a dense sus-
pension of bacteria [279], considers so-called “low Reynolds number” turbulence. In passive fluid
turbulence, these workers assert, vorticity is advected in the fluid through mechanisms associated
with the inertial terms in the Navier-Stokes equation at high Reynolds number. But in active
nematic turbulence, they show, walls and defects may be vorticity sources; the vorticity then
diffuses throughout the domain to generate active turbulence. Very recently, Aranson [280] has
reviewed the specific role of defects in active liquid crystals [280].
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Cell Biology and other biological Systems
We (here: physical scientists!) need to recall that biologists distinguish between experiments in
vivo (i.e. in the living organism itself), and in vitro (i.e. in the “test-tube”, broadly interpreted);
to that has been added more recently in silico (i.e. simulation of a computer model). I shall here
mix the first two somewhat promiscuously. The realisation that there is often some connection
between liquid crystals and living organisms predates Bouligand’s observations, and indeed goes
back to the very foundation of the subject.

In 1888 the botanist Friedrich Reinitzer was grinding up carrots when he synthesised the first
recognised liquid crystal, cholesterol benzoate [281]. Myelin is a fatty acid which surrounds
nerve fibres, inflammation of which causes disabling diseases such as Multiple Sclerosis. In the
early years of the last century Otto Lehmann discovered that it also turns out to be optically
anisotropic [282, 283]. More than that, however, he was persuaded, albeit at that stage on
inadequate evidence, of a fundamental link between liquid crystals and life. So persuaded, in
fact, that he devoted two books [284,285] specially to the subject.

In the 1940s, the Onsager theory of lyotropic liquid crystal phase behaviour was designed to
explain experimental results on the the nematic ordering of the tobacco mosaic virus (TMV) [286].
Another initially unrecognised example involved (rod-shaped) human fibroblasts, an important
type of cell playing a role in organ connection tissue and wound-healing [287], which order in
vitro. Likewise we find liquid-crystalline-like structure in plant cell walls [288,289], melanocytes
(pgment cells in skin) and osteoblasts (bone cells) [290], spider silk precursor [265,291,292] and
human granulocytes [293]; for a review see [265].

The ubiquity of liquid crystalline particles (either in the form of molecules or consequent from a
high aspect ratio of the cell shape) suggests a deep functional relationship between liquid crystals
and life. In the present context, we seek defects in the liquid crystalline matrices, and again ask
about biological function.

Thus, for example, silk is produced as a liquid crystal polymer in the duct of a silk worm, and then
extruded, at which point solidification takes place rapidly, preserving the nematic orientational
structure (see e.g. [265,292]). Deep in the duct, the nematic polymer has a homeotropic surface
orientation, in principle producing an aster S = 1 disclination along the duct axis. The director
in the centre of the cylindrical duct escapes into the third dimension, depriving the disclination
line of its singularity, but the polar orientation of the escape varies in a regular fashion along
the duct, thus inducing alternate hedgehog and hyperbolic point defects along the duct axis.
However, as the nematic polymer is extruded, the defects disappear, so that eventually the fibres
are well-aligned in the silk material. Perhaps it is the case that the point defects in the duct are
mechanically necessary, but do not possess any deep biological significance? In order to answer
this question, at the very least a more sophisticated modelling would be required, in which the
processes of the production of the polymer, and the solidifcation of the polymer melt are both
described.

A similar question can be asked of the plant walls, in which the cholesteric-like ordering also
confers an elastic robustness. This is somewhat analogous to that of the artificial material ply-
wood, also possessing a twisted structure; however, in plywood the twists are discrete, whereas
the cholesteric twist is continuous. We recall that in crystalline inorganic materials, strength is
often conferred through the presence of impurities which can prevent dislocations from sliding or
inducing cracks, and work-hardening, which in some sense entangles dislocation lines, preventing
them from spreading in catastrophic failure. Does anything like this happen in biological mate-
rials? Plant walls consisting of helicoid fibres [288, 289] do exhibit some defects. The individual
fibres themselves may be defected, and in addition, there are numerous crossed fibres in a wall.
Parts of this question have been addressed by Rey and coworkers [265, 294, 295]. Many of the
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observed textures are consistent with a pre-existing liquid crystalline structure. Although I am
not aware of specific studies, one must suppose that the presence of interlinking fibres, and the
response of the fibres to the presence of impurities (e.g. plant cells, or inter-cell spaces such as
“lumens” or “pit canals”) do act to improve strength, and so there is some link between defect
structure and biological fitness.

A particularly interesting recent study by Saw et al [296] involves a study of a monolayer of
epithelial cells in vitro. Epithelial cells line the outer surfaces of organs, the inner surfaces of
cavities. The example most familiar to readers will be skin cells. The epithelial cells can be
thought of as elements in an (active) nematic medium, albeit one with high viscosities with
slow time scales. Over time, epithelial cells are produced, die and migrate over the surface. A
particular feature of epithelial tissue is that some cells die in programmed fashion; this is known
as apoptosis. Apoptotic cells are extruded from the surface. There seems to be a coupling between
surface shape and its local nematic state, through the medium of local stress. Specifically, cell as
attracted to some defects where they bunch and are extruded. Apoptosis is a key homeostatic
mechanism in vivo, and this work seems to provide specific role for nematic defects in this process.
These authors also note that this coupling provides some hints for therapeutic strategy; placing
the cells on an artifically patterned surface with defect seeds placed at particular points could
be a strategy for therapeutic intervention.

Another context in which nature seems to make use of nematic defects concerns morphogenesis
(i.e. development of form) in Hydra. This is a small freshwater organism in the phylum Cnidaria.
It mostly reproduces by budding, and possesses the extraordinary property that it can often
regenerate itself, even when deprived of 98% of its body mass. Perhaps unsurprisingly, we mere
humans, who rather dramatically lack this capability, are curious as to how they do it. Maroudas-
Sacks et al [297] find that there is a supracellular actin fibre matrix, which can be thought of as
an active nematic. Topology (essentially the Euler characteristic in another guise) constrains the
surface charge at +2, and in principle all types of surface defect may occur. The mature Hydra
apparently only contains +1 and −1/2 surface defects. But the immature (or badly amputated!)
Hydra can also possess +1/2 defects, and these serve as organising centres for the growth of new
tissue.

A similar mechanism, but very different biological system was studied by Copenhagen et al [298].
Here the topological defects promote layer formation in bacterial clusters in an unfavourable
environment. The last two studies have attracted an enormous amount of interest, and has
led to speculation – indeed detailed calculation – that “defect-mediated morphogenesis” is a
widespread phenomenon [299].

The last two cases are examples in which the defect physics plays an essential role in the biology
of the organism. But there are many other recent papers [300,301] in which cells which resemble
nematic (“spindle-like”) or polar molecules are present, where the phase properties are important.
Defects are present, they may play an incidental or crucial role, but at this stage we cannot be
sure.

The quotation at the top of this section comes from a paper entitled “Physics of liquid crystals
in cell biology [248]. The full quotation is as follows:

. . . Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology
over the past few years, fuelled by an increasing identification of orientational order and
topological defects in cell biology, spanning scales from subcellular filaments to individual
cells and multicellular tissues. . .

We await future developments. . . .
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7 Afterword

Maurice Kleman had a love of learning, and of matters intellectual in domains well beyond his
immediate area of expertise. This commitment was evident to those who knew him and those
who attended his lectures. One of the ways in which he reconciled his interest in his Jewish
background with his profound lack of religious belief – Juif mécreant, as he described himself
in his autobiography – was an interest in Spinoza’s philosophy. Benedict (or more correctly,
Baruch) Spinoza (1632-1677) was a Dutch philosopher of Sephardi Jewish background who is
widely appreciated in the present day for his philosophical works, some of which were only
posthumously published. In 1652, Spinoza was expelled from the Amsterdam Jewish community
for his heterodox beliefs; according to recent reports in the press the cherem remains to this
day [302].

Maurice’s interest in Spinoza is preserved in the professional literature by his review of a new
biography by Stephen Nadler [303]. Maurice writes with approbation of Spinoza’s intellectual
integrity, specifically his refusal of conversion to Catholicism, despite its rather significant social
advantages. These advantages were sufficient to attract many of similar background whose
religious commitment of any sort was relatively weak. Spinoza did not, however – in that he was
a creature of his time – reject religion (unlike, say, the eighteenth century Scottish philosopher
David Hume). But he did reject the special status of the Hebrew people (no doubt one reason
for his unpopularity with his home congregation!), and his views concerning the nature of the
Universal Deity were decidedly unconventional in a seventeenth century context.

Spinoza moved in religiously dissenting circles, and worked as a lens-grinder. One of his most
distinguished clients was Christiaan Huygens, who appreciated his skill but referred to him in
letter to others as “the Jew of Voorburg” or “Our little Israelite” [304]. The labels were perhaps
meant to be descriptive, rather than prejudicial, but nevertheless accidentally confirm that,
expulsion or no, from some clubs one can never properly resign. In the last 15 years of his life
Spinoza corresponded with some of the Great and the Good of his philosophical and scientific
contemporaries, including the chemist Robert Boyle, Henry Oldenburgh, who was Secretary of
the Royal Society of London, and the philosopher-mathematician Gottfried Wilhelm Leibnitz.

The letter we quote from to finish [305] formed part of a correspondence with Willem van Bli-
jenbergh (1613-94), a grain-trader and amateur theologian from Dordrecht:

So far as in me lies, I value, above all other things out of my own control, the joining
hands of friendship with men who are sincere lovers of truth. I believe that nothing
in the world, of things outside our own control, brings more peace than the possi-
bility of affectionate intercourse with such men; it is just as impossible that the love
we bear them can be disturbed (inasmuch as it is founded on the desire each feels
for the knowledge of truth), as that truth, once perceived, should not be assented to.

Times have changed; to avoid the risk of public denunciation, we would nowadays replace “men”
by “people”! But with this exception, the sentiment sums up Maurice’s interaction with his
colleagues and with the scientific truths he sought to establish.
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so doing I have benefited from helpful correspondence and conversation with: Amit Acharya, Gareth
Alexander, John Chad, David Chillingworth, Mark Dennis, Jean Friedel, Philip Greulich, Roger Horn,
Randy Kamien, Efim Kats, Claire Meyer, Oleg Lavrentovich, Thomas Machon, Vladimir Mineev, Graham
Niblo, Pawel Pieranski, Valentin Poénaru, Victor Reshetnyak, Chuck Rosenblatt, Doug Ross, Tyler Shen-
druk and Grigoriy Volovik. I also acknowledge (older) correspondence with distinguished colleagues no
longer with us, in particular Yves Bouligand, Charles Frank, Jacques Friedel, George Gray, Frank Leslie
and Misha Monastyrsky. Finally I apologise particularly to some close colleagues of Maurice Kleman,
and to many others who played a role in this story, all of whom I should have consulted but was not able
to as a result of time constraints.
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Notes
While preparing a professional volume on the history of liquid crystal science coauthored with David
Dunmur and Horst Stegemeyer (Crystal that Flow [16]), I consulted Maurice on various historical issues.
He was kind enough to put me in contact with Jacques Friedel, who had both personal and professional
expertise in this matter. I think that Maurice primed him to receive enquiries from me. The result was
a correspondence with Friedel that was extremely helpful for our work.

When the volume appeared in late 2004, we received a large number of approbatory emails from around
the globe. I had (inter alia) sent a complimentary copy to Friedel. This was the least I could do, for a copy
of his autobiography, which he had kindly lent to me, had disappeared in the mail between Southampton
and Paris. After some time, the Royal Mail delivered a large envelope containing a detailed, closely
argued, extended, critical epistle. This latter, ten pages, written with a fountain pen in tightly spaced
letters, in a slightly uncertain hand, and with many diagrams, came from Jacques Friedel.

The gist of his complaint was that we had undervalued the importance of defects in the history of liquid
crystals. His colleague Kléman, who had almost single-handedly developed this theory, was not receiving
the acclaim that was his due. He was, of course, partly right, but there were reasons for the under-
emphasis: too many parallel narratives ruin a good story. I hope, however, that this essay goes some way
to compensating our sin, even though Friedel himself is unfortunately no longer around to appreciate the
effort.

Readers are warned that this essay is only a very rough draft of history. Given that it is written in
the shadow of Maurice Kleman’s passing, it is (deliberately) very Kleman-centred. Out of a very large
number of papers on multiple themes, I have, at least to some extent arbitrarily, selected areas which
I know about, and omitted work which, (who knows?) may become important (e.g. his work with
Jonathan Robbins on the solar corona [307]). Likewise,the contributions of many of his collaborators
have probably been undervalued. In the development of what I have called the “Homotopic Revolution”,
the contribution of the Russian school, and particularly that of A.M. Polyakov, has almost certainly not
been given its proper due.

Also, I expect a heterogeneous readership. My exposition has probably drifted stochastically between
undergraduate and the expert levels. My primary goal has been to discuss Maurice’s work in the context
of changing ideas of condensed matter defects, rather than to give a detailed account of the current state
of knowledge in any of the fields that I have touched upon. For proper state of the art reviews, readers
should search in the professional literature. In this context, I particularly recommend the recent “Liquid
Crystals: New Perspectives”, edited by Pieranski and Godinho [308], which addresses a number of defect
questions raised during Maurice Kleman’s career, as well as other papers in this memorial issue.

For this essay, I have borrowed liberally from a number of previous essays on the history of liquid crystals,
both by myself and collaborators, and by others [16,18,88,89,110,306]. I ask that readers forgive me for
repeating ideas expressed elsewhere in the interest of producing a self-contained text. Likewise I request
tolerance for omissions. These partly reflect my ignorance; I welcome emails filling me in on historical
details I am missing and obvious conceptual misunderstanding that I betray. But clearly some things
have been left out in order to restrict the length of this essay to manageable proportions.

Notwithstanding the copious professional interactions mentioned above, I stress that errors are due to
me alone. I declare no conflicts of interest, other than those implicit in the paragraphs above.
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