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Abstract

This thesis studies three routing and scheduling problems arising in man-
power and transportation planning. These problems are rooted in real ap-
plications, and carry interesting characteristics. By exploiting the structures
of the problems, this thesis provides effective mathematical models and algo-
rithms for solving the problems practically. Managerial insights are developed
via extensive computational tests and sensitivity analyses.

Effective scheduling of staff can generate considerable saving where un-
necessary costs due to misallocation of staff to the demand are reduced. The
second chapter of this thesis studies the Shift Rostering Problem—the as-
signment of staff to shifts over a planning horizon such that work rules are
observed. In view of the special structure of the work-rule constraints, we
model work rules in terms of prohibited meta-sequences and resource con-
straints. A novel graph-based formulation is proposed where the formulation
size depends on the structure of the work-rule constraints and is independent
of the number of staff. This is particularly beneficial when the work rules
possess sufficient structure that results in a small formulation. For some cases
when the canonical formulation could not solve in a reasonable time, our ap-
proach can find optimal solutions in a few minutes.

Vehicle routing problems occur frequently in the delivery and collection
of items between a central depot and a number of customer locations. Mo-
tivated from the distribution of beer and malt beverages in China, the third
chapter of this thesis studies a time-constrained heterogeneous vehicle rout-
ing problem on a multigraph. Parallel arcs represent Pareto-optimal paths
between two locations, with various travel times and costs. We provide a
mixed-integer linear programming formulation of the problem and propose a
tabu search heuristic for its solution. The tabu search is designed to address
the parallel arc structure on the network, which necessitates modifications
of the basic search operations such as insertion. Our numerical experiments
demonstrate the effectiveness of the proposed tabu search heuristic and pro-
vide further managerial insights through sensitivity analysis. The numerical
experiments suggest considerable transportation cost savings attributable to
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the utilization of alternative route structure and provide some insights to aid
distributors on their vehicle dispatch policies.

Most transportation planning models are deterministic and do not con-
sider uncertainties in operations. Therefore, disruptions on the planned daily
schedule often occurs in the daily operations due to unexpected traffic condi-
tions, vehicle breakdowns, accidents, special events, etc. When delays due to
these uncertainties accumulate and propagate in the execution and operation
of the planned schedule, poor service and high operational cost result. The
fourth chapter of this thesis addresses a real-time tram scheduling problem
arising in a public transit company in Hong Kong. Motormen and trams
are scheduled simultaneously to provide passenger transportation service in
some commercial routes. To mitigate unexpected overtime and meal-break
delays due to the uncertainties in operations, planned schedules are revised
dynamically using real-time information under a rolling-horizon framework.
Furthermore, route frequencies are maximized simultaneously for improved
passenger transportation service. We provide a number of mathematical mod-
els for revising the schedules in real-time. A general event-driven simulation
model is developed to evaluate the efficiency and the effectiveness of the
models with real-world data.
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摘要

本論文研究員工排程及車輛調度問題，優化供應鏈物流和公共交通系
統。論文的第一部分研究一個員工排班問題 —— 編排員工每天的工作崗
位，避免需求錯配，同時符合複雜的工作編排規定。論文的第二部分研究
一個多車種車輛調度問題。有別於傳統的車輛調度問題，兩個不同地點之

間有多條路徑連結，每一條路徑有特定的運送成本和需時。不但要考慮車

輛到達顧客地點的次序，而且要決定連結顧客地點之間的路徑。以最少的

運送成本在限時內滿足所有顧客的需求。由於在實際的運作中，隨機的行
車時間會經常擾亂預定的排程。因此，論文的第三部分研究利用實時資訊

即時調整員工以及車輛排程。每當重新編排的時候，車輛須調度至合適位

置，確保員工有足夠車輛能夠按照編排的時間出發。本論文為上述的三個

員工排程及車輛調度問題建構了不同的數學模型，並且針對其特定的結構
提出了有效的算法以及解決方案。
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Chapter 1

Introduction

This thesis investigates the scheduling of vehicles and drivers to provide re-
liable and cost-effective transportation services. We focus on three routing
and scheduling problems arising in manpower and transportation planning.
These problems are rooted in real applications, and encompass interesting
characteristics. By exploiting the structures of the problems, this thesis pro-
vides effective mathematical models and algorithms for solving the problems
practically. Managerial insights are developed via extensive computational
tests and sensitivity analyses.

This chapter gives a brief introduction to the three problems covered in
this thesis. Section 1.1 describes the typical planning processes of manpower
and transportation planning. Section 1.2 describes the characteristics that
motivate the specific problems.

1.1 Manpower and Transportation Planning

In this section, we briefly describe the planning processes of a public transit
company in Hong Kong as an example to illustrate some typical considera-
tions. A review on existing literature about public transportation planning
can be found in Desaulniers and Hickman (2007).

Public transportation planning processes are typically divided into four
phases: strategy planning, tactical planning, operational planning and real-
time control. This thesis focuses the scheduling processes in operational plan-
ning and real-time control. As a tradition, we describe the planning processes
we encountered as inter-related problems in a sequential way: timetabling,
vehicle scheduling, shift scheduling, shift rostering and real-time control.
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Timetabling

The timetabling process determines the required transportation services dur-
ing the planning horizon. Based on the estimated origin-destination pas-
sengers demand, the objective is to maximize passenger service levels and
minimize operational costs, with limited number of vehicles and drivers. The
scheduling is constrained by the available fleet size and some operational
requirements.

Vehicle Scheduling

The vehicle scheduling process focuses on the scheduling of vehicles to meet
the demand requirements specified in the timetable. Deadheads are also
introduced to connect the commercial routes. The goal of vehicle scheduling
is to minimize the operational costs including the number of vehicles and the
total distance travelled. There are some operational requirements governing
the vehicle routing and scheduling. For example, the maximum capacity, a
fixed depot, the maximum travel distance, etc. This operational requirements
can usually be formulated as resource constraints.

Shift Scheduling

With the predetermined vehicle schedules, drivers are then assigned to oper-
ate these vehicles for the trips and deadheads under some work rules. More-
over, meal breaks and rests have to be assigned to drivers appropriately. The
problem is usually known as shift scheduling, where the goal is to determine
the daily duties (sequence of tasks to be performed) that minimize the number
of drivers. Duties of similar working hours and rest periods are categorised
into shift types, like Morning Shifts, Night Shifts, etc. The solution shows
how many drivers are needed for each shift type in a day.

Shift Rostering

A roster is constructed to cover the shift-based demand as much as possible.
When drivers are assigned to shifts, work rules are handled simultaneously for
workload balancing, staff regulations, day-offs assignments, etc. The goal of
this rostering process is to cover the demand as much as possible, minimizing
the number of staff needed, and maximizing staff preferences.
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Real-Time Control

Disruptions on planned schedules occur occasionally due to unexpected traffic
conditions, bad weather, accidents, etc. Delays due to these uncertainties in
travel time may accumulate and propagate in the execution, resulting in
poor services and high operational costs. In real-time control, disrupted
schedules are repaired. To hedge and mitigate these risks, schedules are
modified continuously to avoid serious delays and to improve service.

1.2 Novel Characteristics

This thesis focuses on routing and scheduling problems that have some novel
characteristics. Considerable savings and improved services can be realised
when these characteristics are incorporated into the transportation planning
and control processes. This section describes the characteristics that motivate
the study of the specific problems covered in this thesis.

Modeling Staff Regulations

Human resource is a scarce resource, difficult to manage and often involves
expensive training costs. Effective scheduling of staff can generate consid-
erable saving where unnecessary costs due to mis-allocation of staff to the
demand are reduced. Personnel schedules have to be not only cost-effective,
but also applicable in the human context. Thus, numerous work rules must
be followed when assigning shifts to employees. Since the introduction of
personnel scheduling problems in 1950s, it remains an interesting question
on how these complicated work rules could be formulated generally and han-
dled efficiently. The second chapter of this thesis presents a novel way of
modeling work rules. The effectiveness of the proposed approach is demon-
strated on solving a shift rostering problem. Handling work rules successfully
for the problem would give insights for solving more complicated versions.

Alternative Route Considerations

The road network underlying a distribution system presents multiple travel
options for vehicles. For example, a vehicle going from one customer loca-
tion to another may consider different paths of travel based on criteria such
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as travel time, cost and distance. These alternative routes are typically not
considered in the analysis of vehicle routing problems which are often stud-
ied on a simple graph. A multigraph structure, however, would enable the
operators to build vehicle routes by utilizing the parallel arcs between each
pair of customer locations which can help them address realistic trade-offs
such as transportation costs and delivery time. In the third chapter of this
thesis, we study a time-constrained heterogeneous vehicle routing problem
on a multigraph. The problem is motivated from the distribution of beer and
malt beverages in China, with some characteristics including the possibility
of alternative paths of travel under the prevalence of road toll charges, fleet
heterogeneity, and time-restricted delivery.

Uncertainties

Most existing formulations for transportation planning consider deterministic
travel times. However, travel times may not be realized as what are expected,
due to the weather conditions, special events, traffic conditions, etc. Delays
due to these uncertainties in operations may accumulate and propagate in
the execution of the planned schedule, resulting in poor services and high
operational costs. With the advance in RFID technologies and database
management systems, the locations of trams can be determined instanta-
neously at a relatively low cost nowadays. The fourth chapter of this thesis
investigates how real-time information can be utilized in combination with
historical data to improve the controllers’ real-time routing and scheduling
decisions practically.

4



Chapter 2

A Graph-Based Formulation for the
Shift Rostering Problem

This chapter investigates a shift-rostering problem (SRP)—the as-
signment of staff to shifts over a planning horizon such that work
rules are observed. We formulate the work rules in terms of pro-
hibited meta-sequences and resource constraints. This framework
provides much flexibility in modeling work rules in a continually
changing environment. Canonical formulations could not solve the
problem effectively when there are a large number of staff and there
are a large number of feasible shift patterns. We proposed a graph-
based formulation where the set of feasible shift patterns are rep-
resented by the paths of a graph. The formulation size depends on
the structure of the work-rule constraints and is independent of the
number of staff. This is particularly beneficial when the work rules
possess sufficient structure that results in a small graph-based for-
mulation. Moreover, the formulation often yields multiple optimal
solutions which are beneficial for managerial decisions in practice.
We have conducted computational tests on randomly-generated in-
stances with work rules drawn from practice. Our results indicate
that for some cases when the canonical formulation could not solve
the problem in a reasonable time, our approach can find optimal
solutions in a few minutes.
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2.1 Introduction

Personnel scheduling has been useful in hospital nurse-scheduling, call cen-
ter operations, airlines, urban transportation, supply chain industries, etc.
Human resource is a scarce resource, difficult to manage and often involves
expensive training cost. Effective scheduling of staff can generate consid-
erable saving where unnecessary costs due to mis-allocation of staff to the
demand are reduced. In addition to cost concerns, a well-planned roster can
also improve staff satisfaction of a company, which is important but often
overlooked. Other potential benefits include easier recruitment, higher level
of services, better morale, improved productivity and decreases in turnover,
absenteeism, overtime, requests for days off and tardiness.

Personnel schedules have to be not only cost-effective, but also applicable
in the human context. Thus, numerous work rules must be followed when
assigning shifts to employees. Since the introduction of personnel scheduling
problems in 1950s, it remains an interesting question on how these compli-
cated work rules could be formulated generally and handled efficiently. This
chapter presents a novel modeling approach addressing this issue. The effec-
tiveness of the proposed approach is demonstrated on solving a shift rostering
problem. Handling work rules successfully for the problem would give insights
for solving more complicated versions.

As early as 1954, Dantzig (1954) studied staff scheduling at toll-booths.
Recent literature surveys on staff scheduling are given by Cheang et al. (2003),
Burke et al. (2004) and Ernst et al. (2004). Mathematical modeling is useful
for exact methods based on mathematical programming techniques as well
as heuristics that generate good feasible solutions efficiently. In the following
paragraphs, we present a brief review of mathematical models that have been
useful for solving personnel scheduling problems.

Dantzig (1954) formulated a shift-pattern model for staff scheduling at
toll-booths in which feasible shift patterns are decision variables. For small
instances or when the work rules are extremely restrictive, it is possible to
explicitly enumerate all the feasible shift patterns that can be assigned to the
staff. The LP-relaxation of this model can be solved via a column generation
technique (see Dantzig and Wolfe (1960)) in which a subset of feasible shift
patterns is obtained by solving pricing subproblems. Since then, a number of
column-generation-based exact and heuristic approaches for shift scheduling
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have been developed; see, for example, Gamache et al. (1999), Sarin and
Aggarwal (2001) and Caprara et al. (2003). Since there are many feasible
patterns in most operational settings, various methods were developed for
generating a subset of patterns, in order to reduce the number of variables
to a manageable level. In many cases, these approaches were able to produce
near-optimal solutions in a reasonable time.

Branch-and-cut approaches have been effective for solving large integer
programs. Decision variables can be used to represent assignments of shifts
to individual staff. The effectiveness relies on the choice of valid inequalities
as well as the efficiency of the separation algorithm. Felici and Gentile (2004)
derived a number of facet-defining valid inequalities for a staff scheduling
problem. Special branching rules are applied to break symmetries to im-
prove the efficiency of the branch-and-bound process. Cappanera and Gallo
(2004) proposed a 0-1 multicommodity flow problem where the work rules
are handled as side constraints. Valid inequalities are derived to tighten the
LP-relaxation of the formulation. When compared with the pattern formula-
tion, these integer programs provide more flexibility in modeling work rules
for individual employee, but less applicable when there are a large number of
homogeneous employees.

Network flow models are widely used in formulating and solving many
practical problems, see Ahuja et al. (1993). Balakrishnan and Wong (1990)
formulated a network flow model for cyclic staff scheduling. The network
can be constructed easily when shift-type changes (on to off or vice versa)
within a stretch (period of consecutive days) are not allowed. Millar and
Kiragu (1998) extended the work of Balakrishnan and Wong (1990) to the
acyclic case when a stretch is specified in terms of a stint (shift sequence
with specified start date, length and cost). Other network flow models of
related problems can be found in Segal (1974), Nicoletti (1975), Caprara
et al. (1997), Caprara et al. (1998), Moz and Pato (2004) and Steinzen et al.
(2010). Underlying graphs are often used to handle work rules of very special
structures. Other work rules that cannot be incorporated were usually left as
side constraints. Although network flow models have been used for solving
staff scheduling problems for decades, it remains an interesting question on
how complicated work rules could be handled using the underlying graph
effectively.

The purpose of this chapter is to present a novel modeling approach for a
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shift rostering problem. The proposed approach consists of four steps. First of
all, work rules are written in terms of prohibited meta-sequences and resource
constraints. Work rules such as workload balancing and day-off assignments
can be naturally formulated in this framework. An efficient algorithm is then
used to construct an underlying graph representing all the feasible patterns.
By solving a network flow model with side constraints, an optimal flow is
obtained. Since all the work rules are handled using the underlying graph,
the optimal flow represents many optimal solutions. By disaggregating the
optimal flow into paths and transforming the paths into patterns, a preferred
optimal solution is selected. The proposed approach produces a large number
of optimal solutions, which affords flexibility in considering other managerial
concerns when deciding on the roster.

We investigate a shift rostering problem (SRP) where the work rules can be
formulated in terms of prohibited meta-sequences and resource constraints.
In the following subsections, we describes the problem using a small example
and then present a mixed-integer programming formulation.

2.1.1 Problem Description

Within the manpower-planning process, the Shift Rostering Problem (SRP)
focusses on the stage where staff are assigned to shifts over a planning horizon.
We assume that the demand requirements for the planning horizon has been
determined, the work-day has been divided into a fixed number of shifts and
the workload for each shift in the planning horizon has been set.

Table 2.1: An example cover table

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Shift 1 (morning) 39 83 30 33 36 66
Shift 2 (afternoon) 21 11 34 17 31 20
Shift 3 (night) 40 6 36 50 33 14
Shift 4 (day-off) 0 0 0 0 0 0

Consider a small example with a planning horizon of 6 days and each day
has 4 shifts. The demand (in number of staff required) of the shifts in the
planning horizon is given in a cover table as illustrated in Table 2.1. Each staff
is assigned to exactly one shift per day. The objective is to schedule 150 staff
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to cover the demand as much as possible such that all work rules are observed.
Work rules vary in practice by industries and by organisations. They may
include industrial regulations, staff contract conditions, etc. We consider a
work rule as conditions that disallow the assignment of some shift patterns to
the staff. In particular, all work rules are handled as hard constraints. Below
are some example work rules.

At most 5 night shifts can be assigned in the planning horizon.

At least 2 night shifts should be assigned in the planning horizon.

At most 6 working shifts can be assigned in consecutive days.

No more than one day off in every 5 days, i.e.,

working shifts should be assigned in at least 4 consecutive days.

A day-off should be assigned after two consecutive night shifts.

No night-dayoff-night shift sequence.

Repeating shift pattern of 5 days on and then 2 days off.

Minimum rest time between working shifts (e.g. no morning shift after a night shift).

The resulting solution is a roster showing how many staff will be working
on each shift during the planning horizon. A sequence of shift-assignments for
the planning horizon is a shift pattern. The roster to cover the demand can
be represented at an aggregate level by a set of feasible shift patterns (that
satisfy the work rules) together with the number of staff assigned. Table 2.2
shows a roster for the example problem. The first row of the roster shows
that 36 staff is scheduled to work shift 4 in day 1, shift 1 in day 2, shift 3
in day 3, shift 4 in day 4, shift 1 in days 5 and 6; that is, they are assigned
the shift pattern (4, 1, 3, 4, 1, 1). This roster uses 8 shift patterns, each is
represented by a row of the table, with the leftmost column indicating the
number of staff that is assigned to the shift pattern. A roster is said to be
feasible when every staff is assigned a feasible shift pattern.

The roster should provide sufficient staff to cover as much of the demand
as possible. In our approach, we do not require the staffing level for a shift to
match demand exactly. If the staff available do not meet the required level of
cover, under-cover occurs and over-time or temporary staff may be an option.
If the staff level available exceeds the required cover, over-cover occurs and
extra off-line activities, like training or project work, may be an option. The
penalty cost of an over-cover and an under-cover can be interpreted as the
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Table 2.2: An example roster

Feasible shift pattern

No. of staff Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

36 4 1 3 4 1 1
33 1 1 4 1 3 4
30 3 4 1 3 4 1
11 2 2 4 2 2 4
14 4 1 2 4 2 3
10 2 4 2 3 4 2
10 3 4 2 3 4 2
6 1 3 4 2 2 4

per-shift average cost of a permanent staff and a temporary staff respectively.
In this chapter, we schedule a given number of homogeneous staff (all staff
are subject to the same set of work rules). The objective of SRP is to find a
feasible roster that minimizes the total cost of under-cover and over-cover.

2.1.2 Problem Definition

Let I = {1, 2, ..., I} index the set of shifts, J = {1, 2, ..., J} index the set
of days and K = {1, 2, ..., K} index the staff available. For each shift i ∈ I
and each day j ∈ J , we define over-cover oij as the number of excessive staff
assigned to cover the demand and under-cover uij as the number of extra
staff required to cover the demand. Under-cover or over-cover is allowed at a
penalty cost αij ∈ R+ and βij ∈ R+ respectively for each shift i ∈ I in each
day j ∈ J . Let

xkij =

{
1, if staff k ∈ K is assigned to cover shift i ∈ I in day j ∈ J ;
0, otherwise.
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Given the demand (in number of staff required) dij ∈ Z+,∀i ∈ I, j ∈ J , the
objective is to minimize the sum of under-cover and over-cover penalties.

(SRP1) : min
∑
i∈I

∑
j∈J

(αij uij + βij oij) (2.1)

s.t.
∑
k∈K

xkij + uij − oij = dij, ∀i ∈ I, j ∈ J , (2.2)

uij, oij ≥ 0, ∀i ∈ I, j ∈ J , (2.3)∑
i∈I

xkij = 1, ∀j ∈ J , k ∈ K, (2.4)∑
i∈I

∑
j∈J

wrk
ij x

k
ij ≤ W k

r , ∀r ∈ Rk, k ∈ K, (2.5)

Lm∑
l=1

∑
i∈Sm(l)

xki,j+l ≤ Lm − 1, ∀j ∈ {0, ..., J − Lm},m ∈ Sk, k ∈ K,

(2.6)

xkij ∈ {0, 1}, ∀i ∈ I, j ∈ J , k ∈ K. (2.7)

As the demand (in number of staff dij) is an integer, the under-cover uij
and over-cover oij are guaranteed to be integer-valued as well, so only non-
negativity restrictions (2.3) are needed. A shift can either be a working shift
or a day-off shift. Exactly one shift in a day should be assigned to each
staff according to (2.4). We consider work rules that can be represented by
resource constraints and prohibited meta-sequences. The work rule require-
ments are formulated by (2.5) and (2.6), and are described below.

Some work rules can be easily formulated as resource constraints. Let Rk

be the set of resources for staff k ∈ K. For each resource r ∈ Rk of staff
k ∈ K, let W k

r ∈ Z+ be the resource capacity and let wrk
ij ∈ Z, 0 ≤ wrk

ij ≤ W k
r ,

be the amount of resource r consumed when staff k is assigned to cover shift
i ∈ I in day j ∈ J . The resource usage for each staff must not exceed
the resource capacity. The resource constraints are formulated by (2.5). For
example, the work rule “at most 2 night shifts can be assigned in total” can
be expressed by a resource constraint with capacity 2 with each night shift
consuming one unit of resource and other shift types consuming none. Due to
the presence of Constraints (2.4), the work rule “at least 2 night shifts can be
assigned in total” can be viewed as “at most 4 non-night shifts can be assigned
in total” and hence can be expressed by a resource with capacity 4 (= J-2),
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with each non-night shift consuming one unit of resource. Combining the two
resource constraints, the work rule “exactly two night shifts must be assigned
in total” can be implemented as well. In this way, the number of night-
shift assignments can be distributed among the staff. Similarly, different
workload balancing requirements can be easily achieved under this setting.
For example, the work rule “no staff should work more than 33 working hours”
can be formulated naturally using a resource constraint, even if working hours
differ by shift and by day.

Although resource constraints can model many work rules, other work
rules are more naturally formulated using prohibited meta-sequences. We
define a prohibited meta-sequence m as a sequence of subsets of shifts (Sm(1),
Sm(2), ..., Sm(Lm)) where Sm(l) ⊆ I for all l ∈ {1, 2, ..., Lm}. The number of
components in a meta-sequence m, denoted by Lm, is referred as the length
of the meta-sequence. Let Sk index the set of prohibited meta-sequences
for staff k ∈ K. A prohibited meta-sequence m ∈ Sk disallows the assign-
ments of the shift sequences in Sm(1)× Sm(2)× ...× Sm(Lm) to staff k. The
constraints enforcing the prohibited meta-sequences are formulated by (2.6).
For example, the work rules listed in Table 2.3 can be naturally expressed by
the prohibited meta-sequence as shown. The work rule “at least 2 consecutive
working shifts” is formulated by prohibited meta-sequence ({4}, {1, 2, 3}, {4})
that disallows the shift sequences (4,1,4), (4,2,4) and (4,3,4).

Table 2.3: Example work rules

Work rules Prohibited meta-sequences

a day-off should be assigned after a night shift. ({3}, {1, 2, 3})
no night-dayoff-night shift sequence. ({3}, {4}, {3})
at most 2 consecutive working shifts. ({1, 2, 3}, {1, 2, 3}, {1, 2, 3})
at least 2 consecutive working shifts. ({4}, {1, 2, 3}, {4})
at most 1 consecutive day-off. ({4}, {4})

In this chapter, we study a shift rostering problem with homogeneous
staff(all staff are subject to the same set of work rules). Hence, we can set

S = Sk, R = Rk, wr
ij = wrk

ij , Wr = W k
r ∀k ∈ K.

The planning horizon for shift assignment and rostering is often quite
long, typically horizons from several weeks up to 6 months are considered
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with several shifts in a day. As the number of variables and constraints of
(SRP1) also increase with the number of staff, the resulting shift rostering
problems are large-scale mixed-integer programs. Solving such a large-scale
problem is very time consuming. When the staff are homogeneous, the re-
sulting symmetries in assignment often further increase the solution time in
a branch-and-bound framework; see Margot (2010). While recognizing that
heterogeneity in staff skills is an important consideration in many shift and
tour scheduling problems, we focus in this chapter on the setting where staff
can be considered identical. In the next section, we propose a graph-based
formulation that takes advantage of this homogeneity.

Consider a small example problem that consists of 6 days and 4 shifts per
day, with the prohibited meta-sequences described in Table 2.3. Formula-
tion (SRP1) consists of 4374 constraints, 3600 binary variables and 48 non-
negative real variables. The problem has 120 feasible shift patterns. With
the graph-based formulation, the example problem can be formulated using
only 33 constraints, 28 non-negative integer variables and 48 non-negative
real variables.

2.2 Graph-Based Formulation

In this section, we propose a graph-based formulation where the size of the
formulation depends on the structure of the work-rule constraints and is
independent of the number of staff. Given a set of resource constraints and a
set of prohibited meta-sequences, we construct a directed graph with a source
s and a sink t so that the set of (s, t)-paths correspond to the set of feasible
shift patterns. Using the graph representation of the work rules, we can
reformulate the shift rostering problem as a network flow model where the
demand requirements are handled as side constraints. The resulting optimal
flow can be decomposed into (s, t)-paths and then transformed to an optimal
solution of the shift rostering problem. If the work-rule constraints possess
sufficient structures, a graph of small size may be used to represent a large
set of feasible shift patterns. We have identified some of these structures and
they appear in work rules that are commonly found in practical scenarios.
Furthermore, as the same optimal flow can be decomposed into different sets
of (s, t)-paths, multiple optimal solutions to the shift rostering problem could
be obtained. This is beneficial for managerial decisions in practice.
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2.2.1 Graph Representation

We construct a directed graph G(V,E) with a source s ∈ V and a sink t ∈ V
so that the set of (s, t)-paths correspond to the set of feasible shift patterns.
Each edge in E is associated with a set of assignments. If assignment (i, j) ∈
I × J is included in an edge, staff assigned according to the edge will be
assigned to cover shift i ∈ I in day j ∈ J . The assignments along an (s, t)-
path gives a feasible shift pattern that can be assigned to any of the K staff.
A K-flow in the graph therefore corresponds to a feasible solution to the SRP.

Figure 2.1 illustrates the type of graph we look for and it represents the
feasible shift patterns of the small example problem introduced in Section 2.1.
The edge incident from the source s to vertex 3 associated with {(4, 1), (1, 2)}
corresponds to the assignment of shift 4 in day 1 and shift 1 in day 2. Consider
a path that passes through vertices (s, 3, 5, 7, t) where the edges are associated
with {(4, 1), (1, 2)}, {(3, 3)}, {(4, 4), (1, 5)} and {(1, 6)} respectively, the path
corresponds to the shift pattern (4, 1, 3, 4, 1, 1). The shift pattern is feasible
because it satisfies all the six work rules in the example problem. Note
that any (s, t)-path in the graph in Figure 2.1 corresponds to a feasible shift
pattern for our example. All the 120 feasible shift patterns for our example
are represented by the graph that consists of only 9 vertices and 28 edges.
The example demonstrates the potential of using a graph of small size to
represent a large number of feasible shift patterns.

Figure 2.1: The underlying graph for the example problem
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{(2,1)}
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{(4,1), (2,2)}
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{(3,1), (4,2), (2,3)}
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{(1,2)}

{(2,2)}

{(3,2)}

{(4,2), (1,3)}

{(4,2), (2,3)}

6
{(4,3), (1,4)}

{(4,3), (2,4)}

5
{(1,3)}

{(2,3)}

{(3,3)}

7

{(4,4), (1,5)}

{(4,4), (2,5)}

{(3,6)}

{(1,6)}

{(2,6)}

{(1,5), (4,6)}

{(2,5), (4,6)}

{(3,5), (4,6)}

{(1,4), (4,5)}

{(2,4), (4,5)}

{(3,4), (4,5), (1,6)}

{(3,4), (4,5), (2,6)}
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Shift Patterns

To construct a graph representing the set of feasible shift patterns, we first
describe a graph G that represents the set of all shift patterns(that could be
feasible or infeasible). Let G(N ,A) be a directed graph with vertex set N =
{N0,N1, ...,NJ}, where J = {1, 2, ..., J} is the set of days in the planning
horizon. Vertex s = N0 is the source and vertex t = NJ is the sink. For
shift i on day j, we introduce an edge (i, j) in A incident from vertex Nj−1

to vertex Nj. A path from s = N0 to t = NJ represents a shift pattern with
exactly one shift assigned in each day, starting from day 1 to day J . Figure
2.2 shows the graph for the example problem that considers 6 days and 4
shifts per day.

Figure 2.2: The graph for the example problem that considers 6 days and 4 shifts per day.
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{(3,3)}
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{(3,4)}

{(4,4)}
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{(1,5)}

{(2,5)}

{(3,5)}

{(4,5)}
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{(1,6)}

{(2,6)}

{(3,6)}

{(4,6)}

Among the shift patterns represented by the graph, some may violate work
rules. To eliminate these infeasible ones, an algorithm to construct the graph
representation is proposed that effectively splits the vertices of G, so that
the resulting graph represents only the feasible shift patterns. The algorithm
relies on an efficient way to determine the feasibility of an (s, t)-path with
respect to the resource constraints and the prohibited meta-sequences. We
will first describe how we determine the feasibility for one (s, t)-path and then
describe the way we construct the graph.

For every edge e, let σ(e) ∈ I ×J denote the shift assignments associated
with edge e. A partial path in G is a sequence of edges forming a directed
path that starts from source s. For any partial path P = (p1, p2, ...., pn), it is
said to be extended along edge e to partial path Q if Q = (p1, p2, ...., pn, e).

Resource Constraints

We may determine the feasibility of an (s, t)-path on graph G with respect
to the resource constraints as follows. For every edge e ∈ A, the resource
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consumption of resource r on edge e is defined as

wr(e) = {wr
ij : (i, j) = σ(e)} ∀r ∈ R. (2.8)

The resource usage of a partial path P on graph G is defined as

cr(P ) =
∑
e∈P

wr(e), ∀r ∈ R. (2.9)

As the resource consumptions on all the edges are non-negative and additive,
for any partial path P = (p1, p2, ...., pn) that is extended along edge e, the
resource usage of the extended partial path Q = (p1, p2, ...., pn, e) can be
computed from the resource usage of P and the resource consumption on
edge e as follows.

cr(Q) = cr(P ) + wr(e), ∀r ∈ R. (2.10)

The feasibility of a (s, t)-path with respect to the resource constraints can
therefore be determined from the resource usages of its partial paths which
can be computed iteratively using (2.10).

Prohibited Meta-sequences

We may determine the feasibility of an (s, t)-path on graph G with respect
to the prohibited meta-sequences as follows. For every edge e ∈ A that is
associated with assignment (i, j) ∈ I×J , let σI(e) = i be the shift associated
with edge e. For any partial path P = (p1, p2, ..., pn) and meta-sequence
m =(S(1),S(2),...,S(L)) where S(i) ⊆ I for all i ∈ {1, 2, ..., L}, partial path
P is said to end with the meta-sequence m if

1. L ≤ n and

2. σI(pn−L+i) ∈ S(i), ∀i ∈ {1, 2, ..., L}.

Note that a partial path does not end with meta-sequences that are longer
than the path. For any partial path P in graph G and any prohibited meta-
sequence m =(Sm(1),Sm(2),...,Sm(Lm)), and for l ∈ {1, 2, ..., Lm}, we define

hml (P ) =

{
1, if P ends with (Sm(1), Sm(2), ..., Sm(l));

0, otherwise.
(2.11)
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Essentially, hml (P ) indicates if the last l edges of path P matches the first l
elements of meta-sequence m. It follows that an (s, t)-path corresponds to a
shift pattern that satisfies prohibited meta-sequence m ∈ S if and only if the
path consists of no partial path P where

hmLm
(P ) = 1. (2.12)

For any partial path P on graph G and prohibited meta-sequence m ∈ S, we
define the vector

Hm(P ) = (hm1 (P ), hm2 (P ), ..., hmLm
(P ))

as the end-with vector of P with respect to m, to track the overlap of P
to the prohibited meta-sequence m. The feasibility of an (s, t)-path to the
prohibited meta-sequence m can be determined by the corresponding end-
with vectors of its partial paths.

Path Extension

The end-with vector when a partial path is extended can be computed easily
as follows. For m ∈ S and e ∈ A, let bm(e) = (bm1 (e), bm2 (e), ..., bmLm

(e)) be a
binary vector where

bml (e) =

{
1, if σI(e) ∈ Sm(l);

0, otherwise,
∀l ∈ {1, 2, ..., Lm}, (2.13)

which we call the inclusion vector of edge e with respect to meta-sequence
m. For any partial path P on graph G, we set

hm0 (P ) = 1, ∀m ∈ S. (2.14)

Then, for any partial path P = (p1, p2, ...., pn) that is extended along edge e,
the end-with vector of the extended partial path Q = (p1, p2, ...., pn, e) with
respect to meta-sequence m can be computed as follows.

hml (Q) = hml−1(P )bml (e), ∀l ∈ {1, 2, ..., Lm},m ∈ S. (2.15)
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For notational simplicity, we define an operator ? : Bn × Bn 7→ Bn on two
n-dimensional vectors x and y, as follows:

x1

x2
...
...
xn

 ?


y1

y2
...
...
yn

 =


y1

x1y2

x2y3
...

xn−1yn

 .

Then (2.15) can be rewritten as follows.

Hm(Q) = Hm(P ) ? bm(e), ∀m ∈ S. (2.16)

As an illustration, we consider a prohibited meta-sequence ({4}, {1, 2, 3}, {4})
and an (s, t)-path (e1, e2, e3, e4, e5, e6) where the edges are associated with
assignments {(1, 1)}, {(4, 2)}, {(1, 3)}, {(3, 4)}, {(4, 5)} and {(2, 6)} respec-
tively. The path is illustrated below.

{(4,2)} {(1,3)} {(3,4)} {(4,5)} {(2,6)}{(1,1)}

The inclusion vectors of the edges with respect to m′ = ({4}, {1, 2, 3}, {4})
are obtained using (2.13). The inclusion vectors are indicated below on the
corresponding edges.

(1,0,1) (0,1,0) (0,1,0) (1,0,1) (0,1,0)(0,1,0)

For example, edge e2, which assigns shift 4 in day 2, has the inclusion vector
(1, 0, 1). This is because shift 4 is in the first and the third components of
({4}, {1, 2, 3}, {4}), but not in the second component.

To determine the feasibility of the path, we start with an empty partial
path with end-with vector (0, 0, 0), and then extend the partial paths itera-
tively. The end-with vectors with respect to m of the extended partial paths
are obtained using (2.16). This end-with vector of a partial path constitutes
part of the “label” on the vertex the path ends on.

0,0,0 1,0,0
(1,0,1) (0,1,0) 0,1,0 (0,1,0) 0,0,0 (1,0,1) 1,0,0 (0,1,0) 0,1,00,0,0

(0,1,0)

For example, partial path (e1, ..., e4) has end-with vector (0, 0, 0) with respect
to meta-sequence m′. When (e1, ..., e4) is extended along edge e5 to partial
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path (e1, ..., e5). The end-with vector of (e1, ..., e5) with respect to m′ is equal
to (0, 0, 0) ? (1, 0, 1) = (1, 0, 0), and that of (e1, ..., e6) is (0, 1, 0). As the
last digit of the end-with vector is zero, by (2.12), the path corresponding
to the shift pattern (1, 4, 1, 3, 4, 2) is feasible with respect to the prohibited
meta-sequence ({4}, {1, 2, 3}, {4}).

The State of a Partial Path

A partial path P is said to be feasible when

cr(P ) ≤ Wr, ∀r ∈ R, and hmLm
(P ) = 0, ∀m ∈ S. (2.17)

Otherwise, the partial path is said to be infeasible. It follows that an (s, t)-
path corresponds to a feasible shift pattern if and only if it includes no in-
feasible partial path.

To determine its feasibility, we define the state of a partial path P =
(p1, p2, ..., pn) as follows.

[d(P ), {cr(P ) : r ∈ R}, {Hm(P ) : m ∈ S}]

where d(P ) = n ∈ N denotes the number of shift assignments along the path.
If partial paths of the same state extend along the same edge, the states of
the extended partial paths are identical. In our graph representation G, each
vertex is associated with a state. If two partial paths have the same state,
they both end at the same vertex in the graph G. Potentially, the number of
states (hence vertices) could be as many as (|J |

∏
r∈RWr

∏
m∈S Lm) which is

exponential in |R| and |S|. However, since infeasible paths are pruned as the
network is constructed, our computational results indicate that the network
size grows only linearly with the number of meta-sequences. See Figure 2.11.

Construction Algorithm for Graph of Feasible Shift Patterns

We construct a graph G(V,E) to represent the set of feasible shift patterns
as follows, where the vertices in V represent states of feasible partial paths.
The graph is constructed iteratively from the source s ∈ N by considering
extension along an edge (i, j) ∈ I ×J . We start with an empty partial path

19



with state v0 ∈ V where

d(v0) = 0,

cr(v0) = 0, ∀r ∈ R,
Hm(v0) = 0, ∀m ∈ S.

At each iteration, we extend a feasible partial path along an edge (i, j)
corresponding to a shift assignment for the next day. If the feasible partial
paths corresponding to state u ∈ V can be extended along edge e ∈ A to a
feasible partial path of state v ∈ V , then an edge is introduced in E, incident
from u to v which is associated with assignments σ(e). The state of the
extended partial path can be computed as follows.

d(v) = d(u) + 1,

cr(v) = cr(u) + wr(e), ∀r ∈ R,
Hm(v) = Hm(u) ? bm(e), ∀m ∈ S.

Note that the paths can be extended along e only if σ(e) = (i, j) with j =
d(u) + 1. The extended partial path is feasible when (2.17) holds.

It takes O(|R| +
∑

m∈S Lm) time to compute state v and to determine
feasibility. Observing that feasible partial paths of the same state could be
consolidated to end at the same vertex in V , a new vertex is introduced in
V only when the state of the extended partial path has not been introduced
in the previous iterations. We store states in V as key values that map to
the states in a one-to-one correspondence. This enables individual states in
V to be retrieved based on their keys in O(|V |) time. There are efficient
implementations of this search using associative arrays as data structures.

We define s as the source and {v ∈ V : d(v) = J} as the sinks of graph G
respectively. For any path in graphG, from the source to a sink, the feasibility
of its partial paths are indicated by the states of the corresponding vertices
along the path. Since we extend partial paths only when feasible, any path
from a source to a sink corresponds to a feasible shift pattern. By searching
for all extensions from all the feasible vertices, graph G represents the set
of all feasible shift patterns. As there are at most |I| number of out-going
edges for any vertex in N , the algorithm runs with at most |I||V | iterations.
Therefore, the algorithm runs in O(|I||V ||R| + |I||V |

∑
m∈S Lm + |I||V |2)

time. The algorithm is efficient for graphs of small size. In the next sub-
section, we describe how the resulting graph can be simplified.
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2.2.2 A Network-flow Model with Side Constraints

With the graph representation of feasible shift patterns, we reformulate the
shift rostering problem as the follow network flow problem with side con-
straints. For all edges e ∈ E, shifts i ∈ I and days j ∈ J , let

aeij =

{
1, if shift i on day j is associated with edge e;
0, otherwise.

Let ye be the flow (corresponding to the number of staff assigned) on edge
e ∈ E. We want to find a K-flow on graph G minimizing the overall costs
where the demand requirements are handled as side constraints.

(SRP2) : min
∑
i∈I

∑
j∈J

(αij uij + βij oij) (2.18)

s.t.
∑

e∈δ−(v)

ye −
∑

e∈δ+(v)

ye = 0, ∀v ∈ V \ {s, t}, (2.19)

∑
e∈δ+(s)

ye = K, (2.20)

∑
e∈δ−(t)

ye = K, (2.21)

∑
e∈E

aeijye + uij − oij = dij, ∀i ∈ I, j ∈ J , (2.22)

uij, oij ≥ 0, ∀i ∈ I, j ∈ J , (2.23)

ye ≥ 0, integer, ∀e ∈ E. (2.24)

Constraints (2.19) - (2.21) ensure that the solution is a K-flow on graph G.
Constraints (2.22) consider the demand requirements for the shifts, where the
number of staff assigned to shifts is indicated by the flow on the corresponding
edge. One such solution to the example problem is illustrated in Figure 2.3,
in which edges with no staff assigned are not shown. The label on an edge
indicates the flow value and its associated shift assignments.

An optimal K-flow on the graph can be decomposed into K (s, t)-paths
in O(KJ) time where K is the number of staff and J is the number of days.
The (s, t)-paths can then be transformed to K feasible shift patterns that are
assigned to theK staff which is an optimal solution to the shift rostering prob-
lem. As the same K-flow could usually be decomposed into many different
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Figure 2.3: The optimal flow for the example problem

s

139: {(1, 1)}

21: {(2, 1)}

3

50: {(4, 1), (1, 2)}

4
30: {(3, 1), (4, 2), (1, 3)}

10: {(3, 1), (4, 2), (2, 3)}

2

33: {(1, 2)}

11: {(2, 2)}

6: {(3, 2)}

10: {(4, 2), (2, 3)}

6
33: {(4, 3), (1, 4)}

17: {(4, 3), (2, 4)}

5
14: {(2, 3)}

36: {(3, 3)}
7

36: {(4, 4), (1, 5)}

14: {(4, 4), (2, 5)}

t

36: {(1, 6)}

14: {(3, 6)}

17: {(2, 5), (4, 6)}

33: {(3, 5), (4, 6)}

30: {(3, 4), (4, 5), (1, 6)}

20: {(3, 4), (4, 5), (2, 6)}

sets of (s, t)-paths, the formulation (SRP2) yields multiple optimal solutions
to the problem which is beneficial in practice, where other considerations (e.g.
seniority, staff preferences) not represented in the model can be addressed.
The K-flow solution to (SRP2) shown in Figure 2.3 can be decomposed into
an optimal path-based solution shown in Table 2.4. Each row of the table
shows an (s, t)-path that is assigned to the number of staff indicated in the
left-most column. The corresponding vertices and shift pattern of the path

Table 2.4: An optimal solution to the example problem

No. of staff Vertices of the path Shift pattern

36 (s, 3, 5, 7, t) (4, 1, 3, 4, 1, 1)
33 (s, 1, 2, 6, t) (1, 1, 4, 1, 3, 4)
30 (s, 4, t) (3, 4, 1, 3, 4, 1)
11 (s, 1, 2, 6, t) (2, 2, 4, 2, 2, 4)
14 (s, 3, 5, 7, t) (4, 1, 2, 4, 2, 3)
10 (s, 1, 4, t) (2, 4, 2, 3, 4, 2)
10 (s, 4, t) (3, 4, 2, 3, 4, 2)
6 (s, 1, 2, 6, t) (1, 3, 4, 2, 2, 4)

are shown in column 2 and column 3 respectively. As noted, other alternate
optimal path-based solutions could also be obtained. We also note that the
size of the graph only depends on the work rules and is independent of the
number of staff. Hence, the difficulty in solving (SRP1) due to employee
symmetry does not arise in the graph-based approach. When the graph G
has a small size, the graph-based formulation is easy to solve. Although the
graph constructed from the work rules could be large in general, work rules
of practical scenarios often possess certain structure that may yield a graph
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of small size. Furthermore, we only need to construct the graph once. The
same graph can be used when different number of staff is available, as long
as the work rules have not changed.

It can be shown that prohibited meta-sequences of the following structures
give a graph of small size.

1. The lengths of the prohibited meta-sequences are short;

2. All components in a prohibited meta-sequence (S(1), S(2), ..., S(L)) are
disjoint. i.e. For all i, j ∈ {1, 2, ..., L} where i 6= j, S(i) ∩ S(j) = ∅;

3. Prohibited meta-sequences (S(1), S(2), ..., S(L)) with a pyramidal struc-
ture where S(1) ⊆ S(2) ⊆ ... ⊆ S(L) or S(1) ⊇ S(2) ⊇ ... ⊇ S(L).

These structures appear in some work rules that are commonly found in
rostering problems.

Graph Simplifications

The graph constructed for the example problem (without simplifications)
is illustrated in Figure 2.4. After we have constructed the graph G(V,E)
representing the set of feasible shift patterns, we may simplify it to one that
represents the same set of feasible shift patterns but has a smaller number of
edges and vertices, by the following two operations: merge and contract.

Let edge e ∈ E be incident from T (e) ∈ V to H(e) ∈ V and is associated
with assignments σ(e) ⊆ (I × J ). For any vertex v ∈ V , let δ−(v) ⊆ E and
δ+(v) ⊆ E denote the set of incoming edges and out-going edges of vertex v
respectively. We note that in the graph shown in Figure 2.4, the subgraphs
of path extensions are very similar on the edges near vertex t. Some of
the duplications may be consolidated as shown in Figure 2.5. The subgraph
shown on the left can be replaced by the subgraph shown on the right with one
set of the duplicated edges (1, 5) and (2, 5) removed. This operation preserves
the set of feasible shift patterns that the graph represents because the partial
paths that end at vertex 24 and the partial paths that ends at vertex 25
would be extended along edges with the same set of shift assignments to the
same vertex 34 and henceforth to the same subsequent vertices.

We achieve this kind of simplification of G using the merge operation. For
any vertex-pair (v1, v2) ∈ V × V where v1 6= v2, we say δ+(v1) ≡ δ+(v2) if
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Figure 2.4: The graph before simplifications

s

1
{(1,1)}

{(2,1)}

2

{(3,1)}

3

{(4,1)}

4{(1,2)}

{(2,2)}

5
{(3,2)}

6
{(4,2)}

7

{(4,2)}

8

{(2,2)}

{(1,2)}

10
{(4,3)}

11{(4,3)}

12
{(1,3)}

{(2,3)}

14

{(1,3)}

{(2,3)}

15

{(1,3)}

{(2,3)}

16

{(3,3)}

17{(1,4)}

{(2,4)}

19{(1,4)}

{(2,4)}

20{(1,4)}

{(2,4)}

21
{(3,4)}

22{(1,4)}

{(2,4)}

23

{(3,4)}

24
{(4,4)}

25
{(4,4)}

26
{(1,5)}

{(2,5)}

27{(3,5)}

28{(1,5)}

{(2,5)}

29
{(3,5)}

30
{(4,5)}

31
{(4,5)}

32
{(4,5)}

33
{(4,5)}

34

{(1,5)}

{(2,5)}

{(1,5)}

{(2,5)}

t

{(4,6)}

{(4,6)}

{(4,6)}

{(4,6)}

{(1,6)}

{(2,6)}

{(3,6)}

{(1,6)}

{(2,6)}

{(1,6)}

{(2,6)}

{(3,6)}

{(1,6)}

{(2,6)}

{(1,6)}

{(2,6)}

{(3,6)}

and only if for every edge e1 ∈ δ+(v1), there is an edge e2 ∈ δ+(v2) such that
σ(e1) = σ(e2),H(e1) = H(e2) and vice versa. If δ+(v1) ≡ δ+(v2), then we
merge v1 and v2 into a single vertex as follows. For all edges e ∈ δ−(v1), an
edge incident from vertex T (e) to vertex v2 is introduced, which is associated
with assignments σ(e). Vertex v1 and all edges in δ−(v1) and δ+(v1) are
removed. Essentially, the merge operation is applied only when partial paths
ending on the two vertices would be extended along edges that are associated
with the same shift assignments to the same subsequent vertices.

Figure 2.5: An example merge operation

24
{(4,4)}

25
{(4,4)}

34

{(1,5)}

{(2,5)}

{(1,5)}

{(2,5)}

15

16

35

{(4,4)}

{(4,4)}
34

{(1,5)}

{(2,5)}

15

16

Merging vertex 24 and vertex 25 of the graph on the left results in the graph shown on the right.

The merge operation always preserves the set of feasible shift patterns the
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graph represents. Let P1 and P2 be the edges that are incident to vertex v1 and
v2 respectively. LetQ1 andQ2 be the edges that incident from vertex v1 and v2

respectively. The operation removes (s, t)-paths (..., e1, e2, ...) for all e1 ∈ P1

and e2 ∈ Q1 (that traverses v1) and introduces (s, t)-paths (..., ē1, ē2, ...) (that
traverses v2) where ē1 = (T (e1), v2) and e2 ∈ Q2 with σ(e1) = σ(ē1), σ(e2) =
σ(ē2) and H(ē2) = H(e2) . The operations preserve the set of feasible paths
the graph represents, since the set of shift assignments associated with the
paths that are removed is equivalent to the ones associated with the paths
that are introduced. We apply the merge operations repeatedly until the
graph cannot be further simplified. The resulting graph for the example
problem at this point is illustrated in Figure 2.6.

Figure 2.6: The graph after merging
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1{(1,1)}

{(2,1)}

2
{(3,1)}

3

{(4,1)}

4

{(1,2)}

{(2,2)}

{(3,2)}

5

{(4,2)}

{(4,2)}
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{(2,2)}

{(1,2)}

7
{(4,3)}

8

{(1,3)}

{(2,3)}

9

{(1,3)}

{(2,3)}

{(3,3)}

10{(1,4)}

{(2,4)}

11
{(1,4)}

{(2,4)}

12{(3,4)}

13
{(4,4)}

14

{(1,5)}

{(2,5)}

{(3,5)}

16

{(4,5)}

15
{(4,5)}

{(1,5)}

{(2,5)}

t

{(4,6)}

{(1,6)}

{(2,6)}

{(3,6)}

{(1,6)}

{(2,6)}

The vertices are renumbered for the sake of ease of illustration.

After applying the merge operations, we then simplify the graph by con-
tracting simple paths. Figure 2.7 shows an example. We contract a vertex
v ∈ V as follows. For each edge-pair (e1, e2) ∈ δ−(v) × δ+(v), an edge that
incidents from T (e1) to H(e2) is introduced, which is associated with assign-
ments σ(e1) ∪ σ(e2). Vertex v and all edges in δ−(v) and δ+(v) are removed.
Essentially, the sub-paths containing (e1, e2) ∈ δ−(v) × δ+(v) are removed,

Figure 2.7: An example contract operation

9 13
{(4,4)}

16{(1,5)}

{(2,5)}
9 16

{(4,4), (1,5)}

{(4,4), (2,5)}

By contracting vertex 13 in the graph on the left results in the graph shown on the right.

and replaced by an edge e that represents the same set of shift assignments.
Thus, this preserves the set of feasible shift patterns the graph represents. To
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ensure that the operation does not increase the number of edges, we contract
a vertex v ∈ V only when |δ+(v)||δ−(v)| ≤ |δ−(v)|+ |δ+(v)|, which holds when
either |δ−(v)| = 1, or |δ+(v)| = 1, or |δ+(v)| and |δ−(v)| are both less than or
equal to 2. The resulting graph for the example problem after merging and
contracting is shown in Figure 2.8.

Figure 2.8: The graph after mergings and contractions
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1

{(1,1)}

{(2,1)}

6
{(4,1), (1,2)}

{(4,1), (2,2)}

8

{(3,1), (4,2), (1,3)}
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{(1,2)}

{(2,2)}

{(3,2)}

{(4,2), (1,3)}

{(4,2), (2,3)}
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{(4,3), (1,4)}

{(4,3), (2,4)}

9
{(1,3)}

{(2,3)}

{(3,3)}

16

{(4,4), (1,5)}

{(4,4), (2,5)}

t

{(3,6)}

{(1,6)}

{(2,6)}

{(1,5), (4,6)}

{(2,5), (4,6)}
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{(1,4), (4,5)}

{(2,4), (4,5)}

{(3,4), (4,5), (1,6)}

{(3,4), (4,5), (2,6)}

Since a merge operation or a contract operation would reduce the number
of vertices by one, the total number of operations needed are no more than
the number of vertices. The simplifications are efficient when the graph that
is constructed from the work rules has a small size.

2.3 Computational Result

In this section, we computationally compare the two formulations on ran-
domly generated instances. The work rules considered are those drawn from
various industries as described in the benchmark dataset of Musliu (2006).
We consider sets of work rules corresponding to 20 practical scenarios, de-
noted as P01, P02, ..., P19 and P20 and described in Section 2.3.1. We also
evaluate other work rules which are randomly generated prohibited meta-
sequences.

The demand(in number of staff required) for each shift in each day is
randomly chosen from the set of values {0, 1, ..., 100}. The penalty cost of
over-covers and under-covers for each shift in each day is randomly chosen
from {1, 2, ..., 10}. Planning horizons of 30 days, 60 days, 90 days, 120 days,
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150 days or 180 days are tested. All instances consider 10 shifts per day,
among which exactly one is a day-off shift. Different shifts in a day may
have different durations and/or overlap in time. For all the day-off shifts,
the demands and the penalty costs are set to 0, so that staff prefer day-off to
working shifts when the demand requirements are satisfied. The total number
of staff to be scheduled is set as follows. Let d̂ij be the staff requirement
generated for shift i ∈ I in day j ∈ J . The average number of staff required

for each day is given by l =
∑

i∈I,j∈J
d̂ij
|J | . The staffing ratio of an instance,

denoted as µ2 ∈ R+, is defined so that the number of staff to be scheduled is
set to the nearest integer of µ2l. A larger staffing ratio means more staff to
be scheduled and a high chance of over-covers. To simulate different staffing
levels, we test instances with staffing ratios of 1.2, 1.4, 1.6 and 1.8. We
denote an instance with planning horizon µ1, staffing ratio µ2 and work rules
µ3, as Dµ1-Sµ2-µ3. For example, instance D30-S1.4-P01 is a 30-day rostering
problem with 1.4 staffing ratio and work-rule set P01.

All experiments were conducted on a Dell OptiPlex personal computer
running Windows XP SP3 with an Intel Quad-Core processor 2.66 GHz and
3 GB of main memory. All algorithms are implemented in C++ and have
been compiled using Visual Studio 2010. The solver ILOG CPLEX 12.3
with default settings were used to solve the mixed-integer programming(MIP)
models (SRP1) and (SRP2) and their linear programming(LP) relaxations.

2.3.1 Work Rules

The practical work rules used in the computational tests are drawn from var-
ious industries as described in the benchmark dataset of Musliu (2006). We
have rewritten the 20 different sets of practical work rules in terms of pro-
hibited meta-sequences. Let IM = {1, 2, 3}, IA = {4, 5, 6}, IN = {7, 8, 9},
IW = {1, 2, 3, 4, 5, 6, 7, 8, 9} and IF = {10} denote the morning shifts, the
afternoon shifts, the night shifts, the working shifts and the day-off shifts
respectively. Moreover, let IM = {4, 5, 6, 7, 8, 9, 10}, IA = {1, 2, 3, 7, 8, 9, 10}
and IN = {1, 2, 3, 4, 5, 6, 10} be the non-morning shifts, the non-afternoon
shifts and the non-night shifts respectively. Below are prohibited meta-
sequences used in each of the 20 scenarios.

P01: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF
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, IF , IF , IF ), ( IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA, IA,
IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P02: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF ,
IF , IF , IF ), ( IN , IN , IN , IN , IN , IN , IN , IN ), ( IA, IA, IA, IA, IA, IA, IA, IA), (
IM , IM , IM , IM , IM , IM , IM , IM ), ( IN , IN , IN , IN ), ( IA, IA, IA, IA), ( IM , IM , IM ,
IM ), ( IN , IN , IN , IN , IN ), ( IA, IA, IA, IA, IA), ( IM , IM , IM , IM , IM ), ( IN , IM ), (
IN , IA), ( IA, IM ),

P03: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF ,
IF , IF , IF ), ( IN , IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA,
IA, IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P04: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF ), ( IM , IM , IM , IM , IM ,
IM , IM ), ( IA, IA, IA, IA, IA, IA, IA), ( IN , IN , IN , IN , IN ), ( IN , IM ), ( IN , IA), ( IA,
IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA), ( IN , IF , IM ),

P05: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF ),
( IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IN ,
IM ), ( IN , IA), ( IA, IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA), ( IN , IF ,
IM ),

P06: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IF , IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF
), ( IN , IN , IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA,
IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA),
( IN , IF , IM ),

P07: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF ,
IF , IF , IF ), ( IN , IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA,
IA, IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P08: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IN ,
IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA, IA),
( IN , IM ), ( IN , IA), ( IA, IM ),

P09: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IW , IW , IW , IW , IW ,
IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IM , IM , IM , IM , IM , IM ,
IM , IM ), ( IA, IA, IA, IA, IA, IA, IA, IA), ( IN , IN , IN , IN , IN , IN , IN ), ( IN , IM ), (
IN , IA), ( IA, IM ),

P10: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF ,
IF , IF , IF ), ( IN , IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA,
IA, IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),
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P11: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IN ,
IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IN , IM ), (
IN , IA), ( IA, IM ),

P12: ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF , IW , IW , IW ,
IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ),
( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IA, IM ),

P13: ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IW , IW , IW , IW ,
IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IN , IN , IN , IN , IN ), (
IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P14: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF ),
( IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IN ,
IM ), ( IN , IA), ( IA, IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA), ( IN , IF ,
IM ),

P15: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF ), ( IM , IM , IM , IM , IM , IM ,
IM ), ( IA, IA, IA, IA, IA, IA, IA), ( IN , IN , IN , IN , IN , IN ), ( IN , IM ), ( IN , IA), ( IA,
IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA), ( IN , IF , IM ),

P16: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF
, IF , IF , IF ), ( IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA,
IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P17: ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IW , IW , IW , IW ,
IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IM , IM , IM , IM , IM ,
IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IA, IM ),

P18: ( IN , IN , IN ), ( IA, IA, IA), ( IM , IM , IM ), ( IF , IW , IF ), ( IF , IW , IW , IF ), ( IF
, IW , IW , IW , IF ), ( IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF ,
IF , IF , IF ), ( IN , IN , IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM , IM ), ( IA,
IA, IA, IA, IA, IA, IA), ( IN , IM ), ( IN , IA), ( IA, IM ),

P19: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW , IW ), ( IW , IF , IW ), ( IF , IF , IF , IF , IF ), ( IN ,
IN , IN , IN , IN ), ( IM , IM , IM , IM , IM , IM , IM ), ( IA, IA, IA, IA, IA, IA), ( IN , IM ), (
IN , IA), ( IA, IM ),

P20: ( IN , IN , IN ), ( IM , IM , IM ), ( IA, IA, IA), ( IF , IW , IF ), ( IF , IW , IW , IF ), (
IW , IW , IW , IW , IW , IW , IW ), ( IF , IF , IF , IF , IF ), ( IM , IM , IM , IM , IM , IM ,
IM ), ( IA, IA, IA, IA, IA, IA, IA), ( IN , IN , IN , IN , IN , IN ), ( IN , IM ), ( IN , IA), ( IA,
IM ), ( IN , IF , IN ), ( IA, IF , IM ), ( IN , IF , IA), ( IN , IF , IM ),
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2.3.2 Small Instances

We cannot solve (SRP1) in a reasonable time, but we can solve the LP-
relaxation of (SRP1) to have a sense on how difficult the problem is. We solve
(SRP1) and its LP-relaxation on 20 small instances with a 30-day planning
horizon, 1.4 staffing ratio and the 20 sets of practical work rules. The results
are summarized in Table 2.5. Each row of the table shows the result of the
instance indicated in the left-most column, including the number of variables
and constraints of the formulation, the optimal solution to the LP-relaxation
of (SRP1), the corresponding integrality gap and the solution time. As shown
in Table 2.5, the formulation (SRP1) has hundreds of thousands of constraints
and variables. The MIP formulations of this size cannot be solved efficiently.
Even the LP-relaxation of (SRP1) in this size is difficult to solve. e.g. instance
D30-S1.4-P02 with only 30 days requires 6 hours to solve the LP-relaxation.

We then solve the formulations using (SRP2) instead of (SRP1). The
result is summarized in Table 2.5. Formulation (SRP2) has substantially
fewer constraints and variables than (SPR1). As indicated in the right-most
column, (SRP2) can be solved to optimality for all instances in only a few sec-
onds. Furthermore, many optimal solutions could be obtained using (SRP2).
The improvement of using (SRP2) over (SRP1) is significant on these small
instances. As noted before, the size of the graph-based formulation depends
on the structure of the work-rule constraints and is independent of the num-
ber of staff. In practical scenarios, the work-rule constraints usually carry
some special structures that give a graph of small size. This explains why
the graph-based formulation (SRP2) could solve instances which are other-
wise practically impossible to solve using a canonical formulation (SRP1).

2.3.3 Large Instances

We then conduct a more extensive study of (SRP2) on instances with different
planning horizons. Each instance has a planning horizon which is randomly
generated with a value drawn from {30, 60, 90, 120, 150, 180}, a staffing ratio
in {1.2, 1.4, 1.6, 1.8} and a work-rule set in {P01, P02, . . . , P20}. There are
480 instances tested in total.

The average result for each planning horizon is summarized in Table 2.6.
The table lists the time used in constructing the underlying graph without
simplifications (construction time), the number of edges and vertices of the
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Table 2.6: Solving (SRP2) on large instances

Planning horizon

30 60 90 120 150 180

Construction time(s) 0.49 1.22 1.31 1.65 2.16 2.69
No. of edges (before) 5664.15 12084.15 18504.15 24924.15 31344.15 37764.15
No. of vertices (before) 1297.10 2812.10 4327.10 5842.10 7357.10 8872.10

Simplification time(s) 0.18 1.08 3.26 7.25 13.64 22.97
No. of edges (after) 4161.35 9007.85 13854.35 18700.85 23547.35 28393.85
No. of vertices (after) 678.65 1476.65 2274.65 3072.65 3870.65 4668.65

Out-of-memory(%) 0 0 0 0 2.5 2.5
MIP time(s) 3.86 44.26 95.52 189.23 294.19 447.93
LP time(s) 2.99 12.75 28.62 50.80 80.19 114.18
No. of variables 4761.35 10207.85 15654.35 21100.85 26547.35 31993.85
No. of constraints 978.65 2076.65 3174.65 4272.65 5370.65 6468.65
Integrality gap(%) 0.00 0.00 0.00 0.00 0.00 0.00
Non-integers in LP(%) 5.03 5.53 5.69 5.82 5.87 5.85

underlying graph before simplifications, the time used in simplifying the un-
derlying graph (simplification time), the number of edges and vertices of
the underlying graph after simplifications, the time used in solving (SRP2)
and its LP-relaxation to optimality(MIP time and LP time respectively),
the number of variables and constraints of (SRP2), the integrality gap and
the percentage of non-integers in the solution to the LP-relaxation. When
no optimal solution to (SRP2) is found before the computer runs out of
memory(instances D150-S1.6-P17, D150-S1.8-P12, D180-S1.4-P12 and D180-
S1.6-P12), the “MIP time” reports the time at which the instance runs out
of memory and the integrality gap does not include the result of these in-
stances. “Out-of-memory” indicates the percentage of instances that run
out-of-memory.

As shown in Table 2.6, the underlying graphs of (SRP2) can be constructed
in a few seconds (the worst case is 2.85 minutes) which is negligible compared
to the time in solving the corresponding MIP models. Figure 2.9 shows the
number of edges as a function of the length of the planning horizons for
all instances, with instances of the same set of work rules connected by a
straight line. As shown in the figure, the graph size, the number of variables
and the number of constraints of (SRP2) are also linearly increasing with the
planning horizon. Furthermore, as shown in Table 2.6, the integrality gap
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Figure 2.9: The size of the underlying graph

and the percentage of non-integers in the solution of the LP-relaxation are
both small, which are beneficial to branch-and-bound. Moreover, as shown in
Figure 2.10, the time used in solving the LP-relaxation of (SRP2) is linearly
increasing with the number of edges of the underlying graph. This explains
why some large rostering problems, with long planning horizons and large
number of staff, could be solved readily using (SRP2). (SRP2) performs
especially well for underlying graphs of small size.

Figure 2.10: The time used in solving (SRP2) (left-hand-side) and its LP-relaxation (right-
hand-side)

To simulate different staffing levels, we vary the staffing ratios. Table 2.7
present the average time used in solving (SRP2) and its LP-relaxation. The
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staffing ratios are indicated in the rows while the planning horizons in the
columns. The result shows that (SRP2) gives a steady performance under
the different staffing levels.

Table 2.7: The time(s) used in solving (SRP2) with different staffing ratios

Solving the integer model (SRP2) Solving the LP-relaxation of (SRP2)

30 60 90 120 150 180 30 60 90 120 150 180

1.2 4.23 19.76 128.43 196.94 277.18 333.82 3.23 14.13 31.59 55.62 90.21 125.20
1.4 3.81 72.13 100.29 168.38 310.54 582.32 2.95 12.59 28.13 50.20 78.14 112.61
1.6 3.95 63.12 88.20 157.51 363.13 542.93 2.88 12.03 27.03 48.38 75.71 108.44
1.8 3.44 22.05 65.17 234.11 225.90 332.65 2.91 12.25 27.74 48.98 76.70 110.48

2.3.4 Random Prohibited Meta-sequences

We then test (SRP2) on instances where work rules are specified by some
randomly generated prohibited meta-sequences. We consider instances with
30 days and 1.4 staffing ratio, and randomly generate 5 to 20 prohibited
meta-sequences of fixed length (ranging from 3 to 7). Every component
in a prohibited meta-sequence consists of exactly 3 different shifts. There
are 80 instances tested in total. The average results for a given length are
summarised in Table 2.8. Tables 2.9 present the optimal solutions and the
time used in solving the formulations for all the instances.

The results summarized in Table 2.8 are similar with the results on the
practical work rules as shown in Table 2.6, except that the underlying graph
become much larger even with a small number of prohibited meta-sequences.
Figure 2.11 shows the number edges as a function of the number of prohib-
ited meta-sequences. Each line in Figure 2.11 connects instances where the
length of the meta-sequences are the same. The number of edges increases
approximately linearly with the number of prohibited meta-sequences for a
given length. This indicates that (SRP2) could scale well with the number
of prohibited meta-sequences. The underlying graph is smaller with shorter
prohibited meta-sequences(more restrictive work rules) and fewer prohibited
meta-sequences (fewer work rules). As for the result of the practical scenarios,
it is the work-rule structure that matters.
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Table 2.8: Solving (SRP2) on instances with random meta-sequences

The length of the meta-sequences

3 4 5 6 7

Construction time(s) 2.27 11.69 6.26 11.97 20.46
No. of edges (before) 10392.88 39149.94 90228.75 158926.88 239108.62
No. of vertices (before) 1714.50 5226.00 10920.25 18237.75 26458.56

Simplification time(s) 0.31 2.43 35.25 285.72 1390.80
No. of edges (after) 9908.12 36637.94 82335.06 140066.00 202527.69
No. of vertices (after) 1485.19 4339.56 8422.50 13144.81 17979.12

Out-of-memory(%) 0 0 25 50 75
MIP time(s) 24.92 1780.54 14287.70 17339.62 26667.95
LP time(s) 7.24 31.49 123.70 461.78 2168.99
No. of variables 10508.12 37237.94 82935.06 140666.00 203127.69
No. of constraints 1785.19 4639.56 8722.50 13444.81 18279.12
Integrality gap(%) 0.03 0 0 0 0
Non-integers in LP(%) 6.19 2.98 1.65 1.16 0.85

Figure 2.11: The size of the underlying graph

20
00
00

0

2.4 Conclusion

In this chapter, we introduce a shift rostering problem where the work rules
are given in terms of prohibited meta-sequences and resource constraints.
This provides much flexibility in modeling the complicated work rules found
in practice. The canonical formulation could not solve the problem efficiently
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Table 2.9: The solution value to (SRP2) and the time(s) used in solving (SRP2)

The solution value The time(s) used

3 4 5 6 7 3 4 5 6 7

5 31 6 18 63 0 3.40 14.39 48.02 59.24 94.49
6 98 0 0 6 0 4.55 20.49 57.46 73.80 161.05
7 0 0 0 0 - 8.01 34.85 50.82 585.80 *3508.13
8 0 0 0 78 - 6.72 29.91 1558.29 3656.04 *7906.08
9 12 39 53 0 23 34.30 484.52 140.00 602.53 1064.19

10 126 0 145 - - 19.15 182.81 231.20 *5167.52 *8035.16
11 0 93 51 0 - 14.42 76.62 5835.90 1173.55 *10877.10
12 0 54 0 19 - 24.02 1896.64 5152.50 1252.33 *16677.70
13 98 0 0 7 - 24.27 233.53 10620.80 1197.56 *19568.20
14 57 0 0 - 50 20.68 426.03 586.75 *11858.70 16481.70
15 22 0 - - - 69.75 278.46 *26594.50 *21479.60 *73508.30
16 105 50 - - - 27.32 2356.72 *45296.30 *28576.90 *67187.00
17 52 8 0 - - 41.54 5187.92 50884.90 *56977.40 *42494.10
18 0 352 - - - 41.02 5322.90 *26408.50 *34651.70 *63592.80
19 0 111 0 - - 31.96 7328.59 966.45 *72122.50 *17845.80
20 10 0 - - - 27.60 4614.28 *54170.80 *37998.70 *77685.40

“-”: no optimal solution found before the computer runs out of memory.
“*”: the time at which the computer runs out of memory.

when there are a large number of staff and there are a large number of
feasible shift patterns. We proposed a graph-based formulation where the
set of feasible shift patterns are represented by the (s, t)-paths of a graph.
As the size of the graph-based formulation depends on the structure of the
work-rule constraints and not on the number of staff, the formulation could
solve some large instances efficiently. Furthermore, we have identified some
constraint structures that give a graph of small size and these structures
often appear in work rules that are commonly found in practice. Therefore,
as verified computationally, the graph-based formulation could solve many
large instances to optimality within a few minutes whereas as the canonical
formulation could not solve any of the instances in a reasonable time.

In our future work, we may extend the formulations in which work rules
are handled as soft constraints. Furthermore, some staff heterogeneity may
be addressed if staff could be categorised into groups that are subject to
different sets of work rules. It is also worthwhile to identify more constraint
structures that yield graphs of small size.
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Chapter 3

A Tabu Search Heuristic for the
Heterogeneous Vehicle Routing
Problem on a Multigraph

In this chapter, we study a time-constrained heterogeneous vehi-
cle routing problem on a multigraph. The problem is motivated
from the distribution of beer and malt beverages in China, with
some characteristics including the possibility of alternative paths of
travel under the prevalence of road toll charges, fleet heterogene-
ity, and time-restricted delivery. We provide a mixed-integer linear
programming formulation of the problem and propose a tabu search
heuristic for its solution. The tabu search is designed to address the
parallel arc structure on the network, which necessitates modifica-
tions of the basic search operations such as insertion. Our numerical
experiments are set up to capture some practical features of beer
distribution systems in China and show that the tabu search is
highly effective in obtaining near-optimal solutions quickly. Other
findings from the numerical experiments suggest considerable trans-
portation cost savings attributable to the utilization of alternative
route structure and reveal some insights to aid distributors on their
vehicle dispatch policies.

3.1 Introduction and Practical Motivation

Vehicle routing problems (VRPs) arise frequently in the delivery and collec-
tion of items between a central depot and a number of customer locations.
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In the basic form, VRP is concerned with determining a set of minimum
cost vehicle routes such that each route starts and ends at the depot, each
customer is visited exactly once, and the total load on a vehicle does not
exceed the capacity. As one of the most widely-studied combinatorial opti-
mization problems, VRP has been adapted to address a variety of practical
considerations.

Typically, the problem is studied on a complete undirected graph with
vertices corresponding to the customer locations and arcs corresponding to
the links between those locations. When an underlying road network is not
complete, this representation can be obtained by computing the shortest path
between possible origin-destination points on the original network. As men-
tioned by Garaix et al. (2010), the shortest path is generally computed based
on a single attribute such as travel time, and this results in the alternative
routes with different attributes (travel time, cost, distance, etc.) not being
considered in the solution space. Garaix et al. (2010) have addressed these
alternative routes, which often represent realistic trade-offs (e.g., travel time
versus cost), by building a multigraph representation of the road network
and showed the cost savings for an on-demand transportation problem. Bal-
dacci et al. (2006) have previously introduced the multigraph structure into a
multiple disposal facilities and multiple inventory locations rollon-rolloff ve-
hicle routing problem. In this chapter, we adopt the idea of alternative route
consideration and study a time-constrained heterogeneous vehicle routing
problem. Similar to the work by Garaix et al. (2010), we illustrate the gains
achieved by the consideration of alternative routes.

In particular, we study the following problem. There is a mixed fleet of
vehicles positioned at a depot and a set of customer locations with fixed
demand requirements. Vehicles have different types according to the charac-
teristics of capacity, availability, and cost. The goal is to find the least cost
vehicle routes, starting and ending at the depot, such that each customer is
served by exactly one vehicle and total demand on the vehicle does not ex-
ceed its capacity. In the literature, this problem is referred to as mixed fleet
or heterogeneous vehicle routing problem and generalizes the capacitated ve-
hicle routing problem by introducing different vehicle types (e.g., Gendreau
et al. (1999) and Yaman (2006)). In our work, we consider an upper limit on
the route duration and study the problem on a multigraph, in which multiple
parallel arcs between each pair of vertices correspond to the alternative paths
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connecting the two customer locations in the underlying road network. Fol-
lowing the naming convention in Baldacci et al. (2006), we refer to it as the
heterogeneous vehicle routing problem on a multigraph (HVRP-MG). We pro-
vide a flow-based mathematical formulation for the HVRP-MG and propose
a tabu search heuristic for its solution. Tabu search is a widely-used heuristic
method for VRPs and can find near-optimal solutions efficiently. Presence of
parallel arcs, however, renders simple tabu search operations such as insertion
complicated; therefore we develop a new procedure for estimating insertion
costs and integrate it into the search. Our numerical experiments demon-
strate the effectiveness of the proposed tabu search heuristic and provide
further managerial insights from a sensitivity analysis. We contribute to the
literature in two less well studied areas of VRPs: time-constrained heteroge-
nous vehicle routing problems and vehicle routing problems with alternative
paths.

The practical motivation for this study comes from the distribution of
fast-moving consumer goods, specifically, malt beverages and beer in China.
In this industry, producers often rely on a highly fragmented, complex, and
multi-tiered supply chain to reach their customers. One distinct feature of
these systems compared to their counterparts in other countries such as the
United States is the abundance of agents in the middle-tiers, especially the
wholesalers. The wholesalers satisfy demand requests coming from multiple
customer sources including retailers, and they are served by a number of
distributors who replenish their stocks from the producer. In a beer supply
chain, while there may be around five distributors carrying one producer’s
brand exclusively, it is not uncommon to have more than one hundred in-
dependent wholesalers who may sell goods from multiple brands. Major
transportation activities take place between the producer and the distribu-
tors via long-haul carriers, and between the wholesaler or distributor and the
customers in the form of local deliveries. Firms may use specialized services
of 3PL companies for their distribution needs, although operating own pri-
vate fleet or using market resources is more widespread in the industry. The
sheer size of the network leads to frequent movements of the goods from up-
stream parties to downstream parties, which in turn contribute to increased
transportation costs.

The transportation cost structure in China is shaped by the current lo-
gistics infrastructure and regulations which present some unique properties.
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For example, as reported by Dai and Zhou (2008), the highway toll charges
account for as high as to 20%-30% of total logistic costs in China, whereas
they are often assumed negligible compared to the driver wages and load-
ing/unloading labor costs in the United States. The transporters have the
option of incurring lower toll charges by utilizing free public roads, but the
trade-off is slower and less-reliable service. Other differences arise from fleet
heterogeneity which is usually more significant in the Chinese systems, and
road access limitations for different vehicle types due to high population
densities in the Chinese cities. Furthermore, retailers often require frequent
deliveries from their wholesaler, mainly because of space limitations in the
stores and/or their reluctance to carry high stock levels given the customers’
small shopping volumes caused in part by the relatively low vehicle-ownership
percentage in the Chinese households. As a result, wholesalers, who are in-
volved in intense competition, often have to deal with deliveries of small
quantities and unplanned vehicle routes while also considering the trade-offs
between delivery costs and ability to provide service in short notice. (Some
examples of works motivated from logistics problems in China include Chen
et al. (2001), Fisher et al. (1986), Ma et al. (2012), and Yu and Qi (2014).)

These unique properties call for development of effective operational strate-
gies to address alternative paths of travel (e.g., trading off cost and time),
heterogeneous vehicles, and time-restricted delivery trips. Focusing on the
shipment of products from the wholesaler to the retailers, we capture these
characteristics by modeling a vehicle routing problem on a multigraph. We
aim to add to the body of knowledge in the analysis and management of
transportation systems in China.

The rest of this chapter is organized as follows. In Section 3.2, we re-
view the related literature. Section 3.3 describes the problem and provides a
mixed-integer linear programming formulation for the HVRP-MG. Solution
methodology is discussed in Section 3.4 with a focus on the tabu search algo-
rithm. In Section 3.5, we conduct a computational analysis where we evaluate
the performance of the tabu search heuristic as compared to a mixed-integer
linear programming approach and a less sophisticated insertion heuristic. We
also perform a sensitivity analysis to derive some managerial insights on the
delivery operations. Section 3.6 concludes the chapter with a discussion of
research limitations and extensions.
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3.2 Literature Review

Starting with the early work of Dantzig and Ramser (1959) and Clarke and
Wright (1964), the classical VRP has been extensively studied in the opera-
tions research literature. Solution approaches to the VRP concentrate on ex-
act methods, construction heuristics, and meta-heuristics, which are reviewed
in the papers by Cordeau et al. (2002), Cordeau et al. (2005), Gendreau et al.
(2002), Gendreau et al. (2007), Laporte (1992), and Laporte (2007). Like-
wise, the literature on the variants of VRP is quite rich, studying a wide
array of practical extensions such as time windows, (e.g., Desrochers et al.
(1988) and Solomon and Desrosiers (1988)), multiple trips by vehicles (e.g.,
Brandão and Mercer (1997) and Taillard et al. (1996)), multiple depots (e.g.,
Gillett and Johnson (1976), Laporte et al. (1988), and Renaud et al. (1996)),
and multiple types of vehicles (e.g., Gendreau et al. (1999) and Golden et al.
(1984)).

The research stream on VRPs with multiple types of vehicle is the most
relevant to our study. These problems are referred to as heterogenous or
mixed fleet VRPs (HVRPs) and differ from the classical VRP in that a mixed
fleet of vehicles with distinct capacities, fixed operating costs, and variable
costs is used to serve the customers. Balinski and Quandt (1964), Golden
et al. (1984), Salhi et al. (1992), Salhi and Rand (1993), and Yaman (2006)
provide formulations for the HVRP. Due to the problem complexity, the main
solution approaches developed for the HVRP have been of heuristic type and
no exact algorithms have been proposed. Construction heuristics and meta-
heuristics have been applied to the variants of HVRPs (e.g., Desrochers and
Verhoog (1991), Gendreau et al. (1999), Leung et al. (2013), Pisinger and
Røpke (2007) Renaud and Boctor (2002), Salhi and Rand (1993), and Wassan
and Osman (2002)); and in general, meta-heuristics such as tabu search or
large scale neighborhood search are reported to have superior performances.
A more detailed review of the literature on HVRP can be found in a recent
survey by Baldacci et al. (2008). Different from the papers in this stream, we
study an HVRP that allows multiple parallel arcs in between pairs of vertices.
These arcs represent alternative paths of travel from a customer location
to another in the underlying road network, and provide more flexibility in
constructing routes based on different attributes of arcs (e.g., more costly
but faster connections can be selected when delivery time limit is restrictive.)
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Similar to Golden et al. (1984) and Yaman (2006), we extend the Miller-
Tucker-Zemlin (MTZ) inequalities for the TSP (Miller et al. (1960)) to model
the capacity and subtour elimination constraints in our formulation; but we
also incorporate the multigraph structure. In view of the findings reported
by Baldacci et al. (2008), we focus on heuristic approaches and propose a
tabu search heuristic which leads to near-optimal solutions in our numerical
tests.

Another area of research that is closely related to our work deals with
vehicle routing problems on a multigraph. Baldacci et al. (2006) introduce
this structure to study a multiple disposal facilities and multiple inventory
locations rollon-rolloff vehicle routing problem. In particular, they show that
the problem can be modeled as a single depot time-constrained VRP on a
directed multigraph. Assuming that vehicles are identical and have unlimited
capacity, they provide a set partitioning formulation of the problem and pro-
pose an iterative exact method. Our work differs from Baldacci et al. (2006)
in that we incorporate a mixed fleet of vehicles and consider capacity limits
in addition to the duration constraints on the vehicle routes. Furthermore,
we formulate the problem using flow variables that indicate vehicle travels
between customers and provide a heuristic solution approach based on tabu
search. In a different study, Garaix et al. (2010) incorporate alternative paths
into vehicle routing problems by building a multigraph representation of the
underlying road network. As discussed by these authors, some difficulties
arise when multiple parallel arcs are present between each pair of vertices in
the graph. Specifically, while determining the exact schedule for a vehicle
route is trivial in a simple graph after deciding the assignment of customers
to vehicles and the visiting sequence in the routes, this is no longer true for a
multigraph structure. Due to multiple arcs between vertices, additional deci-
sions must be made regarding the specific arc selection. Garaix et al. (2010)
propose a dynamic programming algorithm for arc selection in the context
of a dial-a-ride problem. They examine how multigraph structure affects in-
sertion operation and branch-and-price methods in solving these problems.
Similar to Garaix et al. (2010), we consider multigraph structure in our model
but our application area and solution approach differ from theirs as we study
a heterogeneous vehicle routing problem and propose a tabu search heuristic.

We consider time limits on the vehicle routes, therefore, the literature on
time (or distance) constrained VRPs is also relevant. Applications of these
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problems are provided in the papers by Assad (1988) and Laporte et al.
(1984). With the objective of minimizing the total distance traveled, La-
porte et al. (1984) and Laporte et al. (1985) provide formulations of the
problem and develop exact solution methods based on constraint relaxation.
Considering the minimization of total distance and number of vehicles used,
Li et al. (1992) show that the optimal solutions under these objectives are
closely related. We focus on minimizing the sum of travel and fixed dispatch
costs while addressing time restriction for the routes as an additional con-
straint. Different from these papers, we model multiple types of vehicles,
which necessitates a heuristic solution approach rather than exact methods
for realistic-sized problems.

First proposed as a local search method for combinatorial optimization
problems (Glover (1986) and Glover (1989)), tabu search has been widely
applied to the VRPs with great success (e.g., Barbarosoglu and Ozgur (1999),
Gendreau et al. (1994), Osman (1993), Rochat and Taillard (1995), Taillard
(1993), Toth and Vigo (1998), and Xu and Kelly (1996)). The basic concept
of tabu search is to explore the solution space iteratively by moving from one
solution to the best neighboring solution, which is not in a tabu list. The
tabu list is maintained to avoid cycling, where recently examined solutions are
not considered for a number of iterations, unless they satisfy some aspiration
criterion. The search may be improved by implementing intensification and
diversification schemes which prevent the search being restricted to a limited
portion of the search space and help explore the promising solutions more
closely. Recent surveys on tabu search and other metaheuristics for VRPs
can be found in Cordeau et al. (2005) and Gendreau et al. (2002). Tabu search
implementations for the classical VRPs are extended to incorporate multiple
types of vehicles in the context of HVRP (e.g., Brandão (2011), Gendreau
et al. (1999), Salhi and Osman (1996), Wassan and Osman (2002)). We
propose an implementation that considers the multigraph structure, which
has not been addressed previously. While our tabu search implementation
maintains some of the attributes proposed by these papers, e.g., allowing the
search to move to infeasible solutions and penalizing solutions with frequently
moved vertices (Gendreau et al. (1999) and Ho and Gendreau (2006)), it is
adapted to handle the structure of multiple parallel arcs between vertices
through an efficient arc selection procedure that is incorporated in the search.
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3.3 Problem Formulation

In this section, we present a mixed-integer linear programming formulation for
the HVRP-MG based on flow variables. Let G(V,E) be a directed multigraph
where V is a set of vertices and E is a set of arcs. Vertex v0 ∈ V denotes
a depot from which all vehicles are operated, and the remaining vertices
represent n customers. Each customer i ∈ V \{v0} requires a certain number
of units to be delivered to its location, representing the demand di ∈ Z+.
Associated with this delivery is a service time denoted with si ∈ R+. E may
contain parallel arcs between each pair of vertices which correspond to the
alternative paths connecting the two locations in the underlying road network
(Garaix et al. (2010)). There is a heterogenous fleet of vehicles with distinct
capacities, fixed operating costs, and travel costs. The fleet is categorized
into different types of vehicles, indexed by K, so that vehicles of the same
type are identical. For each type k ∈ K, let Qk ∈ Z+ denote the vehicle
capacity, fk ∈ R+ denote the fixed dispatch cost, and mk ∈ Z+ denote the
number of vehicles available. The travel time on an arc e ∈ E is given by
te ∈ R+, and when a vehicle of type k travels through arc e, a travel cost
cke ∈ R+ is incurred. The objective is to determine a set of vehicle routes
with the minimum total cost, subject to the following requirements:

(i) Each route starts and ends at the depot.

(ii) Each customer is visited only once by exactly one vehicle.

(iii) The total demand served on a route of type-k vehicle does not exceed
the vehicle capacity, Qk.

(iv) All vehicles return to the depot within a given time limit L.

(v) The number of type-k vehicles in use does not exceed the number of
vehicles available, mk.

All problem parameters are assumed to be known with certainty. Consis-
tent with Garaix et al. (2010), the arcs in the multigraph represent Pareto-
optimal road paths only. For example, if each arc has two attributes, travel
time and cost, then this implies that no arc exists for road paths that are
dominated with respect to these two criteria; in other words, any path with
a longer travel time and a higher travel cost can be ignored.
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We next proceed to the formulation. In the following, we define the deci-
sion variables, xke = {0, 1}, yij ∈ R+, and wij ∈ R+. Let

xke =

{
1, if a vehicle of type k travels on arc e;

0, otherwise;
e ∈ E, k ∈ K.

For all i, j ∈ V with i 6= j, let yij ∈ R+ denote the total (cumulative) demand
delivered when the vehicle leaves customer i to serve customer j. Similarly,
let wij ∈ R+ denote the cumulative sum of service and travel times when
the vehicle leaves customer i to serve customer j. When there is no vehicle
travelling from customer i to customer j, both yij and wij are set to zero. For
notational simplicity, let Eij ⊂ E denote the set of arcs from vertex i to vertex
j, δ+(i) ⊂ E denote the set of arcs that leave vertex i, and δ−(i) ⊂ E denote
the set of arcs that are incident to vertex i. Furthermore, it is convenient to
treat the depot as a vertex with zero demand and zero service time.

Then, the HVRP-MG can be formulated as follows:

min
∑
k∈K

fk
∑

e∈δ+(v0)

xke +
∑
k∈K

∑
e∈E

ckex
k
e , (3.1)

s.t.:
∑
k∈K

∑
e∈δ+(i)

xke = 1,∀i ∈ V \ {v0}, (3.2)

∑
e∈δ+(i)

xke −
∑

e∈δ−(i)

xke = 0,∀k ∈ K, i ∈ V, (3.3)

∑
e∈δ+(v0)

xke ≤ mk,∀k ∈ K, (3.4)

∑
j∈V :j 6=i

yij −
∑

j∈V :j 6=i

yji = di,∀i ∈ V \ {v0}, (3.5)

yij ≤
∑
k∈K

∑
e∈Eij

(Qk − dj)xke ,∀i, j ∈ V : i 6= j, (3.6)

∑
j∈V \{v0}

yv0j = 0, (3.7)

∑
j∈V :j 6=i

wij −
∑

j∈V :j 6=i

wji = si +
∑
k∈K

∑
e∈δ−(i)

tex
k
e ,∀i ∈ V \ {v0}, (3.8)

wij ≤ (L− sj − te)
∑
k∈K

∑
e∈Eij

xke ,∀i, j ∈ V : i 6= j, (3.9)
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∑
j∈V \{v0}

wv0j = 0, (3.10)

wij ∈ R+,∀i, j ∈ V : i 6= j, (3.11)

yij ∈ R+,∀i, j ∈ V : i 6= j, (3.12)

xke ∈ {0, 1},∀e ∈ E, k ∈ K. (3.13)

There are |E||K| binary variables and 2|V |2 non-negative continuous vari-
ables. The objective is to minimize the total fixed costs and travel costs.
Constraints (3.2) ensure that each customer is serviced by exactly one vehi-
cle on a single delivery, that is, the demand is not split. Constraints (3.3)
balance the number of vehicles entering and leaving a vertex. Constraints
(3.4) limit the number of vehicles in use. Constraints (3.5) - (3.6) ensure that
all vehicle routes satisfy the capacity constraints. Finally, constraints (3.8) -
(3.10) ensure that all vehicle routes satisfy the duration constraints. As also
noted by Yaman (2006), no subtours will appear in any vehicle route due to
the capacity (or duration) constraints. Notice that if constraints (3.4) are
removed, the model would determine the optimal fleet size for each vehicle
type simultaneously.

Yaman (2006) presents a number of mixed-integer linear programming
formulations for the HVRP. Our model is most similar to the formulation
with disaggregated flow variables in the sense that the duration and capacity
constraints are handled using variables associated with the arcs and vehicle
types. As also noted by Yaman (2006), one advantage of disaggregating the
flow variables by vehicle types is the ease in treating different variable costs,
which is an important aspect in our setting. In addition, we incorporate the
multigraph structure into the formulation. An HVRP model with similar
definitions of flow variables yij and binary variables xke is given by Baldacci
et al. (2008), but there is no consideration of service duration constraints or
parallel arcs in their formulation.

3.4 Solution Methodology

Since the HVRP-MG has been formulated as a mixed-integer linear program-
ming problem (3.3), commercial optimization software such as CPLEX can be
used to obtain the optimal solution for small-sized instances. For instances of
practical or large scale, the problem formulation becomes quite large and such
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tools cannot obtain optimal solutions within a reasonable amount of compu-
tation time. Therefore, we propose a heuristic-based approach for solving the
HVRP-MG. In particular, we develop a tabu search heuristic which has been
proven successful for a wide variety of vehicle routing problems. This section
describes the tabu search heuristic.

Tabu search is a local search method which begins with an initial solution
and explores the solution space by iteratively examining the neighboring solu-
tions that are found by simple local modifications of the current solution. To
avoid poor local optimum, the search moves to the best neighboring solution
even if this move results in deterioration of the objective function. Recently
visited solutions are forbidden for a number of iterations, i.e., they are placed
in a tabu list, in order to prevent cycling. Additional features developed for
tabu search can be applied to improve the search, see, e.g., Rochat and Tail-
lard (1995), Gendreau et al. (1999), Taillard (1999) and Ho and Gendreau
(2006).

Basic components of tabu search heuristic include neighborhood structure,
initial solution, tabu moves, aspiration criterion, and diversification/intensification
mechanisms. We next describe how these components are designed in our
study to solve the HVRP-MG. For better illustration, we focus on the case
in which the arcs are differentiated with respect to travel time and travel
cost attributes; therefore there are two parallel arcs in between every pair of
vertices. The procedure can be generalized to handle multiple parallel arcs.

3.4.1 Penalized Objective Function

Following Gendreau et al. (1994), Gendreau et al. (1999) and Ho and Gen-
dreau (2006) and others, we allow infeasible solutions in the search space
for the tabu search. This idea is typically implemented by relaxing some of
the constraints and incorporating them into the objective function with the
use of self-adjusting penalty parameters; hence the name penalized objective
function.

Let X denote the set of solutions that satisfy requirements (i) and (ii), that
is, every route starts and ends at the depot, and every customer is visited
only once by exactly one vehicle. For a solution x ∈ X , let R(x) denote
the vehicle routes that contain at least one customer, and for a vehicle route
p ∈ R(x), let V (p) and E(p) be the vertices and arcs in the route. If a vehicle
of type k ∈ K is assigned to route p, the travel cost c(p), overload q(p) and
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overtime t(p), representing the violation of capacity and duration constraints,
respectively, can be written as:

c(p) = fk +
∑
e∈E(p)

cke ,

q(p) =
[ ∑
i∈V (p)

di −Qk

]+
,

t(p) =
[ ∑
e∈E(p)

te +
∑
i∈V (p)

si − L
]+
.

After incorporating the penalties for violations, the penalized objective
function value of a solution x ∈ X is found by z(x) =

∑
r∈R(x)

(c(r) + α q(r) +

β t(r)), where α ∈ R+ and β ∈ R+ are the penalty weights that are self-
adjusting in the search. Similar to the implementations in Cordeau et al.
(2001), Ho and Gendreau (2006), and Xue et al. (2014), the penalty weights
are initially set to 1. If the next solution satisfies the corresponding con-
straint, the penalty weight is divided by δ+ 1 where δ ∈ R+ is a user defined
parameter. Otherwise, it is multiplied by δ + 1.

3.4.2 Initial Solution

A set of initial solutions is constructed with a parallel insertion heuristic
method which iteratively inserts unassigned customers into vehicle routes. It
begins by assigning exactly one arbitrarily selected customer to each vehicle
route. Then, the remaining customers are inserted one by one, following a
randomized order, into a vehicle route that minimizes the insertion cost, that
is, the change in the penalized objective function value z(.). We estimate in-
sertion costs by using an efficient algorithm which performs vertex sequencing
and arc selection, as described in Section 3.4.4. Insertion costs are frequently
calculated when constructing feasible solutions in the course of the search.

3.4.3 Neighborhood Structure

The solutions in the neighborhood of a given solution x ∈ X , denoted as
N (x), are the solutions which are obtained after applying a single move
operation on the current solution. The move operation involves relocating a
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customer from its current route to another route at a location that minimizes
the penalized objective function.

To prevent cycling, if a customer has been moved from route r to route s in

the ith iteration, then moving the same customer back to route r is forbidden
for θ iterations, where θ is a user controlled parameter. A tabu move is
allowed only when the objective function value of the resulting solution is
better than that of the current best feasible solution found by the search.
This is referred to as the aspiration criterion and it aims to prevent the
search from stagnation.

For diversification purposes, operations that are performed frequently in
the search are penalized. We use a mechanism similar to that described
by Gendreau et al. (1999) and Ho and Gendreau (2006), which is based on a
penalty function φ(.) applied to non-improving solutions. For a given solution
x ∈ X , φ(x) = λc(x)

√
nϑik, where n is the number of customers, ϑik counts

the number of times customer i has been moved to route k, and λ is a positive
parameter that controls the intensity of diversification. Different from Ho and
Gendreau (2006), the number of non-empty vehicles is not included in the
penalty function since it is reflected in the fixed cost terms of the objective
function.

The best solution in the neighborhood, x ∈ N (x) is the solution that
minimizes z(x) + φ(x) where x is non tabu, unless it satisfies the aspiration
criterion.

3.4.4 Vertex Sequencing and Arc Selection

Insertion is an elementary operation that is performed frequently during the
search when building the neighboring solutions — a customer is inserted
into a vehicle route at a position that minimizes the change in the penalized
objective function. It is an easy operation for a simple graph; however, it is
difficult in the presence of multiple arcs. This is true even when the sequence
of vertices is fixed, because decisions must be made regarding which arc to
choose between every two successive vertices.

Suppose that V = (v0, v1, ..., vl, vl+1) is the vertex sequence after a cus-
tomer is inserted, where v0 and vl+1 denote the depot. (See Figure 3.1 for
an example). For all i ∈ {0, 1, 2, ..., l}, let Ei be the set of arcs between
vertices vi and vi+1. For arc e, let ĉe be the travel cost for the corresponding
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vehicle and t̂e be the travel time. The problem is to select a combination of
arcs E ∈ E0 × ... × El minimizing K1 +

∑
e∈E

ĉe + β
[ ∑
e∈E

t̂e − K2

]+
where K1

and K2 are non-negative constants given by K1 = fk + α
[ ∑
i∈V

di − Qk

]+
and

K2 = L −
∑
i∈V

si for the corresponding vehicle type k ∈ K. Essentially, the

problem corresponds to a multiple choice knapsack problem which is NP-
hard. In the multiple choice knapsack problem, a set of items are subdivided
into l mutually exclusive classes denoted with Ei, i ∈ {1, 2, ..., l}, and exactly
one item must be taken from each class in a way to minimize the total cost of
the items selected. In the vehicle routing context with multigraphs, Garaix
et al. (2010) introduced the problem as the Fixed Sequence Arc Selection
Problem (FSASP) and proposed an exact solution method based on dynamic
programming. While the dynamic programming approach can determine the
insertion costs accurately, it is rather time consuming to implement in tabu
search since the NP-hard subproblem needs to be solved frequently during
the search. Therefore, we propose a heuristic for the FSASP which efficiently
determines the arc selection for a fixed sequence of vertices. The FSAS (Fixed
Sequence Arc Selection) procedure (presented below) runs in polynomial time
and takes into consideration that, if the arc selection is not altered after an
insertion, the insertion cost may not reflect the actual value of the customer
sequence and may mislead the search to an undesirable direction. Notice
that this is never an issue for a simple graph. See Figure 3.2 for an example,
where the insertion of customer 2 into a vehicle route (1, 3) leads to a different
arc selection between vertex 0 and vertex 3 in the multigraph but no such
alteration is applicable in the simple graph.

Figure 3.1: Arc Selection for a Fixed Sequence of Vertices

0 1 2 l

v0 v1 v2 vl vl+1

E0 E1 E2 El-1 El

0

FSAS (Fixed Sequence Arc Selection) Procedure

Step 1 Determine the longest-time path. If the duration constraint is sat-
isfied, return the longest-time path (which has the smallest cost).
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Figure 3.2: Insertion operation in a simple graph (left-hand-side) and in a multigraph (right-
hand-side).
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Step 2 Otherwise, determine the shortest-time path. If the total duration of
the shortest-time path is greater than or equal to the time limit, return
the path with the following arcs.

e∗i = arg min
e∈Ei

ĉe + βt̂e, ∀i ∈ {0, 1, ..., l}.

Step 3 Otherwise, start with the shortest-time path and then pick the arcs,
one by one, following a predetermined order based on a ratio of cost
to time difference, until the penalized objective function is no longer
improving:

(a) Denote the currently selected arc in Ei as ēi.

(b) For all i ∈ {0, 1, ..., l} and e ∈ Ei \ {ēi}, determine the ratio of cost

to time difference r(e) =
ĉe−ĉēi
t̂ēi−t̂e

. Sort arcs e ∈ E with e 6= ēi in the

non-decreasing order of r(e). Let Ẽ be the sorted list.

(c) Consider the arcs in Ẽ one by one in order. Let ẽj = arg min r(e)
be in Ej. Replace ēj by ẽj, and remove all arcs in Ej from Ẽ, that
is, let Ẽ = Ẽ \ Ej.

(d) If z(.) does not improve with the substitution, stop. Otherwise,
repeat from Step (c).

For a fixed sequence of n vertices with at most k parallel arcs between a
vertex-pair, the algorithm is implemented with time complexityO(knlog(kn)).
To consider alternative sequencing of vertices, the above procedure is applied
iteratively. In each iteration, a customer is picked and reinserted into the
same vehicle route at a position that minimizes the penalized objective func-
tion z(.). This is repeated until z(.) is no longer improving. The resulting
vertex sequence and arc selection is used to estimate the insertion cost which
determines the search direction.
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3.5 Numerical Analysis

In this section, we test the performance of the tabu search heuristic and pro-
vide some managerial insights from sensitivity analyses. The computational
experiments are performed on generated data which reflect the practical ap-
plications that have motivated our work and give us flexibility in constructing
different scenarios for the sensitivity analysis.

3.5.1 Experimental Setting

Table 3.1 shows the values of the model parameters in the base case. The
distribution of customers is intended to mimic a densely populated region
close to the depot and a sparsely populated remote region. For simplicity, we
assume that two types of vehicles are in use and those with larger capacity
have higher dispatch and travel costs (per unit distance) due to higher fuel
costs and toll charges. This is consistent with research on per-mile costs
of vans (semi-trucks or pick-ups) and trucks (e.g., Barnes and Langworthy
(2003)), as well as the industry practice (Dai and Zhou (2008)). As mentioned
previously, we focus on the case where the arcs have two attributes, travel
cost and travel time. We assume that the travel cost and time are symmetric,
that is, for a given vehicle type, the travel cost and time going from vertex
i to vertex j are the same as those going from vertex j to vertex i. There
are two parallel arcs in between every vertex pair which represent alternative
routes with respect to travel time and cost characteristics. The travel time
(tij) and cost ckij of one of these arcs are generated according to the base-case
values shown in Table 3.1. The values of the second arc, which is more costly
but has a shorter travel time, are generated as follows. If vehicle k travels
from vertex i to vertex j at a cost ckij and a time tij, then an additional arc is
introduced with a cost R1c

k
ij and a time R2tij where R1 ∼ Uniform[1.1, 1.3]

and R2 ∼ Uniform[0.7, 0.9].
The values for the user controlled algorithmic parameters, i.e., λ, δ, and

θ, will be reported in the next section when elaborating the numerical ex-
periments. Algorithmic parameters are tuned by using one set of instances
(training set), but all approaches are evaluated by using another set of in-
stances (test set) and no parameter tuning is done on the test set to avoid
over-fitting. All of the experiments have been conducted on a desktop per-
sonal computer running Windows 7 with an Intel Core i7-2600 processor 3.4

52



Table 3.1: Parameter values

Type k Fuel cost δk Toll charge ηkij per unit distance

Small capacity vehicle Uniform[0.5,1.1] Uniform[0.2,0.3] (appear on 50% of the arcs)
Large capacity vehicle Uniform[1.4,2.0] Uniform[0.4,0.5] (appear on 50% of the arcs)

Parameter Values
Demand di Uniform[5,35], integer
Service time si Uniform[1 + 0.2di, 2 + 0.2di]
Location coordinates r ∼ Uniform[0,25] (80% of customers)
(r · cosγ, r · sinγ) r ∼ Uniform[25,100] (20% of customers)

γ ∼ Uniform[0,2π]
Travel time tij Manhattan distance between i and j
Travel cost ckij (δk + ηkij) tij
Duration limit L 260 time units
No. of Vehicles mk Small capacity vehicles: max(3, d

∑
i∈V \{v0}

di/150e)

Large capacity vehicles: max(3, d
∑

i∈V \{v0}
di/300e)

Vehicle Capacity Qk Small capacity vehicles: 150
Large capacity vehicles: 300

Dispatch cost fk Small capacity vehicles: Uniform[95,105]
Large capacity vehicles: Uniform[145,155]

GHz and 4 GB of main memory. Algorithms have been implemented in C++
and compiled using Visual Studio 2013.

3.5.2 Performance of the Solution Approaches

For comparison purposes, we test the following three solution approaches to
the HVRP-MG.

• Mixed-Integer Linear Programming (MIP): The mixed-integer program-
ming model (3.1) - (3.13) described in Section 3.3 is solved using CPLEX
12.5 with the default settings. The best feasible solution obtained within
2 hours of CPU time is reported. This serves as a reference to the other
approaches.

• Insertion Heuristic (IH): The insertion heuristic described in Sections
3.4.2 and 3.4.4 is used to generate solutions with various randomized
insertion order and number of vehicles, where the insertion costs are
estimated with the FSAS procedure. The best solution obtained within 2
seconds of CPU time is reported. To increase the likelihood of obtaining
feasible solutions, both of the penalty weights α and β are set to large
positive numbers.
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• Tabu Search Heuristic (TS): Initially, 5 solutions are constructed by
the insertion heuristic. To encourage diversified structure, the penalty
weights are initialized to small positive numbers. Both penalty weights
α and β are set to 1 for testing. A tabu search is carried out on each of 5
solutions for 100 iterations. The best solution found in these iterations
is selected as the starting point for the main tabu search. Then, the
best solution obtained by tabu search within 2 seconds of CPU time is
reported. The parameters used in the tabu search heuristic are shown
in Table 3.2.

Table 3.2: Parameter values for the tabu search heuristic

Parameter Value
Diversification intensity (λ) 0.0001
Penalty update factor (δ) 0.5
Tabu tenure (θ iterations) d5log10(n)e

We begin the analysis by testing the quality of the heuristic solutions
as compared to the optimal solution. We first use small-sized instances,
where the number of customers is selected from the set {14,15,16,17}. For
each case, 25 instances are generated and the optimal solutions are provided

by the MIP approach. The optimality gap is calculated as
H−Opt

Opt 100%

where H stands for the solution found by TS or IH, and Opt is the optimal
solution. Figure 3.3 illustrates the performance of TS and IH. TS produces
near-optimal solutions in almost all instances. We have observed that IH is
able to produce good feasible solutions quickly and obtains higher quality
ones for larger-sized instances.

Figure 3.3: Optimality gap on small-sized instances
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Medium-sized instances with number of customers from the set {20, 25,
30} could not be solved to optimality within a reasonable amount of com-
putational time, therefore, we use the best solutions obtained by MIP in
a 2 hours CPU time limit as the benchmark results. For each number of
customers, 5 instances are generated, and the fleet is comprised of 3 small-
capacity and 3 large-capacity vehicles in all instances. Table 3.3 summarizes
the results. As the number of customers increases, the performance of MIP
significantly worsens due to the problem size and computational time limit.
For these instances, IH and TS produce better solutions than MIP, with TS
outperforming others in most of the cases.

Table 3.3: Performance of MIP, IH and TS on medium-sized instances

No. of Objective Value
Instance Customers MIP IH TS

1 20 818.39 837.89 826.55
2 20 775.70 781.78 775.03
3 20 799.49 802.80 801.33
4 20 798.27 811.00 798.27
5 20 791.52 801.20 793.86
6 25 1006.46 1050.82 1042.75
7 25 1074.90 1041.11 1057.51
8 25 989.58 1071.87 991.48
9 25 991.39 1020.86 972.92
10 25 970.37 1024.53 1020.87
11 30 1066.25 1110.65 1034.13
12 30 1050.06 1134.39 1009.06
13 30 1049.53 1079.13 1032.99
14 30 1068.88 1125.93 1011.15
15 30 1071.43 1114.25 1055.85

We next consider large-sized instances with 100 customers and compare
the performance of TS and IH with respect to different CPU time limits. A
total of 25 instances are generated based on the parameter setting in Table
3.1, and the best solutions found within the corresponding CPU time limit
are reported. Figure 3.4 shows the results. TS clearly outperforms IH for all
the instances. Typically, IH generates a large number of feasible solutions in
a short amount of time, while TS is able to find considerably better solutions
within a few seconds. To propose high-quality solutions in practical time
limits, our further numerical efforts will focus on TS.

3.5.3 Sensitivity Analysis and Managerial Insights

We perform sensitivity analysis to generate further insights that can aid de-
cision making. To address realistic settings, we consider instances with 100
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Figure 3.4: Performance of TS and IH under different computational time limits
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customers under various test scenarios. We use TS to solve all instances and
terminate the search after 6000 iterations.

In the base-case, the problem parameters take the values shown in Table
3.1. Additional scenarios are generated by varying the route duration limit L,
vehicle capacities, and the distribution of the customers. When the effect of
one parameter is tested, other parameters are kept at their base-case values.

We test the values of L, the route duration limit, from 200 to 300 in
increments of 10 units. The base-case values of vehicle capacities are denoted
with a ratio of 1 and other scenarios are generated by varying this ratio within
the set {0.6, 0.7, 0.8, 0.9, 1}, e.g., the ratio 0.6 implies 40% lower capacities
than the base case. To obtain different distribution of customers, we vary the
percentage of customers located in the remote region. This percentage is 20%
in the base case, and other values tested in the experiments are {20%, 35%,
50%, 65%, 80%}. See Figure 3.5 for an example illustration of the customer
locations at different parameter values. A larger point represents a customer
with a larger demand at the location.

Figure 3.5: Distribution of customers
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Overall, the maximum available fleet size is 8, with 6 being large-capacity
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vehicles. For each specific combination of parameter values, we test 10 in-
stances.

Impacts of route duration limit, vehicle capacities, and customer distribution on
transportation costs

Figure 3.6 shows the total cost of transportation including the dispatch and
travel costs (i.e., the solution value) for the tested scenarios. The results illus-
trate the usual trade-off between transportation costs and customer service.
As the route duration limit increases, it is possible to reduce transportation
costs; however this comes at the expense of customer service, approximated
by the total lead time to fulfill all customer orders. Some cost savings are
obtained when the vehicles have larger capacities due to economies of scale
or when only a small percentage of customers are located far from the depot
due to reduced travel costs. Often times, these characteristics are difficult
to control by an operating firm, therefore it is important that a balance is
sought between the targeted lead time and transportation costs.

Figure 3.6: The impact of the route duration limit, vehicle capacities and customer distri-
bution on transportation costs
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Benefits of considering alternative routes

In practice, road networks present alternative ways (routes) of travel from
one location to another with respect to attributes such as cost and time.
When VRPs are studied on simple graphs, some of these attributes are omit-
ted in constructing the graph since only one link is assumed between each
pair of nodes. By incorporating alternative routes through a multigraph
structure, these attributes can be explicitly considered with multiple links
between nodes and potentially generate some benefits such as cost savings
and flexibility in distribution planning. Garaix et al. (2010) have quantified
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such benefits in an on-demand transportation problem. In this section, we
investigate the potential benefits for a VRP and identify circumstances under
which significant gains can be generated by considering alternative routes.

Before analyzing the results, we present a small example to illustrate how
the presence of multiple arcs, representing the alternative routes in the un-
derlying network, leads to cost savings.

Example 1. The arcs are built based on the experimental setting in Section
3.5.1; i.e., there are two arcs in between every pair of vertices, one represent-
ing the faster but more costly link and the other slower but less costly link.
The route duration is limited to 260 time units. We first solve the problem
on a simple graph by only considering the less costly arcs, and then on the
multigraph by considering both types of arcs. The corresponding solutions are
shown in Figure 3.7 and Table 3.4.

In the simple graph, vehicle 2 returns to depot after visiting customer
1, but in the multigraph, the route is extended to include customers 3 and
13 by using the arcs {(1,13),(13,3),(3,0)} which are all of faster but more
costly types. These arcs facilitate route extension without violating the route
duration limit which would have been infeasible in the simple graph. While
the travel cost of vehicle 2 increases, the total transportation cost is reduced
from 657.92 to 652.11.

Figure 3.7: Effects of considering alternative routes in Example 1. (Left) Simple graph with
only less costly arcs, (Right) Multigraph

MultigraphSimple Graph (with only less costly arcs)

As illustrated in the example, savings in travel costs, e.g., fuel costs and
toll charges can be generated by taking advantage of the flexibility offered by
the parallel arcs. For larger problems, it is also possible to observe savings
in dispatch costs because service can be delivered with a smaller number of
vehicles.

58



Table 3.4: HVRP solutions in Example 1

Vehicle Travel Time Vehicle Load Dispatch Cost Travel Cost Route

Simple Graph∗
1 170 120 101.94 199.92 (4,2,9,7,11,16,5,12)
2 258.01 92 101.94 294.14 (17,15,18,1)
3 121.47 147 101.94 163.86 (14,10,6,8,3,13)

Multigraph
1 107.79 88 101.94 162.85 (4,12,5,16,11)
2 259.82 136 101.94 303.03 (17,15,18,1,13,3)
3 148.77 135 101.94 186.23 (14,10,7,9,2,6,8)

∗ Considering only less costly arcs between pairs of vertices

Next, we investigate the impact of alternative routes under various settings
of the problem parameters. Figure 3.8 illustrates the transportation cost
savings when alternative routes are considered. We calculate the cost savings
as the percentage change between the total transportation cost of a simple
graph, containing only the set of less-costly and longer-duration arcs and

that of a multigraph with both sets of arcs, i.e., S−M
S 100%, where S and M

represent the total cost in the simple graph and multigraph respectively. As
can be seen in Figure 3.8, transportation cost savings of 5% to 20% can be
observed when parallel arcs are considered. This is a considerable amount in
distribution planning.

Figure 3.8: Transportation cost savings due to parallel arcs
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Note that the savings are more pronounced when the route duration limit
is at lower values. When the time limit is more restrictive, the set of more-
costly arcs that facilitate faster travel are selected more often and therefore
their impact in generating savings is greater. Furthermore, it is sometimes
necessary to consider alternative routes in distribution planning, especially
when products have to be delivered within a short due date. For example, if
we disallow the parallel arcs and set the duration limit to a value less than
250, no feasible solution could be found in some of the instances. Parallel
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Figure 3.9: The percentage of more costly (and shorter duration) arcs traversed by vehicle
type
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arcs enable the construction of vehicle trips within time limitations.
Figure 3.9 illustrates the utilization of parallel arcs in the routes of small

and large capacity vehicles. We measure the utilization with a percentage,
which is given by the ratio of the total number of more costly arcs traveled by
a vehicle type on all trips to the total number of arcs traversed by the same
vehicle type. The results show that the percentage of more costly arcs in the
routes of small capacity vehicles is higher, implying that these vehicles tend
to utilize the parallel arc structure more heavily. As the route duration limit
becomes less restrictive, the percentage decreases steadily since the need for
faster routes is reduced. This explains why large cost savings are observed
for small duration limits, as we have seen in Figure 3.8.

Figure 3.10: The percentage of remote customers served by the small capacity vehicles
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Figures 3.8 and 3.9 show that the transportation cost savings are generated
mainly by utilizing the more costly arcs in the routes of the small capacity
vehicles and that the large capacity vehicles tend to avoid the more costly
arcs. It is worthwhile to take a deeper look into the reasons behind this
observation. To this end, we consider the customer distribution and the
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Figure 3.11: Time utilization by vehicle type
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assignment of customers to vehicle types. Figure 3.10 shows the percentage
of remote customers served by the small capacity vehicles at different values
of the route duration limit and vehicle capacity. The percentage is measured
by the ratio of the number of remote customers visited by the small capacity
vehicles to the total number of remote customers. In Figure 3.11, we illustrate
the time utilization in the routes of small and large capacity vehicles, where
the utilization is measured by the ratio of total travel time to the route
duration limit. We observe that most of the remote customers are served by
the small capacity vehicles. Only when the duration limit is very restrictive,
a few customers in the remote region are served by the large capacity vehicles.
At the same time, the small capacity vehicles tend to travel longer distances
to serve the customers in the more remote regions, while the large capacity
vehicles travel shorter distances to serve the customers nearby. Therefore, the
trade-off between travel cost and time is more critical for the small capacity
vehicles, and consequently, alternative routes are more useful for this type of
vehicles.

Further analysis on customer distribution

We perform further analysis on the impact of customer distribution over
the network. By varying the percentage of customers located in the remote
region, we can obtain different customer distributions, corresponding to, for
example, uniformly or largely densely (sparsely) populated networks. (See
Figure 3.5.)

In the experiments, we illustrate the percentage of remote customers served
by the small capacity vehicles and the percentage of the more costly arcs in
the routes of these vehicles. In addition, we show the time and capacity
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utilization with respect to different vehicle types. The capacity utilization is
measured in a similar way to the time utilization, that is, it is the ratio of
total load delivered by the vehicle to its available capacity. Figures 3.12-3.14
illustrate the findings.

When more customers are located in the remote region, the small capacity
vehicles tend to utilize a larger percentage of the more costly arcs, i.e., faster
links, in order to serve a higher number of remote customers within the route
duration limit. In fact, even when customers are uniformly distributed, the
small capacity vehicles serve more than 80% of the customers in the remote
region. Furthermore, the small capacity vehicles tend to have higher time
and capacity utilization than the large capacity vehicles. This suggests that
the operating firm can achieve cost advantages and efficient use of resources
by dispatching the small capacity vehicles to deliver the demand requests of
the remotely-located customers.

Figure 3.12: Percentage of remote customers and more costly arcs in the routes of small
capacity vehicles under different customer distributions
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Figure 3.13: Capacity utilization by vehicle type under different customer distributions
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Figure 3.14: Time utilization by vehicle type under different customer distributions
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3.6 Concluding Remarks

Vehicle routing has been a central component in the operation of logistics
and distribution systems. When determining the routes of a fleet of vehicles,
decision makers may need to consider multiple criteria such as operational
cost and customer service. For example, while the primary objective could be
minimizing the total transportation cost, delivery time and frequency could
be other important considerations. In the related literature, such criteria are
often addressed by developing minimum-cost vehicle routes under time or
distance constraints. These models can be used to understand the trade-off
between different criteria, depending on which decision makers can mod-
ify/customize vehicle trips. Another flexibility is related with the alternative
paths of travel between locations on the network. For example, vehicles can
travel from an origin point to a destination point on a road network by follow-
ing alternative routes of travel, e.g., faster travel at a higher cost or distance.
To consider the multiple attributes of these links in the solution space, it is
necessary to expand the network representation of a problem by introducing
parallel arcs between the vertices, which leads to a multigraph structure.

In this chapter, we adopt the idea of alternative route consideration and
study a time-constrained heterogeneous vehicle routing problem on a multi-
graph. We provide a mathematical formulation of the problem and develop a
tabu search heuristic as the main solution approach. Our numerical investi-
gations show that the tabu search heuristic, which is designed to address the
parallel arc structure of the network, is very effective in solving the problem.
The tested instances illustrate the impact of alternative route consideration
and also reveal some insights for the operation of the distribution system.

Our results suggest that considerable savings in transportation costs can
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be obtained by utilizing the alternative route structure, especially when the
items must be delivered to customers in a restrictive duration limit. This
arises because the multigraph structure enables solutions that take advantage
of the multiple attributes of the arcs, e.g., an arc with a higher travel cost
but shorter travel time can be added to a vehicle route, reducing the need for
additional vehicle dispatches. As practices such as just-in-time delivery and
supply chain integration are putting pressure on firms to commit to quick
deliveries, alternative routes can be useful to gain benefits in transportation
costs and flexibility. We also find that the parallel arc structure makes the
highest impact on cost savings when the vehicles with smaller capacity are
dispatched to serve the customers who are in remote locations and the vehicles
with larger capacity are utilized to serve customers nearby in a minimum-cost
way. Overall, our models and numerical findings can be useful in developing
effective dispatch policies for distributers.

Although we have designed our numerical experiments by considering
guidelines from practice, it would be interesting to test the developed policies
by using real world data. In such a study, additional aspects of distribution
operations such as delays, break-downs, changing customer requests could be
considered to dynamically design the vehicle routes. It could also be worth-
while to incorporate other computational schemes to increase the efficiency
of the tabu search.
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Chapter 4

Real-Time Tram Scheduling

The research described in this chapter is motivated by the opera-
tions of a public transit company in Hong Kong. We investigate how
real-time information can be utilized in combination with historical
data to improve the controllers’ routing and scheduling decisions
practically. A dynamic and integrated vehicle and crew scheduling
problem is introduced with the following characteristics: 1) The
travel times are stochastic and time-dependent, and its realizations
are only revealed during the execution of the plan. 2) The sched-
ule can be revised when updated information is provided or when
unexpected events occur. 3) Motormen and trams are scheduled
simultaneously. The objective is to maximize the route frequen-
cies and mileage in order to provide good service to passengers,
and simultaneously minimize overtime and mealbreak delays for
motormen. To mitigate unexpected delays due to uncertainties in
operations, various mathematical models are proposed for revising
the schedules in real-time under a rolling-horizon framework. The
efficiency and the effectiveness of the formulations are evaluated via
simulation using real-world data.

4.1 Introduction

We are interested in developing practical solution approaches for real-time
dispatch of a dynamic and stochastic vehicle and crew scheduling problem.
The practical motivation for our research arose from the operations of a
public transit company in Hong Kong. The company provides passenger
transportation service in a densely populated area with 210,000 passengers
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per day and more than 50 stations. There are around 120 trams and 250
motormen available per day to provide the transportation service. Figure 4.1
illustrates the standard commercial routes of the company.

Figure 4.1: Standard commercial routes of the company

Information is centrally available to the control room to aid real-time de-
cision making. Tram locations are detected using some location-sensors (e.g.
RFID) and forwarded to the control room instantaneously. Moreover, in-
spectors are also sent to the termini and stations to monitor real-time traffic
conditions, and manage the motormen and trams at the termini. All these
location and traffic information is gathered and visualized using a computer
system in the control room, and is monitored by the controllers. With the
advance in location sensor technologies and database management system,
historical and real-time information can be made readily available at a rela-
tively cheap cost nowadays. We investigate how these valuable information
can be utilized to improve the real-time routing and scheduling decisions
of the controllers via a decision support system. Figure 4.2 illustrate the
information flow of the proposed decision support system. When updated in-
formation is provided or when unexpected events occur, motorman schedules
are revised by using a mathematical model. The corresponding suggested
actions are shown to the controllers. The controllers may make the final
decisions based on the proposed schedules. Appropriate instructions are for-
warded to the inspectors and motormen via the vehicle dispatch system for
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the changes in the planned schedule.

Figure 4.2: A real-time decision support system

In this chapter, we introduce the dynamic and integrated vehicle and crew
scheduling problem for real-time control with the following characteristics.
1) The travel times are stochastic and time dependent, and its realizations
are only revealed during the execution of the plan. 2) The schedule can be
revised when updated information is provided or when unexpected events
occur. 3) Vehicles and drivers are scheduled simultaneously.

The objective is to maximize the route frequencies in order to provide
good service to passengers, and minimize the violation of staff regulations
(meal-break delays and overtimes) due to travel-time uncertainties.

4.1.1 Literature Review

In the following paragraphs, we summarize some literature related to inte-
grated vehicle and crew scheduling problems, dynamic vehicle routing prob-
lems and disruption management. Extensive literature review on the related
problems are provided by Pillac et al. (2013) for the dynamic vehicle routing
problems, and Cacchiani et al. (2014) for an overview of recovery models and
algorithms for real-time railway disturbance and disruption management.

Integrated Vehicle and Crew Scheduling

Although the decisions in vehicle routing and crew scheduling are inter-
related, they are traditionally solved in a sequential way. Scheduling simulta-
neously the vehicles and crew yields significant benefit. Existing approaches
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for the integrated version are scarce, and are confined to static and determin-
istic approaches.

Freling et al. (2003), Huisman et al. (2005), Huisman et al. (2006), and
Mesquita and Paias (2008) studied scheduling of bus lines based on column
generation and Lagrangian approaches. Zäpfel and Bögl (2008) solve the
problem in four phases: initialization, route generation, personnel assign-
ment, solution evaluation. Tabu search and genetic algorithm are used sepa-
rately to guide the solution approach.

Zäpfel and Bögl (2008) and Wen et al. (2011) investigated schedules for
pickup-and-delivery using meta-heuristic approaches. Wen et al. (2011) pro-
posed a multilevel variable neighborhood search heuristic. When the maxi-
mum working hours of drivers applies daily rather than accumulatively across
different days, the problem become many daily planning problems that could
be solved independently.

Dealing with Uncertainties

Most existing work on vehicle and crew scheduling problems consider deter-
ministic travel times. However, travel times may not be realized as what are
expected, due to the weather conditions, special events, traffic conditions,
etc.

Laporte et al. (1992) formulated the vehicle routing problem with stochas-
tic travel times, and solved it to optimality via branch-and-cut. The uncer-
tainties in travel times were handled using chance constraints or expected
penalties.

Huisman et al. (2006) demonstrates the potential benefits of solving a
dynamic versus a deterministic version of the problem. They assume that
the travel times are known exactly a certain amount of time before actual
operations. This assumption is reasonable when the traffic conditions do not
vary too much in a short time.

Stochastic programming approaches are effective in dealing with uncer-
tainties. Improved solution quality could be obtained using real-time infor-
mation to determine recourse actions arising from these uncertainties. An
extensive summary of stochastic programming approaches can be found in
Birge and Louveaux (2011).
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Disruption Management

Disruption management approaches often are considered with respect to a
tentative timetable, where the primary concern is to minimize the deviation
from the planned schedule.

Cacchiani et al. (2014) presented an overview of recovery models and al-
gorithms for real-time railway disturbance and disruption management. In
case when a disturbance occurs, a common objective is to minimize the de-
lays of trains or the delays of passengers. In case of a disruption, the system
is recovered to the normal situation as soon as possible while the number of
(additional) cancelled trips is minimized.

Jespersen-Groth et al. (2009) have given a comprehensive description of
the problems related to disruption management arising in the railway sys-
tems in Europe. The disruption management process often involve solving
sequentially three interrelated problems: timetable adjustment, rolling stock
rescheduling, and crew rescheduling.

Walker et al. (2005) attempt to manipulate simultaneously the timetable
and the crew schedule to deal with disruptions. By solving an integer pro-
gramming model based on branch-and-bound with column and constraints
generation, disruptions appear in a single rail-line can be handled effec-
tively. The objective is to minimize simultaneously the deviation of the new
timetable from the original one and the crew cost of the revised schedule.

Huisman (2007) developed a heuristic for a crew rescheduling problem in
the case of planned track maintenance. Drivers are rescheduled to a subset of
duties that is generated using a column-generation procedure. Potthoff et al.
(2010) extend the work of Huisman (2007) in which the subset of duties is
dynamically selected.

4.1.2 Description of the Motivating Problem

Commercial Routes and Deadheads

A route refers to a sequence of stations starting at an origin terminus and
ending at a destination terminus. A route could be a commercial route that
carries passengers, or a deadhead that carries no passenger (e.g. connecting
two consecutive commercial routes). Standard commercial routes are de-
signed in long term planning based on the estimated passenger demands. In
practice, standard commercial routes occasionally need to be extended (more
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stations are introduced) or reduced (some stations are skipped), due to traffic
delays which impact the mealbreak/signoff time of the motormen.

In our motivating application, we obtain information on the extended
or reduced commercial routes commonly used in practice from the recent
historical records stored in the database. We do not consider routes that
are seldom used in the past in order to avoid unrealistic suggestions to the
controllers. The possible commercial routes and deadheads could be updated
before the day of operations in order to reflect the controllers’ preference and
the changes in traffic conditions. Table 4.1 shows some example commercial
routes. Routes are categorized into groups. Routes in the same group have
similar sequence of stations.

Table 4.1: Commercial routes and deadheads

Route Origin Destination Type Group Distance

AE WM SKW Standard G8 10350
AE+ WST SKW Extended G8 12008
AW SKW WM Standard G1 10251
AW+ SKW WST Extended G1 12020
BE HV SKW Standard G9 8031
BE- HV NP Reduced G9 4275
BE– HV CB Reduced G9 2061
QE WST CB Standard G12 6038
QE+ KT CB Extended G12 6902
QE– WM CB Reduced G12 4380
QW CB WST Standard G5 6145
QW+ CB KT Extended G5 7328
QW- CB WM Reduced G5 4376
...

...
...

...
...

...

Targeted Route Frequencies

Each route group is associated with some targeted route frequencies (i.e.
headways) that are predetermined in long term planning (based on the origin-
destination passenger demand and the targeted service levels). Table 4.2
shows the targeted route frequencies for all the route groups for different
time periods of the day. These route-frequency requirements are expressed
in a form of time-based demands described below. We divide the planning
horizon into a number of time periods. For each time period, the targeted
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number of trams demanded for travelling in the corresponding routes are
predetermined for providing adequate service levels. For example, as shown
in the first row of Table 4.2, there are 18 trams required for travelling in the
routes of group G1 in the time period 4:00am — 5:00am.

Table 4.2: The number of trams required for all groups and time periods

Group 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 · · ·

G1 18 11 21 24 19 19 16 26 20 27 · · ·
G2 11 5 10 11 11 9 11 12 19 12 · · ·
G3 6 7 11 13 21 9 16 16 21 16 · · ·
G4 3 4 4 12 13 7 13 9 11 5 · · ·
G5 4 3 3 4 3 1 6 5 9 14 · · ·
G6 0 0 0 0 0 0 0 0 0 0 · · ·
G7 0 0 3 4 4 4 4 4 4 4 · · ·
G8 0 7 16 18 25 25 39 21 28 21 · · ·
G9 0 12 6 13 12 14 12 15 15 20 · · ·
G10 7 14 12 19 8 16 16 22 22 17 · · ·
G11 5 5 11 15 8 11 9 10 7 14 · · ·
G12 13 7 8 4 8 17 13 8 18 11 · · ·
G13 0 0 0 0 0 0 0 0 0 0 · · ·
G14 0 0 3 4 4 4 4 4 4 4 · · ·

Motorman Duties

Each motorman is assigned with an unique duty that describes the working
period and the meal-break period of a day. The duties are designed in opera-
tional planning using a sophisticated commercial software package developed
by the company, and are assigned to motormen in a rotating manner. Du-
ties assigned to motormen are usually modified and finalized before the day
of operations for special arrangements like sick leaves, switch of duties, etc.
Duties of a day are categorized into shifts. Duties of the same shift have
slightly different working periods and meal-break periods. Table 4.3 shows
some example duties. While not entirely true in practice, we assume that all
motormen have enough skill levels to operate any of the trams.

Working overtime or delays in meal-break time are undesirable since they
are generally not preferred by the motormen. Even worse is that overtime
hours are costly for the company because of additional overtime payment.
When a meal-break is delayed, the meal-break end time should be adjusted
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Table 4.3: Motorman Duties

Signon Signoff Signon Signoff Meal-Break Meal-Break Meal-Break Meal-Break
Motorman Time Time Terminus Terminus Start Time End Time Start Terminus End Terminus

M1 5:27 13:52 ED CB 8:57 9:55 ED ED
M2 5:47 15:43 ED CB 10:30 11:06 ED ED
M3 6:29 15:24 ED CB 11:24 11:59 ED ED
M4 6:36 15:48 ED CB 10:32 11:09 ED ED
M5 6:40 15:55 ED CB 11:42 12:30 ED ED
M6 6:53 15:54 ED CB 11:54 12:45 ED ED
M7 14:44 23:35 CB ED 18:30 19:13 ED ED
M8 14:27 23:40 CB ED 18:58 19:36 ED ED
M9 14:39 24:37 CB ED 20:20 21:03 ED ED
M10 15:50 25:13 CB ED 20:39 21:24 ED ED
M11 15:49 24:14 CB ED 19:59 20:48 ED ED
M12 14:49 24:50 CB ED 19:18 19:54 ED ED
M13 5:21 14:45 ED ED 9:42 10:20 ED ED
M14 5:22 14:24 ED ED 9:21 10:05 ED ED
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such that the duration of the meal-break is preserved. Furthermore, the
meal-break period and the working periods can only start (and end) at the
corresponding terminus described in the duty. Several termini are relief points
where motormen meal-break, signon and signoff take place. Moreover, idling
trams or idling motormen can only stay at these relief points. Trams and
motormen that are available for a day are known before the day of the op-
erations. At the beginning of the planning horizon, the initial termini of the
trams depend on the operations of the previous day.

Time-Dependent and Stochastic Travel Times

Most transportation planning models in operational planning are determin-
istic and do not consider uncertainties in operations. However, public transit
systems are inherently random. This is particularly true for buses and trams
that share the use of the road with other traffic (v.s. trains that run on
dedicated tracks). Therefore, disruptions on the planned daily schedule often
occur in the daily operations due to unexpected traffic conditions, vehicle
breakdowns, accidents, planned or unplanned special events, etc. When de-
lays due to these uncertainties accumulate and propagate in the execution
and operation of the planned schedule, poor service and high operational cost
result.

To approach more realism in our model, we represent uncertain travel
times as stochastic random variables with time-dependent distributions. The
planning horizon is divided into a number of time periods (each with a length
of 60 minutes in our case). The travel times for each route starting within a
time period are assumed to follow a given probability distribution. Further-
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more, there is a minimal stopping time at each of the termini, which is known
as the dwell time. We consider deterministic dwell times in our model.

Figure 4.3: Travel-Time Distribution
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The travel-time distribution of a commercial route in a single day is il-
lustrated in Figure 4.3. The graph shown in the left-hand-side is the actual
duration spent in travelling the route when it starts at the corresponding
time. The graph shown in the right-hand-side illustrates the corresponding
travel time distributions for all the periods in the day. The means and the
standard deviations for commercial routes and deadheads for all time peri-
ods are predetermined using historical data. To illustrate the dynamicity,
the means and standard deviations of the travel times for all time periods
are shown in Table 4.4 and 4.5 respectively. For example, the travel time of
route AE has a mean 52.5 minutes and a standard deviation 2.062 minutes
if the route starts in the time period 4:00am — 5:00am.

Table 4.4: The mean travel times in each period

Route 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 · · ·

AE 52.5 52.5 61.152 68.36 72.562 74.774 77.867 81.038 81.106 80.702 · · ·
AE+ 60.91 60.91 70.948 79.311 84.186 86.752 90.34 94.019 94.099 93.629 · · ·
AW 53.716 53.716 60.113 70.721 74.266 73.751 76.224 77.091 78.442 79.031 · · ·
AW+ 62.986 62.986 70.486 82.925 87.081 86.478 89.377 90.394 91.979 92.669 · · ·
BE 47.387 47.387 47.387 51.901 55.851 54.714 55.39 56.888 57.158 57.799 · · ·
BE- 25.224 25.224 25.224 27.628 29.73 29.125 29.485 30.282 30.426 30.767 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .
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Table 4.5: The standard deviation of the travel times in each period

Route 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 · · ·

AE 2.062 2.062 5.257 3.62 4.56 4.466 6.596 5 4.65 4.641 · · ·
AE+ 2.392 2.392 6.099 4.2 5.291 5.182 7.652 5.802 5.395 5.385 · · ·
AW 3.005 3.005 4.77 5.554 4.374 4.124 4.32 4.429 4.954 4.683 · · ·
AW+ 3.524 3.524 5.593 6.512 5.129 4.836 5.065 5.194 5.809 5.491 · · ·
BE 3.644 3.644 3.644 3.173 4.235 3.579 3.486 3.897 3.56 3.707 · · ·
BE- 1.94 1.94 1.94 1.689 2.254 1.905 1.856 2.074 1.895 1.973 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

Objectives

We revise the planned schedules of motormen at a particular time of the day.
The schedule of a motorman describes a sequence of tasks to be performed
in the remaining working period of the day. A task could be a run in a route,
a meal-break or to signoff. Each motorman should perform the tasks one by
one and as early as possible. For all the routes planned in the schedules, a
tram should be assigned. Since trams are assumed to be identical in our case,
a motorman does not need to wait for the assigned tram in reality, as long
as there are other trams available at the terminus. Furthermore, each task
is associated with a scheduled start time. When trams are insufficient, the
idling motorman with the earliest scheduled start time in the first run at the
terminus should pick the next available tram first. Table 4.6 shows a realized
schedule for one motorman.

The goal in real-time control is to minimize the violation of staff reg-
ulations due to travel-time uncertainties, and to meet the targeted route
frequencies in order to provide good service to the passengers. Meal-break
delay and working overtime are discouraged using a penalty cost (per minute
delay). The objective is to minimize the total overtime and meal-break delay,
and maximize the coverage of passenger demand and mileage (total distance
travelled in all commercial routes).

Figure 4.4 illustrates the coverage of a particular route on a day. The black
line indicates the number of trams working in the routes over the course of
a day. The histogram shows the demand in number of trams. The region
of the histogram that is coloured in red illustrates the undercover, while the
region coloured in blue illustrates the coverage.
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Table 4.6: Realized schedule for one motorman

Motorman Tram Origin Destination Start Time End Time Route

M4 V1 ED SKW 6:36 6:41 ED-SKW
M4 V1 SKW KT 6:41 8:09 YW
M4 V1 KT CB 8:09 9:05 QE+
M4 V1 CB HV 9:05 9:19 BW–
M4 V1 HV SKW 9:19 10:15 BE
M4 V1 SKW ED 10:15 10:24 SKW-ED
M4 ED ED 10:24 11:01 mealbreak
M4 V2 ED SKW 11:01 11:09 ED-SKW
M4 V2 SKW WST 11:09 12:40 AW+
M4 V2 WST NP 12:40 13:49 NE
M4 V2 NP HV 13:49 14:20 BW-
M4 V2 HV WM 14:20 15:00 KW–
M4 V2 WM CB 15:00 15:44 QE–
M4 CB 15:44 signoff

Figure 4.4: The coverage of a particular route on a day
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4.2 Mathematical Models

In this section, we provide mathematical models for revising the planned
schedule in real-time.
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4.2.1 Parameters

Let R denote the set of routes, T denote the set of termini, G denote the
set of route groups, and M denote the set of motormen that are currently
available or will be available within the planning horizon (e.g. within the
next 10 minutes). Let S denote the set of route sequences. A route sequence
refers to a sequence of routes in R such that the destination of a route is
equal to the origin of the next route in the route sequence.

A route sequence is compatible with a motorman when the route sequence
starts with the available terminus of the motorman, and ends with the ter-
minus of motorman’s meal-break start terminus or sign-off terminus (if meal-
break has been finished). The empty sequence is included to represent im-
mediately meal-break or signoff at the available terminus. Note that all the
possible route sequences between any two termini can be predetermined, and
the same set of possible route sequences are used for rescheduling throughout
the day.

A bipartite graph G(V,E) is constructed with vertices V = M∪ S and
edges E such that, there is an edge connecting u ∈ M and v ∈ S if and
only if route sequence v is compatible with motorman u. For notational
convenience, let δ+(v) = {(p, q) ∈ E : p = v} for all motormen v ∈M, which
are the edges incident with vertex v and are representing all the compatible
route sequences for motormen v.

Edges in E are associated with a number of attributes, in order to deter-
mine the objectives. For all edges e = (d, s) ∈ E, let βe denote the expected
meal-break delay (in minutes) if motorman d is assigned with route sequence
s, and αe denote the expected overtime (in minutes) if motorman d is as-
signed with route sequence s. For all route group g ∈ G and edge e ∈ E,
let

aeg =

{
1, if the first commercial route belongs to group g;

0, otherwise.

Furthermore, let γe be the total distance for all the commercial routes in the
corresponding route sequence. Table 4.7 summarizes the attributes.

Let dg ∈ Z+ be the number of trams needed for travelling in the commercial
routes of group g at the current time, which is referred as the demand. Let
w1, w2, w3, w4 ∈ Z+ be some user-defined parameters to adjust the weights
on the objective criteria.
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Table 4.7: Summary of the edge attributes

Attribute Notation

Overtime αe Positive number
Meal-break delay βe Positive number
Indicate the group of the first commercial route aeg {0, 1}
Mileage γe Positive number

4.2.2 Formulation

Let ug be the undercover of group g ∈ G, i.e the additional number of trams
need to satisfy the demand of g. For all edges e ∈ E, let

xe =

{
1, if edge e is selected;

0, otherwise.

The problem is formulated as the following integer programming model.

min
∑
e∈E

w1αexe +
∑
e∈E

w2βexe +
∑
g∈G

w3ug −
∑
e∈E

w4γexe, (4.1)

s.t.
∑
e∈E

aegxe + ug ≥ dg, ∀g ∈ G, (4.2)∑
e∈δ+(v)

xe = 1, ∀v ∈M, (4.3)

ug ≥ 0, ∀g ∈ G, (4.4)

xe ∈ {0, 1}, ∀e ∈ E. (4.5)

The objective function is to minimize the total overtime and the total meal-
break delays, and at the same time, maximize the coverage and the total dis-
tance. Constraints (4.2) are used to satisfy the demand for trams travelling
in the routes of each group. Constraints (4.3) ensure that all the motormen
are assigned with a compatible route sequence. Since model (4.1) – (4.5)
corresponds to a transportation problem, we may obtain integer optimal so-
lutions by solving its linear-programming relaxation. Constraints (4.5) are
therefore replaced by

0 ≤ xe ≤ 1, ∀e ∈ E. (4.6)
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4.2.3 Tram Availability Considerations

Essentially, model (4.1) - (4.4), (4.6) revises motorman schedules under the
assumption that there are unlimited number of trams available at each of
the termini, which is rarely the situation in our case. When this schedule is
adhered to in practice, this results in unexpected overtime and meal-break
delays due to unavailability of trams. In this subsection, we introduce tram
availability considerations to the model.

To ensure that there is an available tram when a motorman is ready to
work, we need to keep track of the number of trams after a departure event
(a new route is started with a motorman after meal-break or sign-on) or
an arrival event (a motorman finished a route and started a meal-break or
sign-off). The events are illustrated using a motorman’s schedule as follows.
Events are associated on the edges. An event of an edge is used to represent
the possible change in number of tram at a terminus if the edge is selected.

Let E denote the set of events associated on the edges in E. An event is
indexed according to the terminus and time at which it may occur. Let N l

be the number of events that may occur at terminus l ∈ T . For all l ∈ T and
i ∈ {1, 2, ..., Nl}, let qli ∈ E denote the ith event that may occur at terminus
l, let e(l, i) ∈ E denote the edge that is associated with event qli ∈ E , and let

δli =

{
1, if event qli is an arrival event;

−1, if event qli is a departure event.

Let Tl be number of trams idling at terminus l at the current time. The
following constraints are introduced to guarantee the availability of a tram,
provided that travel times are deterministic.

Tl +
i∑
t=1

δlt xe(l,t) ≥ 0, ∀l ∈ T , i = 1, 2, ..., Nl. (4.7)

Let sli be a decision variable to indicate the number of trams after the ith

event at terminus l. Constraints (4.7) can be rewritten as (4.8) – (4.10).

sl0 = Tl, ∀l ∈ T , (4.8)
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sli−1 + δli xe(l,i) = sli, ∀l ∈ T , i ∈ {1, 2..., Nl}, (4.9)

sli ≥ 0, ∀l ∈ T , i ∈ {0, 1..., Nl}. (4.10)

Essentially, constraints (4.7) (or (4.8) – (4.10)) ensure that there is an avail-
able tram before motormen ready to work. However, in many cases, there
are insufficient trams for motormen to start working immediately after meal-
break or signon. Therefore, idling activities with durations {0 min, 10 min,
..., 60 min} are added at the beginning of the route sequences for motormen
that have just finished a meal-break or just signed-on.

4.2.4 Multiple-Period Demand

Constraints (4.2) are used to meet the demand at the current time. This is
greedy in nature because demands in the future are ignored. We may consider
demands in the subsequent 3 periods that are estimated in real-time. Each
period is set to one hour. Let P denote the set of periods. For all route
group g ∈ G and period p ∈ P , let dgp be the number of trams required for
travelling in group g in period p. Furthermore, for all e ∈ E, g ∈ G and
p ∈ P , let

aegp =

{
1, if selecting edge e would run a route of group g in period p;

0, otherwise.

To consider multiple-period demands, (4.1), (4.2) and (4.4) are replaced by
(4.11) – (4.13) shown below.

min
∑
e∈E

w1αexe +
∑
e∈E

w2βexe +
∑
p∈P

∑
g∈G

w3ugp −
∑
e∈E

w4γexe, (4.11)∑
e∈E

aegpxe + ugp ≥ dgp, ∀g ∈ G, p ∈ P, (4.12)

ugp ≥ 0, ∀g ∈ G, p ∈ P. (4.13)

4.3 Preliminary Results

In this section, we evaluate the efficiency and the effectiveness of the math-
ematical models that are described in Section 4.2 and are summarized in
Table 4.8. We evaluate these methods via simulation with realistic data.
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The simulation and the experimental settings are described in Section 4.3.1.
To compare the performance of the proposed models, the efficiency and the
effectiveness of the models are reported in Section 4.3.2 and 4.3.3 respectively.

Table 4.8: Summary of the methods

Model Formulation Description
1 do not revise the schedule
2 (4.1) – (4.4), (4.6) consider current demand
3 (4.1) – (4.5), (4.8) – (4.10) consider current demand and tram availability
4 (4.3), (4.5), (4.11) – (4.13) consider multiple-period demand
5 (4.3), (4.5), (4.8) – (4.13) consider multiple-period demand and tram availability

4.3.1 A Simulation Model for Evaluation

We developed a discrete-event simulation to evaluate the proposed methods.
The simulation starts with the planned schedule that is currently in use
(determined using a sophisticated software developed by the company). In a
simulation test, we revise the schedules of motormen who are arriving within
a fixed planning horizon using one of the methods shown in Table 4.8, until all
motormen have been signed-off. We briefly describe the major components
of the simulation in the following paragraphs.

Queues

Each relief point is associated with a tram queue and a motorman queue.
If there is insufficient motormen, a tram is idling in a tram queue of the
location. Similarly, motormen are idling in a motorman queue of the location
when there is insufficient trams. Since the timetable is tentative in our case, a
route is started when a tram and a motorman are both available at the same
location. Therefore, the tram queue and the motorman queue should never be
both non-empty at the same location. When there are trams and motormen
both available at the same location, motorman with earlier scheduled start
time of its next route has higher priority to start the next route with an
available tram. In reality, this policy is maintained by some inspectors staying
at the locations.

80



Event List

The simulation maintains a list of pending events. There are four types of
events as described below.

• Motorman Arrival Event: when a motorman become available at a lo-
cation (after a meal-break or when sign-on).

• Tram Arrival Event: when a tram became available at a location.

• Arrival Event: when a route is finished, a motorman and a tram become
available at the destination.

• Scheduling Event: the motorman schedules are revised.

All pending events are organized as a priority queue, sorted by event time.
At each iteration, the event with the earliest event time is processed as follows.

• Motorman Arrival Event: If there is an idling tram in the tram queue,
the motorman should start the next route according to the route se-
quence; Otherwise, wait in the motorman queue. When there is more
than one tram available, select the tram idled for the least time.

• Tram Arrival Event: If there is a motorman idling in the motorman
queue, start the next route with the motorman; Otherwise, wait in the
vehicle queue. When there is more than one motorman idling, the mo-
torman with the earliest scheduled start time of its next route will depart
with the available tram first.

• Arrival Event: The motorman should perform the next task according
to the route sequence.

– Case 1: The motorman starts the next route using the same vehicle.

– Case 2: The motorman starts a meal-break. The tram become
available at the destination terminus, the corresponding tram arrival
event is then started immediately. Besides, a motorman arrival event
is added to the event list where the event time is set to the time at
which the meal-break is finished.

– Case 3: The motorman signoffs. The tram become available at the
destination terminus, the corresponding tram arrival event is then
started immediately.
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• Scheduling Event: The motorman schedules are revised using a method
shown in Table 4.8.

The simulation ends when all the motormen have been signed-off. i.e. the
event list is empty.

Data Collection & Implementation Issues

We use realistic data of a public transit company in Hong Kong for the
simulation tests. All historical data is stored and managed in a database by
the company. We examine the historical data and construct the instances for
simulation. The best identified model in the simulation tests will be adopted
in the actual environment in the company.

User-defined parameters used in the formulations are set according to the
values shown in Table 4.9.

Table 4.9: User-defined parameters for the formulations

Parameter Description Unit Value

w1 Total overtime minutes 1000
w2 Total meal-break delays minutes 10
w3 Undercover trams 1
w4 Mileage 103 KM -1

We conduct the experiments on a computer running Windows Server 2008
with an Intel Xeon CPU E5-2603 v2 (with two 1.8 GHz processors) and 16
GB of main memory. All models and simulations have been implemented
in C++ and compiled using Visual Studio 2013. Mathematical models are
solved using CPLEX 12.5 to optimality. The parameters of CPLEX are set
to emphasis on optimality over feasibility. Furthermore, the network simplex
algorithm of CPLEX is used to solve the linear programming models.

4.3.2 Efficiency

It is desirable that the solutions to the proposed mathematical models can
be obtained quickly, before the data is updated again. In this subsection, we
examine the solution times spent when using the various models.

We examine the performance for each of the models via a simulation of
10 days. The planned schedule is revised every 30 minutes. Table 4.10
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Table 4.10: CPU times

Method Times Revised Mean CPU Time (s) Worst Case CPU Time (s)

1 0 0 0
2 431 61.95 123.43
3 433 214.52 624.78
4 434 62.08 128.42
5 435 203.53 573.58

summarizes the CPU times of the models in the simulation tests. The table
shows the number of times the formulation is solved in the simulation tests,
the mean CPU time, and the worst case CPU time for solving the model
once.

Models 2 and 4 (or methods 3 and 5) have similar CPU times. This
suggests that multiple-period demands can be handled efficiently in the for-
mulations. Models 3 and 5 have larger CPU times than models 2 and 4,
which indicates that the tram availability constraints are relatively difficult
to handle in the formulation. Overall speaking, the models can be solved in
a reasonable time.

4.3.3 Effectiveness

In this subsection, we compare the effectiveness of the models vis the simu-
lation, and justify the benefits of using the decision support system.

We examine the performance for each of the models via a simulation of 10
days. The planned schedule is revised every 30 minutes. Table 4.11 presents
the average daily performance: the total overtime, mealbreak delay, idle time
and early signoff time. Table 4.12 shows the worst-case performance for all
motormen over the 10 days. The quantities shown in Table 4.11 and 4.12 are
measured in minutes. Table 4.13 shows the coverage and mileage.

We compare model 1 with the other models to examine the potential ben-
efits of using the decision support systems. As shown in the results, overtime
and meal-break delays can be dramatically reduced by revising the schedules
dynamically (using either of the mathematical models). Model 1 produces
better coverage than the other methods because the planned schedule is fol-
lowed strictly with additional overtime working hours.

According to the results, when we take into account more considerations
into the formulation, the solution is generally has a better coverage, larger
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Table 4.11: Performance about motorman schedules

Model Overtime Mealbreak Delay Idle Time Early Signoff
1 3999.6 1944.8 3479.5 3225.6
2 388.8 164.8 2888.9 1460.2
3 363.6 181.6 2843.2 1486.4
4 334.4 174.8 2961.9 1259.2
5 355.2 154.9 2877.5 1234.1

Table 4.12: The worst-case for all motormen

Model Overtime Mealbreak Delay Idle Time Early Signoff
1 110 83 179 218
2 27 33 80 109
3 31 27 123 101
4 29 28 83 85
5 34 24 150 94

Table 4.13: Passenger transportation service

Method Coverage (%) Mileage (KM)
1 70.36849 16893.5
2 67.72135 17605.47
3 67.97865 17577.9
4 68.77448 17187.1
5 69.19499 17188.08

mileage, smaller overtime, and smaller mealbeak delay. This leads to higher
service level for passengers and better schedules for the motormen.

4.4 Conclusion

In this chapter, we introduce the dynamic and integrated vehicle and crew
scheduling problem arising in a public transit company in Hong Kong. To
mitigate unexpected delays due to uncertainties in operations, a number of
mathematical models are proposed for revising the schedules in real-time
under a rolling-horizon framework. Furthermore, we developed an event-
based simulation model to evaluate our proposed models with realistic data.
The simulation results suggest that it is worthwhile to consider multiple-
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period demands in the formulation. When time allowed, tram availabilities
should be considered as well for better solutions.

In our future work, we may extend the mathematical models using stochas-
tic programming approaches to fully utilize the historical and real-time data.
Furthermore, it is also interesting to apply robust optimization approaches
for schedules that have service-level guarantee.
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Chapter 5

Summary

This thesis studies three routing and scheduling problems arising in man-
power and transportation planning. These problems are rooted in real ap-
plications and carry interesting characteristics. By exploiting the problem
structures, this thesis provides effective mathematical models and algorithms
for solving the problems practically.

The Shift Rostering Problem

The second chapter of this thesis investigates a shift-rostering problem (SRP)
— the assignment of staff to shifts over a planning horizon such that work
rules are observed. Canonical formulations use decision variables to represent
assignments of shifts to individual staff. Since the formulation size depends on
the number of staff, canonical formulations would be too complex if there are
many staff involved. For column-generation approaches, a subset of feasible
shift-patterns is considered. The decision variables are used to represent the
number of staff assigned to the shifts in the patterns. A resource-constrained
shortest path subproblem is often used to generate feasible shift-patterns
iteratively. However, with many work-rule requirements, having to solve the
difficult subproblems frequently could be time-consuming. The purpose of
the second chapter is to develop a novel exact approach for solving the SRP
with many homogeneous staff.

The proposed approach consists of four steps. First of all, work rules are
written in terms of prohibited meta-sequences and resource constraints. Work
rules such as workload balancing and day-off assignments can be naturally
formulated in this framework. An efficient algorithm is then used to construct
an underlying graph representing all the feasible patterns. By solving a net-
work flow model with side constraints, an optimal flow is obtained. Since
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all the work rules are handled using the underlying graph, the optimal flow
represents many optimal solutions. By disaggregating the optimal flow into
paths and transforming the paths into patterns, a preferred optimal solution
is selected. The proposed approach produces a large number of optimal solu-
tions, which offers flexibility in considering other managerial concerns when
deciding on the roster.

In our future work, we may extend the formulations in which work rules
are handled as soft constraints. Moreover, some staff heterogeneity may be
addressed if staff could be categorised into groups that are subject to different
sets of work rules. We have identified some constraint structures that give a
graph of small size and these structures often appear in work rules that are
commonly found in practice. It is also worthwhile to identify more constraint
structures that yield graphs of small size. Furthermore, it is interesting to
apply the method developed for SRPs to other problems.

The Heterogeneous Vehicle Routing Problem on a Multigraph

The road network underlying a distribution system presents multiple travel
options for the vehicles. For example, a vehicle going from one customer
location to another may consider different paths of travel based on criteria
such as travel time, cost and distance. These alternative routes are typically
not considered in the analysis of vehicle routing problems which are often
studied on a simple graph. A multigraph structure, however, would enable
the operators to build vehicle routes by utilizing the parallel arcs between
each pair of customer locations which can help them address realistic trade-
offs such as transportation costs and delivery time.

In the third chapter of this thesis, we study a time-constrained heteroge-
neous vehicle routing problem on a multigraph. The problem is motivated
by the distribution of beer and malt beverages in China, with some char-
acteristics including the possibility of alternative paths of travel under the
prevalence of road toll charges, fleet heterogeneity, and time-restricted de-
liveries. We provide a mixed-integer linear programming formulation of the
problem and propose a tabu search heuristic for its solution. The tabu search
is designed to address the parallel arc structure on the network, which ne-
cessitates modifications of the basic search operations such as insertion. Our
numerical experiments are set up to capture some practical features of beer
distribution systems in China and show that the tabu search is highly ef-
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fective in obtaining near-optimal solutions quickly. Other findings from the
numerical experiments suggest considerable transportation cost savings at-
tributable to the utilization of alternative route structure and reveal some
insights to aid distributors on their vehicle dispatch policies.

In our future work, we may consider routing problems where arcs are asso-
ciated with multiple attributes. e.g. cost, time, distance, etc. Moreover, it is
worthwhile to compare our tabu search algorithm with other metaheuristics,
e.g. large neighbourhood search and genetic algorithm. Furthermore, we may
develop more dispatch policies and managerial insights in future experimental
tests.

The Real-Time Tram Scheduling Problem

The research described in the fourth chapter is motivated by the operations
of a public transit company in Hong Kong. Most transportation planning
models are deterministic and do not consider uncertainties in operations.
Therefore, disruptions on planned schedules often occur due to unexpected
traffic conditions, bad weather, accidents, etc. Delays due to these uncertain-
ties in operations may accumulate and propagate in the execution, resulting
in poor services and high operational costs. To mitigate these unexpected
delays, controllers are responsible for rescheduling trams and motormen in
real-time to meet the targeted route frequencies, while respecting work rules
for the duties assigned to motormen. With the advance in RFID technolo-
gies and database management systems, nowadays the locations of trams can
be determined instantaneously at a relatively low cost. We investigate how
real-time information can be utilized in combination with historical data to
improve the controllers’ real-time routing and scheduling decisions practically.

A real-time tram scheduling problem is introduced in this thesis with
the following characteristics: 1) The travel times are stochastic and time-
dependent, and its realizations are only revealed during the execution of the
plan. 2) The schedule can be revised when updated information is provided
or when unexpected events occur. 3) Motormen and trams are scheduled si-
multaneously. The objective is to maximize the route frequencies and mileage
in order to provide good service to passengers, and simultaneously minimize
overtime and mealbreak delays for motormen. We developed a number of
mathematical models for revising the motorman and tram schedules dynam-
ically under a rolling-horizon framework. A general event-driven simulation
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model is used to evaluate the efficiency and the effectiveness of the models
with real-world data.

In our future work, we may extend the mathematical models using stochas-
tic programming approaches to fully utilize the historical and real-time data.
Moreover, robust optimization approaches could be applied to obtain sched-
ules that have some service-level guarantee. Furthermore, metaheuristics
could be developed for solving the problem more efficiently.
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