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Abstract—A novel air-to-ground communication paradigm is
conceived, where an unmanned aerial vehicle (UAV)-mounted
base station (BS) equipped with multiple antennas sends in-
formation to multiple ground users (GUs) with the aid of a
simultaneously transmitting and reflecting reconfigurable intel-
ligent surface (STAR-RIS). In contrast to the conventional RIS
whose main function is to reflect incident signals, the STAR-
RIS is capable of both transmitting and reflecting the impinging
signals from either side of the surface, thereby leading to
full-space 360 degree coverage. However, the transmissive and
reflective capabilities of the STAR-RIS require more complex
transmission/reflection coefficient design. Therefore, in this work,
a sum-rate maximization problem is formulated for the joint
optimization of the UAV’s trajectory, the active beamforming at
the UAV, and the passive transmission/reflection beamforming
at the STAR-RIS. This cutting-edge optimization problem is also
subject to the UAV’s flight safety, to the maximum flight duration
constraint, as well as to the GUs’ minimum data rate require-
ments. Given the unknown locations of obstacles prior to the
UAV’s flight, we provide an online decision making framework
employing reinforcement learning (RL) to simultaneously adjust
both the UAV’s trajectory as well as the active and passive
beamformer. To enhance the system’s robustness against the
associated uncertainties caused by limited sampling of the envi-
ronment, a novel “distributionally-robust” RL (DRRL) algorithm
is proposed for offering an adequate worst-case performance
guarantee. Our numerical results unveil that: 1) the STAR-
RIS assisted UAV communications benefit from significant sum-
rate gain over the conventional reflecting-only RIS; and 2) the
proposed DRRL algorithm achieves both more stable and more
robust performance than the state-of-the-art RL algorithms.

Index Terms—Air-to-ground communications, simultaneously
transmitting and reflecting reconfigurable intelligent surface,
joint beamforming design, collision avoidance, distributionally-
robust reinforcement learning.
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I. INTRODUCTION
Thanks to the advantages of agile mobility, flexible deploy-

ment and low cost, the employment of unmanned aerial vehi-
cles (UAVs) as flying communication platforms has attracted
fast-growing interests in the past several years [1]. In contrast
to terrestrial wireless communications, the maneuverability
enables the dynamic adjustment of UAVs’ positions to best
suite the communication environment. Therefore, the UAVs
are expected to bring in promising gains to the next-generation
wireless communications by acting as different types of
communication platforms, such as aerial base stations (BSs),
mobile relays, and aerial users [2], [3]. Particularly, employing
UAVs as aerial BSs is envisioned as a promising solution
to offload traffic from the operational wireless networks as
well as to provide/recover wireless services for temporary
hotspots or emergencies [4]. Compared to terrestrial BSs, the
flexible movement of UAVs in the three-dimensional (3D)
space can be fully exploited to enhance the coverage area and
the communication throughput.

Despite the above merits of the UAVs, one of the challeng-
ing issues for the efficient facilitation of air-to-ground (A2G)
communications is that the A2G links may become blocked,
especially in low-altitude urban airspaces. To overcome this
impediment, reconfigurable intelligent surfaces (RISs) come
to rescue. An RIS is a two-dimensional (2D) surface inlaid
with a large number of low-cost passive elements having
controllable electromagnetic responses via onboard positive-
intrinsic-negative (PIN) diodes [5], [6]. As a benefit of these
programmable characteristics, RISs are capable of intelligently
reconfiguring the wireless propagation environment. The resul-
tant signals can either be added constructively at the desired
receiver for signal enhancement or destructively at the non-
intended receivers for interference mitigation. Therefore, the
quality of A2G communication links can be improved with
concatenated virtual line-of-sight (LoS) links by deploying
RISs in UAV-enabled wireless communication systems and
intelligently configuring their reconfigurable coefficients [7].
Moreover, in contrast to conventional MIMO schemes and
active relays, RISs passively reflect signals and hence they
do not need RF chains, thereby significantly reducing both
the hardware cost and the power consumption [8].

A. Prior Works
1) UAV communications: To fully exploit the high mobility

of UAVs in the mobile-UAVs enabled wireless networks,
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extensive research efforts have been devoted to studying the
trajectory design problems under different UAV communi-
cations scenarios [9]–[14]. By proper trajectory design, the
communication distance between the UAVs and ground nodes
can be shortened and the corresponding A2G data rate can
be significantly improved [15]. Currently, the approaches for
solving the UAV’s trajectory design problem can be cate-
gorized into two classes, namely, conventional optimization
tools [9]–[12] and machine learning [13], [14]. In particu-
lar, Wang et al. [9] proposed an efficient spectrum sharing
methord for an aerial UAV and terrestrial device-to-device
communications by alternately optimizing the transmit power
and UAV’s trajectory. Mu et al. [10] studied the UAV mission
completion time minimization problem by optimizing the
UAV’s trajectory, where the successive convex approximation
was applied to obtain the locally optimal solution. Considering
a practical multiuser multi-input single-output (MISO) UAV
communication scenario with no-fly zones, Xu et al. [11]
proposed the optimal trajectory and beamforming policy by
employing monotonic optimization theory and semidefinite
programming relaxation. Furthermore, Wu et al. [12] inves-
tigated the throughput maximization problem in a multi-UAV
enabled downlink communication system by applying the
block coordinate descent and successive convex optimization
techniques. As machine learning is regarded as one of the most
promising artificial intelligence tools conceived for intelligent
adaptive learning in the face of uncertainties [16], the adoption
of reinforcement learning (RL) for solving trajectory design
problems in UAV communications has also attracted explosive
attention these years. Liu et al. [13] proposed an energy-
efficient multi-UAV control algorithm based on the deep deter-
ministic policy gradient (DDPG) framework for maximizing
the energy efficiency, with the joint consideration of improved
communication coverage, fairness, energy consumption and
connectivity. Cui et al. [14] developed a distributed multi-agent
RL framework, where each UAV acted as a learning agent to
automatically select its communication user, power level and
specific subchannel for maximizing the long-term rewards.

2) RIS-assisted UAV communications: Motivated by the
aforementioned benefits of RISs in UAV-aided wireless net-
works, some related works have been invested in investigating
the performance gain of RISs in various UAV use cases,
where the UAV acted as a base station (BS) [7], [17], [18]
or as a relay node [19], [20]. Li et al. [7] optimized the
joint UAV’s trajectory and RISs passive beamforming design
with the objective of maximizing the average achievable rate.
Given the limited onboard energy of the UAV, Liu et al.
[17] studied the joint UAV’s trajectory, RIS configuration,
and power allocation for minimizing the energy consump-
tion. Furthermore, considering a multi-UAV scenario, Mu
et al. [18] investigated the RIS-enhanced UAV-aided non-
orthogonal multiple access networks, where the UAVs’ deploy-
ment, the RIS configuration, and the specific detection order
of users was jointly optimized. With respect to the UAV relay
scenario, Yang et al. [19] derived the analytical expressions
of the outage probability, average bit error rate, and average
capacity of the RIS-assisted dual-hop UAV communication
systems. Ranjha et al. [20] considered the scenario where the

UAV and RIS delivered short ultra-reliable and low-latency
instruction packets between Internet-of-Things devices on the
ground, and the choice of decoding orders was studied.

B. Motivations and Contributions

Most of the existing literature considered UAV-aided com-
munications relying on conventional reflecting-only RISs,
where the incident signals can only be reflected by one side
of the surface, resulting in 180◦ coverage. As such, both the
source and destination nodes have to be at the same side
of the RIS. However, this geographic constraint makes it
difficult to fully reap the benefits of UAVs and RISs, because
when the UAV flies to the non-reflective side of the RIS, the
corresponding A2G channels cannot benefit from reflection by
the RIS. Alternatively, the flying range of the UAV has to be
restricted. To overcome this impediment, the concept of simul-
taneously transmitting and reflecting RISs (STAR-RISs) [21]–
[23] is a promising solution. For STAR-RISs, the incident
signals can be reflected and transmitted to the half-space at
the same side and opposite side of the source node with
respect to the surface, respectively, thereby facilitating full-
space 360◦ coverage [22]. In [21] and [22], the main hardware
design, physics principles, and communication system design
were studied for revealing the superiority of STAR-RISs
over conventional reflecting-only RISs. Moreover, the primary
prototypes, which resemble STAR-RIS, have already been
implemented based on metasurfaces [24]. In [25] and [26],
the authors studied the beamforming optimization methods
of STAR-RISs in terrestrial communications. Meanwhile, the
study on the performance gain brought by STAR-RISs to UAV
communications is still quite open, which motivates this work.

Against the above backdrop, our main contributions can be
summarized as follows:
• We consider a STAR-RIS assisted UAV communications

system, where the multi-antenna UAV acts as the aerial
BS and transmits signals to multiple GUs located at both
sides of a STAR-RIS. We formulate a sum-rate maximiza-
tion problem by jointly optimizing the UAV’s trajectory,
the active beamforming at the UAV, and the passive
transmission/reflection beamforming at the STAR-RIS,
subject to the constraints on the UAV’s flight safety, the
maximum flight duration, as well as the GUs’ minimum
data rate requirements.

• We formulate the sum-rate maximization problem into
a Markov Decision Process (MDP) based model. Given
the limited sampling of the environment concerning the
unknown locations of obstacles, we introduce an ambigu-
ity set for characterizing the uncertain distribution of the
agent’s policy, which is inspired by the concept of dis-
tributionally robust optimization (DRO). On the basis of
the proposed ambiguity set, we propose a distributionally
robust RL (DRRL) algorithm for solving the formulated
problem, which is computationally tractable.

• Our numerical results unveil that the STAR-RIS at-
tains significant sum-rate gains over the conventional
reflecting/transmitting-only counterparts for UAV com-
munications. Finally, the proposed DRRL algorithm is
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shown to achieve significantly higher learning efficiency
and robustness than the state-of-the-art RL algorithms.

C. Organization and Notation

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the system model of STAR-RIS assisted
UAV communications. In Section III, we formulate the sum-
rate maximization problem for the joint optimization of the
UAV’s trajectory, the active beamforming at the UAV, and
the passive transmission/reflection beamforming at the STAR-
RIS. Then we formulate the problem in the context of an
MDP framework. In Section IV, a novel DRRL algorithm
is proposed for solving the sum-rate maximization problem
formulated in the face of uncertainties. Numerical results
are presented in Section V for characterizing the proposed
algorithms compared to the relevant benchmarks. Finally, our
conclusions are offered in Section VI.

Notation: Scalars, vectors and matrices are denoted by italic
letters, bold-face lower-case, and bold-face upper-case, respec-
tively. CN×1 denotes the set of N×1 complex-valued vectors.
For a complex-valued vector a, ‖a‖ denotes its Euclidean
norm, diag(a) denotes a diagonal matrix with the elements of
vector a on the main diagonal, and aH denotes its conjugate
transpose. ∆X denotes the set of probability distributions over
a finite set X . 〈a,b〉 denotes the Frobenius inner product of
vectors a and b.

II. SYSTEM MODEL

In this section, we first introduce the STAR-RIS assisted
UAV communications system where a multi-antenna UAV
serves multiple single-antenna GUs via the STAR-RIS, such
that the A2G signal propagation can be reconfigured in the
full space. The signal model of the A2G transmission is then
constructed.

A. Scenario Description

Consider an A2G communication system, where a UAV
equipped with K antennas acting as the BS provides wireless
service to a total number of J (K ≥ J) single-antenna GUs
denoted by J = {1, ..., J}, as shown in Fig. 1. Due to the
complex environment involving potential obstacles, the direct
links between the UAV and GUs may not be sufficiently stable
or may even be blocked. To alleviate this issue, we propose to
deploy a STAR-RIS composed of N sub-wavelength elements,
denoted by N = {1, ..., N}, upon highrise masts/buildings to
provide high-quality transmission/reflection based 360◦ A2G
links. Let T denote the flight duration of the UAV. For
tractability, T is divided into L equal non-overlapped time
slots, i.e. T = Lδt. The UAV flies at a fixed altitude zu
with constant speed V and changes its heading angle at each
time slot to control its flying trajectory. The trajectory of the
UAV can then be denoted by q[l] = (x[l], y[l], zu) , l ∈ L =
{1, ..., L}. In practice, the UAV’s trajectory has to satisfy the
constraints on the initial and final locations [27], [28], which
are mathematically expressed as:

q[1] = qi,q[L] = qf , (1)
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(a) UAV at one side of the STAR-RIS.
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(b) UAV at the other side of the STAR-RIS.

Fig. 1: Illustration of STAR-RIS assisted full-space UAV communi-
cations.

where qi and qf denote the UAV’s initial and final locations,
respectively.

Considering the dynamic urban environment where unex-
pected obstacles 1 constituted by the urban paraphernalia in
low altitude airspace may threaten the UAV’s flying safety,
we have to use collision avoidance mechanisms to enable safe
flight operation. The UAV has to detect its surroundings (i.e.
locations of obstacles) via onboard sensors. We assume that the
onboard sensors have the sensing range of Rs, which means
that the UAV has no information about the obstacles unless
they fall within the detection range. Assume that the minimum
separation distance between the UAV and obstacles is dmin,
which satisfies dmin < Rs. An exclusion zone is defined around
the obstacle with radius dmin, and the UAV is not allowed to fly
over this zone to keep a safe distance from there. Denote any
obstacle that may appear during the UAV’s flight as oi ∈ O,
where O represents the set of obstacles. To guarantee flight
safety, the following constraints have to be satisfied:

‖q[l]− qoi‖ ≥ dmin,∀oi ∈ O, (2)

where qoi represents the location of an unexpected obstacle
oi.

1Here unexpected obstacles denote obstacles that are not captured in the
geography map, like other UAVs and helikite. For simplicity, we assume the
obstacles are static in this treatise. Collision avoidance with moving obstacles
will be considered in our future work.
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By supporting surface magnetic currents, both the am-
plitudes and phase shifts of the transmitted and reflected
signals of each STAR-RIS element can be adjusted inde-
pendently [22]. When a signal impinges from either side of
the STAR-RIS, part of the signal is reflected and transmitted
to the same side and opposite side of the impinging signal,
respectively [23]. To be more specific, as shown in Fig. 1,
when the UAV is located in the x > 0 region, then the region
x > 0 is the reflection space, while the region x < 0 is the
transmission space. When the UAV moves to the x < 0 region,
the two spaces are swapped accordingly.

Remark 1. Due to the high mobility of the UAV, the con-
ventional reflecting-only RIS with opaque substrate cannot
guarantee coverage in case the UAV moves to the opposite
side of the reflecting surface. With the advent of STAR-RIS,
fortunately, the full-space 360◦ A2G propagation environment
can be reshaped into a desired form thanks to the omni-
surface, which leads to a more flexible UAV trajectory design.

Since the UAV-RIS-GU cascaded links suffer from substan-
tial path loss, a large number of STAR-RIS elements are re-
quired for achieving favorable reflected/transmitted communi-
cations. However, the massive number of STAR-RIS elements
result in excessive channel state information (CSI) acquisi-
tion and transmission/reflection coefficients design complexity
[29]. To solve this problem, as in [30], [31], the N STAR-RIS
elements are partitioned into M sub-surfaces, denoted by the
set M = {1, ...,M}, each consisting of N = N/M (assumed
to be an integer) adjacent elements that share the same
transmission/reflection coefficients for reducing the implemen-
tation complexity. We denote the transmission and reflection
coefficients of the m-th sub-surface at the l-th time slot by
θrm [l] = βrm [l] ejφ

r
m[l], and θtm [l] = βtm [l] ejφ

t
m[l], respec-

tively, where βrm[l], βtm[l] ∈ [0, 1] and φrm[l], φtm[l] ∈ [0, 2π)
denote the transmission and reflection amplitude and phase
shift response of the m-th sub-surface, respectively. Then, the
diagonal transmission and reflection coefficient matrix of the
STAR-RIS can be denoted by Θr[l] = diag

(
θθθr[l]⊗ 1N×1

)
∈

CN×N , where θθθr[l] = [θr1[l], ..., θrm[l], ..., θrM [l]]
T , and

Θt[l] = diag
(
θθθt[l]⊗ 1N×1

)
∈ CN×N , where θθθt[l] =

[θt1[l], ..., θtm[l], ..., θtM [l]]
T , respectively. We assume that the

phase-shift coefficients for transmission and reflection can be
independently adjusted2 and are “b-bit controllable”, where
2b possible phase shifts can be defined. For simplicity,
the discrete phase-shift values are obtained by uniformly
quantizing the interval [0, 2π). In other words, the follow-
ing constraint should be satisfied: φκm[l] = ψπ

2b−1 , ψ ∈{
0, 1, ..., 2b − 1

}
,∀m ∈ M, l ∈ L, where κ ∈ {r, t}.

Complying with the energy conservation law, the sum of the
energies of the reflected and transmitted signals should be no
higher than the impinging signal. In this work, we assume
that no energy is dissipated by STAR-RIS for simplicity,

2Note that the independent phase-shift model is practically relevant for the
semi-passive STAR-RIS, while the coupled phase-shift model is appropriate
for the purely passive STAR-RIS [32]. However, the investigation of the
coupled phase-shift model is beyond the scope of this work. The results
obtained in this work provide an upper bound to the purely passive STAR-RIS
associated with the coupled phase-shift model.

i.e., (βrm [l])
2

+ (βtm [l])
2

= 1,∀m ∈ M, l ∈ L. Note that
each STAR-RIS sub-surface can operate in full reflection, full
transmission and hybrid mode by appropriately adjusting the
energy splitting ratio. Therefore, the conventinal reflecting-
only RIS can be regarded as a special case of the STAR-RIS
by setting all STAR-RIS elements to the full reflection mode.

B. Signal Model

The locations of the UAV and each GU determine whether
the GU receives the reflected signal or the transmitted signal
from the STAR-RIS. At each time slot l, we denote the set
of GUs located in the transmission and reflection space as
Jr[l] and Jt[l], respectively, where |Jr[l]| + |Jt[l]| = J .
Let G[l] ∈ CK×J , HU,R[l] ∈ CM×K , hHR,j ∈ C1×M ,
hHU,j [l] ∈ C1×K represent the beamforming matrix at the
UAV, channel matrix of the links from the UAV to STAR-
RIS, channel matrix of the links from the STAR-RIS to GU j,
and channel matrix from the UAV to GU j, respectively. Note
that HU,R[l] and hHR,j are modelled by Rician fading channels
given the existence of the LoS component, while hHU,j [l] is
modelled by a Rayleigh fading channel due to the blocked
LoS link and potential extensive scattering. We assume that
perfect CSI3 can be obtained by employing similar techniques
to those proposed in [33], [34]. Then, the received signal at
user j ∈ Jκ[l], κ ∈ {r, t} at time slot l is given by

yκj [l] = vκj [l]gj [l]xj [l] +

J∑
j′ 6=j

vκj [l]gj′ [l]xj′ [l] + nj ,∀l ∈ L,

(3)

where we have vκj [l] = hHR,jΘ
κ[l]HU,R[l] + hHU,j [l], which is

the concatenated channel from the UAV to GU j, gj [l] is the
j-th column of G[l], xj [l] is the signal transmitted from the
UAV to GU j with E

[
|xj [l]|2

]
= 1, and nj ∼ CN (0, σ2

j ) is
the additive white Gaussian noise (AWGN). Accordingly, the
achievable communication rate at GU j ∈ Jκ[l] at time slot l
is expressed as

Rκj [l] = log2

(
1 +

∣∣vκj [l]gj [l]
∣∣2∑J

j′ 6=j
∣∣vκj [l]gj′ [l]

∣∣2 + σ2
j

)
,∀l ∈ L.

(4)
Therefore, the sum-rate of GUs over L time slots is given by
Rsum =

∑L
l=1

∑J
j=1R

κ
j [l].

III. PROBLEM FORMULATION AND MARKOV DECISION
PROCESS MODEL

In this section, we formulate a sum-rate maximization
problem for the joint optimization of the UAV’s trajectory,
the active beamforming at the UAV, and the passive transmis-
sion/reflection beamforming at the STAR-RIS, and then model
the formulated problem by an MDP framework.

3Existing channel estimation methods proposed for the conventional
reflecting-only counterparts can be applied to the STAR-RIS scenario. Due to
space limitations, the detailed discussion is left for our future work.



5

A. Problem Formulation

As shown in (4), the achievable rate of a GU at each
time slot l is determined by the location of the UAV, the
active beamforming at the UAV, and the passive transmis-
sion/reflection beamforming at the STAR-RIS. To investigate
the effect of STAR-RIS on UAV communications with re-
spect to reflected and transmitted signals, our objective is to
maximize the sum-rate over the UAV’s flight time by jointly
optimizing the UAV’s trajectory q, the UAV beamformer
weights G, and the STAR-RIS beamformer weights Θκ. In
particular, the optimization problem can be formulated as

max
q,G,Θκ

Rsum, (5a)

s.t. T ≤ Tmax, (5b)

Rκj [l] ≥ Rmin
j ,∀j ∈ J , (5c)

Tr
(
GH [l]G[l]

)
≤ Pmax

t ,∀l ∈ L, (5d)

φκm[l] =
ψπ

2b−1
, ψ ∈

{
0, 1, ..., 2b − 1

}
,∀m ∈M, l ∈ L, (5e)

βκm[l] ∈ [0, 1] , (βrm[l])
2

+
(
βtm[l]

)2
= 1,∀m ∈M, l ∈ L,

(5f)
(1), (2). (5g)

(5b) is the maximum flight duration constraint, which is
limited by the UAV’s initial onboard energy as well as by
the propulsion power consumption, (5c) is the minimum data
rate constraint of GUs, (5d) ensures that the UAV’s transmit
power should not exceed the maximal power constraint, (5e)
and (5f) are the feasible ranges of STAR-RIS phase shift and
amplitude coefficients, respectively.

Problem (5) is challenging to solve due to the following
reasons. On the one hand, the airspace has unexpected ob-
stacles. Every time the UAV detects an obstacle, the optimal
trajectory has to be recalculated. Since the UAV’s trajectory
as well as the active and passive beamforming are highly
coupled, the last two items should be jointly optimized from
scratch as well, which is time-consuming and inefficient. On
the other hand, under uncertain environments, accurate online
decisions are highly dependent on the exhaustive sampling of
the environment during offline training. However, due to the
limited affordable sampling in practice, how to guarantee the
worst-case performance and safe online deployment is another
challenging problem. To tackle the above issues, we introduce
a DRRL approach, where an ambiguity set is constructed en-
dogenously to capture the learning uncertainty by integrating
the partial distribution information on the statistical properties
of the parameters in the decision models, to provide resilient
decisions in an uncertain environment.

Remark 2. In contrast to the conventional reflecting-only
RIS assisted UAV communication [7], [17], [18], the in-
troduction of STAR-RISs enables the 360◦ coverage, but it
also imposes new challenges. On the one hand, there are
two types of passive beamforming, namely transmission and
reflection beamforming, to be optimized for STAR-RISs, which
are generally coupled with each other due to the energy
conservation law. On the other hand, as shown in Fig. 1,

the transmission and reflection spaces of the STAR-RIS are
determined by the location of the UAV, which is dynamically
varied during the flight. In other words, the joint UAV tra-
jectory and passive beamforming design problems using the
conventional reflecting-only RIS [7], [17] can be regarded as
special cases of the STAR-RIS assisted UAV communication,
where the transmission function is turned off. Therefore, the
formulated problem in (5) is more challenging and the existing
algorithms proposed for the conventional reflecting-only RIS
assisted UAV communication cannot be applied to solve (5).

B. MDP Model

Before diving into the DRRL algorithm design, we first
model the formulated problem by an MDP framework. Prob-
lem (5) can be designed as a sequential decision making
process, where decisions at a specific time slot are based on
the current situation. We define a five-tuple 〈S,A,P,R, γ〉
for modelling the MDP, where S is the set of environment
states, A is the set of actions available to the agent, P is the
state transition probability matrix, R is a real-valued reward
function for the agent taking an action based on the present
state, and γ is the discount factor. The agent takes action a ∈ A
in state s ∈ S at each time slot l with the aid of its policy.
Especially, a policy π is a distribution over the actions given
the states, which is formulated as π(a|s) = P[Al = a | Sl = s],
π(a|s) ∈ [0, 1]. After taking action a, the agent will move
to the next state s′ and receive the reward R. The agent’s
objective is to find the optimal policy π for maximizing the
state-value function. The state-value function is defined as
the expected accumulated discounted reward, for which the
Bellman expectation equation can be expressed as

vπ(s) =
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S
Pass′vπ(s′)

)
, (6)

where the discount factor γ ∈ [0, 1] indicates the present
value of future rewards. A γ value close to 0 leads to
“myopic” evaluation, while a γ value close to 1 leads
to “far-sighted” evaluation. Furthermore, Ras is the reward
function with Ras = E [Rt+1 | St = s,At = a], and Pass′
is the state transition probability matrix with Pass′ =
P [Sl+1 = s′ | Sl = s,Al = a]. In the MDP formulated, we
assume that a central controller acting as the agent explores
the unknown environment. The state, action, reward and state
transition for the formulated MDP are defined in the following.

1) State: The environment state at time slot l is denoted
as Sl = {q[l],D[l], Rsum[l − 1], T−[l]}, which is composed of
four parts:

• q[l] is the location of the UAV at time slot l;
• D[l] = {du,oi [l],∀oi ∈ O} is the set of distances from the

UAV to the center of obstacles that are within detection
range at time slot l;

• Rsum[l−1] =
∑l−1
l′=1

∑J
j=1R

κ
j [l′] is the sum-rate of GUs

from time slot 1 to l − 1;
• T−[l] is the difference between the residual and minimum

time required to reach the final destination at time slot l.
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2) Action: The action space of the formulated MDP in-
cludes the UAV’s manoeuver direction, UAV beamformer, and
RIS configuration decisions at each time slot. Given the above
action space, finding the optimal policy that governs the UAV’s
trajectory, UAV beamformer, and RIS configuration is a non-
trivial challenge for the following reasons. Firstly, considering
that only a limited number of discrete transmission/reflection
phase shifts can be provided by each STAR-RIS element in
practice, the action space of the proposed MDP model is a
hybrid of discrete and continuous spaces. Secondly, the high-
dimensional action space and the environment uncertainties
make the MDP quite a challenge to solve due to the unknown
transition probabilities and the curse of dimensionality [35].
To tackle the above two challenging issues, we first discretize
the UAV’s maneuver directions and the reflection amplitude
coefficient of each STAR-RIS sub-surface to H and I levels,
respectively, thereby transforming the action space into a
discrete set. Furthermore, to maintain a small size of the action
space, we bring forward the solution of low-complexity UAV
beamformer matrix calculation for the given UAV’s location
and STAR-RIS configuration, which is detailed as follows.

Since the UAV beamforming weights over different time
slots are independent, for ease of explanation, the time slot l
is omitted for the UAV’s beamformer weights calculation. At
a specific time slot, given the UAV’s location and STAR-RIS
configuration, the UAV’s beamforming subproblem is given
by

max
G

Rsum, (7a)

s.t. Rκj ≥ Rmin
j ,∀j ∈ J , (7b)

Tr
(
GHG

)
≤ Pmax

t ,∀l ∈ L. (7c)

Proposition 1. For the typical digital beamforming problem
of (7), zero-forcing (ZF)4 precoding is proposed which is
capable of eliminating the multi-user interference and obtain
a near-optimal solution at a low complexity [36], [37]. We
rewrite (3) in vectorial form as y = VGx + n, where we
have y = [yκ1 , ..., y

κ
J ]
T , x = [x1, ..., xJ ]

T , V is a J × K
matrix with the j-th row being vκj defined in Section II.B, and
n = [n1, ..., nJ ]T is the noise vector. The ZF beamformer is
given by

G = VH
(
VVH

)−1
P

1
2 = ṼP

1
2 , (8)

where Ṽ = VH
(
VVH

)−1
, and P is a diagonal matrix with

the j-th diagonal element being pj . The expression of pj is
given by

pj =
1

νj
max

{
1

µ
− νjσ2, νjp

min
j

}
, (9)

where νj is the j-th diagonal element of ṼHṼ, µ is a
normalization factor which is selected for ensuring that∑
1≤j≤J

max{ 1
µ −νjσ

2, νjp
min
j } = Pmax

t , and pmin
j = σ2(2R

min
j −

1) is the minimum received power constraint of GU j.

Proof. See Appendix A.
4Here we consider ZF as a feasible solution as it is suitable for large-scale

antennas thanks to the low-complexity. Other precoding methods can also be
utilized and do not affect the insights obtained in this article.

According to (8) and (9), the optimal UAV beamforming
matrix can be obtained for a given UAV’s location and STAR-
RIS configuration. Therefore, for the proposed MDP model,
we only have to include the UAV’s trajectory and STAR-
RIS configuration decisions into the action space and derive
the optimal UAV beamformer using (8) and (9) for state-
value calculation. Specifically, the action space contains the
following four parts:
• The maneuver direction of the UAV, i.e. f [l] ∈
{f1, ..., fh, ..., fH};

• The reflection phase shift coefficient of each sub-surface,
i.e. φrm[l];

• The transmission phase shift coefficient of each sub-
surface, i.e. φtm[l];

• The reflection amplitude coefficient of each sub-surface,
i.e. βrm[l] ∈ {β1, ..., βi, ..., βI}.

3) Reward: As shown in (5), the objective of the UAV’s
trajectory and joint beamforming design is to maximize the
sum-rate over the time span T . Since the reward that guides
the learning should be consistent with the objective, we simply
include the instantaneous sum-rate of all the GUs at each
time slot, namely R[l] =

∑J
j=1R

κ
j [l], in the reward. In

response to the safe flight constraint, we set a penalty of
K1 if the distance between the UAV and any obstacle is less
than the minimum separation distance. For the maximum flight
duration constraint, a penalty of K2 is given if T−[l] drops
to 0 before arriving at the final destination. When the UAV
reaches the final destination ahead of the maximum allowed
time, we will grant the UAV an additional reward of K3.
Furthermore, to incorporate some prior knowledge into the
reward, we include the dynamics of T−[l] with a weight of
K4 in the reward. As such, the reward function is then defined
as

Rl =


R[l]−K1, if ‖q[l]− qoi‖ < dmin,∃oi ∈ O,
R[l]−K2, if T−[l] < 0,
R[l] +K3, if q[l] = qf , T

−[l] ≥ 0,
R[l] +K4 (T−[l]− T−[l − 1]) , otherwise.

(10)
Note that parameters K1, K2, K3 and K4 should be care-

fully tuned for improving both the convergence rate and the
expected accumulated reward.

4) State Transition: The UAV’s location q[l] and distance
D[l] to obstacles are updated based on its maneuver direction
at each time slot. The dynamics of Rsum[l] can be expressed
as

Rsum[l] = Rsum[l − 1] +

J∑
j=1

Rκj [l], (11)

where Rκj [l] can be obtained with actions at time slot l based
on (4).

The difference T−[l] between the residual and the minimum
time required to reach to final destination is updated based on
the UAV’s movement. In particular, if the UAV moves towards
the destination at time slot l, T−[l] remains the same as T−[l−
1]; otherwise, T−[l] is decreased. Specifically, the update of
T−[l] is given by

T−[l] =

{
T−[l − 1], if du,f [l] ≤ du,f [l − 1],
T−[l − 1]− 2δt, otherwise, (12)
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where du,f [l] = ‖q[l]− qf‖ denotes the distance between
the UAV and final destination at time slot l.

The terminal state of the MDP formulated includes three
different types:
• The distance between the UAV and any obstacle

is less than the minimum separation distance, i.e.
‖q[l]− qoi‖ < dmin,∃oi ∈ O;

• The difference between the UAV’s residual and minimum
time required to reach the final destination is negative, i.e.
T−[l] < 0;

• The UAV reaches the final destination before the maxi-
mum flight duration, i.e. q[l] = qf , T

−[l] ≥ 0.
Due to the unexpected obstacles in the proposed MDP model,
it is challenging to determine the perfect state-value infor-
mation. Therefore, decision-makers have to select the best
policy based on partial information of the random events. In
order to enhance the system’s operational resilience under an
uncertain environment, in the next section, we introduce the
DRRL algorithm for efficiently capturing the uncertainty and
optimizing the worst-case performance. Note that the locations
of obstacles are randomly generated by the simulator.

IV. SUM-RATE MAXIMIZATION ALGORITHM DESIGN

In this section, we will first introduce a sample-efficient
soft actor-critic (SAC) framework, and then develop a
distributionally-robust SAC (DRSAC) algorithm to solve the
UAV’s trajectory and joint beamforming design problem for-
mulated. Its convergence and optimality are also analyzed.

A. SAC Framework

The much awaited application of RL frameworks has re-
mained slow in practice primarily due to the relatively poor
sampling efficiency and brittle convergence [38]. To overcome
this issue, the SAC framework [39] based on the maximum
entropy philosophy was proposed to realize sample-efficient
training. Compared to state-of-the-art RL algorithms, SAC
was proved to have additional merits, including more efficient
exploration, multi-mode near-optimal policies, and improved
learning speed, especially for complex tasks [40], [41]. The
objective of the conventional RL framework is to maximize the
long-term return starting from the initial state. Let τπ denote
the state-action trajectory distribution following the policy π.
The objective is denoted by

max
π

L∑
l=1

E(Sl,Al)∼τπγ
l−1RAlSl . (13)

In the maximum entropy framework, an entropy term is
included in the objective for encouraging exploration. Specif-
ically, the objective is expressed as follows:

max
π

F (π), (14)

where

F (π) =

L∑
l=1

E(Sl,Al)∼τπ

[
γl−1RAlSl + αH (π (Al|Sl))

]

=

L∑
l=1

E(Sl,Al)∼τπ

[
γl−1RAlSl − α log (π (Al|Sl))

]
.

(15)

The new objective function takes into account the entropy of
policy distribution, i.e. αH (π (·|Sl)). Here, the temperature
parameter α denotes the weight of the entropy, and thus
characterizes how random the optimal policy π∗ is. Note that
(15) is the same as (13) when α is set to 0. The optimal setting
of the temperature α is closely related to different tasks as well
as to the reward magnitude during training. In order to generate
a flexible tuning of the entropy weight, the objective function
(15) can be transformed by treating the average entropy as a
constraint, which can be formulated as follows [40]:

max
π

L∑
l=1

E(Sl,Al)∼τπ

[
γl−1RAlSl

]
, (16a)

s.t. E(Sl,Al)∼τπ [− log (π(Al|Sl))] ≥ Hmin,∀l, (16b)

where Hmin is the minimum-entropy constraint at each
time slot. By exploiting the recursive expression of
E(Sl,Al)∼τπ

[
γl−1RAlSl

]
and the strong duality property, the

optimal dual variable α∗m at each time slot is given by

α∗m = arg min
αl

EAl∼π∗l [−αl log (π∗l (Al|Sl;αl))− αlHmin],

(17)
where π∗l (Al|Sl;αl) denotes the optimal policy corresponding
to the temperature αl. The dual gradient descent [42] is a
promising solution for problem (17), where the objective is
defined as

L(α) = EAl∼πl [−α log (πl (Al|Sl))− αHmin]. (18)

One can observe that the optimal temperature depends on the
optimal policy at each time slot. Meanwhile, the optimal policy
is also influenced by the temperature setting, which means
that the policy and temperature update should be carried out
iteratively.

The basic structure of SAC is based on the policy iteration
algorithm, which consists of the policy evaluation and policy
improvement phases. For policy evaluation, the goal is to
evaluate the action values (i.e. Q-values) for a given policy
π based on the Bellman expectation equation. The Bellman
expectation equation can be expressed as Qπ(s, a) = Ras +
γ
∑
s′∈S Pass′vπ(s′). In contrast to the conventional state-value

function, by taking the entropy into consideration, the soft
state-value function of the maximum entropy framework is
given by

vπ (s) = Ea∼π [Qπ(s, a)− α log (π(a|s))] . (19)

Proposition 2. As the state space of the proposed MDP model
is continuous, neural networks can be applied for the practical
approximation of the state values. With assuming that the Q-
network parameter is denoted by ω, the loss function of the
Q-network is given by

LQ (ω) = E(Sl,Al)∼D

[
1

2

(
Qω(Sl, Al)− Q̂(Sl, Al)

)2
]
,

(20)
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where

Q̂(Sl, Al) = RAlSl + γ
∑

Al+1∈A
π (Al+1|Sl+1) [Qω̂ (Sl+1, Al+1)

−α log (π (Al+1|Sl+1))] .
(21)

Here, D is the replay buffer storing the transitions(
Sl, Al,RAlSl , Sl+1

)
obeying the previous policies, while ω̂ is

a parameter of the target Q-network and duplicated from ω
periodically. The terms RAlSl and Sl+1 in (21) are fetched from
the replay buffer with given Sl and Al.

Proof. See Appendix B.

The aim of the policy improvement phase is to improve
the policy w.r.t. up-to-date Q-values obtained in the policy
evaluation phase. For discrete action settings, following the
Boltzmann policy, the improved policy is given by [40]

πnew =
exp

(
1
αQπold (Sl, ·)

)∑
a

[
exp

(
1
αQπold (Sl, ·)

)] . (22)

Proposition 3. Aiming for the policy improvement principle
given in (22), the loss function for the policy network is given
by

Lπ (ϑ) =

ESl∈D
∑
Al∈A

πϑ(Al|Sl)
(
α log (πϑ(Al|Sl))−Qω (Sl, Al)

)
.

(23)

Proof. See Appendix C.

Given the loss functions of the critic (i.e. Q) and actor (i.e.
policy) networks, the weights ω and ϑ can be updated with
the aid of their stochastic gradients. The pseudocode of SAC
is shown in Algorithm 1. In lines 6-10, the agent interacts
with the environment following the current policy to collect
experience. In lines 11-17, the neural networks, i.e. the critic
and actor networks, are updated by the stochastic gradients
based on the previously collected experience.

Remark 3. SAC follows the typical policy iteration frame-
work, while the main difference between SAC and conventional
RL just lies in the entropy term considered in the loss functions
of the critic and actor networks. Therefore, the convergence
and optimality of SAC can be analyzed similarly to that
of the policy iteration. It has been proved in [35] that the
policy iteration is capable of converging to the optimal policy
according to the contraction mapping theorem. Therefore, the
convergence and optimality of the proposed SAC algorithm
can be guaranteed.

B. DRSAC Algorithm Design

Although the SAC algorithm improves the learning effi-
ciency by harvesting the maximum entropy framework, the
catastrophic policy outcome may be obtained with inaccurate
calculation of the state values. This is because the limited
sampling of the environment exhibiting uncertainties will lead
to estimation errors for the policy evaluation, which is also
one of the main concerns for the application of RL in the real

Algorithm 1 Sum-Rate Maximization Algorithm Based on
SAC
1: Initialize environment;
2: Initialize ωi(i = 1, 2) for critic networks, ϑ for actor network;
3: Initialize target networks ω̂i ← ωi, i = 1, 2;
4: Initialize entropy levelHmin, replay bufferD = ∅, step length for gradient

descent of the critic network, actor network and temperature parameter,
i.e. λQ, λπ , and λα, respectively;

5: for each iteration do
6: for each environment step do
7: Execute action based on current policy Al ∼ πϑ;
8: Observe reward RAlSl and next state Sl+1;

9: Store transition (Sl, Al,R
Al
Sl
, Sl+1) in D;

10: end for
11: for each gradient step do
12: Sample a random minibatch of transitions (Sl, Al,R

Al
Sl
, Sl+1)

from D;
13: Update critic networks by minimizing loss function LQ (ω) with

stochastic gradients: ωi ← ωi − λQÔωiLQ (ωi) , ∀i ∈ {1, 2};
14: Update the actor network by minimizing loss function Lπ (ϑ): ϑ←

ϑ− λπÔϑLπ(ϑ);
15: Update temperature parameter by minimizing L(α): α ← α −

λαÔαL(α);
16: Update target network parameters periodically: ω̂i ← ωi, ∀i ∈

{1, 2};
17: end for
18: end for

world. To enhance the worst-case performance and guarantee
safe online implementation in the face of estimation errors,
the DRRL algorithm can be a potential approach to enhance
the robustness of the system by endogenously constructing the
ambiguity set to capture the uncertainties [43].

Recall that the policy iteration algorithm is an iterative
process that alternates between the policy evaluation and
policy improvement. Therefore, the policy iteration process
can be formulated as:

πk+1 ← G(vk+1), vk+1 ← T πk+1vk, (24)

where πk and vk denote the updated policy and state-
value function at the k-th iteration, respectively. Further-
more, T πk+1 represents the Bellman operator applied for
policy evaluation, which can be expressed as T πv(s) =
Ea∼π(·|s)

[
Ras + γEs′∼p(s′|s,a)v(s′)

]
. G(vk) is the greedy pol-

icy improvement approach, which is given by G(v) =
arg maxπ T πv.

Due to the randomness of obstacles in the MDP model
considered, limited sampling of the environment can lead to
inaccurate estimation of state values in the policy evaluation
step, and thus may result in undesired outcomes. Assume that
the state-value estimation error in the k-th iteration is denoted
by e ∈ RS . Since the policy improvement phase follows
πk+1 ← G(vk), the estimation error e will be reflected in
the policy πk+1. Let ẽ ∈ RS denote the error sequence for
the policy. The objective of a conventional RL framework is
given by

max
π

L∑
l=1

E(Sl,Al)∼τπγ
l−1RAlSl = max

π
G(π). (25)

Taking the policy error ẽ into consideration, the new robust
objective function (OF) is defined as

max
π

min
ẽ
G (πẽ) . (26)
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To quantize the error associated with a specific policy, we
apply the Kullback-Leibler (KL) divergence [43] to measure
the differences between a pair of probability distributions over
the actions in each state. More specifically, given a policy π
and an error sequence ẽ ∈ RS , the set of policies within the
error range is formulated as

Uẽ (π) =
{
π′ ∈ ∆SA|DKL (π′(·|s) ‖π(·|s) ) ≤ ẽ(s),∀s ∈ S

}
,

(27)
where ∆SA denotes the set of probability distributions over a
finite set A for all s ∈ S. Then, the OF in (26) can be rewritten
as

max
π

min
πẽ∈Uẽ(π)

G (πẽ) = max
π

min
πẽ∈Uẽ(π)

E(Sl,Al)∼τπẽγ
l−1RAlSl .

(28)

One can observe that (28) follows the typical DRO format
[44], [45]. Due to the difficulty of acquiring perfect informa-
tion in real world, decision-makers need to find the robust
solution with partially known distribution information. DRO
theory has been proven to be able to optimize the worst-case
expectation cost by constructing an ambiguity set to capture
the environment uncertainty distribution [44]. Compared to
traditional stochastic programming and robust optimization,
DRO has the advantages including non-biased estimation,
statistical decision, and low-cost [45]. To solve the DRO
problem under a RL framework, we have to refer again to
the policy iteration process given in (24).

Definition 1. The adversarial Bellman operator T π∗ẽ is de-
fined as

T π
∗
ẽ v(s) = min

π̃∈Uẽ(π)
T π̃v(s). (29)

Applying T π∗ẽ for the associated policy evaluation can
provide the lower bound of state values, and thus prevent
overly optimistic estimates. Therefore, the policy evaluation
associated with T π∗ẽ can be termed as distributionally robust
policy evaluation.

Proposition 4. The policy π∗ẽ for distributionally robust policy
evaluation is given by

π∗ẽ ∝ exp

(
−Qv (s, a)

λ∗(s)

)
π(a|s), (30)

where

λ∗(s) = arg min
λ(s)>0

(
λ(s)Ω∗

(
−Qv(s, ·)

λ(s)

)
+ λ(s)ẽ(s)

)
.

(31)

Proof. To derive the adversarial Bellman operator, we first
apply Lagrangian duality to (27) and (29), and then the
problem can be rewritten as (32), where λ(s) is the Lagrange
multiplier. The inner maximization problem can be expressed
as

max
π̃∈∆SA

(
−T π̃v(s)− λ(s)DKL (π̃(·|s) ‖π(·|s) )

)
= max
π̃∈∆SA

λ(s)

(
− 1

λ(s)
T π̃v(s)−DKL (π̃(·|s) ‖π(·|s) )

)
= max
π̃∈∆SA

λ(s)

(〈
−Qv(s, ·)

λ(s)
, π̃(·|s)

〉
−DKL (π̃(·|s) ‖π(·|s) )

)

= λ(s)Ω∗
(
−Qv(s, ·)

λ(s)

)
, (33)

where Ω∗
(
−Qv(s,·)

λ(s)

)
is the Fenchel duality [42] of

Ω(π̃(·|s)) = DKL [π̃(·|s)‖π(·|s)], which is expressed as

Ω∗
(
−Qv(s, ·)

λ(s)

)
= logEa∈π̃ exp

(
−Qv(s, a)

λ(s)

)
, (34)

The solution of the problem in (33) is given by

π∗ẽ ∝ exp

(
−Qv (s, a)

λ∗(s)

)
π(a|s). (35)

As for the outer minimization problem, the optimal solution
λ∗(s) is given by

λ∗(s) = arg min
λ(s)>0

(
λ(s)Ω∗

(
−Qv(s, ·)

λ(s)

)
+ λ(s)ẽ(s)

)
,

(36)
which is a typical convex optimization problem. The solution
can be obtained by standard convex program solvers, such as
CVX [46].

Lemma 1. The construction of the policy error ẽ(s) is in the
form of ẽ(s) = Cn(s)−η with the constants C > 0 and η > 0,
while n(s) indicates how many times the state was visited. This
construction implies that the estimation error should decrease
with the amount of experience collected.

As discussed in Section IV.A, the policy improvement
strategy for SAC following the per-state entropy bonus is given
by

π(a|s) ∝ exp

(
1

α
Qv(s, a)

)
, (37)

where α is the entropy temperature. Substituting (37) into (35),
the adversarial policy in SAC is obtained as

π∗ẽ ∝ exp

[(
1

α
− 1

λ∗(s)

)
Qv(s, a)

]
. (38)

Based on the adversarial Bellman operator T π∗ẽ v(s), the term
Q̂ (Sl, Al) in the loss function (46) of the critic network should
be rewritten as

Q̂(Sl, Al) = RAlSl +
γEAl+1∼π∗

ẽ

[
Qω̂(Sl+1, Al+1)− α log (π(Al+1|Sl+1))

]
.

(39)

The details of the DRSAC algorithm developed are sum-
marized in Algorithm 2. The main difference between DR-
SAC and SAC lies in the policy evaluation phase. Instead
of updating the critic network towards the true action-value
function following the current policy π, the adversarial policy
π∗ẽ is adopted for action-value estimation (lines 11 - 14) for
providing a lower-bound performance guarantee.

Remark 4. We design the policy error ẽ(s) in the way that
it gets smaller with accumulated experience. This is reflected
in the construction of ẽ(s) in the form ẽ(s) = Cn(s)−η with
C > 0 and η > 0. More intuitively, we can say that the radius
of the uncertainty set shrinks as the learning process proceeds.
Consequently, when m → +∞, the adversarial policy π∗ẽ
converges to the policy π. Although the algorithm performs
conservatively in a short-term, it acts optimistically in a long
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T π
∗
ẽ v(s) = max

λ(s)>0
min
π̃∈∆SA

(
T π̃v(s) + λ(s)DKL (π̃(·|s) ‖π(·|s) )− λ(s)ẽ(s)

)
= min
λ(s)>0

max
π̃∈∆SA

(
− T π̃v(s)− λ(s)DKL (π̃(·|s) ‖π(·|s) ) + λ(s)ẽ(s)

) (32)

Algorithm 2 Sum-Rate Maximization Algorithm Based on
DRSAC
1: Initialize environment;
2: Initialize critic network, actor network, replay buffer D = ∅;
3: Set Hmin, C, η, n(s) = 0,∀s ∈ S;
4: for each iteration do
5: for each environment step do
6: Execute action based on the current policy;
7: Store transition (Sl, Al,R

Al
Sl
, Sl+1) in D;

8: end for
9: for each gradient step do

10: Sample a random minibatch of transitions (Sl, Al,R
Al
Sl
, Sl+1)

from D;
11: ẽ(s)← Cn(s)−η ;
12: Solve convex optimization problem (36) to obtain λ∗(s);
13: Obtain π∗

ẽ(a|s) via (38);
14: Obtain Q̂(Sl, Al) via (39);
15: Update actor network, critic network, and α as in Algorithm 1;
16: end for
17: end for
18: return optimal policy π∗.

run, hence the convergence and optimality of DRSAC can then
be guaranteed, similarly to that of SAC.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
algorithm for STAR-RIS assisted UAV communications in
terms of the sum-rate. We show how the system performance
is influenced by the number of UAV antennas and the number
of STAR-RIS elements. For comparison, the following bench-
mark algorithms are used:
• SAC: We utilize Algorithm 1 to solve the sum-rate

maximization problem, which serves as a benchmark to
show that the DRSAC algorithm achieves robust perfor-
mance in the face of estimation errors caused by limited
sampling of the environment.

• Deep Q-network (DQN): We adopt the conventional DQN
algorithm using the reward defined in (10) without con-
sidering the entropy. The initial exploration probability,
the minimum exploration probability, and the learning
rate are set to 0.9, 0.05, and 0.00001, respectively.

• Reflecting/Transmitting-only RIS case: This case serves as
a benchmark for demonstrating the merits of the STAR-
RIS, where a reflecting-only RIS and a transmitting-only
RIS are deployed adjacent to each other, each of which
consists of N/2 elements. The resultant optimization
problem is solved by Algorithm 2 while setting the
reflection amplitude coefficients to 1 for the first N/2
elements, and 0 for the latter N/2 elements.

• STAR-RIS with equal energy splitting: In this case, the
reflection and transmission amplitude coefficients of each
STAR-RIS sub-surface are both set to

√
0.5. The resultant

optimization problem is solved by Algorithm 2.
• Random phase shift: Algorithm 2 is performed for the

joint optimization of the UAV’s trajectory, the active

beamforming at the UAV, and the transmission/reflection
amplitude coefficients of the STAR-RIS sub-surfaces,
with the transmission/reflection phase shifts of the STAR-
RIS sub-surfaces generated randomly.

• UAV communications w/o STAR-RIS: In this case, the
STAR-RIS is not deployed, which means that the com-
munication links between the UAV and GUs only include
the direct links. The resultant joint UAV’s trajectory and
beamforming design problem is solved by Algorithm 2.

A. Simulation Setup

In the simulation, the narrow-band quasi-static fading chan-
nels spanning from the UAV to STAR-RIS and from the
STAR-RIS to GUs are modeled as Rician fading links as
follows:

HU,R[l] =√
β0

(dU,R[l])
α1

(√
κU,R

1 + κU,R
HLoS
U,R[l] +

√
1

1 + κU,R
HNLoS
U,R [l]

)
,

(40a)
hHR,j [l] =√

β0

(dR,j [l])
α1

(√
κR,j

1 + κR,j
hLoS
R,j [l] +

√
1

1 + κR,j
hNLoS
R,j [l]

)
,

(40b)
where β0 is the path loss at the reference distance of d0 = 1 m,
α1 is the corresponding path loss exponent, dU,R and dR,j
denote the distance from the UAV to STAR-RIS and that from
the STAR-RIS to GU j, respectively, κU,R and κR,j represent
the Rician factor, HLoS

U,R and hLoS
R,j denote the LoS components,

and HNLoS
U,R and hNLoS

R,j denote the non line-of-sight (NLoS)
components modeled by Rayleigh fading.

The channel spanning from the UAV to GU j is modeled as

the Rayleigh fading link of hHU,j [l] =
√
β0 (dU,j [l])

−α2 ĥU,j [l],
where dU,j denotes the distance between the UAV and GU j,
α2 is the path loss exponent of the Rayleigh fading channel,
and ĥU,j denotes the small-scale fading component, where
the elements are independently drawn from the circularly
symmetric complex Gaussian (CSCG) distribution with unit
variance.

In our simulation, we set the initial and final locations of the
UAV to (−30,−15, 50) and (30,−15, 50) meters, respectively.
The STAR-RIS is located at (0, 0, 20) meters. We consider 2
GUs in the network, each having a random location generated
at one side of the STAR-RIS with the distance of 10 m. The
number of quantization bits for discrete phase shift is set to
be 1 . The UAV’s maneuver direction is discretized into 4
actions, i.e. left, right, forward, and backward movement. The
reflection amplitude coefficient is discretized into 2 levels,
i.e.
√

0.3 and
√

0.7. We consider an obstacle appearing in
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TABLE I: System Parameters

α1 Path loss parameter for LoS transmis-
sions

2.2 dmin Minimum separation distance 18 m

α2 Path loss exponent for NLoS transmis-
sions

4 λQ, λπ ,
λα

Gradient descent step length 0.00001

κ Rician factor 10 dB C Constant 1
β0 Path loss at 1 m −20 dB η Constant 0.5
σ2
b Noise power −90 dBm Number of training steps 1000000
δt Duration of each time slot 1 s Replay memory size 20000

N Number of elements in each sub-
surface

10 Mini-batch size 128

Pmax
t UAV’s maximum transmit power 30 dBm Optimizer Adam
Tmax Maximum flight duration 8.5 s Activation function ReLU

the airspace with a random location. Other specific system
parameters and the DRL’s hyperparameters are summarized
in Table I, unless otherwise specified.

B. Performance of the proposed algorithm

In Fig. 2, we compare the performance of DRSAC against
SAC and DQN. The curves are obtained for five runs of each
algorithm with different random seeds. Fig. 2 shows the system
sum-rate during training, where the solid curves denote the
averaged values and the shaded regions represent the lower
and upper bounds over the five trials. It can be observed
that DRSAC and SAC outperform DQN in terms of learning
efficiency, which can be explained by the sampling-efficiency
boosting scheme by considering the entropy term in the SAC
framework. Moreover, the sum-rate lower-bound achieved by
DRSAC is shown to be higher than that of SAC, which
indicates that DRSAC improves the worst-case performance.
This is consistent with our proof in Section IV showing that
DRSAC is robust to estimation errors.

Fig. 3 demonstrates the performance of the proposed
DRSAC algorithm under the training and implementations
stages. Particularly, Fig. 3(a) portrays the probability of the
UAV reaching its destination safely with DRSAC during
the training process under different seeds. Observe that the
success probability emerges from 0, which means that the
UAV cannot avoid any obstacle or find the right path to
reach its destination at the beginning of the learning process.
However, upon increasing the number of training episodes,
the DRSAC algorithm gathers experience and optimizes the
policy, thereby improving the success probability. After about
400 evaluation steps, the success probability approaches 100%.
Observe from Fig. 3(a) that the proposed DRSAC algorithm
learns effectively and converges under different seeds, which
illustrates the robustness of the DRSAC algorithm to the
choice of its hyperparameters.

Fig. 3(b) depicts the UAV’s trajectory obtained by DRSAC
under the implementation stage. It is observed that the UAV
exploits its mobility to adaptively adjust its trajectory to move
closer to the STAR-RIS for stronger communication links at
the beginning. Meanwhile, the safety distance from the UAV
to obstacles is maintained autonomously throughout onboard
sensing. To meet the maximum allowed flight time, the UAV
also seeks to fly towards the final location, while keeping its
distance to the STAR-RIS as low as possible. It is observed
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Fig. 2: Performance comparison among DQN, SAC and DRSAC.

that the UAV can move flexibily at both sides (x > 0 and x <
0 regions) of the STAR-RIS thanks to its full-space coverage.
Observe from Fig. 3(b) that, after offline training, the DRSAC
algorithm enables the UAV to make smart decisions at the
online implementation stage.

C. Comparison with conventional reflecting/transmitting-only
RIS

In Fig. 4, we investigate the performance gain of STAR-
RIS in UAV communications. We set N = 40 and obtain
the sum-rate with different numbers of UAV antennas. As
seen from Fig. 4, the sum-rate increases with K, which is
expected due to the enhanced beamforming gain at the UAV
side for more antennas. Furthermore, one can also observe
from Fig. 4 that the STAR-RIS outperforms the conventional
reflecting/transmitting-only RIS by a large margin. This is
because compared to the conventional reflecting/transmitting-
only RIS, the STAR-RIS benefits from added flexibility by co-
designing the phase shift and amplitude coefficients of both the
transmission and reflection. Besides, the proposed STAR-RIS
scheme also achieves a valuable performance improvement
over the case, where all elements adopt the equal-energy
splitting ratio. This is because the latter term is a special
case of the proposed STAR-RIS scheme, which fails to offer
optimized performance guarantee. However, we also add that
the equal-energy splitting is easier to implement in practice
[23].
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(a) Task completion probability of DRSAC under thetraining stage.
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(b) The UAV’s trajectory obtained by DRSAC under the implementation stage.
The discretized UAV’s locations sampled every 1 s are marked with ‘◦’.

Fig. 3: Performance of DRSAC under the training and implementation
stages.
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Fig. 4: Sum-rate versus K with N = 40.

D. Illustration on the impact of STAR-RIS phase shift config-
uration

In Fig. 5, we study the impact of STAR-RIS phase shift
configurations. In Fig. 5(a), we set K = 4 and observe
that the sum-rate increases with the number of STAR-RIS
elements. This is because the larger number of STAR-RIS
elements leads to higher beamformer design flexibility, thereby
enhancing the desired signals and mitigating the multi-user
interference more efficiently. It can also be observed that the
proposed DRSAC algorithm achieves much higher sum-rate
than both the random phase shift design and the case where no
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(a) Sum-rate versus N with K = 4.
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Fig. 5: Illustration on the impact of STAR-RIS phase shift configu-
ration.

STAR-RIS is deployed, which shows the effectiveness of our
proposed algorithm for STAR-RIS phase shift configuration.
Moreover, the 1-bit phase shift is also shown to achieve
significantly higher sum-rate than the no STAR-RIS case.
This demonstrates the effectivenss of the STAR-RIS for signal
enhancement even with low-cost phase shifters.

Fig. 5(b) depicts the sum-rate versus the number of UAV
antennas under N = 20. Similarly, we can observe that the
proposed DRSAC algorithm achieves higher sum-rate than the
two benchmarks. We also compare the system sum-rate of 1-
bit and 2-bit phase quantization. It is observed that the sum
rate of using 2-bit phase shifters is higher than that of the 1-bit
case. This is expected, since due to having less quantization
levels, aligning the multi-path signals becomes less accurate,
thus resulting in performance loss.

VI. CONCLUSIONS

STAR-RIS assisted UAV communications have been pro-
posed. In contrast to conventional reflecting-only RISs, STAR-
RISs facilitate simultaneous transmission and reflection of
the incident signals. The achieved full-space coverage is
particularly suitable for high-mobility UAV communications
in the face of random obstacles constituted by the urban para-
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phernalia. Considering the tight coupling among the UAV’s
trajectory, active beamforming at the UAV, and passive trans-
mission/reflection beamforming at the STAR-RIS, a sum-rate
maximization problem has been formulated, subject to the
constraints on the UAV’s flight safety, the maximum flight
duration, as well as the GUs’ minimum data rate requirements.
To solve the resultant online decision making problem in the
face of uncertainties caused by the limited sampling of the
environment, we have proposed a novel DRRL algorithm to
satisfy a certain worst-case performance. Numerical results
have been provided for demonstrating the proposed algo-
rithm compared to traditional DRL schemes in terms of its
learning efficiency and robustness. The obtained results have
showed that the STAR-RIS achieved significant sum-rate gain
over its conventional reflecting/transmitting-only counterparts.
Moreover, it has been revealed that the UAV’s trajectory
become more flexible thanks to the full-space coverage of the
STAR-RIS. For future work, the deployment of the STAR-
RIS should be discussed in more detail, as the location
and orientation of the STAR-RIS may affect the quality of
the transmission/reflection links. Moreover, considering the
interference caused by the UAV to ground cellular networks,
the employment of the STAR-RIS for simultaneous signal
enhancement between the UAV and its serving GUs as well
as the interference mitigation between the UAV and nearby
ground cells is expected to be an interesting research topic.

APPENDIX A
PROOF OF PROPOSITION 1

For ZF, the transmit precoding (TPC) matrix should satisfy
the following constraints:∣∣vκj gj

∣∣ =
√
pj , (41)∣∣Vκ

j′gj
∣∣ = 0,∀j′ 6= j, (42)

where pj is the power received by GU j. According to the
results given in [37], the ZF beamformer is given by

G = VH
(
VVH

)−1
P

1
2 = ṼP

1
2 , (43)

Based on the constraints (41) and (42), the optimization
problem (7) can be rewritten as

max
{pj}

J∑
j=1

log2

(
1 +

pj
σ2

)
, (44a)

s.t. log2

(
1 +

pj
σ2

)
≥ Rmin

j ,∀j, (44b)

Tr
(
P

1
2 ṼHṼP

1
2

)
≤ Pmax

t . (44c)

By applying the classic water-filling algorithm, the closed-
form optimal solution of problem (44) can be obtained as

pj =
1

νj
max

{
1

µ
− νjσ2, νjp

min
j

}
, (45)

where νj is the j-th diagonal element of ṼHṼ, µ is
a normalization factor which is selected for ensuring that∑
1≤j≤J

max{ 1
µ−νjσ

2, νjp
min
j } = Pmax

t , and pmin
j = σ2(2R

min
j −

1) is the minimum received power constraint of GU j.

APPENDIX B
PROOF OF PROPOSITION 2

Since the objective of the Q-network is to approximate the
true state values, the loss function should be designed for
guiding the output towards (19). Therefore, the loss function
is given by the soft Bellman residual as follows [39]:

LQ (ω) = E(Sm,Am)∼D

[
1

2

(
Qω(Sm, Am)− Q̂(Sm, Am)

)2
]
,

(46)
where Q̂(Sm, Am) is given by (47). In contrast to the SAC
framework of [39], which is aimed for continuous action
settings, the action space in this work is discrete. Therefore,
(47) becomes tractable by employing discrete action probabil-
ities for the expectation calculation. Specifically, (47) can be
rewritten as (48).

APPENDIX C
PROOF OF PROPOSITION 3

Based on the policy improvement principle given in (22), the
loss function of the policy network is defined as (49), where
DKL represents the Kullback-Leibler (KL) divergence used for
quantifying the similarity of a pair of distributions. The loss
function (49) is defined for guiding the network output to be
updated towards the improved policy (22). Since Xπϑ (Sm)
depends only on the state, the loss function can be reduced to
(multiplied by α)

Lπ (ϑ) =

ESm∈DEAm∼πϑ (α log [πϑ(Am|Sm)]−Qω (Sm, Am)) .
(50)

For discrete action spaces, the expectation over the actions in
(50) can be calculated based on the specific action probabili-
ties. Therefore, (50) can be rewritten as (51).
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