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Abstract—In this paper, motivated by the inter-base station
(BS) channel dependence due to the shared wireless environment,
we propose to fuse sub-6 GHz channel information and mmWave
low-overhead measurement to predict the optimal mmWave beam
in heterogeneous networks (HetNets) and reduce the overhead
of both mmWave BS selection and beam training. Moreover,
deep learning is adopted to extract the complex dependence
between sub-6 GHz and mmWave channels for achieving high
prediction accuracy. Specifically, we propose to leverage a few
user equipment (UE)-specific high-quality mmWave wide beams
predicted by the sub-6 GHz channel state information (CSI) as
the mmWave low-overhead measurement. In order to adapt to
different confidences of the mmWave wide beam prediction for
diverse UE, the sum-probability criterion is proposed to flexibly
adjust the number of measured wide beams. Besides, to fully
fuse the diversified features extracted from the sub-6 GHz CSI
and mmWave wide beams, the attention mechanism is further
exploited to adaptively weight the features for improving the
prediction accuracy. Simulation results show that our proposed
scheme achieves higher beamforming gain while imposing smaller
mmWave measurement overhead over the conventional deep
learning based schemes.

Index Terms—Millimeter-wave communications, sub-6 GHz
information, beam prediction, deep learning, heterogeneous net-
works

I. INTRODUCTION

Since the millimeter-wave (mmWave) frequency band pro-
vides abundant bandwidth resources for supporting high-speed
transmissions, mmWave communications have been regarded
as one of the promising technologies in the next-generation
wireless networks [1], [2]. However, mmWave signals suffer
from more severe pathloss than its sub-6 GHz counterpart
[3]. To address this issue, massive antenna arrays are inte-
grated at both base station (BS) and user equipment (UE) for
establishing directional transmissions, so that the beamform-
ing gain could compensate for the serious pathloss [4]–[6].
Consequently, combining the sufficient bandwidth resources
in the mmWave band and the efficient beamforming based on
multiple-input multiple-output (MIMO) is considered as one
of the crucial technologies to meet the massive high-speed
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access requirements for the fifth-generation wireless networks
and beyond [7], [8].

To enhance the mmWave received power, beam training
has been broadly applied to find the optimal transmit and
receive beam pair with the highest beamforming gain. The
most straightforward method is the exhaustive search [9],
which sweeps all the candidate beam pairs and selects the
optimal one with the maximum received power. However,
this could impose excessive training overhead. To tackle this
problem, the twin-level low-overhead beam search was further
proposed [10], [11], where the first level searches for the
optimal wide beam, and then the second level finds the best
narrow beam within the angular range of the optimal wide
beam. Furthermore, the work [12] proposed to separately
estimate the strongest angles at the BS and UE sides by angular
search for designing the beamforming matrices. Nevertheless,
the angular search process in these schemes [10]–[12] still
requires considerable overhead.

To further decrease the overhead of beam training, sub-
6 GHz channel information has been exploited for assisting
mmWave beam selection based on the spatial similarity be-
tween sub-6 GHz and mmWave channels in the co-located
scenarios [13]–[16], where both sub-6 GHz and mmWave
antennas are deployed at the same BS, as shown in Fig. 1(a). In
[13], field experiments demonstrated that the power azimuth
spectrums (PASs) of sub-6 GHz and mmWave channels are
almost congruent in the co-located scenarios. Based on these
characteristics, the works [13], [14] proposed to only sweep
the mmWave beams angularly neighboring to a few dominant
sub-6 GHz paths for reducing the training overhead. Further-
more, other studies [15], [16] formulated the beam selection
as a sparse signal recovery problem weighted by the sub-6
GHz PAS, which can reach high achievable rates under the
smaller size of sparse training codebooks.

Nevertheless, the works [13]–[16] generally rely on the con-
ventional approaches of estimating spatial parameters, which
makes the achievable performance sensitive to the estimation
error due to the small number of sub-6 GHz antennas [17]. To
tackle this problem, deep learning was adopted to adaptively
extract the complex relationships between the sub-6 GHz chan-
nel and mmWave channel for predicting the optimal mmWave
beam [18]–[22]. Specifically, the study in [18] proved the
existence of the mapping that can predict the optimal mmWave
beam from the sub-6 GHz channel state information (CSI), and
exploited a fully-connected network (FCN) to implement the
prediction. The work [18] further proposed to sweep a limited
subset of candidate beams with the best predicted qualities and
select the beam with the highest received power as the optimal
one, which achieved higher beamforming gain at the cost of a
modest extra overhead. The authors of [19] utilized a mmWave
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Fig. 1. Illustration of (a) co-located scenarios, and (b) heterogeneous networks, where blue and green circles denote sub-6 GHz and mmWave cells,
respectively.

prototype to validate the effectiveness of the sub-6 GHz CSI
assisted mmWave beam prediction using a FCN. By contrast,
the works [20], [21] conceived a convolutional neural network
(CNN) structure to process the variable-size sub-6 GHz CSI
due to different user configurations. Furthermore, the study
[22] proposed to fuse the CSI of sub-6 GHz antennas and
a small number of mmWave antennas to jointly predict the
optimal mmWave beam for enhancing the prediction accuracy.

However, the existing studies on the sub-6 GHz channel
information assisted mmWave beam prediction [18]–[22] share
a common limitation that they all rely on the spatial similarity
in the co-located scenario. Since mmWave signals suffer from
more serious pathloss than sub-6 GHz signals, the cellular
radius of a mmWave BS is generally smaller than its sub-
6 GHz counterpart. Consequently, mmWave BSs are usually
deployed more densely than sub-6 GHz BSs, which forms
the heterogeneous network (HetNet) [23], [24], as shown
in Fig. 1(b). Particularly for the hot-spot areas with dense
mmWave BSs, several accessible mmWave BSs may be locat-
ed around the UE, which leads to the huge overhead of finding
the optimal beam in a relatively large beam pool broadcasted
from surrounding multiple mmWave BSs. However, in this
more practical scenario, most UE are likely to access non-co-
located sub-6 GHz and mmWave BSs, where the conventional
schemes are difficult to achieve a satisfactory performance of
the mmWave beam prediction due to the lack of the spatial
similarity.

Fortunately, since the wireless channel is the result of the
interaction between the transmitted signals and the wireless
environment around BS and UE, the CSI matrices between
a UE and multiple neighboring BSs have complex hidden
relationships based on their shared propagation environment,
which is termed as the inter-BS CSI dependence [25], [26].
Therefore, the channel of the source BS can be used to infer
the channel features of the neighboring target BS. The work
[26] proved the existence of this inter-BS CSI dependence
theoretically, and then utilized a CNN to predict the optimal
beam of the target mmWave BS according to the CSI of
the neighboring mmWave BS. Nonetheless, such an approach
of estimating mmWave CSI may impose excessive overhead
owing to the huge number of mmWave antennas.

In contrast to the studies [25], [26], in this paper, we propose
to exploit sub-6 GHz CSI to predict the optimal mmWave

beam in the HetNet and reduce the huge overhead of both
mmWave BS selection and beam training. Nevertheless, it
is very hard to implement an accurate prediction by only
using the sub-6 GHz CSI, since the small number of sub-6
GHz antennas cannot comprehensively reflect the complicated
inter-BS CSI dependence. Therefore, we propose a dual-band
fusion approach to integrate sub-6 GHz CSI with mmWave
low-overhead measurement to facilitate reliable prediction,
where deep learning is adopted to accurately model the
complex inter-BS CSI dependence. Specifically, we propose
to leverage the UE-specific high-quality mmWave wide beams
predicted by the sub-6 GHz CSI as the mmWave low-overhead
measurement for two reasons. Firstly, compared with exploit-
ing the CSI of small-number mmWave antennas [22], the
UE-specific high-quality beams can achieve higher received
power for providing reliable mmWave channel information.
Secondly, compared with additionally measuring the mmWave
narrow beams [18], the wide beams enjoy stronger coverage
capability, which is capable of effectively covering the large
uncertain area from the sub-6 GHz CSI based prediction at
low overhead.

Because the predictions are expressed as the probability that
each candidate wide beam contains the optimal narrow beam,
we design two criteria to select the wide beams to be mea-
sured. The first criterion is the fixed-number criterion, which
selects the fixed number of the maximum (max)-probability
wide beams. In order to adapt to different confidences of
the mmWave wide beam prediction for diverse UE, the sum-
probability criterion is further proposed to select the max-
probability wide beam set whose probability sum is larger
than a predefined threshold, so that the number of measured
wide beams can be flexibly adjusted. Besides, to fully fuse
the diverse features extracted from the sub-6 GHz CSI and
mmWave wide beams, the attention mechanism is further
leveraged to adaptively weight the features for improving the
prediction accuracy. Finally, we extensively evaluate the per-
formance of our proposed dual-band fusion scheme based on
the open-source DeepMIMO dataset [27]. Simulation results
demonstrate that the proposed scheme is capable of achieving
higher beamforming gain while imposing smaller mmWave
measurement overhead, compared to the conventional deep
learning based schemes [18], [22].

The main contributions of this paper are recapped as fol-
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lows.
• We propose a dual-band fusion approach to integrate sub-

6 GHz CSI with mmWave low-overhead measurement
to predict the optimal mmWave beam in the HetNet
and reduce the huge overhead of both mmWave BS
selection and beam training. Furthermore, we propose to
adopt deep learning to extract the complex relationships
between sub-6 GHz CSI and mmWave low-overhead
measurement, where the attention mechanism is lever-
aged to adaptively weight the features for enhancing the
prediction accuracy.

• We propose to adopt the UE-specific high-quality
mmWave wide beams predicted by the sub-6 GHz CSI
as the mmWave low-overhead measurement. We also
design two criteria for the wide beam selection. The
fixed-number criterion selects the fixed number of the
max-probability wide beams, while the sum-probability
criterion selects the max-probability wide beam set whose
probability sum is larger than a predefined threshold,
which can adapt to different confidences of the mmWave
wide beam prediction for diverse UE.

The paper is organized as follows. Section II presents
the system model. Our proposed dual-band fusion scheme
is detailed in Section III. Section IV presents the simulation
study. The conclusions are provided in Section V.

Notations: N+ denotes the positive integer set. Rm×n and
Cm×n denote the m × n real space and complex space,
respectively. Boldface capital and lower-case letters represent
matrices and vectors, respectively, e.g., A and a. Calligraphic
capital letters denote sets, e.g., A. <(·) and =(·) stand for
the real and imaginary parts of a complex number, and
j =

√
−1. The conjugate and transpose operators are ex-

pressed by (·)∗ and (·)T, respectively, while | · | represents
the magnitude operator. 〈·〉 denotes the order statistics, e.g.,
for A = {a1, a2, · · · , an}, 〈A〉 = {aσ1

, aσ2
, · · · , aσn

} with
aσ1
≤ aσ2

≤ · · · ≤ aσn
. � denotes element-wise product, and

◦ denotes the function composition operator, while b·c is the
round-down operation. The variable with overline corresponds
to the sub-6 GHz parameters, e.g., h, while the variable with
hat ̂ represents the estimated value, e.g., p̂.

II. SYSTEM MODEL

Consider a HetNet consisting of one sub-6 GHz BS and
J mmWave BSs, where each user accesses the sub-6 GHz
BS and one of the J mmWave BSs, as shown in Fig. 1(b).
For simplicity, we consider single UE equipped with one
sub-6 GHz antenna and one mmWave antenna [18], but our
scheme can be straightforwardly extended to the multiuser
scenario with multiple UE antennas. Further assume the two-
dimensional system model, namely, BSs are equipped with
uniform linear arrays (ULAs), where only azimuth angles are
considered.

A. Channel Model

For the mmWave link, we adopt the well-known Saleh-
Valenzuela channel model [28], [29]. Specifically, the CSI

vector h(j) ∈ CM(j)×1 related to the j-th mmWave BS is
expressed as

h(j) =

L(j)∑
l=1

√
M (j)

ρ
(j)
l

α
(j)
l a(j)∗(φ(j)l ). (1)

In this model, M (j) denotes the number of antennas in the
j-th mmWave BS, L(j) represents the number of paths, and
the l-th path has pathloss ρ(j)l , complex gain α(j)

l and angle-
of-departure (AoD) φ(j)l . Furthermore, a(j)(φ) ∈ CM(j)×1

denotes the antenna response vector of the j-th BS at the AoD
φ, which is expressed as

a(j)(φ) =

√
1

M (j)

[
1 ej2πd(j) sinφ/λ · · · ej2π(M(j)−1)d(j) sinφ/λ

]T
,

(2)

where d(j) is the antenna spacing at the j-th mmWave BS,
and λ is the wavelength. Without loss of generality, we set
d(j) = λ/2 and assume that all the mmWave BSs have
the same number of antennas. Thus the BS index (j) of the
corresponding variables are removed, i.e., M , a(φ).

The sub-6 GHz CSI vector h ∈ CM×1 is similar to its
mmWave counterpart. To clearly distinguish two frequency
bands, the variables of the sub-6 GHz link are marked with
overline.

B. MmWave Beam Training Model

We assume that a single radio frequency (RF) chain and
the same phase shifter based analog beamforming scheme are
employed at each mmWave BS, where f ∈ CM×1 denotes the
transmit beam of BS. The beam is selected from the predefined
codebook F , which comprises N candidate beams. Further
assume that the mmWave BS applies the discrete Fourier
transform (DFT) codebook [30], [31]. Therefore, the candidate
transmit beam fn, n ∈ {1, 2, · · · , N}, can be written as

fn =

√
1

M

[
1 ejπγn · · · ejπ(M−1)γn

]T
, (3)

where γn denotes the beam phase of the n-th candidate beam
at BS. To cover the whole angular space, we further assume
that the beam phases are uniformly sampled in [−π, π] [30],
i.e.,

γn =− 1 +
2n− 1

N
. (4)

Given the CSI vector h and the transmit beam f , the received
signal y can be expressed as

y =
√
PhTfx+ n, (5)

where x represents the transmitted signal with |x| = 1 and
P denotes the transmit power. Furthermore, n denotes the
additional white Gaussian noise (AWGN) with the noise power
σ2, i.e., n ∼ CN

(
0, σ2

)
.

Let f
(j)
n be the n-th transmit beam of the j-th mmWave

BS. In HetNets, beam training targets to find the optimal
transmit beam f

(j?)
n? with the maximum beamforming gain
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from the candidate beams of all the mmWave BSs, which can
be expressed as

{j?, n?} = arg max
j∈{1,2,··· ,J},
n∈{1,2,··· ,N}

∣∣h(j)Tf (j)
n

∣∣2. (6)

A direct method to solve this problem is the exhaustive beam
search, which sweeps all the candidate transmit beams to find
the beam with the maximum received power [9]. However, this
scheme usually leads to excessive training overhead due to the
huge-number of the candidate beams from all the J mmWave
BSs.

To reduce the training overhead, the twin-level beam search
based on the beams with different widths may be adopted
[10], [11]. Since more antennas could generate narrower
beamwidths, we use partial antennas to obtain the wide beams
for the sake of conceptual simplicity. Concretely, consid-
er switching on Mw , bM/sc BS antennas to generate
Nw , bN/sc transmit wide beams, where s ∈ N+ defines
the number of narrow beams within the angular range of each
wide beam [32]. Therefore, the candidate transmit wide beam
fw,n, n∈{1, 2, · · · , Nw}, can be written as

fw,n =

√
1

Mw

[
1 ejπγw

n · · · ejπ(Mw−1)γw
n
]T
, (7)

where the phase of the n-th candidate transmit wide beam γw
n

can be written as

γw
n =− 1 +

2n− 1

Nw
. (8)

Accordingly, the beam search can be divided into two levels.
The first-level targets to find the optimal transmit wide beam,
which can be expressed as{

j?, n?w
}

= arg max
j∈{1,2,··· ,J},
n∈{1,2,··· ,Nw}

∣∣h(j)
w

T
f (j)

w,n

∣∣2, (9)

where h
(j)
w ∈ CMw×1 is the channel vector corresponding to

the antennas for generating wide beams, and f
(j)
w,n is the n-th

wide beam of the j-th BS. Recall that M antennas correspond
to N candidate transmit narrow beams of (3) with the phases
of (4), respectively. Then, the second-level search confirms
the best transmit narrow beam within the angular range of the
selected wide beam (9), which is expressed as

n? = arg max
n∈{(n?

w−1)s+1,··· ,n?
ws}

∣∣h(j?)Tf (j?)
n

∣∣2. (10)

Although the twin-level beam search achieves a lower over-
head than the exhaustive beam search, it still requires con-
siderable measurements due to the large number of candidate
wide beams.

III. DUAL-BAND FUSION FOR MMWAVE BEAM
PREDICTION IN HETNETS

A. Motivation and Problem Formulation

The wireless channel is the result of the interaction between
the transmitted signals and the wireless environment around
BS and UE, which manifests the information of the UE

location and surrounding environment [33]–[35]. Since neigh-
boring BSs share the common wireless environment, their
CSI with the same UE have complex hidden relationships,
which is termed as the inter-BS CSI dependence [25], [26].
This property allows us to use the sub-6 GHz CSI to predict
the optimal mmWave beam from the large-number candidate
beams of multiple neighboring mmWave BSs in the HetNet, so
that the huge overhead of both BS selection and beam training
can be effectively reduced.

To elaborate on the feasibility of the sub-6 GHz CSI for
guiding the mmWave beam prediction, we investigate mapping
the sub-6 GHz CSI vector h to the indices of the optimal
mmWave BS and beam {j?, n?} via the UE location b. Specif-
ically, we define Φh̃ : b→ h̃, h̃ ∈ {h,h(1),h(2), ...,h(J)} as
the position-to-channel mapping functions of the sub-6 GHz
and mmWave CSI vectors. Then, based on the unique propa-
gation environment shared by sub-6 GHz and mmWave BSs,
we follow [18], [36], [37] and adopt the bijective assumption
as below:

Assumption 1: The position-to-channel mapping functions,
Φh̃ : b→ h̃, are bijective.

Assumption 1 means that each position in the environment
has its unique sub-6 GHz and mmWave channels. Based on
this assumption, we have the following proposition on the
existence of the mapping function from the sub-6 GHz CSI
vector h to the indices of the optimal mmWave BS and beam
{j?, n?}:

Preposition 1: For any given communication environment, if
Assumption 1 is satisfied, then there exists a mapping function
Υ from the sub-6 GHz CSI vector to the indices of the optimal
mmWave BS and beam Υ : h→ {j?, n?}.
Proof : The proof follows from the existence of the mapping
function from the sub-6 GHz CSI vector to the mmWave CSI
vectors h(j) = Φh(j)(b) = Φh(j) ◦ Φ−1

h
(h), j = 1, 2, ..., J .

Then, the indices of the optimal mmWave BS and beam
{j?, n?} are found via beam search according to (6). �

It should be noted that the position-to-channel mapping
is actually bijective with high probability in many practical
wireless communication scenarios [36]–[38], which guarantees
the feasibility to adopt the sub-6 GHz CSI for predicting the
mmWave optimal BS and beam in the HetNet. However, to
implement an accurate prediction by only using the sub-6 GHz
CSI is very difficult for two reasons. First, the small number
of sub-6 GHz antennas makes its CSI hard to comprehensively
reflect the complex inter-BS relationships based on the shared
high-dimensional environment features. Second, the signifi-
cant frequency difference between sub-6 GHz and mmWave
bands leads to sophisticated but weak inter-BS relationships.
To tackle these two problems, we propose to fuse the sub-6
GHz CSI and mmWave low-overhead measurement to enhance
the prediction accuracy.

An intuitive method of designing the mmWave low-
overhead measurement is to acquire the CSI of a small number
of mmWave antennas [22], but it cannot exploit high beam-
forming gain to compensate for the high pathloss of mmWave
signals, so that the noise may severely degrade the reliability
of the measured CSI. Another design is to sweep the subset
of the predicted optimal mmWave narrow beams, and select
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the beam with the maximum received power as the optimal
one [18]. However, since it is difficult to extract the sufficient
information of the UE location and propagation environment
from the sub-6 GHz CSI, the narrow beam prediction usually
leaves a large uncertain area, so that a large number of
mmWave narrow beam measurements are required to cover
this area for ensuring to find a satisfactory beam. By contrast,
the wide beams, which simultaneously have wider coverage
capability than the narrow beams and exploit the beamforming
gain to obtain higher received power than the mmWave CSI,
can be measured for predicting the optimal narrow beam
[39], [40]. Therefore, we propose to leverage a few UE-
specific high-quality mmWave wide beams predicted by the
sub-6 GHz CSI as the mmWave low-overhead measurement,
which can obtain more reliable mmWave channel information
than exploiting mmWave CSI only [22], while simultaneously
covering the large uncertain area with lower overhead than
using narrow beams alone [18].

Specifically, we define the received signals of
wide beam training of the j-th mmWave BS as

y
(j)
w =

[
y
(j)
w,1 y

(j)
w,2 · · · y

(j)
w,Nw

]T
, where y

(j)
w,n denotes

the received signal of the corresponding n-th wide
beam. Then, the concatenated received signal vector
of wide beam training of all the J mmWave BSs

is expressed as yw =

[
y
(1)
w

T
y
(2)
w

T
· · ·y(J)

w
T
]T

=[
y
(1)
w,1 · · · y

(1)
w,Nw

· · · y(J)w,1 · · · y
(J)
w,Nw

]T
. For convenience,

we renumber the elements of yw and express it as
yw = [yw,1 yw,2 · · · yw,JNw ]

T ∈ CJNw×1. Further let Lw
denote the index set of the selected wide beams to be
measured. Then the received signal vector of the measured
wide beams ywp can be obtained according to

ywp[n] =

{
yw,n, if n ∈ Lw,

0, otherwise. (11)

Similarly, the indices of the candidate narrow beams of the J
mmWave BSs are renumbered as {1, 2, · · · , JN}.

Considering the finite number of candidate narrow beams,
the prediction is formulated as a multi-class classification task,
where each class represents one mmWave narrow beam. For
convenience, we redefine n? as the optimal narrow beam index
from all the candidate narrow beams of the J mmWave BSs,
and thus the prediction model can be expressed as

n? = f(h,ywp), n? ∈ {1, 2, · · · , JN}, (12)

where f(·) denotes the classification function. This prediction
relies on the complex dependence between the channels of
the sub-6 GHz BS and its neighboring mmWave BSs, which
is hard to be expressed by an explicit mathematical model.
Consequently, we propose to utilize deep learning to adap-
tively model these complicated relationships for implementing
the prediction [41]. Furthermore, it is noted that the channel
relationships between two bands may be buried under serious
noises, hence our proposed dual-band fusion approach is
suitable for the high-SNR scenarios.

The mmWave narrow beam prediction scheme comprises
two stages, training and predicting. In the training stage, the

training dataset is constructed for optimizing the deep learning
model, where each sample comprises the sub-6 GHz CSI
together with the received signal vector of mmWave wide
beams as the prediction input, and the index of the optimal
mmWave narrow beam as the prediction label. These data can
be acquired by conventional sub-6 GHz CSI estimation and
mmWave beam training. During this stage, the loss function
calculates the errors between the predicted results and the
classification labels for optimizing the model parameters using
the back propagation algorithm. Once the model has been
sufficiently trained, it switches to the predicting stage. At this
stage, the qualities of all the candidate mmWave wide beams
are predicted based on the sub-6 GHz CSI, and only part of
the predicted high-quality mmWave wide beams are measured.
Then the sub-6 GHz CSI and the received signal vector of
the measured mmWave wide beams are adopted to jointly
predict the optimal mmWave narrow beam. Therefore, BS and
UE only measure the sub-6 GHz CSI and a few mmWave
wide beams, and thus the huge overhead of both mmWave BS
selection and beam training is significantly reduced. In order
to adapt to dynamic environmental fluctuations, online training
can be employed during the predicting stage, where the deep
learning model is continuously optimized by the training data
collected from a small part of users that adopt conventional
mmWave beam search.

The complete architecture of our proposed scheme of dual-
band fusion based mmWave beam prediction for HetNets is
depicted in Fig. 2, which consists of the four components: the
sub-6 GHz feature extraction, mmWave wide beam selection,
mmWave feature extraction, and feature fusion. We now detail
them one by one.

B. Sub-6 GHz Feature Extraction
Intuitively, the most straightforward method for selecting

the high-quality mmWave wide beams based on the sub-6 GHz
CSI is to predict the probabilities of the optimal wide beam
according to the wide beam label with the largest received
power. However, since our final target is to predict the optimal
narrow beam, the probability of each wide beam to contain the
optimal narrow beam could be a more appropriate criterion to
evaluate the qualities of wide beams, instead of the received
power of wide beams.

Specifically, the optimal narrow beam index is first predicted
based on the sub-6 GHz CSI, where the output is expressed as
the probability that each candidate narrow beam is the optimal
one. Concretely, the narrow beam prediction based on h is
formulated as a classification task similar to (12), which is
expressed as

n? = fsub-6(h), n? ∈ {1, 2, · · · , JN}, (13)

where fsub-6(·) denotes the corresponding classification func-
tion. CNN is adopted to extract the features from the sub-6
GHz CSI h owing to its outstanding performance in handling
classification problems [42]. The proposed sub-6 GHz feature
extraction model is illustrated in the top-left part of Fig. 2,
which can be divided into three parts as below.

1) Preprocessing Module: Since the sub-6 GHz CSI h is
complex-valued, which cannot be processed by CNN directly,
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Fig. 2. Proposed prediction model consisting of sub-6 GHz feature extraction model, mmWave wide beam selection, mmWave feature extraction model and
feature fusion. Each circle denotes one feature channel, and ‘Conv’ represents convolution layers.

the preprocessing module firstly divides h into the two real-
valued feature channels representing the real and imaginary
parts {<

(
h
)
,=
(
h
)
}. Then, in order to handle the large

dynamic ranges of h, batch normalization (BatchNorm) is
utilized for transforming the two feature channels to the stan-
dard distribution {<

(
h

N)
,=
(
h

N)} with mean 0 and variance
1 [43].

2) Convolution module: We utilize convolution layers to ex-
tract the hidden features from h

N
, where the ReLU activation

function is applied after each convolution layer to fit nonlinear
relationships. In order to effectively reduce the feature space,
the pooling layer is adopted after the ultimate convolution
layer to downasmple the extracted features.

3) Output module: The fully-connected (FC) layer is ex-
ploited after the convolution module for transforming the
extracted features to the candidate narrow beams. Then, a
softmax activation layer is applied to normalize the outputs
of the FC layer into probabilities. For convenience, we define
p̂sub-6,n as the probability predicted from the sub-6 GHz CSI
that the n-th candidate narrow beam is the optimal one, and
the corresponding probability vector of the narrow beams is
denoted as p̂sub-6 = [p̂sub-6,1 p̂sub-6,2 · · · p̂sub-6,JN ]

T.
It is noted that the vast majority of the learnable parameters

in our proposed model are from convolution layers and FC
layers. Specifically, we define fi and fo as the numbers of
input feature channels and output feature channels, while K
denotes the kernel size of the convolution layer. Then, the
parameter numbers of one convolution layer and one FC layer
can be calculated as fifoK + fo and fifo + fo, respectively.

C. MmWave Wide Beam Selection

In the mmWave wide beam selection as illustrated in the
middle-left part of Fig. 2, the predicted probability of each
wide beam is calculated as the sum of the narrow beam
probabilities within its angular range, and the set of the
max-probability wide beams are selected as the wide beams

to be measured. More specifically, to obtain the predicted
probability of the nw-th wide beam p̂w

nw
, the probabilities of

the narrow beams within its angular range are added together,
which can be expressed as

p̂w
nw

=

s∑
n=1

p̂sub-6,(nw−1)s+n, nw ∈ {1, 2, · · · , JNw} . (14)

Let Kw denote the number of the wide beams to be measured,
which is independent to the number of mmWave BSs J .
Therefore, the subset of the Kw max-probability wide beams
are selected, i.e.,{

p̂w
σ1
, p̂w
σ2
, · · · , p̂w

σJNw

}
=
〈{
p̂w
1 , p̂

w
2 , · · · , p̂w

JNw

}〉
, (15)

Lw = {σJNw−Kw+1, σJNw−Kw+2, · · · , σJNw} . (16)

How to select the measured wide beams for achieving
higher prediction accuracy under the same average wide beam
measurement overhead for various UE is one of the crucial
issues for the narrow beam prediction. A straightforward
criterion is the fixed-number criterion, i.e., to select the fixed
number of the max-probability wide beams. However, the wide
beam predictions of the UE at different locations usually have
different confidences due to various surrounding environments.
Therefore, the performance of selecting the fixed number
of wide beams may suffer from high sensitivity to the UE
location. By contrast, the predicted probabilities of wide beams
provide a clear illustration of the UE-specific confidence.
Specifically, when fewer wide beams possess larger sum prob-
abilities, the prediction has higher confidence. Consequently,
the sum-probability criterion is proposed to select the max-
probability wide beam set whose probability sum is larger
than a predefined threshold ηw, which can be formulated as
the following optimization problem

min
Kw∈{1,2,··· ,JNw}

Kw,

s.t.
JNw∑

nw=JNw−Kw+1

p̂w
σnw

> ηw.
(17)



7

·

…

…

…

…

…

…

…

…

FC

BatchNorm

…

…

Sigmoid

BatchNorm

…

…

…

…

Fig. 3. Proposed attention module, where each circle denotes one feature.

Recall that Kw represents the number of the measured wide
beams. (17) ensures that the number of the measured wide
beams can be flexibly adjusted according to the prediction
confidence.

It is important to point out that a synchronization process
is required among different mmWave BSs to measure the UE-
specific high-quality mmWave wide beams. The sub-6 GHz
BS can schedule and notify both UE and mmWave BSs of the
time slots for wide beam measurements.

D. MmWave Feature Extraction

Similar to the sub-6 GHz feature extraction model, CNN
is adopted to extract the mmWave features from the received
signal vector of the measured mmWave wide beams ywp. In or-
der to explicitly guide the parameter optimization of this CNN
model, the mmWave feature extraction model is also formulat-
ed as the classification task for predicting the optimal mmWave
narrow beam, where p̂MM = [p̂MM,1 p̂MM,2 · · · p̂MM,JN ]

T is
used as the corresponding predicted probability vector of the
narrow beams, as shown in the bottom-left part of Fig. 2.

E. Feature Fusion

Our feature fusion model is illustrated in the right part of
Fig. 2. The two predicted probability vectors based on the sub-
6 GHz CSI h and the measured mmWave wide beams ywp can
be regarded as the extracted features from the two frequency
bands, which are further fused for enhancing the prediction
accuracy. Specifically, we concatenate the two predicted prob-
ability vectors as the fused feature vector p̂f =

[
p̂T

sub-6 p̂T
MM

]T
,

which is fed into the feature fusion model to predict the
optimal narrow beam.

However, the diversified features extracted from the sub-
6 GHz CSI and mmWave wide beams usually have different
importance [22]. Thus directly concatenating these features
with the same weight may limit the prediction performance
of the fusion model. To address this issue, the attention
mechanism is introduced to adaptively weight the elements in
the fused feature vector p̂f, as depicted in Fig. 3. Concretely,
the FC layer is adopted to learn the weights for the features
w ∈ R2JN×1 from the fused feature vector p̂f, which can be
expressed as

w = sigmoid (Wp̂f + bw) , (18)

where W ∈ R2JN×2JN and bw ∈ R2JN×1 denote the weight
matrix and bias vector of the FC layer, respectively. Besides,
the sigmoid activation function normalizes each element in the
output of the FC layer to be between 0 and 1, which evaluates
the importance of each feature. Therefore, the weighted fused
feature vector p̂f,w can be calculated as the element-wise
product between p̂f and w, i.e.,

p̂f,w = p̂f �w. (19)

Batch normalization is adopted both before the FC layer and
after the weighting operation, in order to adjust the distribution
of the fused feature vector for facilitating model learning.

To predict the optimal narrow beam according to the
weighted fused feature vector p̂f,w, CNN is adopted after the
attention module to implement the classification, where the
output is expressed as the narrow beam probability vector
p̂ = [p̂1 p̂2 · · · p̂JN ]

T. Finally, the narrow beam having the
highest predicted probability is chosen, i.e.,

n̂? = arg max
n∈{1,2,··· ,JN}

p̂n. (20)

Clearly, it is more difficult to accurately predict the optimal
narrow beam from more mmWave BSs due to the larger
number of candidate beams.

F. Model Training

The cross entropy loss is used to optimize the proposed
model, which can be expressed as

loss = −
JN∑
n=1

pn log p̂n, (21)

where pn = 1 if the n-th candidate mmWave narrow beam
is the actual optimal beam, and otherwise pn = 0. However,
considering the branched structure of our proposed network,
only adopting the prediction loss of the feature fusion model
may insufficiently facilitate the model convergence. In order
to fully guide the parameter optimization of the whole model,
the losses of the narrow beam predictions according to the
sub-6 GHz CSI, the measured mmWave wide beams and the
fused feature vector are added up to train the model, which
can be written as

loss = −
JN∑
n=1

pn(λsub-6 log p̂sub-6,n+λMM log p̂MM,n+

λf log p̂n), (22)

where λsub-6, λMM and λf denote the corresponding weight
coefficients. Based on the calculated loss, the model training
is performed on the entire network in Fig. 2.

G. Additional Narrow Beam Measurement

Despite of achieving an excellent accuracy enhancement
by fusing the sub-6 GHz CSI and mmWave wide beam
measurement, it is still difficult to reach an almost perfect
beam alignment due to the huge number of candidate beams.
Therefore, we further exploit the additional narrow beam
measurement to achieve a near perfect beam alignment at the
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expense of a small extra overhead. Specifically, the narrow
beam with higher probability is more likely to enjoy larger
received power than other beam with smaller probability.
Therefore, the additional narrow beam measurement based on
the predicted probabilities can be performed, where the Kn
narrow beams having the highest predicted probabilities are
measured, whose indices Ln are given by{

p̂σ1
, p̂σ2

, · · · , p̂σJN

}
= 〈
{
p̂1, p̂2, · · · , p̂JN

}
〉, (23)

Ln =
{
σJN−Kn+1, σJN−Kn+2, · · · , σJN

}
. (24)

Let yn represent the received signal of the n-th candidate
mmWave narrow beam. The narrow beam having the highest
received power is selected as the optimal beam, i.e.,

n̂? = arg max
n∈Ln

|yn|2. (25)

Similar to Subsection III-C, both the fixed-number criterion
and the sum-probability criterion can be adopted to select the
predicted optimal narrow beams to be measured.

H. Extensions to More Scenarios

Our proposed dual-band fusion approach can be extended
to more practical scenarios, including the multi-user scenarios
and highly-dynamic scenarios.

1) Multi-user scenarios: The dual-band fusion approach
can be straightforwardly applied to the multi-user scenarios by
separately predicting the optimal mmWave beam of each user.
Based on the predicted optimal beams, hybrid beamforming
is usually adopted at each BS to achieve a good tradeoff
between the system capability and the hardware costs [44],
[45], while flexible beam scheduling can be applied to avoid
the interference among different mmWave BSs [46], [47].

2) Highly-dynamic scenarios: Although the mmWave
channels usually vary rapidly, our proposed dual-band fusion
approach could maintain a stable performance in the highly-
dynamic scenarios. This is because the duration of measuring
one mmWave beam is generally less than 100 µs [48]. As can
be seen from the following simulation results, our proposed
scheme can achieve an almost perfect beam alignment by
only requiring less than 20 mmWave measurements within
2 ms, where the propagation environment and the UE location
can be assumed to be unchanged. Therefore, the performance
degradation of our proposed scheme in the highly-dynamic
scenarios is negligible.

On the other hand, the stability of UE movements in the
dynamic scenarios can be further utilized to track the UE
trajectory and enhance the accuracy of beam prediction, where
recurrent neural networks (RNNs), e.g., gated recurrent units
[49] and long short-term memory networks [50], [51], have
shown impressive performance in tracking the beam variations.
Therefore, integrating the proposed dual-band fusion approach
with RNN is a very interesting direction for future research in
the highly-dynamic scenarios.

IV. SIMULATION STUDY

A. Simulation Setup

In order to accurately simulate the inter-BS CSI dependence,
we adopt the DeepMIMO dataset [27] generated by the precise

Fig. 4. Top view of ‘O1’ scenario [27].

TABLE I
DEFAULT PARAMETERS OF SIMULATED HETEROGENEOUS NETWORK.

Parameters Sub-6 GHz mmWave

Center frequency f c, fc 3.5 GHz 28 GHz
Bandwidth W , W 10 MHz 100 MHz

BS antenna number M , M 8 64
Transmit power P , P 30 dBm 25 dBm
Noise factor NF, NF 3 dB 6 dB

ray-tracing based on Wireless Insite [52]. Specifically, the
outdoor scenario ‘O1’ shown in Fig. 4 is considered, where UE
is randomly distributed in User Grid 1. The wireless HetNet
consists of one sub-6 GHz BS and J = 12 mmWave BSs,
where the sub-6 GHz BS is located at BS 5, and the mmWave
BSs correspond to BS 1 ∼ 12. Unless otherwise stated, the
parameters of the simulated HetNet are shown in Table I. The
power σ2 of the AWGN for mmWave signals is calculated as
(−174 + 10 log10W +NF) dBm, while the AWGN power σ2

for sub-6 GHz signals is calculated in the same way. The
default numbers of mmWave candidate narrow beams and
wide beams are set to N = 64 and Nw = 16, respectively,
and the ULA antennas of both sub-6 GHz and mmWave BSs
are deployed in the y-axis direction.

The specific structures of our proposed deep learning mod-
els as well as the corresponding numbers of parameters are
shown in Table II. Recall that fi and fo represent the numbers
of input feature channels and output feature channels. Lc is the
number of convolution layers, and {fo,1, fo,2, ..., fo,Lc} denote
the numbers of output feature channels in each convolution
layer, while the corresponding CNN structure parameters
(c1, c2, c3) represent the kernel size K, sampling stride and
zero-padding size, respectively. Furthermore, the dropout s-
trategy is exploited in FC layers to abandon partial neurons
randomly during model training for avoiding overfitting [53].
The training dataset comprising 100, 000 samples and the
validation dataset comprising 5, 000 samples are constructed,
respectively. The model is trained for 80 epochs, where Adam
optimizer is adopted to optimize the model parameters [54].

We compare the performance of our proposed fixed-number
criterion based (fixed-n based) and sum-probability criterion
based (sum-p based) schemes with the following two base-
lines.
Baseline 1: The sub-6 GHz CSI assisted mmWave narrow
beam prediction [18], which further measures the predicted
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TABLE II
PROPOSED DEEP LEARNING MODELS.

Models Layers Structures Numbers of parameters

Sub-6 GHz feature
extraction model

Convolution Lc = 4, fi = 2, fo = {128, 256, 512, 1024},
(3, 3, 1), BatchNorm, ReLU 2.07× 106

Pooling fi = 1024, fo = 1024, average-pooling 0

FC fi = 1024, fo = JN,
dropout = 0.3, softmax 1.02JN × 103

mmWave feature
extraction model

Convolution Lc = 4, fi = 2, fo = {128, 256, 512, 1024},
(3, 3, 1), BatchNorm, ReLU 2.07× 106

Pooling fi = 1024, fo = 1024, average-pooling 0

FC fi = 1024, fo = JN,
dropout = 0.3, softmax 1.02JN × 103

Attention module FC fi = 2JN, fo = 2JN,
dropout = 0.3, BatchNorm, sigmoid 2JN(2JN + 1)

Feature fusion
model

Convolution Lc = 4, fi = 2, fo = {128, 256, 512, 1024},
(3, 3, 1), BatchNorm, ReLU 2.07× 106

Pooling fi = 1024, fo = 1024, average-pooling 0

FC fi = 1024, fo = JN,
dropout = 0.3, softmax 1.02JN × 103

optimal Kn narrow beams for selecting the optimal beam with
the maximum received power.
Baseline 2: The mmWave narrow beam prediction [22], which
fuses the CSI of sub-6 GHz antennas and Kant mmWave
antennas pre-selected based on deep learning.

For a fair comparison, baseline 1 adopts the same structure
of the proposed sub-6 GHz feature extraction model, while
baseline 2 adopts a fully-connected network to select the
mmWave antennas, and its sub-6 GHz feature extraction,
mmWave feature extraction and feature fusion apply the same
models of our proposed scheme.

Two metrics are utilized for performance evaluation as given
below.
1) Normalized beamforming gain GN which is defined as

GN =

∣∣h(ĵ?)f
(ĵ?)
n̂?

∣∣2∣∣h(j?)f
(j?)
n?

∣∣2 . (26)

Recall that j? and n? are the indices of the actual optimal
mmWave BS and narrow beam, respectively, while ĵ? and n̂?

represent the corresponding predicted optimal indices.
2) mmWave measurement overhead O which is calculated as

O = Kw +Kn +Kant. (27)

The measurement overhead O reflects the communication cost.
It is noted that, without sub-6 GHz channel information, the
conventional beam search requires O = JN measurements
according to (6).

Since the performance of our proposed deep model may
depend on the model initialization in training, the average
results of 3 training runs are actually used as the evaluation
metrics.

B. Simulation Results

1) Complexity of the proposed model: Fig. 5 depicts the
numbers of parameters for our proposed deep learning model
under different numbers of mmWave BSs J and candidate
narrow beams N . Obviously, the number of model parameters
increases with J and N due to the larger size of the mmWave
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Fig. 5. Complexity of our proposed deep learning model in terms of
parameter number under different numbers of mmWave BSs and candidate
narrow beams.

narrow beam output probabilities. Furthermore, the relatively
small size of our proposed model with ∼ 10M parameters can
be easily deployed at BS side.

2) Investigation of model training and structures: Firstly,
Fig. 6 compares the convergence performance of our proposed
schemes under different weight coefficients in the loss function
(22), given Kw = 12 for the fixed-n based scheme and
ηw = 0.85 for the sum-p based scheme. Specifically, Figs. 6(a)
and 6(b) depict the normalized beamforming gain GN and
the mmWave measurement overhead O, respectively, and the
fixed-n based scheme is omitted in Fig. 6(b) owing to its fixed
overhead, i.e., O = Kw.

It is clear that both the proposed fixed-n based and sum-
p based schemes converge around 50 epochs. Interestingly,
the number of the measured wide beams O of our proposed
sum-p based scheme decreases with the training epoch in
Fig. 6(b), because the deep learning model can predict the
optimal mmWave beam more accurately via training, so that
most predicted probabilities are more likely to be possessed
by fewer wide beams. The results in Fig. 6(a) show that
both our proposed schemes with λsub-6 = λMM = λf = 1
significantly outperform their counterparts with other loss
function designs. Furthermore, Fig. 6(b) demonstrates that
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Fig. 6. Convergence of our proposed schemes in terms of (a) normalized
beamforming gain and (b) mmWave measurement overhead under different
weight coefficients of the loss function.

the mmWave overhead O of the sum-p based scheme with
λsub-6 = λMM = λf = 1 is much less than the schemes
with λsub-6 = 0, and is almost the same as the scheme
with λsub-6 = λf = 1, λMM = 0. These results validate
that adding up the loss function components in (22) could
effectively facilitate the model optimization. Therefore, the
weight coefficients for the loss function components in (22)
are set to λsub-6 = λMM = λf = 1 in the following simulations.

In Fig. 7, we further compare the two methods for calcu-
lating the wide beam probabilities in terms of the normalized
beamforming gain performance GN of our proposed fixed-n
based and sum-p based schemes. Specifically, the first method
predicts the probability of the optimal wide beam directly
according to the wide beam label with the largest received
power, while the second method, as proposed in (14), adds
up the probabilities of the narrow beams within the angular
range of each wide beam. The GN performance is illustrated
as the function of the mmWave measurement overhead O,
which corresponds to the number of measured wide beams
Kw for our proposed schemes, and each point in the curve of
the sum-p based scheme depicts the corresponding overhead
O and beamforming gain GN at a given probability sum
threshold from ηw ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}.
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Fig. 7. Normalized beamforming gain as function of mmWave measurement
overhead for our proposed schemes, where two methods for calculating wide
beam probabilities are investigated.

It is clear that calculating the wide beams as the probability
sum of narrow beams could achieve higher GN performance
under the same O for the both proposed schemes, which
demonstrates that our proposed calculation method is a more
suitable criterion to evaluate the qualities of wide beams for
the narrow beam prediction.

Next, Fig. 8 depicts the convergence performance of our
proposed two schemes, in terms of the normalized beam-
forming gain GN (Fig. 8(a)) and the mmWave measurement
overhead O (Fig. 8(b)), where the impact of the attention
mechanism is also investigated. For the fixed-n based scheme,
we choose two values for the number of measured wide beams
as Kw = 4 and 12, while for the sum-p based scheme, we set
two values for the probability threshold as ηw = 0.6 and 0.85.
Note that the fixed-n based scheme is omitted in Fig. 8(b)
owing to its fixed overhead, i.e., O = Kw.

It can be seen from Fig. 8(a) that for the fixed-n based
scheme with Kw = 4, GN converges around 50 epochs,
while the same scheme with a larger Kw of 12 achieves
faster convergence of around 40 epochs. Clearly, the fixed-
n based scheme with larger Kw achieves higher GN. By
contrast, for the sum-p based scheme with ηw = 0.6, GN
converges only around 30 epochs, and the same scheme with
ηw = 0.85 achieves even faster convergence, only around 20
epochs. Obviously, the sum-p based scheme with higher ηw
attends higher GN. The results of Fig. 8(a) also show that the
proposed schemes with the attention mechanism outperform
the corresponding schemes without the attention mechanism,
enhancing GN by 1% to 2%. Furthermore, the results of
Fig. 8(b) demonstrate that the sum-p based scheme with the
attention mechanism imposes the same overhead O as its
counterpart without the attention mechanism. Not surprisingly,
the sum-p based scheme with lower ηw has smaller overhead
O.

3) Performance comparison with the baselines in line-of-
sight (LOS) scenarios: Based on the simulation setup in Sub-
section IV-A, we compare the performance of our proposed
dual-band fusion scheme with the baselines in LOS scenarios.
Firstly, Fig. 9 compares the normalized beamforming gain
GN performance as the functions of the mmWave measure-
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Fig. 8. Convergence of our proposed schemes in terms of (a) normalized
beamforming gain and (b) mmWave measurement overhead, where the impact
of the attention mechanism is investigated.

ment overhead O for our fixed-n and sum-p based schemes
as well as the both baselines. No additional narrow beam
measurement is considered for our proposed schemes and
baseline 2, i.e., O corresponds to the number of measured
wide beams Kw for our proposed schemes, to the number
of measured narrow beams Kn for baseline 1, and to the
number of measured mmWave antennas Kant for baseline
2, respectively. The comparison of various schemes is made
under the same mmWave measurement overhead O. Each
point in the curve of our sum-p based scheme illustrates the
imposed mmWave overhead and achieved beamforming gain at
a given probability sum threshold ηw, which is selected from
ηw ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}. As expected,
the achievable GN performance of all the schemes increase
with O, because more mmWave measurements provide more
mmWave channel information for facilitating accurate pre-
diction. It can be seen that the GN performance of our
proposed schemes and baseline 1 is significantly better than
that of baseline 2, since the UE-specific high-quality mmWave
beams can achieve higher signal-to-noise ratios for acquiring
more reliable mmWave channel information. Moreover, our
proposed schemes outperform baseline 1 by around 7% in
terms of achievable GN, which validates that the wide beams
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Fig. 9. Normalized beamforming gain as function of mmWave measurement
overhead for various schemes, where the proposed schemes and baseline 2
do not take additional narrow beam measurement.

can effectively cover the large uncertain area under low
overhead for enhancing the prediction performance, compared
to the narrow beams. In addition, our sum-p based scheme
achieves larger GN than our fixed-n based scheme when O is
small. In order to further illustrate the achievable performance
under small to modest mmWave measurement overhead O, the
cumulative distribution functions (CDFs) of the achievable GN
performance of various schemes are depicted in Fig. 10, where
the mmWave measurement overhead is set to O = 6 for the
both baselines and our fixed-n based scheme, while our sum-
p based scheme has O = 5.79 with the probability threshold
ηw = 0.7. It can be seen that since our sum-p based scheme
can adaptively adjust the number of measured wide beams
according to the prediction confidence, the number of the
UE suffering from severe performance degradation has been
effectively reduced, compared to our fixed-n based scheme.
However, as O increases, the achievable GN of the fixed-n
based scheme approaches that of the sum-p based scheme,
which can be clearly seen from Fig. 9.

Taking the additional narrow beam measurement can ob-
viously improve the performance. We further investigate the
normalized beamforming gain performance GN as the function
of the mmWave measurement overhead O for various schemes
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Fig. 10. Comparison of the CDFs of normalized beamforming gain for
various schemes, where the proposed schemes and baseline 2 do not take
additional narrow beam measurement.
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Fig. 11. Normalized beamforming gain as function of mmWave measurement
overhead for various schemes, where the proposed schemes and baseline 2
take additional narrow beam measurement.

in Fig. 11, given Kant = Kw = 6 for baseline 2 and our
fixed-n based scheme, and ηw = 0.7 for our sum-p based
scheme. The both baselines and our fixed-n based scheme
use the fixed-number criterion to select the predicted optimal
narrow beams, while our sum-p based scheme adopts the
sum-probability criterion to select the narrow beams, giv-
en the probability threshold of the narrow beam prediction
ηn ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Therefore, the mmWave
measurement overhead is O = Kw +Kn for our two proposed
schemes, and O = Kant + Kn for baseline 2, while the
overhead is O = Kn for baseline 1. Firstly, it can be seen that
our proposed schemes achieve accurate beam alignment with
GN > 80% under O = 10, which significantly reduces the
mmWave communication costs compared to the conventional
beam search with O = JN = 768 measurements. Then,
the comparison of various schemes is made under the same
mmWave measurement overhead O, which can only start from
O ≥ 6. Both the proposed schemes significantly outperform
the baselines. This is because, when the UE-specific additional
narrow beam measurement has provided reliable mmWave
channel information, the effective feature fusion of the sub-
6 GHz and mmWave bands based on deep learning plays
the dominant role for facilitating accurate beam prediction.
Moreover, the GN performance of our sum-p based scheme
surpasses the fixed-n counterpart by around 4% when O > 15,
and it obtains the almost perfect beam alignment of GN =
95.5% with O = 22. Interestingly, baseline 1 outperforms
baseline 2 when the total mmWave measurement overhead
O < 14.

The impact of the mmWave transmit power P on the
performance of various schemes is investigated in Fig. 12,
where Fig. 12(a) illustrates the normalized beamforming gain
GN for various schemes, and Fig. 12(b) depicts the mmWave
measurement overhead O for our proposed sum-p based
scheme. It can be seen from Fig. 12(a) that the achievable GN
of baseline 2 and both the proposed schemes increases with
P due to higher signal-to-noise ratios (SNRs) of the mmWave
low-overhead measurements. By contrast, the GN performance
of baseline 1 is robust to P , since baseline 1 does not use the
mmWave information as the prediction input. Furthermore,
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Fig. 12. Impact of mmWave transmit power on (a) normalized beamforming
gains for various schemes, and (b) mmWave measurement overhead for the
proposed sum-p based scheme.

Fig. 12(b) shows that the mmWave transmit power P has
little effect on the number of measured mmWave wide beams
for our proposed sum-p based scheme, since the wide beam
selection only relies on the sub-6 GHz CSI.

Fig. 13 depicts the impact of the number of mmWave BS
antennas M on the performance of various schemes, where
Fig. 13(a) illustrates the normalized beamforming gains GN
for various schemes, and Fig. 13(b) depicts the mmWave
measurement overhead O for our sum-p based scheme. More
specifically, Fig. 13(a) shows that the achievable GN of all the
schemes decrease with M . This is because more mmWave
antennas could generate narrower beamwidth, making it more
difficult to accurately predict the optimal narrow beam. Fur-
thermore, the number of measured mmWave wide beams
of our proposed sum-p based scheme maintains stable in
Fig. 13(b), because the wide beam selection only adopts the
sub-6 GHz CSI as the input.

Next, we investigate the impact of the sub-6 GHz antenna
number M in Fig. 14. Specifically, Fig. 14(a) depicts the
normalized beamforming gain GN as the function of M
for various schemes, while Fig. 14(b) illustrates the average
mmWave measurement overhead O as the function of M for
our sum-p based scheme. It can be seen from Fig. 14(a) that the
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Fig. 13. Impact of mmWave BS antenna number on (a) normalized
beamforming gains for various schemes, and (b) mmWave measurement
overhead for the proposed sum-p based scheme.

achievable GN increases with M for the both baselines and our
fixed-n based scheme, given the same mmWave measurement
overhead. This is because a larger number of sub-6 GHz
antennas can provide more comprehensive information of the
wireless environment and UE location for supporting accurate
mmWave beam prediction. By contrast, the achievable GN
remains relatively unchanged for our sum-p based scheme as
M increases. To understand why, we need to look Fig. 14(b),
which shows that as M increases, our sum-p based scheme
reduces the mmWave measurement overhead O accordingly
to maintain the same GN. This exactly demonstrates that our
sum-p based scheme is capable of adaptively adjusting the
number of selected wide beams to be measured based on dif-
ferent prediction confidences under various M . Therefore, the
probability sum threshold is a more robust criterion to different
prediction confidences, which is capable of achieving the same
excellent performance in diverse wireless environments.

Finally, we investigate the impact of the sub-6 GHz transmit
power P on the normalized beamforming gain GN and the
mmWave measurement overhead O in Fig. 15. Fig. 15(a)
shows that the achievable GN increases with P for the both
baselines and our fixed-n based scheme due to higher sub-6
GHz SNRs. By contrast, it can be seen that the mmWave mea-

2 4 8 16 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

2 4 8 16 32

0

5

10

15

20

25

(b)

Fig. 14. Impact of sub-6 GHz BS antenna number on (a) normalized
beamforming gains for various schemes, and (b) mmWave measurement
overhead for the proposed sum-p based scheme.

surement overhead O of our proposed sum-p based scheme
decreases as P increases in Fig. 15(b), while the corresponding
GN performance maintains stable in Fig. 15(a), which verifies
that the sum-probability criterion can adaptively adjust the
number of measured mmWave wide beams to achieve robust
beamforming gain performance under different sub-6 GHz
SNRs.

4) Performance comparison with the baselines in non-line-
of-sight (NLOS) scenarios: To further validate the effective-
ness of our proposed dual-band fusion approach, we investi-
gate the beamforming gain performance of various schemes in
the complex NLOS scenarios. Specifically, we assume that the
UE is uniformly distributed in R1∼R1400 and R1900∼R2751
of User Grid 1 in Fig. 4, while one sub-6 GHz BS at BS 15 and
4 mmWave BSs at BS 15 ∼ 18 are considered in the wireless
HetNet. The transmit power of sub-6 GHz and mmWave BSs
is set to P = 40 dBm and P = 35 dBm, respectively, and
other simulation setups are consistent with Subsection IV-A.

Taking additional narrow beam measurement into consider-
ation, the normalized beamforming gain performance GN as
the functions of the mmWave measurement overhead O are
compared in Fig. 16, given Kant = Kw = 4 for baseline
2 and our fixed-n based scheme, and ηw = 0.8 for our
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Fig. 15. Impact of sub-6 GHz transmit power on (a) normalized beamforming
gain for various schemes, and (b) mmWave measurement overhead for the
proposed sum-p based scheme.

sum-p based scheme. The fixed-number criterion is adopted
to select the predicted optimal narrow beams for the both
baselines and our fixed-n based scheme, while our sum-p based
scheme uses the sum-probability criterion to select the narrow
beams, where the probability threshold of the narrow beam
selection is ηn ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Clearly, our
proposed schemes outperform the both baselines, and the GN
performance of our sum-p based scheme surpasses its fixed-n
counterpart by around 5% under 6 < O < 8. Moreover, both
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Fig. 16. Normalized beamforming gain as function of mmWave measurement
overhead for various schemes in NLOS scenarios, where the proposed schemes
and baseline 2 take additional narrow beam measurement.

the proposed schemes could achieve accurate beam alignment
of GN > 80% under O = 8, which demonstrates that our
proposed dual-band fusion approach could efficiently find the
optimal mmWave beam in the NLOS scenarios.

V. CONCLUSIONS

In this paper, by exploiting the inter-BS CSI dependence,
we have proposed a dual-band fusion approach to integrate the
sub-6 GHz CSI and mmWave low-overhead measurement to
predict the optimal mmWave beam in the HetNet and reduce
the overhead of both mmWave BS selection and beam training.
Besides, deep learning is adopted to accurately model the com-
plex inter-BS CSI dependence. Concretely, the UE-specific
high-quality mmWave wide beams predicted by the sub-6
GHz CSI have been proposed as the mmWave low-overhead
measurement. The sum-probability criterion, which selects the
max-probability wide beams whose probability sum is larger
than the predefined threshold, has been further developed to
flexibly adjust the number of measured mmWave wide beams
according to the prediction confidence. Furthermore, the at-
tention mechanism has been utilized for adaptively weighting
the features extracted from the sub-6 GHz CSI and mmWave
wide beams for enhancing the prediction accuracy. Simulation
results have demonstrated that our proposed scheme achieves
higher beamforming gain with smaller mmWave measurement
overhead, compared to the existing state-of-the-art sub-6 GHz
CSI assisted mmWave beam prediction schemes.
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