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Abstract

Sample coordination methods aim to increase (in positive coordination) or decrease (in
negative coordination) the size of the overlap between samples. The samples considered can be
from different occasions of a repeated survey and/or from different surveys covering a common
population. Negative coordination is used to control the response burden in a given period,
because some units do not respond to survey questionnaires if they are selected in many samples.
Usually, methods for sample coordination do not take into account any measure of the response
burden that a unit has already expended in responding to previous surveys. We introduce such
a measure into a new method by adapting a spatially balanced sampling scheme, based on a
generalization of Poisson sampling, together with a negative coordination method. The goal
is to create a double control of the burden for these units: once by using a measure of burden
during the sampling process and once by using a negative coordination method. We evaluate
the approach using Monte-Carlo simulation and investigate its use for controlling for selection
‘hot-spots’ in business surveys in Statistics Netherlands.

Keywords: coordinated sampling, negative coordination, survey burden, burden hot-spots.

1 Introduction

Sample coordination methods seek to alter the size of the overlap(s) between two or more samples
relative to the case where all the samples are selected independently. Positive coordination refers
to the case where the overlap is larger than under independent sampling, and is generally used to
reduce the variance of measures of change between successive periods of repeating surveys, though
it can also be used to link together information from two separate surveys. Negative coordination
is when the overlap is smaller than under independent sampling, and is used particularly to reduce
the number of surveys in which a particular unit is selected in a given period, and therefore to
control the perceived burden of responding (Bradburn, 1978). Bottone et al. (2021) have shown
that increased perceived burden is associated with higher attrition and partial response, and also
with lower data quality.

In fact the effect of negative coordination is to spread out a fixed overall burden across either
or both of more units and more time, so the total burden is the same, but the risk of any particular
unit having a large burden within a short period is reduced - ideally to zero, though this is not
always possible in practice, because detailed stratification can result in some parts of the population
being relatively heavily sampled. Negative coordination has been widely applied in business surveys
where sampling fractions tend to be large, and we focus on examples from surveys of businesses
and institutions, though the approach can be applied in various situations.
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There are many available methods for sample coordination, and Matei and Smith (2023) give an
overview of them. An important approach in sample coordination is the use of permanent random
numbers (PRNs). PRNs were introduced by Brewer et al. (1972) to coordinate Poisson samples,
and have been widely used since as the basis of other, different methods (see Ohlsson, 1995, for an
overview). They have also formed the basis of a number of sample coordination systems (which are
also reviewed by Matei and Smith, 2023), which generally have to deal with a series of practical
issues as well as following the theory of a particular sample coordination method. Coordination
systems operate most flexibly where there are many units, and so benefit small units particularly.
But they also operate to spread the response burden evenly for units of all sizes.

The consequence is that although a sample coordination system reduces the overlaps between
samples and therefore the current burden, there are still some units which appear more frequently
than others across the range of samples being coordinated. This is at least partly driven by the
use of stratified designs with many small strata, some of which have large inclusion probabilities.
Statistics Netherlands operates a sample coordination system called the Survey Burden System
(Smeets and Boonstra, 2018) which uses a PRN coordination approach which takes account of the
accumulated burden of the units. This system does indeed result in relatively only a few units
being included in multiple samples, but these ‘hot-spots’ are a challenge because of the burden they
represent for particular units and the consequent effects on response and relations with respondents.

A related situation is identified by Landry (2011) in Statistics Canada’s Survey of Employment,
Payroll and Hours (SEPH). Landry suggests the use of a take-none (cut-off) stratum, mainly to
control the response burden on the smallest businesses. Although cut-off sampling is widely used,
there is a risk of bias in estimates from such samples, so a better approach to burden control
allowing unbiased estimation would be preferable.

In this paper we therefore seek a method which follows the requirements of negative sample
coordination, but allows for some additional control for units which have particular characteristics.
We adapt the approach of spatially correlated Poisson (SCP) sampling (Grafström, 2012) to this
problem, by introducing a measure of the response burden in the sampling process.

In the remainder of the paper we introduce the framework and notation for sample coordination
in Section 2, outline the procedure for spatially correlated Poisson sampling in Section 2.4 and
develop the methodology for sample coordination with targetted double control in Section 3. We
evaluate our proposal in Section 3.2; we provide Monte-Carlo simulation studies using the MU284
population from Särndal et al. (1992) in Section 3.3, and real data on the business population in
the Netherlands to assess its ability to deal with hot-spots in Section 3.4. Section 4 concludes with
a discussion.

2 Sample coordination and SCP sampling

2.1 Framework and notation

We consider the framework of two overlapping finite populations of units, denoted by U1 and U2.
One selects samples s1 from U1 and s2 from U2, using the sampling designs p1 and p2, respectively.
The set formed by the two samples can be seen as a bivariate sample s = (s1, s2) ⊆ U1 × U2,
having a joint sampling design p, with the marginals p1 and p2. The samples s1 and s2 are drawn
dependently to alter the size of the overlap(s) between them relative to the case where the samples
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are selected independently. Thus, the samples s1 and s2 are said to be coordinated if

p(s1, s2) ̸= p1(s1)p2(s2),

(see Cotton and Hesse, 1992; Mach et al., 2006).
The size of the overlap between s1 and s2, denoted by c, represents the number of units common

to s1 and s2. It is in general a random variable having expectation

E(c) =
∑
k∈U

πk,12,

with
πk,12 = P (k ∈ s1, k ∈ s2) =

∑
s1,k∈s1

∑
s2,k∈s2

p(s1, s2),∀k ∈ U,

and U = U1 ∪ U2 is the so-called ‘overall population’. Maximizing/minimizing E(c) in posi-
tive/negative sample coordination represents an overall standard to evaluate a coordination method.

Let πk1 = P (k ∈ s1) and πk2 = P (k ∈ s2) be the first-order inclusion probabilities of unit k ∈ U
in the first and second sample, respectively. We consider that πk1 = 0 if k /∈ U1 (if s1 and s2 are
samples for two periods of the same survey, these new units represent ‘births’) and πk2 = 0 if k /∈ U2

(‘deaths’).
Based on probability theory, the following bounds are available for the joint probability πk,12,

for any k ∈ U

ALBk = max(0, πk1 + πk2 − 1) ≤ πk,12 ≤ min(πk1, πk2) = AUBk, (1)

where ALB stands for ‘absolute lower bound’ and AUB for ‘absolute upper bound’. One obtains
the lower and upper bounds for E(c) by applying the sum over all units k ∈ U on the left and right
side of Expression (1) (see Matei and Tillé, 2005):

ALB =
∑
k∈U

ALBk ≤ E(c) ≤
∑
k∈U

AUBk = AUB. (2)

If s1 is drawn before s2, and s2 is selected conditionally on s1 using a probability P (s2|s1),
one can obtain any value of πk,12 ∈ [ALBk, AUBk] using the conditional probabilities (Cotton and
Hesse, 1992)

P (k ∈ s2|k ∈ s1) = πk,12/πk1,

P (k ∈ s2|k /∈ s1) = (πk2 − πk,12)/(1− πk1).

We focus below on the negative coordination of two samples. Reaching the lower bound in
Expression (1) for all units k ∈ U is equivalent to creating the ‘best’ possible degree of negative
coordination between samples based on their overlap minimization.

2.2 Sample coordination with PRNs

As underlined in Section 1, sample coordination methods with PRNs are commonly used in prac-
tice. They are based on the following basic idea: one associates a uniform random number drawn
independently from the Unif(0, 1) distribution with each unit k ∈ U . These numbers are called
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‘permanent’ since they are used in the selection process over time and over surveys for units which
persist in the population. For a ‘birth’ (a new unit which appears in the population), a new PRN
is assigned; for a ‘death’ (a unit which disappears from the population), the unit and its associated
PRN are deleted from the corresponding survey frame.

Introduced by Brewer et al. (1972), Poisson sampling with PRNs is widely used in sample
coordination, especially as a base for coordination systems (see Qualité, 2019, for an example
applied in Switzerland). In negative coordination it is implemented as follows: first, one generates
the PRNs u1, u2, . . . , uN independently from the Unif(0, 1) distribution. Next, if uk < πk1, k ∈ U,
unit k is included in s1. The sample s2 is selected in a similar manner, but using the numbers
1 − uk instead of uk: if 1 − uk < πk2 then unit k is included in s2. Using Poisson sampling with
PRNs to negatively coordinate s1 and s2 allows the bound ALBk in Expression (1) to be reached
for any unit k ∈ U . This can be shown as follows: unit k is selected in both s1 and s2 if uk < πk1

and 1 − uk < π2k. This is equivalent to 1 − πk2 < uk < πk1. The probability that this occurs is
max(0, πk1 − (1− πk2) = max(0, πk1 + πk2 − 1) = ALBk.

While Poisson sampling with PRNs is a very attractive scheme for sample coordination, it has
an important drawback: the resulting samples have random sizes, increasing the variance of the
estimates. For this reason, fixed-size sampling designs are sometimes preferred; see, for instance,
Pareto sampling with PRNs (Rosén, 1997a,b). Nevertheless, the bounds provided in Expression
(1) are in general not reached using sampling designs with fixed sample size and unequal inclusion
probabilities; for some empirical results based on Monte-Carlo simulation, see Grafström and Matei
(2018). Compared to Poisson sampling with PRNs which allows independent selection of units,
such sampling designs impose more restriction on the unit selection mainly due to the fixed sample
size, and fail in general to reach the bounds provided in Expression (1). Theoretical conditions to
reach the two overall bounds given in Expression (2) are provided by Matei and Tillé (2005).

2.3 Response burden and sample coordination

Response burden is a difficult concept to define; it may include objective factors such as the time
spent to provide questionnaire responses and subjective factors such as what is perceived as burden
by the respondents, see for instance Natkowska and Modak (2014); Bottone et al. (2021). From the
statistical perspective, we use the following definition provided by Sunter (1977).

Consider several surveys j = 1, 2, . . . ,M having associated populations of units U1, U2, . . . , UM ,
with U = ∪M

j=1Uj . The response burden of unit k in M surveys is a random variable

RBk =

M∑
j=1

βj × Ikj ,

with Ikj = 1 if k ∈ sj and 0 otherwise, and βj is the response load imposed by the jth survey for
all units selected to participate in this survey. The expected value of RBk is given by E(RBk) =∑M

j=1 βjπkj , k ∈ U, where πkj = P (k ∈ sj), and sj is the jth survey sample, j = 1, . . . ,M. When
βj = 1, for all j = 1, . . . ,M, we simply obtain that

RBk =

M∑
j=1

Ikj , and E(RBk) =

M∑
j=1

πkj , k ∈ U. (3)

The response burden is commonly associated with a negative coordination of samples. Usually,
a coordination method does not use any measure of response burden in the sampling process. If a
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negative coordination method is applied, the value of the response burden (seen as the realization
of a random variable) diminishes for the units not included in the overlap: for instance, for two
selected samples s1, s2, and considering the first part of Expression (3), the value of RBk is 1 if
k ∈ s1 \ s2 or k ∈ s2 \ s1 while it is 2 if k ∈ s1 ∩ s2. Minimizing the sample overlap size implies
having fewer units with the value of Rk = 2. However, at the overall level, sample coordination
methods do not affect E(RBk), but try to control for excessive burdens and to allocate burdens in
a fair way, as well as to reduce the variance of RBk.

In what follows, we use the expression cumulated response burden to denote the realized value
of the RBk given in the first part of Expression (3).

2.4 Spatially correlated Poisson sampling

Spatially correlated Poisson (SCP) sampling is a particular case of correlated Poisson sampling,
a family of sampling designs introduced by Bondesson and Thorburn (2008). First, we review
this method for a generic sample with given first-order inclusion probabilities; next, we give the
modification provided by Grafström (2012) which produces SCP samples.

Correlated Poisson sampling is a list sequential method used to draw a random sample s̃ from

U , with prescribed inclusion probabilities πk, k ∈ U. Consider the selection probability π
(k−1)
k , that

allows unit k to be selected in s̃ at the kth iteration of the following algorithm (see Step 3b):

Step 1: set π
(0)
ℓ = πℓ, for all ℓ ∈ U.

Step 2: set k = 1;

Step 3: while k ≤ N do

3a: generate ũk independently from the Unif(0, 1) distribution,

3b: if ũk < π
(k−1)
k then Ik = 1 (k is selected in s̃) else Ik = 0 (k is not selected in s̃), where

Ik is the indicator variable associated to unit k ∈ U.

3c: update the selection probabilities for the remaining units i = k + 1, . . . , N according to

π
(k)
i = π

(k−1)
i − (Ik − π

(k−1)
k )w

(i)
k ,

where w
(i)
k are some weights given by unit k to other units i = k + 1, . . . , N.

3d: increment k.

The weights can be chosen freely in the following range

−min

(
1− π

(k−1)
i

1− π
(k−1)
k

,
π
(k−1)
i

π
(k−1)
k

)
≤ w

(i)
k ≤ min

(
π
(k−1)
i

1− π
(k−1)
k

,
1− π

(k−1)
i

π
(k−1)
k

)
, (4)

in order to assure that 0 ≤ π
(k−1)
i ≤ 1, i = k + 1, ..., N . The weights w

(i)
k may depend on

I1, I2, . . . , Ik−1 but not on Ik, Ik+1, . . . , IN . The choice of w
(i)
k provides different sampling designs;

for instance, Poisson sampling is obtained if all w
(i)
k are zero, k ∈ U . Bondesson and Thorburn

(2008) showed that a fixed size sampling is obtained if for each k ∈ U :
∑N

i=k+1 w
(i)
k = 1 and∑

k∈U πk = n, n being the sample size. The prescribed inclusion probabilities are respected since
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P (k ∈ s̃) = πk, k ∈ U, regardless of the choice of w
(i)
k (see Remark 1 in Bondesson and Thorburn,

2008). This is due to the fact that

E(π
(k−1)
k ) = E(E(π

(k−1)
k | π(k−2)

k )) = E(π
(k−2)
k ) = · · · = πk, for all k = 1, 2, . . . , N,

as underlined by Grafström (2012).
Grafström (2012) applied this method in spatial sampling, where the units in the population

have associated geographical coordinates which can be used to compute distances between them.
His goal was to draw a balanced sample, so that the selected units are spread over the space under
study. To avoid clustering of similar units and to obtain well-spread samples, Grafström (2012)

used positive weights w
(i)
k in Expression (4) chosen such that unit k gives maximal weight to the

unit closest to k in (Euclidean) distance, among the units i = k+1, . . . , N, then as much weight as

possible to the second closest unit, etc. with the restriction that
∑N

i=k+1 w
(i)
k = 1 is fulfilled, for any

k ∈ U, and respecting the upper bound for each weight w
(i)
k in Expression (4). This method, called

the maximal weight strategy, provides spatially correlated Poisson sampling, which is a balanced
spatial sampling design of fixed sample size, assuming that

∑
k∈U πk = n. Moreover, if πk, k ∈ U

are proportional to a size measure, SCP sampling becomes a πps sampling design of fixed sample
size.

Grafström and Matei (2018) employed SCP sampling with PRNs to coordinate samples in a
manner similar to Poisson sampling with PRNs (Brewer et al., 1972). Thus, for negative coordina-
tion, Step 3a of the previous algorithm is executed only once for s1, in order to associate a PRN
uk with each unit k ∈ U , and ũk is replaced by uk. Next, to select s1 one uses uk instead of ũk and
the corresponding selection probabilities in Step 3a; to select s2, one uses 1− uk instead of ũk and
the corresponding selection probabilities in Step 3a. SCP sampling with PRNs is implemented in
the function ‘scps coord’ of the R package ‘BalancedSampling’ (Grafström et al., 2022).

3 Targetted double control strategy

3.1 Description of the strategy

Due to the cumulated response burden, some units do not answer the survey questionnaires if they
are selected in many samples (Lorenc et al., 2013). We assume that, over time, some such units with
a large cumulated burden become ‘notorious’ non-respondents. The same occurs with ‘hot-spots’ in
business surveys in Statistics Netherlands (see Section 3.4). We denote these units as non-desired
units, and we want to exclude them as much as possible from future selections, while respecting
their prescribed inclusion probabilities. It is possible to classify the units of U into two categories:
desired (usually with low cumulated response burden) and non-desired units (usually with large
cumulated response burden).

Our goal is to produce a double control of the response burden for the non-desired units: first
by using a measure of the response burden in the sampling process, and second by using a method
for negative sample coordination.

To create a targetted double control of non-desired units, we modify spatially correlated Poisson
sampling (Grafström, 2012), and use a negatively coordinated sampling scheme. We describe below
how to adapt SCP sampling for the coordination framework with targetted double control.

As explained in Section 2.4, in spatial sampling, the units in U have associated geographical co-
ordinates. It is thus possible to compute distances between units, usually using Euclidean distance.
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Units close in distance provide in general similar information. Spatially balanced sampling allows
the selection of units that are spread over the space, and thus avoids collecting similar information.

We propose to replace the matrix of geographical coordinates in SCP sampling by the vector
formed by a measure based on the response burden of each unit. Other information, such as the
inclusion probabilities, can also be included, and the vector becomes a matrix. This could lead
to an extra spread with respect of the inclusion probabilities. Similar units usually have inclusion
probabilities close to each other and non-desired units often have larger inclusion probabilities.

The Euclidean distances between units are next computed using this new vector or matrix. If
a non-desired unit is selected in the current sample, SCP sampling avoids selecting a similar unit.
Next, we use a negative coordination method for samples. We call this method the targetted double
control strategy, while a SCP sample used in this strategy is called an adapted SCP sample (ASCP
sample). For adapted SCP sampling, a measure of the response burden for a unit can simply be
defined as 1 if the unit is a non-desired unit and 0, otherwise; this represents a proxy for large and
small cumulated response burdens respectively, and defines a measure of the unit status. Other
measures of response burden can be used. For instance, we employ the cumulated response burden
in Section 3.4.

These two options (unit status and cumulated response burden respectively) are used in the
algorithm given below which describes the adapted SCP sampling for two negatively coordinated
samples s1 and s2:

Step a: based on previous information (previous surveys), create the vector or matrix which includes
the information about the unit status (desired or non-desired) or the cumulated response
burdens of the units in U ;

Step b: select s1 using the corresponding inclusion probabilities, by applying SCP sampling with the
maximum weight strategy. The Euclidean distances between units are computed using the
vector or matrix created in Step a. If the cumulated response burdens of the units are used
in the vector or matrix, update them, as well as the vector or matrix, after the selection of
s1, according to the definition given in Expression (3);

Step c: select s2, negatively coordinated with s1, using the corresponding inclusion probabilities, by
applying SCP sampling with the maximum weight strategy. The Euclidean distances between
units are computed using the same vector or matrix as for selection of s1 if the unit status is
used, or the updated ones if the cumulated response burdens are used.

If s1 and s2 are negatively coordinated using PRNs, s1 is drawn using uk, k ∈ U , while s2 using
1− uk, k ∈ U (uk replaces ũk in Step 3b of the algorithm given in Section 2.4).

Remark 1 As indicated in Section 2.3, the response burden is a random variable. The Euclidean
distances in the previous algorithm are computed conditionally on the realized value of RBk, k ∈ U .

3.2 Effectiveness of targetted double control strategy

We provide in the next two sections results of Monte-Carlo simulation to show the effectiveness of
the proposed strategy, and use two methods to test its performances:

• Method 1: two samples are negatively coordinated using PRNs;
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• Method 2: two samples are negatively coordinated but without using PRNs. One new sample
s2 is drawn and negatively coordinated with an existing sample s1 (s1 is fixed and the inclusion
probabilities are known). It is possible that s1 was selected using PRNs, but these numbers are
not available for the second selection. Thus, conditional on s1, a new random number uk2 is
associated with unit k ∈ U : if k ∈ s1, one generates uk2 independently from the Unif(0, πk1)
distribution; otherwise one generates uk2 independently from the Unif(πk1, 1) distribution.
Next, k is selected in s2 using the number 1− uk2, and the probability πk2, k ∈ U.

In practice, Method 1 is applied in the general case when it is possible to draw new samples for
both survey 1 and 2. Method 2 is applied if it is not possible to draw a new sample s1 for practical
reasons. For example, if the businesses have already received a questionnaire for survey 1, or when
a new survey is added to a coordination system and the PRNs of the businesses cannot be extracted
from the system.

Five measures provided below are used to quantify the performance of the proposed strategy.
Measures 1 and 2 focus on the selection of non-desired units. Measure 1 quantifies the number
of pairs (s1, s2) with given numbers of non-desired units in common between s1 and s2 (that is,
the number of non-desired units in the overlap), and it is the most important for the study of the
proposed strategy application. We expect that the proposed strategy will reduce the variance of the
number of non-desired units in the overlap compared to its competitors and independent sampling.
Measure 2 is related to ALBk, with k being a non-desired unit. Ideally, one wants to reach the lower
bound ALBk given in Expression (1) for P (k ∈ s1, k ∈ s2) = πk,12, for any k ∈ U . As underlined in
Section 2.2, we are able to reach it when both s1 and s2 are selected using Poisson sampling with
PRNs (so when Method 1 is applied). Method 2 does not always allow it to be reached. We hope
that the proposed strategy provides values of the estimated P (k ∈ s1, k ∈ s2) of the non-desired
units close to this bound, showing that such units have small chances to be selected in the two
samples. In some cases, however, a direct comparison with ALBk, is not possible (see for example
Method 2, framework 2 in Section 3.3), but we expect that the proposed strategy provides values
of the estimated P (k ∈ s1, k ∈ s2) lower than its competitors, or at least similar.

Measures 3, 4 and 5 concern the overall performance of a negative coordination method. A
value of Measure 3 close to ALB indicates an important degree of negative coordination of the two
samples. Measures 4 and 5 are measures of the overlap (relative) variance. As before, we expect
that our strategy is able to provide lower values than its competitors for Measures 3, 4, and 5, or
at least similar.

The five measures are:

• Measure 1: number of pairs of samples (s1, s2), with s1 and s2 containing in common a number
of given non-desired units through simulations;

• Measure 2: values of the estimated P (k ∈ s1, k ∈ s2) of the non-desired units through
simulations;

• Measure 3: the Monte-Carlo expected overlap

Esim(c) =
1

m

m∑
ℓ=1

c1,2ℓ ,

where c1,2ℓ = |s1ℓ ∩ s2ℓ|, and s1ℓ, s2ℓ, are the samples drawn in the ℓth run, and |s1ℓ ∩ s2ℓ|
represents the number of common units of s1ℓ and s2ℓ, m is the number of runs; for Method
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2, when s1 is fixed (as in some simulations below), c1,2ℓ = |s1 ∩ s2ℓ|, where s2ℓ, is the sample
drawn in the ℓth run, where |s1 ∩ s2ℓ| represents the number of common units of s1 and s2ℓ;

• Measure 4: the Monte-Carlo variance of the overlap

Vsim(c) =
1

m− 1

m∑
ℓ=1

(c1,2ℓ − Esim(c))2;

• Measure 5: the Monte-Carlo coefficient of variation of the overlap

CVsim(c) =

√
Vsim(c)

Esim(c)
.

3.3 Simulation with MU284 population

We consider as U region 2 of the well-known MU284 data (see Appendix B in Särndal et al., 1992).
Samples s1 and s2 with expected sizes n1 = 10 and n2 = 6 are selected respectively from this region
which contains in total N = 48 units. No births or deaths are used. The inclusion probabilities
πk1 and πk2, k ∈ U are respectively proportional to variables P75 and P85, the population size of
Swedish municipalities in 1975 and 1985. We call this setting the ‘MU284 population’. Six units
from U (with labels 4, 12, 21, 22, 32 and 44) are declared non-desired units for both s1 and s2. As
a measure of the response burden of a unit k we use a binary variable to compute the Euclidean
distances in adaptive SCPS : 1, if unit k is a non-desired unit, and 0 otherwise (the unit status).

We provide below results of Monte-Carlo simulations using Methods 1 and 2 and different
sampling schemes. In the simulations 100,000 runs are used.

In Method 1, both s1 and s2 are random in each run and have the same type (the same sampling
scheme is used), but different inclusion probabilities. They are negatively coordinated with PRNs
in the following first 5 cases below, while the 6th case refers to independent sample selections. In
each run of the Monte-Carlo simulation, we draw:

1. two Poisson samples;

2. two Pareto samples;

3. two adapted SCP samples; for s1, s2, only π1 and respectively π2 are used to compute the
Euclidean distances between the units (this case is indicated ASCP π in the following tables;
ASCP stands for adapted SCP);

4. two adapted SCP samples; for s1, π1 and the values of the unit status are used to compute
the Euclidean distances; for s2, π2 and the values of the unit status are used to compute the
Euclidean distances (this case is indicated by ASCP π inf in the following tables);

5. two adapted SCP samples; for s1, s2, the values of the unit status are used to compute the
Euclidean distances (this case is indicated by ASCP inf in the following tables);

6. two independent adapted SCP samples (without negative coordination); for s1, s2 , the values
of the unit status are used to compute the Euclidean distances (this case is indicated by
‘ASCP inf without coordination’ in the following tables).
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Pareto sampling is introduced in the Monte-Carlo simulation because it provides fixed sample sizes,
as well as the adaptive SCPS. The inclusion probabilities are used in the adaptive SCPS in cases
3 and 4 above to compare with case 5, which only uses the binary information to compute the
Euclidean distances.

Method 2 is applied in two different frameworks in order to make the connection with the
application given in Section 3.4 which uses real data:

1. framework 1: both s1 and s2 are random in each run; s1 is a Poisson sample, while s2 is a
sample of the type enumerated for Method 1 (Poisson, Pareto, etc.);

2. framework 2: the first sample s1 is fixed (s1 = {4, 6, 12, 18, 22, 35, 44}) and is a Poisson
sample, and only s2 is random in each run; s2 is a sample of the type enumerated for Method
1 (Poisson, Pareto, etc.).

Note that Measure 2 (P̂ (k ∈ s1, k ∈ s2)) can be compared to ALBk, k ∈ U for Method 1 and
Method 2 (but only in framework 1). In Method 2, framework 2, s1 is fixed and we are not able to
reconstruct by simulation

∑
s1,k∈s1

∑
s2,k∈s2

p(s1, s2) = P (k ∈ s1, k ∈ s2). Thus, we only estimate∑
s2,k∈s2

p(s1, s2). A conditional ALBk cannot be used in this case. The corresponding tables
below do not include values of ALBk.

The tables in Section 3.3.1 present the results for Method 1, while for Method 2, they are given
in Section 3.3.2 (framework 1) and Section 3.3.3 (framework 2). Using Measure 1 (see Tables 1,
4 and 7), the possible number of non-desired units common to s1 and s2 is between 0 and 6 for
Method 1 and Method 2, framework 1, and between 0 and 4 for Method 2, framework 2. Both
Poisson and Pareto sampling reach the maxima of the ranges. In contrast, adaptive SCPS (even
without PRNs) shrinks the distribution of the possible number of non-desired units in common,
and avoids the selection of a large number of non-desired units, resulting in a decreased variance of
their number, compared with its competitors.

The use of the binary variable (without any supplementary information, such as the inclusion
probabilities) in the adaptive SCPS seems to be the best choice to compute the Euclidean distances
between units (the case ASCP inf). For this setting, in general, ASCP inf performs the best, and
selects mostly 1 (see Table 7) or 2 non-desired units in common (see Tables 1 and 4), that is, fewer
than the other two methods. However, no pairs (s1, s2) provide 0 non-desired units in common
in Method 1 or Method 2, framework 2 (see Tables 1 and 7), as shown by Poisson and Pareto
sampling.

For Measure 2, in Method 1 and Method 2 (framework 1), Poisson sampling is able to reach the
ALBk for any non-desired unit k, as expected (Tables 2 and 5). ASCP inf and Pareto sampling

perform similarly in the case of these two methods, and provide values of P̂ (k ∈ s1, k ∈ s2) equal

to ALBk or slightly larger. In Method 2, framework 2, P̂ (k ∈ s1, k ∈ s2) cannot be compared to
ALBk, because of the way the samples are simulated. For this method, ASCP inf presents values
of Measure 2 in agreement with Poisson and Pareto sampling, and no sampling method is the best.

In Tables 3 and 6, Pareto sampling shows lower values for the expected overlap (Measure 3;
excepting Poisson sampling which reaches ALB as expected), indicating a very good overall degree
of negative sample coordination. However, it displays a large estimated variance of the overlap
(Measure 4), comparable to that of Poisson sampling. Compared to Pareto sampling, ASCP inf
shows a larger value for Measure 3 in Method 1 and Method 2, framework 1, but substantially
reduces the values of Measures 4 and 5, indicating a better precision in estimating the overlap
between s1 and s2. In Method 2, framework 2, ASCP inf again performs the best for all Measures
3, 4 and 5 (see Table 9).
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3.3.1 Method 1: both s1 and s2 are random in each run; s1, s2 are samples of the same
type, but with different inclusion probabilities

Table 1: MU284 population, Method 1, Measure 1: number of pairs (s1, s2) by possible number of
non-desired units in common over 100,000 runs (so the row sums are equal to 100,000).

Possible number of non-desired units in common
Design 0 1 2 3 4 5 6
Poisson 7469 27170 36007 21879 6536 919 20
Pareto 5225 25946 38965 23534 5784 541 5
ASCP π 49 8646 69411 21145 749 0 0
ASCP π inf 0 3614 93807 2575 4 0 0
ASCP inf 0 3443 93406 3140 11 0 0
ASCP inf without coordination 0 831 45796 53127 246 0 0

Table 2: MU284 population, Method 1, Measure 2: P̂ (k ∈ s1, k ∈ s2), with k being a non-desired
unit, 100,000 runs

P̂ (k ∈ s1, k ∈ s2)
Non-desired unit k 4 12 21 22 32 44
Poisson 0.63 0.03 0.26 0.35 0.34 0.34
Pareto 0.63 0.07 0.27 0.35 0.34 0.34
ASCP π 0.63 0.12 0.30 0.35 0.36 0.38
ASCP π inf 0.63 0.03 0.27 0.35 0.35 0.35
ASCP inf 0.63 0.06 0.26 0.35 0.35 0.35
ASCP inf without coordination 0.64 0.25 0.38 0.42 0.42 0.42
ALBk 0.63 0.03 0.26 0.35 0.34 0.34

Table 3: MU284 population, ALB = 1.96, Method 1, Measures 3, 4, 5: Esim(c), V arsim(c),
CVsim(c), 100,000 runs

Design Esim(c) V arsim(c) 100× CVsim(c)
Poisson 1.96 1.13 54.44
Pareto 2.00 0.99 49.53
ASCP π 2.18 0.34 26.53
ASCP π inf 2.03 0.09 15.08
ASCP inf 2.01 0.08 13.70
ASCP inf without coordination 3.06 0.68 26.91
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3.3.2 Method 2, framework 1: both s1 and s2 are random in each run; s1 is a Poisson
sample

Table 4: MU284 population, Method 2, framework 1, Measure 1: number of pairs (s1, s2) by possible
number of non-desired units in common, both s1 and s2 are random in each run over 100,000 runs
(so the row sums are equal to 100,000).

Possible number of non-desired units in common
Design 0 1 2 3 4 5 6
Poisson 114060 51724 125551 157299 108236 37832 5298
Pareto 5995 26389 37893 23216 5931 569 7
ASCP π 1053 16383 45920 34313 2331 0 0
ASCP π inf 1025 16950 48830 33175 20 0 0
ASCP inf 1663 20987 44084 33266 0 0 0
ASCP inf without coordination 315 6178 34797 58418 292 0 0

Table 5: MU284 population, Method 2, framework 1, Measure 2: both s1 and s2 are random in
each run; 100,000 runs

P̂ (k ∈ s1, k ∈ s2)
Non-desired unit k 4 12 21 22 32 44
Poisson 0.63 0.03 0.26 0.35 0.34 0.34
Pareto 0.63 0.06 0.26 0.35 0.34 0.34
ASCP π 0.63 0.13 0.34 0.35 0.36 0.40
ASCP π inf 0.63 0.03 0.35 0.35 0.37 0.41
ASCP inf 0.63 0.06 0.26 0.35 0.37 0.41
ASCP inf without coordination 0.64 0.25 0.38 0.43 0.42 0.42
ALBk 0.63 0.03 0.26 0.35 0.34 0.34

Table 6: MU284 population, ALB = 1.96, Method 2, framework 1, Measures 3, 4, 5: Esim(c),
V arsim(c), CVsim(c), both s1 and s2 are random in each run; 100,000 runs

Design Esim(c) V arsim(c) 100× CVsim(c)
Poisson 1.96 1.12 54.41
Pareto 1.98 1.03 51.03
ASCP π 2.24 0.63 35.38
ASCP π inf 2.18 0.56 34.28
ASCP inf 2.10 0.61 37.20
ASCP inf without coordination 3.05 0.82 29.78
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3.3.3 Method 2, framework 2: s1 = {4, 6, 12, 18, 22, 35, 44} is fixed and is a Poisson
sample, while s2 is random in each run

Table 7: MU284 population, Method 2, framework 2, Measure 1: number of pairs (s1, s2) by
possible number of non-desired units in common, s1 = {4, 6, 12, 18, 22, 35, 44} is fixed in each run
over 100,000 runs (so the row sums are equal to 100,000).

Possible number of non-desired units in common
Design 0 1 2 3 4
Poisson 11970 38609 36849 12033 539
Pareto 14497 47328 33006 5085 84
ASCP π 2449 69047 24291 4183 30
ASCP π inf 0 81609 17689 702 0
ASCP inf 0 84227 15773 0 0
ASCP inf without coordination 0 18869 60320 20802 9

Table 8: MU284 population, Method 2, framework 2, Measure 2: s1 = {4, 6, 12, 18, 22, 35, 44} is
fixed in each run; 100,000 runs

P̂ (k ∈ s1, k ∈ s2)
Non-desired unit k 4 12 21 22 32 44
Poisson 0.64 0.05 0 0.41 0 0.40
Pareto 0.59 0.04 0 0.33 0 0.33
ASCP π 0.64 0.13 0 0.32 0 0.21
ASCP π inf 0.64 0.05 0 0.36 0 0.14
ASCP inf 0.64 0.09 0 0.32 0 0.11
ASCP inf without coordination 0.65 0.37 0 0.50 0 0.50

Table 9: MU284 population, Method 2, framework 2, Measures 3, 4, 5: Esim(c), V arsim(c),
CVsim(c), s1 = {4, 6, 12, 18, 22, 35, 44} is fixed in each run; 100,000 runs

Design Esim(c) V arsim(c) 100× CVsim(c)
Poisson 1.51 0.76 57.99
Pareto 1.29 0.60 60.19
ASCP π 1.30 0.35 45.12
ASCP π inf 1.19 0.17 34.47
ASCP inf 1.16 0.13 31.48
ASCP inf without coordination 2.31 0.64 34.66
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3.4 Simulation with business surveys: Application to ‘hot-spot units’ at
Statistics Netherlands

Statistics Netherlands (CBS) operates a sample coordination system for business surveys. Despite
the sample coordination, each year several businesses are still heavily sampled, mainly because of
the number of drawn samples, different stratification schemes and large sampling fractions. This
results in a large cumulated response burden for these specific businesses. Therefore, CBS started
monitoring the number of surveys for which a business was sampled within the last twelve months
to identify so-called ‘hot-spot units’ (equivalent to non-desired units, see Section 3.1). CBS classifies
businesses with 0–9 employees (size classes 0–3) as hot-spot units if they are sampled ≥ 3 times
within the last twelve months. Businesses with 10–19 employees (size class 4) are classified as ‘hot-
spot units’ if they are sampled ≥ 4 times within the last twelve months. For larger businesses, no
hot-spot units were defined despite the large sample fractions that are required for these businesses.
Businesses with more than 50 employees are usually sampled with inclusion probability 1. These
large businesses usually have dedicated staff to fill in the questionnaires. The impact on daily
business is therefore lower for these businesses. Moreover, sample coordination is generally not
suitable for businesses with a sampling fraction of 1.

For the application we consider the population of Dutch businesses in 2021 with 0–19 employees
(N = 1810581), the Structural Business Survey (SBS) with sample size nSBS = 54491, the Invest-
ment Survey (INV) with nINV = 30090 and the Finance Monitor (FIN) with nFIN = 6977. In this
population there are 1693 hot-spot units. Table 10 shows the distribution of businesses by size class
(columns) and number of samples (rows). The hot-spot units are highlighted in italics. In 2021,
there were no businesses with 0-19 employees that were selected in more than nine surveys by the
Dutch coordination system.

Table 10: Distribution of all Dutch businesses with 0–19 employees in 2021 by size class and number
of surveys; hot-spot units are highlighted in italics

Number of Size class
surveys 0 1 2 3 4 Total

0 381591 1051551 202137 39544 8047 1682870
1 4832 40580 35529 16640 11732 109313
2 85 985 2509 3196 7194 13969
3 8 34 125 423 2736 3326
4 0 4 6 46 785 841
5 0 1 1 3 167 172
6 0 0 1 1 56 58
7 0 0 0 1 22 23
8 0 0 0 0 7 7
9 0 0 0 0 2 2

Total 386516 1093155 240308 59854 30748 1810581

All three surveys are annual surveys with a stratified sample design with equal probability within
strata. The strata are defined by a combination of industrial classification according to NACE1

and size class. SBS and INV are coordinated by the Dutch coordination system (see Smeets and

1Nomenclature statistique des activits conomiques dans la Communeaut europenne, the standard European in-
dustrial classification.
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Boonstra, 2018) and use the same stratification. FIN is independent from SBS and INV, but the
system coordinates the samples for FIN from year to year. FIN only selects businesses with ≥ 2
employees (size class 2 and larger) and uses different combinations of NACE codes than SBS and
INV to define the strata.

We consider the following scenarios using Methods 1 and 2 (see Section 3.2) and different
combinations of the surveys:

1. Method 1, where both samples s1 and s2 are drawn for SBS. Both samples use the SBS
allocation of 2021 (scenario 1).

2. Method 1, where s1 is drawn for SBS and s2 is drawn for INV. Both samples use the allocation
of the corresponding survey of 2021 (scenario 2).

3. Method 2, where s2 is drawn for SBS, conditional on the existing SBS sample s1 of 2021, i.e.,
s1 is fixed. Sample s2 uses the SBS allocation of 2021 (scenario 3).

4. Method 2, where s2 is separately drawn for SBS, INV and FIN, conditional on sample s1,
that is obtained by combining the existing samples of SBS, INV and FIN of 2021, i.e., s1 is
fixed. The samples for s2 use the allocation of the corresponding survey of 2021. It is possible
that a unit is drawn for each of the three separate samples (scenario 4).

In this simulation, method 2 (in scenarios 3 and 4) is only considered under framework 2
(see Section 3.3). Scenarios 1 and 3 represent coordination over time for one survey. Scenario 2
represents coordination over time and over two surveys with common stratification. Scenario 4
represents coordination over time and over two surveys with different stratifications. Because of
the large population sizes and since the majority of the strata do not contain any hot-spots at
all, in all scenarios a selection of strata is used for the simulation. First, in scenarios 1 and 3 the
take-all strata (πk1 = πk2 = 1) are excluded and in scenarios 2 and 4 both the take-all (πk2 = 1)
and take-none strata (πk2 = 0) are excluded. In scenario 4, a stratum is only excluded if πk2 = 0 or
1 in this stratum for all three surveys. Second, strata are selected based on the population size and
the expected number of sampled hot-spot units, such that the total population size N is around
1000. In scenarios 1 and 3, strata with less than 300 businesses in the population and at least 10
expected hot-spots in the sample are selected. In scenario 2, strata with less than 500 businesses
and at least six expected hot-spots are selected. In scenario 4, all strata with at least one expected
hot-spot in the sample for all three surveys are selected. Table 11 gives the population size and
sample information for the considered scenarios. The populations of businesses and hot-spot units
are a subset of the populations shown in Table 10. The sample size of the combined samples in
scenario 4 is denoted by ncomb.

Table 11: Population and sample information for the scenarios
sample s1 sample s2

scenario method N strata hot-spots nSBS ncomb nSBS nINV nFIN

1 1 894 5 97 617 617
2 1 1053 8 161 659 487
3 2 894 5 97 617 617
4 2 418 34 62 418 384 278 37
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Both the information of whether a particular business is considered a hot-spot (binary infor-
mation as used in Section 3.3) and the number of surveys for which the business was sampled
within the last 12 months are measures of its cumulated response burden. In the simulation with
CBS business surveys, we use both measures to compute the Euclidean distance between the units.
However, because of the stratified sampling with equal inclusion probabilities within the strata, the
inclusion probabilities of the surveys are not used to compute the Euclidean distances between the
units in this simulation, as in Section 3.3.

We provide results of a Monte-Carlo simulation for the considered scenarios and different sam-
pling schemes. The sampling schemes are applied per stratum. Due to the substantial computa-
tional burden, 5000 runs are used. In each run of the Monte-Carlo simulation we draw:

• two Poisson samples for Method 1 and one Poisson sample for Method 2;

• two Pareto samples for Method 1 and one Pareto sample for Method 2;

• two adapted SCP samples for Method 1 and one adapted SCP sample for Method 2; for s1, s2
the measure of cumulated response burden based on hot-spot status is used to define the
Euclidean distances between the units (indicated by ASCP inf);

• two adapted SCP samples for Method 1 and one adapted SCP sample for Method 2; for s1, s2
the measure of cumulated response burden given by the number of surveys is used to compute
the Euclidean distances between the units (indicated by ASCP inf svy);

• two independent adapted SCP samples (without negative coordination) for Method 1 and one
independent adapted SCP sample for Method 2; for s1, s2 the measure of cumulated response
burden based on the hot-spot status is used to compute the Euclidean distance between the
units (indicated by ASCP inf without coordination).

In the tables and figures below, we use the following notation: ASCP inf indicates results based
on adapted SCP sampling with hot-spot status used to define the Euclidean distances between the
units and negative coordination, ASCP inf svy for adapted SCP sampling with cumulated response
burden and negative coordination (svy stands for survey), while ‘ASCP inf without coordination’
for adapted SCP sampling and independent sample selection. The results of scenarios 1, 2, and 3
are shown in Figure 1 and Table 12. The results of scenario 4 are shown in Figure 2 and Table 13
(for ASCP inf hot-spot status is used as the burden measure and for ASCP inf svy the number of
surveys is used). In scenarios 1, 2 and 3 all measures give similar results to the simulation with the
MU284 population. The results of Measure 2 are in line with the results presented for the MU284
population and are not shown here to save space. In these scenarios, adapted SCP sampling with
the measure of cumulated response burden based on hot-spot status is the best sampling strategy.
This is, because ASCP inf leads to the smallest variation of the overlaps, not only for all businesses
but also for the hot-spot units. This implies that the overall response burden is most evenly spread
by ASCP inf. In scenario 4 the differences between the sampling schemes are smaller. This is caused
by FIN using different strata than SBS and INV, which leads to small strata when adapted SCP
sampling is applied as a coordination method for the three surveys together. When s2 is drawn
for SBS or INV, the ASCP inf svy sampling scheme is slightly better than ASCP inf. When in
scenario 4 sample s2 is drawn for the SBS, the adapted SCP sampling and independent sampling
perform similarly. This has to do with the selection of the strata in this scenario. The inclusion
probabilities of SBS and INV are large in these strata, while the inclusion probabilities of FIN are
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small. Moreover, 28 strata are take-all strata for SBS and 17 strata are take-all for INV, while
FIN has no take-all strata in this selection. When Method 2 is applied as coordination method
and if k ∈ s1, the random number uk2 is generated from Unif(0, πk1). If πk1 is close to 1 then uk2

is generated from a distribution that is approximately equal to Unif(0, 1). Generating uk2 from
Unif(0, 1) implies independent sampling.
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Figure 1: Scenarios 1, 2, 3; Measure 1: number of pairs of samples (s1, s2) (bullets) by possible
number of hot-spot units in common (y-axis), 5,000 runs. The size of the bullets is an indication
of the number of sampled pairs.
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Figure 2: Scenario 4; Measure 1: number of pairs of samples (s1, s2) (bullets) by possible number
of hot-spot units in common (y-axis), 5,000 runs. The size of the bullets is an indication of the
number of sampled pairs.
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Table 12: Scenarios 1, 2 and 3; Measures 3, 4, 5: Esim(c), V arsim(c), CVsim(c), 5,000 runs
Design – Scenario 1 Esim(c) V arsim(c) 100× CVsim(c)
Poisson 352 109.0 2.97
Pareto 352 20.3 1.28
ASCP inf 357 0.7 0.23
ASCP inf svy 365 2.5 0.45
ASCP inf without coordination 455 35.2 1.31
Design – Scenario 2 Esim(c) V arsim(c) 100× CVsim(c)
Poisson 211 136.0 5.53
Pareto 211 49.9 3.35
ASCP inf 212 0.6 0.38
ASCP inf svy 214 2.4 0.73
ASCP inf without coordination 300 35.4 1.98
Design – Scenario 3 Esim(c) V arsim(c) 100× CVsim(c)
Poisson 352 68.7 2.36
Pareto 352 14.3 1.07
ASCP inf 357 1.4 0.34
ASCP inf svy 365 3.6 0.52
ASCP inf without coordination 455 35.5 1.31
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Table 13: Scenario 4; Measures 3, 4, 5: Esim(c), V arsim(c), CVsim(c), 5,000 runs
Design – Scenario 4 SBS Esim(c) V arsim(c) 100× CVsim(c)
Poisson 375 11.10 0.890
Pareto 378 0.00 0.000
ASCP inf 379 0.91 0.252
ASCP inf svy 379 0.87 0.246
ASCP inf without coordination 379 0.92 0.254
Design – Scenario 4 INV Esim(c) V arsim(c) 100× CVsim(c)
Poisson 271 36.00 2.210
Pareto 274 0.00 0.000
ASCP inf 273 1.93 0.508
ASCP inf svy 273 1.99 0.516
ASCP inf without coordination 274 1.57 0.584
Design – Scenario 4 FIN Esim(c) V arsim(c) 100× CVsim(c)
Poisson 21 12.20 17.00
Pareto 24 0.00 0.00
ASCP inf 21 3.65 8.95
ASCP inf svy 21 3.71 9.13
ASCP inf without coordination 24 5.11 9.40
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4 Discussion

The strategy developed in Section 3.1 provides an approach to negative coordination of samples
which fulfils the requirement to reduce the overlap size between two or more samples, and addition-
ally reduces the variance of the number of nondesirable units (units with particular characteristics)
in the overlap compared to its competitors. Thus, a double control of the response burden is tar-
getted at this specific set of units. The coordination strategy results in a more even spread of the
response burden of these units. The targetting can be achieved through an indicator variable, or
through a continuous variable demonstrating the size of a unit for the characteristic of interest
(such as the cumulative response burden).

We consider several variants of the approach, depending on the kind of information used to
designate non-desired units. In general ASCP inf performs the best because it uses only binary
information and non-desired units are therefore as similar as possible to each other on this charac-
teristic, and as different as possible from other units. This approach is therefore better at avoiding
samples with clusters of non-desired units. Other variants may however be better in situations
where there is a gradation of non-desirability. In our simulations, the proposed strategy shows a
smaller variance of the number of non-desired units in the overlap (especially for ASCP inf) com-
pared to Poisson and Pareto sampling. This is due to the spread of the units in the space generated
by the measure of response burden used (spread obtained by using the algorithm given in Section
2.4), as indicated in the tables and figures related to Measure 1. On the other hand, similar results
to the competitor methods were obtained for the expected overlap size, while the variance of the
overlap size was smaller than for Poisson and Pareto sampling with PRNs in most cases. A single
exception concerning this variance was provided by Pareto sampling with PRNs in Table 12.

Targetted double control is an effective strategy for managing situations where some businesses
are selected for relatively many surveys in a short period, as demonstrated by the application to hot-
spot units in Statistics Netherlands. The problem of hot-spots is not eliminated, but it is reduced
because the response burden is more controlled within the constraints of the survey designs.

The targetted double control strategy can therefore be used to formalise an approach to dealing
with businesses that complain that they have been selected in too many surveys. Without such a
system, these are sometimes dealt with in an ad hoc way by moving them (explicitly or implicitly)
to a take-none stratum, to relieve the burden. But this approach is not fair in that it can be
different for businesses with the same characteristics depending on whether they complain or not.
For a single sample selected at any given moment, targetted double control is ‘fair’ in that it
minimises the number of such units included in the sample by spreading the selected units through
the space generated by the measure of the response burden used and thus avoiding the clustering
of non-desired units) and because it respects the inclusion probabilities so that unbiased estimates
can be obtained. Statistics Canada have considered extending a take-none stratum to deal with
small units which may receive a disproportionate burden (Landry, 2011), but we consider that
using targetted double control would be a better solution in this case too. Targetted double control
therefore addresses an important practical problem in the coordination of multiple samples in a
finite population.

Applications of targetted double control are not restricted to selection hot-spots, however, and
any kind of undesirable unit could in principle be the target of the method, as long as the undesir-
ability property is observable or predictable from available data sources.
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