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Abstract

This article is a review of functional f(R) approximations in the asymptotic safety approach

to quantum gravity. It mostly focusses on a formulation that uses a non-adaptive cutoff, resulting

in a second order differential equation. This formulation is used as an example to give a detailed

explanation for how asymptotic analysis and Sturm-Liouville analysis can be used to uncover

some of its most important properties. In particular, if defined appropriately for all values

−∞ < R <∞, one can use these methods to establish that there are at most a discrete number

of fixed points, that these support a finite number of relevant operators, and that the scaling

dimension of high dimension operators is universal up to parametric dependence inherited from

the single-metric approximation. Formulations using adaptive cutoffs, are also reviewed, and

the main differences are highlighted.

Keywords— Quantum gravity, Renormalization group, Asymptotic safety, f(R) approximation, Sturm-

Liouville, Asymptotic analysis
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1 Introduction

One attempted route to a quantum theory of gravity is through the asymptotic safety programme [1–4].

Although quantum gravity based on the Einstein-Hilbert action is plagued by ultraviolet infinities that are

perturbatively non-renormalizable (implying the need for an infinite number of coupling constants), a sensible

theory of quantum gravity might be recovered if there exists a suitable ultraviolet fixed point [1].

The task is not just that of searching for an ultraviolet fixed point. They must also have the correct

properties. Perturbatively renormalizable ones exist for example “Conformal gravity”, based on the square

of the Weyl tensor, which thus corresponds to a Gaussian ultraviolet fixed point [5]. It is apparently not

suitable however, because the theory is not unitary. Suitable unitary fixed points, if they exist, have to be

non-perturbative. They must also satisfy phenomenological constraints, for example they have to allow a

renormalized trajectory with classical-like behaviour in the infrared, since General Relativity is confirmed

by observation across many phenomena and to impressive precision. Of particular relevance for this chapter

is that there should be a fixed point with a finite number of relevant directions (otherwise it would be no

more predictive than the perturbatively defined theory). Preferably the theory should have only one fixed

point, or at least only a finite number (otherwise again we lose predictivity).

Functional RG (renormalization group) equation [6–11] studies, first introduced by Wilson and Wegner

many years ago [6, 7] (and called by them the “exact RG”), have flourished into a powerful approach for

investigating this possibility. These equations describe the flow of the Wilsonian effective action for some

quantum field theory, under changes in an effective cutoff scale k. The asymptotic safety literature uses

almost exclusively the flow equation for Γk which is, modulo minor details, the Legendre effective action (the

generator of one-particle irreducible diagrams) cut off in the infrared by k. It was also formulated long ago [9]

(in the sharp cutoff limit) and then rediscovered for smooth cutoffs much later in refs. [10, 11]. Following

ref. [10], Γk is sometimes called the “effective average action”, however in this chapter it will simply be called

an effective action.

It is not practical to solve the full functional RG equations exactly. In a situation such as this, where

there are no useful small parameters, one can only proceed by considering model approximations. These

always proceed from the following observation: Wilsonian effective actions can be written as a sum over

operators, where the coefficients are the couplings for these operators and they evolve with the scale k.

In fact this sum should be restricted to local operators. This is the requirement of quasi-locality, which

comes from the short range nature of the Kadanoff blocking step in Wilsonian RG [6], when implemented

in the continuum [12, 13]. A related point is that the Wilsonian RG is performed in euclidean signature, so

that “short range” has a sensible meaning.

The problem is that for any general solution, this sum is infinite, over all possible local operators allowed

by the symmetries (the space of all such couplings being known as “theory space”). However, this motivates

the simplest model approximation which is to truncate drastically the infinite dimensional theory space to a
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handful of operators. An example is the original truncation studied by Reuter [2]:

Γk[gµν ] =

∫
d4x
√
g
(
u0(k) + u1(k)R

)
, (1)

which retains only the cosmological constant term and the scalar curvature R term. For obvious reasons this

is called the “Einstein-Hilbert truncation”. Classically u0 = −λcc/(8πG) and u1 = −1/(16πG), where λcc

is the cosmological constant and G is Newton’s constant, but after quantum corrections these couplings run

with k in the functional RG. The minus sign in u1 comes from working in euclidean signature.

Apart from RG symmetry, these truncations destroy pretty well all the properties that ought to hold.

For example scheme independence (i.e. independence on choice of cutoff, or more generally universality),

and modified BRST invariance [2,14] (which encodes diffeomorphism invariance for the quantum field under

influence of the cutoff) cannot then be recovered. Furthermore, only by keeping an infinite number of local

operators can the non-local long-range nature of the (one-particle irreducible) Green’s functions be recovered

(see e.g. ref. [15]). One has to trust that by considering ever less restrictive truncations the description gets

closer to the truth. There are some examples that go well beyond the Einstein-Hilbert truncation by keeping

a large number of operators [16–19]. These are based around polynomial truncations, i.e. where everything

is discarded except powers of some suitable local operators, typically the scalar curvature R again, up to

some maximum degree. They appear to show convergence, in particular the number of relevant operators is

found to be three.

Another approximation in the asymptotic safety literature that is necessary in order to formulate diffeo-

morphism invariant truncations, such as eqn. (1), conflates the true (quantum) metric with the background

metric. It is called the “single metric” or “background field” approximation, and will be described in the

next section. It is harder to relax this approximation in any substantive way, although see refs. [20–28] for

some approaches.

Whilst very encouraging results are found from multiple studies of such finite order truncations (see e.g.

the review [29]), successful implementations of more powerful approximations would build confidence in the

scenario. The next step is to keep an infinite number of operators. Arguably the simplest such truncation is

to keep a full function f(R), making the ansatz [22–24,30–43]

Γk[g] =

∫
d4x
√
g fk(R) . (2)

This is the functional f(R) approximation which is the subject of this chapter. It is achieved by specialising

to a maximally symmetric background manifold, either a four-sphere or four-hyperboloid.

Closely related approximations have been studied in scalar-tensor [44, 45] and unimodular [46] gravity,

and in three space-time dimensions [37]. In fact, the high order finite dimensional truncations [16–19]

were developed by taking examples of these f(R) equations and then further approximating to polynomial

truncations.

Note that the functional f(R) approximation actually goes beyond keeping a countably infinite number

of couplings, the Taylor expansion coefficients gn = f (n)(0), because a priori the large field parts of f(R)
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contain degrees of freedom that are unrelated to all these gn. For example suppose that at large R one

finds that f(R) ≈ exp
(
−a/R2

)
, where a > 0 is some parameter. Such an f(R) is in the form of a standard

counter-example in mathematical analysis. It has the property that gn = 0 for all n.

As ref. [33] emphasised, the truncation (2) is as close as one can get to the Local Potential Approximation

(LPA) [47, 48], a successful approximation for scalar field theory in which only a general potential V (ϕ) is

kept for a scalar field ϕ (see e.g. [47–52]). The LPA can be viewed as the start of a systematic derivative

expansion [49], in which case this lowest order corresponds to regarding the field ϕ as constant. In rough

analogy, an approximation of form (2) may be derived by working on a euclidean signature space of maximal

symmetry, where the scalar curvature R is constant. (Typically a four-sphere is chosen.) In particular,

techniques that have proved successful in scalar field theory [48–53] have been adapted to this very different

context, and used to gain substantial insight [43,54–57].

The functional truncation (2) still has the problems that were highlighted earlier for its finite dimensional

counterparts. However, again one can hope that it is closer to the truth. One hint that this is in fact the

case is covered at the end of this chapter. Assuming that the most recent version [43] does have a fixed

point solution, then it turns out that operators with high scaling dimension do begin to display universality

– unfortunately up to an annoying parameter that remains which is clearly caused by the single-metric

approximation.

In this chapter, it will be explained how to construct functional f(R) approximations and how to interpret

them. Important properties of formulations that use an adaptive cutoff [22–24,30–41] will be reviewed. These

result in third order differential equations, with fixed singularities and problematic asymptotic behaviour.

Mostly the chapter will focus on a non-adaptive cutoff formulation [42, 43] that results in a second order

differential equation, using it as an example to give a detailed exposition of the techniques, especially

asymptotic analysis and Sturm-Liouville analysis, that can be used to prove properties of functional f(R)

approximations. In particular, if the second order formulation is taken to apply to only one of the two spaces

(sphere or hyperboloid), the fixed point solutions form a continuous set and the eigenoperator spectrum is

not quantised. However, if these spaces are joined together smoothly (through flat space at their boundary),

these methods establish that there are at most a discrete number of fixed points, that the fixed points support

a finite number of relevant operators, and yield the result above for operators of high scaling dimension.

They do not establish that such fixed points actually exist however. Such a demonstration requires more

powerful numerical analysis and/or simpler fixed point formulations [43].

2 Flow equations

The starting point is the functional RG flow equation [10,11]:

∂tΓk =
1

2
STr

[
(Γ

(2)
k +Rk)−1∂tRk

]
, (3)
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where Str is a functional trace over spacetime coordinates and indices that takes into account statistics of the

fields. In momentum space this is an integral over one loop momentum. The right hand side is a one-loop

integral if Γk is taken to be classical. It includes all higher loops because Γk is actually given by the full

(all orders) effective action. Γ
(2)
k (Hessian) is the second variation of the effective action with respect to

the fields and Rk is an IR (infrared) cutoff for these fields. The cutoff scale k is related to RG “time” t

via t = ln(k/µ), where µ is the standard arbitrary physical energy scale that appears in RG treatments

(including in perturbative quantum field theory).

An essential step in Wilsonian RG is to introduce dimensionless variables by multiplication of appropriate

powers of the cut-off scale k. In the f(R) approximation the appropriate powers are just the canonical (a.k.a.

engineering) ones:

f̃k(R̃) ≡ f̃(R̃, t) = k−4fk(k2R̃), R̃ = R/k2 . (4)

In Wilsonian RG, one integrates out modes, starting with the high momentum modes first, by a coarse-

graining procedure. Traditionally, after integrating out the modes, one has to rescale the action back to the

original UV cut-off of the theory to see how the couplings change. By working with dimensionless quantities

this is taken care of automatically.

(From this point onwards it is convenient to drop the tilde denoting dimensionless quantities, unless

otherwise specified, but the reader should assume that all the quantities are dimensionless.)

In this way solutions to the flow equation will reveal all the fixed points of the theory, i.e. t independent

solutions f(R, t) = f(R). Fixed points are characterized by the number of eigenoperators v(R) (operators of

definite scaling dimension) that flow into the fixed point when we increase the cutoff scale k. These are called

relevant eigenoperators. Conversely irrelevant operators are the ones that flow away from the fixed point.

The terms relevant (irrelevant) are common in the Wilsonian RG literature. Following Weinberg [1], in

asymptotic safety literature often they are referred to equivalently as essential (inessential). Eigenoperators

whose couplings do not flow (in some approximation or exactly) are called marginal. We do not need to

discuss them in this chapter. Exceptionally eigenoperators can appear that are “redundant”, corresponding

to a change of variables in the theory [55,58,59].

Eigenoperators are found by linearising the flow equations around the fixed point and separating vari-

ables:

fk(R) = f(R) + ε v(R) e−θt (5)

where ε is a small parameter. This turns the flow equation into an eigenvalue problem where the RG

eigenvalue θ is often called a “critical exponent” in the asymptotic safety literature. From its associated

v(R) it can be similarly classified as relevant, irrelevant, marginal or redundant. Thus if Re θ > 0 then it is

relevant, whilst if Re θ < 0 it is irrelevant. In statistical physics, non-redundant θ can be straightforwardly

related to experimentally defined and measurable critical exponents, see e.g. [60]. If computed correctly an

important property of a non-redundant θ is that it is universal, which means in particular that its value is

independent of the regularisation scheme and the choice of flow equation [58].
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As already intimated, one is generally interested in those fixed points that have finitely many relevant

operators, because their couplings become the free parameters in the theory, and will have to be fixed by

experiments. Thus, theories based around these points are predictive and are safe from UV divergences when

k →∞. The goal of the asymptotic safety program is to verify if such points exist for gravity, analyse their

properties and deduce their consequences, both qualitatively and quantitatively.

Actually, the flow equation (3) requires a significant amount of adaptation to deal with the fact that

quantum gravity is a gauge theory. In standard fashion, it therefore requires gauge fixing. This is commonly

done by employing the background field method where the full (a.k.a. total) metric ĝµν is split into a

background gµν plus fluctuations (the quantum field):

ĝµν = gµν + hµν . (6)

In common with most of the literature, this chapter will only use a linear split, although other, non-

perturbatively better motivated, splits are possible [29,39]. Then the gauge fixing is imposed on the quantum

field hµν in such a way that diffeomorphism invariance of the background metric gµν is retained:

Fµ = ∇νhµν −
1

4
∇µhνν , (7)

where the covariant derivative and raised indices, are defined using the background metric. The process of

fixing a gauge, adds the gauge fixing term

Γgf =
1

2α

∫
d4x
√
ggµνFµFν (8)

to the effective action, and leads also to a ghost action. In practice the Landau gauge is chosen: α → 0.

Finally, it proves useful to make a change of variables, this is explained in (12), and this leads to further,

auxiliary, fields.

The true solution involves arbitrarily complicated interactions to arbitrarily high order between all these

fields, molified only by the symmetries (in particular background field diffeomorphism invariance and modified

BRST invariance [14, 61]). The next steps in the approximation drastically truncates all of this [2]. It can

be summarised as follows. Only the one-loop contributions from the bilinear ghost and auxiliary field and

fluctuation field actions are retained, i.e. on the right hand side of the flow equation (3) only the Hessian

from the classical action for these fields is used. The flow of the bit of the effective action that only depends

on the background metric, is therefore reproduced correctly at one loop. For the part beyond one loop, the

correct Hessian in (3) for the metric,
δ2Γk

δhµν(x) δhαβ(y)
, (9)

is replaced by one in which the functional derivatives are with respect to the background field instead:

δ2Γk
δgµν(x) δgαβ(y)

. (10)

This is the single metric, or background field, approximation. It is almost always applied in asymptotic

safety investigations. The review [28] covers exceptions. It should be emphasised that already at one loop
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the single metric approximation is not correct, because the dependence of the effective action on hµν has no

direct relation to its dependence on gµν . The replacement above would be correct only if the effective action

were a functional of the full metric (6) alone, but that relation is broken at the classical level by the gauge

fixing term (8) (and corresponding ghost action). Nevertheless the replacement is attractive as a model,

because it leaves us with a flow equation for Γk[g] that depends only on the background metric and in a

diffeomorphism invariant way.

Now by choosing the background manifold to be one of maximal symmetry, all diffeomorphism invariants

can be related either to the volume or the scalar curvature R, which is a constant: ∂µR = 0. In this way the

effective action has been reduced to (2): the functional f(R) approximation.

Plugging this with appropriately scaled fields (4) (and coordinates x̃µ = kxµ), into the flow equation (3),

one readily derives the form of the left hand side:

∂tΓk =

∫
d4x
√
g
[
∂tfk(R) + 4fk(R)− 2Rf ′k(R)

]
. (11)

The right hand side of the flow equation depends on the detailed way the quantum corrections are handled,

which differs between authors [22–24, 30–43]. For this we need to compute the second variation of Γk with

respect to the fields. First, the gauge fixing term (8) is chosen and the ghost action is derived. Then the

transverse traceless (a.k.a. York) decomposition of the metric [62] is used:

hµν = hTµν +∇µξν +∇νξµ +∇µ∇νσ +
1

d
gµν h̄ , (12)

which separates physical degrees of freedom, viz. hTµν and h̄, from the unphysical ones associated with gauge

degrees of freedom, namely ξµ and σ. These fields satisfy

hT
µ

µ = 0, ∇µhTµν = 0, ∇µξµ = 0, h̄ = h−∇2σ. (13)

Expressing
√
ĝ and R̂, where the latter is the curvature of the full metric (6), to quadratic order in these

fields, the elements of the Hessian can be determined for these components. For example for the physical

components one finds

Γ
(2)

hTµνh
T
αβ

= −1

2

[
f ′k(R)

(
−∇2 +

1

6
R

)
+

(
fk −

1

2
Rf ′k

)]
δµν,αβ , (14)

Γ
(2)

h̄h̄
=

1

16

[
9f ′′k

(
−∇2 − R

3

)2

+ 3f ′k

(
−∇2 − R

3

)
−
(
Rf ′k − 2fk

)]
, (15)

where the right hand side is evaluated at ĝµν = gµν , in preparation for the single metric approximation. We

can write these more compactly if we introduce

Ek(R) = 2fk(R)−Rf ′k(R) , (16)

which is the equation of motion that follows from the action (2), and express them instead using the natural

Laplacian ∆s for a spin s component field (on a maximally symmetric background) [33]:

∆0 = −∇2 − R

3
, ∆1 = −∇2 − R

4
, ∆2 = −∇2 +

R

6
. (17)
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A similar decomposition is applied to the ghost action. In the formulation of ref. [33] the contribution

to the Hessian coming from the gauge degrees of freedom from the metric and the ghosts cancel each other

exactly. Finally, including the contributions of the auxiliary fields that encode the Jacobians due to the

transverse traceless decomposition of the metric and the ghost fields, gives the full flow equation (3) in the

single metric and functional f(R) approximation:

V
(
∂tfk(R) + 2Ek(R)

)
= T2 + T h̄0 + T Jac1 + T Jac0 , (18)

where V =
∫
d4x
√
g is the volume of the manifold, and the T objects are the following spacetime traces:

T2 = Tr
[ dtRTk
−f ′k(R)∆2 − Ek(R)/2 + 2RTk

]
, (19)

T h̄0 = Tr
[ 8 dtRh̄k

9f ′′k (R)∆2
0 + 3f ′k(R)∆0 + Ek(R) + 16Rh̄k

]
, (20)

T Jac1 = −1

2
Tr
[ dtRVk

∆1 +RVk

]
, (21)

T Jac0 =
1

2
Tr
[ dtRVS1

∆0 +R/3 +RS1

k

]
− Tr

[ 2 dtRVS2

(3∆0 +R)∆0 + 4RS2

k

]
. (22)

The right hand side of (18) has been subdivided into contributions coming from fields of different spins. The

first two come from the physical spin-2 traceless part of the metric and the spin-0 trace of the metric, as

the reader can see by using (14) and (15) in (3). The last two are spin-1 and spin-0 parts coming from field

redefinitions.

3 Cutoff functions

One place where crucial differences occur between the different implementations is in the choice of cutoff

Rk. There is quite a lot of freedom as these functions only need to satisfy a few key properties which ensure

that they behave like momentum dependent mass terms suppressing low momentum modes:

lim
p2→0

Rk(p2) > 0, lim
p2→∞

Rk(p2) = 0, lim
k→0
Rk(p2) = 0 . (23)

The first two conditions ensure that we integrate out the UV modes first and ignore the IR modes. The last

condition ensures that we are left with the standard definition of the effective action once the cutoff scale is

sent to zero.

An apparently attractive strategy is to choose cutoffs that simplify the flow equations as much as possible.

“Adaptive cutoffs” are introduced partly with that aim [22–24, 30–41]. They implement the following rule

for all appearances of the Laplacian operator −∇2:

−∇2 7→ −∇2 + k2r(−∇2/k2) , (24)

where r(z) is a cutoff profile function.
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Such a choice also seemingly solves an awkward feature of euclidean quantum gravity, which is that

the euclidean signature Einstein-Hilbert action (1) has a wrong-sign kinetic term and propagator for h̄, the

so-called conformal instability [63]. This can be seen in the negative coefficient for ∆0 in (20) in this case.

By implementing (24), the cutoff automatically adapts to this wrong sign, so that it continues to modify

the propagator in the intended way: by adding a momentum dependent mass term. Indeed if this were not

done, the cutoff and kinetic term would have opposite signs, resulting in a singular propagator. However,

this trick does not entirely cure the problem since it results in poor asymptotic (large R) behaviour. This

issue will be briefly touched on below and in sec. 4. For further discussion, see refs. [2, 43,54,64–66].

Technically the above replacement rule is implemented by setting

Rφk = Γ
(2)
k

[
−∇2 + k2r(−∇2/k2)

]
− Γ

(2)
k [−∇2] , (25)

for each mode φ, so that the desired effect is created for Γ
(2)
k [−∇2]+Rk in the flow equation (3). Notice that

the cutoff function is then of the same form as the Hessian elements themselves and thus now also depends

on f(R). This has a particular consequence for the scalar h̄ mode, since Γ
(2)

h̄h̄
contains f ′′k (R), cf. eqn. (15). It

means that plugging this type of cutoff into the flow equation will result in the appearance of Rf ′′′k (R), due to

the presence of dtRh̄k in the numerator in (20) and the definition (4) of fk(R). This makes the flow equation

a third order differential equation, which unfortunately lacks the powerful properties found in a second order

formulation (as covered in sec. 4). Furthermore, the factor of R leads to a so-called “fixed singularity” at

R = 0. Third order formulations suffer from further fixed singularities and, as already mentioned, poor

asymptotic behaviour, this latter leading to continuous eigenoperator spectra [54]. These problems will be

further covered in sec. 4.

When using an adaptive cutoff, the cutoff profile function r(−∇2/k2) is almost always chosen to be the

“optimised” profile [67]

r(z) = (1− z) θ(1− z). (26)

The advantage of using this setup is that dtRk ∝ θ(1 + ∇2/k2), and thus the eigenvalues of −∇2 are

restricted to be less than k2. This means that in denominators one can simply ignore the θ and thus

k2r(−∇2/k2) ≡ k2 +∇2. Therefore the net effect in denominators is just to replace Γ
(2)
k [−∇2] with Γ

(2)
k [k2],

massively simplifying the computation of spacetime traces.

The second order formulation [42,43] chooses a non-adaptive cutoff function of the form

Rφk = kmφcφr(∆s + αsR) (27)

where s is the spin of the mode φ, mφ is set such that the cutoff has the same dimension as Γ(2) for this

mode, and cφ is a number. In this chapter the cφ will be taken to be positive for all fields. This is a problem

for developing solutions fk(R) that approximate the perturbative quantisation of the Einstein-Hilbert action

(1) because the h̄ Hessian has the wrong sign there (as noted above). But again the alternative choice ch̄ < 0

leads to poor asymptotic behaviour at large R, resulting in a continuous spectrum of eigenoperators [43].
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Notice that the cutoffs (27) have been chosen to depend on ∆s, rather than simply the −∇2 part [33],

and furthermore include an “endomorphism”, a curvature correction with endomorphism coefficient αs [42].

In refs. [42, 43] the traces are computed directly as a sum over modes. The αs are there to ensure that

∆s + αsR > 0 , (28)

for all modes, which in turn ensures that they are all integrated out as k → 0, and that the flow equation does

not suffer from fixed singularities. For these non-adaptive cutoffs, the optimised cutoff profile (26) brings

no particular advantage. In fact on a sphere the trace is a discrete sum and sharp cutoff profiles would lead

to a staircase behaviour [33], with an ill-defined limit as R → 0. Hence, a smooth (infinitely differentiable)

cutoff profile is used, such as [10]

r(z) =
z

exp(azb)− 1
, a > 0, b ≥ 1 . (29)

4 Flow equations with adaptive cutoff

In those formulations that use an adaptive cutoff, spacetime traces are evaluated using a heat-kernel asymp-

totic expansion, apart from ref. [33] which uses a direct spectral sum together with a smoothing procedure

(to get over the aforementioned staircase problem). As an illustration, the result of the earliest four such

formulations [30–32] for the flow of f ≡ f(R, t) on a four-sphere, can be summarised as:

384π2 (∂tf + 4f − 2Rf ′) = (30)[
5R2θ

(
1− R

3

)
−
(
12 + 4R− 61

90 R
2
) ][

1− R
3

]−1

+ Σ

+
[
10R2 θ(1− R

4 )−R2 θ(1 + R
4 )−

(
36 + 6R− 67

60 R
2
) ][

1− R
4

]−1

+
[
(∂tf

′ + 2f ′ − 2Rf ′′)
(
10− 5R− 271

36 R
2 + 7249

4536R
3
)

+ f ′
(
60− 20R− 271

18 R
2
) ] [

f + f ′(1− R
3 )
]−1

+ 5R2

2

[
(∂tf

′ + 2f ′ − 2Rf ′′)
{
r(−R3 ) + 2r(−R6 )

}
+ 2f ′θ(1 + R

3 ) + 4f ′θ(1 + R
6 )
] [
f + f ′(1− R

3 )
]−1

+
[
(∂tf

′ + 2f ′ − 2Rf ′′)f ′
(
6 + 3R+ 29

60R
2 + 37

1512 R
3
)

+ (∂tf
′′ − 2Rf ′′′)

(
27− 91

20R
2 − 29

30 R
3 − 181

3360 R
4
)

+f ′′
(
216− 91

5 R
2 − 29

15R
3
)

+ f ′
(
36 + 12R+ 29

30R
2
) ][

2f + 3f ′(1− 2
3R) + 9f ′′(1− R

3 )2
]−1

.

Here the function r is the optimised cutoff profile (26), which also leads to the appearance of the step functions

(a.k.a. Heaviside θ functions). In ref. [32] the equation is adapted to polynomial truncations only, which

means that the step functions are all set to one. The first two lines of the right hand side are independent

of f(R, t) and encapsulate the contributions from the ghosts, auxiliaries, ξµ and σ. Here we have introduced

the term Σ. The third and fourth line arises from hTµν , whilst the final ratio is the contribution from h.

Unphysical modes are isolated differently in these implementations, but the changes can be summarised in

the different expressions

Σ = 0 , 10R2 θ
(
1− R

3

)
, −10R2(R2 − 20R+ 54)

(R− 3)(R− 4)
,

10(11R− 36)

(R− 3)(R− 4)
. (31)
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The first, third and fourth options are derived in refs. [30,32], whilst the second option comes from ref. [31].

We have suppressed some other details, for more discussion see ref. [54].

Setting ∂tf = 0 in the above turns this flow equation into the differential equation that must be satisfied

by a fixed point f(R). It is a highly non-linear third-order ODE (ordinary differential equation). In the

formulation [31], the appearance of the θ functions, explicitly and in r, will result in jumps in f ′′′(R) across

the point where they switch on or off, but this can be accommodated.

A more important and generic feature is the existence of fixed and moveable singularities. These concepts

come from the mathematics of analysis of ODEs. To discuss them it is helpful to cast the fixed point ODE

in “normal” form:

f ′′′(R) = rhs , (32)

where rhs (right hand side) contains no f ′′′ terms. A Taylor expansion about some generic point Rp takes

the form:

f(R) = f(Rp) + (R−Rp)f ′(Rp) +
1

2
(R−Rp)2f ′′(Rp) +

1

6
(R−Rp)3f ′′′(Rp) + · · · . (33)

Since (32) determines the fourth coefficient in terms of the first three, we see that typically (33) provides a

series solution depending on three continuous real parameters, here

f(Rp) , f ′(Rp) and f ′′(Rp) , (34)

with some finite radius of convergence ρ whose value also depends on these parameters. Therefore the

standard mathematical result is recovered that around a generic point Rp there is some domain D = (Rp −
ρ,Rp + ρ) in which there is a three-parameter set of well-defined solutions. From here one can try to extend

the solution to a larger domain, e.g. by matching to a Taylor expansion about another point within D. A

typical problem, seen also in the LPA and the derivative expansion [48–50, 52, 53] and in the second order

formulation [42,43], is that eventually, at some point R = Rc, dependent on the parameters, the denominator

of rhs develops a zero, so that as R→ Rc, (32) implies

f ′′′(R) = 2c/(R−Rc) + · · · , (35)

where c is some constant and the ellipses contains the non-singular part. Integrating this we see that the

solution typically ends in a moveable singularity, of form

f(R) ∼ c (R−Rc)2 ln |R−Rc| , (36)

where “∼” means that less singular parts are neglected.

As already mentioned, fixed point equations derived with adaptive cutoff present another challenge in

that they also have fixed singular points Rc. These correspond in rhs to explicit algebraic poles in R, where

the domain of interest is R ≥ 0 since the equations apply to the four-sphere. Whatever the formulation

there is always one fixed singularity Rc = 0, which is unavoidable when using an adaptive cutoff as we have
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seen [33, 54]. Different formulations have different numbers and positions for the other fixed singularities

(see e.g. the discussion in refs. [38, 57]) but there is always at least one more. Inspecting the example (30),

we see that f ′′′ appears once in the penultimate line in eqn. (30), where it is multiplied by the polynomial

R

(
27− 91

20
R2 − 29

30
R3 − 181

3360
R4

)
. (37)

Thus, rearranging the fixed point equation into normal form (32), results in poles from the zeroes of this

polynomial. Two of these are in the required domain, namely at Rc = 0 and Rc = 2.0065. There are also

two further single poles, at Rc = 3 and Rc = 4, from the first two lines of the right hand side of (30).

As R approaches one of these Rc, f will end at a singularity of form (36) unless the f–dependent parts

in rhs are tuned so as to conspire to cancel the pole. Substituting the Taylor expansion (33), with Rp = Rc,

one sees that this requirement forces some generally non-linear combination of f(Rc), f
′(Rc) and f ′′(Rc) to

vanish. Thus, a fixed singularity imposes a constraint on the solution, reducing the number of free parameters

by one.

The inevitable fixed singularity at Rc = 0 can thus be seen as restoring consistency since it reduces the

three parameter set of solutions to a two parameter set, in agreement in this respect with what is obtained

from the non-adaptive-cutoff second order formulation.

Unfortunately, since there are a further three fixed singularities, these equations are overconstrained,

and thus there are no fixed point solutions f(R) that are valid over the whole range R ≥ 0.

However, these fixed singularities are artefacts of the regularisation procedure: it is possible to move

them and eliminate most of them. Benedetti and Caravelli were the first to realise this, and we will refer to

their version [33] as the “BC” formulation. Before regularisation, the Jacobian trace (21) has a denominator

that vanishes if ∆1 vanishes. Likewise the Jacobian trace (22) has a denominator that vanishes when ∆0

vanishes. Recalling the form (17) of the ∆s, and that the net effect of the adaptive optimised cutoff is

to replace −∇2 with k2 in the denominator, we see that these contributions give poles 1/(1 − R/4) and

1/(1−R/3) (after using (4) to scale to dimensionless quantities). These are the poles that are visible in the

first two lines of the right hand side of (30).

BC eliminate them by using an endomorphism, namely by using r(∆s) instead of r(−∇2) [33] (a so-called

cutoff of type II [32]). Then one is left with the Rc = 0 singularity, and a fixed singularity at some positive

Rc which is due to the fact that the h̄ trace vanishes there [33, 54]. These fixed singularities thus reduce

f(R) solutions to a one-parameter set.

Now there is still the danger of encountering a moveable singularity (36), and this imposes further

restrictions on the remaining parameter. Such a singularity can appear at any value of R, and in particular

at large R where the equations can then be solved analytically by developing the solution as an asymptotic

expansion. In scalar field theory [48–53] and in the second order formulation [43], what is found is that this

asymptotic expansion has less than the full number of parameters expected. One can also show that the

missing parameters are associated with fast growing perturbations that are incompatible with an asymptotic

solution. In this way it is possible to deduce analytically the number of constraints that moveable singularities
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are responsible for imposing.

The result for scalar field theory is that the parameters are fixed, typically to a handful of values

[48,49,53], corresponding to a finite set of fixed points, or in special cases a discrete infinity of fixed points [50].

However, there is at this stage also the possibility that there are no fixed point solutions. The actual number of

solutions then needs to be determined numerically.1 We will see this at work in the second order formulation

in sec. 6 where we describe in detail how to find asymptotic solutions fasy(R).

Unfortunately for third order formulations, asymptotic analysis typically does not find sufficient con-

straints [57]. For example for the BC formulation, the asymptotic solution turns out to have the maximum

three parameters [54]:

fasy(R) = AR2 +R

{
3

2
A+B cos lnR2 + C sin lnR2

}
+ · · · , (38)

where the ellipses stand for asymptotic corrections with lower powers of R, and the three parameters are

restricted only by the inequality:
121

20
A2 > B2 + C2 . (39)

Thus, one still expects to find one-parameter sets (i.e. lines) of global solutions f(R) in this case, and

that is exactly what is found by careful numerical analysis [54]. Asymptotic analysis also shows that the

BC formulation has continuous eigenoperator spectra. Initially it was suggested that these effects can be

attributed to the fact that all eigenoperators are redundant if the equation of motion (16) for the fixed

point f(R), has no solution for R in the required range R ≥ 0 [55]. But it is now clear that the poor

behaviour is again associated to the scalar mode h̄ [38,54,64], and is one more malign effect of the conformal

instability [54, 63, 64]. In fact precisely these problems reappear in the second order formulation if one

chooses ch̄ < 0, as already mentioned in sec. 3.

As emphasised in ref. [57], asymptotic analysis plays three powerful rôles. Firstly, as just sketched

and discussed in detail in sec. 6.1, it allows one to deduce the dimension of the solution space. Secondly

the asymptotic solution provides a way to validate numerical solutions since if one can integrate out far

enough, the numerical solution should match the asymptotic solution, allowing a reliable determination of

the asymptotic parameters.

Finally, the asymptotic solution actually contains only the physical part of the fixed point effective action.

To see this, we need to return temporarily to labelling scaled quantities with a tilde, and recall that the

effective infrared cutoff k is added by hand such that the physical Legendre effective action is recovered only

in the limit that this cutoff k → 0. This must be done while holding the physical quantities such as R fixed,

rather than scaled quantities R̃. In normal field theory, e.g. scalar field theory, the analogous object is the

universal scaling equation of state, which for a constant field precisely at the fixed point takes the simple

form

V (ϕ) = Aϕd/dϕ , (40)

1Although some may be found analytically, e.g. the Gaussian fixed point, or special cases [40].
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where d is the space-time dimension and dϕ is the full scaling dimension of the field (i.e. incorporating also

the anomalous dimension). In the current case we keep fixed the constant background scalar curvature R.

Thus by (2) and (4), the only physical part of the fixed point action in this approximation is:

f(R)|phys = lim
k→0

k4 f̃(R/k2) = lim
k→0

k4 f̃asy(R/k2) . (41)

For example from (38), for the BC formulation one finds:

f(R)|phys = AR2 . (42)

This is invariant under changes of scale as it must be, and is a sensible answer for the scaling equation of

state precisely at the fixed point. We will find the same answer from the second order formulation.

We still have the problem that since there are one-parameter sets of fixed-point solutions, A is not fixed.

In third order formulations one can use the ability to add endomorphisms to try to patch this up [38] but

asymptotic analysis then shows there is actually a whole zoo of possibilities for the scaling equation of state

and dimension of the solution space, depending on parameter choices in the endomorphisms [57]. One can

also try to extend the solution to negative R. This does reduce the solution space of the BC formulation to

a discrete set but that set appears to be empty since no numerical solutions were then found [54]. A more

careful version of this strategy is also used in the second order formulation.

Actually one can question whether the large R̃ = R/k2 regime makes physical sense [37, 38, 40]. The

problem arises when the cutoff depends on modified Laplacians, e.g. as in (28), where the endomorphism

is added to ensure that the minimum eigenvalue is positive. It is most easily seen if we take a sharp

(step function) cutoff profile, and write the minimum eigenvalue as Rλmin. Then once k2 < Rλmin, i.e.

R̃ > 1/λmin, there are no more modes to be integrated out. This means that the functional behaviour in this

large R̃ regime is meaningless since it is not describing any actual changes. However the physical Legendre

effective action is only reached by taking k → 0, and this argument would appear to imply that such a limit

is inherently ill-defined.

In fact this conundrum is another artefact of the single-metric approximation [22]. In reality one should

be integrating out over an ensemble of manifolds described by the fluctuating full metric ĝµν . The Wilsonian

RG only makes sense when applied to such an ensemble. Then no matter how small k is, there are always

manifolds with sufficiently small curvature that their eigenvalues remain to be integrated out. It is possible

to repair the single-metric approximation sufficiently in this case by retaining the scale degree of freedom

hµν ∝ gµν in the fluctuation field dependence, and thus regaining an ensemble of manifolds. However the net

result of such a repair is the same type of functional RG equations again, but now with a clear explanation

for why the large R̃ regime should be trusted [22–24].

We now abandon third order formulations and concentrate on a second order formulation [42,43], which

in almost all respects has more promising behaviour.
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Spin s Eigenvalue λs,n Multiplicity Dn,s

0 n(n+3)−4
12 R (n+2)(n+1)(2n+3)

6

1 n(n+3)−4
12 R n(n+3)(2n+3)

2

2 n(n+3)
12 R 5(n+4)(n−1)(2n+3)

6

Table 1: Values of the multiplicities and eigenvalues for evaluating the traces.

5 Evaluating traces

In the formulation [42,43] the traces are evaluated by a direct spectral sum. In common with the rest of the

literature one chooses a (globally) maximally symmetric background manifold. There are three to choose

from: the four sphere S4, which has a finite volume and positive curvature, so the spectrum of the allowed

modes form a discrete set that have to be summed over; the hyperboloid H4 which has negative curvature

and infinite volume so the spectrum is continuous; and finally flat space R4, which is a limiting case for both

of the two previous manifolds when R → 0. As we will see they all need to be considered. Actually they

become smoothly joined together in an ensemble which thus allows the same flow equation to be defined

over the entire domain −∞ < R <∞.

5.1 Sphere

On the sphere the traces are evaluated using

TrW (∆s) =
∑
n

Dn,sW (λn,s) (43)

where λn,s are eigenvalues of the ∆s defined in (17), and Dn,s are their multiplicities. Explicit values are

shown in table 1 [33]. There are a few caveats. Not all the modes contribute in the sum, for example vectors

satisfying ∇µξν +∇νξµ = 0 and the scalar modes σ = constant. Because of this, the tensor mode and the

vector mode sums start at n = 2, the scalar mode of the Jacobian starts at n = 1 and the h̄ mode starts at

n = 0. Now the requirement (28) means that λn,s + αsR > 0 must be satisfied. For the tensor and vector

modes it is sufficient to set α2 = α1 = 0, however from table 1 we see that we must have α0 > 1/3.

5.2 Hyperboloid

As already mentioned, the hyperboloid has a negative curvature, an infinite volume, and a continuous

spectrum of eigenvalues. The traces on this manifold are evaluated using [68]

TrW (∆s) =
2s+ 1

8π2

∫
d4x
√
g

(
− R2

12

)2 ∫ ∞
0

dλ

(
λ2 +

(
s+

1

2

)2)
λ tanh(πλ)W (∆λ,s). (44)

Even though there is now an infinite volume factor in the flow equation (18), this precise factor also appears

above, so the equations still make sense once we cancel this factor from both sides. The eigenvalues of the
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spectrum are

∆λ,s = − R
12
λ2 − βsR , where β0 =

25

48
, β1 =

25

48
, β2 =

9

48
. (45)

Using the same flow equation, and thus the same endomorphism parameters αs, the requirement (28) must

again be satisfied. We can still take α2 = α1 = 0, but now α0 also has an upper bound α0 < 25/48.

5.3 Flat space

Finally, evaluating traces on flat space can be achieved by taking the limit as R→ 0 from positive or negative

side. If we start from the positive side we first make a substitution p = n
√
R/12 then take R → 0 while

keeping p fixed. All Laplacians then become ∆n,s → p2 and p2 can be identified as the flat space momentum.

Plugging in our choice of the cutoff (27), and performing these substitutions, yields

∂tfk(0) + 4fk(0) =
1

8π2

∫ ∞
0

dpp3

[
16ch̄

2r(p2)− p2r′(p2)

9f ′′k (0)p4 + 3f ′k(0)p2 + 2fk(0) + 16ch̄r(p
2)

+ 10cT
r(p2)− p2r′(p2)

−f ′k(0)p2 − fk(0) + 2cT r(p2)
− 3cV

r(p2)− p2r′(p2)

p2 + cV r(p2)

− 4cS2

2r(p2)− p2r′(p2)

3p4 + 4cS2
r(p2)

+ cS1

r(p2)− p2r′(p2)

p2 + cS1
r(p2)

]
(46)

This same equation is arrived at if we take R→ 0 from the negative side by first setting p = λ
√
−R/12 on

the hyperboloid and holding p fixed. The form of these equations already give some information about the

possible solutions, and can help guide numerical searches [43]. In particular, by inspection, it is clear that

there are no fixed singularities, and choices for fk(0), f ′k(0) and f ′′k (0) can be made that give well defined

non-singular integrals.

6 Fixed point solutions

The fixed point solution to the flow equation fk(R) = f(R) occurs when ∂tfk(R) = 0. An advantage of

the non-adaptive cutoff is that ∂tfk(R) only appears once on the left hand side of (18), so the fixed point

equation is

2V E(R) = T2 + T h̄0 + T Jac1 + T Jac0 . (47)

Another crucial advantage is, like (46), inspection of the trace equations (19) – (22) makes clear that there

are no fixed singularities any more. The flow equation is non-linear and very hard to work with, so solving

the equations exactly is unfeasible. The strategy is to solve analytically for f(R) around R = 0 as a Taylor

expansion and around R = ±∞ by an asymptotic expansion. Then numerical methods can be used to try

to patch in a solution that goes smoothly from the Taylor expansion at R = 0 to the asymptotic solutions

at R = ±∞.
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6.1 Asymptotic analysis

We now explain in detail how to develop asymptotic solutions, using these equations as an example. In these

large R limits, the equations simplify due to rapidly decaying cutoff profiles r(z). At first sight, it looks like

all the traces on the right hand side of the flow equation vanish and one is only left with (16), the equation

of motion E(R) = 0. This is actually true on the hyperboloid and the fixed point solution is therefore the

solution of E(R) = 0 namely

f(R) = AR2, (48)

where A is an arbitrary constant. At any finite R this is then accompanied by rapidly decaying corrections

as discussed later, cf. eqn. (63).

The story is different on the sphere since upon closer inspection not all of the terms in the sums vanish.

There are three such terms, the n = 0 and n = 1 components from T h̄0 and the n = 1 of T Jac0 . To see this

for the n = 0 case, note that from table 1, ∆0 = −R/3. Thus, using (27), the denominator of this term in

the sum (20) is given by

9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16Rh̄k = R2f ′′(R)−Rf ′(R) + E(R) + 16k4cφr([α0 − 1

3 ]R) (49)

Now, assuming that the leading asymptotic behaviour is f(R) = AR2, we see that the first two terms cancel

each other, and likewise E(R) vanishes, so we are left only with the cutoff term in the denominator. Therefore

this term takes the form of
1

k4 r(z)

d

dt

[
k4r(z)

]
= 4− 2z

d ln r(z)

dz
(50)

with z set equal to z = [α0 − 1
3 ]R.

Turning to the n = 1 components, note that from table 1, both ∆0 and ∆1 vanish for n = 1. In (20),

apart from the cutoff term the whole denominator therefore vanishes (because E(R) vanishes). In (22)

it is the second component that has a vanishing denominator apart from the cutoff term. The S1 (first)

component does not suffer from the same problem because there is also the +R/3 part in the denominator.

However, the cutoff dependence is the same for the n = 1 contributions namely r(α0R) and the numerical

factors are such that these two n = 1 contributions exactly cancel each other.

Altogether then, effectively the only term on the RHS (right hand side) of the flow equation that does

not vanish asymptotically is the n = 0 component of the T h̄0 trace. This is a problem however, since the

n = 0 component of T h̄0 contributes a term that grows at least as fast as R2. This is inconsistent with the

fact that the LHS (left hand side) of flow equation has been set to vanish asymptotically. Actually this

analysis shows that f(R) grows faster than R2. For example in the best-case scenario the RHS ∼ R2 but

that implies f(R) ∼ R2 lnR so that the LHS is left with an E(R) ∼ R2 to balance the contribution from the

n = 0 component of T h̄0 .

Therefore we now assume that f(R) actually grows faster than R2 at large R. But this means we need to

check again which terms in the traces have denominators that would vanish without a cutoff. By inspection

none of the traces that depend on f(R) can now have this issue. In particular the n = 1 component of

18



the T h̄0 trace no longer has a denominator that could vanish, because E(R) no longer vanishes at large R,

while for the n = 0 component the f ′′(R) part in the denominator now dominates at large R. So the only

contribution that survives on the RHS at large R, is now the n = 1 S2 component of T Jac0 .

Keeping just this term it turns out one can solve the fixed point equation in closed form, thus obtaining

the correct asymptotic behaviour for general cutoff function r(z). Using the values from table 1 we have

that the multiplicity of the n = 1 component is D1,0 = 5, note that mS2 = 4 and that 1/V = R2/384π2 for

the four-sphere. Thus, keeping only this leading term on the RHS of the flow equation, we have

2f(R)−Rf ′(R) =
R2

768π2

[
−10 + 5α0R

r′(α0R)

r(α0R)

]
. (51)

This is exactly soluble. Indeed dividing through by R3 it can be rewritten as

− d

dR

(
f(R)

R2

)
=

1

768π2

[
−10

R
+ 5

d

dR
ln r(α0R)

]
, (52)

which can be immediately integrated to give

f(R) =
5R2

768π2
ln

R2

r(α0R)
+AR2 + o(R2) as R→ +∞ , (53)

where we included the integration constant A and finally we noted that terms that grow slower than R2 will

be generated by iterating this asymptotic solution to higher orders, hence the o(R2) part. The ln r term

actually dominates, i.e. the large R behaviour is dominated by cutoff-dependent effects. For example using

the cutoff (29), gives the first three terms in this series:

f(R) =
5aαb0
768π2

R2+b +
5

768π2
R2 lnR+AR2 +

16ch̄
5ab(1 + b)αb0

(
α0 −

1

3

)
e−a(α0− 1

3 )
b
Rb + · · · . (54)

To get the next term in the series, the solution is substituted back into the fixed point equation and the next

leading correction is isolated. This leads to the last displayed correction above. It is exponentially decaying

and comes from the n = 0 term in the T h̄0 trace. One finds that other corrections decay faster provided

that α0 <
5
6 + α1. This is satisfied thanks to the restrictions on the αi parameters discussed in secs. 5.1

and 5.2. Substituting (54) back into the fixed point equation and proceeding similarly one can in principle

develop the whole asymptotic series. It is an infinite series of ever faster decaying terms and is indicated by

the ellipses. In particular these terms will include a power series in A.

At this point we have succeeded in finding consistent asymptotics. f(R) does grow faster than R2 on

the sphere, as assumed, and using such a form in the RHS of the fixed point equation one can see that the

n = 1 S2 component of T Jac0 dominates at large R, which leads back to the above equation.

Recall that the fixed point equation is actually second order. But the asymptotic solutions only have

one free parameter A, even though there should be two. To find out where the second parameter has gone

we linearise about the fixed point f(R) + δf(R) and plug it into the flow equation (47) to get

− a2(R) δf ′′(R) + a1(R) δf ′(R) + a0(R) δf(R) = 4 δf(R) , (55)
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with

a2 =
144ch
V

Tr

[
∆2

0(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R))

(9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16chr(∆0 + α0R))2

]
, (56)

a1 = 2R− 16ch
V

Tr

[
(3∆0 −R)(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R))

(9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16chr(∆0 + α0R))2

]

+
2cT
V

Tr

[
(R/2−∆2)(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

(−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R))2

]
, (57)

a0 =
32ch
V

Tr

[
(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R))

(9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16chr(∆0 + α0R))2

]

+
2cT
V

Tr

[
(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

(−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R))2

]
. (58)

In the large R limit a1(R) ∼ 2R and a0 and a2 vanish asymptotically. Then it is tempting to simply set

a0 and a2 to zero to find the asymptotic solution to (55). But if this is done there is only one solution

δf(R) = δAR2. In fact this is just the leading term in an asymptotic series which is nothing but what one

would derive from (54) by differentiating with respect to A. (Recall that the ellipses actually contain a power

series in A.) This asymptotic solution is an exact series solution to (55) where a0 and a2 are only involved

in constructing the subleading corrections. To find more than the one parameter δA in the solution to (55),

δf ′′(R) cannot be neglected, implying that higher derivatives must dominate over lower ones in the large R

limit. Hence, the other solution is one where δf(R) can at first be neglected. Then writing (55) as

d

dR
ln δf ′(R) =

a1(R)

a2(R)
=⇒ δf(R) = B

∫ R

dR′ exp

∫ R′

dR′′
a1(R′′)

a2(R′′)
, (59)

where B is the second parameter. For the explicit form, a2 is needed. It gets its leading contribution from

the same source as the last displayed term in (54). Using the same cutoff choice, (29), asymptotically

a2(R) =
24576π2ch̄

25ab(1 + b)2α2b
0

(
α0 −

1

3

)1+b

R1−b e−a(α0− 1
3 )
b
Rb + · · · . (60)

Recalling that a1 = 2R to leading order, the integrals can be evaluated by successive integration by parts,

as an asymptotic series and where each term is given in closed form.

Since this strategy is used many times in this kind of asymptotic analysis let us sketch it on the indefinite

integral: ∫
dRG(R) eF (R) =

G(R)

F ′(R)
eF (R) −

∫
dR

(
G(R)

F ′(R)

)′
eF (R) . (61)

The above equality follows by integration by parts, however if F (R) grows at least as fast as R for large R,

where F is either sign, and G(R) grows or decays slower than an exponential of R, then the integral on the

right is subleading compared to the integral on the left. Iterating this identity then evaluates the integral in

the large R limit as eF (R) times an asymptotic series, the first term on the RHS being the leading term.
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In this way, using the cutoff (29), the solution (59) on the sphere turns out to be

δf(R) ∼ B exp

{
12(1 + b)2α2b

0

12288π2ch̄

(
α0 −

1

3

)−1−2b

R ea(α0−1/3)bRb
}
. (62)

The analysis proceeds similarly on the hyperboloid [43]. As R→ −∞, one finds:

f(R) = AR2 +
cS1

96
√

3πa3b3

(
25

48
− α0

) 5−3b
2

(−R)
2− 3b

2

{
1 +O

(
|R|− 1

2

)}
e−a[(α0− 25

48 )R]
b

+ · · · . (63)

The correction is again a decaying exponential because α0 is restricted to α0 < 25/48. All scalar traces (thus

also A) contribute to the O
(
|R|− 1

2

)
term, and the ellipses stand for terms with faster decaying exponentials.

The asymptotic behaviour of a2 turns out now to be:

a2(R) =
4ch̄

81A2
√

3πab

(
25

48
− α0

) 5−b
2

(−R)
1− b2 e−a[(α0− 25

48 )R]
b

+ · · · (64)

(the ellipses being faster decaying terms). And thus one finds on the hyperboloid

δf(R) ∼ B exp

{
81A2

2ch̄

√
3π

ab

(
25

48
− α0

)− b+5
2

(−R)1−b/2 ea[(α0−25/48)R]b
}
. (65)

However, there is a problem here. Both these solutions (62) and (65) for δf(R), are rapidly growing exponen-

tials of an exponential. In the asymptotic regime, these perturbations are no longer small, thus invalidating

the initial linearization assumption used to derive them. Therefore, these solutions must be discarded and

thus we conclude that the fixed points have only one free parameter on both the sphere and hyperboloid.

These results allow us to draw important conclusions. Each of the asymptotic fixed point solutions,

(54) and (63), contribute one constraint on the flow equation.2 There are no boundary conditions coming

from R = 0, so we can expect one-parameter sets of fixed point solutions on both S4 and H4. At first sight

this is a disappointing result for the asymptotic safety program. However, if we now use R4, eqn. (46), to

match smoothly between these solutions then we have two boundary conditions on a second order differential

equation, one coming from the sphere and one from the hyperboloid. Thus, there can now only be at most a

discrete set of solutions. In the next section more evidence will be presented for why these topologies should

be considered smoothly joined together in this way.

6.2 Numerical solution

Note that this does not answer the question of whether there is more than one fixed point, or no fixed point

at all, or the phenomenologically preferred answer: a single fixed point. As already mentioned, the only

way to find out which of these latter possibilities is realised, is to perform an extensive numerical search for

such global f(R) solutions. As we have just seen, the asymptotic fixed point solutions (54) and (63), on

2For example at some initial very large R we can set 2f(R) = Rf ′(R) since this boundary condition imposes the

leading behaviour (48). Using the subleading corrections we can furnish a more accurate Robin boundary condition

at more reasonable values of R.
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the sphere and hyperboloid respectively, depend on one single parameter, which we called A on both sides.

Even if there is a global solution that connects them, the value of A will almost surely be different in the two

different topologies. On one of the topologies, one can scan through A at some large value of R and solve the

equations backwards towards R = 0. With the exponential cutoff profile (29), solutions have been found on

the sphere this way, in a narrow region around A = −0.01, matching to the asymptotic series at R ∼ 10. On

the hyperboloid no solution was found however, although a more comprehensive numerical analysis might

find one [43].

7 Eigenoperators

So far we have analyzed the flow equation in the f(R) approximation at the fixed point (where ∂tf(R) = 0).

Assuming that there is a global solution, we now turn to the question of whether the theory is predictive.

This is answered by solving the eigenvalue equation and figuring out how many relevant operators the fixed

point solution has. Relevant operators are the ones that fall into the fixed point when increasing the cutoff

scale k. The number of these operators corresponds to the number of parameters that will have to be fixed

experimentally. We now prove that in this second order formulation, if we take the equations to apply

simultaneously across the three spaces S4, R4 and H4, there are a finite number of relevant operators [42].

Plugging (5) into the flow equation (18) we get a second order ordinary differential eigenvalue equation:

− a2(R) v′′(R) + a1(R) v′(R) + a0(R) v(R) = λv(R) (66)

where the eigenvalues λ = 4− θ, v(R) is the eigenoperator, and the ai’s are given by eqns. (56 – 58).

7.1 Asymptotic analysis

The first step is to apply asymptotic analysis to the eigenoperator equation. The procedure closely follows

that for the fixed point in sec. 6.1. As already noted there, a0 and a2 decay exponentially fast and in the

large R limit a1 ∼ 2R. Then the asymptotic form of the eigenvalue equation is:

λ v(R)− 2Rv′(R) = −a2(R) v′′(R) . (67)

Starting with the left hand side the solution is

v(R) ∝ |R|λ2 + · · · , (68)

where the ellipses stand for subleading corrections from the ai’s, in particular from the RHS. The solutions

have one parameter, the constant of proportionality. The missing parameter must come from a solution for

which v′′(R) cannot be neglected. But this implies diverging derivatives and thus v(R) can be neglected.

The equation is then analogous to what we had before where the second solution is now v(R) ∼ δf(R) in

(62) on the sphere and (65) on the hyperboloid.
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Now we ask whether these solutions are actually valid. The linearised solution (5) is meant to describe

the RG flow ‘close’ to the fixed point. For any fixed ε, if |v(R)/f(R)| → ∞ as R→ ±∞ that is not necessarily

true since linearisation is no longer valid. In this case one can set

fk(R) = f(R) + ε vk(R) , (69)

and, without linearising, ask for the correct evolution for vk(R) at large R. For large negative R the RHS of

the flow equation (18) can be neglected. For large positive R, the RHS of the flow equation can be neglected

except for the n = 1 S2 component of T Jac0 , which however just cancels the contributions from the LHS that

grow faster than R2 resulting from f(R), cf. (54). Since in fact the O(R2) part of f(R) also vanishes from

the LHS (on both sphere and hyperboloid), in the large R regime one has

∂tvk(R)− 2Rv′k(R) + 4 vk(R) = o(R2) . (70)

Any part of vk(R) growing at least as fast as R2 is then easily solved for, and gives mean-field evolution

involving some arbitrary function v:

vk(R) = e−4t v(R e 2t) + o(R2) . (71)

It will be the same function v that was introduced in the linearised solution (5) if one requires as boundary

condition, vk(R) = v(R) at k = µ. The question that remains is whether the RG evolution (71) is consistent

with what we found by linearising.

For the power-law solution (68), linearisation is valid at large |R| if and only if λ ≤ 4. This follows

from the hyperboloid fixed point asymptotics (63), the sphere side (54) requiring only the weaker constraint,

λ ≤ 4 + 2b. On the other hand if λ > 4, one can use the general perturbation (69), finding the solution (71).

Substituting the explicit form (68) of the boundary condition, gives:

vk(R) = v(R) e−θt + o(R2) , (72)

where θ = 4− λ, i.e. the linearised solution (5) is reproduced. We conclude that asymptotically, power-law

eigenoperators (68) are valid solutions for any λ. Their t evolution is multiplicative and given by the flow of

a conjugate coupling g(t) = ε e−θt, cf. (5).

On the other hand, the solutions that behave asymptotically as v(R) ∼ δf(R), are growing exponentials of

exponentials. Linearisation is not valid at large |R|, where the t dependence is given instead by (71). Now we

cannot separate out the t dependence. Therefore, such perturbations cannot be regarded as eigenoperators

evolving multiplicatively.

Excluding them leads to quantisation of the spectrum. This is because the large R dependence (68)

provides a boundary condition on both the sphere and the hyperboloid side, and linearity provides a further

boundary condition since one can choose a normalisation e.g. v(0) = 1. These three conditions over-constrain

the eigenoperator equation (66) leading to quantisation of λ, i.e. to a discrete eigenoperator spectrum.
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7.2 Sturm-Liouville theory

Sturm-Liouville type equations take the form

Lv(R) = λw(R)v(R), (73)

where L is the self adjoint operator

L = − d

dR

(
p(R)

d

dR
·
)

+ q(R), (74)

with p(R) and q(R) being real functions and w(R) also being positive. For the second order formulation, the

eigenvalue equation can be put in this form. The properties of these equations will then allow us to draw

conclusions about the spectrum of the eigenvalues.

The weight function is defined as

w(R) =
1

a2(R)
exp−

∫ R

dR′
a1(R′)

a2(R′)
, (75)

since, multiplying with the eigenvalue equation (66) and rearranging, casts it in Sturm-Liouville form:

−
(
a2(R)w(R)v′(R)

)′
+ w(R)a0(R)v(R) = λw(R)v(R) . (76)

Notice that the trace in a2 is positive. This is because the cutoff is monotonically decreasing, hence r′(z) < 0

and r(z) > 0, so the sign of a2 depends on ch̄, which is positive. This implies that the weight function

w(R) > 0 as required.

Next we check if the operator is self-adjoint. Taking v = vj(R), multiplying by vi(R), and integrating

over R, gives:

−
∫
viLvj = −

∫
vi
(
a2wv

′
j

)′
+

∫
via0wvj . (77)

If L is self-adjoint then this should be the same for j ↔ i. The first term on the RHS can be written as

−
∫ [

vi
(
a2wv

′
j

)]′
+

∫ [
vj
(
a2wv

′
i

)]′ − ∫ (a2wv
′
i

)′
vj . (78)

Thus what is required is that the first two terms above cancel each other. This is automatically satisfied if

R is taken to have the full range since w(R)→ 0 exponentially fast as R→ ±∞. If the differential equation

is restricted to either the four-sphere or four-hyperboloid, there would be a boundary at R = 0. The weight

function does not vanish there and thus the operator L would then not be self-adjoint. This is another

powerful hint that the correct treatment is to smoothly join the three topologies together. Note also that none

of these equations would make sense if the exponentially growing set of solutions v(R) ∼ δf(R) are included,

where δf(R) is given by (62) or (65). From (59) and (61) one can see that actually these δf(R) ∼ 1/w(R)

and thus such v(R) are not square integrable under the weight function w(R) since w(R)v2(R) ∼ 1/w(R),

which diverges at large R. Hence, this condition only picks out the correct solutions from the eigenvalue

equation and justifies the use of Sturm-Liouville techniques.
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Thus, when restricted to perturbations that grow only as a power at large |R|, the eigenvalue equation

(66) is of Sturm-Liouville type. The consequences for the spectrum of the eigenvalues can be seen by a

standard transformation to Liouville normal form. Define a coordinate x as

x =

∫ R

0

1√
a2(R′)

dR′. (79)

Then x→ ±∞ as R→ ±∞ because a2(R) vanishes at large |R|. Defining the ‘wave-function’

ψ(x) = a
1
4
2 (R)w

1
2 (R)v(R), (80)

(66) can be transformed into

− d2ψ(x)

dx2
+ U(x)ψ(x) = λψ(x), (81)

which is just the one-dimensional Schrödinger equation with energy λ. The potential turns out to be [42]

U(x) = a0 +
a2

1

4a2
− a′1

2
+ a′2

( a1

2a2
+

3a′2
16a2

)
− a′′2

4
. (82)

This potential has no singularities at finite x. Asymptotically the term proportional to a2
1 will dominate for

x→ ±∞ and thus the potential U(x)→ +∞. This then implies the following important properties:

1 The eigenvalues λn are discrete, real and non-degenerate.

2 There exists a lowest eigenvalue λ0 (i.e. bounded from below).

3 The only accumulation point is at infinity.

Asymptotic analysis already showed that the eigenvalues are discrete, but this Sturm-Liouville analysis allows

to conclude much more. Now it is straightforward to see that there is a finite number of relevant operators

such that θn = 4− λn ≥ 0. Indeed this is so because λn → ∞ as n → ∞ and because there exists a lowest

eigenvalue λ0.

But these results should be accepted with caution. Recall that to obtain them some severe approximations

were used, such as the single metric approximation and the truncation to the function f(R). One way to

judge the validity of the results is to check the extent to which they are scheme independent (universal),

in particular independent of the choice of cutoff. It turns out that the critical exponents θn can be solved

for analytically, again by using asymptotic analysis, and this gives a precise way to answer the question of

scheme dependence in this regime.

From (60) and (64), the reader can see that the leading contribution to a2 takes the following form on

both sphere and hyperboloid:

a2(R) =
1

G2(R)
e−2F (R) (83)

where F (R) is positive and proportional to |R|b and G(R) goes like a power of R. They therefore satisfy the

conditions required to use the trick (61) on the equation (79) defining x. Then asymptotically

x =
G(R)

F ′(R)
eF (R) + ... (84)
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where the ellipsis stand for multiplicative subleading terms. Alternatively this can be seen by differentiating

(79) and (84) with respect to R. The potential can then be approximated to leading order as

U(x) =
a2

1

4a2
=

R2

a2(R)
=
[
RF ′(R)

]2
x2. (85)

Evidently RF ′(R) = bF (R) and thus, taking logs of (84),

U(x) = (bx ln |x|)2

{
1 +O

(
ln ln |x|
ln |x|

)}
x→ ±∞ , (86)

where in the equation above the order of the subleading correction is also indicated. (The latter requires

taking into account iterations of (61) and the subleading corrections to a2.) Using the WKB approximation

one can then find the critical exponents for large n [43]:

θn = −b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (87)

The result shows almost a linear dependence on n. This much is similar to extensive numerical work done

on large polynomial truncations of a third order formulation up to n ≤ 70 [17]. These authors find near-

Gaussian scaling dimension. They use an adaptive cutoff so there is no direct comparison, and they use the

optimised profile (26) with no free parameters in the cutoff, so universality is not tested in this way. Indeed

the scaling dimension should be universal. The leading behaviour of this expression is independent of all

parameters in the chosen general family of cutoffs, except one, namely the parameter b in (29). Explicitly,

it is independent of a in (29), and of all the cφ and αi. Unfortunately the dependence on b still amounts to

strong dependence.

Actually this remaining dependence is an artefact of the single-metric approximation [2].3 We have

seen that it comes from the Rb dependence of F (R) in (83), equivalently (60) and (64). This in turn

arises from the cutoff dependence in eqn. (56) and in particular the cutoff profile’s dependence on R

(through in fact the lowest eigenvalue). To see that the dependence in (87) is an artefact of the single-metric

approximation, imagine for the moment that the single-metric approximation was not made and yet somehow

the initial ansatz (2) still made sense. (In reality such a simple ansatz would no longer be possible because

diffeomorphism invariance is replaced by BRST invariance for the quantum fields and furthermore it is badly

broken, but let us overlook that for the moment.) Now the curvature in it is the full quantum curvature

R̂, due to the full quantum metric ĝµν in (6). The trace and the cutoff in (56) come from summing over

modes on the background manifold in (3) so they depend on the background curvature R. The Hessian in

(3) will result in differentiating f(R̂) with respect to the fluctuation field hµν or equivalently differentiating

with respect to ĝµν . Thus ultimately the eigenoperator perturbation equation (55) would take the form:

− a2(R, R̂) δf ′′(R̂) + a1(R, R̂) δf ′(R̂) + a0(R, R̂) δf(R̂) = 4 δf(R̂) (88)

with in particular:

a2 =
144ch
V

Tr

[
∆2

0(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R))

(9f ′′(R̂)∆2
0 + 3f ′(R̂)∆0 + E(R̂) + 16chr(∆0 + α0R))2

]
. (89)

3More generally, single-field approximations are a known source of artefacts [56].
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In deriving (87) one is interested in the large R̂ dependence of (88). This depends on the large R̂ dependence

of the fixed point functional f(R̂), and this feeds in to the coefficients ai(R, R̂). But there is no exp
(
−aR̂b

)
dependence because the cutoff profile r depends only on the background curvature R, either directly or

through the Laplacians whose eigenvalues only depend on the background manifold.
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[57] Sergio Gonzalez-Martin, Tim R. Morris, and Zoë H. Slade. Asymptotic solutions in asymptotic safety.

Physical Review D, 95(10), May 2017.

[58] F. J. Wegner. Some invariance properties of the renormalization group. J. Phys., C7:2098, 1974.

[59] Jose I. Latorre and Tim R. Morris. Scheme independence as an inherent redundancy in quantum field

theory. Int. J. Mod. Phys., A16:2071–2074, 2001, hep-th/0102037.

[60] Jean Zinn-Justin. Quantum field theory and critical phenomena. Int. Ser. Monogr. Phys., 113:1–1054,

2002.

[61] Yuji Igarashi, Katsumi Itoh, and Tim R. Morris. BRST in the Exact RG. PTEP, 2019(10):103B01,

2019, 1904.08231.

[62] James W. York, Jr. Conformally invariant orthogonal decomposition of symmetric tensors on Rieman-

nian manifolds and the initial value problem of general relativity. J. Math. Phys., 14:456–464, 1973.

[63] G.W. Gibbons, S.W. Hawking, and M.J. Perry. Path Integrals and the Indefiniteness of the Gravitational

Action. Nucl.Phys., B138:141, 1978.

31



[64] Juergen A. Dietz, Tim R. Morris, and Zoe H. Slade. Fixed point structure of the conformal factor field

in quantum gravity. Phys. Rev., D94(12):124014, 2016, 1605.07636.

[65] Tim R. Morris. Renormalization group properties in the conformal sector: towards perturbatively

renormalizable quantum gravity. JHEP, 08:024, 2018, 1802.04281.

[66] Tim R. Morris. Perturbatively renormalizable quantum gravity. Int. J. Mod. Phys., D27(14):1847003,

2018, 1804.03834.

[67] Daniel F. Litim. Optimized renormalization group flows. Phys.Rev., D64:105007, 2001, hep-th/0103195.

[68] R. Camporesi and A. Higuchi. Spectral functions and zeta functions in hyperbolic spaces. J. Math.

Phys., 35:4217–4246, 1994.

32


	1 Introduction
	2 Flow equations
	3 Cutoff functions
	4 Flow equations with adaptive cutoff
	5 Evaluating traces
	5.1 Sphere
	5.2 Hyperboloid
	5.3 Flat space

	6 Fixed point solutions
	6.1 Asymptotic analysis
	6.2 Numerical solution

	7 Eigenoperators
	7.1 Asymptotic analysis
	7.2 Sturm-Liouville theory

	References

