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We observe that the three-gluon form factor of the chiral part of the stress-tensor multiplet in planar
N ¼ 4 super-Yang-Mills theory is dual to the six-gluon MHV amplitude on its parity-preserving surface.
Up to a simple variable substitution, the map between these two quantities is given by the antipode
operation defined on polylogarithms (as part of their Hopf algebra structure), which acts at symbol level by
reversing the order of letters in each term. We provide evidence for this duality through seven loops.

DOI: 10.1103/PhysRevLett.128.111602

Introduction.—In the study of quantum field theory, we
occasionally encounter dualities, or relations between
seemingly unrelated quantities. One such example is the
duality between scattering amplitudes and closed light-like
polygonal Wilson loops in planar maximally supersym-
metric Yang-Mills (N ¼ 4 SYM) theory [1–7], and its
extension to a triality relating both quantities to a particular
kinematic limit of correlation functions of the stress tensor
supermultiplet [8–12]. These types of relations provide us
with valuable new perspectives on physical quantities, and
at times reveal deep and novel types of mathematical
structure. In this Letter, we present a new weak-weak
duality between the maximally-helicity-violating (MHV)
three-gluon form factor of the chiral part of the stress tensor
supermultiplet in planar N ¼ 4 SYM theory, and a
kinematic limit of the six-gluon MHV amplitude in the
same theory. This duality holds order by order in the ’t
Hooft coupling g2 ¼ ðλ=16π2Þ [13].
A great deal is known about both the three-gluon form

factor and the six-gluon amplitude. Their infrared structure
can be understood to all orders in terms of the Bern-Dixon-
Smirnov (BDS) ansatz [14,15], and each is known to be
dual to a polygonal Wilson loop (which, in the case of the
form factor, is periodic) [1–7,16–20]. Moreover, integra-
bility techniques have been leveraged to develop an
operator product expansion (OPE) around the near-collin-
ear limit of each quantity [21–33], which has provided
useful boundary data for bootstrap approaches, by means of

which the amplitude has been computed through seven
loops [34–42] and the form factor through eight loops
[43,44]. As will prove important below, both quantities are
expressible in terms of multiple polylogarithms. This class
of functions comes equipped with a coaction and an
associated antipode (or coinverse) [45–51]; see Ref. [52]
for a review.
In this Letter, we show that the antipode relates the three-

gluon form factor to the six-gluon amplitude on its parity-
preserving surface, up to a simple mapping between their
respective kinematic variables. While it is surprising for
any direct relation between these quantities to exist, the fact
that they are related by the antipode map—which has no
clear physical interpretation—is doubly bizarre [53].
In the remainder of this Letter, we provide the full

statement of this relation, and present evidence that sup-
ports it through seven loops. We also discuss how this
duality is consistent with many of the known analytic
features of the six-gluon amplitude and three-gluon form
factor, and draw out the implications this relation has for
the analytic properties of the form factor, and for boot-
strapping these quantities at higher loops.
The duality.—Let us first define the specific quantities

that enter the amplitude/form factor duality that we find. On
the amplitude side, we consider the BDS-like and cos-
mically normalized six-point MHV amplitude A6 [40,55],
which is defined by dividing the full amplitudeAMHV

6 by the
BDS-like ansatz ABDS-like

6 [56,57] and a transcendental
function ρ̂ [55], which is independent of the kinematics
but can be perturbatively expanded in the coupling g2:

AMHV
6 ¼ ABDS-like

6 × ρ̂ × A6: ð1Þ

A6 is a finite polylogarithmic function [58] of the three dual-
conformally invariant cross ratios
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û ¼ s12s45
s123s345

; v̂ ¼ s23s56
s234s123

; ŵ ¼ s34s61
s345s234

; ð2Þ

where si…k ¼ ðpi þ � � � þ pkÞ2 are planar Mandelstam
invariants. In addition to rational functions of these cross
ratios, A6 depends on the square root of the six-point Gram
determinant, which takes the form

Δ ¼ ð1 − û − v̂ − ŵÞ2 − 4û v̂ ŵ : ð3Þ

Spacetime parity acts on the amplitude through the
exchange

ffiffiffiffi

Δ
p

→ −
ffiffiffiffi

Δ
p

.
Similarly, we consider a BDS-like and cosmically

normalized version of the three-point MHV form factor
FMHV

3 ,

FMHV
3 ¼ FBDS-like

3 × ρ × F3; ð4Þ

where FBDS-like
3 was defined in Ref. [43] and ρ is related to

ρ̂ via the cusp anomalous dimension Γcusp: ρ ¼ ρ̂×
expð−ζ2Γcusp=2Þ. F3 is a finite polylogarithmic function
that depends on three ratios of Mandelstam invariants,
which are usually chosen to be

u ¼ s12
s123

; v ¼ s23
s123

; w ¼ s13
s123

: ð5Þ

(The function ρ × F3 was referred to as E in Ref. [43].)
We make use of all three variables in order to make mani-
fest the (dihedral) symmetry of the form factor, but only
two of these variables are independent due to momentum
conservation, which implies that uþ vþ w ¼ 1.
The antipodal duality that we find between these

quantities can be expressed as

FðLÞ
3 ðu; v; wÞ ¼ S

�

AðLÞ
6 ðû; v̂; ŵÞ

�

jûi→ûiðu;v;wÞ; ð6Þ

where FðLÞ
3 and AðLÞ

6 denote the Oðg2LÞ contributions to F3

and A6, S is the antipode map, and

û1 ¼ ûðu; v; wÞ ¼ vw
ð1 − vÞð1 − wÞ ; ð7Þ

û2 ¼ v̂ðu; v; wÞ ¼ uw
ð1 − uÞð1 − wÞ ; ð8Þ

û3 ¼ ŵðu; v; wÞ ¼ uv
ð1 − uÞð1 − vÞ : ð9Þ

The antipode map is part of the larger Hopf algebra
structure of multiple polylogarithms, which also contains
the coproduct and symbol maps [46–50]. The symbol of a
polylogarithmic function G is recursively defined via its
total differential as

dG ¼
X

x∈L
Gx d ln x ⇒ SðGÞ ¼

X

x∈L
SðGxÞ ⊗ x; ð10Þ

where the set of logarithmic arguments L is referred to as
the symbol alphabet, and each of the functions Gx is also a
polylogarithm.
At symbol level, the antipode map simply reverses the

order of the letters in every word of the symbol (up to a
sign) [45,59]:

Sðx1⊗x2⊗…⊗xmÞ¼ð−1Þmxm⊗…⊗x2⊗x1: ð11Þ

However, we find that relation (6) also holds for terms
involving transcendental constants, modulo contributions
proportional to iπ. (Strictly speaking, the antipode map
only makes sense on de Rham periods, and as such is not
defined on iπ.)
Because of the momentum conservation constraint on

the form factor variables, the substitutions (7)–(9) require
the amplitude to be evaluated on a two-dimensional sur-
face. In particular, the equation uþ vþ w ¼ 1 gets
mapped to the constraint that Δ ¼ 0. Since parity sends
ffiffiffiffi

Δ
p

→ −
ffiffiffiffi

Δ
p

, this is the surface on which the parity of the
amplitude is preserved.
We depict the mapping between these kinematical spaces

in Figs. 1 and 2, and give the translation for various points
and lines in Table I. In particular, Fig. 2 and Table I show
several interesting points and lines on which the multiple
polylogarithms simplify to multiple zeta values (MZVs),
alternating sums, cyclotomic zeta values [60] including 6th
roots of unity [40,61] (denoted in Table I by

ffiffiffi

16
p

), and
harmonic polylogarithms (HPLs) [62]. At two of the points
the amplitude and form factor diverge logarithmically. Of
the two HPL lines ð1; v̂; v̂Þ and (û; û; ð1 − 2ûÞ2), the former
is simpler because the HPL index−1 does not appear. In the
next section, we will check the duality at some of these
points and lines.
As can be seen in Fig. 1, the line v ¼ 0 is mapped to the

point ðû; v̂; ŵÞ ¼ ð0; 1; 0Þ, while the point ðu; vÞ ¼ ð1; 0Þ is
mapped to the line û ¼ 0, v̂þ ŵ ¼ 1. These relations
imply that the duality exchanges soft and collinear limits.

FIG. 1. Correspondence between various lines in the two-
parameter three-point form factor space (right) and their images
in the three-parameter six-point amplitude kinematic space (left)
under the map (7)–(9). The white regions in the right plot map to
points outside of the region 0 < û; v̂; ŵ < 1 in the left plot.

PHYSICAL REVIEW LETTERS 128, 111602 (2022)

111602-2



This exchange is related to the simplicity of the map (7)–(9)
in the OPE parametrization:

û ¼ 1

1þ ðT̂ þ Ŝ F̂ÞðT̂ þ Ŝ=F̂Þ ;

v̂ ¼ û ŵ Ŝ2=T̂2; ŵ ¼ T̂2

1þ T̂2
; ð12Þ

and

u ¼ 1

1þ S2 þ T2
; v ¼ T2

1þ T2
;

w ¼ 1

ð1þ T2Þ½1þ S−2ð1þ T2Þ� ; ð13Þ

see Refs. [21,31]. Namely,

T̂ ¼ T
S
; Ŝ ¼ 1

TS
; ð14Þ

while F̂ ¼ 1 on the Δ ¼ 0 surface.
Evidence.—Since the six-point amplitude and three-

point form factor have been computed through seven

and eight loops [41,43,44], respectively, we can provide
evidence for relation (6) through seven loops. We first do so
at symbol level, where the antipode map is given by (11).
The alphabet of symbol letters of the six-point amplitude

can be chosen to be

L̂ ¼ fâ; b̂; ĉ; d̂; ê; f̂; ŷu; ŷv; ŷwg; ð15Þ

where

â ¼ û
v̂ ŵ

; b̂ ¼ v̂
ŵ û

; ĉ ¼ ŵ
û v̂

;

d̂ ¼ 1 − û
û

; ê ¼ 1 − v̂
v̂

; f̂ ¼ 1 − ŵ
ŵ

; ð16Þ

and the remaining variables invert under parity, for instance
ŷu → 1=ŷu. Hence, ŷu ¼ ŷv ¼ ŷw ¼ 1 on the Δ ¼ 0 sur-
face. (Note that this notation differs from Refs. [40,41],
where d̂, ê, and f̂ were referred to as mu, mv, and mw.) An
analogous alphabet can be chosen for the three-point form
factor, namely,

L ¼ fa; b; c; d; e; fg; ð17Þ

where

a ¼ u
vw

; b ¼ v
wu

; c ¼ w
uv

;

d ¼ 1 − u
u

; e ¼ 1 − v
v

; f ¼ 1 − w
w

: ð18Þ

Both A6jΔ¼0 and F3 are invariant under the same dihedral
group D3, which is generated by

cycle∶ fa; b; c; d; e; fg → fb; c; a; e; f; dg ð19Þ

and

flip∶ fa; b; c; d; e; fg → fa; c; b; d; f; eg; ð20Þ

and similarly in the hatted letters.

FIG. 2. Schematic correspondence between various interesting
points and lines in the two-parameter three-point form factor
space (right) and their images in the three-parameter six-point
amplitude kinematic space (left) under the map (7)–(9). See
Table I for the coordinates of the marked points.

TABLE I. Kinematic points and lines as well as their images under the map (7)–(9). The points ▿,□, ∘,△, and⊞
all lie on the line ðu; u; 1 − 2uÞ.

ðû; v̂; ŵÞ ðu; v; wÞ Functions

▿ ð1
4
; 1
4
; 1
4
Þ ð1

3
; 1
3
; 1
3
Þ ffiffiffi

16
p

□ ð1
2
; 1
2
; 0Þ (0,0,1) Li2ð12Þ + logs

• (1,1,1) limu→∞ðu; u; 1 − 2uÞ MZVs
∘ (0,0,1) ð1

2
; 1
2
; 0Þ MZVsþ logs

△ ð3
4
; 3
4
; 1
4
Þ ð−1;−1; 3Þ ffiffiffi

16
p

⊞ ð∞;∞;∞Þ ð1; 1;−1Þ Alternating sums
⊗ limv̂→∞ð1; v̂; v̂Þ limv→∞ð1; v;−vÞ MZVs
Green and blue lines ð1; v̂; v̂Þ limv→∞ðu; v; 1 − u − vÞ HPLf0; 1g
Red and yellow lines ðû; û; ð1 − 2ûÞ2Þ ðu; u; 1 − 2uÞ HPLf−1; 0; 1g
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It is easy to check that the map (7)–(9) acts by swapping
ffiffiffi

â
p

⇔ d; d̂ ⇔ a; ð21Þ

and all cyclically related letters in the same way. Notably,
this swaps the letters that appear in the first and last entries
of the amplitude and form factor. That is, the letters that are
allowed to appear in the first entry of the amplitude (â, b̂,
and ĉ) are mapped to the letters that appear in the last entry
of the form factor (d, e, and f). Similarly, the first entries of
the form factor (a, b, and c) are mapped to the last entries of
the amplitude (d̂, ê, and f̂). This combines with the reversal
of symbol letters entailed by the antipode map in Eq. (6) to
maintain the known first and last entry conditions
[15,34,43,63] of each quantity.
We now check that relation (6) holds at symbol level.

For example, at two loops, the symbols S of the amplitude
and form factor each involve 12 terms, and are given by

SðAð2Þ
6 jΔ¼0Þ¼

1

2
â⊗ â⊗ â⊗ êþ â⊗ ê⊗ ê⊗ êþdihedral;

ð22Þ

SðFð2Þ
3 Þ ¼ 2a⊗ a⊗ a⊗ eþ 4a⊗ e⊗ e⊗ eþ dihedral;

ð23Þ

where we sum over all dihedral images in D3 generated by
Eqs. (19) and (20). Because of the square root in Eq. (21),
the two terms in Eq. (22) pick up factors of 8 and 2, which
are precisely the numerical factors needed to match
Eq. (23) when the rest of the transformation in Eq. (6)
is applied. We have similarly checked that the duality
holds at symbol level through seven loops, using the
expressions provided in the ancillary files of Ref. [41]
and Refs. [43,44]. Because of the fast growth of the number
of terms in the symbol with the loop order (see Table II),
this check quickly becomes quite involved, and extremely
stringent.
The antipode map is also defined at the function level

[45,59] (see also Ref. [64] for a discussion of the antipode
in the physics literature), and as such we can also check the

duality beyond the symbol. The simplest way to do this is to
compare the functions at a single point, for instance, at the
point û ¼ v̂ ¼ ŵ ¼ 1, which maps to the u; v → ∞ limit of
the form factor space. At these points, both functions are
real and are known to be expressible in terms of MZVs,
which can conveniently be expressed in terms of the so-
called f-alphabet [48,61]; see Table I. Since we do not
know how to compute the antipode of iπ, the first nontrivial
constants appear at three loops. Through five loops, the
amplitude evaluates to [40] [(A.3)–(A.5)]

Að3Þ
6 ð1; 1; 1Þ ¼ 0f3;3 þOðπ2Þ; ð24Þ

Að4Þ
6 ð1; 1; 1Þ ¼ 120f3;5 þOðπ2Þ; ð25Þ

Að5Þ
6 ð1; 1; 1Þ ¼ −2688f3;7 − 1560f5;5 þOðπ2Þ; ð26Þ

while the form factor evaluates to [43] [(5.7)–(5.9)]

Fð3Þ
3 ð∞;∞Þ ¼ 0f3;3 þOðπ2Þ; ð27Þ

Fð4Þ
3 ð∞;∞Þ ¼ 120f5;3 þOðπ2Þ; ð28Þ

Fð5Þ
3 ð∞;∞Þ ¼ −2688f7;3 − 1560f5;5 þOðπ2Þ: ð29Þ

Clearly, these values are related to each other by reversing
the order of f-alphabet letters [65]. We provide further
evidence for the duality at various points up to seven loops
in an ancillary file [66].
We can also check the duality on the line where û ¼ 1

and v̂ ¼ ŵ, where A6 can be expressed in terms of HPLs
with indices 0,1 and argument x̂ ¼ 1 − 1=v̂. This line maps
via Eqs. (7)–(9) to the line where v → ∞ (with u fixed),
where F3 can be expressed in terms of the same space of
functions, but with the arguments reinterpreted as
x ¼ 1 − 1=u, and x̂ ¼ 1 − x. We have checked that these
functions map to each other via relation (6) through seven
loops, up to terms proportional to π2. We then use the
duality to predict the eight-loop MHV amplitude on the
line ð1; v̂; v̂Þ, modulo π2 terms, in a second ancillary file
[66]. Finally, we have also checked that relation (6) holds
at the level of full functions of u and v, up to three loops,
finding a complete match up to terms proportional to iπ.
While we have not detailed here how the antipode acts in
general on multiple polylogarithms, we note that it is
conveniently implemented in the MATHEMATICA package
PolyLogTools [67].
It would be interesting to find an extension or deforma-

tion of relation (6) that also relates the terms proportional to
iπ on both sides of the duality. This is nontrivial, though,
for two reasons. The first is that the antipode is not defined
on iπ. Second, there is a question of the appropriate
Riemann sheets. On its physical sheet, the form factor is
real when 0 < u; v; w < 1 and complex elsewhere (except

TABLE II. Number of terms in the symbol of FðLÞ
3 as a function

of the loop order L.

L Number of terms

1 6
2 12
3 636
4 11 208
5 263 880
6 4 916 466
7 92 954 568
8 1 671 656 292
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when one of these variables is taken to infinity). For the
amplitude, with û; v̂; ŵ > 0, we could either be on the
Euclidean sheet, or the 2 → 4 physical scattering sheet.
Both are problematic: On the Euclidean sheet, the ampli-
tude is real, while the form factor generically has imaginary
parts proportional to iπ (but at least for u, v, w < 1 both
objects are real). On the 2 → 4 physical scattering sheet, the
amplitude has imaginary parts, which blow up logarithmi-
cally as one approaches the ð1; v̂; v̂Þ self-crossing line [68],
while the dual form factor’s imaginary parts vanish there.
Implications.—This duality has several interesting impli-

cations. The six-point amplitude is known to obey a large
set of extended Steinmann relations [40] (or cluster
adjacency conditions [69]), which tell us that certain pairs
of letters never appear in adjacent entries of the symbol

ð30Þ

plus all dihedral images. Importantly, these conditions all
remain nontrivial and distinct on theΔ ¼ 0 surface, and can
be read either backwards or forwards. As such, these
constraints are preserved by the antipode, and can be
translated directly, via Eq. (21), into constraints that should
hold for the three-point form factor

ð31Þ

plus all dihedral images. The first of these conditions was
observed in Refs. [43,70], while the other conditions are
new. (In fact, these additional relations were observed by
the authors prior to the discovery of Eq. (6), and they
indeed hold through eight loops [44].)
More generally, this duality makes it possible to translate

knowledge about the functional form of one of these
quantities into information about the other. Most obviously,
the form factor can simply be “read off” of the amplitude on
the Δ ¼ 0 surface (up to iπ contributions). Conversely, the
form factor also provides an enormous amount of boundary
data for bootstrapping the amplitude. In fact, we have
checked that this information, when combined with parity,
is sufficient to uniquely determine the symbol of the
amplitude through 5 loops, and through 7 loops when
combined also with certain conditions on the final pair of
entries and the behavior at the origin [55].
Discussion and conclusions.—In this Letter, we have

identified a new and unexpected duality in planar N ¼ 4
SYM theory between the three-point form factor of the
chiral part of the stress tensor supermultiplet, and a
kinematic limit of the six-point MHV amplitude.
Amazingly, these quantities are related by the antipode
map, which has no clear physical interpretation that we are
aware of. In particular, the antipode exchanges the first and

last entries of the symbol, which describe the discontinu-
ities and derivatives of these functions, respectively. Thus,
the discontinuities of the amplitude seem to be encoded in
the derivatives of the form factor, and vice versa. While we
have provided evidence for this duality through seven
loops, it would be interesting to find a physical derivation
or even a proof of this relation, using, for example, the
nonperturbative integrability-based descriptions of both
quantities (Refs. [21–30] and [31–33]). At strong coupling
both quantities can also be described via a minimal surface
[1,16] and a corresponding Y-system [17,71,72], and it
would be interesting to see what relation (6) implies for
these formulations.
The three-point form factor is of particular interest due to

the principle of maximal transcendentality [73–76], which
states that the three-point form factor in N ¼ 4 SYM
theory provides the maximally transcendental part of the
Higgs-to-three-gluon amplitude in pure Yang-Mills theory
in the large-top-mass approximation [15,77–80].
It would be extremely interesting to see whether a

version of the duality we present here exists for higher-
point MHVamplitudes and form factors. Since A2n and Fn
both exhibit a Dn dihedral symmetry, one might expect
these quantities to be related also for n > 3. The surface
Δ ¼ 0 can be interpreted as “twisted forward scattering” in
which the 2n external momenta of the amplitude p̂i are
related by p̂iþn ¼ −p̂i for i ¼ 1; 2;…; n (for n ¼ 3), so
that there are only n independent momenta, as in the form
factor. This interpretation might give further clues for a
generalization to higher n.
Moreover, it would be interesting to see whether a

similar duality exists at next-to-MHV and beyond, or for
other operators than the chiral part of the stress tensor
supermultiplet.
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