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Abstract—Sixth-Generation (6G) technologies will revolution-
ize the wireless ecosystem by enabling the delivery of futuristic
services through satellite-terrestrial integrated networks (STINs).
As the number of subscribers connected to STINs increases, it
becomes necessary to investigate whether the edge computing
paradigm may be applied to low Earth orbit satellite (LEOS) net-
works for supporting computation-intensive and delay-sensitive
services for anyone, anywhere, and at any time. Inspired by this
research dilemma, we investigate a LEOS edge-assisted multi-
layer multi-access edge computing (MEC) system. In this system,
the MEC philosophy will be extended to LEOS, for defining the
LEOS edge, in order to enhance the coverage of the multi-layer
MEC system and address the users’ computing problems both
in congested and isolated areas. We then design its operating
offloading framework and explore its feasible implementation
methodologies. In this context, we formulate a joint optimization
problem for the associated communication and computation re-
source allocation for minimizing the overall energy dissipation of
our LEOS edge-assisted multi-layer MEC system while maintain-
ing a low computing latency. To solve the optimization problem
effectively, we adopt the classic alternating optimization (AO)
method for decomposing the original problem and then solve each
sub-problem using low-complexity iterative algorithms. Finally,
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our numerical results show that the offloading scheme conceived
achieves low computing latency and energy dissipation compared
to the state-of-the-art solutions, a single layer MEC supported
by LEOS or base stations (BS).

Index Terms—Satellite-terrestrial integrated network, LEO
satellite, multi-access edge computing, 6G

I. INTRODUCTION

THe new space race is heating up as private Internet
and aerospace companies such as SpaceX, Amazon and

Telesat are building large satellite constellations in low Earth
orbit (LEO) to provide global broadband Internet access. For
instance, SpaceX’s Starlink constellation has already entered
a public beta phase for subscribers in North America and the
United Kingdom with more than 1,500 satellites in use, and
more than 12,000 LEO satellites (LEOS) will be deployed
by 2027 [1]–[3]. They are expected to provide broadband
services for billions of users worldwide, even in hither to
unreachable areas at low latency (i.e., below 30 ms), high data
rate (i.e., above 100 Mb/s) and wide coverage. Hence, satellite-
terrestrial integrated networks (STINs) are expected to become
predominant over the next couple of years [4]–[9]. Beyond
enabling Internet access for billions of users, STINs are also
capable of connecting a large number of edge devices. Thus,
a novel aspect of STINs is the provision of computational
resources over satellites which constitutes a new paradigm,
i.e., treating LEOSs as the “new edge”, namely the LEOS
edge [1], [2], [10]–[12].

Recently, interest in LEOS edge research has increased
tremendously, and commercial solutions have also appeared.
For instance, Loft Orbital is developing a processor for
providing onboard edge computing capabilities for military
satellites in orbit, while the company called Ibeos provides
bus and payload computing solutions that are suitable for all
types of space environments [13]. Compared to the traditional
LEOS-assisted multi-access edge computing (MEC) system,
the LEOS edge will bring about compelling benefits, since
not all computational tasks will have to be forwarded to
the data center. However, offloading data from all users to
the LEOS edge for processing will put substantial strain on
satellite networks, since next-generation applications will have
to process a large amount of data or require low latency
and excellent energy efficiency [14]–[16], as exemplified by
flawless holographic services projecting holographic subjects
to a remote place. A similar potential bottle-neck also exists
in terrestrial networks, where the geographically distributed
ground stations harnessed as computing modes may become
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incapable of handling the requests because the computing
resources at the edge of terrestrial networks are also limited.

A. Motivation

The seamless integration of ground stations and the LEOS
edge under the next-generation wireless ecosystem is expected
to mitigate the aforementioned impediments and improve
service availability, continuity, ubiquity and scalability. These
novel concepts have opened up many new frontiers for network
operators and service providers in terms of providing versatile
uninterrupted services in diverse application scenarios. In this
paper, the multi-layer MEC system concept plays a significant
role in STINs by providing low computing latency, high energy
efficiency and extensive coverage. However, integrating BS
servers and the LEOS edge in STINs for providing high-speed
computing services while maintaining high energy efficiency
poses the following challenges.
• Framework: How to design a multi-layer MEC frame-

work for STINs with the assistance of the LEOS edge?
• Implementation: How to conceive efficient network ac-

cess, resource management and computation offloading
for the framework designed?

• Optimization: How to minimize the overall energy dis-
sipation of the LEOS edge-assisted multi-layer MEC
system while maintaining a low computing latency?

Inspired by these potential benefits and the resultant chal-
lenges, in this paper, we propose the LEOS edge-assisted
multi-layer MEC system for STINs, a concept highlighted
in Fig. 1, where the LEOS edge is expected to complement
the terrestrial networks in providing high-efficiency computing
services for ground users at a low energy.

B. State-of-the-Art

In the STIN-aided six-generation (6G) wireless ecosystem
of Fig. 1, computing and storage resources are embedded
either in the terrestrial or satellite networks, as close to mobile
devices as possible to offer low computing latency, high-
throughput, high-privacy and low-cost services. Employing
both local computing and edge computing in support of
complex tasks, MEC is becoming a promising paradigm and
has attracted a lot of attention.

1) MEC-Enabled Terrestrial Networks: The demand for
processing data close to its source led to the increased popu-
larity of the edge computing paradigm. Embedding computing
resources into the edge of terrestrial networks reduces both the
computing latency and energy dissipation while guaranteeing
privacy and security. In this context, most of the works focused
their attention on the offloading design and optimization of
terrestrial networks. Explicitly, Yang et al. [18] studied the
tradeoff between the performance gains and energy dissipation
in collaborative offloading, while Wang et al. [19] conceived
a Non-Orthogonal Multiple Access (NOMA)-based fog com-
puting framework for reducing the computing latency and
energy dissipation. To achieve high energy efficiency, Dai
et al. [20] designed a two-tier MEC framework by jointly
considering the computation offloading and user association.

As a further development, Wang et al. [21] studied the energy-
efficient task offloading design of a massive multiple-input
and multiple-output (MIMO)-aided multi-pair fog computing
system. Relying on a breakthrough in the fabrication of pro-
grammable meta-materials, reconfigurable intelligent surfaces
(RIS) [22]–[27] improve the offloading links of MEC systems.
For example, Bai et al. [28] proposed a RIS-assisted MEC
solution for reducing the offloading latency, while the security
of RIS-assisted MEC systems was studied in [29]. In a
6G context, artificial intelligence (AI) aided MEC systems
were explored in [30]–[36]. Specifically, Yang et al. [30]–
[32] adopted deep learning techniques instead of conventional
optimization methods for constructing beneficial offloading
policies. Furthermore, edge intelligence in MEC systems was
explored for finding more optimal solutions [33]–[36].

2) MEC-Enabled Satellite Networks: Traditionally, LEOSs
are used in a “bent pipe” architecture, where every satellite
simply acts as a communication link and pushes off the
processing to the terrestrial datacenters [37]. In other words,
most of the satellites in space simply serve a single mission.
These satellites typically carry out weather forecasting, dis-
aster management, or region monitoring. For example, when
collecting remote sensing data over Greenland (Ulloriaq) [38],
the satellite is idle for most of the duration of its orbit. With the
development of commercialized LEOSs and the availability of
a larger number of distributed ground stations, the authors of
[2], [11], [39]–[43] advocated space-assisted offloading. For
example, Di et al. [39], [40] proposed a terrestrial-satellite
network architecture for efficient data offloading, where the
LEOS has to forward the ground user’s data either to a
terrestrial gateway station or to a macro base station (BS)
for processing. To support the computational requirements
of remote areas, Cheng et al. [41] proposed a space-air-
ground integrated networking aided edge/cloud computing
architecture, where UAVs provide near-user edge computing
services and satellites provide access to powerful cloud com-
puting. Similarly, Li et al. [42] studied a cache-enabled LEOS,
where LEOSs are connected to macro BSs through wireless
links for updating their cached contents. The proliferation of
satellite constellations calls for a new LEOS edge capable
of supporting edge computing from space. Hence, the re-
search community has turned to the exploration of MEC over
LEOSs. For example, Bhosale et al. [11] proposed a service
orchestration technique for the LEOS edge, while Pfandzelter
et al. [2] discussed the unique characteristics of the LEOS
edge. As a further advance, Tang et al. [43] proposed multi-
tier computing intrinsically combined with local computing,
offloading tasks both to LEOS and to the clouds, and Cao et
al. [44] investigated the interplay of RIS and multi-layer MEC
in the context of space information networks.

C. Open Problems and Contributions

At the time of writing, the potential of the LEOS edge-
assisted multi-layer MEC paradigm has not been fully ex-
ploited, predominantly because the computation offloading
link of the LEOS edge is far from perfect. Even though LEOS-
enabled MEC constitutes a promising solution for supporting
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BSs by providing high-capacity backhaul, wide-ranging cover-
age, and low latency computing services, there is very limited
literature on its energy efficiently, especially for a multi-layer
MEC system involving LEOS edge. By contrast, this paper
aims to jointly investigate the computing and communication
performance of STINs. Against this background, our main
contributions are summarized as follows.
• Framework design: We conceive a universal framework

for multi-layer MEC systems by exploiting the emergence
of the LEOS edge in support of low computing latency,
high energy efficiency, and seamless coverage in multi-
layer MEC systems.

• Implementation methodologies: We conceive the associ-
ated network access, resource management, and compu-
tation offloading for the proposed framework, thereby
enhancing both the communication and computing per-
formance of a practical system at a low cost.

• Optimization algorithms: We design optimization algo-
rithms for minimizing the energy dissipation of the LEOS
edge-assisted multi-layer MEC system advocated.

• Performance evaluation: We characterize the proposed
LEOS edge-assisted multi-layer MEC STIN in terms of
its latency and energy efficiency. Our simulation results
show that all of these three aspects can be significantly
improved compared to the state-of-the-art benchmarks.

The rest of this paper is organized as follows. In Section II,
we describe a LEOS edge-assisted multi-layer MEC system for
STINs. We then design an offloading scheme for the proposed
multi-cell system and formulate a joint optimization problem
that includes the offloading mode, offloading volume, and the
computing resource allocation of BS servers, plus the LEOS
edge for minimizing the system’s overall energy dissipation in
Section III. Next, in Section IV, we explore an energy-efficient
offloading solution for the formulated mixed-integer nonlinear
programming (MINLP) problem. We discuss the numerical
results in Section V, and we finally conclude in Section VI.

Notations: As per the traditional notation, a bold letter
indicates a vector or matrix. max{·} and min{·} represent
the maximum value and the minimum value, respectively. The
amplitude of a complex number x is denoted by |x|.

II. SYSTEM MODEL

In this section, we first introduce a LEOS edge-assisted
computation scenario in which the terrestrial users offload
their tasks to the BS server or the LEOS edge. Then, the
communication, computing, and energy dissipation models are
discussed.

A. Scenario Model

We consider an integrated satellite-terrestrial network de-
ploying the LEOS edge as shown in Fig. 1. In the scenario
considered, the BS server cannot carry out the numerous
computation tasks of all the ground users within the scope of
the cell it covers due to its limited computational capability.
In this case, the LEOS edge has to coordinate with each BS
server to assist the task processing of ground users, such as
holographic video surveillance. Therefore, each ground user
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Fig. 1: A LEOS edge-assisted multi-layer MEC system for STINs

can offload its tasks in two modes: 1) offloading its tasks to
the BS server via wireless backhaul links over the C-band, or
2) offloading its tasks to the LEOS edge via wireless backhaul
links over the Ka-band. After computing at the LEOS edge or
the BS server, the computing results are fed back to the users
via the Ka-band or the C-band.

In our system, we consider a single LEOS and I BSs,
each serving J ground users, and the LEOS edge can serve
I × J ground users. Additionally, the LEOS and each BS
are equipped with a computational server for carrying out
computational tasks. The set of BS servers and the ground
users in each BS are denoted by I = {1, . . . , i, . . . , I} and
J = {1, . . . , j, . . . , J}, respectively. We denote the ith BS
server and its jth ground user as BSi and Uij , respectively,
where i ∈ I, j ∈ J . Let Lij and lij represent the total number
of bits and the number of bits to be offloaded, respectively.
It should be noted that the task of Uij is offloaded to the
BS server or the LEOS edge when lij 6= 0, otherwise, it is
processed locally. In addition, let uij indicate the offloading
mode, i.e.,

uij=

{
1, Uij offloads to BSi, ∀i, j ∈ I,J ,
0, Uij offloads to the LEOS edge, ∀i, j ∈I,J.

(1)

We assume that each ground user is equipped with a single
antenna, each BS and the LEOS are equipped with multiple
antennas and the popular orthogonal frequency-division mul-
tiple access (OFDMA) scheme for accessing either the LEOS
or the BS cells. In particular, total I BS cells share the same
frequency resource over the C-band spectrum, which can be
evenly split and allocated to the ground users that have to
offload their tasks to the BS server. Similarly, the frequency
resource over the Ka-band spectrum is also evenly split and
allocated to the ground users that have to offload their tasks
to the LEOS edge. Since we adopted the OFDMA scheme,
there is no intra-cell interference in each BS cell. We also
assume that there is no inter-cell interference among BS cells
because the coverage of BSs is non-overlapping. Note that the
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proposed system model can also be extended to a larger system
that consists of more LEOSs, where association between BSs
and LEOs has to be carefully considered.

B. Communication Model

1) Terrestrial Communications: According to the model
considered, the signal received by BSi over the C-band is given
by

yBSi
ij =

√
pijh

C
ijsij +Ni, ∃uij = 1,∀i, j ∈ I,J , (2)

where pij is the transmit power of Uij , sij is the signal
of Uij with unit energy, Ni ∼ (0, σ2) is an additive white
Gaussian noise (AWGN) at BSi, and σ2 is the noise variance.
Furthermore, hCij is the channel between Uij and BSi, which
is dominated by the Line-of-Sight (LoS) path. Then, we have

hCij = ξd−αij , (3)

where dij denotes the distance between Uij and BSi, while ξ
corresponds to the unity channel gain at the reference distance
of dij = 1m and α is the path loss exponent.

The achievable capacity of Uij served by BSi over the C-
band is given by

RBSi
ij =

BC
J

log2

(
1 +

pij |hCij |2

σ2

)
, ∃uij = 1,∀i, j ∈ I,J ,

(4)
where BC is the total bandwidth in the C-band.

Therefore, the total capacity at BSi is formulated by

RBSi

total =

J∑
j=1

uijBC
J

log2

(
1 +

pij |hCij |2

σ2

)
. (5)

2) LEOS Communications: For the LEOS communications,
the altitude, speed and position information of the LEOS are
known to all BSs in a time slot due to the orbital pre-planning.
For the sake of simplicity, a quasi-static fading channel model
is considered in a time slot. Thus, the signal received by the
LEOS over the Ka-band is given by

yLEOij =
√
pijh

Ka
ij sij +N0, ∃uij = 0,∀i, j ∈ I,J , (6)

where N0 ∼ (0, σ̂2) is the additive white Gaussian noise
(AWGN) at the LEOS, and σ̂2 is the noise variance. Further-
more, hKaij is the channel between Uij and the LEOS, which
is given by

hKaij = vijγij d̂
−β
ij , (7)

where vij ∼ (0, 1) is a complex Gaussian variable representing
Rayleigh fading, γij follows log-normal distributed shadow
fading, d̂ij is the distance between Uij and the LEOS, and β
is the path loss exponent.

The achievable capacity of Uij served by the LEOS over
the Ka-band is denoted by

RLEOij =
BKa
IJ

log2

(
1 +

pij |hKaij |2

σ̂2

)
,∃uij = 0,∀i, j ∈I,J ,

(8)
where BKa is the total bandwidth in Ka-band.

Therefore, the total capacity at the LEOS is given by

RLEOtotal =

I∑
i=1

J∑
j=1

RLEOij (9)

=

I∑
i=1

J∑
j=1

(1− uij)
BKa
IJ

log2

(
1 +

pij |hKaij |2

σ̂2

)
.

C. Computing Model

The multi-layer MEC system integrates local computing, BS
server-aided computing (i.e., offloading tasks from the users
to the BS servers), and LEOS edge-aided computing (i.e.,
offloading tasks from the users to the LEO edges). Without
loss of generality, we consider a partial offloading, where a
fraction of tasks are processed locally, and the remaining part
will be offloaded to the BS server or the LEOS edge.

1) Local Computing: For considering the case that the task
of Uij is partially processed locally, cij represents the number
of CPU cycles required for processing a single bit at Uij .
Furthermore, the computational capability of Uij is f lij , which
is quantified by the number of CPU cycles per second. Note
that the task of Uij is fully offloaded to the BS server or to
the LEOS edge when lij = Lij . In contrast, the task is fully
processed locally when lij = 0. Therefore, the time required
for carrying out the local computing, T lij , is given by

T lij =

{
(Lij−lij)cij

f l
ij

, lij 6= Lij ,

0, Otherwise.
(10)

2) BS Sever Computing: When the task of Uij is offloaded
to BSi, let fBSi

max and fBSi
ij denote the maximum number of

executable CPU cycles at the BSi server and the computational
capability of the BSi server allocated to Uij , respectively,
where

∑J
j=1 f

BSi
ij ≤ fBSi

max, i ∈ I. Here, we assume that
the computation offloading of Uij starts when lij bits of Uij
are completely uploaded to BSi. In this case, the processing
latency at the BSi sever contains the computational and com-
munication delays, where the feedback latency is negligible
since the size of computational results is relatively small.
Therefore, the total latency required for carrying out the BSi
server’s computing, TBSi

ij , is given by

TBSi
ij =

{ lij

R
BSi
ij

+
lijcij

f
BSi
ij

, uij = 1,

0, Otherwise.
(11)

3) LEOS Edge Computing: When the task of Uij is of-
floaded to the LEOS edge, let fLEOmax and fLEOij denote the
maximum number of executable CPU cycles at the LEOS edge
and the computational capability of the LEOS edge allocated
to Uij , respectively, where

∑I
i=1

∑J
j=1 f

LEO
ij ≤ fLEOmax , i ∈

I, j ∈ J . Here, we assume that the computation offloading of
Uij starts when lij bits of Uij are completely uploaded to the
LEOS edge. In this case, the processing latency at the LEOS
edge contains the computation and communication delays,
where the feedback latency is negligible due to the same
reason as mentioned above. Thus, the total latency required
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for carrying out the LEOS edge computing, TLEOij , is given
by

TLEOij =

{
lij

RLEO
ij

+
lijcij
fLEO
ij

, uij = 0,

0, Otherwise.
(12)

The latency of Uij can be calculated by selecting the max-
imum value between those imposed by the local computing,
the BSi server’s computing, and the LEOS edge computing,
which is formulated by

Tij=max
{
T lij , uijT

BSi
ij + (1− uij)TLEOij

}
(13)

=max

{
(Lij−lij) cij

f lij
, uij

(
lij

RBSi
ij

+
lijcij

fBSi
ij

)
+

(1− uij)

(
lij

RLEOij

+
lijcij
fLEOij

)}
.

D. Energy Model

1) Local Energy: Let the power consumption of local
processing be Pl, which is assumed to be identical for all
ground users. Then, the energy dissipation of local processing
at Uij is given by

Elij =

Pl
(Lij−lij)cij

f l
ij

+ pij
lij

R
BSi
ij

, uij = 1,

Pl
(Lij−lij)cij

f l
ij

+ pij
lij

RLEO
ij

, uij = 0.
(14)

In this case, the total energy dissipation of all ground users
is EUtotal =

∑I
i=1

∑J
j=1E

l
ij , which is expressed by

EUtotal =

I∑
i=1

J∑
j=1

uij

(
Pl (Lij − lij) cij

f lij
+
pij lij

RBSi
ij

)
(15)

+

I∑
i=1

J∑
j=1

(1− uij)

(
Pl (Lij − lij) cij

f lij
+

pij lij
RLEOij

)
.

2) BS Server Energy: Let the power consumption for the
transmission of Uij to BSi be PBSi

ij , and let the energy con-
sumption of BSi server processing within unit time be PBSi

,
which is assumed to be identical for all BS servers. Then,
the energy dissipation required for processing the computation
offloading of Uij at BSi is given by

EBSi
ij =

{
PBSi
ij

lij

R
BSi
ij

+ PBSi

lijcij

f
BSi
ij

, uij = 1,

0, Otherwise.
(16)

In this case, the total energy dissipation of BSi is EBSi

total =∑J
j=1E

BSi
ij , and then the total energy dissipation of all BS

servers is given by

EBStotal =


∑I
i=1

∑J
j=1

(
P

BSi
ij lij

R
BSi
ij

+
PBSi

lijcij

f
BSi
ij

)
, uij = 1,

0, Otherwise.
(17)

3) LEOS Edge Energy: Let the power consumption for the
transmission of Uij to the LEOS edge be PLEOij , and let
the energy dissipation of the LEOS edge processing within
unit time be PLEO. Then, the energy dissipation required for
processing the computation offloading of Uij at the LEOS
edge (i.e., uij = 0, lij 6= 0) be given by

ELEOij =

{
PLEOij

lij
RLEO

ij
+PLEO

lijcij
fLEO
ij

, uij = 0,

0, Otherwise.
(18)

In this case, the total energy dissipation of the LEO is ELEOtotal =∑I
i=1

∑J
j=1E

LEO
ij , which is expressed as

ELEOtotal =


∑I
i=1

∑J
j=1

(
PLEO

ij lij

RLEO
ij

+
PLEOlijcij
fLEO
ij

)
, uij = 0,

0, Otherwise.
(19)

As a result, the overall energy dissipation of the proposed
system is formulated by

Es = EUtotal + EBStotal + ELEOtotal (20)

=

I∑
i=1

J∑
j=1

(
Elij + uijE

BSi
ij + (1− uij)ELEOij

)
.

Upon substituting (14), (16), and (18) into (20), the system’s
energy dissipation is given by (21) in the following page.

III. OFFLOADING DESIGN AND PROBLEM FORMULATION

In this section, the offloading design is presented first. Then,
based on this, we aim for minimizing the energy dissipation of
the LEOS edge-assisted system under the latency constraint.

A. Offloading Design

A LEOS edge-assisted offloading design for STINs is pre-
sented in Fig. 2. In this offloading design, since the coexistence
of the LEOS edge and BS servers, the ground user can offload
its task either to the BS server or to the LEOS edge for
processing when the computational capability of the ground
user cannot meet its task processing requirement. To meet the
computation target of ground users, we propose an offloading
access scheme including the request, decision, and offloading
phases, as shown in Fig. 2(a), where the implementation of
the offloading access scheme has to carry out the following
three operations.
• Offloading Request. At the beginning of a time slot, each

ground user (Uij ,∀i ∈ I,∀j ∈ J ) sends an offloading
request to its serving BS (BSi,∀i ∈ I) over the C-band.
Accordingly, each BS receives the offloading requests and
forwards them to the LEOS over the Ka-band, where the
classic OFDMA scheme is adopted both in the C-band
and Ka-band.

• Resource Allocation. As the LEOS receives offloading
requests from BSs, it formulates an offloading policy for
allocating the communication and computation resources
requested by each ground user (Uij), and broadcasts the
resource allocation results to all ground users and BSs.
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Fig. 2: The offloading access and policy designed for STINs

Es=

I∑
i=1

J∑
j=1

(
Pl(Lij−lij) cij

f lij
+uij

pij lij

RBSi
ij

+(1−uij)
pij lij
RLEOij

+uij

(
PBSi
ij lij

RBSi
ij

+
PBSi

lijcij

fBSi
ij

)
+(1−uij)

(
PLEOij lij

RLEOij

+
PLEOlijcij
fLEOij

))
.

(21)

• Task Processing. Based on the received optimal alloca-
tion results, user Uij offloads its tasks to the BS or the
LEOS-edge for processing.

An intuitive example of the offloading policy is shown in
Fig. 2(b), where Uij carries out local processing if lij = 0;
otherwise, it offloads its partial task to BSi server for pro-
cessing when uij = 1; or offloads its partial task to the
LEOS edge for processing when uij = 0. In other words,
Uij carries out partial offloading and binary selection for task
processing after obtaining the optimization results from the
LEOS. In this process, once an offloading is required by Uij ,
the connected BSi server and its computation resources (i.e.,
having fBSi

ij ,∀uij = 1), or the LEOS edge and its computation
resources (i.e., having fLEOij ,∀uij = 0) will be allocated to
Uij for its task processing. Note that the optimization of the
system’s offloading policy will be completed at the LEOS
because the individual BSs are unaware of the computational
capability of the LEOS edge.

B. Problem Formulation

As expressed in (21), we define the sum energy dissipation
of the LEOS edge-assisted offloading system as the energy
dissipation of all the ground users associated with different BS
servers and the LEOS edge. Based on the offloading access
and policy illustrated in Fig. 2, we aim for minimizing the
system’s energy dissipation while constraining the delay of the
user, by jointly optimizing the offloading mode matrix U =
[u1,. . . ,ui,. . . ,uI ]

T ∈ CI×J , the offloading volume matrix
L= [l1, . . . , li, . . . , lI ]

T ∈CI×J , the BS server computing re-
source allocation matrix FBS = [fBS1 , . . . , fBSi , . . . , fBSI ]T ∈
CI×J , and the LEOS edge computing resource allocation
matrix FLEO = [fLEO1 , . . . , fLEOi , . . . , fLEOI ]T ∈ CI×J ,
where the related J-dimensional vectors are denoted by
ui = [ui1, . . . , uij , . . . , uiJ ]T , li = [li1, . . . , lij , . . . , liJ ]T ,
fBSi = [fBSi

i1 , . . . , fBSi
ij , . . . , fBSi

iJ ]T , and fLEOi =

[fLEOi1 , . . . , fLEOij , . . . , fLEOiJ ]T , respectively. Therefore, a
system energy minimization problem is formulated as follows:

P0 : min
{U,L,FBS ,FLEO}

Es (22)

s.t. Tij ≤ Tmaxij , ∀i ∈ I, ∀j ∈ J , (22a)

uij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (22b)
J∑
j=1

uijf
BSi
ij ≤ fBSi

max, ∀i ∈ I, (22c)

EBSi

total ≤ E
BSi
max, ∀i ∈ I, (22d)

I∑
i=1

J∑
j=1

(1− uij) fLEOij ≤ fLEOmax , (22e)

ELEOtotal ≤ ELEOmax , (22f)
J∑
j=1

uij ≤ J, ∀i ∈ I, (22g)

I∑
i=1

J∑
j=1

(1− uij) ≤ IJ, (22h)

lij ∈ [0, Lij ], ∀i ∈ I, ∀j ∈ J , (22i)

fBSij ≥ 0, fLEOij ≥ 0, ∀i ∈ I, ∀j ∈ J , (22j)

EBSij ≥ 0, ELEOij ≥ 0, ∀i ∈ I, ∀j ∈ J . (22k)

The constraints in Problem P0 are detailed as follows: (22a)
indicates that the latency of Uij is limited by the maximum
latency Tmaxij , (22b) indicates the offloading mode of Uij ,
where uij is a binary value, uij = 1 represents that Uij
offloads its task to BSi over the C-band, and uij = 0 represents
that Uij offloads its task to the LEOS edge over the Ka-
band, (22c) and (22d) indicate that the total computational
capability and energy consumed by offloading at BSi has to
be less than its maximum computational capability (fBSi

max)
and maximum energy dissipation (EBSi

max), respectively, (22e)
and (22f) indicate that the total computational capability and
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Fig. 3: Energy Efficient offloading problem decomposition and solu-
tion roadmap.

energy consumed by offloading at the LEOS edge have to
be less than its maximum computationl capability (fLEOmax )
and maximum energy dissipation (ELEOmax ), respectively, (22g)
indicates that at most J ground users can be served by each
BS server. (22h) indicates that at most IJ ground users can
be served by the LEOS edge, (22i) specifies the range of
the amount of offloading, specifically, lij = 0 represents
fully local processing at Uij , while lij = Lij indicates full
offloading at Uij , (22j) and (22k) represent the feasibility value
of fBSi

ij , fLEOij , EBSi
ij , and ELEOij .

Remark 1. In Problem P0, there is a total of four optimization
variables, namely, the offloading volume matrix, the offloading
mode matrix, the BS server computing resource allocation
matrix, and the LEOS edge computing resource allocation
matrix. The optimization of the former two variables is related
to the offloading decision, and the optimization of the last two
variables is related to the computing resource allocation of BS
servers and the LEOS edge. We observe that the formulated
Problem P0 is an MINLP problem, which is NP-hard and
whose globally optimal solution is difficult to obtain by using
the common standard optimization approaches. Therefore, it
is necessary to transform the original Problem P0 into some
tractable sub-problems that can be solved separately and
alternatively over multiple iterations. Hence, the alternating
optimization (AO) method is invoked for solving the original
problem in an efficient manner, which is detailed in the
following solution roadmap.

IV. ENERGY EFFICIENT OFFLOADING SOLUTION

In this section, we present our solution roadmap on P0. As
shown in Fig. 3, we first decompose the original optimization
problem P0 into an MINLP problem and a convex problem.
Then we optimized the offloading volume and mode using
the popular Semi-Definite Program (SDP) approach. We then
continue by decomposing the joint optimization problem of
the computing resource allocation of BS servers and LEOS
edge by decoupling and solving the decomposed subproblems
using the classic Lagrangian multiplier-based approach.

A. Solution Roadmap

Due to the intractability of original problem, P0 is de-
composed into two sub-problems, namely, a joint optimization

problem of the offloading volume and offloading mode, which
is an MINLP problem, and a joint optimization problem
of the computing resource of BS servers and LEOS edge,
which is a convex problem. By using the AO approach,
these two sub-problems are solved in an alternating way.
Specifically, at the first iteration, the computing resource
allocation of the BS servers and of the LEOS is given and
input to the joint optimization problem of offloading volume
and offloading mode. Then, the first decomposed problem is
solved, and the resultant L and U are entered into the joint
computing resource allocation optimization problem of BS
servers and LEOS edge. Afterward, the derived computing
resource allocation of BS servers and the LEOS are solved by
decoupling, yielding FBS and FLEO. These will then be input
into the joint optimization problem of the offloading volume
and offloading mode during the second iteration, and then the
steps of the first iteration will be repeated. This procedure
will be continued until convergence is reached. Within the
AO approach invoked, the proposed energy efficient offloading
solution is detailed in the following section.

In Problem P0, we substitute (16) and (18) into the energy
constraints of BS servers and the LEOS edge in (22d) and
(22f). Therefore, Problem P0 is rewritten as

P1 : min
{U,L,FBS ,FLEO}

Es (23)

s.t. (22a)− (22c), (22e), (22g)− (22j). (23a)
J∑
j=1

uij lij

(
PBSi
ij

RBSi
ij

+
PBSicij

fBSi
ij

)
≤EBSi

max, ∀i ∈ I, (23b)

I∑
i=1

J∑
j=1

(1− uij)lij

(
PLEOij

RLEOij

+
PLEOcij
fLEOij

)
≤ELEOmax . (23c)

B. Joint Optimization of Offloading Volume and Mode, While
Fixing the Computing Resource Allocation of BS Servers and
the LEOS Edge

Given the computing resource allocation matrix of BS
servers and the LEOS edge, i.e., fixed FBS and FLEO,
Problem P1 in (23) can be reformulated as

P2 : min
{U,L}

Es (24)

s.t. (22a), (22b), (22g)− (22i), (23b), (23c). (24a)

Problem P2 is still challenging to solve because it is an
MINLP problem, where the objective function and constraints
consist of the binary variable uij as well as continuous variable
lij , and constraint (22a) also includes the ‘max{·}’ function.
To solve Problem P2, we transform (24) into an equivalent
form as shown in Proposition 1.
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Proposition 1. Problem (24) can be transformed into the
following equivalent problem:

P3 : min
{U,L}

Es (25)

s.t. (22b), (22g)− (22i), (23b), (23c). (25a)
(Lij−lij) cij

f lij
≤ Tmaxij , ∀i ∈ I, ∀j ∈ J , (25b)

uij lij

(
1

RBSi
ij

+
cij

fBSi
ij

)
≤ Tmaxij , ∀i ∈ I,∀j ∈ J ,

(25c)

(1−uij)lij

(
1

RLEOij

+
cij

fLEOij

)
≤ Tmaxij , ∀i ∈ I,∀j ∈ J .

(25d)

Proof. see Appendix A.

By observing (25), it can be seen that Problem P3 is also an
MINLP problem because of the coupling of the binary variable
uij and continuous variable lij . To effectively solve Problem
P3, we decompose it into two sub-problems: the optimization
of the offloading mode and volume.

1) Optimization of Offloading Mode: The offloading mode
matrix U is optimized, while fixing both the offloading volume
matrix L, as well as the BS server computing resource allo-
cation matrix FBS , and the LEOS edge computing resource
allocation matrix FLEO, yielding

P3a : min
U

Es (26)

s.t. (22b), (22c), (22e), (22g), (22h), (23b), (23c),

(25c), (25d). (26a)

Observe from (26), that given the value of L,FBS , and
FLEO, Problem P3a becomes an ‘0-1’ integer programming
problem, because the objective function and constraints con-
sist of the binary variable uij . To effectively solve Problem
P3a, we propose a separable SDP approach for finding the
optimal binary policy related to U (i.e., the solution of (26)).
Specifically, we first use semidefinite relaxation to obtain a
fractional solution, and then we use the rounding technique of
Shmoys and Tardos [45] for recovering the binary value.

It is necessary to relax the binary variables uij into con-
tinuous variables uij ∈ [0, 1]. The relaxed variable uij can
be viewed as the probability that Uij offloads its task to BSi
server for processing, while 1 − uij can be viewed as the
probability that Uij offloads its task to the LEOS edge for
processing. Hence, Problem P3a can be transformed into an
equivalent form, as shown in Proposition 2.

Proposition 2. Problem (26) can be transformed into the

following problem.

P3a :min
W

I∑
i=1

J∑
j=1

Tr(A0W) (27)

s.t. Tr(A1W) ≤ fBSi
max, (27a)

Tr(A2W) ≤ J, (27b)
Tr(A3W) ≤ 0, (27c)

Tr(A4W) ≤ EBSi
max, (27d)

Tr(A5W) ≤ELEOmax −
I∑
i=1

J∑
j=1

ΛEL
ij , (27e)

Tr(A6W) ≤ Tmaxij , (27f)

Tr(A7W) ≤ Tmaxij − ΛTL
ij , (27g)

Tr(A8W) = 0, (27h)
W(IJ, IJ) = 1, (27i)
W ≥ 0, (27j)

where W , [qT, 1]T[qT, 1], q = [u11, . . . , uij , . . . , uIJ ]T,

ΛEL
ij = lij

(
PLEO

ij

RLEO
ij

+
PLEOcij
fLEO
ij

)
, and ΛTL

ij = lij

(
1

RLEO
ij

+
cij

fLEO
ij

)
.

The matrices A0 to A8 are non-negative diagonal matrices,
which are given in Appendix B. Observe that (27) is a convex
problem, and its optimal offloading mode solution W∗ can be
obtained in polynomial time using a standard SDP solver.

Proof. see Appendix B.

Remark 2. Since Problem P3a is a relaxation of Problem
P3a, the optimal solution of Problem P3a is the lower bound
of the optimal solution of P3a provided that rank(W∗) 6= 1.
Therefore, it is necessary to recover a rank-1 solution from
{W∗}. The rounding technique of [20], [45] is used for
binary value recovery, which contains the following three
steps: 1) obtain a fractional solution of W∗, 2) construct
a weighted bipartite graph to build the relationship between
ground users and offloading modes, 3) find an integer matching
for obtaining the binary solution.

2) Optimization of Offloading Volume: The offloading vol-
ume optimization matrix L is optimized, while fixing both the
offloading mode matrix U, as well as the BS server computing
resource allocation matrix FBS , and the LEO edge computing
resource allocation matrix FLEO, yielding

P3b : min
L

Es (28)

s.t. (22i), (23b), (23c), (25b)− (25d). (28a)

It can be seen that the objective function and all constraint
functions in Problem P3b are linear combinations of the
continuous variable lij . Thus, P3b is a linear programming
problem. Algorithm 1 summarizes the solution of Problem P3.
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Algorithm 1: Joint optimization of offloading volume
and mode for a given computing resource allocation of
BS servers and the LEOS edge

Initialization: BC , Ki
C , hC

ij , BKa, Ki
Ka, hKa

ij , σ2, σ̂2, pij , Lij ,
cij , f l

ij , Pl, P
BSi
ij , PBSi ,PLEO

ij ,PLEO f
BSi
max, fLEO

max , EBSi
max,

ELEO
max , and Tmax

ij , the maximum iteration number is L1, and
set l1 = 0;

1: Calculate RBSi
ij and RLEO

ij according to (4) and (8), where
∀i ∈ I, ∀j ∈ J ;

2: repeat
3: Given FBS ,FLEO and L, solve U using (27);
4: Given FBS ,FLEO and U, solve L using (28);
5: Updates l1 ← l1 + 1;
6: until l1 ≥ L1;
7: U∗ = U, L∗ = L;

Output: U∗ and L∗.

C. Joint Optimization of the Computing Resource Allocation
of BS Servers and of the LEOS Edge, While Fixing the
Offloading Volume and Mode

Given an offloading volume matrix L and offloading mode
matrix U, Problem P1 can be reformulated as

P4 : min
{FBS,FLEO}

Es (29)

s.t. (22c), (22e), (22j), (23b), (23c), (25c), (25d). (29a)

It may be observed that Problem P4 is a decoupling problem,
since the BS offloading and the LEOS edge offloading are
decoupled when the offloading volume matrix L and the
offloading mode matrix U are given. Problem P4 can be de-
composed into the following two sub-problems: the computing
resource optimization of BS servers and that of the LEOS
edge, as shown in Algorithm 2.

1) Optimization of the BS Servers’ Computing Resource:
The BS server computing resource allocation matrix FBS

is optimized, while fixing both the LEOS edge computing
resource allocation matrix FLEO, as well as the offloading
volume matrix L, and the offloading mode matrix U, yielding

P4a : min
FBS

I∑
i=1

J∑
j=1

uij

(
PBSi
ij lij

RBSi
ij

+
PBSi

lijcij

fBSi
ij

)
, (30)

s.t. (22c), (23b), (25c). (30a)

fBSij ≥ 0, ∀i ∈ I, ∀j ∈ J , (30b)

Proposition 3. Problem P4a in (30) is a convex optimization
problem. The Karush Kuhn Tucker (KKT) technique can be
employed for solving it.

Proof. see Appendix C.

Specifically, the Lagrangian function of Problem P4a in

(30) is formulated by

L(fBSi
ij , λ1, λ2, λ3) =

I∑
i=1

J∑
j=1

uij

(
PBSi
ij lij

RBSi
ij

+
PBSi

lijcij

fBSi
ij

)
(31)

− λ1

 J∑
j=1

uijf
BSi
ij − fBSi

max


− λ2

 J∑
j=1

uij lij

(
PBSi
ij

RBSi
ij

+
PBSi

cij

fBSi
ij

)
−EBSi

max


− λ3

(
uij lij

(
1

RBSi
ij

+
cij

fBSi
ij

)
− Tmaxij

)
,

where the variables λ1, λ2 and λ3 are the non-negative La-
grange multipliers. The optimal computing resource allocation
fBSi
ij

∗
at the BSi server, the optimal Lagrange multipliers

λ∗1, λ
∗
2 and λ∗3 should satisfy the following KKT conditions

for i ∈ I, j ∈ J :

∂L
∂fBSi

ij

=

I∑
i=1

J∑
j=1

−uijPBSi lijcij

fBSi
ij

∗2 − λ∗1
J∑
j=1

uij

+ λ∗2

J∑
j=1

uijPBSi lijcij

fBSi
ij

∗2 + λ∗3
uij lijcij

fBSi
ij

∗2 = 0, (32)

λ∗1

 J∑
j=1

uijf
BSi
ij

∗ − fBSi
max

 = 0, (33)

λ∗2

 J∑
j=1

uij lij

(
PBSi
ij

RBSi
ij

+
PBSi

cij

fBSi
ij

∗

)
−EBSi

max

 = 0, (34)

λ∗3

(
uij lij

(
1

RBSi
ij

+
cij

fBSi
ij

∗

)
− Tmaxij

)
= 0, (35)

fBSi
ij

∗ ≥ 0. (36)

The value of fBSi
ij

∗
can be directly derived from (32)-(36),

which is given by

fBSi
ij

∗
=

uij lijcij

Tmaxij − uij lij/RBSi
ij

. (37)

Then, we can express λ∗1, λ
∗
1 and λ∗3 as follows


λ∗1 = 0,

λ∗2 = 0,

λ∗3 =
PBSi

∑I
i=1

∑J
j=1(T

max
ij −uij lij/R

BSi
ij )2

(Tmax
ij −uij lij/R

BSi
ij )2

.

(38)

2) Optimization of the LEOS Edge Computing Resource:
The LEOS edge computing resource allocation matrix FLEO

is optimized, while fixing both the BS server computing
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Algorithm 2: Joint optimization of the computation
resource allocation of BS servers and the LEOS edge
for a given offloading volume and mode

Initialization: BC , Ki
C , hC

ij , BKa, Ki
Ka, hKa

ij , σ2, σ̂2, pij , Lij ,
cij , f l

ij , Pl, P
BSi
ij , PBSi ,PLEO

ij ,PLEO f
BSi
max, fLEO

max , EBSi
max,

ELEO
max , and Tmax

ij , the maximum iteration number is L2, and
set l2 = 0;

1: Calculate RBSi
ij and RLEO

ij according to (4) and (8), where
∀i ∈ I, ∀j ∈ J ;

2: repeat
3: Given U,L, and FLEO , solve FBS using (37);
4: Given U,L, and FBS , solve FLEO using (46);
5: Updates l2 ← l2 + 1;
6: until l2 ≥ L2;
7: FBS∗

= FBS , FLEO∗
= FLEO;

Output: FBS∗
and FLEO∗

.

resource allocation matrix FBS, as well as the offloading
volume matrix L, and the offloading mode matrix U, yielding

P4b : min
FLEO

I∑
i=1

J∑
j=1

(1− uij)

(
PLEOij lij

RLEOij

+
PLEOlijcij
fLEOij

)
,

(39)
s.t. (22e), (23c), (25d). (39a)

fLEOij ≥ 0, ∀i ∈ I, ∀j ∈ J , (39b)

Proposition 4. Problem P4b in (39) is also a convex optimiza-
tion problem. The Karush Kuhn Tucker (KKT) conditious can
be imposed on the problem for finding its optimal solution.

Proof. see Appendix D.

Specifically, the Lagrangian function of Problem P4b in
(39) is derived as:

L(fLEOij , µ1, µ2, µ3) (40)

=

I∑
i=1

J∑
j=1

(1− uij)

(
PLEOij lij

RLEOij

+
PLEOlijcij
fLEOij

)

− µ1

 I∑
i=1

J∑
j=1

(1− uij) fLEOij − fLEOmax


− µ2

 I∑
i=1

J∑
j=1

(1− uij)lij

(
PLEOij

RLEOij

+
PLEOcij
fLEOij

)
− ELEOmax


− µ3

(
(1−uij)lij

(
1

RLEOij

+
cij

fLEOij

)
− Tmaxij

)
,

where the variables µ1, µ2 and µ3 are the non-negative
Lagrange multipliers, while the optimal computing resource
allocation fLEOij

∗ at the LEOS edge, and the optimal Lagrange
multipliers µ∗1, µ

∗
2 and µ∗3 should satisfy the following KKT

conditions for i ∈ I, j ∈ J :

∂L
∂fLEOij

=

I∑
i=1

J∑
j=1

(1− uij)PLEOlijcij
fLEOij

∗2

− µ∗1
I∑
i=1

J∑
j=1

(1− uij)

+ µ∗2

I∑
i=1

J∑
j=1

(1− uij)PLEOlijcij
fLEOij

∗2

+ µ∗3
(1− uij)lijcij
fLEOij

∗2 = 0, (41)

µ∗1

 I∑
i=1

J∑
j=1

(1− uij) fLEOij

∗ − fLEOmax

 = 0, (42)

µ∗2

 I∑
i=1

J∑
j=1

(1− uij)lij

(
PLEOij

RLEOij

+
PLEOcij

fLEOij
∗

)
−ELEOmax

=0,

(43)

µ∗3

(
(1− uij) lij

(
1

RLEOij

+
cij

fLEOij
∗

)
− Tmaxij

)
= 0, (44)

fLEOij

∗ ≥ 0. (45)

The value of fLEOij
∗ can be directly derived from (41)-(45),

which is given by

fLEOij

∗
=

(1− uij)lijcij
Tmaxij − (1− uij)lij/RLEOij

. (46)

Then, we can formulate µ∗1, µ
∗
1 and µ∗3 as follows

µ∗1 = 0,

µ∗2 = 0,

µ∗3 =
PLEO

∑I
i=1

∑J
j=1(T

max
ij −(1−uij)lij/R

LEO
ij )2

(Tmax
ij −(1−uij)lij/RLEO

ij )2
.

(47)

Based on the above discussions, Algorithm 3 presents the
solution of Problem P0.

D. Complexity Analysis

In Algorithm 1, the complexity of solving the convex
problems of (27) and (28) is of polynomial order in the
number of variables and constraints. Specifically, problem (27)
is with a = IJ decision variables, and b = (3I + 7IJ)
constraints. Refer to [20], if the interior-point method is
considered, the worst-case computational complexity worst-
case computational complexity required to solve (27) is
O
(

(a2b+ a3)b
1
2L1

)
. Problem (28) is associated with a′ =

IJ decision variables and b′ = (I + 5IJ) constraints
such that the complexity is O ((I + 6IJ)L1). In Algorithm
2, since the closed-form is obtained in (37) and (46),
the computational complexity is O (L2). Thus, the over-
all complexity for solving P0 in Algorithm 3 is given
by O

(
(a2b+ a3)b

1
2 (a′ + b′)L1L2L3

)
, which shows that the

complexity of problem-solving is low. Moreover, the proposed
overall algorithm converges to a locally optimal solution as
long as the number of iterations is sufficiently large.
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Algorithm 3: Joint optimization of the offloading vol-
ume, the offloading mode and the computing resource
allocation of BS servers and the LEOS edge

Initialization: BC , Ki
C , hC

ij , BKa, Ki
Ka, hKa

ij , σ2, σ̂2, pij , Lij ,
cij , f l

ij , Pl, P
BSi
ij , PBSi ,PLEO

ij ,PLEO f
BSi
max, fLEO

max , EBSi
max,

ELEO
max and Tmax

ij , the maximum iteration number is L3, and
set l3 = 0;

1: Calculate RBSi
ij and RLEO

ij according to (4) and (8), where
∀i ∈ I, ∀j ∈ J ;

2: repeat
3: Joint optimization of U and L, given FBS and FLEO ,

solve U and L using Algorithm 1;
4: Joint optimization of FBS and FLEO , given U and L,

solve U and L using Algorithm 2;
5: Updates l3 ← l3 + 1;
6: until l3 ≥ L3;
7: U∗ = U, L∗ = L, FBS∗

= FBS , FLEO∗
= FLEO;

Output: U∗,L∗,FBS∗
and FLEO∗

.

TABLE I: SYSTEM PARAMETERS

Parameter Value Parameter Value
I 2 J 10
BC 500 MHz BKa 500 MHz
f lij 105 CPU cycle/s Lij 10 Mbit

f
BSi
max 109 CPU cycle/s α 2
fLEO
max 2× 1010 CPU cycle/s ξ 1
cij 300 cycle / bit σ2 7.9e-13 mW
Pl 0.001 J/s Tmax

ij 1 s
PLEO 1 J/s PBSi

1 J/s

V. NUMERICAL RESULTS

A. Scenario Settings

1) Topology: We consider a network scenario that consists
of a LEOS edge and two BS servers. Each BS server covers
10 ground users. All ground users are uniformly distributed
in a circular area with a radius of 1000 m, where BS1 is
located at (0, 0, 0) and BS2 is located at (10, 000, 0, 0)
using three-dimensional Cartesian coordinates with the unit
of meter. From a practical implementational perspective, the
location of the LEOS edge is assumed to be semi-static in a
fixed time frame, which is located at (5, 000, 0, 20, 0000). The
operating frequency at BSs and the LEOS is 5 GHz and 24
GHz, respectively. Lastly, when the number of ground users in
each cell changes, the setting of the latency threshold, Tmaxij ,
will change accordingly. Refer to the setting of computing and
communication parameters in STINs [5], [20], [41], [43], [46],
the main parameters in our system are set as in Table I.

2) Benchmarks: We consider the following benchmarks for
our proposed scheme.

• Pure local computing (PLC): All the ground users process
their tasks locally without offloading, i.e., lij = 0,∀i ∈
I, ∀j ∈ J .

• Full offloading to the LEOS edge (FOL): All the ground
users offload their tasks to the LEOS edge for remote
computing, i.e., lij = Lij , uij = 1,∀i ∈ I, ∀j ∈ J .

• Full offloading to the BS server (FOB): All the ground
users offload their tasks to the connected BS server for
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Fig. 4: System energy vs. the computational capability of users.
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Fig. 5: System energy vs. the number of users in each cell.

remote computing, i.e., lij = Lij , uij = 0,∀i ∈ I, ∀j ∈
J .

In contrast to the above three benchmarks, our proposed
scheme, partial offloading with edge selection (POES), is
evaluated, where all the ground users offload their partial
tasks either to the connected BS server or to the LEOS edge
when local computing cannot fully meet the requirements, i.e.,
lij = l∗ij , l

∗
ij ∈ [0, Lij ], uij ∈ {0, 1},∀i ∈ I, ∀j ∈ J , where

l∗ is the optimal number of bits to be offloaded.

B. Performance Evaluation

We evaluate the proposed scheme in terms of its energy
dissipation, system delay, and impact of Tmax. Note that these
results are evaluated based on the proposed AO approach,
which is usually suboptimal. Compared to the deep learning-
enabled approach 1 that can usually obtain the optimal solu-
tions [31], the accuracy gap of binary selection is about 5%,
and the mean square error (MSE) gap of partial offloading is
about 0.8%.

1The deep learning-enabled approach has to retrain once the network
changes. By contrast, the proposed AO approach can be performed in near-
real-time that can fit the change of STINs.
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1) System Energy: Figure 4 evaluates the energy con-
sumption as the computational capability of users increases.
Firstly, it is observed that the energy consumption of the PLC
scheme decreases significantly as the computational capability
of users increases. By contrast, the energy consumption of
all other schemes is almost unchanged. This is because a
high-efficiency local computational capability will substan-
tially reduce the processing time of tasks. However, given the
full offloading of the FOB and FOL schemes, the system’s
energy consumption of both will remain unaffected by the
computational capability of users. The energy consumption of
the POES scheme is better than that of the PLC, the FOB
and FOL schemes since the local computational capability of
users is low, e.g., f lij ≤ 106 CPU cycles/s. In general, the
more tasks are offloaded, the less energy is consumed because
the substantial computational capabilities of the LEOS edge
and that of the BS servers are beneficially exploited.

Figure 5 evaluates the energy consumption as the number
of users in each cell increases. Firstly, it is observed that
the energy consumption of all the schemes increases with
the number of users in each cell, especially that of the FOB
scheme. This is because as the number of users increases, more
tasks need to be processed and thus more energy consumption
is involved. Furthermore, the energy consumption of the POES
scheme is the lowest, the FOL scheme is better than the PLC
scheme, and the FOB scheme is the worst. This is because
with the number of users in each cell increasing, the BS
server has to spend more time on task processing, which
will result in significantly increased energy consumption for
the FOB scheme. Compared to the FOB scheme, the energy
consumption of the FOL and POES schemes increases slowly
with the total number of users, because the LEOS edge has a
higher computational capability to process more tasks without
incurring more time.

Figure 6 evaluates the energy consumption as the number
of BS servers increases. Firstly, it is observed that the energy
consumption of all the schemes increases with the number of
BS servers, especially that of the FOB and PLC schemes. As
the number of BS servers increases, the total number of users
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increases accordingly, while the number of users served by
each BS server remains unchanged. In this situation, higher
energy consumption will be incurred by each scheme, since
more users are served. Furthermore, the energy consumption
of the proposed POES scheme is the lowest, that of the
FOL scheme is the second-best, while the FOB and PLC
schemes are the worst. This is because with the total number
of users increasing, the energy consumption of the POES
and FOL schemes increases slowly since the LEOS edge has
a higher computational capability for processing more tasks
without incurring much time cost. In contrast to POES and
FOL schemes, the FOB and PLC schemes show a linear
increase because the task processing time of both users and BS
servers remains unchanged, when the number of BS servers
is increased.

2) System Delay: Figure 7 evaluates the system delay as the
computational capability of users increases. It is observed that
only the system delay of the PLC scheme decreases rapidly
as the computational capability of users increases, while the
system delay of the other three schemes remains unchanged.
The reason for this trend is similar to that mentioned in Fig.
4. Moreover, we observe that the system delay of the POES
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scheme is the lowest when the local computational capability
of users increases from 103 CPU cycles/s to 107 CPU cycles/s.
In contrast to the FOB and FOL schemes, in the POES scheme,
the partial tasks can be offloaded either to the LEOS edge or
to the BS server for processing remotely, while the remaining
tasks can also be processed in parallel locally.

Figure 8 evaluates the system delay as the number of users
in each cell increases. It is observed that the system delay of
the PLC scheme increases significantly with the number of
users in each cell increasing. By contrast, the system delay of
the other schemes remains low and increases gracefully. This
delay escalation is observed for the PLC scheme, because as
the number of users in each cell increases, the PLC scheme
requires more time to process the proliferation tasks of more
users. In this case, the system delay will escalate when the
computational capability of users is low. In contrast to the
PLC scheme, the system delay of the FOB, the FOL and
POES schemes remains relatively low because the ground
users offload their tasks either to the BS or to the LEOS edge.

Figure 9 evaluates the system delay as the number of BS
servers increases, exhibiting a similar trend to Fig. 8 as the
total number of users increases. In contrast to the results of
Fig. 8, the fixed number of users supported by each BS server
will lead to a different delay trend for the FOB, FOL and
POES schemes. In particular, the delay of the FOL and POES
schemes is lower than that of the FOB scheme when I ≤ 2.
But the FOB scheme has the edge as the number of BS servers
increases. This result is indeed expected since the LEOS edge
has a higher computational capability than each BS server.

3) Impact of Tmax: In practice, different kinds of applica-
tions have different tolerable delays. In our proposed POES
scheme, Tmax indicates the tolerable delay of the served
traffic. A smaller value of Tmax indicates the lower delay
constraint, i.e., the served traffic is more delay-sensitive. The
system delay and system energy versus the user’s computa-
tional capacity is shown in Fig. 10 and Fig. 11, respectively. It
is observed that Tmax has a significant impact on the system
performance. Specifically, we observe from Fig. 10 that the
proposed POES scheme is better than the other benchmark
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schemes in terms of the system energy. This is because the
target of our proposed scheme is to minimize the system
energy. In this context, the strategy with the lowest energy
involved will be selected. In the contrast, Fig. 11 shows that
the proposed POES scheme with Tmax = 2 ms has the lowest
delay but the POES scheme with Tmax = 4 ms is not as
good enough. The reason for this trend is that the system
delay is considered a constraint in our formulated problem.
In this case, if only the delay of each user does not exceed
the delay constraint, an extra effort will be used for optimizing
the system energy in the proposed POES scheme.

VI. CONCLUSIONS

An optimal offloading framework has been designed for
LEOS edge-assisted multi-layer MEC systems. More explic-
itly, an optimal offloading access scheme and policy have been
conceived for improving the computational performance of
STINs in terms of computing latency, energy efficiency and
coverage. We have solved the joint optimization problem of
communication and computing resource allocation constructed
for minimizing the system’s energy dissipation while satis-
fying the computing latency requirement of users. To solve
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this optimization problem effectively, the original problem
has been decomposed into the joint problem of offloading
volume and mode as well as the joint optimization problem
of computing resource allocation of the BS servers and the
LEOS edge. Finally, our numerical results have characterized
our multi-layer MEC framework in terms of its system energy
and latency, demonstrating its improved energy efficiency and
overall potential. We foresee some open issues when more
LEOSs are involved, for example, the association between BSs
and LEOSs in the multi-layer MEC system.

APPENDIX A
PROOF OF PROPOSITION 1

As seen in (13), we have Tij =

max

{
(Lij−lij)cij

f l
ij

, uij

(
lij

R
BSi
ij

+
lijcij

f
BSi
ij

)
+(1−uij)

(
lij

RLEO
ij

+
lijcij
fLEO
ij

)}
,

yielding

(Lij−lij) cij
f lij

≤ Tij , (48)

and

uij

(
lij

RBSi
ij

+
lijcij

fBSi
ij

)
+(1−uij)

(
lij

RLEOij

+
lijcij
fLEOij

)
≤ Tij , (49)

where uij ∈ {0, 1}.
Thus, constraint (22a) is equivalent to


(Lij−lij)cij

f l
ij

≤ Tmaxij ,

uij

(
lij

R
BSi
ij

+
lijcij

f
BSi
ij

)
≤ Tmaxij ,

(1−uij)
(

lij
RLEO

ij
+
lijcij
fLEO
ij

)
≤ Tmaxij .

(50)

Based on the above transformations, the non-linear constraint
in (24) may be transformed to linear constrains imposed on
uij and lij .

APPENDIX B
PROOF OF PROPOSITION 2

Let ΛEL
ij = lij

(
PLEO

ij

RLEO
ij

+
PLEOcij
fLEO
ij

)
, ΛUL

ij =
pij lij

R
BSi
ij

, ΛTL
ij =

lij

(
1

RLEO
ij

+
cij

fLEO
ij

)
, ΛEB

ij = lij

(
P
BSi
ij

R
BSi
ij

+
PBSi

cij

f
BSi
ij

)
, ΛUB

ij =
pij lij
RLEO

ij
,

and ΛTB
ij = lij

(
1

RLEO
ij

+
cij

fLEO
ij

)
. Problem P3a in (26) may

then be transformed into an equivalent Quadratically Con-
strained Quadratic Program (QPQC) formulated as:

min
W

I∑
i=1

J∑
j=1

bT
0 q (51)

s.t. bT
1 q ≤ fBSi

max, (51a)

bT
2 q ≤ J, (51b)

bT
3 q ≤ 0, (51c)

bT
4 q ≤ EBSi

max, (51d)

bT
5 q ≤ELEOmax −

I∑
i=1

J∑
j=1

ΛEL
ij , (51e)

bT
6 q ≤ Tmaxij , (51f)

bT
7 q ≤ Tmaxij − ΛET

ij , (51g)

qTdiag(11×IJ)q− 1T
1×IJq = 0, (51h)

q ≥ 0, (51i)

where b0 to b7 are as follows



b0 =[ΛEB
11 +ΛUB

11 −ΛEL
11 −ΛUL

11 ,. . . ,Λ
EB

IJ +ΛUB

IJ −ΛEL

IJ −ΛUL

JJ]
T,

b1 =[01×J , . . . (
∑J
j=1 f

BSi
ij )1i1×J , . . . , 01×J ]T,

b2 =[01×J , . . . , 1i1×J , . . . , 01×J ]T,

b3 =[−11×IJ ]T,

b4 =[01×J , . . . , (
∑J
j=1 ΛEB

ij )1i1×J , . . . , 01×J ]T,

b5 =[−
∑I
i=1

∑J
j=1 ΛEL

11 , . . . ,−
∑I
i=1

∑J
j=1 ΛEL

IJ ]T,

b6 =[ΛTB
11 , . . .Λ

TB
ij , . . . ,Λ

TB

IJ ]T,

b7 =[−ΛTL
11 , . . .− ΛTL

ij , . . . ,−ΛTL

IJ ]T.

(52)

We now define W , [qT, 1]T[qT, 1] and let rank(W∗) = 1.
By using the classic SDP approach, the above QPQC problem
in (51) is transformed to

P3a :min
W

I∑
i=1

J∑
j=1

Tr(A0W) (53)

s.t. Tr(A1W) ≤ fBSi
max, (53a)

Tr(A2W) ≤ J, (53b)
Tr(A3W) ≤ 0, (53c)

Tr(A4W) ≤ EBSi
max, (53d)

Tr(A5W) ≤ELEOmax −
I∑
i=1

J∑
j=1

ΛEL
ij , (53e)

Tr(A6W) ≤ Tmaxij , (53f)

Tr(A7W) ≤ Tmaxij − ΛTL
ij , (53g)

Tr(A8W) = 0, (53h)
W(IJ, IJ) = 1, (53i)
W ≥ 0, (53j)
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where A0 to A8 are as follows

A0 =

[
0 1

2b0
1
2b0 0

]
, A1 =

[
0 1

2b1
1
2b1 0

]
,

A2 =

[
0 1

2b2
1
2b2 0

]
, A3 =

[
0 1

2b3
1
2b3 0

]
,

A4 =

[
0 1

2b4
1
2b4 0

]
, A5 =

[
0 1

2b5
1
2b5 0

]
,

A6 =

[
0 1

2b6
1
2b6 0

]
, A7 =

[
0 1

2b7
1
2b7 0

]
,

A8 =

[
diag(11×IJ) − 1

211×IJ
− 1

21T1×IJ 0

]
. (54)

APPENDIX C
PROOF OF PROPOSITION 3

The objective and constraint functions of Problem P4a in
(30) be denoted by

g(fBSi
ij ) =

I∑
i=1

J∑
j=1

uij

(
PBSi
ij lij

RBSi
ij

+
PBSi lijcij

fBSi
ij

)
, (55)

and
g0(fBSi

ij ) =
∑J
j=1 f

BSi
ij − fBSi

max,

g1(fBSi
ij ) =

∑J
j=1 uij lij

(
P
BSi
ij

R
BSi
ij

+
PBSi

cij

f
BSi
ij

)
−EBSi

max,

g2(fBSi
ij ) = uij lij

(
1

R
BSi
ij

+
cij

f
BSi
ij

)
− Tmaxij .

(56)

Then, the second derivative of g(fBSi
ij ), g2(fBSi

ij ) and
g3(fBSi

ij ) with respect to fBSi
ij is formulated as

d2g(fBSi
ij )

dfBSi
ij

2 =

I∑
i=1

J∑
j=1

2uijPBSi
lijcij

fBSi
ij

3 , (57)

d2g1(fBSi
ij )

dfBSi
ij

2 =

J∑
j=1

2uijPBSi lijcij

fBSi
ij

3 , (58)

d2g2(fBSi
ij )

dfBSi
ij

2 =
2uij lijcij

fBSi
ij

3 . (59)

Since the values of PBSi and cij are positive and uij ∈
{0, 1}, lij ∈ [0, Lij ] and fij ≥ 0, we have

d2g(f
BSi
ij )

df
BSi
ij

2 ≥

0,
d2g1(f

BSi
ij )

df
BSi
ij

2 ≥ 0 and
d2g2(f

BSi
ij )

df
BSi
ij

2 ≥ 0. Hence, the ob-

jective and constraint functions, namely g(fBSi
ij ), g1(fBSi

ij )

and g2(fBSi
ij ) are convex functions with respect to fBSi

ij ,
respectively. Moreover, the constraint g0(fBSi

ij ) is a linear
function. Problem P4a in (30) is therefore a strictly convex
problem.

APPENDIX D
PROOF OF PROPOSITION 4

Let the objective and constraint functions of Problem P4b
in (39) be denoted by

h(fBSi
ij ) =

I∑
i=1

J∑
j=1

(1− uij)

(
PLEOij lij

RLEOij

+
PLEOlijcij
fLEOij

)
,

(60)

and

h0(fLEOij ) =
∑I
i=1

∑J
j=1 f

LEO
ij − fLEOmax ,

h1(fLEOij ) =
∑I
i=1

∑J
j=1(1− uij)lij

(
PLEO

ij

RLEO
ij

+
PLEOcij
fLEO
ij

)
−ELEOmax ,

h2(fLEOij ) = (1−uij)lij
(

1
RLEO

ij
+

cij
fLEO
ij

)
− Tmaxij .

(61)

Then, the second derivative of h(fLEOij ), h2(fLEOij ) and
h3(fLEOij ) with respect to fLEOij is formulated as

d2h(fLEOij )

dfLEOij
2 =

I∑
i=1

J∑
j=1

2(1− uij)PLEOlijcij
fLEOij

3 , (62)

d2h1(fLEOij )

dfLEOij
2 =

I∑
i=1

J∑
j=1

2(1− uij)PLEOlijcij
fLEOij

3 , (63)

d2h2(fLEOij )

dfLEOij
2 =

2(1− uij)lijcij
fLEOij

3 . (64)

Since the values of PLEO and cij are positive and uij ∈
{0, 1}, lij ∈ [0, Lij ] and fij ≥ 0, we have

d2h(fLEO
ij )

dfLEO
ij

2 ≥

0,
d2h1(f

LEO
ij )

dfLEO
ij

2 ≥ 0 and
d2h2(f

LEO
ij )

dfLEO
ij

2 ≥ 0. Hence, the objec-

tive and constraint functions, namely h(fLEOij ), h1(fLEOij )
and h2(fLEOij ) are convex function with respect to fLEOij ,
respectively. Moreover, the constraint h0(fLEOij ) is a linear
function. Problem P4b in (39) is therefore a strictly convex
problem.
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