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Whilst the ifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to

the exploration of radical next-generation solutions. At this early evolutionary stage we survey ive main research facets of

this ield, namely Facet 1: next-generation architectures, spectrum and services, Facet 2: next-generation networking, Facet 3:

Internet of Things (IoT), Facet 4: wireless positioning and sensing, as well as Facet 5: applications of deep learning in 6G networks.

In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated

architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures

relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities

of these techniques are also addressed and carefully considered for highlighting the most of promising future research

directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing

the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-eiciency, power-eiciency or

delay-optimization towards multi-component designs, as exempliied by the twin-component ultra-reliable low-latency mode

of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the

exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may

be improved without degrading at least one of the other components.

CCS Concepts: · General and reference→ Surveys and overviews; · Networks→ Network architectures; Cross-layer

protocols; · Computing methodologies→ Machine learning.

Additional Key Words and Phrases: 5G, 6G, communications and networking, next-generation, IoT, positioning and sensing,

deep learning.

1 INTRODUCTION

With the rapid revolution of cloud computing, network function virtualization, and the concept of software-deined

networks (SDNs) [102] under ifth-generation (5G) umbrella, a paradigm-shift towards the sixth-generation (6G)

of mobile communications is observed [170]. In this era, future networks are no longer conined to conventional

terrestrial cellular architectures, they are evolving towards a hybrid terrestrial-underwater-aerial-space network
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Table 1. Key Requirement Comparison of 5G and 6G

5G 6G

Application services

✓ eMBB

✓ URLLC

✓ mMTC

✓ eUMBB

✓ eURLLC

✓ UmMTC

✓ LDHMC

✓ ELPC

Communication network architecture
✓ 5G-NR cellular

✓ mmWave network

✓ AI-empowered network

✓ Aerial network

✓ Terrestrial network

✓ Underwater network

✓ mmWave/THz network

Transmission spectrum usage
✓ sub-6 GHz (2.4/3.5/5 GHz)

✓ mmWave (28/39/60 GHz)

✓ sub-6GHz (2.4/3.5/5 GHz)

✓ mmWave (28/39/60 GHz)

✓ THz (Above-100GHz)

✓ Laser

✓ VLC

✓ Non-RF

Peak data rate 20 Gbps 1 Tbps

Latency requirement 1 ms 0.01ś0.1 ms

Reliability demands 99.999 % 99.99999999 %

Connectivity density 106 devs/km2 107 devs/km2

Mobility support 500 km/hr ≥ 1000 km/hr

Area spectral eiciency compared to 5G 1× 10×

Energy eiciency compared to 5G 1× 100×

[96, 276]. Hence, the requirements of 6G are compared to those of the existing 5G networks in Table 1. Although

6G performance indicators are not formally inalized at the time of writing, we introduce the potential target

speciications from the open literature. The corresponding stringent service demands in 6G include a peak rate of

1 Tbps, system latency lower than 0.1 ms, reliability of 99.99999999%, user velocity higher than 1000 km/hr, and

unprecedented densities of devices per square kilometer [75, 120, 189, 251, 276]. In comparison to the existing 5G

system, the 6G system will require much improved energy eiciency and area spectral eiciency [189, 227, 251].

These speciications will be able to support smooth, resilient and high-quality services in a hybrid network.

In this context, a whole raft of pivotal issues have to be addressed, such as cloud storage, the underlying

computing architecture, computing resource management, multimedia streaming technologies, SDN, and network

function virtualization [189, 251]. The rapid development of artiicial intelligence (AI) as a powerful optimization

tool and deep learning has facilitated the solution of highly complex problems in conventional systems [35, 178].

Advances in wireless positioning and sensing [83] and the Internet of Things (IoT) [15, 20] have facilitated

large-scale data collection both across the industrial sectors and in the home with the prospect of supporting

sophisticated new applications of 6G mobile networks. However, the massive tele-traic forecast also leads to

potential network security and privacy challenges. Accordingly, advanced information and security solutions

have to be designed for supporting these novel network architectures, which are shown at a glance in Fig. 1

and will be elaborated in the following sections. Against the above backdrop, this article aims for surveying

the most promising 6G research topics evolving from the 5G technologies, which are captured at a glance

in Fig. 2. The main research issues include a whole raft of Next-Generation Architecture, Spectrum and

Services, Next-Generation Networking, the Internet of Things, Wireless Positioning and Sensing, as

ACM Comput. Surv.



Five Facets of 6G: Research Challenges and Opportunities • 0:3

Fig. 1. The architecture of AI-empowered 6G communication networking technologies includes next-generation wireless

communications for aerial, terrestrial, and underwater networks. Aerial network contains GEO, MEO, LEO, UAV and drones.

Terrestrial network includes V2X, C-RAN, M2M, UDN, D2D, IoT, mmWave/THz and core network, which are enabled by edge

computing, RIS, NOMA, CoMP, NR, unlicensed spectrum usage, positioning and sensing, blockchain, SDN/NFV, network

slicing, and big data techniques. Underwater network is formed by groups of vessels and AUVs conducting sensing and data

collection missions.

well as the Applications of Deep Learning in 6G Networks. The open research issues of 6G communication

and networking are also summarized in Table 3. Note that in Table 3 6G facets 1ś4 are discussed with open

research issues. In a nutshell, our contributions can be summarized as follows:

• Relying on recent research results, we have sorted out the key performance metrics as well as ive service

use cases of 6G compared to 5G system. We have investigated comprehensive literature surveys for the
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Table 2. Comparison with Available Surveys and Tutorials

Paper [51] [120] [189] [35] [231] [75] [121] [217] [162] [226] This work

Year 2019 2019 2019 2019 2020 2020 2021 2021 2021 2022 2022

Type Survey Tutorial Survey Tutorial Tutorial Survey Survey Survey Survey Survey Survey

Netw. Architecture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✔

Wireless Transmission ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✔

Unlicensed Spectrum ✓ ✓ ✓ ✔

Multi-Service Use Cases ✓ ✓ ✓ ✔

Softwarization SDN/NFV ✓ ✓ ✓ ✓ ✓ ✔

IoT and Security ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✔

Positioning & Sensing ✓ ✓ ✓ ✔

Learning Wireless/Netw. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✔

Multi-Component Opt. ✓ ✔

potential promising techniques from the perspectives of architectures, networking, applications as well as

scheme designs, which are extended from the current foundation of wireless and networking.

• Furthermore, we discuss the inherent characteristics by highlighting unique and promising next-generation

architecture, spectrum and services. We portray a plethora of heterogeneous architectures with integrated

hybrid networks under diferent accessing and transmission mechanisms. The vulnerabilities of the cor-

responding techniques in their regions are also addressed and carefully considered for future research

directions.

• We also investigate a plentiful suite of learning-driven optimization and solutions for the above-mentioned

open issues. Depending on each case and its requirement, diferent machine and deep learning schemes

should be intelligently and favorably exploited as a remedy shown in the open literature.

• We have demonstrated some substantial ield trial performances regarding high-frequency mechanism, IoT

communication and sensing as well as deep learning-driven device-free indoor positioning and sensing

detection techniques.

• Owing to future complex network scenarios with quite diferent requirements, we elaborate the road from

single-component to multi-component Pareto-optimization principle, which diferentiates conventional

methods and carries out potentially encountered trade-ofs among numerous factors, such as rate, bandwidth,

energy, latency and complexity, etc.

Indeed, there exist other 6G research surveys and tutorials published in [35, 51, 75, 120, 121, 162, 189, 217, 226, 231].

However, to the best of our knowledge, this survey has provided a more comprehensive next-generation overview

of network architectures and applications aswell as optimization. Additionally, our paper ofers a cross-disciplinary

synthesis ranging from whole network layers, which is explicitly contrasted to the existing works in Table 2 for

identifying the diference in the open literature.

2 FACET 1: NEXT-GENERATION ARCHITECTURE, SPECTRUM AND SERVICES

2.1 Advanced Wireless Network Architecture and Technology

The forthcoming 6G wireless network is expected to evolve beyond the conventional terrestrial cellular network

by additionally including underwater, aerial and satellite communication networks, forming a vertical 3D network

(so-called 3DNet or SkyNet) [68, 96] as seen in the stylized illustration of Fig. 1. Accordingly, the management

of these emerging heterogeneous vertical/horizontal massive ultra-dense networks (UDN) becomes one of the
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Fig. 2. Nature of 6G technologies. Stemming from 5G with the root of resource characteristics and channel modeling

environments, the 6G trunk includes technology branches of wireless communications, networking, Internet of Things, and

positioning and sensing. The leaves and foliages of promising 6G architectures and techniques are nourished in its belonging

branches from the 5G roots nourished by the human being so-called AI. Accordingly, the performance flowers are vigorously

growing up shading below the lush 6G tree.

key research topics. The conventional cloud radio access network (C-RAN) [185] relies on fully centralized

network functions, computations, decisions and operations in the central cloud, which is insuiciently lexible for

future networks. Accordingly, based on the associated network functions, 6G terrestrial communication networks

partition the traditional base stations (BSs) of the C-RAN into the central unit (CU), distributed units (DUs), and

radio units (RUs). This partitioning requires lexible radio access technology (RAT) [118]. The powerful CU in the

cloud has substantial computation and data storage capabilities managed by the higher network layers, whilst the

network functions of the lower layers are deployed within multiple DUs at the edge. The RUs are responsible for

signal transmission and reception, while the networking policy is formulated at the DUs and CU. Furthermore,

instead of using traditional costly wired links, the fronthaul and backhaul of lexible CU/DU/RU architectures

may rely on high-speed millimeter wave (mmWave) and terahertz (THz) techniques [182]. Similarly, both the

user equipment (UE) and sensors are supported by high-speed mmWave THz radio links.

• mmWave Transmission: As a beneit of its ample bandwidth, a mmWave system typically operating at

28/39/60 GHz is capable of supporting Gbps-level transmission [174, 181, 198]. However, this is achieved at

a high pathloss and sensitivity to blockages. As a potential remedy, beamforming relying on high-gain

beams may be harnessed for mitigating the pathloss [181].
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Table 3. Open Research Issues of 6G Communication and Networking Technologies

Next-Generation Architecture, Spectrum and Services

Advanced wireless networks

✓ Interference management in hybrid 6G networks
✓ Dynamic spectrum management for diferent wireless transmissions
✓ High-mobility handover management (e.g., vehicle, train, UAV, AUV, etc.)
✓ Network power control and energy harvesting
✓ Flexible scheduling for integrated RAT

New multiuser transmission

✓ Enhanced RRM for diverse resources (e.g., code, space, frequency, time, etc.)
✓ New UM-MIMO beamforming for mmWave and THz
✓ Spectrum/Energy eicient techniques (e.g., NOMA, FD, CoMP, etc.)
✓ Advanced grant-free transmissions
✓ Deployment and optimization of RIS
✓ Non-RF techniques (e.g., laser, VLC, quantum communications, etc.)

Unlicensed spectrum access

✓ Interference mitigation for unlicensed spectrum accessing (e.g., LAA)
✓ Re-transmission mechanism at higher frequency bands
✓ New multiuser orthogonal contention and data transmission schemes
✓ Advanced unlicensed 60 GHz beamforming design for 802.11ad/ay

Multiple wireless services

✓ High performance hybrid services (e.g., URLLC-eMBB)
✓ Front-end resource allocation and hybrid numerology optimization
✓Management of new 6G services of LDHMC and ELPC

Next-Generation Networking

Network softwarization

✓ Advanced automatic network traic optimization and service management
✓ Flexible and cost-efective network function deployment
✓ New NFV management and orchestration

Next-generation core
✓ Next-generation core virtualization
✓ QoS-guaranteed virtual networks

Mobile network management
✓ Resource management for mobile cloud and edge computing
✓ Advanced SDN/NFV-enabled SON

Internet of Things

IoT networks

✓ Eicient mechanisms for sensing and data collection and upload
✓ Simultaneous operation among diferent IoT protocols
✓ Advanced power preservation, interference management and synchronization
✓ Cloud resource management and big data storage and processing
✓ Advanced social IoT network structure for information dissemination and recognition

Vehicular networks

✓Wireless channel characteristic and resource management of V2X
✓ Heterogeneity management over diferent V2X protocols and interfaces
✓ Advanced optimization of joint sensing, control and communications
✓ Eicient and efective vehicular routing and trajectory design
✓ Congestion control and secured and reliable IoT-V2X

Security and Privacy

✓ Next-generation quantum and post-quantum cryptology
✓ Implementations/Applications of multifunctional security and privacy techniques
✓ Blockchain on advanced data security and system operation
✓ Enhancement in physical layer security
✓ Privacy-aware strategies in smart services and cloud/edge networks

Wireless Positioning and Sensing

Wireless positioning and sensing

✓ Flexible, robust and high-precision trajectory tracking
✓ Doppler shift of high-speed and long-distance outdoor positioning
✓ Device-free CSI-based positioning, sensing, and detection
✓ Fine-grained positioning and detection in extreme environments
✓ Fine-grained positioning and detection in extreme environments
✓Multi-scale human behavior and vitality detection

• THz Transmission: The THz band represents the carrier frequencies spanning from 0.1 to 1 THz, which

has even wider bandwidth resources than the mmWave band. Hence, it is potentially capable of supporting

Tbps transmission speeds [182, 276]. However, it sufers from signiicantly higher pathloss than mmWave

carriers due to severe molecular absorption. Therefore, it requires massive antennas to support so-called

THz-oriented pencil-beams [60, 99]. In this context, THz beam-alignment is an excessively challenging

task, especially in the face of mobility in a short-distance THz communications. Moreover, directional
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THz-enabled cognitive radio (CR) aided transceivers are capable of dynamically exploiting the slivers of

unoccupied spectrum for improving the area spectral eiciency.

The 6G architecture of underwater communication networks has the task of supporting autonomous underwater

vehicles (AUVs) and AUV controllers (AUVCs) [132], which can be harnessed in diverse scenarios, including

underwater air crash investigations, military applications, and deep sea exploration. The AUV-based network

supports multiple AUVs and multiple AUVCs equipped with sensors and sonar/camera systems for collaborative

navigation, localization, and object tracking. However, underwater communications rely on ultra-low frequencies,

which are afected by water low, the Doppler efect of ships, environmental noise, and vortex-induced water

vibration. The mitigation of these phenomena requires substantial further research in 6G underwater networks.

Aerial communications in 6G rely on drones or unmanned aerial vehicles (UAVs) and low/high altitude platforms

(LAPs/HAPs). Furthermore, the 6G satellite network contains several layers in Fig. 1, including the low earth orbit

(LEO) satellites below 2000 kilometers, medium earth orbit (MEO), high earth orbit (HEO), and geostationary

earth orbit (GEO) satellites at 36,000 kilometers [96, 214]. Due to the long transmission distance from the

satellite to ground, high transmit power is required for mitigating the pathloss and specialized terrestrial-space

terminals (TSTs) have to be used. For eiciently collecting information, multiple UAVs and multiple satellites

may cooperatively transfer their data forming a heterogeneous integrated ground-air-space (IGAS) network [48].

However, numerous mobility-related factors should be taken into account, such as the roll/pitch/yaw movement

of UAVs and the high-velocity orbiting of LEO and MEO satellites are challenging issues to be tackled [106, 147].

But again, the UAVs and satellites are capable of substantially improving the coverage quality [106, 147].

As an evolution from conventional BS-centric networking, user-centric cell-free networks [13] have become

popular, which judiciously allocate the network’s resources according to the speciic quality of service (QoS)

requirements of the UE. As a beneit of this user-centric philosophy, amorphous coverage areas are created by

assigning the access points inhomogeneously by matching their density to the non-uniform user-density. Hence,

they exhibit excellent load-balancing capability. The network determines its resource-allocation strictly based on

the QoS requirements [3]. However, achieving this ambitious design objective, while handling diverse cell-sizes,

ranging from small cells (SCs) to femtocells, picocells and the emerging nanocells [186], requires substantial

further research in the context of 6G networks. To elaborate a little further, a host of sophisticated interference

management, dynamic channel allocation, high-mobility handover, packet admission control, power control, and

scheduling have to be investigated. Furthermore, the nodes operating in remote areas, where no electricity is

available have to rely on advanced energy harvesting and wireless power transfer in next-generation wireless

communications [6, 176, 201].

2.2 New Multiuser Transmission Schemes

Conventional transmission techniques tend to focus on improving their resource eiciency in time, frequency, and

spatial domains. The 6G new radio (NR) will further extend these techniques to the mmWave and THz bands [182],

whilst relying on ultra-massive multiple input multiple output (UM-MIMO) beamforming techniques [41, 199].

By relying on these techniques, multiple beams can be generated to serve numerous users in diferent directions

at diverse QoS requirements. However, sophisticated power control, interference management and radio resource

management (RRM) are required. Moreover, in order to improve the spectral- versus energy-eiciency trade-of,

we can superpose all signals in the time, frequency and spatial resource slots. The corresponding techniques

include non-orthogonal multiple access (NOMA) [123], 3D beamforming, full-duplex (FD) [66], coordinated

multi-point (CoMP) transmission/reception [36], and rate splitting multiple access (RSMA) [47].

• NOMA: The transmitter will multiplex several desired signals to a single resource slot of certain resource

domains, whilst the receiver carries out successive interference cancellation (SIC) for mitigating the

interference imposed by the signals belonging to other users. In the most of popular power-domain NOMA

ACM Comput. Surv.
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(a) (b) (c) (d)

(e) (f)

Fig. 3. The 6G RIS-empowered wireless network of (a) RIS-empowerd mmWave/THz (b) RIS-NOMA (c) RIS-FD and (d)

RIS-CoMP transmissions as well as emerging architecture of (e) RSMA and (f) STAR-RIS/IOS.

two or more users’ signals are superimposed at a given power and SIC is used to detect the strongest signal,

while considering the weaker signals as interference. The remodulated signal is then deducted from the

aggregate signal, leaving the clean/weaker signal behind [11, 56, 149]. Similar SIC-aided procedures are

used also for code-domain NOMA. A whole plethora of other NOMA solutions can be found in [53, 142].

However, it becomes a potential challenge to design advanced NOMA techniques in terms of integrating

the diverse resource domains of mmWave/THz systems [54, 267], cancelling the interference in UDNs, or

enhancing the coverage area of UAV and satellite networks [73, 109].

• 3DBeamforming: This concept emerges from that of sectorized antennas aiming for serving users roaming

at diferent angles with the aid of sophisticated beamforming techniques and antenna conigurations. Since

mmWave carriers sufer from excessive pathloss, the employment of high-gain beamforming is critical.

High-gain beamforming is even more crucial for THz carriers relying on pencil beams. Furthermore, it is of

salient importance to frugally manage the limited 3D resources for supporting diverse QoS requirements

under IGAS networks.

• FD: This technique allows simultaneous uplink and downlink transmission within a single timeslot at

the same frequency [66, 124]. However, the interference imposed by the high transmit power on the low

received power is a critical issue, which requires advanced self-interference mitigation techniques. With

the emergence of powerful new 6G architectures and technologies, there is an opportunity for FD solutions

to increase the spectral eiciency by employing mmWave/THz UM-MIMO beamforming in both terrestrial

and aerial networks [12, 187, 229].

• CoMP: This technique supports simultaneous transmissions from multiple BSs to a single receiver [98].

Furthermore, as a beneit of mmWave/THz beamforming, UM-MIMO CoMP is capable of increasing the
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network’s throughput [148, 225]. Nonetheless, there are substantial challenges in the way of large-scale

CoMP roll-out, such as the related synchronization issues, because the receiver can only be perfectly

synchronized with a single BS.

• RSMA: As depicted in Fig. 3(e), considering the base stations having for example M transmit antennas

and K users ś each relying on a single receiver antenna ś communicate under the assumption that in

addition to the private and conidential messages destined for the individual users, there are also common

messages to be received by all of the users. The terminology of rate-splitting of messages implies that the

downlink stream is partitioned into K segments for the K users, where each user’s message contains both

a common and a private message segments. The K private messages of the individual users are then jointly

transmitted with the common message of all users. Both the common and private messages are transmitted

in the downlink by the BS havingM downlink transmit antennas, but naturally, the antenna-array weights

used for the transmit precoding (TPC) private messages depend on the individual user positions, while

those used for the common part are trained for reaching all users [46, 47, 134, 150].

At the users, the common message is detected irst by assuming that the private messages are unknown

and hence they can only by treated as additional noise. In the next processing step, we aim for cancelling

the interference imposed by the common message on the composite received signal using SIC. This is

achieved by irst remodulating the common message detected as well as applying the TPC to its modulated

version and then subtracting the result from the composite received signal. This leaves the superimposed

private messages behind. Now each user has to extract his/her own private message following a similar

SIC process as outlined above. Explicitly, each user detects his/her own private signal by treating all the

other users’ signals as noise. This is because the TPC weights of the other users are unknown and hence

their interference cannot be cancelled. Suice to say that the above rudimentary portrayal of the RSMA

philosophy relies on a number of simplifying assumptions, which are eliminated in the detailed treatises of

[17, 18].

Reconigurable intelligent surfaces (RISs) also constitute promising techniques for extending the coverage

area, reducing the power consumption, and enhancing the data rates [16, 27, 55, 95, 244]. The RIS is composed of

numerous metamaterial elements, which can relect the received waves, while adjusting their phases without

complex signal processing [55] as detailed below.

• RIS-EmpowerdmmWave/THzTransmissions: The ixed BS infrastructure can beamform itsmmWave/THz

signals to the RIS, which may relect them to arbitrary transmit directions [24, 86, 93], as demonstrated in

Fig. 3(a). Blocking the line-of-sight (LOS) paths of mmWave/THz carriers may be circumvented with the

aid of RISs. However, they create extra interference, which has to be carefully managed. In this context,

it is imperative to jointly design the active beamforming at the BS and the passive phase shift based

beamforming at the RIS in order to meet diferent requirements.

• RIS-Empowerd Multiuser Transmissions:

(1) RIS-NOMA: Again, multiuser NOMA schemes impose extra interference due to the superposed signals

of the 3D resource domains. The RIS deployment shown in Fig. 3(b) has the potential of generating

speciic channel features for readily distinguishing the overlapped NOMA signals. Moreover, RIS-NOMA

[27, 90, 139, 254] is capable of extending the coverage area to provide services for distant cell-edge users.

However, the joint design of the diferent resource domains of NOMA and RIS constitutes a wide open

research issue.

(2) RIS-FD: As for FD transmission, RISs are capable of adjusting their phase shifts to cancel or alleviate

the self-interference of FD [62], where the uplink and downlink signals may become orthogonal in terms

of their directions as demonstrated in Fig. 3(c). The RISs are intrinsically operated at FD which directly

relect arbitrary incident signals. We note that the FD transmission here indicates the co-existence of two
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transmission directions in the wireless network, including downlink signals from BS to UE and simultaneous

uplink access in a reverse direction. However, additional interference emerges from the RISs, which should

be jointly considered in RIS-FD design [65, 110]. The joint design of FD and RIS conigurations may achieve

potentially higher area spectral eiciency than conventional FD operating without RIS assistance.

(3) RIS-CoMP: Conventional CoMP aims for improving the low signal quality of cell-edge users. This

is achieved by turning the harmful interference into useful source of desired signal energy with aid of

RIS-CoMP [61], as seen in Fig. 3(d). As a beneit, the transmitter is capable of dissipating less power than

conventional CoMP while still meeting the tele-traic demands. Accordingly, CoMP-RIS should be jointly

designed for improving the area spectrum/energy eiciency. However, there are numerous open problems,

including their BS backbone bottlenecks, channel estimation and synchronization, just to mention a few.

Again, it is not possible to perfectly synchronize a UE with more than one BS.

• Simultaneous Transmitting and Relecting RISs (STAR-RIS): An impediment of the conventional

RIS solutions is that the transmitter and the user have to be within the same 180-degree half-plane, rather

than roaming across the entire 360-degree full plane. By contrast, the STAR-RIS architecture as illustrated

in Fig. 3(f), or termed as intelligent omni-surface (IOS), allows full-plane coverage by potentially harnessing

full relection, full transmission, as well as simultaneous transmission and relection [141, 156]. These

modes were discussed in [141] with special emphasis on NTT DOCOMO’s prototype. There are three

diferent principles governing their operations, namely the so-called energy-splitting, partitioning and

time-switching types, which have their diferent pros and cons [141]. In the energy-splitting mode the

signal impinging upon an element is partially relected and transmitted. By contrast, the partitioning type

may be viewed as having a relection-only and transmission-only segment of reduced sizes. Finally, the

time-switching type is capable of switching the relective elements between the transmit and relect modes.

There is a huge variety of compelling applications scenarios, such as STAR-RIS-NOMA [242], STAR-RIS-

CoMP [91] and multi-STAR-RIS deployment as well as AI-assisted STAR-RIS [277], which require further

exploration by the research community.

Furthermore, from an air-interface and transmission framing perspective, both multi-numerology, as well as

mini-slot based and grant-free transmissions potentially make the systems more lexible in terms of reusing the

time/frequency and spatial domain radio resources. However, several possible issues arise in the emerging 6G

communication systems, which are elaborated as follows.

• Multi-domain numerology: Given the wide range of diverse applications and services, the multi-domain

numerology deined in 5G new radio (5G-NR) enables lexible coniguration of the time and frequency

slots, where several resource elements can be speciically conigured for meeting the QoS requirements

encountered [131, 213]. However, this lexibility is attained at a potentially severe inter-domain interference

[79, 203, 273]. With the emergence of 6G networks, advanced multi-domain numerology is required for

deining a common air interface for supporting hybrid mmWave/THz and multiuser transmission schemes

under the integrated 3D UDN philosophy.

• Mini-slots: As a similar concept to that of multi-domain numerology, the advanced philosophy of reserving

mini-slots within a timeslot for prioritized latency-aware or reliability-aware services has emerged [151].

However, the provision of mini-slots is challenging due to the associated dynamic coniguration required

by the multi-domain numerology aided multiuser transmission schemes. Furthermore, how to strike a

beneicial compromise between the existing services and the emerging 6G applications and scenarios is a

substantial open challenge.

• Grant-free transmission: Conventional grant-based uplink transmission imposes high latency owing to

performing four-phase handshakes relying on access request, access grant, transmission, and acknowledge-

ment [193]. By contrast, grant-free transmission facilitates direct uplink transmission under a simpliied
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two-phase procedure of transmission and acknowledgement [2, 179, 192]. Despite the gradual maturing

of this subject area, the conception of low-overhead grant-free transmission for hybrid multi-domain

numerology and mini-slots requires dedicated community-efort. This is particularly urgent in the area of

joint user-activity and channel estimation, as well as iterative synchronization and data detection [143, 234]

for multiuser network architectures.

• From OFDM to OTFS: As part of the evolution of wireless communication through ive generations

the system capabilities have improved by orders of magnitude, in particular the achievable bit rate. The

corresponding symbol durations have been reduced commensurately, which results in ever more dispersive

channels requiring more powerful higher-order channel equalizers. As part of this trend, it became clear

that using single-tap frequency-domain equalization as in OFDM is a more attractive solution for high-rate

systems operating in dispersive channels than using excessive-order time-domain equalizers. As another

dominant trend of the same era, the vehicular velocity has also been escalating and so did the carrier

frequency, since high-rate high-bandwidth systems can only be accommodated at high carrier frequencies,

where unused bandwidth is still available [81, 241]. This trend heralded the era of high-Doppler systems.

Against this backdrop it is clear that a fundamental understanding of wireless propagation relying on the

family of Bello-functions [76] is of pivotal signiicance. This is particularly in the context of high-velocity

UAV, aeroplane and satellite communications, which is likely to become part of the space-air-ground

integrated network (SAGIN) networking concept [137], or referred to as IGAS of the emerging 6G systems.

In the associated high-mobility and high-Doppler contexts it becomes attractive to carry out the associated

signal processing in the so-called delay-Doppler domain [76], rather than relying on the classic time-

frequency-domain OFDM principles. This avenue of thought leads to the concept of orthogonal time-

frequency space (OTFS) modulation transceivers [80, 205, 259], as detailed below. In simple tangible terms

a linear time-invariant (LTI) system having a time-invariant channel impulse response (CIR) has an ininite

coherence time, where each CIR tap remains constant versus time. Clearly, this is a dispersive CIR and its

Fourier transform gives the frequency-domain channel transfer function (FDCHTF). But again, in practice

CIR taps tend to luctuate, even the receiver is stationary owing to the movements of people and objects,

hence resulting in linear time-variant (LTV) channels which impose frequency shifts due to the Doppler

efect, yielding frequency-domain dispersion. Recall that based on the Fourier transform, a non-dispersive

Dirac-delta CIR results in a lat FDCHTF, which time-dispersive CIRs result is frequency-selective FDCHTF.

By the same token, high-Doppler frequency-dispersive channels are time-selective and in reality the LTV

channels of high-mobility scenarios are typically both time- and frequency-dispersive upon encountering

long-delay CIRs and high-velocity, high-Doppler propagation scenarios. The classic OFDM systems tend to

use adaptive bit-loading of the subcarriers of the 2D time-frequency plane, which have found their way into

numerous systems, including the 4G and 5G systems. Instead, the more recent OTFS technique relies on

the above-mentioned delay-Doppler (DD) domain and it is shown to be capable of outperforming OFDM,

especially in high-Doppler SAGIN applications [250]. As a beneit of the sparse and quasi-stationary nature

of the DD-domain, convenient low-overhead DD-domain channel estimation becomes possible [211], but

there are numerous open problems to be addressed by future research in [210, 212, 250], such as the choice

of the most appropriate near-capacity channel codes and multiple access techniques, just to name a few.

In contrast to traditional radio transmission, advanced next-generation technologies will include non-radio

frequency (Non-RF) solutions relying on laser based optical communications, visible light communications (VLC)

and quantum communications [25, 44, 128, 236]. The pertinent research issues consist of power control and

modulation design for laser based optical wireless communications (OWC) and VLC [271]. A detailed tutorial on

quantum key distribution (QKD) designed for satellite channels may be found in [89] and in [171].
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Fig. 4. The system architecture of coordinated THz/mmWave multiuser beamforming training.

2.3 Unlicensed Spectrum Access

Given the thirst for bandwidth, there is a need for advanced bandwidth-eicient transmission techniques.

Therefore, unlicensed spectrum accessing, including both the traditional sub-6 GHz frequencies and the mmWave

band, has become an active research topic of next-generation networks [158]. In the unlicensed spectrum [158],

interference mitigation becomes a particularly crucial research issue. The networks using unlicensed spectrum

include licensed-assisted access (LAA) [31], IEEE 802.11ax [4], IEEE 802.11be [144], IEEE 802.11ad [197], and

IEEE 802.11ay [279]. Moreover, ultra-high-rate THz transmission is supported by the IEEE 802.15.3d standard

utilizing both sub-THz and THz frequencies [101, 173, 195].

• Sub-6 GHz Frequencies: The goal of LAA is to deploy the legacy 4G long-term-evolution-advanced

(LTE-A) system in the 5 GHz band. However, since the pathloss is increased at higher frequencies, the

coverage area is reduced compared to that at 2.4 GHz. Additionally, both the IEEE 802.11ac/ax/be standard

systems and weather radar systems are operated at 5 GHz, where the uplink/downlink interference

control and retransmission mechanism constitute the key research issues of LAA. Therefore, LAA employs

carrier aggregation (CA) in order to guarantee the target QoS of UEs. The IEEE 802.11ax system combines

orthogonal frequency division multiple access (OFDMA) with sophisticated scheduling mechanisms to

achieve simultaneous multiuser data transmission over separate bands [202]. We also note that 802.11be

is an enhanced version of 802.11ax, which further improves the spectral eiciency by adopting wider

unlicensed bands and enhanced transmission techniques [144].

• mmWave Frequencies: IEEE 802.11ad/ay operates in the 60 GHz mmWave band and relies on beamform-

ing to compensate for the high pathloss with the aid of the so-called enhanced directional multi-gigabit

(EDMG) technique [196]. However, the hidden node problem associated with the usage of 802.11ad/ay

critically relying on beamforming remains a challenging unsolved issue [279]. Furthermore, multiple access

points (APs) have to be established for practical multiuser mmWave based EDMG transmissions relying on
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the 802.11ad/ay protocols. However, beamforming training is another potential challenge, which has to be

tackled for inding the optimal beam direction in such complex multiuser multi-AP scenarios. Therefore,

an enhanced multi-AP multiuser architecture is proposed in [200], which is backward compatible with the

existing 802.11ad/ay protocol. To elaborate briely, the coordination based beamforming training (CBFT) of

[200] was designed for multiple APs and multiple users with the objective of attaining near-unity successful

user association ratio and a maximum tolerable beam alignment outage probability. The APs aim for lexibly

tuning both the length of training frames and of the contention slots, whereas the users perform their

individual association and individual beam training [200]. As shown in [200] quantifying both the system’s

latency and throughput, the CBFT imposes the lowest latency and yet achieves the highest throughput,

substantially outperforming both the time division method and the conventional 802.11ad/ay protocols.

• THz Frequencies: The THz-band holds the promise of an abundance of bandwidths capable of fulilling

the high data rate demands of 6G. As an enhancement of the mmWave IEEE 802.11ad/ay standard, IEEE

802.15.3d is the irst protocol ratiied for THz transmissions [101]. It supports diferent applications, such

as wireless backhaul/fronthaul, data centers, kiosk downloading, and even intra-chip networks [173]. The

ultra-wide band proposed by theWorld Radio Conference 2019 (WRC-2019) spans from 2.16 GHz up to 69.12

GHz bandwidth utilization between the operating frequencies of 252.72 GHz and 321.84 GHz. However,

the THz properties impose several implementation-oriented hurdles both in terms of the high-power

signal-generation and signal-detection, which require carefully-crafted new THz beamforming techniques.

Furthermore, due to the hostile propagation properties, 802.15.3d adopts robust low-complexity modulation

schemes, such as the THz single carrier mode (THz-SC PHY) and THz on-of keying mode (THz-OOK

PHY), both proposed in [101, 173]. From a protocol design perspective, the network coordinator will train

its THz-beams with the aid of consecutive beacons transmitted to the devices, whereas the devices will

transmit directional association requests for exchanging all desired information. Given the higher beam

resolution of 802.15.3d THz compared to 802.11ad/ay, it requires new low-complexity and low-overhead

THz-oriented beamforming training. Furthermore, the prospective techniques of 802.15.3d conceived for

the THz band include (1) simpliied procedures for initial access and device discovery, (2) multiple access

and interference mitigation, (3) node mobility and multiple-channel access support, and (4) up to 100 Gbps-

level mid-range wireless fronthaul/backhaul capabilities using nano-antenna-arrays. To elaborate a little

further, as elaborated in Fig. 4, the beam network leveraging both mmWave wide-beams and THz-oriented

pencil-beams becomes a promising solution in multi-spectrum accessing in a collaborative transmission

manner. However, it remains an open issue regarding how to design low-complexity and low-overhead

coordinative beam training and transmission mechanism under limited computing and communication

resources for cross-spectrum and hybrid-radio access networks.

2.4 Multiple Wireless Services

The 5G network supports three rather diferent types of wireless services, including enhanced mobile broadband

(eMBB), ultra-reliable and low latency communications (URLLC), as well as massive machine type communications

(mMTC) [177], as depicted in Fig. 5. The next-generation eMBB network services require new transmission and

access technologies for achieving even higher data rates in new wireless network architectures, representing

the genesis of the enhanced ultra-mobile broadband (eUMBB) philosophy. In a similar spirit, the emerging

next-generation enhanced-URLLC (eURLLC) mode has beneicial applications in unmanned factories, unmanned

aircraft, unmanned vehicles and intelligent transportation systems requiring instant messaging at a high reliability

and low latency. Additionally, given the escalation of the number of connections, there is an increasing need for

an ultra-mMTC (UmMTC) design for supporting more lexible, eicient, low-latency, highly-adaptive protocols.
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Fig. 5. Multiple network services for 5G and 6G eras.

In the next-generation hybrid services, such as the URLLC-eMBB services [64], front-end resource allocation and

hybrid numerology optimization have emerged as open issues.

As deined in the 3rd Generation Partnership Project (3GPP) speciications, the network’s functional split

[118] is capable of supporting the lexible coniguration of the entire core network and its devices for performing

either centralized or distributed computing. In addition to the above-mentioned services, the research community

is also discussing the conception of both long-distance and high-mobility communications (LDHMC) as well

as of extremely low-power communications (ELPC) [276], as also illustrated in Fig. 5. Moreover, as a prospect

potential speciication by 3GPP [100, 246], they release the tentative timeline and key technologies from 5G

and its advanced as well as 6G-era, as summarized in Fig. 6. Terrestrial use cases is proposed at early stage

from Release 14 to 16, whereas versatile conceptions of architectures and spectrum utilization are leveraged

in advanced version of 5G from Release 17 to 20. While, from Release 21, powerful AI techniques and new

transmission/spectrum for community usage are tentatively conceived as 6G services in heterogeneous radios.

As a result, it becomes imperative to integrate the networks both horizontally and vertically in support of high

transmission rates, full coverage of remote areas, high-mobility, and lower-power IoT devices.

3 FACET 2: NEXT-GENERATION NETWORKING

3.1 Network Sotwarization of SDN/NFV

To fulill the challenging speciications of next-generation networks, SDN research focuses both on automatic

networkmanagement and on the optimization of traicmanagement, which includes dynamic real-time automated

network management, routing optimization, load-balancing, multi-path routing, quality management of service

routes, and automatic repair of faltering routes [23, 263, 270]. Network function virtualization (NFV) partitions

the real network into multiple independent virtual networks, which have their individual operating resources

in support of heterogeneous service qualities. The security challenges are attacks against the controller and

blocking of network services [161]. In a nutshell, NFV becomes an important research topic, which increases the

lexibility of network deployment and reduces both the device costs and operating costs. We can further improve
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Fig. 6. Tentative timeline and key technologies from 5G, advanced and 6G in 3GPP organization.

the system performance by combining the SDN principles with optimized management of the tele-traic routes.

Hence, NFV combined with management and orchestration (NFV-MANO) constitute pivotal research issues to be

explored in the ield of network softwarization [5].

3.2 Next-Generation Packet Core Networks

The conventional mobile core network is constituted by speciic hardware and software, including a mobility

management entity (MME), as well as serving gateways (SGWs) and home subscriber server (HSS) units [10].

Although the traditional core network relies on separate control and data link layers, the processing of packets

between these two layers should still be performed in the switch and router simultaneously. With the rapid

development of SDN and NFV, the mobile core network constitutes the natural platform for accommodating

the control and data link layers, which leads to the potential research topic of the so-called virtualized evolved

packet core (vEPC) [183]. The 3GPP organization also proposed the 5G core (5GC) networking concept, including

both standalone (SA) and non-standalone (NSA) options for lexibly adjusting the coniguration of the control

and user planes [50, 108]. Integrating SDN and NFV techniques is capable of supporting lexible applications for

telecom operators. It also contributes to the conception of the network slicing architecture [108], where a realistic

network is partitioned into multiple QoS-guaranteed virtual networks. However, improving the lexibility and

functionality of packet processing across diferent switches becomes one of the salient research issues in the

SDN/NFV-enabled 6G core network (6GC) of the near future.

3.3 Next-Generation Mobile Network Architecture and Management

Thanks to the introduction of SDN and NFV, the architecture and management of next-generation mobile

networks exhibits a high grade of lexibility, intelligence and automation, including advanced mobile cloud

and edge computing. It is a crucial task to adaptively assign computing resources to the cloud and edge. Both

mobile edge computing (MEC) [111, 164] and fog computing [165] constitute important next-generation network

architectures, which potentially lead to the reduction of service latency as well as to the improvement of both the

spectral eiciency and QoS. Given the increased number of BSs forming heterogeneous networks, conventional

manual control of the power allocation and BS deployment becomes infeasible. The advanced self-organized

network (SON) [285] concept subsumes SDN and NFV in support of self-coniguration, self-optimization, self-

healing and self-sustenance. The SON can also automatically execute the optimization of the key parameter

settings [9].
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Table 4. Comparison of NB-IoT, LoRa and SigFox

Feature NB-IoT LoRa SigFox

Alliance 3GPP (2016)
LoRa Alliance

(2015)
SigFox (2009)

Spectrum Licensed Unlicensed Unlicensed

Frequency

In-Band LTE,

LTE Guard band,

700ś900 MHz

433, 780,

868, 915 MHz
868, 902 MHz

Bandwidth 180ś200 kHz 125ś500 kHz 100 Hz

Modulation
UL: SC-FDMA

DL: OFDMA

Chirp spread

spectrum (CSS)
UWB

Transmission Half-duplex Half-duplex Half-duplex

Data Rate
UL: 130 kbps

DL: 160 kbps
0.25ś50 kbps 100 bps

Output Power
UL: 14ś22 dBm

DL: 27ś30 dBm
14ś30 dBm 14, 20ś23 dBm

Max Range 15 km
Urban: 3ś5 km

Rural: 15 km

Urban: 10 km

Rural: 50 km

Connectivity 105 devs. 2.5 × 105 devs. 106 devs.

Battery Life 5ś10 years 5ś10 years 5ś10 years

Cost High Low Medium

Interference Low High High

Security High Low Low

4 FACET 3: INTERNET OF THINGS

4.1 IoT Access, Sensing and Data Collection

The IoT is a network formed by the interactions of physical objects or by the related hardware and software,

gleaning information from diverse networks constituted by heterogeneous sensor devices and controllers [155].

The diferent IoT networks require diverse types of sensors and transmission modes, as exempliied by the

Internet-of-everything, the network of personal wearables [105], industrial IoT (IIoT) [157, 208], intelligent home

services and even the underwater Internet [103]. It is critical to design a mechanism for eiciently sensing

the environments for collecting data and for uploading information to the processing server. However, there

are substantial challenges, such as the coordination of diferent protocols for improving the system’s power

consumption, capacity and spectral eiciency [74].

The versatile features of IoT transmission are capable of facilitating diverse conigurations in support of either

large-scale access, or long transmission distances, low-power and/or low-rate operation at low deployment

cost [74]. In addition to machine-to-machine (M2M) type communications, the family of advanced IoT-based

protocols include Zigbee, ZWave, Bluetooth Low Energy (BLE), Bluetooth 5.0, SigFox, IEEE 802.11p for vehicular

communications, the Long Range (LoRa) protocol [204], 3GPP Narrow Band IoT (NB-IoT), and WiFi HaLow for

IEEE 802.11ah, which are so-called low-power wide area network (LPWAN) solutions [15, 184]. The comparison

of popular IoT technologies including NB-IoT, LoRa and SigFox is summarized in Table 4. To elaborate a little

further, NB-IoT [274] is the standardized protocol relying on 5G BSs for providing convenient IoT access based

on the existing infrastructure. Furthermore, wireless wide area networks based on LoRa [184] and IEEE 802.11ah

are capable of ofering private or public network deployment for industrial applications.

However, these revolutionary techniques should consider the potentially conlicting requirements of high

area spectral eiciency, low interference, infrequent handovers, and power conservation [20]. A range of further

challenging problems are associated with data encryption [104], traic management and resource allocation

in low-power IoT networks [204]. The above-mentioned IoT technologies mainly rely on using narrow band
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Fig. 7. Experimental environment of an LoRa-based IoT network [204].

communications. Therefore, we should design advanced schemes for striking a tradeof among the requirements

of narrow bandwidth, low power consumption, tight synchronization, and limited processing complexity. The

authors of [204] have established an LoRa-based IoT network for the complex scenario seen in Fig. 7 by proposing

a joint traic-aware channel and contention backof window size allocation (TCBA) scheme capable of handling

diverse IoT traic loads characterized by their packet arrival rates. The IoT covers multiple research areas,

which requires the consideration of the overall network architecture and various heterogeneous technologies,

while tackling the technical challenges of eiciency, reliability, and integration in the sensing layer, the network

transport layer, the operations and management layer, as well as the application layer [159, 206].

4.2 Vehicular Networks

As a special use case of IoT, there is an ever-increasing demand for high-performance Internet of Vehicles

services [230], which stimulates substantial research. One of the most important challenges is that of connected

autonomous vehicles (CAVs) relying on joint sensing, control, as well as communications [63]. The associated

IoT devices and sensors are carried by the vehicles with objective of detecting and tracking objects, such as

pedestrians, other vehicles, and traic signs. Moreover, it is vitally important to keep track of the status of road

traic. Furthermore, vehicle-to-everything (V2X) [78] supports the wireless exchange of information between

vehicles and other connected devices. For example, V2X communication is capable of supporting the IoT sensors

by providing long-range detection of hazards, traic conditions, and blind spots outside the vehicular ield

of view (FoV). By relying on IoT services, V2X technology improves road safety, traic eiciency, and energy

eiciency through the employment of road side units. More speciic service types include vehicle-to-infrastructure

(V2I), vehicle-to-vehicle (V2V), vehicle-to-network (V2N), vehicle-to-pedestrian (V2P) and vehicle-to-device

(V2D) solutions relaying either on cellular-based or wireless local area network (WLAN)-based systems. The

cellular V2X (C-V2X) and NR-V2X harness existing cellular NR-based networks and V2X protocols [78, 188].

Furthermore, as speciied by the IEEE 802.11p standard, dedicated short-range communications (DSRC), which
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is the irst V2X communication service relies on WLAN technology and supports directly both V2V and V2I

services by forming vehicular ad-hoc network [1]. The open challenges in IoT-V2X include their wireless channel

characteristics, resource management, their heterogeneous interfaces, their dynamic topology, eicient routing

and trajectory design, congestion policy, security and reliability, as well as joint optimization of sensing, control

and communications [72, 152, 166, 194, 232].

4.3 Social IoT Network

Social IoT (S-IoT) networks are virtual social networks formed by a group of IoT devices belonging to people

having similar interests [180]. The S-IoT integrates IoT networks, which rely on proximity services (ProxSe) [92].

Note that under a ProxSe scenario members of mobile community networks must be geographically adjacent

and are capable of directly accessing D2D or vehicular communications. The S-IoT can also be regarded as a

human social network supporting eicient services or facilitating the interaction of sensor devices. The S-IoT

is also capable of reusing social networking modules for IoT networks, including pedestrian/vehicular mobile

social networks [284]. The potential future applications will include advertising, geographic data or content

sharing, social networking platforms, robotic systems, gaming platforms, the relaying of data from the users

or IoT devices, including the enhanced driving safety, roadside information access, unmanned aerial vehicles,

autonomous driving, and environmentally-friendly vehicles.

In this context, network science aims for analyzing the resultant complex networks in terms of their topology,

dynamic characteristics, behaviors, functions and diverse attributes by relying on graph theory [26], social

network theory [7], statistical physics [172], biology [167], and social science [113]. Some of the open research

issues in 6G include but are not limited to: (1) the network’s topology, connectivity, resilience and robustness;

(2) information dissemination assisted by the epidemic network model and network inference [168]; (3) the

conception of advanced analytic tools relying on graph theory [58] and game theory [268].

4.4 Security and Privacy

In recent years, numerous network attacks have taken place threatening user security and privacy [112, 222].

Hence, rapid advances took place in privacy enhancement as well as in physical layer security (PLS) [88]. However,

the existing security and privacy protection techniques only consider a single functionality and service, which has

to be extended to multiple services [209]. Furthermore, next-generation quantum cryptography and post-quantum

cryptography have numerous challenging open problems [38].

The privacy issues of IoT applications in wearable device networks, smart grids, and vehicular networks

are in their infancy. For example, under wireless body area networks (WBANs) relying on the IEEE 802.15.6

standard [190], wearable device protocols have to be redesigned for ensuring the security and privacy of wearable

devices. The privacy-aware strategies of smart grids associated with electricity prediction and billing also require

substantial future research [169]. Moreover, the security-critical issues of vehicular networks also require further

advances, with special attention on emergency messages, authentication, and ultra-low latency communications

between road side units (RSUs) and vehicles in the face of high mobility. Additionally, the security and privacy of

intelligent cloud and edge networks also constitute important research topics [248].

5 FACET 4: WIRELESS POSITIONING AND SENSING

5.1 Outdoor Positioning

The most widely used outdoor positioning [29] system at the time of writing is the global positioning system

(GPS), which has a limited position accuracy and limited coverage owing to its high signal loss. Its shortcomings

might be mitigated by beneicially harnessing the signals gleaned from cellular BSs [228], for example, for the

location tracking of vehicles and UAVs [119, 145]. However, the excessive Doppler shift of high-speed movement
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Fig. 8. Device-free wireless positioning and sensing detection with the deployed functional APs, edge and central AI servers.

The CSI dataset is collected via wireless channels between AP pairs. Local network parameters are learned by edge AI servers,

whereas global model updating and broadcasting are performed by a central AI server.

constitutes a critical challenge in the physical layer of high-accuracy tracking [39]. By relying on sophisticated

AI techniques [233], we can design compelling outdoor applications around regional points of interests [133].

The associated space-time based positioning information can be beneicially exploited for precisely tracking

speciic user trajectories. Furthermore, a whole suite of challenging but promising services may be conceived

upon integrating long-distance and/or low-power IoT networks into the existing cellular vehicle tracking, for

example.

5.2 Indoor Positioning

Since the existing GPS system has almost no indoor coverage, the indoor positioning systems typically rely on

WiFi signal strength measurements and pre-recorded radio frequency (RF) maps termed as ingerprinting [33, 83].

However, the precision of ingerprint-based indoor positioning techniques critically hinges on the stability of

wireless signals and on the establishment of large databases, which is extremely laborious [255, 262]. This task

may nonetheless be mitigated with the aid of spatial skeleton databases inferred from indoor map information

[42]. As a design alternative, lower-power Bluetooth [256] and ultra-wide band (UWB) scenarios may also be

adopted by the indoor positioning systems. In order to improve the attainable positioning accuracy, we can

deploy various micro sensors such as RF identiication (RFID), infrared, ultrasonic, visible light [286] as well as

other smart devices, including accelerometers, gyroscopes, magnetometers, air pressure, ambient sound and laser

sensors.

Moreover, when aiming for centimeter-level positioning accuracy, the channel state information (CSI) has also

been widely adopted to collect positioning data [45, 57, 145, 237] in order to glean a more complete signal proile
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of frequency, power, and latency than simply harnessing the received signal strength [83]. Recent studies have also

been conducted in themmWave [135, 224] and THz bands, while relying on beamforming techniques [59] to collect

higher-dimensional signal sources for wireless positioning and sensing. In a nutshell, the positioning receiver of

the above-mentioned so-called device-based regimes is required to collect measurement data concerning known

reference points when performing ingerprint-based indoor localization.

However, the evolutionary trend is to design device-free indoor positioning [45, 97, 138, 145] algorithms

operating without the aid of wearable devices. The corresponding overall architecture is illustrated in Fig. 8,

which is established by relying on multiple APs associated with AI-assisted edge and central servers. Whilst Fig. 8

might seem complex, it provides an easy-reading anecdotal portrayal of the whole gamut of ideas under discussion

by the scientiic community. As the 6G standardization evolves further towards a broad global consensus, this

igure may be reconstructed according to the harmonious conluence of ideas elaborated as follows. As shown in

Fig. 8. The databases can be gleaned from the front-end AP by measuring and scrutinising the speciic luctuation

of the received signals, which characterize the particular nature of indoor activities, including motion, positioning,

presence and vitality detection. These issues will be further detailed in the following subsection in the context of

Fig. 9. The edge server carries out the local training of the network’s model parameters related to its corresponding

behavior, and the resultant trained local models will be merged into a global model by the central server. This

device-free positioning philosophy is especially suitable for application scenarios where no wearable devices

are available, including continuous tracking and ushering [281], which allows us to simply monitor the wireless

signals without revealing any user identities [117]. Furthermore, in hostile indoor scenarios of oil tankers, mining

pits or complex plants [19], it becomes extremely challenging to glean accurate positioning information. Therefore,

the key research issues of indoor positioning include object tracking, trajectory modelling and the associated

parameter optimization of device-free positioning.

5.3 Wireless Indoor Detection

Given the rapid development of device-free indoor positioning [45, 97, 138, 145], the application scenarios of

smart homes, green buildings, factory manufacturing and healthcare will all substantially beneit. Moreover, these

ine-grained detection techniques will also ind innovative applications in pedestrian path tracking, presence

detection, motion detection, and vitality detection [32].

• Pedestrian Tracking aims for tracking a human’s walking trajectory within a speciic area [243]. We can

distinguish their potential behaviors through historical data. However, due to the complexity of overlapped

signals in the time and frequency domains, it is quite challenging to carry out multi-object tracking, which

remains an open research issue.

• Presence Detection infers the existence of people in indoor environments based on the variation of received

signals [115, 280], but the challenge is that not only human presence, but a range of other events may result

in time-varying signals. False detection may take place even owing to humidity and temperature changes

in the air, and due to the unpredictable locations of interfering objects, which requires time-consuming

replenishment of the database. To elaborate a little further, presence detection across diferent rooms

[45, 145] imposes substantial challenges on the associated signal analysis, where the associated attenuation

as well as multipath efects, which should be jointly taken into consideration. As the detection coverage

area is expanded, it becomes imperative to strike a balance among deployment costs, implementation

complexity and detection accuracy.

• Motion Detection aims for detecting human behavior and movements such as standing, hand-waving, falling,

slow walking, jumping and so on [43, 77, 114]. Diferent movements potentially lead to distinct signal

changes in the wireless paths. Hence, advanced algorithms may be conceived for detecting diferent human

ACM Comput. Surv.



Five Facets of 6G: Research Challenges and Opportunities • 0:21

(a) (b)

 Proposed CAE DAE CS1000 CS300 FIFS  
0

1

2

3

4

5

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

0.15
0.37

0.64
0.85

3.49

 4.3Proposed

CAE

DAE

CS1000

CS300

FIFS

(c)

Location 1 Location 2
0.92

0.94

0.96

0.98

1
F

1
-S

c
o
re Proposed

CAE

DAE

CS1000

CS300

(d)

Normal Breath Turn-Over Breath Apnea
0

5

10

15

20

B
re

a
th

 p
e
r 

M
in

u
te

 (
B

P
M

)

Wearable Sensing Device

Device-Free Breath Detection

Existing Breath Detection

(e)

Fig. 9. Experimental results of (a) CSI for presence observations and (b) CSI for abnormal/normal/apnea breathing scenarios

and the corresponding performances of (c) localization [223], (d) presence detection [97] and (e) breath rate detection in

terms of localization errors, F1-score and rate of breath per minute (BPM), respectively.

behaviors with reasonable accuracy. However, the network topology should be carefully designed to avoid

interferences from other objects, which may severely deteriorate the accuracy of motion detection.

• Vitality Detection analyzes wireless signals for detecting slight human feature changes, e.g., breathing rate

[252, 266] and heart rate changes. With the aid of breath/heart rate estimation and prediction, a carer of

the elderly may be notiied if abnormal heartbeat, arrhythmia, apnea as well as severe snoring occurs. Due

to more subtle changes in the human body compared to the surroundings, existing advances are conined

to a small area or very short distances in order to provide adequate detection accuracy.

Most existing techniques utilize wearable devices for maintaining detection accuracy; however, wearing devices

may lead to potential inconvenience and frequent battery recharging [257]. It becomes imperative to enhance the

signal processing techniques in the physical layer for improving the attainable device-free detection precision

at a reduced computational complexity. Regarding the techniques illustrated in Fig. 8, the authors of [97, 223]

have established an AI-empowered device-free WiFi-based CSI learning platform for both positioning as well as

for presence and vitality detection. The associated experimental results are depicted in Fig. 9. It can be readily

observed in Fig. 9(a) that the CSI diference indicates the presence and absence of humans. By contrast, Fig. 9(b)

shows three breathing scenarios, including abnormal, apnea, and normal states. In comparison to the existing

positioning methods found in the open literature and characterized in Fig. 9(c), the device-free machine learning

based CSI positioning scheme proposed in [223] achieves the lowest localization error of 0.15 meter. Moreover,

the CSI-based presence detection framework proposed in [97] and characterized in Fig. 9(d) has the highest

detection accuracy in terms of the F1 metric deined in [97]. In Fig. 9(e), it is observed for vitality detection that

the device-free breath detection may approach the performance of wearable sensing devices.
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Table 5. AI for 6G Communication and Networking Technologies

AI Schemes
Machine

Learning

Deep

Learning
Potential Applications and Solutions

Supervised

Learning

✓ SVM

✓ Bayesian

✓ KNN

✓ LDA

✓ Decision Tree

✓ DNN

✓ CNN

✓ RNN

✓ LSTM

✓ GNN

− Optimum UM-MIMO beamforming for mmWave/THz (DNN, CNN)

− Channel and traic classiication and prediction (SVM, LDA, Bayesian)

− Device-free positioning and detection sensing (KNN, RNN, LSTM)

− Automatic management of integrated 6G RAT (GNN, Decision Tree)

−Mobility-based handover mechanism (SVM, LDA LSTM)

− Big data processing for IoT (DNN, CNN, RNN, LSTM)

− 6G multi-network and multi-service optimization (DNN, GNN)

Unsupervised

Learning

✓ K-means

✓ PCA

✓ SVD

✓ HMM

✓ EM

✓ Autoencoder

✓ GAN

− 6G network data augmentation (GAN)

−Wireless channel detection and generation (SVD, Autoencoder, GAN)

− Grant-free transmissions (HMM, EM)

− Server data dimension reduction (PCA)

− High-precision trajectory tracking (K-means, HMM)

− 6G Network function and BS deployment (K-means)

− Security and privacy enhancement (Autoencoder, GAN)

− Unlicensed spectrum sensing (HMM, EM)

Reinforcement

Learning

✓ Q Learning

✓ Monte Carlo

✓ DQN

✓ DDPG

✓ IRL

− Cloud/edge computing resource management (Q learning, DQN, DDPG)

− Enhanced 6G RRM for diverse tele-traic demands (DQN, DDPG, Monte Carlo)

− Network numerology adaptation (Q learning, DQN, DDPG)

− New user contention and accessing schemes (Q learning)

− QoS-guaranteed virtual networks (DQN, DDPG)

− Transmission and traic scheduling (Q learning, DQN, DDPG, Monte Carlo)

− Network power control based on wireless experts’ experience (IRL, DDPG)

Distributed

Learning
- -

− Parallel computing in 6G core

−Multi-task oriented communications and networking

Federated

Learning
- -

− Security-/privacy-aware strategies for multiusers and multi-services

− Coordination and cooperation among diferent 6G networks

Transfer

Learning
- -

− Rapid model establishment for SDN/NFV based SON

− Positioning and detection in diferent coverage areas

SVM: support vector machine, KNN: k nearest neighbor, LDA: linear discriminant analysis, DNN: deep neural network,

CNN: convolutional neural network, RNN: recurrent neural network, LSTM: long short-term memory, GNN: graph neural network,

PCA: principal components analysis, SVD: singular value decomposition, HMM: hidden Markov model, EM: expectation-maximization,

GAN: generative adversarial network, DQN: deep Q network, DDPG: deep deterministic policy gradient, IRL: inverse reinforcement learning

6 FACET 5: APPLICATIONS OF DEEP LEARNING IN 6G NETWORKS

Given the rapid development of AI-empowered deep learning, both supervised learning as well as unsupervised

learning and reinforcement learning have found favour in solving challenging communications and networking

problems [52, 231], as shown in Fig. 10. Speciic examples are constituted by radio interference management,

resource allocation, multiple parameter optimization [215], network traic prediction, computing resource

assignment, and lexible coniguration of network functions [35]. In supervised learning, ground truth labels and

ixed-size inputs constitute a deep layered neural network (NN). However, labeling is not required in unsupervised

learning, which exploits the correlation between samples of the dataset. In reinforcement learning, an agent will

interact with the environment and then updates the model based on the corresponding rewards. Note that deep

learning can deal with comparably complex problems in a non-linear and non-convex manner than that utilizing

machine learning. Therefore, we can eiciently manage both vertical and horizontal networks with the aid of

deep neural networks. The AI schemes adopting deep learning for potential 6G applications and solutions are

summarized at a glance in Table 5.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Deep learning mechanisms of (a) supervisied, (b) unsupervised, and (c) reinforcement learning. The architecture of

network learning of (d) distributed, (e) federated and (f) transfer learning.

• Supervised learning: The open challenges in this technique include data collection and the appropriate

data analytics in a practical network scenarios. Take wireless transmission for example, the collected

beamforming data from real measurement or from solutions of convex optimization is served as ground-

truth labels in an NN-based training. Moreover, laborious indoor ingerprinting for collecting signal features

should be conducted for positioning and detection sensing. Several machine and deep learning techniques

are designed to address diferent types of issues, such as 1) spatial correlation over data classiication

and prediction is well tackled by SVM, KNN, DNN and CNN, etc [71, 97, 196, 223]. 2) Temporal-domain

problem is addressed by RNN and LSTM [125, 207, 240]. 3) Large-scale networking policy and management

is perfectly performed by GNN [37, 87, 253].

• Unsupervised learning: The research target of this learning mechanism is focused on inference from an

unlabelled dataset. Unlike supervised method with ground truth, unsupervised learning leverages iterative

inference to attain hidden features for either dataset partitioning, clustering or augmentation. For example,

GAN is promisingly adopted in network data augmentation [22, 130, 221] and security [191, 245, 278]

for compensating information insuiciency from practical measurement. The highly-complex and high-

dimensional large-scale network data processing can be well dealt with by using PCA method. While,

accessing under uncertain and stochastic environment can rely on HMM or EM algorithms for maximizing

total utility [140]. The grand challenge lies on the accuracy and conidence of learning results, which

becomes an open issue.

• Reinforcement learning: Such technique is broadly employed for dynamic network policy adaptation in

wireless network communication and computing resource management, network multi-parameters for
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diverse tele-traic demands, QoS-guaranteed scheduling as well as accessing [69, 127, 146, 249]. Q learning

uses a model-free mechanism by adjusting its policy according to updated system state and performance.

However, its performance is limited by convergence speed and great uncertainties in a large-scale network.

As an enhancement, DQN can tackle above-mentioned problems by using diferent model-based NNs for

respective actions and evaluations based on interaction with the environment. However, the common

challenge of reinforcement learning techniques lies on theoretical proofs of convergence, optimality and

dynamic adaptation.

As a promising extension of DQN, deep deterministic policy gradient (DDPG) based learning relies on a

pair of neural networks forming an action-critic network: The action network provides the optimal policy,

whilst the critic network evaluates the action. DDPG potentially enhances the stability, lexibility and

adaptability to dynamic wireless communication systems [34, 94]. Furthermore, multi-agent reinforcement

learning [160] is widely adopted in conjunction with multiple agents controlling their own policies, which

mitigates the computational burden and memory requirements at the server. Note that multi-agent solutions

may be viewed as multiple BSs and edges [28], a swarm of drones [258] or vehicles [220]. They interact

with the common shared environment and determine their next action without any information exchange

overhead. To elaborate a little further, inverse reinforcement learning (IRL), also referred to as learning from

demonstrations [116], may also ind applications in wireless communications and networking [272]. In

contrast to conventional forward reinforcement learning, IRL is capable of learning from an expert and

may exhibit some human-like behaviors [14], which is popularly applied in robotic control systems.

Furthermore, the complexity of wireless propagation environments and the challenging requirements of high

tele-traic can be readily dealt with by sophisticated transfer learning methods [153, 264]. Briely, transfer learning

directly employs the models that were previously trained under a network to a new environment for improving

the eiciency of retraining [265]. Given the rapid evolution of virtualized software-deined networks, it appears

promising to adopt AI techniques for eiciently assigning resources both to central units as well as to edge

servers and lexibly manage the resultant mobile network [238]. In the past, fully-centralized computing was the

norm, which often led to overloaded situations. As a remedy, distributed learning allows the server to distribute its

tasks to diferent computing units for parallel processing [235]. For example, the 6G core network is expected to

employ intelligent units for separately managing its control and user planes as well as the dynamic coniguration

of network functions [239].

Some other new machine learning and deep learning techniques found in the AI-domain and applied for control

and computer vision may also be harnessed for solving wireless communications and networking problems. As

another attractive technique, meta learning relies on sparse samples and labels for solving heterogeneous tasks

[70]. It can promptly adapt the trained parameters based on just a few experiences in a new environment at an

impressive convergence rate and low computational complexity, which has already been employed in cellular

[287], IoT [261] and vehicular networks [260]. AI techniques are also capable of eiciently processing massive

amounts of IoT data [122], whilst the family of unlicensed access technologies may adopt AI-based learning

models for detecting existing networks in order to avoid interference and packet collisions, while improving

the spectrum versus energy eiciency [30]. Moreover, deep neural networks are also capable of maintaining

the QoS, while supporting numerous IoT devices [154]. They can also preserve energy and adaptively collect

environmental data [219]. Additionally, we can also support network deployment as well as prediction and

performance evaluation of a massive number of sensor nodes by employing graph convolutional networks [269].

For ensuring network information security, federated learning can be employed [126, 163], where the encrypted

models of local networks are uploaded and updated by a global controller, which prevents tapping and inference

from the models by eavesdroppers. In the face of uncertainty, it is promising to conceive deep learning designs

for ascertaining the authenticity of subscribers and for detecting unusual network behaviors, combat attacks
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Fig. 11. Illustration of a multi-component Pareto-optimization considering two objectives, such as rate, latency, overhead,

complexity, and bit error rate metrics.

from external networks, and ensure data privacy, especially, when relying on both limited computing resources

and information [218, 247].

7 SUMMARY AND THE ROAD TO MULTI-COMPONENT PARETO-OPTIMIZATION

This article has listed ive key research topics of next-generation wireless, including Next-Generation Architecture,

Spectrum and Services, Next-Generation Networking, Internet of Things, Wireless Positioning and Sensing, as well as

the Applications of Deep Learning in 6G Networks. We have investigated comprehensive literature surveys for the

potential promising techniques from the perspectives of architectures, networking, applications as well as scheme

designs, which are extended from the current foundation of wireless and networking. We return to Fig. 1 and note

that there is a potentially ininite number of system conigurations that may be harnessed by next-generation

systems. Throughout the past ive generations there has been a gradual paradigm shift from bandwidth-eiciency

relying on complex, high-delay near-capacity transceivers [84] towards maximizing the power-eiciency [40],

which has the fond connotation of green radio [82]. With the introduction of 5G new radio and its URLLC mode,

the importance of simultaneously maintaining both low latency and low bit error rate has reached the lime-light.

This trend heralds a new multi-component optimization era [67], in which the research community is expected

to ind all the so-called Pareto-optimal operating points of the associated multi-component objective functions,

as highlighted for example in [8, 49, 136, 231].

In this context the question arises: How can we boldly diferentiate Pareto optimization from the set of simple

conventional trade-ofs? Explicitly, when we carry out for example single-component bandwidth-eiciency

optimization, we completely ignore any other parameters or metrics of the system, such as its complexity or delay.

In this context, we can for example always approach the Shannonian capacity more closely, if we employ a longer

coding, which typically imposes an increased delay and escalating computing complexity. By contrast, in addition

to this unconstrained Shannonian solution the Pareto front of all optimal conigurations will contain the speciic

delay and complexity associated with each individual legitimate channel coded length. Hence, from physical layer

perspective, this Pareto-optimal approach also goes way beyond the concept of inite-block-length information

theory [175], which simply quantiies the achievable performance associated with a speciic coding-length, i.e.,

delay, but it remains oblivious of the complexity of a block-code capable of achieving it.
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To elaborate a little further in the context of a tangible example, let us assume that the multi-component

objective function relying on bit error rate, throughput, delay as well as power has to be optimized. It is plausible

that the throughput may be readily increased upon increasing the number of bits/symbol even without degrading

the bit error rate, if we increase the power, i.e., degrade the power-eiciency and vice versa. Indeed, the throughput

may also be improved without degrading the power-eiciency to the detriment of the bit error rate owing to

increasing the number of bits/symbol. In this tangible practical context, the Pareto-front contains all optimal

solutions. However, by deinition none of the above parameters may be improved without degrading at least one

of the others. Some other numerous tangible practical solutions may be found in [8, 40, 49, 67, 82, 84, 136, 231].

By relying on an asymptotic concept of multi-task learning [275], we are capable of incorporating powerful

machine learning and deep learning techniques into multi-component optimization [216]. Depending on the

speciic requirements, multiple weighted loss functions can be designed for maximizing the detection accuracy

and rate, while minimizing the processing time and energy in conjunction with four respective weights. AI-

based multi-component optimization is capable of decomposing complex objective function spaces, striking a

compelling tradeof between processing eiciency and computational complexity [216]. As for applications in

wireless communications and networking, federated learning and reinforcement learning based schemes are

widely employed for multi-component learning optimization of diverse requirements, such as rate, throughput,

latency, energy-spectrum eiciency and reliability [21, 85, 129, 282, 283]. Furthermore, transfer learning may be

capable of resolving the dynamic multi-objective optimization problems routinely found in parameter initialization

by the exploiting neural network’s memory for faster convergence [107]. To conclude, a subset of open research

issues in next-generation wireless are listed for providing insights gleaned from diferent ields, as the community

moves from single-component to multi-component optimization. This radical system optimization principle may

be expected to pervade the next-generation era, but requires a concerted community efort to make it a reality!
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