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Abstract 

A fractional rheological model was developed for MRE-based isolation systems to 

investigate the influence of material elasticity and viscosity on the isolation effect. The 

identification of model parameters was realized by fitting experimental data of dynamic 

mechanical analysis for MRE structures. The superior rationality of modeling was 

reflected with the good consistency and repeatability. The transmissibility was 

calculated both theoretically and numerically. The method of numerical simulation was 

verified with an excellent agreement between theoretical and numerical results. The 

influence of model parameters on transmissibility and energy flow was analyzed to 

interpret the dynamic behavior of vibration isolation systems. A control strategy based 

on the coincidence frequency was developed for this MRE-based isolation system to 

protect the foundation or the sensitive equipment against periodic vibrations. The 

isolation effect was investigated from the prospect of transmissibility and energy flow. 

Eventually, the fuzzy control algorithm was adopted to isolate the sensitive equipment 

against random motions of the ground, and the effectiveness was further validated by 

comparing with the passive isolation. 

Keywords: vibration control, mathematical modeling, magnetorheological elastomers, 

dynamic mechanical analysis 

1 Introduction 

The structure on board is liable to respond to excitations from propellers, engines, 

ancillary machineries and the environment. Excessive vibration may result in the 

fatigue failure of structures or malfunction of equipment. As for passengers and the 

crew, the demand of acceptance and habitability is increasing as time goes on. Because 



noise and vibration are two main factors in affecting the perception of comfort, 

vibration control is an important issue for engineering industry. Vibration isolators, a 

commonly used way to mitigate vibration, conventionally consist of rubber for elastic 

bearing and energy dissipation (Ibrahim, 2008). Vibration isolation is to protect the 

foundation against vibration sources, such as rotating machines, or to isolate the 

sensitive equipment from ground motions. Generally, the dynamic characteristics of 

installed isolators cannot be changed to adapt to various loading conditions, and the 

limitation of adaptability makes them fail to satisfy advanced requirements (Yan et al., 

2018; Liu et al., 2015). 

Various smart materials, such as controllable elastomers, have been used for 

vibration mitigation as smart elements with different control schemes based on their 

adjustable dynamic properties. Therefore they have potential for improving the 

performance of vibration control. Increasing effort has been devoted to making use of 

smart materials in vibration absorbers and isolators. MRE is composed of magnetizable 

particles embedded in a non-magnetic rubber matrix, and the mechanical properties of 

MRE can be controlled rapidly, continuously and reversibly by adjusting magnetic field 

(Zhu et al., 2019; Sapouna et al., 2017; Kaleta et al., 2011). As a credible alternative to 

traditional rubber, the advantages of enhanced effectiveness, low cost and good 

reliability can be obtained by the stiffness variability of MRE-based vibration isolators 

(Zhu et al., 2021b; Eem et al., 2019; Li and Li, 2019). 

A constitutive model, which can accurately present the dynamic performance of 

MRE, is necessary for the application in vibration control. Initially, the dipole model 

and the chain model were used to represent the mechanical characteristics of MRE 

(Davis, 1999; Jolly et al., 1996), and three-dimensional models were subsequently 

developed (Chen et al., 2007). Those models, which are basically quasi-static, are not 

sufficient to predict the dynamic behavior of MRE (Wang and Kari, 2019a, 2019b). 

Experimental results show that the dynamic modulus is dependent on frequency, strain 

amplitude and temperature (Wan et al., 2019), and those dependencies are often referred 

to as common phenomena for particle-enhanced rubber. Considering the rheological 

and viscoelastic properties of MRE, Bouc-Wen model (Bai et al., 2019; Yang et al., 

2013) and Ramberg-Osgood model (Zhu et al., 2021b) were developed to represent the 

hysteretic properties, and the fractional derivative was introduced to describe the 

dynamic behavior (Poojary and Gangadharan, 2022; Nguyen et al., 2020; Nadzharyan 

et al., 2018; Graczykowski and PawlOwski, 2017).  
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Besides the increasing research on modeling of MRE, it has been applied broadly 

for intelligent devices in varies fields, such as vibration absorbers (Yuan et al., 2019; 

Kumbhar et al., 2018; Bian et al., 2018; Xin et al., 2017; Qian et al., 2017) and vibration 

isolators (Fu et al., 2019; Nguyen et al., 2018b; Yu et al., 2015; Yang et al., 2014; 

Behrooz et al., 2014) due to the frequency shifting property. Several control methods, 

such as on–off control (Yang et al., 2014), fuzzy control (Fu et al., 2018; Nguyen et al., 

2018a), Lyapunov-based seismic control (Behrooz et al., 2014), H-infinity control (Yu 

et al., 2015) and sliding mode control (Nguyen et al., 2018b) have been employed in 

control systems based on MRE. Considering that the time delay in control systems may 

result in unsatisfied effect or system instability, the response time of MRE material was 

investigated (Zhu et al., 2018). Further more, time compensation strategy and phase 

compensation strategy were studied for control systems based on MRE (Fu et al., 2020; 

Yu et al., 2019). There are strategies about delay control for accurate modeling (Wu et 

al., 2010), but it is difficult to establish accurate models for MRE-based isolation 

systems with nonlinearity. 

As a continuation of a paper (Zhu et al., 2021a), this piece of work is to study the 

influence of dynamic mechanical properties of MRE on the vibration isolation effect. 

Tests on dynamic mechanical analysis of MRE structures are performed to obtain 

experimental results of system stiffness. A fractional rheological model is developed 

for MRE-based isolation systems, and the model parameters are identified through data 

fitting of system stiffness in frequency domain. Numerical simulations of this proposed 

dynamic model are calculated with the predictor-corrector approach, which is verified 

by comparing theoretical and numerical results of the transmissibility. The influence of 

model parameters on the isolation effect is analyzed by calculating the transmissibility 

theoretically and simulating the energy flow numerically. A control strategy is proposed 

for the application of MRE to protect the foundation or the sensitive equipment against 

periodic vibrations. The vibration isolation effect is analyzed from the prospect of 

transmissibility and energy flow. The fuzzy control algorithm is used for the application 

of MRE to isolate the sensitive equipment against random motions of the ground. The 

isolation effect is further analyzed by comparing with the passive isolation. Eventually, 

the feasibility of the fuzzy control algorithm was analyzed considering the response 

time of MRE material. This paper will contribute to the realization of higher efficiency 

in MRE-based isolation systems. 

2 Model and method 



2.1 Modeling of MRE-based isolation system 

The vibration isolation system consists of a machine, an MRE-based vibration 

isolator and a foundation, and the schematic diagram is shown in Fig. 1. The machine 

placed on the top can be a rotating machine or sensitive equipment, and the foundation 

located at the bottom can be a fixed foundation or a flexible foundation. The vibration 

isolator mounted between the machine and the foundation can be an MRE structure in 

parallel or in series. 

 

Fig. 1 Schematic diagram of MRE-based isolation system 

Because the shear modulus is influenced by the amplitude, frequency and the 

magnetic field, a constitutive model of MRE is introduced to describe the relation 

between the force and the displacement in vertical direction, which is the only direction 

considered in this vibration isolation system. As shown in Fig. 2, the model of MRE-

based isolation system is developed from the constitutive model in the paper (Zhu et 

al., 2021a). 

 

Fig. 2 Schematic configuration for the model of MRE-based isolation system 

The total force F(t) for the vibration isolator is comprised of Fe(t), Fv(t) and Fm(t) 

which represent the elastic, viscoelastic and field-induced forces, respectively. The 

elastic force Fe(t) is linearly related to the displacement of the MRE-based isolator (t) 

by 

                
(1) F

e
t( ) = K

e
d t( )



where Ke denotes the stiffness of the elastic model. This parameter can be influenced 

by the elasticity of the MRE material, and it will contribute to the stiffness of isolation 

systems. 

The viscoelastic force in Fractional Maxwell model Fv(t) can be expressed as 

       

(2) 

where v(t) is the displacement of the fractional dashpot in Fractional Maxwell model, 

D is a differential operator, Kv denotes the stiffness of the Fractional Maxwell model, τ 

is a relaxation time constant, α is a fractional order. The parameter Kv will contribute to 

the stiffness of isolation systems, and it can be influenced by the material viscoelasticity, 

which performs between viscosity and elasticity. The fractional-order differential 

operator was introduced to describe the viscoelasticity, and the parameter α is 

influenced by the viscosity of MRE materials. Extreme cases of α=0 and α=1 can 

represent linear springs and Newton dashpots, respectively. The parameter τ is 

influenced by the response time of MRE materials, and both the parameters τ and α will 

contribute to the damping of isolation systems (Poojary and Gangadharan, 2021; 

Nguyen et al., 2020; Nadzharyan et al., 2018; Zhu et al., 2021a). 

As a result of the interaction of magnetic dipoles, the field-induced force Fm(t) can 

be expressed as 

                
(3) 

where Km denotes the field-induced stiffness which can be controlled by adjusting the 

magnetic flux density. In an idealized range for control, the magnetic flux density 

increases linearly with the magnetic field intensity, hence the field-induced stiffness Km 

is controllable when the magnetic field is steady and uniform. Outside that range of 

magnetic field, the increase of magnetic flux density slows down with the further 

strengthening magnetic field until the saturation magnetization, and the field-induced 

stiffness Km cannot be effectively increased anymore (Sapouna et al., 2017; Kaleta et 

al., 2011). In practice, it is also necessary to consider electromagnetic oscillations 

because the current changes with time. Considering that the strain affects the magnetic 

field-induced modulus, the field-induced stiffness Km is a function of not only the 

magnetic flux density but also the displacement. 

 

 

2.2 Parameter identification for MRE structure 
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The structure consists of aluminum plates and MRE samples 36 × 36 × 8 mm³, as 

shown in Fig. 3. The anisotropic MRE samples were comprised of the micron-sized 

iron particles (carbonyl iron powders sized up to 9 μm, volume concentration of 30%) 

and the silicone rubber (Wacker Chemie AG, Germany). The mechanical property 

characterization tests were performed at room temperature (about 22oC) using Instron 

Electropuls E1000, which is able to apply and control the harmonic displacement within 

a wide frequency range. The external magnetic field was produced with cylindrical 

grade N42 neodymium permanent magnets (E-magnets, UK), and the displacement and 

the force were recorded in tests. The dynamic mechanical behavior of the MRE 

structure was recorded by varying frequencies from 1 Hz to 50 Hz, amplitudes from 0.1 

mm to 0.5 mm and magnetic fields from 0 to 500 mT, which is in a highly efficient 

range for vibration control by making full use of energy (Sapouna et al., 2017; Kaleta 

et al., 2011). 

 

Fig. 3 Experimental setup for parameter identification 

The dynamic stiffness of structures, which is complex stiffness, can be measured 

during tests. Processing experimental data with the software of Wave Matrix, both the 

real and the imaginary parts of the dynamic stiffness can be obtained. The model 

parameters Ke, Kv, Km, τ and α can be identified based on the experimental data of the 

complex stiffness by optimization. The details of identification procedures and criteria 

were clarified in this reference (Zhu et al., 2021a). When the excitation amplitude in 

tests is a maximum of 0.5 mm, and the frequency varies from 1 to 50 Hz, results of 

parameter identification are listed in Tables 1 and 2. It is found that the stiffness of this 

MRE structure decreases as the amplitude of excitation increases. As for different 

excitation amplitudes (from 0.1 mm to 0.5 mm), the parameters τ and α can hardly 

change, but the parameters Ke, Kv and Km decrease with increasing amplitudes (at most 



10%). Only the influence of magnetic field on the field-induced stiffness Km is 

considered, and the influence of magnetic field on other model parameters is relatively 

small and negligible. When the excitation amplitude is 0.5 mm and the magnetic field 

varies from 0 to 500 mT, the parameters Ke, Kv, τ and α are the same, the results of 

identified parameter Km are listed in Table 2. 

Table 1 Results of the parameter identification 

Ke (kN/m) Kv (kN/m) τ (s) α 

200 180 0.3 0.35 

Table 2 Parameter identification for the field-induced stiffness 

Magnetic flux density (mT) 0 160 260  400 500 

Km (kN/m)  0 64 104 160 200 

Under sinusoidal excitations, the response of MRE material is also a sinusoidal 

function of the same angular frequency with a certain phase difference. From equation 

(2), v(t) can be expressed as 

d
v
t( ) =

1

1+taDa
d t( )

                  

(4) 

The relationship between the force F(t) and the displacement (t) can be obtained 

with equations (1)-(4). 

     

(5) 

Applying the Fourier transform, the relationship can be expressed in the frequency 

domain. 

          

(6)

 

Substituting iα = cos(/2) + isin(/2) into equation (6), the complex stiffness of 

this isolation system K* can be readily found as 
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Rationalizing the complex denominator 
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Separating the real and imaginary parts, 

   

(9) 

Based upon the model parameters in Table 1, the complex stiffness K* can be fitted 

by calculating with equation (9). When the excitations and the response are sinusoidal 

in dynamic mechanical analysis tests, the modulus of the complex stiffness K* can be 

measured as the ratio of the force amplitude Fp to the displacement amplitude p. The 

comparison for the system stiffness is shown in Fig. 4, where the fitted results and the 

experimental results are in a good agreement. When the standard error ratio Se/Sy < 0.35 

and the coefficient of determination R2 > 0.90, the quality of curve fitting can be 

accepted to be excellent (Zhu et al., 2021a). The details are listed in Table 3. The system 

stiffness is observed to increase with the frequency. Initially the system stiffness 

increases linearly with the magnetic field intensity, because the magnetic flux density 

is proportional to the magnetic field intensity. In this range, the system stiffness can be 

effectively controlled by adjusting the magnetic field intensity. Above a certain value, 

the further strengthening magnetic field cannot obviously improve the system stiffness 

because of the saturation magnetization. 

 

Fig. 4 Fitted results and experimental results of the system stiffness 

In case of harmonic excitations, the energy loss per cycle Ev can be calculated by 

the displacement amplitude p and the imaginary part of system stiffness K* in equation 
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(9). The loss energy per cycle can be defined as 
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Table 3 The goodness-of-fit 

Magnetic field (mT) 0 160 260  400 500 

Standard error ratio 0.9980 0.9993 0.9991 0.9988 0.9975 

Coefficient of determination  0.0583 0.0331 0.0400 0.0458 0.0435 

 

The fractional order α is mainly controlled by the components in the manufacture, 

and the fractional order α reflects the viscoelasticity in this vibration isolation system. 

The influence of fractional order α on the system stiffness can be observed in Fig. 5 (a). 

The system stiffness can be reduced as the fractional order α increases at frequencies 

below 10 Hz, and as the fractional order α decreases at frequencies above 10 Hz. The 

system stiffness commonly influences the resonance frequency, so the results of system 

stiffness in Fig. 5 (a) can be used for the following analysis of resonance frequency. 

The influence of fractional order α on the loss energy is shown in Fig. 5 (b), where the 

loss energy per cycle Ev can be increased by increasing the fractional order α at 

frequencies below 30 Hz. It indicates that the ability of MRE to dissipate the energy of 

deformation increases as the fractional order α increases at frequencies below 30 Hz. 

The loss energy affects the viscoelasticity in this MRE structure, the results of loss 

energy in Fig. 5 (b) can be also observed in the following power flow analysis. 

   

(a)                                   (b) 

Fig. 5 Influence of the fractional order on (a) the system stiffness and (b) the loss energy 



3 Vibration control against harmonic force 

3.1 Basics for transmissibility and energy flow 

When the excitation is harmonic force F0(t) = F0sint exerted on the machine in 

Fig. 2, the differential equations of motion in this vibration isolation system can be 

expressed as 

         (11)
 

where  = 2f,  and f are the angular frequency and the frequency, respectively; m 

and x(t) are the mass and the displacement of the machine, respectively; xv(t) is the 

displacement of the fractional dashpot. Because the infinite foundation is fixed, the 

relationship between the displacements x(t) = (t) and xv(t) = v(t) can be found. 

The transmissibility, the ratio of forces or displacements, is commonly investigated 

for vibration isolation systems. In case of that the excitation is harmonic force in this 

vibration isolation system, the transmissibility is defined as a ratio of forces. Exactly 

speaking, it is a ratio of the response amplitude Fp to the excitation amplitude F0.
 

                  (12)
 

Substituting the complex stiffness K* into the equation (11), the transmissibility of 

this isolation system  can be expressed as 

                 (13) 

Introducing the real and imaginary components in equation (9) to calculate 

magnitudes in equation (13), the transmissibility  can be further expressed. 

 

(14) 

Considering couplings and interactions in dynamic systems, the power flow 

analysis combines the effects of both the force and the velocity to describe the dynamic 

behavior. The principle for energy flow approach is based on the universal law of 
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energy conversation and transformation, and the limitations on separately analyzing 

forces and responses can be overcome with this method (Xing, 2015). As a time 

averaged product of velocity and force, the energy flow <P> transmitted in this MRE-

based isolation system can be defined as the power of the force F(t) transmitted to the 

foundation. 

               (15)
 

where T is a time period and t0 is an initial time. 

3.2 Parameter analysis and method verification 

Considering the results of parameter identification for the MRE structure, the 

vibration isolation system can be designed with MRE structures in parallel herein for 

high system stiffness and in series for low system stiffness, such as laminated structures 

of MRE and steel layers (Zhu et al., 2021b; Eem et al., 2019; Li et al., 2019). The 

system parameters are set to m = 20 kg, F0 = 20 N, Ke = 200 kN/m, Kv = 180 kN/m and 

τ = 0.3 s, respectively. According to equation (14), the transmissibility of this isolation 

system  can be calculated theoretically for parameter analysis.  

The influence of the field-induced stiffness Km on the transmissibility in frequency 

domain is shown in Fig. 6 (a). As the field-induced stiffness Km increases from 0 to 200 

kN/m, the resonance frequency increases from 23.5 to 30.5 Hz, so the resonance 

frequency is shifted by 29.8%; the maximum peek transmissibility at resonance 

frequencies increases from 12.6 to 17.1 (1.10 dB to 1.23 dB). It can be accepted that 

effective isolation requires the transmissibility less than unity, and the effectiveness of 

vibration isolation can be improved by reducing the maximum peek transmissibility or 

the natural frequency. From this perspective of view, the low field-induced stiffness Km 

is beneficial to the effectiveness of isolation.  

The influence of the fractional order α on the transmissibility in frequency domain 

is shown in Fig. 6 (b). In this MRE-based isolation system, when the fractional order α 

increases from 0.2 to 1.0, the resonance frequency increases from 22.25 to 24.75 Hz, 

which results from the increasing system stiffness at frequencies above 10 Hz as shown 

in Fig. 5, and the maximum peek transmissibility decreases from 20.4 to 6.8 (1.31 dB 

to 0.83 dB). The low resonance frequency and transmissibility are beneficial to the 

effectiveness of vibration isolation. In accordance with results shown in Fig. 5, at 

frequencies below 30 Hz the ability to dissipate energy increases as the fractional order 

α increases, so the maximum peek values of transmissibility can be reduced by 



increasing the fractional order α. 

 

(a)                                     (b) 

Fig. 6 Influence of (a) the field-induced stiffness and (b) the fractional order on the 

transmissibility in frequency domain 

Because there is no theoretical result of the energy flow <P> in this MRE-based 

isolation system, a numerical study is necessary to investigate the energy flow <P>. In 

order to examine the method of numerical simulation, the numerical result of 

transmissibility is calculated to compare with the theoretical result. The Caputo 

derivative is chosen for the simulation, because the initial conditions for Caputo 

derivative cases commonly have well understood physical meanings and can be 

measured in practice (Diethelm et al., 2002). By using the predictor-corrector approach, 

the numerical solution of Caputo fractional differential equation (11) is carried out to 

analyze the transmissibility of this isolation system  as defined in equation (12). The 

details of calculation method are illustrated in the reference (Zhu et al., 2021a). As 

shown in Figs. 7 and 8, the numerical results of the transmissibility are compared with 

the theoretical results obtained in Figs. 6 (a) and (b). The predictor-corrector approach 

is verified with the good agreement between the theoretical results and the numerical 

results in frequency domain. Then this reliable method of numerical simulation can be 

employed in time domain to observe the performance of this MRE-based isolation 

system when the experiment is absent. 

 



 

 

Fig. 7 Theoretical results and numerical results of the transmissibility with various field-

induced stiffness: (a) 0 kN, (b) 64 kN, (c) 160 kN and (d) 200 kN 

 

 

Fig. 8 Theoretical results and numerical results of the transmissibility with various fractional 

orders: (a) 0.2, (b) 0.35, (c) 0.6 and (d) 0.9 

The numerical solution of equation (11) is carried out to analyze the energy flow 

<P> as defined in equation (15). The influence of the field-induced stiffness Km and the 



fractional order α on the energy flow in frequency domain are shown in Figs. 9 (a) and 

(b), respectively. When the field-induced stiffness Km increases from 0 to 200 kN/m, 

the maximum value of energy flow, which is about 18 W, changes very slightly. As the 

fractional order α increases from 0.2 to 1.0, the maximum value of energy flow 

decreases from 34.7 to 10.9 W. The maximum peek values of energy flow can be 

reduced by increasing the fractional order α, which is in accordance with results shown 

in Fig. 5. At frequencies below 30 Hz, as the fractional order α increases, the ability to 

dissipate energy in this MRE structure also increases. 

 

 (a)                                     (b) 

Fig. 9 Influence of (a) the field-induced stiffness and (b) the fractional order on the energy 

flow in frequency domain 

3.3 Vibration control strategy and isolation effect 

It is found that when the magnetic flux density is above 500 mT, the system stiffness 

cannot be effectively improved with the further strengthening magnetic field because 

of the saturation magnetization (Sapouna et al., 2017; Kaleta et al., 2011). Considering 

the influence of the field-induced stiffness in Fig. 7 (a), the two curves of 

transmissibility in magnetic field of 0 and 500 mT intersect at one point. It means at 

that frequency the transmissibility in magnetic field of 0 and 500 mT is the same, and 

this frequency is named as a coincidence frequency fco. In this MRE-based isolation 

system, the energy flow at a coincidence frequency is almost the same in magnetic field 

of 0 and 500 mT as well. The reduced transmissibility and energy flow can be achieved 

through a frequency dependent magnetic field, and the control strategy based on the 

coincidence frequency fco can be expressed as 

             (16) B f( ) =
0

500 mT

f > f
co( )

f < f
co( )

ì

í
ï

î
ï



where B is the magnetic flux density of the controllable magnetic field. 

The calculation of isolation effect is carried out in controllable magnetic fields, as 

shown in Figs. 10 (a) and (b). The maximum values of transmissibility and energy flow 

can be observed to occur at coincidence frequencies. When the coincidence frequency 

increases from 26 to 29 Hz, the maximum peek transmissibility increase from 3.7 to 

4.0 (0.57 dB to 0.60 dB), and the maximum value of energy flow into the foundation 

increases from 0.8 to 4.0 W. Comparing with the system in a zero magnetic field, the 

transmissibility is reduced by 48.1 ~ 87.2%, and the energy flow into the foundation is 

reduced by 63.3 ~ 97.7%. 

 

Fig. 10 Isolation effect against harmonic force on (a) the transmissibility and (b) the 

energy flow in frequency domain 

4 Vibration control against foundation motion 

4.1 Isolation effect against harmonic motion 

When the excitation in Fig. 2 is harmonic motion of the foundation x0(t) = X0sint, 

such as the waves, the differential equations of motion in this vibration isolation system 

can be expressed as 

          (17)
 

When the displacement of the foundation is x0(t) and the relative displacement of the 

MRE-based isolator is (t), the displacement of the machine can be also expressed as 

x(t) = (t) + x0(t). 

In case of that the excitation is a harmonic motion of the foundation, the response 

motion of the machine is also a sinusoidal function of the same angular frequency. The 

transmissibility, which is the non-dimensional ratio of the response amplitude to the 



excitation amplitude, can be defined as a ratio of displacements herein. When the 

displacement amplitude of the machine is denoted as Xp to study the vibration isolation 

system, the transmissibility is the ratio of the response amplitude Xp to the excitation 

amplitude X0. 

                  (18)
 

The energy flow <P> can be defined as the power of the force F(t) transmitted to 

the machine and be expressed as the same as equation (15). 

The system parameters are set to m = 20 kg, X0 = 0.5 cm, Ke = 200 kN/m, Kv = 180 

kN/m and τ =0.3 s. The numerical solution of Caputo fractional differential equation 

(17) is carried out with the predictor-corrector approach to analyze this MRE-based 

isolation system. The reduced transmissibility and energy flow is achieved with the 

same control strategy as illustrated in equation (16), and the simulation of isolation 

effect is carried out in controllable magnetic fields. Figs. 11 (a) and (b) show the 

numerical results, as the coincidence frequency increases from 26.5 to 28.5 Hz, the 

maximum peek transmissibility increase from 3.8 to 4.4 (0.58 dB to 0.64 dB), and the 

maximum value of energy flow into the machine increases from 1.6 to 2.5 W. 

Comparing with the system in a zero magnetic field, the transmissibility is reduced by 

69.1 ~ 74.9%, and the energy flow into the machine is reduced by 87.0 ~ 92.1%. 

  

Fig. 11 Isolation effect against foundation motion on (a) the transmissibility and (b) the 

energy flow in frequency domain 

4.2 Isolation effect against random motion 

The differential equation (17) is not limited to harmonic excitations. When the 

nonlinearities that result from the amplitude dependent stiffness and the mechano-

magnetic coupling effect are not considered, the predictor-corrector approach can be 

l =
X
p

X
0



also employed to numerically solve differential equations under random excitations. A 

common method to address the uncertainty and the nonlinear phenomenon of systems 

is the fuzzy logical control algorithm. The simple output signals and calculation can 

effectively reduce the time delay of control algorithms to the utmost extent (Fu et al., 

2018; Nguyen et al., 2018a). The displacement x(t) and the velocity 𝑥̇(t) of the MRE-

based isolator are selected to serve as input signals, and the motion of the machine is 

calculated for the transmissibility. The details for the control algorithm are described in 

equation (19). The stiffness is physically increased as the machine leaves from the 

equilibrium position and decreased as the machine moves towards the equilibrium 

position. 

           (19) 

Considering the common vibrations range from 3 to 20 Hz in the marine 

environment, the band-limited Gaussian noise and the multi-frequency vibration are 

employed as the motion excitation of the foundation to verify the effectiveness of the 

MRE-based isolation system. The time delay due to controllers and current drivers is 

not considered for simplification, and the delay control can be utilized to compensate 

the time delay. 

The responses of the machine in zero and controllable magnetic fields are compared 

with the motion of the foundation to illustrate the isolation efficiency, as shown in Figs. 

12 and 13. The peak and the root mean square (RMS) values of the displacement of the 

machine under band-limited Gaussian noise (3~20 Hz) and multi-frequency vibration 

(3 Hz, 8 Hz and 20 Hz) are calculated in Fig. 14. Compared with the passive control in 

a zero magnetic field, the peak and the RMS values for the band-limited Gaussian noise 

are reduced by 30.14% and 26.95%, respectively; the peak and the RMS values for the 

multi-frequency vibration are reduced by 22.39% and 27.50%, respectively. The 

vibration isolation performance can be enhanced by the MRE isolator with fuzzy logical 

control, and it can be deduced that the larger MR effect can further demonstrate the 

enhancement. 



 

Fig. 12 Displacement of the machine with no isolation, passive isolation and fuzzy logical 

controllable magnetic filed for the Band-limited Gaussian noise 

 

Fig. 13 Displacement of the machine with no isolation, passive isolation and fuzzy logical 

controllable magnetic filed for the Multi-frequency vibration 

 

Fig. 14 Peak and RMS values of the displacement of the machine (cm) 

For the fuzzy control strategy, the controllable magnetic field can effectively 

respond to the excitation only if the frequency of control instructions is mathematically 

four times larger than the frequency of excitations (Wang and Kari, 2019b). 
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Considering the response time of MRE materials is at least 12.5 ms (Zhu et al., 2018), 

the frequency of control instructions is at most 80 Hz. Therefore, the efficiency of the 

MRE-based isolation system can be effectively improved by the fuzzy logical control 

when both the highest frequency component of excitations and the resonance frequency 

of systems are lower than 20 Hz. 

5 Conclusions 

In this study, a fractional rheological model was developed to investigate the 

isolation effect of MRE-based isolation systems. The dynamic mechanical analysis 

tests for MRE structures were performed to validate this proposed dynamic model, and 

the model parameters were identified by fitting the experimental data on system 

stiffness in frequency domain. The method of numerical simulation was verified by 

calculating the transmissibility both theoretically and numerically, and the numerical 

results displayed an excellent agreement with the theoretical results. Considering 

material elasticity and viscosity, the influence of model parameters on isolation effect 

was analyzed by calculating the transmissibility and the energy flow. A control strategy 

based on the coincidence frequency was developed for this MRE-based isolation 

system to protect the foundation or the sensitive equipment against periodic vibrations. 

Comparing with the passive isolation system, the force transmissibility and the energy 

flow transmitted to the foundation can be reduced with the controllable magnetic field 

by 48% and 81% at least, respectively; the displacement transmissibility and the energy 

flow transmitted to the sensitive equipment can be reduced by more than 69% and 87%, 

respectively. 

The fuzzy control algorithm was employed to isolate the sensitive equipment 

against random motions. Comparing with the passive isolation system, the peak and the 

RMS values of the displacement can be reduced by at least 22% and 27%, respectively. 

Considering the response time of MRE, the fuzzy control algorithm can only exhibit an 

enhanced isolation effect in low frequency region. The dynamic analysis and the control 

strategy can be verified by further experimental research to facilitate higher efficiency 

of MRE-based isolation systems. 
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