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Learning Unbalanced and Sparse Low-Order
Tensors∗

P. M. Hoang1, H. D. Tuan2, T. T. Son1, H. V. Poor3, and L. Hanzo4

Abstract—Efficient techniques are developed for completing
unbalanced and sparse low-order tensors, which cannot be
effectively completed by popular matrix-rank optimization based
techniques such as compressed sensing and/or the `q-matrix-
metric. We use our previously developed 2D-index encoding
technique for tensor augmentation in order to represent these
incomplete low-order tensors by high-order but low-dimensional
tensors with their modes building up a coarse-grained hierachy of
correlations among the incomplete tensor entries. The concept of
tensor-trains is then exploited for decomposing these augmented
tensors into trains of balanced and sparse matrices for efficient
completion. More explicitly, we develop powerful algorithms
exhibiting an excellent performance vs. complexity trade-off,
which are supported by numerical examples by relying on matrix
data and third-order tensor data constituted by color images.

Index Terms—Matrix and/or low-order tensor completion,
tensor train decomposition, tensor train rank, `q

I. INTRODUCTION

Low-order tensors constitute components of representing
multi-dimentional datasets. For instance, a DNA microarray
is a matrix (2nd-order tensor) of gene expressions with the
row index representing probes and the column index repre-
senting genes [1]. The Netflix movie rating dataset [2] is
another matrix with the row index representing viewers and
the column index representing the rated movies. A color
image pixel is represented by a third-order tensor using
the row and column indices for the pixels, while the third
index represents the colors. To expound a little further, a
vehicular traffic volume dataset may be modelled by a fifth-
order tensor with three indices corresponding to the time
stamp (weeks, days, hours) and two indices to the roads and
road directions. Given these compelling examples as well as
a range of further applications, matrix and and low-order
tensor completion - which aims for completing them based
on their partially observed entries - constitutes a fundamental
problem in data learning and processing. The state-of-the-art
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in tensor completion techniques is dominated by matrix-rank
optimization and singular value thresholding techniques [3]–
[6]. Their extensions in [7], [8] use the `q penalty optimization
technique for completing sparse matrices. However, the matrix
rank is only useful for completing so-called balanced matrices
having similar numbers of rows and columns. By contrast,
unbalanced matrices having dissimilar numbers of rows and
columns tend to be of low-rank, hence their rank optimization
is not meaningful. In fact, as detailed in [9], the widely
used compressed sensing technique [6] requires almost fully
observed entries of unbalanced matrices for their successful
completion. This is not surprising, because the singular values
of unbalanced matrices tend to be well-conditioned by the law
of large numbers, so it follows from the classical Eckart and
Young theorem [10] that their best low-rank approximation
is in fact quite rough. The information loss imposed by
thresholding these well-conditioned singular values is almost
the same as their von Neumann entropy [11].

Suffice to say that most matrices found in practical applica-
tions are unbalanced. For example, the aforementioned DNA
microarray is unbalanced, because its number of rows - which
is the total number of probes - is only on the order of a few
dozens or hundreds. By contrast, the number of its columns -
which is the number of genes - is tens of thousands. Similarly,
the aforementioned Netflix movie rating dataset is unblanced,
because its number of rows - which is the total number of
viewers - is much higher than its number of columns, which is
the total number of the rated movies. Interestingly, this Netflix
data serves as the primary motivation of the matrix completion
problem treated in [7], [8], but both the incomplete matrices
and sub-matrices of the observable entries are square in all the
numerical examples of [7], [8]. The size of the third index set
of a color image pixel is as low as three for redness, blueness,
and gree-nes, which is obviously very small compared to the
cardinality of the other two modes (image height and width).
The size of the fifth index of a vehicular traffic volume dataset
is two for the pair of opposite road directions, which is also
very small compared to that of the other four indices.

Analogously, the conceptual drawback of the tensor com-
pletion techniques treated in [12]–[16] is that they are based
on matrix-rank optimization, which are constructed based on
an unbalanced ’matricization’ scheme (one mode versus the
rest). The specific third-order tensor completion proposed
in [17], [18] also requires that the tensors considered are well
balanced having the same cardinality for all three modes. To
overcome the issue of inherent low-rank under unbalanced
matricization schemes, our previous work [19] is the first
contribution exploiting tensor train (TT) decomposition [20],
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[21]1 to form balanced matricization for facilitating both rank-
optimization and singular value thresholding based methods
for completing low-order tensors.2 To maximize the capacity
of TT decomposition leading to balanced matricizations, which
capture both the global entry correlations and entanglements,
it was proposed in [19] to represent the incomplete low-order
tensors of large dimensions by higher-order tensors of low
dimensions. More particularly, the quantum-state based ket-
augmentation (KA) used in [24] has been shown to be very
effective for tensor augmentation (TA) of representing 2N×2N

color images (3rd-order 2N ×2N ×3 tensors). By viewing TA
as a problem of encoding two-dimensional (2D) indices by N -
digit words, a new TA was proposed in [25] for representing
low-order tensors of flexible sizes and structures by high-order
tensors, with the latter providing a completely new coarse-
grained hierarchy of the former’s entries.

Against the above background, this paper is the first con-
tribution addressing the problem of low-order unbalanced and
sparse tensor completions. Both incomplete tensors and their
sub-tensors of observable entries can be unbalanced. The
paper’s contributions can be summarized as follows:
• We lay the foundation for completing unbalanced and

sparse low-order tensors, which is based on the TA
concept [25] of representing low-order large-dimensional
tensors by high-order low-dimensional tensors and then
TT-decomposition for high-order tensors;

• Based on our new results on the `q-metric, we develop
new high-performance algorithms for the completion of
both unbalanced and sparse low-order tensors;

• We develop new computationally efficient algorithms for
the completion of unbalanced low-order tensors, which
do not require singular-value-decomposition (SVD).

The contributions of this work relative to previous related
literature are shown in Table I.

The paper is organized as follows. Section II introduces
a TA technique to transform the problem of completing
unbalanced and low-order tensors to that of completing high-
order and low-dimensional tensors. Section III then develops
high-performance algorithm for completion of these tensors
by exploiting their sparse structures. Its main ingredient is
a new bounding technique for the `q-metric by exploitation
of its partial convexities, which is relegated to the Appendix
for maintaining the presentation flow. Section IV is based
on Frobenius norm to develop an SVD-free algorithm for
tensor completion. Computational experiments to support the
development of Sections III and IV are provided in Section V,
while Section VI concludes the paper.

Notation. Matrices are denoted as capital letters, e.g. X ∈
RI×J , which is referred as a matrix of size I×J with entries
X(i, j), i = 1, . . . , I and j = 1, . . . , J . Accordingly, XT ∈
RJ×I and X† ∈ RJ×I stand for its transposed matrix and its
pseudo-inversion. Also, for Ω ⊂ {1, . . . , I}× {1, . . . , J}, XΩ

1The concept of TT was introduced in quantum physics as a “matrix-
product” much earlier in 2003 (see e.g. [20]) and it is still a hot topic in
quantum physics.

2This method was used in [22], [23] for completing images having some
additional structural constraints imposed on the missing entries, and also for
vehicular traffic volumes.

is the matrix of the same size with X , which is defined by

XΩ(i, j) =

{
X(i, j) for (i, j) ∈ Ω

0 otherwise.
(1)

diag[d1, . . . , dr] stands for the diagonal matrix of size r × r
with its diagonal entries d1, . . . , dr.

II. TENSOR AUGMENTATION FOR UNBALANCED TENSOR
COMPLETION

Let In, n = 1, . . . , N be positive integers. A N th-order
tensor X ∈ RI1×I2×···×IN is an N -dimensional array having
entries X (i1, i2, . . . , iN ), in ∈ In , {1, . . . , In}; n ∈ N ,
{1, . . . , N}. Each n ∈ N is termed as its mode with size
In. On one hand, such a tensor is said to be of high-order
whenever N is large, and of low-order whenever N is low.
On the other hand, such tensor is said to be large-dimensional
whenever there are large In. It is also said to be unbalanced
whenever the ratio maxn∈N In/minn∈N In is large. The
lowest-order tensors are vectors (first-order), and matrices
(second-order). Accordingly, the matrices of size I1 × I2 are
unbalanced whenever we have max{I1, I2}/min{I1, I2} >>
1.

The Frobenius norm of X ∈ RI1×I2×···×IN is defined by

||X || =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

X 2(i1, i2, . . . , iN ).

Theorem 1. Given αk > 0, k = 1, . . . ,K, and tensors Uk,
k = 1, . . . ,K of the same size, one has∑K

k=1 αkUk∑K
k=1 αk

= arg min
X

K∑
k=1

αk||Uk −X||2. (2)

Mode-(1, 2, . . . , k) matricization of X [21] is defined as the
matrix X[k] ∈ R(

∏k
`=1 I`)×(

∏N
`=k+1 I`) so that we have

X[k](i1 +

k∑
`=2

(i` − 1)J`, ik+1 +

N∑
`=k+2

(i` − 1)Ĵ`) =

X (i1, i2, . . . , iN ), (3)

J` =

`−1∏
m=1

Im, ` = 2, . . . , k;

Ĵ` =

`−1∏
m=k+1

Im, ` ≥ k + 2, . . . , N.

This is a balanced matricization scheme because X[k] can
essentially be a square matrix when

∏k
`=1 I` ≈

∏N
`=k+1 I`.

Accordingly, the operator fold(X[k]) recovers X so we can
write X = fold(X[k]), i.e.

fold(X[k])(i1, i2, . . . , iN ) =

X[k](i1 +

k∑
`=2

(i` − 1)J`, ik+1 +

N∑
`=k+2

(i` − 1)Ĵ`). (4)

The TT rank is defined as the vector r = (r1, r2, . . . , rN−1),
where rk is the matrix rank of X[k]. One can see that rk may
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Contents
Literature This work [9], [25] [19] [12]–[17] [7], [8]

Balanced matricization
√ √

Sparse data
√ √

Unbalanced tensor completion
√ √

Tensor augmentation based
√ √ √

SVD-free algorithms
√

Table I: Boldly contrasting our novel contributions to the related literature.

be high as X[k] is more balanced, making the employment of
matrix-rank optimization based completion more appropriate.

Since our objective is to complete low-order and sparse
tensors, let us briefly consider the following problem of
completing sparse matrices: complete a matrix X of size m×n
over Ω ⊂ {1, . . . ,m}×{1, . . . , n}, which is the set of indices
of its observed entries x̃ij .

As such it is conventionally formulated as

min
X∈Rm×n

fq(X) ,
1

2
||X̃Ω −XΩ||2 + λ`q(X), (5)

where in what follows, we have

`q(X) ,
L∑
i=1

σqi (X) (6)

where σi(X), i = 1, . . . , L represent the singular values of X
[26]–[28]. Still referring to (5), we have

X̃(i, j) = x̃ij for (i, j) ∈ Ω (7)

which is called the matrix of projection onto the observed
entries [7], and λ in (5) is a penalty parameter for incorporating
`q(X) in the optimization objective function. The problem (5)
was firstly proposed in [7] for q = 1, and then in [8] for
0 < q < 1. The motivation of the latter work is that the
matrix-rank (`0) optimization based formulation may provide
a beneficial technique of handling very sparse matrices but its
optimization is challenging. Hence, (5) for 0 < q < 1 may
provide less biased and sparser solutions than its counterpart
associated with q = 1.

Define the set of indices of the missing entries by

Ωc , {1, . . . ,m} × {1, . . . , n} \ Ω. (8)

When initialized by the zero matrix X(0) ∈ Rm×n, the κ-th
iteration used for generating X(κ+1) is based on solving the
following problem

min
X∈Rm×n

f (κ)
q (X) ,

1

2
||X̃Ω +X

(κ)
Ωc −X||2 + λ`q(X), (9)

which admits a closed-form solution:

X(κ+1) = Udiag[ϕλ(d
(κ)
1 ), . . . , ϕλ(d(κ)

r )]V T , (10)

under the SVD of

X(κ) = UDV T (11)

with the orthogonal matrices U and V as well as the diagonal
matrix D = diag[d

(κ)
1 , . . . , d

(κ)
r ], while

ϕλ(d) , arg min
x

[
1

2
(d− x)2 + λ|x|q], (12)

which can be readily calculated. For instance, when q = 1,
we have

ϕλ(d) = (d− λ)+ , max{d− λ, 0}, (13)

which represents the popular soft-thresholding rule [3], [4] for
solving (9). For other 0 < q < 1 see [29, Proposition 2]. The
main result of [7], [8] is that of proving the convergence of
{X(κ)} in (11).

It is seen from (10)-(11) that their complexity is determined
by the SVD (11) at each iteration. In the end, it is not X(κ)

but X̃Ω +X
(κ)
Ωc is accepted as the incumbent and then X̃Ω +

X
(∞)
Ωc is accepted as the final solution. As will be shown by

our simulations, the following trivial SVD-free and matrix-
multiplication free iterations also perform similarly well to
the solution in (10)-(11). Let us invoke the SVD of

X̃Ω = UDV T (14)

relying on the orthogonal matrices U and V as well as on
the diagonal matrix D = diag[d

(0)
1 , . . . , d

(0)
r ]. Then, for κ =

0, 1, . . . , we can generate d(κ+1)
i by

d
(κ+1)
i = ϕλ(d

(κ)
i ), i = 1, . . . , r (15)

and accept the resultant solution in the form of

X∞ = Udiag[d∞1 , . . . , d
∞
r ]V T . (16)

Observe that (5) particularly aims for minimizing the rank
of X and as such it is only suitable for completing balanced
matrices. For an unbalanced X , it is likely that its rank is
min{m,n}, so there is nothing to minimize. As shown in [9],
this kind of rank-based compressed sensing is not suitable
for unbalanced matrices, because it follows from a result
in [6] that one needs almost as many as nm entries of X
for successfully completing it. As shown in [19], the singular
values of unbalanced matrices are very well conditioned so the
information loss imposed by their least-square based comple-
tion is almost as high as their von Neumann entropy [11]. It is
not a surprise that both [7] and [8] only provided simulation
results for most balanced (square) matrices X and Ω.

To circumvent the issue of unbalanced matrices, which
makes the matrix-rank optimization based completion and
compressed sensing deficient, as a remedy, it was proposed
in [9] and [25] to represent these matrices by high-order
and low-dimensional tensors for tensor completion. For tensor
completion, the TT-based tensor decomposition [20], [21]
has been used for avoiding the creation of only unbalanced
matrix factors by Tucker decomposition, also known as higher-
order singular value decomposition (HOSVD) [30]. Naturally,
the efficiency of this approach is heavily dependent on the
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capability of TA to capture all the correlations and entangle-
ments among the matrix entries. We thus opt here for the
most efficient known TA of [25], which works for matrices
of flexible sizes, and it is capable of capturing the distinct
correlations among coarse-grained textures. Let m =

∏N
k=1 J

a
k

and n =
∏N
k=1 J

b
k with small Jak and Jbk. Upon encoding the

2D indices (i, j) ∈ {1, . . . ,
∏N
k=1 J

a
k } × {1, . . . ,

∏N
k=1 J

b
k}

by N−digit words i1i2 . . . iN with ik ∈ {1, . . . , JakJbk},
k = 1, . . . , N according to [25], the matrix X may be
represented by an N -order tensor

XA ∈ RI1×I2×...IN (17)

with small Ik = JakJ
b
k, k = 1, . . . , N . Based on (3), XA can

be unfolded to the matrix XA
[k], k = 1, . . . , N of size mk×nk

XA
[k] ∈ Rmk×nk , (18)

with

mk =

k∏
j=1

Ij (19)

and

nk =

N∏
`=k+1

I`, (20)

which encapsulates the correlation among k modes 1, . . . , k
and the remaining k + 1, . . . , N . In parallel, the projection
matrix X̃ defined by (7) is represented by the tensor X̃A of
the same size with XA in (17).

Naturally, upon encoding the 2D indices (i, j) ∈
{1, . . . ,m} × {1, . . . , n} by the N−digit words i1i2 . . . iN
with ik ∈ {1, . . . , JakJbk}, k = 1, . . . , N , n =

∏N
k=1 J

a
k and

m =
∏N
k=1 J

b
k, we can represent a third-order tensor X of

size m× n× p by the (N + 1)-order tensor

XA ∈ RI1×I2×...IN×p. (21)

for considering the following problem of completing unbal-
anced third-order tensors: complete the third-order tensor X
of size m× n× p constructed over Ω , Ω̄× {1, . . . , p} with
Ω̄ ⊂ {1, . . . ,m} × {1, . . . , n}, which is the set of indices of
the observed entries x̃ijk.

Based on (3), XA in (21) can be unfolded to the matrix
XA

[k], k = 1, . . . , N of size mk × (nkp) defined by (18) with
mk defined by (19), but nk defined as:

nk = p

N∏
`=k+1

I`, (22)

which encapsulates the correlation among the k modes
1, . . . , k and the remaining k + 1, . . . , N + 1.

Similarly to (7), we also define the third-order tensor of
projection onto the observed entries as

X̃Ω(i, j, k) =

{
x̃ijk for (i, j, k) ∈ Ω

0 otherwise,
(23)

which is also represented by the (N + 1)-order tensor

X̃A ∈ RI1×I2×...IN×p, (24)

of the same size with XA in (21).

In the sequel, instead of completing the matrix X or
the third-order tensor X , we will complete their high-order
representations XA in (17) and (21), respectively.

III. `q -BASED TENSOR COMPLETION

The objective of this section is to complete both the high-
order and low-dimensional tensors XA in (17) and (21) by
exploiting their sparse structures. Indeed, XA is sparse if and
only if so are its unfolding matrices XA

[k] ∈ Rmk×nk in (18)
with mk defined by (19) and nk defined by (20) or (22). The
first subsection thus develops completion algorithms seeking
sparse XA

[k] while the second subsection develops completion
algorithms seeking their sparse factor matrices in their matrix
product factorizations.

Let Ω[k] be the set of indices of observed entries of the
unfolding matrices XA

[k] in (18). Accordingly, the set of indices
of the missing entries of XA

[k] is defined by

Ωc[k] , {1, . . . ,mk} × {1, . . . , nk} \ Ω[k].

For notational convenience, we also use X̃A
Ω[k]

to refer the
mode-(1, 2, . . . , k) matricization (X̃A

Ω )[k] of X̃A
Ω .

A. Decomposition approach

To exploit the sparsity of the unfolding matrices XA
[k] in

(18), we consider the problem

min
X1,...,XN−1

N−1∑
k=1

(
βk
2
||X̃A

Ω[k]
− (Xk)Ω[k]

||2 + αk`q(Xk)

)
(25)

associated with the matrix Xk ∈ Rmk×nk to learn XA
[k] and

βk =
αk
λ
, αk =

δk∑N−1
k′=1 δk′

, δk′ = min{mk′ , nk′},

k′ = 1, . . . , N − 1, (26)

for λ selected from one of the values in the set
{100, 20, 10, 2, 1}, which assigns larger αk to more balanced
matrices. Note that in (25) we use the penalty term αk`q(Xk)
to impose the sparse structure of Xk.

The problem (25) is thus decomposed into N independent
subproblems

min
Xk

fq,k(Xk) ,
βk
2
||X̃A

Ω[k]
− (Xk)Ω[k]

||2 + αk`q(Xk). (27)

When initialized by the zero matrix X
(0)
k ∈ Rmk×nk , at the

κ-iteration, we solve the following problem for generating
X

(κ+1)
k :

X
(κ+1)
k = arg min

Xk

f
(κ)
q,k (Xk) (28)

, arg min
Xk

[
1

2
||X̃A

Ω[k]
+ (X

(κ)
k )Ωc

[k]
−Xk||2

+
αk
βk
`q(Xk)

]
= arg min

Xk

[
1

2
||X̃A

Ω[k]
+ (X

(κ)
k )Ωc

[k]
−Xk||2

+λ`q(Xk)] (29)
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= U
(κ)
k diag[ϕλ(d

(κ)
1 ), . . . , ϕλ(d(κ)

r )](V
(κ)
k )T , (30)

under the SVD of

X
(κ)
k = U (κ)D(V

(κ)
k )T , (31)

which is in the form of (10).
In Appendix I, we prove that

fq,k(X
(κ)
k ) < fq(X

(κ+1)
k ), (32)

i.e. X(κ+1)
k is a better feasible point than X(κ)

k provided that
X

(κ+1)
k 6= X

(κ)
k , and as such the sequence {X(κ)

k } converges
to a local solution X∞k of (27) [31]. Under q = 1, the problem
(27) is convex so {X(κ)

k } converges to its global solution.
Then we use (2) to accept the final solution formulated as

X̄ = arg min
X

βk
2
||X − foldk(X∞k )||2

=
1∑N−1

k=1 βk

N−1∑
k=1

βk(foldk(X∞k ))

=

N−1∑
k=1

αkfoldk(X∞k ). (33)

Algorithm 1 represents the formal pseudo code of the above
computational procedure.

Algorithm 1 TA+`q algorithm

1: Do for k = 1, . . . , N :
1.1 Initialize (X

(0)
k )Ω[k]

= 0. Set κ = 0.
1.2 Do until the convergence of X(κ)

k :
Generate X(κ+1)

k by (30) under SVD (31).
Reset X(κ+1)

k → X
(κ)
k and κ+ 1→ κ.

2: Output: Accept X̄ by (33).

The main advantage of the formulation (25) is that it leads
to Algorithm 1, which is a path-following procedure as it
improves feasible points of each subproblem (27) at each
iteration shown by (32), so the convergence is predictable,
and the final solution (33) is defined only at the last step. It
is different from the following formulation:

min
X ,X1,...,XN−1

N−1∑
k=1

(
βk
2
||X[k] −Xk||2 + αk`q(Xk)

)
s.t. X̃Ω = XΩ, (34)

which was proposed in [9, (26)] for q = 2 to develop the
so called simple low-rank tensor completion via tensor train
(SiLRTC-TT) algorithm. Similarly to [9], (34) can be ad-
dressed by Algorithm 2, which is termed as LR+`q algorithm.

Algorithm 2 LR+`q algorithm

1: Initialize (X
(0)
k )Ω[k]

= 0. Set κ = 0.
2: Do until the convergence of X (κ):

• For k = 1, . . . , N , generate X(κ+1)
k by

X
(κ+1)
k = arg min

Xk

[
βk
2
||X (κ)

[k] −Xk||2 + αk`q(Xk)]

= arg min
Xk

[
1

2
||X (κ)

[k] −Xk||2 + λ`q(Xk)]

= U
(κ)
k diag[ϕλ(d

(κ)
1 ), . . . , ϕλ(d(κ)

r )](V
(κ)
k )T ,

(35)

under the SVD (31).
• Use (2) to generate X (κ+1) by

X (κ+1) = arg min
XΩ=X̃Ω

N−1∑
k=1

βk
2
||X − foldk(X

(κ+1)
k )||2

(36)

=
1∑N−1

k=1 βk

N−1∑
k=1

βk(foldk(X
(κ+1)
k ))Ωc + X̃Ω

=

N−1∑
k=1

αk(foldk(X
(κ+1)
k ))Ωc + X̃Ω. (37)

• Reset X(κ+1)
k → X

(κ)
k , k = 1, . . . , N , and X (κ+1) →

X (κ), and κ+ 1→ κ.
3: Output: X (κ).

B. Factorization approach

For
rk = rank(X̃A

Ω[k]
) (38)

this subsection aims for learning XA
[k] by UkVk with the aid

of the sparse matrices

Uk ∈ Rmk×rk & Vk ∈ Rrk×nk . (39)

To this end, we consider the following optimization problem

min
X ,U=(U1,...,UN−1)
V=(V1,...,VN−1)

f(X , U, V ) ,
1

2λ
||X̃Ω −XΩ||2 +

N−1∑
k=1

αk
[
||UkVk −X[k]||2 + λ(`q(Uk) + `q(Vk))

]
, (40)

which uses the penalty term λ(`q(Uk) + `q(Vk)) to arrange
for the sparse structure of Uk and Vk.

Initialized by X(0) = X̃Ω with X̃ (0)
Ω[k]

= U
(0)
k V

(0)
k , at the

κ-th iteration we seek U (κ+1) so that

f(X (κ), U (κ+1), V (κ)) < f(X (κ), U (κ), V (κ)) (41)

⇔ f
(κ)
1k (U

(κ+1)
k ) < f

(κ)
1k (U

(κ)
k ), (42)

k = 1, . . . , N − 1,

for
f

(κ)
1k (Uk) , ||UkV (κ)

k −X (κ)
[k] ||

2 + λ`q(Uk). (43)
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The function f (κ)
1k is nonconvex and nonconcave. Applying the

inequality (104) in Appendix II gives

f
(κ)
1k (Uk) ≤ ||UkV (κ)

k −X (κ)
[k] ||

2 + λ
(

(1− q

2
)`q(U

(κ)
k )

+
q

2
〈([(U (κ)

k )T ]2)q/2−1, (Uk)TUk〉
)

, f̃
(κ)
1k (Uk), (44)

which together with f (κ)
1k (U

(κ)
k ) = f̃

(κ)
1k (U

(κ)
k ) imply that f̃ (κ)

1k

is a tight majorant of f (κ)
1k at U (κ)

k [32]. Thus we generate
U

(κ+1)
k as

U
(κ+1)
k = arg min

Uk

f̃
(κ)
1k (Uk) (45)

= X (κ)
[k] (V

(κ)
k )T(

[V
(κ)
k ]2 +

λq

2
([(U

(κ)
k )T ]2)q/2−1

)†
.

(46)

Since we have f̃ (κ)
1k (U

(κ+1)
k ) < f̃

(κ)
1k (U

(κ)
k ) = f

(κ)
1k (U

(κ)
k ) due

to (45), we then have

f
(κ)
1k (U

(κ+1)
k ) ≤ f̃ (κ)

1k (U
(κ+1)
k ) < f

(κ)
1k (U

(κ)
k ) (47)

verifying (41).
Next, we seek V (κ+1) so that

f(X (κ), U (κ+1), V (κ+1)) < f(X (κ), U (κ+1), V (κ))(48)

⇔ f
(κ)
2k (V

(κ+1)
k ) < f

(κ)
2k (V

(κ)
k ), (49)

k = 1, . . . , N − 1,

for
f

(κ)
2k (Vk) , ||U (κ+1)

k Vk −X (κ)
[k] ||

2 + λ`q(Vk). (50)

Applying the inequality (103) in Appendix II gives

f
(κ)
2k (Vk) ≤ ||U (κ+1)

k Vk −X (κ)
[k] ||

2 + λ
(

(1− q

2
)`q(V

(κ)
k )

+
q

2
〈([V (κ)

k ]2)q/2−1, [V (κ)]2〉
)

, f̃
(κ)
2k (Vk), (51)

which together with f (κ)
2k (V

(κ)
k ) = f̃

(κ)
2k (V

(κ)
k ) imply that f̃ (κ)

2k

is a tight majorant of f (κ)
2k at V (κ)

k [32]. Thus we generate
V

(κ+1)
k as

V
(κ+1)
k = arg min

Vk

f̃
(κ)
2k (Vk)

=

(
[(U

(κ+1)
k )T ]2 +

λq

2
([V

(κ)
k ]2)q/2−1

)†
(U

(κ+1)
k )TX (κ)

[k] , (52)

which like (46) verifies (48).
Lastly, we introduce

f (κ)(X ) ,
1

2λ
||X̃Ω + X (κ)

Ωc −X||2

+

N−1∑
k=1

αk

(
||U (κ+1)

k V
(κ+1)
k −X[k]||2

+λ(`q(U
(κ+1)
k ) + `q(V

(κ+1)
k ))

)
, (53)

which is a tight majorant of f(., U (κ+1), V (κ+1)) at X (κ).
Then we use (2) to generate X (κ+1) by

X (κ+1) = arg min
X

f (κ)(X )

= arg min
X

[
1

2λ
||X̃Ω + X (κ)

Ωc −X||2

+

N−1∑
k=1

αk||foldk(U
(κ+1)
k V

(κ+1)
k )−X||2

]

=
2λ

2λ+ 1

[
1

2λ
(X̃Ω + X (κ)

Ωc )

+

N−1∑
k=1

αkfoldk(U
(κ+1)
k V

(κ+1)
k )

]
,

(54)

which yields

f(X (κ+1), U (κ+1), V (κ+1)) ≤ f (κ)(X (κ+1)) <

f (κ)(X (κ)) = f(X (κ+1), U (κ+1), V (κ+1)). (55)

Thus, based on (41), (48), and (55), (U (κ+1), V (κ+1),X (κ+1))
generated by (46), (52), and (54) is a better point than
(U (κ), V (κ),X (κ))

f(X (κ), U (κ), V (κ)) < f(X (κ+1), U (κ+1), V (κ+1)). (56)

As such, the sequence {(X (κ), U (κ), V (κ))}, which is of
improved points, will converge.

Algorithm 3 represents the formal pseudo code of the
above computational procedure, which is termed as the sparse
factorization algorithm (SFA), which needs at least two SVDs
for the pseudo-inversions in (46) and (52).

Algorithm 3 Sparse factorization algorithm (SFA)

1: Initialize X(0) = X̃Ω with X̃ (0)
Ω[k]

= U
(0)
k V

(0)
k , k =

1, . . . , N . Set κ = 0.
2: Do until the convergence of X (κ):

• For k = 1, . . . , N , generate U (κ+1)
k and V

(κ+1)
k by

(46) and (52) respectively, and then X (κ+1) by (54).
• Reset U (κ+1)

k → U
(κ)
k and V

(κ+1)
k → V

(κ)
k k =

1, . . . , N , and X (κ+1) → X (κ), and κ+ 1→ κ.
3: Output: X (κ).

IV. FROBENIUS-NORM-BASED SVD-FREE TENSOR
COMPLETION

Upon recalling the definition (38) of rk, we learn X[k]

by UkVk, with their size given by (39) with the aid of the
following optimization problem

min
X ,U=(U1,...,UN−1)
V=(V1,...,VN−1)

f(X , U, V ) ,
1

2λ
||X̃Ω −XΩ||2

+

N−1∑
k=1

αk||UkVk −X[k]||2, (57)

which does not impose any sparsity-related objectives, unlike
(40).

Note that (57) constitutes much more flexible and over-
fitting free formulation than the following formulation used
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in [33], [34] and TMac-TT (parallel matrix factorization via
tensor train) technique in [9]

min
U,V,X

K∑
k=1

αk
2
||UkVk −X[k]||2 s.t XΩ = X̃Ω. (58)

The TMac-TT algorithm [9] is formally defined in Algorithm
4.

Algorithm 4 TMac-TT algorithm [9]

1: Initialize X(0) = X̃Ω with X̃ (0)
Ω[k]

= U
(0)
k V

(0)
k , k =

1, . . . , N . Set κ = 0.
2: Do until the convergence of X (κ):

• For k = 1, . . . , N , generate U (κ+1)
k and V (κ+1)

k by

U
(κ+1)
k = X (κ)

[k] (V
(κ)
k )T

(
V

(κ)
k (V

(κ)
k )T

)†
, (59)

and

V
(κ+1)
k = ((U

(κ+1)
k )TU

(κ+1)
k )†(U

(κ+1)
k )TX (κ)

[k] , (60)

and then X (κ+1) by

X (κ+1) = arg min
XΩ=X̃Ω

K∑
k=1

αk||foldk(U
(κ+1)
k V

(κ+1)
k )

−X||2 (61)

=

N−1∑
k=1

αk(foldk((U
(κ+1)
k V

(κ+1)
k )))Ωc

+ X̃Ω, (62)

with αk defined from (26).
• Reset U (κ+1)

k → U
(κ)
k and V

(κ+1)
k → V

(κ)
k , k =

1, . . . , N , and X (κ+1) → X (κ), and κ+ 1→ κ.
3: Output: X (κ).

One can see that there are at least two SVDs made in (59)
and (60) for pseudo-inversions.

Now we address (57) via SVD-free iterations as follows. Let
(X (κ), U (κ), V (κ)) be the outcome of the (κ− 1)-st iteration.
At the κ-th iteration we seek (U (κ+1), V (κ+1),X (κ+1)) so that

g(X (κ), U (κ), V (κ)) > g(X (κ), U (κ+1), V (κ)) (63)
> g(X (κ), U (κ+1), V (κ+1)) (64)
> g(X (κ+1), U (κ+1), V (κ+1)).(65)

Firstly, (63) is equivalent to

g
(κ)
1k (U

(κ+1)
k ) < g

(κ)
1k (U

(κ)
k ), (66)

for
g

(κ)
1k (Uk) , ||UkV (κ)

k −X (κ)
[k] ||

2. (67)

Now we can write

g
(κ)
1k (U

(κ)
k + ∆k) = ||(U (κ)

k V
(κ)
k −X (κ)

[k] ) + ∆kV
(κ)
k ||

2

= g
(κ)
1k (U (κ)) + 2〈U (κ)

k V
(κ)
k −X (κ)

[k] ,∆kV
(κ)
k 〉

+ ||∆kV
(κ)
k ||

2.
(68)

Here and after, 〈A,B〉 is the dot product of the matrices A
and B, i.e. it is trace(ATB). For

∆k , −tk
(
U

(κ)
k V

(κ)
k −X (κ)

[k]

)
(V

(κ)
k )T (69)

one has

g
(κ)
1k (U (κ) + ∆k) = g

(κ)
1k (U (κ)) + η1k(tk) (70)

where
η1k(tk) , −2a

(κ)
k tk + b

(k)
k (tk)2 (71)

with

0 < a
(κ)
k , ||

(
U

(κ)
k V

(κ)
k −X (κ)

[k]

)
(V

(κ)
k )T ||2,

0 < b
(k)
k , ||

(
U

(κ)
k V

(κ)
k −X (κ)

[k]

)
(V

(κ)
k )TV

(κ)
k ||2.

(72)

Thus, choosing

t
(κ)
k , arg min

τk
η1k(τk) = a

(κ)
k /b

(k)
k (73)

leads to
η1k(t

(κ)
k ) = −(a

(κ)
k )2/b

(k)
k < 0 (74)

that results in (66). In short, we generate U
(κ+1)
k satisfying

(66)/(63) by

U
(κ+1)
k = U

(κ)
k − t(κ)

k

(
U

(κ)
k V

(κ)
k −X (κ)

[k]

)
(V

(κ)
k )T (75)

for t(κ)
k defined from (73).

Analogously, (64) is equivalent to

g
(κ)
2k (V

(κ+1)
k ) < g

(κ)
2k (V

(κ)
k ) (76)

for
g

(κ)
2k (Vk) , ||U (κ+1)

k Vk −X (κ)
[k] ||

2. (77)

Now, we can write

g
(κ)
2k (V

(κ)
k + ∆k) =

||(U (κ+1)
k V

(κ)
k −X (κ)

[k] ) + U
(κ+1)
k ∆k||2 =

g
(κ)
2k (V

(κ)
k ) + ||U (κ+1)

k ∆k||2

+2〈(U (κ+1)
k )T (U

(κ+1)
k V

(κ)
k −X (κ)

[k] ),∆k〉. (78)

For
∆k , −τk(U

(κ+1)
k )T (U

(κ+1)
k V

(κ)
k −X (κ)

[k] ) (79)

one has

g
(κ)
2k (V

(κ)
k + ∆k) = g

(κ)
2k (V

(κ)
k ) + η2k(τk) (80)

for
η2k(τk) = −2ã

(κ)
k τk + b̃

(κ)
k (τk)2 (81)

with

0 < ã
(κ)
k , ||(U (κ+1)

k )T
(
U

(κ+1)
k V

(κ)
k −X (κ)

k

)
||2,

0 < b̃
(κ)
k , ||U (κ+1)

k (U
(κ+1)
k )T

(
U

(κ+1)
k V

(κ)
k −X (κ)

[k]

)
||2.
(82)

Thus, choosing

τ
(κ)
k , arg min

τk
η2k(τk) = ã

(κ)
k /b̃

(κ)
k (83)

leads to
η2k(τ

(κ)
k ) = −(ã

(κ)
k )2/b̃

(κ)
k < 0 (84)
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that makes (76). In short, we generate V (κ+1) satisfying
(76)/(64) by

V
(κ+1)
k = V

(κ)
k − τ (κ)

k (U
(κ+1)
k )T

(
U

(κ+1)
k V

(κ)
k −X (κ)

[k]

)
(85)

for τ (κ)
k defined in (83).

Finally, we generate X (κ+1) satisfying (65) by

X (κ+1) = arg min
X

f(X , U (κ+1), V (κ+1))

⇔ X (κ+1) = arg min
X

[
1

2λ
||X̃Ω + X (κ)

Ωc −X||2

+

N−1∑
k=1

αk||foldk
(
U

(κ+1)
k V

(κ+1)
k

)
−X||2

]
(86)

⇔ X (κ+1) =
2λ

2λ+ 1

[
1

2λ
(X̃Ω + X (κ)

Ωc )

+

N−1∑
k=1

αkfoldk
(
U

(κ+1)
k V

(κ+1)
k

)]
.

(87)

Algorithm 5 represents the formal pseudo code of the above
computational procedure, which is termed as the SVD-free
Algorithm.

Algorithm 5 SVD-free Algorithm

1: Initialize X(0) = X̃Ω with X̃ (0)
Ω[k]

= U
(0)
k V

(0)
k , k =

1, . . . , N . Set κ = 0.
2: Do until the convergence of X (κ):

• For k = 1, . . . , N , generate U (κ+1)
k and V

(κ+1)
k by

(75) and (85) respectively, and then X (κ+1) by (87).
• Reset U (κ+1)

k → U
(κ)
k and V

(κ+1)
k → V

(κ)
k k =

1, . . . , N , and X (κ+1) → X (κ), and κ+ 1→ κ.
3: Output: X (κ).

V. SIMULATIONS

We use the following shorthands to specify the proposed
implementations: “SoftImput [7], [35]” refers to the SoftImput
algorithm of [7], [35], which is the state-of-the-art `1-norm
based matrix completion; simple `p refers to that by iterating
(15)-(16); “TMacTT [9]” refers to to TMacTT algorithm of
[9], which is recaped in Algorithm 4; “TA+`q” refers to the
TA+`q algorithm 1; “LR+`q” refers to the LR+`q algorithm 2,
which is an `q-extension of SiLRTC-TT [9]; “SFA” refers to
the SFA 3, and “SVD-free” refers to the SVD-free Algorithm
5. Note that both SiLRTC-TT [9] and TMacTT [9] outperform
the completion algorithm [36], which deals with only a single
matricization.

The simulations have been performed in Google Colab
using the following hardware: (i) CPU: 1 × single core Xeon
processor with hyper-threading at 2.3GHz; (ii) GPU: 1 ×
Tesla K80 having 2496 CUDA cores; (iii) RAM: 13 GB
available, and (iv) hard disk: 40 GB available.

A. Matrix completion

For a 2D-index set of size m × n, the unbalanced ratio is
defined by

ur =
max{m,n}
min{m,n}

, (88)

while the missing ratio is defined by

mr = 1− |Ω|
mn

, (89)

where |Ω| is the cardinality of Ω, which is the set of indices
of the observed entries. The testing matrices are created from
the original matrices by randomly generating missing entries
according to this mr. The algorithm performance is quantified
by the following relative square error (RSE) between the
completed matrix X̂ and the original X

RSE =
||X̂Ω −XΩ||
||XΩ||

. (90)

We use the Netflix dataset for rating 17, 770 movies by
480, 189 viewers [7, Sec. 10], which relies on 1% of entries
(100, 480, 507) observed because each viewer can only rate
a small fraction of the movies. We also use the Movilens
dataset [37] containing the rating of 22, 156 movies by 10, 533
viewers. Tables II and III provide the size m× n of X taken
from these datasets and that of the corresponding N th-order
tensor X by TA [25].

We run our simulations for q ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
and λ ∈ {1, 2, . . . , 10} for TA+`q , LR+`q and SFA but
λ ∈ {0.1, 0.2, . . . , 1} for SVD-free and then the best achieved
RSE is used for the RSE performance evaluation. Both Tables
VI and V show that:
• The performances of SoftImpute [7], [35] and simple `q

are similar but the computational complexity of the latter
is extremely light as it is not only free from SVD but
also from matrix-product calculations. As expected, they
gradually perform worse as the unbalanced ratio increases
because they aim for optimizing the matrix-rank;

• The performances of TMacTT [9] and SVD free are
similar but the computational load of the latter is much
lighter than that of the former. This also justifies the
flexibility preference of the formulation (57) over (58).
Since the matrix sparsity is not incorporated into these
formulations, TTMacTT [9] and SVD free are outper-
formed by TA+`q , LR+`q and SFA;

• The performance of TA+`q is slightly better than that
of LR+`q , justifying the flexibility preference of the
formulation (25) over (34);

• The performance of SFA is consistently best among all
the algorithms considered, justifying the formulation (40);

• In contrast to SoftImpute and simple `q , TA+`q , LR+`q
and SFA perform much better, while TTMacTT [9] and
SVD free perform indifferently as the unbalance ratio
increases. This demonstrate the advantages of TA [25]
and TT-decomposition in handling unbalanced matrices.

Table VI shows the computational time in seconds of SoftIm-
pute, Simple lq , TA+lq , LR+lq , SFA, TMacTT, SVD-free on
Netflix dataset matrix of size 1296× 256.
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m =
∏N

k=1 J
a
k n =

∏N
k=1 J

b
k Size of the tensor X by TA

1296 = 34 × 24 256 = 28 6× 6× 6× 6× 4× 4× 4× 4
2592 = 34 × 24 512 = 29 6× 6× 6× 6× 4× 4× 4× 4× 4
7776 = 35 × 25 1024 = 210 6× 6× 6× 6× 6× 4× 4× 4× 4× 4
59049 = 310 1024 = 210 6× 6× 6× 6× 6× 6× 6× 6× 6× 6

82944 = 45 × 34 512 = 29 8× 8× 8× 8× 8× 6× 6× 6× 6

Table II: Size of X taken from the Netflix dataset and the corresponding N th-order tensor X by TA [25]

m =
∏N

k=1 J
a
k n =

∏N
k=1 J

b
k Size of X by TA

1296 = 34 × 24 256 = 28 6× 6× 6× 6× 4× 4× 4× 4
1944 = 35 × 23 256 = 28 6× 6× 6× 6× 6× 4× 4× 4
2592 = 34 × 24 512 = 29 6× 6× 6× 6× 4× 4× 4× 4× 4
3888 = 35 × 24 512 = 29 6× 6× 6× 6× 6× 4× 4× 4× 4
2592 = 36 × 23 512 = 29 6× 6× 6× 6× 6× 6× 4× 4× 4
7776 = 35 × 25 1024 = 210 6× 6× 6× 6× 6× 4× 4× 4× 4× 4

Table III: Size of X taken from the Movielen dataset and the corresponding N th-order tensor X by TA [25]

(m,n) ur mr SoftImpute [7], [35] simple `q TA+`q LR+`q SFA TMacTT [9] SVD-free
(1296,256) 5.06 0.92 0.066 0.055 0.078 0.084 0.056 0.066 0.077
(2592,512) 5.06 0.91 0.089 0.067 0.052 0.069 0.024 0.052 0.058
(7776,1024) 7.59 0.91 0.124 0.092 0.037 0.032 0.016 0.052 0.056

(59049,1024) 57.67 0.91 0.136 0.087 0.023 0.025 0.012 0.047 0.051
(82944,512) 162 0.92 0.102 0.052 0.024 0.026 0.011 0.055 0.056

Table IV: RSE performance for Netflix completion

(m,n) ur mr SoftImpute [7], [35] simple `q TA+`q LR+`q SFA TMacTT [9] SVD-free
(1296,256) 5.06 0.96 0.183 0.095 0.066 0.083 0.063 0.118 0.115
(1944,256) 7.59 0.96 0.187 0.094 0.062 0.076 0.050 0.122 0.100
(2592,512) 5.06 0.96 0.221 0.111 0.052 0.060 0.026 0.107 0.097
(3888,512) 7.59 0.97 0.220 0.110 0.053 0.062 0.034 0.105 0.088
(5832,512) 11.39 0.99 0.226 0.092 0.093 0.071 0.050 0.093 0.123
(7776,1024) 7.59 0.99 0.250 0.100 0.057 0.080 0.072 0.081 0.167

Table V: The RSE performance by Movielen completion

Table VI: The computational time in seconds for recovering Neflix dataset matrix of size 1296 × 256 with (mr, ur) =
(0.92, 5.06)

SoftImpute simple `q TA+`q LR+`q FSA TMacTT SVD-free
28.82 17.10 159 146 55.95 36.7 22.08

B. Third order tensor completion

Our objective in this subsection is to recover a colour image
of the standard height m = 256 and width n = 256, which
is represented by a third-order tensor X of size m × n × 3.
Thus X (i, j, 1), X (i, j, 2), and X (i, j, 3) describe the redness,
blueness, and greenness of the (i, j)-th pixel. The index set
of its observed entries is Ω , Ω̄ × {1, 2, 3} with Ω̄ , Ω1 ×
Ω2 ⊂ {1, . . . ,m} × {1, . . . , n}. The unbalanced ratio ur is
still defined by (88) but the missing ratio mr is defined by

mr = 1− |Ω̄|
mn

, (91)

instead of (89), while the RSE between the complete tensor
X̂ and the original X is defined by

RSE =
||X̂Ω −XΩ||
||XΩ||

, (92)

instead of (90). The test images are created from the original
images by randomly generating missing entries according to
the missing ratio mr defined by (89). Upon encoding 2D
indices (i, j) ∈ {1, . . . , 256} × {1, . . . , 256} by 8-digit words

i1i2 . . . i8 associated with in ∈ {1, 2, 3, 4}, n = 1, . . . 8, we
thus cast the third-order tensor X of size 256×256×3 into a
ninth-order tensor X of size 4× 4× 4× 4× 4× 4× 4× 4× 3,
and then apply Algorithms 1-4 for completing the latter. In
what follows, we define the unbalanced ratio of Ω by

uΩ , |Ω1|/|Ω2|. (93)

1) Examples for the balanced ratio of uΩ = 1: For these
examples, TMacTT [9] has been shown to outperform all
existing algorithms [9]. Tables VIII, IX, and X provide the
recovery results for the popular Lena image by TA+`q , LR+`q ,
and SFA under different q and λ. Observe that TA+`q achieves
its best RSE at (q, λ) = (0.5, 2), LR+`q achieves its best
RSE at (q, λ) = (0.5, 10), while SFA achieves its best RSE
at (q, λ) = (0.3, 5/4). Similar results and the optimal values
(q, λ) for the particular algorithms are also observed when
recovering the Pepper image.
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Figure 1: The images recovered from the Lena image having missing pixels. The first column top down to the bottom represent
the incomplete images associated with mr ∈ [0.5, 0.9]. The next columns are the images recovered by TA+`q , LR+`q , SFA,
TMacTT [9], and SVD-free

Image mr TA+`q LR+`q SFA TMacTT [9] SVD-free
Lena 0.5 0.057 0.036 0.038 0.061 0.081

0.6 0.064 0.046 0.051 0.069 0.104
0.7 0.076 0.060 0.065 0.077 0.142
0.8 0.097 0.076 0.092 0.088 0.166
0.9 0.129 0.108 0.134 0.109 0.186

Peppers 0.5 0.072 0.058 0.063 0.078 0.105
0.6 0.086 0.069 0.075 0.088 0.129
0.7 0.105 0.085 0.097 0.101 0.162
0.8 0.131 0.108 0.132 0.117 0.191
0.9 0.187 0.150 0.194 0.169 0.267

Table VII: The RSE performances in recovering the Lena and Peppers images under different values of mr with uΩ = 1

Figure 2: The images recovered from the Pepper image having missing pixels. The first column top down to the bottom represent
the incomplete images associated with mr ∈ [0.5, 0.9]. The next columns are the images recovered by TA+`q , LR+`q , SFA,
TMacTT [9], and SVD-free.
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λ = 1 λ = 2 λ = 10 λ = 20 λ = 100
q = 0.1 0.130 0.318 0.628 0.668 0.699
q = 0.3 0.055 0.069 0.360 0.531 0.673
q = 0.5 0.054 0.050 0.108 0.291 0.622
q = 0.7 0.059 0.051 0.058 0.100 0.531
q = 0.9 0.067 0.057 0.053 0.063 0.389

Table VIII: The RSE in recovering the Lena image by TA+`q

λ = 1 λ = 2 λ = 10 λ = 20 λ = 100
q = 0.1 0.043 0.258 0.626 , 0.667 0.707
q = 0.3 0.043 0.036 0.322 0.522 0.671
q = 0.5 0.044 0.038 0.035 0.241 0.618
q = 0.7 0.047 0.041 0.038 0.039 0.521
q = 0.9 0.054 0.047 0.044 0.048 0.366

Table IX: The RSE in recovering the Lena image by LR+`q

λ = 2.5 λ = 2 λ = 5/3 λ = 10/7 λ = 5/4
q = 0.1 0.069 0.233 0.338 0.408 0.458
q = 0.3 0.048 0.045 0.043 0.042 0.040
q = 0.5 0.051 0.049 0.048 0.046 0.045
q = 0.7 0.059 0.058 0.047 0.048 0.045
q = 0.9 0.109 0.077 0.052 0.052 0.052

Table X: The RSE in recovering the Lena image by SFA

Furthermore, Table VII provides the RSE performance of
all implemented algorithms. LR+`q consistently outperforms
the other algorithms, including the state-of-the-art TMacTT
[9], so `q-optimization is indeed helpful. TMacTT [9] is also
outperformed by TA+`q and SFA for mr ∈ {0.5, 0.6, 0.7}.

The images with missing pixels and the recovered images
are presented in Figs. 1 and 2.

2) Unbalanced examples with uΩ < 1: Tables XI, XII, and
XIII, characterize the recovery results for the Lena image by
TA+`q , LR+`q , and SFA for the missing ratio mr and uΩ

fixed at 90% and 0.7 upon varying q and λ. TA+`q achieves
its best RSE at (q, λ) = (0.7, 1), LR+`q achieves its best
RSE at (q, λ) = (0.5, 1), while SFA achieves its best RSE
at (q, λ) = (0.7, 2). Similar results and the optimal values
(q, λ) for the particular algorithms are observed in recovering
the Pepper image.

Table XIV provides the RSE performance of all imple-
mented algorithms, which is much worse than that for uΩ = 1
provided by Table VII. In fact, the RSE performance is
monotonically degraded vs uΩ. The RSE performance of
TMacTT [9] is seen to quickly drop with uΩ decreased and
it is even outperformed by SVD-free. TA+`q and LR+`q con-
sistently outperform the others, where the RSE performance
of LR+`q is the best. Furthermore, it is not sensitive to uΩ,
demonstrating its efficiency in dealing with unbalanced sets
of observable entries. The SFA performs relatively well for
uΩ ≤ 0.7.

λ = 1 λ = 2 λ = 10 λ = 20 λ = 100
q = 0.1 0.644 0.750 0.856 0.873 0.889
q = 0.3 0.241 0.425 0.758 0.819 0.875
q = 0.5 0.127 0.164 0.595 0.727 0.853
q = 0.7 0.120 0.123 0.368 0.577 0.816
q = 0.9 0.133 0.128 0.188 0.383 0.758

Table XI: The RSE in recovering the Lena image by TA+`q
for the missing ratio mr = 90% and uΩ = 0.7

λ = 1 λ = 2 λ = 10 λ = 20 λ = 100
q = 0.1 0.689 0.783 0.866 0.878 0.893
q = 0.3 0.302 0.482 0.793 0.839 0.882
q = 0.5 0.101 0.188 0.663 0.771 0.867
q = 0.7 0.105 0.102 0.450 0.653 0.839
q = 0.9 0.116 0.109 0.234 0.485 0.799

Table XII: The RSE in recovering the Lena image by LR+`q
for the missing ratio mr = 90% and uΩ = 0.7

λ = 2.5 λ = 2 λ = 5/3 λ = 10/7 λ = 5/4
q = 0.1 0.592 0.653 0.694 0.725 0.747
q = 0.3 0.277 0.315 0.343 0.372 0.394
q = 0.5 0.209 0.259 0.285 0.296 0.319
q = 0.7 0.223 0.156 0.213 0.252 0.281
q = 0.9 0.398 0.304 0.161 0.179 0.181

Table XIII: The RSE in recovering the Lena image by SFA
for the missing ratio mr = 90% and uΩ = 0.7

The images having missing pixels and the images recovered
by TA+`q , LR+`q , SFA, TMacTT [9], and SVD-free are
presented in Figs. 3 and 4, which are of much worse quality
than their counterparts in Figs. 1 and 2 associated with uΩ = 1.

Table XV shows the computational time (in seconds) of
TA+lq , LR+lq , FSA, TMacTT, SVD-free in recovering Lena
image for mr = 0.8 and ur ∈ {0.3, . . . , 0.9}.

Table XV: The computational time in seconds for recovering
Lena image for mr = 0.8 and different ur

ur TA+`q LR+`q FSA TMacTT SVD-free
0.3 206 73.41 36.13 32.77 27.6
0.5 114 25.38 160 30.28 26.7
0.7 97.35 16.73 290 25.26 24.2
0.9 95.35 15.39 501 27.95 25.1

VI. CONCLUSIONS

We have developed efficient techniques for completing
unbalanced and sparse matrices and third-order tensors with
the index set of observable entries also of flexible structure,
which could not be efficiently addressed by the state-of-the-art
completion algorithms. Based on encoding the 2D-index set
by an N -dimensional index set, the incomplete matrices and
tensors are cast into high-order but low-dimensional tensors
for carrying out their completion. We have proposed several
novel algorithms for completing such matrices and tensors,
which are efficient in terms of their completion performance or
computational complexity. Its applications to data processing
for cyber physical systems are under current study.

APPENDIX I: THE PROOF OF (32)

It is plausible that

||X̃Ω[k]
+ (X

(κ)
k )Ωc

[k]
−Xk|| =

||X̃Ω[k]
+ (X

(κ)
k )Ωc

[k]
− ((Xk)Ω + (Xk)Ωc)||2 =

||(X̃Ω[k]
− (Xk)Ω) + ((X

(κ)
k )Ωc

[k]
− (Xk)Ωc)||2 =

||X̃Ω[k]
− (Xk)Ω||2 + ||(X(κ)

k )Ωc
[k]
− (Xk)Ωc ||2 ≥

||X̃Ω[k]
− (Xk)Ω||2. (94)



12

Figure 3: The images recovered from the Lena image having missing pixels at mr = 90%. The first column top down to the
bottom represent the incomplete images associated with uΩ ∈ [0.3, 0.9]. The next columns are the images recovered by TA+`q ,
LR+`q , SFA, TMacTT [9], and SVD-free

Image mr uΩ TA+`q LR+`q SFA TMacTT [9] SVD-free
Lena 0.8 0.9 0.115 0.112 0.119 0.115 0.185

0.7 0.126 0.103 0.154 0.326 0.188
0.5 0.142 0.112 0.234 0.480 0.201
0.3 0.217 0.151 0.314 0.596 0.212

Peppers 0.8 0.9 0.153 0.131 0.134 0.154 0.235
0.7 0.159 0.132 0.156 0.299 0.234
0.5 0.176 0.147 0.225 0.407 0.249
0.3 0.239 0.177 0.414 0.586 0.331

Lena 0.9 0.9 0.155 0.130 0.178 0.229 0.330
0.7 0.164 0.129 0.182 0.300 0.326
0.5 0.173 0.135 0.279 0.475 0.381
0.3 0.207 0.159 0.414 0.654 0.498

Peppers 0.9 0.9 0.263 0.173 0.202 0.332 0.460
0.7 0.269 0.177 0.211 0.355 0.470
0.5 0.285 0.182 0.261 0.437 0.474
0.3 0.442 0.206 0.465 0.610 0.599

Table XIV: The RSE performance in recovering the Lena and Peppers images.

Figure 4: The images recovered from the Pepper image having missing pixels at mr = 90%. The first column top down to
the bottom represent the incomplete images with uΩ ∈ [0.3, 0.9]. The next rows are the images recovered by TA+`q , LR+`q ,
SFA, TMacTT [9], and SVD-free
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Therefore, we have

fq,k(Xk) =
βk
2
||X̃Ω[k]

− (Xk)Ω[k]
||2 + αk`q(Xk)

≤ βk
2
||X̃Ω[k]

+ (X
(κ)
k )Ωc

[k]
−Xk||2 + αk`q(Xk)

= f
(κ)
q,k (Xk), (95)

which together with

fq,k(X
(κ)
k ) = f

(κ)
q,k (X

(κ)
k ) (96)

show that f (κ)
q,k is a tight majorant of fq,k at X(κ)

k [32]. Since
X

(κ)
k and X

(κ+1)
k constitute a feasible point and the optimal

solution of (28), it is true that f (κ)
q,k (X

(κ)
k ) < f

(κ)
q,k (X

(κ+1)
k ) ≤

fq,k(X
(κ+1)
k ). Hence we have

fq,k(X
(κ)
k ) = f

(κ)
q,k (X

(κ)
k ) < fq(X

(κ+1)
k ), (97)

i.e. (32).

APPENDIX II: `q AS A SPECTRAL FUNCTION

Let X̄ be a positive semi-definite matrix with the eigen-
values λi(X̄) ≥ 0, i = 1, . . . , N , which admits the SVD
X̄ = UX̄diag[λi(X̄)]i=1,...,NU

H
X̄

with UX unitary. For arbi-
trary q > 0 we define X̄q as

0 � X̄q , UX̄diag[λqi (X̄)]i=1,...,U
H
X̄ , (98)

under the agreement

λqi (X̄) ≡ 0 for λi(X̄) = 0. (99)

Let σi(X), i = 1, . . . , N be the singular values of X , which
are actually

√
λi([X]2), where λi([X]2) are the eigenvalues

of [X]2 , XXT . Then `q(X) defined by (6) is represented
by `q(X) =

∑N
i=1 λ

q/2
i ([X]2). Thus `2(X) is the square

Frobenius norm ||X||2 = trace([X]2). The function `1(X)
is still a convex function [6], but `q(X) for 0 < q < 1 is not.
However, based on the fact that `q(X) is a spectral function
[38] with `q(X) =

∑
i λ

q
i (X) for all positive semi-definite

matrix X , where λi(X) ≥ 0 are eigenvalues of X , we can
obtain the following properties
• The function

∑
i λ

q
i (X) of the variables λi(X) ≥ 0 is

concave so `q(X) is a concave function for 0 < q ≤ 1 in
the domain of positive definite matrices X [38], while
`1(X) is both convex and concave so it is a linear
function, which is plausible because `1(X) = trace(X).

• In the domain of positive definite matrices, we have

`q(X) ≤ `q(X̄)

+ q〈UX̄diag[λq−1
i (X̄)]i=1,...,NU

H
X̄ , X − X̄〉

(100)
= (1− q)`q(X̄)

+ q〈UX̄diag[λq−1
i (X̄)]i=1,...,NU

H
X̄ , X〉

(101)
= (1− q)`q(X̄)

q〈X̄q−1, X〉 ∀ X � 0, X̄ � 0

(102)

where X̄ admits the SVD UX̄diag[λi]i=1,...,NU
H
X̄

.

• In the domain of arbitrary matrices, applying the inequal-
ity (102) for q → q/2 and X → [X]2 while X̄ → [X̄]2

yields

`q(X) ≤ (1− q/2)`q(X̄) +
q

2
〈([X̄]2)q/2−1, [X]2〉

∀ X, X̄, (103)

or

`q(X) ≤ (1− q/2)`q(X̄) +
q

2
〈([X̄T ]2)q/2−1, [XT ]2〉

∀ X, X̄.(104)

Particularly,

`1(X) ≤ 1

2
`1(X̄) +

1

2
〈([X̄]2)−1/2, [X]2〉

∀ X, X̄, (105)

and

`1(X) ≤ 1

2
`1(X̄) +

1

2
〈([X̄T ]2)−1/2, [XT ]2〉

∀ X, X̄. (106)

Thus, similarly to [39]–[41], we can obtain useful bounds
for the function `q(X), which is nonconvex and noncon-
cave.
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