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     Intelligent Transportation Systems (ITS) with the aim of enhancing mobility and sustainability are gaining 

momentum across public policy sector. Connected and Autonomous Vehicles (CAVs) constitute an integral 

element of ITS. The rapid advances in the realm of Artificial Intelligence (AI) and relevant disciplines have 

accelerated the development and evolution of CAVs which are believed to thoroughly transform the 

transportation landscape in coming decades or even years. There are manifold potential benefits (e.g., 

increased safety and accessibility, convenience, saving time and energy, reducing traffic congestion, etc.) 

perceived for this disruptive technology. Nevertheless, there is a considerable extent of uncertainties over the 

safe and secure performance of intelligent self-driving cars in urban environments. These uncertainties can 

deteriorate the existing driving risks and incur new risks which can undermine the functional safety and 

technical reliability of those vehicles.  

     The interdependencies between risk factors have neither been yet studied within an integrative framework 

nor from the sociotechnical perspective. In this study, an interdisciplinary approach was adopted to construct 

a Bayesian Belief Network (BBN) in order to capture influential risk factors in urban settings as well as the 

interdependencies between them, thereby providing estimates for the risk indices under varying and volatile 

circumstances. This will enable us to estimate the collision risk for intelligent self-driving cars in urban 

environments and evaluate the impact of risk mitigation actions. Furthermore, such a model can be used to 

classify the urban districts based on the estimated risks and serve policymakers in allocating resources to 

maximise the benefits of CAVs and avoid potential safety consequences.  

     Sociotechnical theory as an interdisciplinary approach was adopted to form the foundation of BBN model. 

The factors were accordingly divided into four blocks and the intersection of these blocks represent collision 

risk index to quantify the safety risk in urban environments. To identify the risk factors, integrative literature 

review together with thematic analysis (TA) were used. A new technique was formulated to populate the node 

probability tables (NPTs) and generate uniform distributions. Afterwards, nine domain experts assigned 

weights to the identified links between the nodes and influence of the probability distributions. Sensitivity 

analysis was conducted to examine the influence of the incorporated nodes on the collision risk index. The 

outcome of the model (i.e., collision risk index) showed the highest sensitivity to traffic control infrastructure, 

weather conditions and traffic composition, respectively. Six scenarios were also devised to investigate the 

fluctuations of collision risk index due to variations in input nodes. The results of this research can provide 

insights for policymakers in contemplating policy choices such as investing in new or upgrading existing 

infrastructure, introducing new legislations, imposing regulatory requirements, licensing, and technology 

standardisation. 
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Chapter 1 

 

 

1. Introduction 

     The following chapter provides a background and highlights the motivations for the 

present study. To justify the relevance and importance of studying safety risks in the context 

of autonomous driving, the recent trends and progressions in evolution of autonomous 

vehicles (AVs) are reviewed. The uncertainties over disruptive technologies are reflected 

and an overall structure for vehicles with self-driving feature is sketched out. The criticality 

of scrutinising collision risk in urban areas as a major operating environment for AVs is 

discussed. The research objectives are stated and finally the chapter closes with conclusions 

and providing a lay out for the rest of the thesis. 
 

1.1. The advent of Autonomous Vehicles and new challenges 

     The ever-expanding interest in developing and deploying autonomous systems together 

with the recent technological breakthroughs, particularly in computer sciences, has led to 

tremendous evolution of these systems (Bosch and Olsson, 2016). Driverless (or self-

driving) cars, as a prime example of an autonomous system, have recently become one of 

the research focal points in both industry and academia (Gruel and Stanford, 2016). With the 

realisation of novel and disruptive technologies in the disciplines which make a direct 

contribution to the evolvement of AVs, this concept is not anymore a science fiction at least 

from technical and technological perspectives. Nevertheless, devising complex, disruptive 

and safety-critical technologies involves inherent and deep uncertainties over technological 

feasibility and reliability, commercial viability, organisational capability and social 

acceptability (Hall and Martin, 2005). These uncertainties—especially when are evaluated 

to be grave—can pose serious risks to securing the pre-defined objectives and expected 

benefits of the intended technology. Severe consequences of some risks associated with 

cutting-edge technologies emphasise the necessity of identifying and evaluating those risks 

as precisely and swiftly as possible. In spite of significant advancements in computing 

capabilities and development of tools to forecast the future, it is still a demanding task to 

predict the overall outcomes and impacts of such technologies on humans, environment and 

economy. This is, partially, due to the presence of uncertainties arising from diverse sources. 
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Conducting rigorous uncertainty and risk analysis, therefore, is indispensable and 

determinant to guarantee the promised returns and optimise the likelihood and/or the severity 

of drawbacks before fully and broadly operationalising the technology. Fatal accidents 

(Katrakazas, Quddus and Chen, 2019), statistics of disengagements, lack of sophisticated 

and clear regulations, accelerated pace of development and the potentiality of ‘black swans’ 

and ‘perfect storms’ (Paté‐Cornell, 2012), all signal the urgency for conducting in-depth 

uncertainty and risk analysis before replacing current human-driven vehicles with AVs on 

the road. 

     According to our research and literature review, there has not been a general and 

multidisciplinary/interdisciplinary classification of risk factors/variables which impinge on 

the safety and reliability of driverless (i.e. fully autonomous) cars in urban environments 

where dynamism is relatively high. So far, the key factors influencing trust in self-driving 

cars (Carlson et al., 2014; Kaur and Rampersad, 2018), Advanced Driver Assistance 

Systems (ADAS) risk factors (Sheehan et al., 2017), cyber risks for connected and 

autonomous vehicles (Petit and Shladover, 2014; Parkinson et al., 2017; Sheehan et al., 

2019), collision avoidance risk assessment (Fahmy, El Ghany and Baumann, 2018; Yu, 

Vasudevan and Johnson-Roberson, 2019), and trajectory risk analysis for surrounding 

vehicles and objects (Katrakazas, Quddus and Chen, 2019) were explored. Considerable 

scholarly literature has been published to cover safety and reliability risks of other divisions 

of AVs such as autonomous underwater vehicles (AUV) (Brito, Griffiths and Challenor, 

2010; Brito and Griffiths, 2016) and unmanned aerial vehicles (UAV) (Zhang et al., 2018; 

Allouch et al., 2019). Nonetheless, the gap has not been fully addressed yet and a 

computational and predictive model is imperative to provide a reliable quantitative 

estimation of risks attached to the operation of AVs in any given circumstances.  

     A generic and multidisciplinary risk model involving a wider range of variables can assist 

decision makers and inform their decisions before adopting the technology. Further, in order 

to be able to quantify the risks, ascertaining the interdependencies between these variables 

is vital. To this end, Bayesian Belief Network (BBN) technique as an advanced and 

updatable means (Chen and Lin, 2019) is adopted in this study to model the 

interdependencies between the identified risk factors (variables) and produce estimates for 

those risks and evaluate the impact of policies and risk mitigation measures. Fundamental 

theories underpinning the model are socio-technical theory (Rasmussen, 1997), and Socio-

Technical Risk Analysis (SoTeRiA) framework (Mohaghegh, Kazemi and Mosleh, 2009; 

Mohaghegh and Mosleh, 2009). Influential (risk) factors are subsequently divided into four 

main blocks: technical, environmental, traffic and human factors. To address the gaps and 

define the scope of research, five key research questions are formulated. 
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     The research questions are as follows: 

I. What are influential factors/variables which affect the reliability and collision risks 

associated with highly autonomous vehicles in urban settings? 

II. What are the interdependencies (relationships) between the identified 

factors/variables? 

III. What would be the quantity of collision risk for given road and traffic conditions? 

IV. How the overall collision risk is sensitive to the identified factors/variables? 

V. What active policies can be adopted to mitigate the collision risks in urban 

environments after the rollout of CAVs? 

     In order to find the answer of the first question, an integrative literature review (ILR) and 

thematic analysis framework are designed to pinpoint the factors/variables that have impact 

on the risks of AVs in the urban environments. ILR is also recommended for exploring future 

policies in a topic (Torraco, 2016). The detailed steps and criteria for conducting ILR are  

     The BBN modelling technique is employed to address the rest of questions. The BBN 

tool has been extensively used to measure and model risk problems in a tremendous variety 

of disciplines. The primary data for constructing the model is collected from the relevant 

literature through conducting integrative literature review in two platforms (databases): Web 

of Science and DelphiS. For the probability distributions of the nodes (variables in the 

model), a combination of a new quantitative method and a survey was used to elicit and 

incorporate the knowledge and expertise of field experts. The quantitative methods will be 

defined in detail in sections 3.8.2 and 3.8.3.     

     Table 1.1 summarises the contributions to the related disciplines after the above research 

questions are addressed. The applied research methods and techniques for answering each 

of those questions are mentioned too. The major contributions of this research are 

identification of risk factors for CAVs while operating in urban settings, the BBN model as 

a risk classification tool and policy recommendations. It is noteworthy that the risk 

identification through ILR is based on the state-of-the-art technologies, recent literature 

(between 2010 and 2021) and a few fatal accidents involving CAVs. As a consequence, some 

of the risk factors or variables may become redundant soon should we witness any 

breakthroughs in enabling technologies or infrastructure. 

 

 



Chapter 1 

4 
 

 

Table 1.1: major contributions, research methods and relevant research areas.  

 
 

     In the rest of this chapter, the motivations, history and important milestones in the 

evolution of driverless cars, safety risks and uncertainties surrounding this technology while 

operating in urban areas, and research objectives are discussed. The literature review and 

methodological frameworks to address the research questions are presented in chapters two 

and three respectively. In chapter four, the results and analysis are provided. Chapter five 

contains policy implications and discussions around the cruciality of accurately defining and 

classifying autonomy levels in safety considerations. Finally, chapter six includes a summary 

of main findings and contribution, closing remarks, and future research directions. 
  

1.2. Motivations for delving into collision risks of CAVs 

     A few fatal car crashes involving self-driving cars have raised reasonable doubts about 

the reliability of autonomous driving technology. The first fatal crash with the Tesla self-

driving car (while it was on autopilot mode) occurred in Florida, in July 2016 (Kohl et al., 

2018). On 18th of March 2018 an Uber self-driving car hit a 49-year-old woman and took 

her life when she was crossing the road in Arizona, US (the Guardian, 2018; Lisinska and 

Question 
Contribution after answering the research 

question 
Methods  Disciplines 

I 
Providing a quantification means for the collision 

risk of a highly autonomous car (SAE level 4) in 

dynamic urban environments.  

ILR, TA & BBN 

Transportation Safety 

ITS 

Autonomous vehicles 

Uncertainty modelling 

II 

Weighing the strength of relationship (link) 

between the variables in the model through 

expert judgement elicitation allows to inform the 

model with assigning weights to the links.  

Surveying 

domain experts 

& BBN 

Human factors in accidents 

Applied artificial 

intelligence 

Urban traffic planning 

Environmental factors in 

robotics 

III 

Providing a decision-making tool for the key 

stakeholders of the technology for conducting 

preliminary risk analyses and classifying urban 

districts according to the collision risk levels for 

different types and models of CAVs. 

 

Scenario 

analysis 

& BBN 

Urban design 

Traffic law 

CAV regulatory 

IV 

Sensitivity risk analysis can also assist decision 

makers to split and distribute the remaining 

uncertainty in the output of the model to different 

sources of uncertainty in the model’s input. 

Sensitivity 

analysis & BBN 

System Safety 

Risk Analysis 

Conditional probability 

V 

Recommending a set of policies based on the 

results of scenario and sensitivity analyses and 

literature to mitigate the collision risk for CAVs. 

Scenario and 

Sensitivity 

analyses 

& BBN 

 ITS  

Autonomous vehicles 

Transportation 

policymaking 
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Kleinman, 2021). Just a few days later, another Tesla car during the time that its autopilot 

mode was active crashed into the roadside barrier in California and the driver died shortly 

after the accident (BBC, 2018). In December 2021 the largest Paris taxi firm suspended its 

Tesla model 3 fleet (which offer self-driving features) after one of them was involved in a 

road crash leaving one dead, three in critical conditions and over a dozen injured (BBC, 

2021; the Guardian, 2021). 

     In addition to the above incidents, the reported disengagement statistics for AVs on US 

roads can also sound the alarm for risk analysts. The number of disengagements, on average, 

varies from nearly 1.1 per 1000 miles for Google to 980 for Mercedes-Benz between 

September 2014 to November 2015 (Dixit, Chand and Nair, 2016). There are two main 

groups of disengagements: automatic (passive) and manual (active) (Lv et al., 2017). 

Automatic disengagements occur when the system recognises a failure or foresees a potential 

failure under autonomous driving (AD) conditions. On the other hand, manual 

disengagements refers to a state where the driver suspects a precarious situation in response 

to other road users, due to discomfort with the autonomous mode, adverse weather 

conditions, construction activities, poor road infrastructure, et cetera (Dixit, Chand and Nair, 

2016). Hence, from exploring these incidents and proportion of them to the small number of 

operational AVs we can conclude that the AV technology can pose serious risks which must 

be addressed before this technology becomes ubiquitous. 

     As the technology matures, AVs are expected to be deployed in the same environments 

as manned vehicles, and this can raise problems (Vellinga, 2017). One of the main challenges 

for AVs on public roads is the dynamic nature of urban environments and presence of other 

moving road users which increases the risk of collision. Lipson and Kurman (2016) pointed 

out that “while it’s possible to set up a tidy closed-world environment in a factory setting, in 

the real world, streets and highways are chaotic and unpredictable”. Dealing with 

interactions that are guided by rules of conduct which can be either vague or highly situation-

specific can profoundly challenge the software (Lipson and Kurman, 2016). Recent research 

has shown that environmental complexity is a key indicator of performance for mobile robot 

systems, but there are currently no agreed and satisfactory metrics to assess the performance 

of a robotic system in a complex and dynamic environment and define operational domains 

for a robot, particularly environmental complexity (Young, Mazzuchi and Sarkani, 2017). 

This lack of satisfactory metrics can imply how environmental complexity is challenging 

and complicating for AVs. 

     The amount of (real) data that an AV receives from different sources is ample. 

Recognising other vehicles and pedestrians, road signs and signals, traffic lanes and 
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static/dynamic obstacles need extensive, precise and agile data processing capabilities. Some 

researchers assert that it is demanding for the vehicle (i.e. its software) to discern all the 

surrounding in urban settings (Abduljabbar et al., 2019). Tackling other software challenges 

such as security and integrity of the system is a critical consideration in software architecture 

for AVs especially in the absence of consistent standards and detailed regulations.  Ground 

vehicles are approximately two-ton metal boxes that commute on public roads and if any 

fault or glitch with the software system (e.g. path planning, navigation and actuator 

controllers) might result in a major and even tragic accident (Lipson and Kurman, 2016). 

     If AVs successfully evolve to be as competent and skilled as human drivers, we can 

expect a massive reduction in fatal accidents. This is because drunk-driving, distraction and 

fatigue (drowsiness) as the major causes of fatal accidents (cumulative of 53.5 percent) in 

the US will not apply to AVs (Kalra and Paddock, 2016). They may also be even safer due 

to higher precision in perceiving the surrounding and executing driving tasks. However, 

there are inherent safety risks which may be worse than the risks of manned vehicles 

(Manzur Tirado, Brown and Valdez Banda, 2019). We must be aware about the differences 

between human and AI decisionality (i.e., decision-making capacity) and that the artificial 

driving intelligence will fall short of certain decisional capacities at some point (Cunneen, 

Mullins and Murphy, 2019). The significant challenge with machine learning (ML) 

techniques is that they are more based on inductive training and reasoning approaches which 

are inherently difficult to be validated (Koopman and Wagner, 2017). Moreover, CAVs may 

not be able to eliminate all accidents immediately after they are launched. Factors such as 

inclement weather, complex driving environments and cybersecurity threats (for connected 

vehicles) still need to be addressed (Kalra and Paddock, 2016).   

     Having discussed earlier, lack of accurate, case-specific and reliable data is a major 

source of (epistemic) uncertainty in predicting the behaviour of the AV technology. To 

provide a few examples, lack of formal measures of the impact of spatially-extended 

characteristics on the network outputs (Kim and Canny, 2017) and restricted or absolute lack 

of exposure to various traffic scenarios (Schoettle and Sivak, 2015) were reported as the 

limitations of those research projects about autonomous driving. Lack of enough and 

effective test and evaluation (T&E) of AVs also add to the safety implications (Li et al., 

2016). Infeasibility of complete testing (requiring one billion operating hours or more) 

(Koopman and Wagner, 2016), complexity of the software autonomous features (Kim et al., 

2016; Mullins, Stankiewicz and Gupta, 2017) and high costs (Tao et al., 2019) are among 

the main challenges in testing autonomous vehicles. More importantly, ambiguities about 

the regulations and regulatory bodies deepen the safety implications of public autonomous 

driving as the technology is still in its infancy.   
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     Although the keyword ‘risk’ is one of the predominant themes in the AV literature, there 

has not been an integrative risk model yet developed to depict the main influential factors 

and analyse the interdependencies between them. In this research a risk assessment model 

encompassing environmental, human, traffic and technical variables is developed to evaluate 

the performance of AVs in urban environments from the perspective of uncertainty and risk. 

This model can be seen as a generic model which can be applied for various types of AVs, 

environmental and traffic conditions to estimate the collision risks based on the 

characteristics of the environment, human driver, traffic scene and technical reliability of the 

vehicle.  
 

1.3. History of driverless (self-driving) cars 

     Almost a century ago, the ideas of substituting errant human drivers with technology 

started to emerge (Maurer et al., 2016). Thanks to the technological advancements in 

aviation and radio engineering first remote-controlled vehicle was unveiled in the US, on 5th 

of August, 1921 (Maurer et al., 2016; Kellerman, 2018). However, with current definitions 

of self-driving vehicles, that invention is seen to be neither self-driving nor driverless as the 

driver (or navigator) was just outside the vehicle. About two decades later, in 1939, General 

Motors exhibited a creative conception and vision of the then-distant future technological 

innovations mainly in the realm of transportation (Auer et al., 2016). One of the thrilling 

showcases at the 1939 World’s Fair in New York was the GM’s “Futurama: Highways & 

Horizons” which introduced one of the contemporaneous concepts of driverless cars to the 

fairgoers (Lipson and Kurman, 2016). Although the main emphasis of Futurama was placed 

on automated highways and vehicles, the driver was still required to take the controls and 

carry out instructions which were going to be issued by “experts” and transmitted to the 

driver via radio (Maurer et al., 2016, p.49). The reliance on the driver to decide on or perform 

driving tasks, kept these concepts and developments under the category of radio-controlled 

rather than driverless vehicles. 

     The second half of the 20th century witnessed new endeavours to realise automated 

driving. Massive investments in the military sector during the World War II resulted in the 

development of technologies such as computers, laser, radar, magnet detectors and guide-

wire principle. After the war, some of these technologies were crossed into civil industries 

including car manufacturing and even play a critical role in the design of today’s driverless 

cars (Clark, Parkhurst and Ricci, 2016; Lipson and Kurman, 2016, p.118). Media also played 

its role as in 1953 George Gibson put forward the idea of crash-proof highways and 

development of cars equipped with automatic pilots in the Mechanix Illustrated magazine. 

One of the clearest depictions of automated driving appeared in an advertisement which was 
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published in LIFE Magazine, in 1956 (Maurer et al., 2016). This was followed by a TV 

programme that was broadcasted by Disney in 1958. ‘Magic Highway U.S.A.’ tried to 

present an imaginary picture of the future transportation where punch cards could be used to 

code a destination into an automated vehicle guided by coloured highway lanes (Anderson 

et al., 2014; Lipson and Kurman, 2016, p.121).  

     Apart from the futurists who had envisaged vehicles driving themselves without any 

human interventions, the actual prototypes of driverless cars came into view from robotics 

labs in the 1980s and 1990s (Lipson and Kurman, 2016, p.155). For instance, the DARPA 

Autonomous Land Vehicle (ALV) was assembled on an all-terrain platform with an array of 

sensors ranging from video cameras to laser detectors. The vehicle enclosed six computer 

racks programmed with algorithms and receiving images from a camera situated on the 

rooftop of the vehicle to steer safely along the path without need for human assistance. The 

ALV testing started in 1985 at a speed of three km/h over a one-kilometre straight route. 

Over the following two years, the ALV was upgraded to complete longer courses at faster 

speeds with varying turns and pavement types, while circumventing obstacles (Auer et al., 

2016). Other attempts were also made by the German autonomous vehicle pioneer Ernst 

Dickmanns who created several prototypes of robot cars that benefitted from probabilistic 

approaches and parallel computers to drive themselves (Vishnevsky and Kozyrev, 2016). 

Simultaneously, in Italy, Professor Alberto Broggi built a vehicle that exploited machine 

vision software to recognise and follow coloured lane markers (Lipson and Kurman, 2016). 

Developing and incorporating Advanced Driver Assistance Systems (ADAS) into cars was 

another step towards solving urban traffic problems through automation. Several European 

car manufacturers and research centres invested in multiple projects under the Prometheus 

research programme (initiated in 1986) to provide intelligent driver support systems for 

individual drivers (Brookhuis, De Waard and Janssen, 2019). Well-known examples of 

ADAS technologies are Adaptive Cruise Control (ACC), Anti-lock Braking System, 

Automatic Parking, Blind Spot Monitor and Lane Departure Warning System. As these 

technologies take over driving tasks from human driver, they are believed to increase the 

safety of roads. In contrast, a group of scholars including Lipson and Kurman (2016) do not 

support the staged transition for Autonomous Driving technology to evolve out of ADAS 

because of excessive risks. 

     The beginning of the 21st century coincided with the launch of competitions which is seen 

as a landmark in the evolution of modern driverless cars. For the first time, in 2004, DARPA 

sponsored a competition titled ‘Grand Challenge’ which was designed for field vehicles to 

autonomously (without any driver on board) complete a 150-mile course in Mojave Desert, 

California (Spenko, Buerger and Iagnemma, 2018). None of the 15 participants in the race 
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could reach the final line and the best performer only travelled five percent of the planned 

route (Buehler, Iagnemma and Singh, 2007). The next round was held in Nevada desert in 

the following year where the race was shortened to 132 miles and five vehicles succeeded to 

cross the end line (Broggi et al., 2010). This challenge was followed in 2007 (DARPA Urban 

Challenge), but this time requiring autonomous vehicles to compete in a simulated dynamic 

environment and interact with other vehicles, traffic signals and pedestrians (Spenko, 

Buerger and Iagnemma, 2018). The improved performance and number of vehicles that 

successfully managed to traverse the designed route under more dynamic and uncertain 

circumstances signalled that the attainment of autonomous driving is not far away from 

reality. The prominent presence of universities and scientific institutions rather than top 

leading auto and vehicle manufacturers was the peculiarity of these challenges. This point 

can reflect the significance of software programming against hardware sophistication in 

developing self-driving cars. 

Fig. 1.1: a 20th century concept of driverless cars. LIFE Magazine, January 1956, p. 8. Adopted 
from Maurer et al. (2016, p.51). 

 

     It did not take long after the DARPA competitions that many IT corporations, major car 

manufacturing companies, research institutes and Transportation Network Companies 

(TNCs) set up to unveil their prototypes in testing sites and even on public streets. Google, 

as a known example, was one of the groundbreakers which joined the race and hired 

researchers form the teams who had been engaged in DARPA Challenges to develop its own 

driverless car (Clark, Parkhurst and Ricci, 2016; Meyer and Shaheen, 2017; Vanderbilt, 

2018). Despite its different field of operation, Google has made notable progressions in 
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developing and testing driverless cars and finally in 2010 announced that the prototype of a 

self-driving car (today known as Waymo) was completed (Poczter and Jankovic, 2014). 

Figure 1.2 depicts three types of Waymo self-driving vehicles. Commercialisation plans 

have been also announced by car vendors including but not limited to Mercedes Benz, Tesla, 

Toyota, Audi, BMW, Volvo, Ford, Jaguar, Land Rover, Nissan/Renault, and GM 

(Dimitrakopoulos and Bravos, 2017).  

     In September 2016, a headline from the Daily Telegraph reviled that Uber had planned 

to deploy a fleet of self-driving cars in Pittsburgh to lift its passengers. Although the service 

was claimed to be self-driving, there were two crew members on board: a safety driver and 

an engineer who was in charge of monitoring the performance of the vehicle (Wolmar, 

2018). In addition to TNCs, there have been many other companies emerging or expanding 

in the past decade alone in the UK to design and provide test beds (e.g., HORIBA MIRA, 

RACE), develop software and self-driving technologies (e.g., Wayve), and offer consultancy 

(e.g., TRL, Zenzic). 

     Many technology firms and car manufacturers (including those mentioned above) have 

recently pursued joint ventures to merge their resources, technologies, know-hows and 

expertise into a vehicle which would be capable of safely driving itself and performing all 

driving tasks without any direct human assistance. The co-operation between Daimler AG 

and BMW Group to develop innovative automated driving (Tobin, 2019), the £5.57 billion 

Argo AI joint project undertaken by Ford and Volkswagen (Tobin, 2019), the Autolive Inc. 

and Volvo’s Zenuity (Walz, 2017), and the £3.1 billion agreement signed by Hyundai Motor 

Group and Aptive Plc. in October 2019 (Park and Trudell, 2019), are just a few to name. 

Several similar ventures have been formed in like manner to secure a share for the investors 

and developers in any potential future market for self-driving cars. More recently, start-ups 

like Zoox (now subsidiary of Amazon) and Aurora are looking beyond just AVs and are 

developing concepts and prototypes to blend AVs with electric vehicles (EVs), robo-taxis, 

and logistics. We will discuss the future prospects of autonomous driving in section 2.1.3.  

     The share of universities and research institutes in the evolution of CAVs did not remain 

confined to DARPA competitions. Several universities including Carnegie Mellon 

University, Stanford University, University of Michigan and Massachusetts Institute of 

Technology are influencing and accelerating the development of CAVs technologies (Salter, 

2021). In the UK, Oxbotica was founded by two professors at the University of Oxford in 

2014 and has now become a leading innovator in CAV industry (Hopkins and Schwanen, 

2018).  
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Fig. 1.2: three generations of Waymo self-driving car. Adopted form Vanderbilt (2018). 
 

1.4. Uncertainties over disruptive technologies 

     Historians of media and technology have reported that an emerging technology is often a 

field onto which a wide range of hopes and worries are expressed (Natale and Ballatore, 

2017). Innovation, by its nature is about dealing with unknowns and involves various degrees 

of uncertainty (Tidd and Bessant, 2014). Teece, Peteraf and Leih (2016) also assert that deep 

uncertainty is a prominent feature of connected interdependent economies confronting fast 

technological transitions. Uncertainties revolve mainly around the impacts of innovation, 

whether the technology will perform as expected, what will be the behaviour of market and 

probable changes may be introduced by the governments to regulations (Tidd and Bessant, 

2014). Meanwhile, the degree of uncertainty is subject to steep increase as long as the global 

economy is becoming more interdependent and complex (Teece, Peteraf and Leih, 2016). 

Under such circumstances where there are incomplete facts and figures available to decision 

makers, and they feel themselves under pressure to announce a decision within time 

constraints, heuristics and biases are deemed to give rise to systematic error (Gilovich, 

Griffin and Kahneman, 2002). Much influential work has been done to avoid systematic 

human cognitive biases, but this is not to ignore the inevitability of subjectivity in expert 

knowledge elicitation.  

      Even allowing for the fact that innovation and disruptive technologies can offer 

tremendous competitive advantages to a business or strengthen its existing core competence, 

managing innovation is inherently challenged by some level of uncertainty (Tidd, Bessant 
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and Pavitt, 2005; Gluckman, 2016). Perceived technological uncertainty, in scholarly 

literature refers to inability of an individual to comprehend all or some aspects of 

technological environment (Song and Montoya-Weiss, 2001). Most new technologies do not 

reach the stage of turning into commercial products or services, and a large number of those 

which pass through that stage do not achieve commercial success for developers (Walsh, 

2004; Tidd, Bessant and Pavitt, 2005). Neglecting the trends of disruptive technologies, 

however, can lead to further consequences in terms of losing market share to pioneers of 

innovative technologies which currently seem to be inferior (Tellis, 2006). Thus, conducting 

detailed studies on different uncertain facets of any technologies is vital to avoid mentioned 

losses. Autonomous vehicles as a fast-growing technology are not exempted from those 

uncertainties which provoked prominent academics to urge their counterparts in industry and 

academia to take part in identifying and studying serious AV risks.  

     Lari, Douma and Onyiah (2015) recognise AV technology as disruptive since it displays 

the ability to transform transportation infrastructures, reshape urban landscapes, change the 

way cars are driven and liabilities are split among involved parties. Therefore, AVs are not 

exempted from being subject to uncertainties. When talking about uncertainties it is crucial 

to draw a distinction between epistemic and aleatory uncertainty (Hoffman and Hammonds, 

1994; Renn, 2008; Eldred, Swiler and Tang, 2011; Haimes, 2018). The seventh principle in 

Haimes’ framework for modelling risks in complex and interdependent systems advocates 

that risk analysis of those systems must entail both epistemic and aleatory uncertainties. 

Hoffman and Hammonds (1994) defined that epistemic uncertainty is “due to the lack of 

knowledge” and aleatory uncertainty is “due to variability”. While studying the uncertainties 

around driverless cars, we face both epistemic and aleatory uncertainties. The criticality of 

epistemic uncertainty or “uncertainty on uncertainty” in the AI-assisted systems in AVs has 

been recently acknowledged, and there are ongoing research efforts towards assessing the 

robustness of AVs to rare events (Varshney and Alemzadeh, 2017).  

     Occurrence of worst-case variability and uncertainty may also adversely affect vehicle 

permissiveness, and in some situations can compromise safety of the vehicle (Koopman, 

Osyk and Weast, 2019). Furthermore, in designing intelligent systems, one of the most 

difficult problems is structuring the decision-making core (Chandler and Pachter, 1998). 

Practical reasoning itself, mostly carries implications of uncertainty (Walley, 1996). This 

uncertainty is categorised by Chandler and Pachter (1998) as: 1) unknown parameters; 2) 

unknown dynamics; 3) disturbances; 4) noise; 5) actions of non-co-operative agents; 6) 

actions of co-operative agents; 7) unmeasured or unmeasurable information; and 8) 

erroneous information. In the context of radically new transportation technologies, Rowe 

(1994, cited in Van Geenhuizen and Nijkamp, 2003) made a division into dimensions of 
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uncertainty in the “absence of information”. These dimensions and their definitions are 

summarised in Table 1.2. 

Table 1.2: divisions of technological uncertainty in transportation systems (Van Geenhuizen and 
Nijkamp, 2003). 

 

      

 

 

 

 

                

     Although automated driving systems are designed to eradicate human driver errors and 

reduce the possibility of collisions, there are still several sources of uncertainty and odds of 

failure that can lead to potential safety hazards in these systems. Unreliable, interrupted or 

noisy sensor signals (e.g., GPS data or video signals in adverse weather conditions), 

constraints of computer vision systems, and unpredicted changes in the surrounding 

environment (e.g. unknown driving scenes or unexpected objects on the road) can negatively 

impact the ability and/or capacity of control systems in learning and perceiving the 

environment necessary for making safe and timely decisions (Varshney and Alemzadeh, 

2017). An immediate challenge in the development of an appropriate treatment of 

uncertainty in an analysis of a complex system is the selection of a mathematical structure 

to be used in the representation of uncertainty (Helton et al., 2010). The appropriate 

methodology and modelling techniques are expanded in sections 3.4, 3.5 and 3.6. 
 

1.5. CAV’s structure and urban environment 

     Verifying and validating functional safety of highly autonomous vehicles demands a 

multi-disciplinary approach at every levels of functional hierarchy, from hardware fault 

tolerance, to resilient machine learning, to cooperating with other vehicles, to control 

systems for operation in both structured and unstructured environments, and to effective 

regulatory regimes (Koopman and Wagner, 2017). To adopt a multi-disciplinary approach, 

the overall architecture of AVs and their operational environment need to be defined.  

     Structure of autonomous vehicles can depend on several factors including but not limited 

to autonomy level, adopted technologies, regulatory requirements and purpose of use. This 

makes it almost impossible to speculate a universal structure for AVs. There are yet modules 

Dimension of Uncertainty Description 

Temporal This dimension refers to the prediction uncertainty 
about the future state of the transport technology.  

Structural 
This dimension relates to modelling complexity of a 
transportation system. Number of parameters and 
interactions are determining here.  

Metrical 
The central issues here are the difficulty with deciding 
on an appropriate metrics to measure 
performance/preferences, precision and validity. 

Translational 

This arises from how results of analysis and modelling 
are communicated through the policy context. 
Interpretation of values and objectives of various 
stakeholders becomes vital. 
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in autonomous vehicles that are ubiquitous in different classes and types of AVs: perception, 

planning, and control (Chu, Kim and Sunwoo, 2012; Pendleton et al., 2017; Serban, Poll and 

Visser, 2018; Zhao, Liang and Chen, 2018). Perception module is one of those that is tasked 

to sense the surroundings and gather information of environment and nearby agents to feed 

the planning and decision-making module. The filtered and fused data is then transferred to 

the planning module to be analysed and determine a safe speed, de/acceleration, braking, 

trajectory, path, motion, behaviour, maneuverer, lane changing, etc. for a vehicle in self-

driving mode. The control module continuously monitors the execution competency of an 

AV and translates the planned commands into inputs at hardware level for navigating the 

vehicle (Pendleton et al., 2017). Although the architecture and integration of these three 

modules can differ fundamentally among AVs, every vehicle that is supposed at some point 

to navigate autonomously comprises them.  

     This abstraction helps us to identify risk factors that can arise from the replacement of 

human driver by hardware and software components (e.g., sensors, algorithms and 

actuators). Failure in any module and its components can result in degradation of the 

performance of vehicle and lead to a collision. Apart from the inherent uncertainties and 

risks of novel technologies, new and complex risks can emerge when human factors are not 

entirely absent and a degree of interaction between humans and AVs is still inevitable to 

avoid collisions (Bellet et al., 2019). Among primary steps to locate and estimate safety 

risks, is the comprehension of the structure of a typical autonomous vehicle. The zoom range 

in mapping the structure depends on the theoretical framework and research questions. In 

the present study, the intention is to analyse collision risks from a sociotechnical lens and 

examine how causal variables in different spheres affect the probability of collision in urban 

environments. Based on that, the structure outlined above can provide sufficient insights into 

the mechanism and functionality of an AV. 

     According to Bellet et al. (2019) urban traffic is the most complex scenario among others 

for AVs. Presence of various agents, closure or obstruction of roads, volatile traffic 

situations, compliance with traffic rules and discrepancies in road infrastructure as well as 

driving behaviour of other road users mandate AVs to constantly perceive their surroundings 

and react to changes (Pendleton et al., 2017). The aforementioned challenges give rise to 

both exposure and likelihood as two determinants of hazard. On the other hand, cities are a 

major part of transportation networks that currently host large number of human-driven 

vehicles (HDVs) and CAVs are anticipated to replace them. This makes urban areas perilous 

in nature for CAVs. 
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     An extremely difficult task in urban driving is to predict the trajectories of agents in 

scenes (e.g., intersections and roundabouts) in which their behaviours have clear interactions 

(Luo et al., 2020; Villagra et al., 2020). This requires a CAV’s planning unite to receive, 

process and analyse information in timely and precise manners and feed planned decisions 

into the control unite. Planning in dynamic environments is structurally reliant on a predict-

and-plan mechanism. In the prediction phase, a planner depends on a forecasting module to 

map future positions of mobile traffic agents, and during the planning phase, the prediction 

is used for generating a safe path and behaviour for the ego vehicle (Hardy and Campbell, 

2013; Sarkar et al., 2017).  

     The control module in CAVs must also handle emergency situations to avoid colliding 

with appearing obstacles and moving traffic participants such as pedestrians and rapidly 

approaching vehicles (Berntorp, 2017). The control block is in charge of computing adjusted 

control commands and adopts the reference trajectories from the motion planner (Berntorp 

et al., 2018). The control commands are subsequently sent to the actuator control unit which 

executes functions such as steering, (de)acceleration and breaking (Pérez, Milanés and 

Onieva, 2011). Any error or delay in receiving, processing and performing control 

commands can result in a collision. Autonomous driving remains yet as a challenge due to 

the immensely complex real-world urban environments and an infeasibility to test AVs in a 

wide variety of scenarios (Cai et al., 2020). In this sense, risk analysis provides insights into 

safety critical situations and will enable designers, regulators and policymakers to make risk-

informed decisions. 
 

1.6. Research objectives 

     The research objectives actively state how this study plans to address the specified 

research questions in table 1.1 (Farrugia et al., 2010). First, to locate the knowledge gaps 

and design a review framework for classifying relevant publications (e.g., journal articles, 

conference papers, technical reports, white papers, policy documents, etc.) that recognise the 

collision risk for AVs. The same framework should include a protocol for identifying the 

influential risk factors which can degrade the safe operation of AVs (in terms of collision 

risk) in urban environments. 

     Second objective is to construct a causal network (aka Bayesian Belief Network) which 

can be capable of estimating the collision risk for AVs in urban environments. Such model 

must reflect the influential strength between risk factors in the model. Expert knowledge can 

be fed into the model to assign weights to causal links in the model. The model will provide 

a tool for resolving the third research question. 
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     Running a sensitivity analysis to determine the affectability of the outcome (i.e., collision 

risk index) against the influential risk variables is the next research objective. This can 

address the fourth research question of this thesis. Sensitivity analysis is a common approach 

for peritonising research in risk assessment studies (Christopher Frey and Patil, 2002; 

Saltelli, 2002; Saltelli et al., 2008, p.11). Sensitivity analysis can be performed by using the 

BBN model. 

     Finally, possible policy implications will be discussed. Sensitivity and scenario analyses 

can indicate where policymakers need to concentrate their attentions in assessing safety 

implications of AVs. Some of the policy implications in section 5.3 of this thesis were 

merged into the response for a consultation on UK Connected and Automated Mobility 

(CAM) which was opened in July 2021 (Ramchurn et al., 2021). 
 

1.7. Conclusions and structure of the rest of thesis 

     The desire for developing autonomous mobility means has a longer history than just a 

few past decades. However, the recent technological advancements, in particular AI, have 

accelerated the development of CAVs. The discussions about uncertainties over the 

performance of CAVs in complex traffic scenarios, lack of sufficient and reliable historical 

data, and the fatal accidents involving CAVs in recent years all signify an urgency for 

identifying and analysing the factors that can lead to collision as far as AD is concerned. 

Therefore, identification and mitigation of those factors is necessary for creating a risk 

profile, computational risk models, and informing future policies based on reliable estimates. 

In this way, multi and interdisciplinary approaches can broaden the scope of analysis and lay 

a foundation for socio-technical synthesis of findings. 

     The rest of this thesis proceeds as follows. Chapter two provides a literature review on 

definitions, structure, operations, stakeholders and risks of CAVs. Chapter three discusses 

and develops the methodological approaches, Bayesian Belief Networks as the modelling 

framework, types of data and the means for collecting them, data analysis tools and the main 

assumptions which were made to construct the BBN model. Chapter four presents the 

findings including the identified risk factors, the BBN model, expert opinions, scenario and 

sensitivity analyses. Chapter five interprets the results, relates them to the research questions, 

recognises the research limitations, and explores the policy implications for safe operation 

of CAVs in urban environments. Finally, chapter six concludes the thesis with the main 

findings and contributions, key policy implications, and potential areas for future research. 
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2. Literature review 

     The literature review chapter consists of three main sections. The discussions around 

AVs, their significance in the future mobility, benefits, definitions, and enabling 

technologies are presented in 2.1. The safety concerns and a high priority for risk-informed 

policymaking are reviewed in 2.2. Finally, in section 2.3 the knowledge gaps are pinpointed, 

and a theoretical framework is proposed. This chapter ends with a summary and conclusions.  

2.1. Autonomous vehicles 

2.1.1. The motives and challenges in designing autonomous systems 

      In fact, endeavours to create systems that have the ability to operate autonomously (i.e. 

without direct human control) originate from ancient times (Ieropoulos, Melhuish and 

Greenman, 2003). Nevertheless, the cross-disciplinary technological advances and the 

growing demand for replacing humans with robots in hazardous missions have driven the 

rapid proliferation of unmanned autonomous systems (UASs) in the past three decades 

(Perhinschi, Napolitano and Tamayo, 2010; Madan, Banik and Bein, 2019; Leslie et al., 

2022). Autonomous systems are currently being developed, deployed and operated namely 

but not exclusively in industrial minerals sector (Rogers et al., 2019), railway maintenance 

sector (Vithanage, Harrison and DeSilva, 2019), harsh environments (e.g. where high levels 

of radiation, temperature or pressure is present) (Wong et al., 2018; Leslie et al., 2022), 

autonomous transport robotics (Aniculaesei et al., 2018), space missions (Frost, 2010; Fong, 

2018), healthcare (Aguiar Noury et al., 2019; Tan and Taeihagh, 2021), unmanned aerial 

vehicles (Zhang et al., 2017), logistics (Stampa et al., 2021), stock-trading algorithms and 

household appliances (Scharre, 2015). The outlined prospects for autonomous systems in the 

literature also promise a more ubiquitous distribution across a wider range of industries and 

that they will become an integral part of our day-to-day lives in the near future (Lyons et al., 

2017; Mostafa, Ahmad and Mustapha, 2019; Nahavandi, 2019).  

     There are various reasons and purposes for heightening the autonomy of different systems 

in diverse disciplines. For instance, mitigating latency, cost-effect operation in long term, 

undertaking maintenance in the face of failure or damage, and extending the scientific team 

through virtual presence are among the main motives for equipping a space vehicle with 

autonomous systems (Frost, 2010). In railway maintenance, the introduction of robotic and 
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autonomous systems (RAS) is expected to achieve cost benefits and release technicians from 

working under unfavourable and unergonomic conditions (Vithanage, Harrison and DeSilva, 

2019). Furthermore, the crucial role of autonomous machines in lowering workload, 

increasing speed, improving efficiency, effectiveness and reliability in today’s industrial 

setting is underscored in Rogers et al. (2019). In addition, improving the self-sufficiency of 

machines in a way that they can be relied on to act in a self-directed manner is a primary 

motivation to increase a machine’s capabilities (Bradshaw et al., 2013; Fong, 2018). 

Nonetheless, there remain challenges, questions and uncertainties about creating 

autonomous systems, levels of autonomy and how they can be measured, and the feasibility 

for an artificial system to reach full autonomy. 

      Despite the clear tendency towards fitting autonomy into systems and the promising 

applications in the successful examples described above, obstacles remain in the way of 

integrating autonomous systems into the existing platforms. Autonomy, undeniably, 

necessitates fundamental analysis from both theoretical and philosophical points of view 

(Hexmoor, Castelfranchi and Falcone, 2012). In practice, it becomes even more crucial to 

address key uncertainties and questions while designing an autonomous system. For 

example, in systems which possess adjustable autonomy it is critical to determine whether 

and how such a system should hand over decision-making control to another agent or entity 

depending on the situation (Scerri, Pynadath and Tambe, 2002). Bradshaw et al. (2013) 

identified seven prevalent misconceptions about autonomous systems. The article opposes 

the idea of “full autonomy” and casts doubt on whether such a concept is either possible or 

desirable. It also argues that higher autonomy of autonomous systems requires different sorts 

of human skills and expertise and not necessarily fewer or no human control. Even if 

possible, full autonomy does not eliminate the need for human-machine collaboration 

(Bradshaw et al., 2013). Mostafa, Ahmad and Mustapha (2019) specified environment’s 

dynamism complexity, heavy workload, and risk measurement as the roots of software and 

hardware challenges in developing autonomous systems. They subsequently projected seven 

requirements (i.e. representation, measurement, distribution, adjustment, human–agent 

interaction and assessment) of formulating adjustable autonomy. Above all other, the central 

question and one of the main concerns about autonomy is how to amalgamate ethics into 

intelligent autonomous systems (Charisi et al., 2017; Winfield et al., 2019). This dilemma 

is among major obstacles to mass deployment of AVs on public roads and warrants 

interdisciplinary research approaches (Bonnefon, Shariff and Rahwan, 2016; Maurer et al., 

2016; McBride, 2016).   

     Another difficulty in developing autonomous systems is the flexibility of the term 

‘autonomous’ and its dependence on the context (Ieropoulos, Melhuish and Greenman, 
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2003). The definitions and aspects of autonomy are going to be more elaborated in sections 

2.1.4 and 2.1.6. Hereupon, analysing the dimensions of any context that we aim to evaluate 

autonomy in that, is inevitable. Similar to other fields, the notion of autonomy has provoked 

serious debates in the realm of AVs and needs rigorous consideration. Promising benefits of 

autonomous systems continue to provide enough incentives to overcome the challenges. 
 

2.1.2. Perceived benefits for AVs  

     Having explained in the introduction chapter, one of the main goals for creating a vehicle 

without human driver is improving safety as the very first concepts of AVs arose from the 

high number of fatalities that was effected by the mass motorisation of transportation system 

in the United States (Maurer et al., 2016, p.95). Figures show that more than 90 percent of 

fatal accidents in the US involve human factors such as alcohol, drug, speeding, and 

distracted driving (Katyal, 2013; Fagnant and Kockelman, 2015; Kalra and Paddock, 2016; 

Ryan, 2019). Eliminating human from the loop, if other functions of the technology are at 

least as competent as human drivers, can make an enormous contribution to safety of 

vehicles. Indeed, numerous articles and papers put emphasis on the safety aspect of AVs to 

benefit humans (e.g., Katyal, 2013; Lutin, Kornhauser and Lerner-Lam, 2013; Lari, Douma 

and Onyiah, 2015; Kalra and Paddock, 2016; Chan, 2017; Faisal et al., 2019; Rashidi et al., 

2020; Lundgren, 2021). This is not to say that AVs are risk free, but just to demonstrate how 

excluding human factors and errors can reduce the risk of fatalities (Milakis, Van Arem and 

Van Wee, 2017). 

     In every society, there are people who have limitations to drive a car by themselves. AVs 

can offer more accessibility and independence to elders, those without a valid driving license 

(including teenagers and kids), those suffering from severe disabilities and persons under the 

impression of drug or alcohol (Lari, Douma and Onyiah, 2015; Ryan, 2019). Increased 

efficiency and productivity are also two perceived benefits for AVs. The occupant(s) of a 

self-driving car can use his/her time more efficiently whilst do not need to actively drive 

(Lutin, Kornhauser and Lerner-Lam, 2013; Manfreda, Ljubi and Groznik, 2021). The vehicle 

is by default programmed to identify better (shorter and/or less congested) routs (Lari, 

Douma and Onyiah, 2015) and is capable to operate in a platoon (Zhang et al., 2020), thus 

reduction in fuel consumption can be achieved. Reduction in operational costs of freight 

vehicles and permitting the transit vehicles to operate for longer hours are the presumable 

benefits for freight industries (Schlossberg et al., 2018). There is ongoing debate about the 

impact of AVs on traffic congestion (e.g., Litman, 2017), but the fuel consumption is 

believed to decrease (Katyal, 2013; Litman, 2015; Faisal et al., 2019). If realised, this will 
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directly and positively impact the environment due to reduction in greenhouse gas (GHG) 

emissions (Chan, 2017; Milakis, Van Arem and Van Wee, 2017).  

     Capacity has often a bold presence among the perceived benefits for AVs (Lari, Douma 

and Onyiah, 2015). According to cost-benefit analyses that were made, the adoption of an 

automated system on the British motorways was projected to be repaid by end of the century, 

to increase the road capacity by at least 50%, and to prevent around 40% of the accidents 

(Lari, Douma and Onyiah, 2015). Overall, one estimate from the Eno Center for 

Transportation Studies, a DC-based industry research group, put cost savings in the range of 

$25 billion to over $450 billion, depending mainly upon the rate of technology adoption 

(Lari, Douma and Onyiah, 2015). Although there are on-going debates about the impact of 

AVs on carbon emissions, some studies  (e.g., Fagnant and Kockelman, 2015; Taiebat et al., 

2018) suggest that AVs have great potentials for contributing to carbon saving policies in 

road transport sector. Enabled mechanisms such as eco-driving (Gawron et al., 2018), 

vehicle light-weighting (Taiebat et al., 2018), rightsizing (Rashidi et al., 2020), shorter 

headway distances (Lu and Tettamanti, 2021), and efficient route planning (Massar et al., 

2021) are expected to lower GHG emissions. 

     AVs are supposed to transform the way transportation systems are operating around the 

globe and their impacts on traffic safety and traffic congestions are predominantly cited in 

the literature (e.g., Ye and Yamamoto, 2019). This can lead to change in the travel behaviour 

of people and alter different social structures and urban design. Car and ride sharing due to 

pushing the existing barriers and emergence of new business models will become more 

beneficial and popular among travellers (Abduljabbar et al., 2019). Similarly, shift in car 

ownership may occur (Greene, 2016; Guerra, 2016). Consequently, land use (e.g. parking 

lots and sprawls) is subject to change (Riggs, 2018). Although increased safety is among 

primary expectations, the possibility for collision will be still present (Kalra and Paddock, 

2016). Therefore, in case if there is any accident, sharing liability between involved parties 

with existing legal terms in many parts of the world poses a dilemma (Katyal, 2013; 

Taeihagh and Lim, 2019; Davey, 2020; Kassens-Noor et al., 2020). 

       In the modern world, cars are a part of social identity of individuals. Transferring the 

driving skills of people to cars may trigger social and personal identity crisis (McBride, 

2016). Controlling a car can mean as a form of freedom for a group of people, then loss of 

freedom may equate to loss of identity. Apart from societal impacts, the economy might be 

affected in different ways as well. KPMG estimated in a report that CAVs can create 320,000 

jobs alone in the UK by 2030 (KPMG, 2015b). On the other hand, many professions such as 

taxi and lorry drivers inevitably and gradually fade (Thierer and Hagemann, 2015). 
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2.1.3. Anticipations on the future of AVs  

     While many concerns about the safety and security of AVs remain unaddressed, the rush 

to commercialise the technology and the race towards shaping the regulatory environment 

due to the fierce competition between multiple developers are adding to the complication of 

the problem. Reviewing the statistics on the investments and anticipations for the AV fleets 

to take over the roads from conventional vehicles reveals that we are not far from that point. 

Some observers estimated limited availability of driverless cars by 2020, with wide 

availability to the public by 2040 (Lari, Douma and Onyiah, 2015). In another study released 

in early 2014, IHS Automotive predicted that nearly 54 million self-driving cars will hit the 

roads worldwide by 2035 and almost all of vehicles are expected to be autonomous after the 

year 2050 (Cohen, 2015). Faisal et al. (2019) investigated the “smart city” agenda and 

prefigured that by 2045 AVs would account for half of the vehicles on roads. Some figures 

also hint that the first commercial generation of AVs must be available for sale in 2025, and 

by 2035, around ten percent of newly manufactured vehicles would be fully autonomous 

(Lipson and Kurman, 2016). The insurance market predicted that in 2025, a “broad-based 

transformation” will begin and all new cars will be equipped with autonomous capabilities 

(KPMG, 2015a).  

     Chan (2017) provided estimates for the time horizons that major AV developers were 

going to release their products. Several of those milestones are now passed, but the promised 

technologies have not become available yet. For example, it was estimated that Toyota and 

Volvo were going to sell “zero fatality” cars by 2020. Similarly, it was expected that Audi 

would introduce fully autonomous vehicles by 2021. Other authors (e.g., Pernestål Brenden, 

Kristoffersson and Mattsson, 2019) had also provided optimistic estimates for realisation of 

fully autonomous vehicles by early 2020s. Litman (2015), however, anticipated that level 5 

AVs will be ready and legal to use before 2030.  

     The tendency towards investing in AV development is growing accordingly. The UK 

government alone has endorsed a plan to invest £200 million in AV research and 

development (McBride, 2016). Almost 5 years ago, the US government started to devise a 

national plan to invest 4 billion dollars over a period of ten years (Lardinois, 2016). The 

budget was allocated to co-operate with the tech companies and auto manufacturers to 

develop and test CAVs. The estimations of potential market size for AVs are promising. By 

2030, it is estimated that the sales of AVs may reach 87 billion dollars (Zhao et al., 2016). 

That is, however, distinct from the figures that Lipson and Kurman (2016) estimated for the 

global market of AVs, worth 38 billion dollars in 2035 (Lipson and Kurman, 2016). 
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     Municipal departments and authorities around the world are revising their policies and 

plans to facilitate the transition and embrace AVs (Faisal et al., 2019). This is mainly because 

urban planners along with other stakeholders need to proactively plan, ensure provisions and 

improve infrastructures for adopting AVs (Khan et al., 2019). Faisal et al. (2019) listed the 

names of 36 cities in the UK, US, Netherlands, Australia, Japan, UAE, Finland, Sweden, 

France, Norway, Canada, Singapore, and Korea which had started pilot testing of AVs before 

2017. Several other cities such as Auckland in New Zealand, São Paulo in Brazil and Buenos 

Aires in Argentina were also preparing to test AVs (Faisal et al., 2019). In the European 

Union, recent projects have reported successful testing of autonomous transit in seven cities, 

conveying more than 60,000 passengers while sharing the infrastructure with other road 

users (Rojas-Rueda et al., 2020). These reports besides the recent prototypes of partially 

automated vehicles all indicate that there is willingness to develop and adopt vehicles which 

require less or no human interventions.  

     In different modelling and simulation attempts for studying AVs (e.g., Fagnant and 

Kockelman, 2015; Lu and Tettamanti, 2021), adoption rate (aka penetration or deployment 

rate) is among underlying assumptions. The magnitude of some outcomes such as safety 

improvements and GHG reduction depend on the proportion of AVs to conventional 

vehicles. The literature suggests a broad range estimates for adoption of CAVs in the next 

three decades. Whereas some optimistic predictions that expect 100% adoption by 2040, 

there are other estimates that offer only a small proportion (i.e., 15%) of vehicles will be 

CAVs by 2050 (Rashidi et al., 2020). Any mass adoption of AVs, however, is contingent on 

overcoming barriers such as integration of several intelligent vehicles, regulations, costs, 

cybersecurity, safety, liability, and data privacy (Raj, Kumar and Bansal, 2020). 
 

2.1.4. The notion of autonomy in AVs 

     Despite the usefulness of the taxonomies provided for autonomous systems to categorise 

them based on their capabilities, there are still shortcomings in these categorisations which 

analysts must be aware of them. First, such representations appear to be over-specific in 

some dimensions, while are vague in others and even some descriptions contain hidden 

assumptions (Hancock, 2019). It is also arguable that whether we can measure machine 

autonomy on a single ordered scale with increasing levels (Bradshaw et al., 2013). The 

conceptualisation of levels of autonomy might not be even a developmental road map for 

manufacturers. Ranking autonomy according to the function is problematic too, since 

autonomy is more related to the context of activity (Bradshaw et al., 2013). Such typologies 

can offer technical clarity to some extent, yet there are ambiguities over functionality and 
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system specifications for each step in the automation ladder. Hence, care must be taken about 

these caveats when applying those scales for analysing autonomous systems. 

     The topic of autonomy in ground vehicles in general, and particularly in cars, has attracted 

considerable attention across different disciplines comparing to other applications of 

autonomous systems (Xie and Zhong, 2016). After all, there are only a few organisations 

who have already provided a gradation and definitions for each level of autonomy in AVs. 

The Society of Automotive Engineers (2016) divided the autonomy (automation) for on-

road vehicles into six levels from ‘No Automation’ to ‘Full Automation’ (please see Table 

2.1). Similarly, the National Highway Traffic Safety Administration (NHTSA) defined five 

levels of vehicle autonomy for vehicles (please see Table 2.2). German Federal Highway 

Research Institute (BATs) proposes a similar taxonomy for varying levels of vehicle 

autonomy (Kaur and Rampersad, 2018). Frost, Goebel and Celaya (2012) also presented a 

categorisation for autonomous functions based on a four-stage information processing model 

of humans (figure 2.1). An autonomous system gathers data form multiple sources, analyses 

the data and makes a decision based on the processed data, and finally implements the 

decided action. Tables 2.1 and 2.2 provide classifications from two different organisations. 

Table 2.1: illustrates the levels of autonomy (automation) for on-road vehicles (SAE International, 
2016). 

SAE 
Level 

Name Narrative Definition 

Execution of 
Steering and 

De/Accele 
ration 

Monitoring 
of Driving 

Environment 

Fallback 
Performance 
of Dynamic 

Driving Tasks  

System 
Capability 
(Driving 
Modes) 

Human driver monitors the driving environment  

0 
No 

Automation 

Full-time performance by human 
driver of all aspects of dynamic 

driving task 
Human driver 

Human 
driver 

Human driver n/a 

1 
Driver 

Assistance 

Driving mode-specific execution 
by a driver assistance system (e.g., 

steering or de/acceleration 

Human driver 
and system 

Human 
driver 

Human driver 
Some 

driving 
modes 

2 
Partial 

Automation 

Driving mode-specific execution 
by one or more driver assistance 

systems 
System 

Human 
driver 

Human driver 
Some 

driving 
modes 

Automated driving system monitors the driving 
environment 

  

3 
Conditional 
Automation 

Driving mode-specific 
performance by an automated 

driving system with the 
expectation that human driver will 
appropriately respond to a take-

over request 

System System Human driver 
Some 

driving 
modes 

4 
High 

Automation 

Driving mode-specific 
performance by an automated 
driving system even if human 
driver does not appropriately 

respond to a take-over request 

System System System 
Some 

driving 
modes 

5 
Full 

Automation 

Full-time performance by an 
automated driving system under 

all road/environmental conditions 
System System System 

All driving 
modes 
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 Table 2.2: NHTSA levels of vehicle autonomy and examples of automated tasks for each level (Rödel 
et al., 2014). 

                                        

     The degree of autonomy for an autonomous system depends on how autonomously it is 

capable of gathering data, processing them, making decisions and implementing them. The 

performance of an AV can be simplified in the basic functions above. An AV detects an 

object on the road through its sensors, analyses different characteristics of the object (e.g. 

type, size, distance, speed, direction, etc.), weighs up possible options available and decides, 

for example, to accelerate or deaccelerate, and finally puts that decision into action. Several 

papers tried to equate autonomy to intelligence and measure the level of system intelligence 

instead of examining the autonomy grade of the system (Clough, 2002). A system can be 

notably intelligent, but simultaneously not able to act autonomously. As a consequence, 

ranking the autonomy level of a vehicle is a critical step before studying it. However, 

definitional ambiguities about autonomy obstructs understanding and engineering 

 Description  Example of (driving) automated tasks 

Level 0 
No-Automation: The driver is in 

complete and sole control of the primary 
vehicle controls 

none – all driving tasks are performed by driver 

Level 1 

Function-specific Automation: 

Automation at this level involves one or 

more specific control functions.  

Examples include electronic stability control or pre-

charged brakes, where the vehicle automatically assists 

with braking to enable the driver to regain control of 

the vehicle or stop faster than possible without 

assistance. A parking assist helps the driver with 

auditory feedback out of the parking space.  

Level 2 

Combined Function Automation: This 

level involves automation of at least two 

primary control functions designed to 

work in unison to relieve the driver of 

control of those functions.  

An example of combined functions enabling a level 2 

system is adaptive cruise control in combination with 

lane cantering. Steering is handled automatically by the 

vehicle. Exceeding the speed limit is prevented by a 

cruise control. In the stop-and-go traffic the speed and 

the distance to the car in front are controlled by an 

active cruise control.  

Level 3 

Limited Self-Driving Automation: 

Vehicles at this level of automation 

enable the driver to cede full control of 

all safety-critical functions under certain 

traffic or environmental conditions. The 

driver is expected to be available for 

occasional control, but with sufficiently 

comfortable transition time.  

The Google car [by then] is an example of limited self-

driving automation. The driver is supported by the 

parking assist. When vehicle is switched to 

autonomous mode and it handles accelerating, steering 

and braking completely autonomously. When reaching 

the highway exit, the car requires that the driver takes 

back control. 

Level 4 

Full Self-Driving Automation: The vehicle 

is designed to perform all safety-critical 

driving functions and monitor roadway 

conditions for an entire trip.  

Such a design anticipates that the (remote) driver will 

only provide destination or navigation input. During the 

ride the car operates within the speed limits, 

accelerates, brakes and steers fully autonomously, and 

avoids obstacles while the driver may be engaged in 

other activities than driving.  
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autonomous systems as well as evaluating the degree of their autonomy (Froese, Virgo and 

Izquierdo, 2007). Durst and Gray (2014) reported that defining autonomy in a 

comprehensive and quantitative manner is among three biggest challenges that the ground 

vehicle test and evaluation (T&E) community confronts. Representatives from disparate US 

agencies initiated a joint effort in July 2003 to address autonomy issues of unmanned 

systems. Forming a common vernacular terminology (i.e. standard terms and definitions) to 

articulate capabilities as well as problems and devising metrics, methods and processes for 

measuring the autonomy of unmanned systems were overall objectives of this initiative 

(Huang et al., 2005). Characterising the levels and facilitating the evaluation and 

measurement of autonomy can be the main contributions of such a framework. Pollard, 

Morignot and Nashashibi (2013) proposed an ontology-based model and define a spectrum 

of automation/autonomy levels exclusively for ground vehicles to represent knowledge. 

 

 

Fig. 2.1: basic functions of an autonomous system (Frost, Goebel and Celaya, 2012). 

 Although full autonomy of ground vehicles has been a major objective of the Intelligent 

Transportation Systems (ITS) community (Pollard, Morignot and Nashashibi, 2013), the 

concept of full autonomy has received fierce criticisms. According to McBride (2016), a 

fully autonomous car which has no reliance on infrastructure or connection with central 

systems must be self-determining, self-correcting, self-healing and ultimately self-aware. 

Regardless of feasibility and achievability, he casts doubt on desirability of creating such a 

fully autonomous car. Engineers, designers, technologists and manufacturers who are more 

concerned with technical aspects of the technology, are seriously challenged and constrained 

in dealing with social, moral, and political issues (Hancock, 2019). Thus, for many designers 

and manufacturers keeping the human driver in the loop and assigning some (but not all) of 

driving tasks to machine has been a start point towards fully automated/autonomous 

vehicles.  

     In the hierarchical control structure for an autonomous vehicle developed by Qu (2009), 

multi-level autonomy (control) plays the key role. In this structure (figure 2.2), reaching 

high-level tactical decisions is facilitated through human-machine interactions and a multi-

objective decision-making construct which is capable to learn online (Qu, 2009). Adjustable 

autonomy, accordingly, can be a solution for autonomous systems which operate in dynamic 

environments (Scerri, Pynadath and Tambe, 2002; Mostafa, Ahmad and Mustapha, 2019). 

Adjustable autonomy is the underpinning principle of semi-autonomous vehicle (SAVs) 

architecture. The distributed autonomy between human and machine, however, can be a 

Information 

acquisition 

Information 

analysis 

Decision and 

action selection 

Action 

implementation 
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source of risk. For instance, Hancock (2019) asserts that the issue of taking over or handing 

over the control of a semi-autonomous ground vehicle in cases of emergency or likelihood 

of collision is not going to be as smooth and straightforward as in civil aviation. In the same 

context, drowsiness and overreliance are mentioned to be typical problems in the behavioural 

adaptation to Advanced Driving Assistance Systems (ADAS) (Eskandarian, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

Fig. 2.2: control hierarchy for AV systems (Qu, 2009) 

 

2.1.5. Definitions of AV from the perspective of diverse disciplines 

     Although it may not be always feasible to arrive at exact, precise and clear-cut definitions 

for a complex phenomenon or system, defining the boundaries, recognising the intended 

functions and outlining key entities can still yield insight into mechanisms and functional 

implications of them. This applies to AVs as well where there is much ambiguity on the 

definition of a ‘driverless’ or ‘autonomous car’ and a universal or at least widely agreed 

definition for autonomous vehicles is still missing (Wolmar, 2018). Drawing a comparison 

between the definitions provided for AVs in diverse disciplines as well as desired 

functionalities might help to ease this problem if not eliminate it.  
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     Vellinga (2017) in an article discussing the legal challenges of driverless cars, refers to 

this technology as “motor vehicle that can operate during a whole trip without human 

interference; it does not require a user to intervene when a problem occurs”. In a general 

description for AVs, Li et al. (2016) also pointed towards the ability of the vehicles to 

perceive information, retain knowledge, and adopt adaptive behaviours within an 

environment. From the transportation perspective, Abduljabbar et al. (2019) considered the 

desired functionality of fully autonomous vehicles as to move safely, in between other 

vehicles on road avoiding obstacles, and pedestrians. The authors further break down the 

overall architecture of AV technology into two major components which are hardware (e.g. 

sensors and actuators) and software (e.g. AI algorithms). Similar definition is adopted in the 

field of distributed computers and communication networks. Vishnevsky and Kozyrev 

(2016) define that an autonomous car is an autonomous vehicle which is capable of fulfilling 

main transportation tasks of a conventional car plus sensing its surrounding environment and 

navigating without human instruction. This is also endorsed by Craig and Liu (2018) in their 

article where they evaluate the impacts of AVs on real estate sector. The ambition for such 

a vehicle is claimed to be navigating and sensing the environment without human input and 

reach a level to transport without encountering traffic, struggling to find a car park and even 

needing to stay awake (Craig and Liu, 2018). 

     Governmental departments and organisations have offered definitions for AVs too. For 

instance, UK Department for Transport initially defined driverless cars as “vehicles with 

increasing levels of automation will use information from on-board sensors and systems to 

understand their global position and local environment. This enables them to operate with 

little or no human input (be driverless) for some, or all, of the journey” (Department for 

Transport, 2015). The US Department of Transport, however, based its definition of “highly 

automated vehicles” on the SAE automation levels and describe them as “automated vehicle 

systems that are capable of monitoring the driving environment as defined by SAE J3016” 

(Department of Transport, 2016). From these definitions and expected performance we can 

conclude that excluding the human driver from the loop (at least for a part of a trip), sensing 

the surrounding environment and navigating safely are three prominent features of AVs. 
 

2.1.6. Discrepancies in the terminology 

     Interchangeably, and even confusingly, driverless, self-driving, automatic, automated 

and autonomous vehicles are the main terms employed in the academic and technical 

literature to refer to vehicles or cars which perform some or all driving tasks by themselves. 

Aside from ‘driverless’ and ‘self-driving’ cars which are more popular terminology in news 

articles and non-technical literature, autonomous vehicles and automated vehicles have 
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provoked more debates on the grounds that each has a fundamentally different definition. 

Clough (2002) describes that the basic difference lies in delegating decision making to one 

or a collection of intelligent autonomous systems, whereas an automated system is one that 

implements a pre-programmed process. Similarly, Frost (2010) explains that an automated 

system is not designed to independently generate possible courses of action and make a 

choice between them and simply follows a script, but an autonomous system tries to achieve 

its defined objectives without human interference and does make choices. SAE International 

(2016) also considers the confusion and draws a line between these two terms: according to 

the Oxford English Dictionary, since automation involves the replacement of human labour 

with electronic or mechanical devices, then automation is a more precise term for those 

systems that perform dynamic driving tasks. Kellerman (2018) scrutinises the differences 

between these two terms. It is maintained that automation denotes self-operating 

mechanisms that are now an integral element in humans’ operations, while the timings are 

still decided by human agents. On the other hand, autonomy in the context of mobility and 

driving refers to two automatic elements embedded in and autonomous vehicle (AV). First, 

automated decision-making processes for driving tasks during the entire vehicle journeys, 

and second, a wholly automatic operation of the vehicle including sensing its environment, 

navigating, driving, transmission and ignition. Therefore, “autonomous mobility via AVs, as 

well as via other mobility modes, constitutes the most advanced level for the wider range of 

automated mobility modes and technologies” (Kellerman, 2018). 

     The necessity for clarification on nomenclature before proceeding to an examination on 

different aspects of these vehicles is stressed in Hancock’s work (2019) too. The focus of his 

discussion is upon differences between the definitions of automation and autonomy. 

Automation is defined as “automated systems are those designed to accomplish a specific 

set of largely deterministic steps, most often in a repeating pattern, in order to achieve one 

of an envisaged and limited set of pre-defined outcomes” (Hancock, 2019). An autonomous 

system, on the contrary, is characterised as a generative system which learns, evolves and 

constantly adapts its functional capabilities based on the contextual and operational 

information that it gathers (Hancock, 2019). Moreover, autonomous agents pursue goals that 

are generated within rather than adopted from other agents (Hexmoor, Castelfranchi and 

Falcone, 2012). Theoretically, an automated vehicle system can be denoted as an 

“autonomous” system, only when all the dynamic driving functions, at all driving 

environments, can be performed by the vehicle’s automated systems (Faisal et al., 2019). 

The discrepancy between autonomous and automated systems is apparent and requires 

researchers to pay immediate attention to this notion to avoid confusion, misperception and 

diminished credibility (SAE International, 2016).  
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     Besides the disputes over the appropriate terminology to represent the technology, the 

concept of full autonomy in vehicles has received substantive criticisms. For example, 

McBride (2016) argues that a fully autonomous vehicle should rely on no external sources 

of information (i.e. receiving external input) such as GPS. Such a vehicle should be self-

contained and have no dependency upon external sources and merely rely on its own 

capabilities (McBride, 2016). Thus, before recognising that a vehicle is autonomous, its 

dependence on communication and/or co-operation with external agents and entities must 

be questioned. There are driving systems that are truly autonomous as they can complete all 

of their defined tasks independently. However, if these systems still need to rely on 

communication or co-operation with external entities, they should be categorised under co-

operative rather than autonomous (SAE International, 2016). Hence, with the above 

definitions it appears that terms such as connected and autonomous vehicles (CAVs) can 

sound paradoxical and controversial. Hancock (2019) accordingly asserts that although 

autonomy as defined earlier will be born out of pre-existing levels of automation, without a 

doubt, none of the current vehicles on the road can claim to be autonomous.  

     After all, as the term autonomy is concurrently and widely used in the literature and the 

aim of this research is to investigate higher levels of automation, we opt to use connected 

autonomous vehicles (CAVs) to refer to highly automated vehicles in the rest of this thesis. 

CAV has been also used as an abbreviation for connected and automated vehicles in many 

recent academic publications besides policy statements and includes the connectedness 

feature of those vehicles. There are instances where AV is used in the text. In those contexts, 

emphasis is placed on the autonomous (or automated) feature of the technology rather than 

connectedness aspects.  
 

2.1.7. Advancements in pertinent technologies  

     To study and scrutinise implications and risks of CAVs, it can be illuminating to glance 

back and review the development trajectories of technologies and key components enabling 

the core functions and affecting safety records. This also allows breaking down the overall 

system into smaller and less complicated components to be analysed separately and later as 

a whole. For these reasons, this section is dedicated to the technological enhancements which 

have made a notable contribution to the evolution of AVs hitherto. A variety of technologies 

from diverse disciplines must be integrated into a vehicle to achieve autonomous navigation 

in dynamic environments such as urban areas. Computer science, mechanical engineering, 

electronics and electrical engineering as well as control engineering are prominent examples 

of these disciplines (Bimbraw, 2015). Merging innovations from the above disciplines has 

led to improvements in sensory (e.g. LiDAR), communication systems (e.g. DSRC), 
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navigation systems (e.g., GPS), data analysis and data storage (Narla, 2013; Denaro et al., 

2014; Bimbraw, 2015; Lari, Douma and Onyiah, 2015; Russo et al., 2016). More recent 

technological platforms such as could computing and Internet of Things (IoT) have also 

made a major contribution to the development of CAVs, especially in facilitating the 

communication between vehicles (V2V) and infrastructure (V2I) (Guerrero-Ibanez, 

Zeadally and Contreras-Castillo, 2015). In another research, Englund et al. (2018) classify 

enabling technologies within the field of automated driving into five categories. Table 2.3 

summarises these categories and representative examples. In their comprehensive study, 

Winner et al. (2016) mapped a relatively complete picture on and investigated multiple 

facets of ADAS. Sensors, data fusion and environment perception, actuation and human-

machine interfaces are the main focus. In addition to former and state-of-the-art systems, 

they try to portray the future of ADAS considering the current trends of technology 

development. 

Table 2.3: Enabling technology contributing to the evolution of AV technology, adopted from 
(Englund et al., 2018) 

 

     There is an apparent scholarly consensus that autonomous driving is well emerging out 

of pre-existing levels of automation (ADAS) or what SAE names as Automated Driving 

Systems (ADS) (Chan, 2017; Englund et al., 2018; Hancock, 2019). Many (if not all) of the 

above technological advances and innovations have been used in the development of ADAS 

before (Winner et al., 2016). In other words, integration of several driving assistance systems 

can bring about autonomous driving (Lipson and Kurman, 2016, pp.186-194). The 

integration of complementary technologies, quality and breadth of human-machine 

interactions can potentially add to the complexity and to the uncertainties. The notion of 

integration and human-machine interfaces will be covered in coming sections. For that 

 Technology Category Example 

a. 
Position, Localisation and 

Mapping 

Global Navigation Satellite System (GNSS) 

GPS L1/L2, GLONASS, BeiDou and Galileo 

real-time kinematics (RTK) 

b. 
Algorithms for Guidance 

and Control 
Deep learning algorithms 

c. Hybrid Communications 
Dedicated Short Range Communication (DSRC) 

3G/4G/5G/LTE 

d. Sensing and Perception 

Powerful, yet low-cost cameras 

Radar 

LiDAR 

Fusion of Vision 

Online databases from sensor readings 

Vision-based systems to learn from e.g. driver behaviour 

e. 
Technologies for Data 

Ownership and Privacy 

Cooperative Intelligent Transportation Systems (C-ITS) 

Cooperative Awareness Message (CAM) 

Decentralised Notification Message (DENM) 
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reason, exploring the enabling technologies which form the backbone of CAVs and have 

been formerly tested in lower levels of automated driving can offer valuable insights into the 

uncertainty and risk analysis in this project. 
 

2.1.8. The decisive role of AI in developing autonomous systems 

     The invention of semiconductor integrated circuits was just the beginning of the 

subsequent revolutions and breakthroughs in virtually all areas of industrial and economic 

sectors (Mack, 2011). Over the years, computing capabilities have grown to become faster 

and more efficient, but physical components have shrunk in size (Anderson, 2017). In other 

words, smaller devices mean to be faster devices. This trend is known as Moore’s Law in 

academic literature which “predicts that the number of electronic devices that can be 

crammed onto a little chip of silicon will double roughly every 1–2 years” (Anderson, 2017). 

One of the fields which directly benefitted from increased computational power, without a 

doubt, is artificial intelligence (AI) (Yudkowsky, 2008). Thanks to computing power 

increase, many early obstacles of devising AI-based systems are quickly being overcome 

(Warwick, 2013). To reflect the extension and degree of the influence, Kuruczleki et al. 

(2016) indicated AI and machine learning (ML) as the two main pillars of the fourth 

industrial revolution (Industry 4.0).  

     Reviewing the literature on the current studies of AI applications advocates that almost 

every realm and industry is being currently touched by AI or will be in the near future. Well-

known examples are e-commerce and marketing (Cannella, 2018), healthcare and medicine 

(Hamet and Tremblay, 2017; Briganti and Le Moine, 2020), autonomous vehicles (e.g., 

Hengstler, Enkel and Duelli, 2016), education (Wenger, 2014), data processing (Russell and 

Norvig, 2016), banking and finance (Bahrammirzaee, 2010; Rohmer, 2020), aerospace 

industries (Girimonte and Izzo, 2007; Rohmer, 2020), manufacturing (Li et al., 2017), law 

(Abduljabbar et al., 2019) and military. Undoubtedly and despite the widespread ambiguities 

around AI, it is the technology that is altering many aspects of the world (West and Allen, 

2018). Figure 2.3 presents more details about the applications of AI across different 

industries as well as the economic, social and business values that adoption of AI can 

generate in each sector. In some disciplines the pace of change and extent of influence is 

considerable enough to cause deep concerns for prominent scientists and even can be 

considered as a national security issue. In the meantime, massive investments in AI research 

together with fast and remarkable technological progress in other areas (e.g. computability 

and software programming) can manifest the extent of future achievements which might 

completely overshadow the current performance (Hawking et al., 2014). This acceleration 
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has consequently convinced many individuals to call for regulations on AI development and 

imposing restrictions on AI operations (Scherer, 2015). 

 

Fig. 2.3: economic, social and business values which AI can generate in diverse industries. 
Adopted form (Abduljabbar et al., 2019) 

 

     Having mentioned earlier, autonomous driving has also been heavily impacted by the 

advances in AI systems. Figure 2.3 shows travel and transportation which are tightly linked 

with mobility and are expected to benefit most from AI. The inclusion of artificial 

intelligence allows designers to close the gap between purely analytical systems and rule-

based systems which can mimic human decision-making and behaviour (Maurer et al., 

2016). The applications of AI in CAVs are vast and machine learning techniques have been 

broadly adopted to improve the performance of them (Kuderer, Gulati and Burgard, 2015). 

Computer vision (Lipson and Kurman, 2016; Mohammed, Khan and Bashier, 2016), object 

classification (Lipson and Kurman, 2016), steering and navigation (Kuderer, Gulati and 

Burgard, 2015), vehicle path control systems (Maurer et al., 2016; Varshney and Alemzadeh, 

2017), cybersecurity (Alheeti, Gruebler and McDonald-Maier, 2015), in-car problem 

diagnosis (Huang and Rust, 2018) and collision avoidance (Hardy and Campbell, 2013) are 

only a few examples of the wide applications of AI in developing CAVs. 

     Above examples besides other AI-based technologies implanted in CAVs can vividly 

demonstrate the central role of artificial intelligence in realisation of fully autonomous 

vehicles. In fact, the capacity of AV risk mitigation across the literature is evaluated based 

0 20 40 60 80 100 120 140

Travel

Transport & Logistics

Retail

Automative & Assembly

High Tech

Oil & Gas

Chemicals

Media & Entertainment

Basic Materials

Consumer Packaged Goods

Agriculture

Banking

Healthcare Systems/Services

Public & Social Sectors

Telecommunications

Medical Products

Insurance

Advanced Electronics/Semiconductors

Economic, social and business values (%) 

In
d

u
st

ri
es

 u
si

n
g 

A
I t

ec
h

n
iq

u
es

Incremental value from AI usage



Chapter 2 

33 
 

on the AV competence to make driving decisions (Cunneen, Mullins and Murphy, 2019). 

This explains the one billion dollar investment plan which has been announced by Toyota to 

be made in artificial intelligence research (Lipson and Kurman, 2016). The main concern 

with AI, however, is its potential risks (Wadhwa and Salkever, 2017).  Hawking et al. (2014) 

maintain that there are huge benefits that can be derived from deployment of AI, but leaving 

the technology uncontrolled and neglecting the risks might have serious repercussions 

including elimination of human civilisation. Therefore, a very sophisticated and integrated 

risk assessment system must be in place to secure yielding the benefits and avoiding the 

risks. Notwithstanding the exigency of addressing consequential uncertainties around the 

technology, relatively little academic literature has been yet devoted to analysing and 

measuring risks associated with AI utilisation (Yigitcanlar et al., 2020). The need for 

extensive and interdisciplinary research must be recognised for all kinds of risks from safety 

and security to business risks. In addition to adopting an overall and universal approach to 

analyse risks from AI at a catastrophic and existential level (Yudkowsky, 2008; Turchin and 

Denkenberger, 2018), a bottom-up strategy is also required to break down the overall risks 

into narrower and more technical areas to scrutinise them more deeply. In this regard, this 

research project has been proposed to model collision risk of CAVs in urban and suburban 

environments. 
 

2.2. Associated safety risks with AVs 

2.2.1. Uncertainties and risks surrounding the AVs 

     In section 1.3 it has been argued that disruptive and innovative technologies transfer 

and/or transform the risks rather than eliminating them completely. This section explores the 

uncertainties that can pose safety risks while AV technology is deployed in urban regions. 

Lipson and Kurman (2016, p.15) explain that 99 percent of the time, driving is predictable 

and therefore the AI can be trusted to accomplish its tasks with high reliability. In spite of 

that, in one percent of the time, the technology can find itself in an unpredicted situation 

which has not been yet trained to react safely or timely. There are different terminologies in 

the literature to refer to these types of events. ‘Black swans’ (Aven, 2013; Flage and Aven, 

2015), ‘corner cases’ (Lipson and Kurman, 2016, p.16) and ‘unknown unknowns’ (Ward 

and Chapman, 2003; Aven, 2013; Flage and Aven, 2015). The inability to detect and predict 

these events is attributable to the ultimate epistemic uncertainty or lack of fundamental 

knowledge not only about the distribution of a variable but also about the existence of the 

event itself (Paté‐Cornell, 2012). In another hand, occurrence of rare but known events may 

be overlooked by risk analysts. Notwithstanding the rareness, if such events occur, can have 

catastrophic or at least unpleasant consequences. Paté‐Cornell (2012) referes to this type of 
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events as ‘perfect storms’ which the existence is proven or imaginable, but the probabilities 

are still unknown. Hence, it becomes essential to measure the AV operation safety to avoid 

or reduce the collision risk by assessing the drive safety (Shangguan et al., 2020).  

     While biological life forms (e.g. human beings) follow so-called ‘simple’ instinct to react 

to unforeseen events, robots may struggle to decide on the most appropriate course of action 

in a timely manner (Lipson and Kurman, 2016, p.16). For instance, a Tesla S sports car 

(operating in Autopilot mode) collided with a lorry trailer in May 2016 after failing to detect 

it, resulting in the death of the Tesla driver. This was the first reported fatality in over 130 

million miles of testing the automated driving system by that time. The accident was caused 

under extremely rare circumstances of the extra height of the lorry, its white colour under 

the brightly lit sky which blinded the visual cameras of Tesla, combined with the positioning 

of the both vehicles across the highway (Varshney and Alemzadeh, 2017). While a broad 

consensus suggests that autonomous vehicles will improve driving safety, several steps still 

remain to secure these benefits (Lari, Douma and Onyiah, 2015; Ryan, 2019). These 

scenarios may seem to be unlikely, but when millions of AVs are on the roads even rare 

events are bound to occur (Bonnefon, Shariff and Rahwan, 2016). Although some scholars 

(e.g., Watzenig and Horn, 2016) advocate that most of core technologies enabling fully 

autonomous driving have become available and many are even mature, the reliability of the 

technological elements of AV systems is questionable. The fatal accidents together with 

disengagement statistics released by AV developers in the US can support the assertion that 

AI decisionality has shortcomings compared with human decisionality at least in early stages 

of development.  

     By accepting the fact that the key difference between AVs and conventional vehicles lies 

in replacing human drivers with AI, it becomes crucial to investigate the limitations of AI 

more closely. Abduljabbar et al. (2019) acknowledged a number of these limitations 

specifically in the field of transportation. Firstly, artificial neural network (ANN) establishes 

relationship between the input and output without demonstrating any knowledge about how 

these relationships are developed. Secondly, there is a suspicion that ANN makes 

generalisations when the data sets are imperfect or some information is missing. To tackle 

this challenge, some experts recommend combining the ANN technique with other AI tools, 

but this demand for hybridisation is also seen as another weakness for ANN. Thirdly, where 

AI needs real-world data to learn and improve (during training), deployment of the 

technology in real-world environment can pose excessive risks. Another limitation relates to 

biases which can be introduced in the training data sets owing to the involvement of humans 

who are prone to biases and error in labelling processes. In spite of the fact that an AV must 

be capable of forecasting traffic flows, unexpected events and overcoming poor weather 
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conditions, current AI algorithms are inadequate to map out such events and circumstances. 

Furthermore, AI-based technologies pose a risk to the customer privacy. Restrictions on data 

collection affects the quality of the input into AI-based technologies (Agrawal, Gans and 

Goldfarb, 2019). On the other hand, the risk associated with privacy and data security in 

data-driven and AI-based technologies is serious and needs special consideration (Taeihagh 

and Lim, 2019). Lastly, the design of algorithms warrants a trade-off between effectiveness 

in terms of processing large amount of input data and sufficiency in terms of using 

computation capacity and time to analyse those data. An AV can receive data from multiple 

sources such as sensors, GPS, cloud applications, roadside units (RSU), etc. Hence, high 

computation complexity can also challenge the effectiveness and efficiency of the AI 

algorithms in an autonomous vehicle (Abduljabbar et al., 2019). 

     Despite the fact that regulations and regulatory bodies play a pivotal role in ensuring the 

reliability of safety-critical systems, it appears that regulatory bodies cannot catch up with 

the rapid speed of advancements in autonomous driving (Schreurs and Steuwer, 2015). In 

the case of more disruptive technological developments which can cause more radical 

changes in the regulatory environment, decision makers are under pressure to make quick 

and maybe momentous decisions. The ambiguity around the regulatory environment is 

another major source of uncertainty for stakeholders of AVs. To avoid these ambiguities 

regulatory bodies must ideally take proactive rather than reactive approaches in regulating 

different aspects of AV technology (Lipson and Kurman, 2016).  

     Car manufacturers, insurers, buyers, legal authorities and other stakeholders need clear 

and detailed regulations to make decisions and judgments. For example, Kalra and Paddock 

(2016) mentioned about the lack of adequate statistics on autonomously driven miles and 

discuss how this hinders drawing a comparison between the performance of human and 

autonomous vehicle failures. Then they raise the question of “how many miles would 

autonomous vehicles have to be driven without failure to demonstrate that their failure rate 

is below some benchmark?” and try to address it. Lundgren (2020) estimated that 84-500 

years will take for CAVs to statistically (with 95% confidence and 80% power) prove that 

their failure rates are 20% less than human drivers. Another example could be the Vienna 

Convention which may need amendments to allow the introduction of fully driverless cars 

to the UK roads (Glassbrook, 2017, p.18, p.38). These imply that there are still many 

questions about how the AV technology is or going to be regulated. Lack of regulations, 

therefore, is among primary sources of uncertainty in autonomous driving which can 

potentially affect the safety measures and erect barriers to establishing standardisation 

between manufacturers and states (Ryan, 2019). 
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     In addition to the technological and legal facets, infrastructure readiness and public 

perception (acceptance) towards the safety of AVs need extensive research (König and 

Neumayr, 2017). The existing physical infrastructure has been designed and adapted to 

human driving. Saeed (2019) highlights the increased awareness about poor readiness of 

current infrastructure to accommodate AVs. Autonomous vehicles may necessitate changes 

to the existing road infrastructure such as traffic signage, lane width and colour, on-road 

telematics, crash barriers, etc. (KPMG, 2018). Several variables such as market penetration 

rates, the proportion of human driven vehicles and level of automation will drive changes in 

infrastructure. As a result, it is imperative to account for the AV-related infrastructure 

uncertainties and examine the readiness of the existing infrastructure and roadways to host 

AVs (Saeed, 2019). 

     Hengstler, Enkel and Duelli (2016) argue that perceiving risks of novel technologies is a 

social process and technologies are not separable from their social context and cultural 

values. There are discrepancies between scientifically calculated (or proven) risks and what 

public perceives as risk. The gap can become even broader when it comes to radical 

innovations and automated technologies with higher degrees of uncertainties and unknown 

consequences. This can further affect trust, attitudes, and the way individuals interact with 

the technology. How people would react to autonomous vehicles is still a dilemma for 

researchers. Research has shown that the reason for high failure rates, particularly in 

revolutionary technologies, often cross the technical boundaries and to some extent involve 

customer knowledge and levels of perceived risks (Hengstler, Enkel and Duelli, 2016). For 

this reason, AECON is testing mini-driverless pods (without any dedicated supervisor 

inside) in the UK city centres to study the reactions of pedestrians, prams and bikes to 

autonomous driving (Whitehead, 2020). Nevertheless, more research is required to pinpoint 

all aspects of human-machine interactions in the context of AVs. For example, the results of 

some studies (e.g., Hulse, Xie and Galea, 2018) reveal that although perceived risks for AVs 

appear to be low, participants expressed numerous concerns such as possible 

system/equipment failure, cyber-attacks and ethical issues. The latter together with moral 

and value-driven concerns play a critical role in shaping users’ perception and acceptance 

(Kaur and Rampersad, 2018). 

 

2.2.2. Collision risks and avoiding them 

     It has been discussed that reliability and safety of AVs are a chief concern for industry 

and policy makers to ensure their competence over human drivers and guarantee their safety 

benefits. As far as safety of AVs is at stake, one of the most challenging tasks for an AV is 

to plan an appropriate collision-free trajectory even under emergency circumstances when 
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an unexpected obstacle abruptly blocks the pre-planned path of the vehicle (Hajiloo et al., 

2020). In such situations, an AV must be capable of deciding on and undertaking the safest 

action and using available actuators timely to optimally avoid any collision or reduce the 

severity when a collision is unavoidable. To achieve that level of reliability and an acceptable 

functional safety level, detecting and averting hardware failures, software bugs and firmware 

malfunctions are vital (Mariani, 2018). 

     It is noteworthy to draw a line between an accident and a collision. In Cambridge 

Dictionary an ‘accident’ is defined as “something bad that is not expected or intended and 

that often damages something or injures someone” (Cambridge Dictionary, 2008, p.8). 

Oxford English dictionary suggests almost the same definition for the word ‘accident’ 

(Glassbrook, 2017, p.135). For example, if a vehicle is being driven on road and suddenly 

catches fire because of a fuel tank leak, we can say that an accident has occurred, but it may 

not necessarily lead to a collision. On the other hand, a collision refers to “an accident that 

happens when two vehicles hit each other with force” (Cambridge Dictionary, 2008, p.268). 

Now it is useful to know that 97.8% of all traffic accidents in the US are collision type (He 

et al., 2019). Thus, eliminating or mitigating factors that cause collisions will considerably 

level up road safety.  

     In road traffic (similar to maritime and aviation), one of the indicators of safety is the 

absence of collision or conflict between road participants (Campos and Marques, 2018). That 

being the case, avoiding collision becomes a primary objective for CAVs. He et al. (2019) 

explores several advanced collision avoidance systems and strategies for CAVs that evaluate 

risks of colliding with other vehicles, obstacles or pedestrians and adjust a vehicle’s velocity 

and/or trajectory to safely navigate through traffic. Li et al. (2021) categorised current 

collision avoidance systems into three groups. Among them is the risk-based assessment 

model which first assesses the risk of colliding with the objects surrounding the subject (or 

ego) vehicle and then generates a prioritised series of actions to avoid collisions. Still risk 

sources remain in place and can incapacitate the collision avoidance systems. Examples of 

fatal accidents and disengagements highlighted in section 1.1 suggest that concerns over the 

safety of CAVs are legitimate and need to be investigated. 

     With increasing complexity of systems, number of subsystems and their 

interdependencies, the challenge of modelling and assessing risks in these systems becomes 

greater. Haimes (2018) manifested ten principles for modelling risk in interdependent 

complex system of systems (SoS). Since CAVs are categorised under SoS (Madni et al., 

2018), those principles provide a guiding framework for analysing risks for systems 

comprising many interconnected subsystems with multiple functions and operations. 
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Principles eight and ten in that framework advocate appropriate choice of metrics for 

measuring risks. 

     Different metrics can be used to measure collision risk. Time to collision (TCC), time 

headway (THW), and time to react (TTR) have been previously used in deterministic studies 

for that purpose (Noh, 2018; Li et al., 2021). The problem with deterministic approaches is 

that they neglect the uncertainties in input data (Noh, 2018) and fail to model multi-lane 

scenarios (Li et al., 2021). Those deficiencies of deterministic methods divert attentions to 

probabilistic approaches to measure collision risks. Modelling methods such as fuzzy logic, 

partially observable Markov decision process (POMDP), and Bayesian networks not only 

involve temporal and spatial relationships between traffic participant/environment but also 

takes input data uncertainty into account (Noh, 2018). Traffic dynamics and comparing 

traffic variables (e.g., flow and occupancy) can be utilised to estimate spatio-temporal risk 

in terms of hazardous traffic conditions (Katrakazas, Quddus and Chen, 2019).  

     The above discussion indicates two major sources of collision risk: 1) presence of objects 

(mainly other vehicles) in the vicinity of subject vehicle; and 2) lack of competence and 

capability of a human driver or an autonomous system (or a combination of both) to avoid a 

collision. These two sources comprise four major domains that include risk factors. Presence 

of object directly depends on the environmental and road (traffic) conditions. The 

competence of an autonomous vehicle to bypass a collision depends on software and 

hardware capabilities of the vehicle and reaction of its driver (when required). Fig. 2.4 

illustrates the mutual interactions between the four domains. This classification scheme lays 

the foundation for the BBN model in this research. 

Fig. 2.4: the organic connections between elements that constitute a road system (Liu and Zhai, 
2018) 
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2.2.3. Safety of CAVs and overall policies 

     Despite fast technical progresses and promising trials of CAVs, development of policy 

responses in this field is still in initial stage (Milakis, Thomopoulos and Van Wee, 2020). 

This lag between the evolution of technology and policy making can slow down the roll-out 

of CAVs at commercial scale and achievement of their benefits. A recent policy landscape 

review of AVs in the UK reveals that although some progress has been made to ensure the 

safety of CAVs, we are still away from a satisfactory and thorough policy response to this 

phenomenon (Lisinska and Kleinman, 2021). The authors highlight three major concerns 

that need to be addressed by introducing effective policies: 1) certification of the technology 

to overcome harsh circumstances such as adverse weather conditions; 2) transition of control 

between the vehicle and driver and clarity of human driver’s responsibilities; and 3) 

cybersecurity and privacy.  

     Anderson et al. (2014, p.161) also reported three important policy gaps that are directly 

related to the safety of CAVs. According to their analysis, human-machine interfaces, 

standards and regulations, and state laws are the areas that policymakers together with other 

stakeholders should address. This gap still exists and needs immediate attention (Zhang, Shu 

and Yu, 2021). Furthermore, the rapid pace of technological development turns 

standardisation into an extremely challenging task since the risk of obsolescence and 

irrelevance is serious (Anderson et al., 2014, p.162). Finally, variations in laws (e.g., traffic 

or liability laws) from one country to another (in Europe) or between the 50 states (in the 

US) can confuse the technology developers. While compliance with traffic rules appears to 

remain a requirement for CAVs at least as long as mixed traffic is the case, an unequivocal 

formalisation of traffic rules is a complicated task (Maierhofer et al., 2020). The 

inconsistencies in traffic laws across the regions adds to the complexity of that task. 

     Mixed traffic environment merits new policy considerations to ensure the safety of CAVs 

and non-CAV road users. Straub and Schaefer (2019) found that ensuring public safety is 

the most significant challenge in the territory of AV policy. Reviewing other recent 

publications on policy directions and challenges for CAVs suggests that safety is of prime 

importance (e.g., Lundgren, 2020; Milakis, Thomopoulos and Van Wee, 2020; Sohrabi, 

Khreis and Lord, 2020; Acheampong et al., 2021; Lisinska and Kleinman, 2021). There are 

also growing concerns over the impacts of cybersecurity failures/attacks on CAV safety 

(Katrakazas et al., 2020). Since CAVs can disruptively affect the stakeholders across the 

transportation ecosystem, clear and coherent policies are integral to regulate different aspects 

of this technology including safety (Rebalski et al., 2021).  
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2.2.4. Stakeholders 

     The integration of CAVs into existing transport system is a socio-technical transition that 

calls for active engagement with vast arrays of stakeholders (Rebalski et al., 2021). 

Involving stakeholders and eliciting subjective expert judgements is a well-established 

method to tackle uncertainties during the design phase as well as probabilistic risk 

assessment (PRA) (Cooke, 1991, pp.27-29; Bedford, Quigley and Walls, 2006). Therefore, 

mapping the stakeholder groups that are going to encounter with CAVs in different ways is 

a primary step for recognising and engaging them in safety analysis and policymaking 

processes.  

     The development and emergence of AV technology widens the field of actors and gives 

rise to the emergence of new stakeholders (Schreurs and Steuwer, 2015; Maurer et al., 2016). 

From different aspects it is crucial to identify the key stakeholders of AVs and evaluate how 

they will affect the safety and how will be affected by safety implications. It becomes even 

more important when we intend to elect experts for knowledge elicitation out of key 

stakeholders. Reviewing the relevant literature suggests several players at stake. The results 

are summarised in Table 2.4. 

Table 2.4: summarises the key stakeholders of AVs cited in the literature. 
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(Rebalski et al., 2021)               

(Isaac, 2016)               
(Shannon et al., 2021)               

(Anderson et al., 2014)               
(Clark, Parkhurst and Ricci, 

2016) 
 

             

(Holstein, 2017)               

(Schreurs and Steuwer, 2015)               
(Maurer et al., 2016)               

(Nyholm and Smids, 2016)               

(Hengstler, Enkel and Duelli, 
2016) 

              

 

     According to the reviewed literature and after excluding overlaps, the list of main 

stakeholders can be shortened to transportation professionals, car insurance industry, 
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software developers (including AI community), automotive industry, regulatory bodies (e.g., 

Driver and Vehicle Standard Agency), consultancies, ICT & communication industries, 

lawyers, OEMs and automotive part suppliers, urban planners and designers, governmental 

departments and agencies (e.g., Department for Transport), academics and research 

institutions. 
 

2.3. Theoretical framework 

2.3.1. Related works and the knowledge gaps 

     The impact of AVs on traffic safety and safety-related risks are among the primary 

focuses of academic research and addressing them is one of the top priorities of technology 

developers and practitioners. The fact that safety perceptions have a critical influence on AV 

adoption is not deniable (e.g., Moody, Bailey and Zhao, 2020; Manfreda, Ljubi and Groznik, 

2021). The criticality of safety considerations has resulted in a rich body of literature and 

industrial initiatives not only to ensure that AVs can outperform human drivers in driving 

safety, but also to influence public perception about the safety of them. This section 

investigates the studies that tried to capture and measure risks associated with CAVs at 

vehicular or network levels. 

     In the previous section road vehicle insurers were identified as one of the main 

stakeholders of the AV technology. As a result, it is a requisite for the car insurance industry 

to conduct full and detailed risk analysis before the technology becomes pervasive. To this 

end, Pütz, Murphy and Mullins (2019) performed rigorous qualitative analysis to assess the 

impacts of vehicle automation on motor-third party risks and future insurance policies. From 

an insurance perspective, the frequency of collisions is expected to decrease, although the 

average loss will go up due to technology expenses and complexity of repair works. Shannon 

et al. (2021) further examined four scenarios in how CAVs can change injury claims and 

discussed how CAV risk factors and traffic dynamics can transform road environments. 

Their actuarial results indicate that with an increase in automation level a reduction in 

frequency and severity of collisions will be experienced.  

     Ye and Yamamoto (2019) ran a simulation to calculate the frequency of hazardous 

situations and time-to-collision for CAVs in heterogenous traffic flow (i.e., a mix of 

conventional and autonomous vehicles). The findings of the simulation suggest that the 

overall traffic safety improves with the increase in CAV deployment rate. Li et al. (2021) 

carried out a probabilistic risk assessment to develop an algorithm for collision avoidance 

under various scenarios. They used time-to-escape (TTE) as a metric to measure lateral 

driving risk. In another attempt, Wang et al. (2021) proposed a low-risk and high-efficiency 
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path planning algorithm for AVs. In that study, the trajectory and velocity of surrounding 

vehicles were used to assess the collision risk and plan a path with minimum risk and high 

driving efficiency.  

     Besides a wide range of approaches and modelling techniques for risk analysis, BBN 

models have also been used in several studies. For instance, Sheehan et al. (2017) adopted a 

network risk transfer approach and proposed a BBN model to quantify the risks of semi-

autonomous vehicles. In a similar study, but in a different context, another BBN model was 

developed by Sheehan et al. (2019) to classify the cybersecurity risks in connected and 

autonomous vehicles. Allouch et al. (2019) also employed the BBN tool to carry out 

qualitative and quantitative risk analysis for UAVs. BBN technique was also used to assess 

the risks wind turbine in Ashrafi, Davoudpour and Khodakarami (2015). The structure of 

their model encompasses four major group of factors: technical, environmental, human and 

organisational. In addition, a BBN-based portfolio risk assessment framework was 

developed for evaluating R&D projects at NASA (Geuther and Shih, 2016). Brito and 

Griffiths (2016) benefited from BBN to assess the risks of deploying AUVs in harsh 

environmental conditions. 

     Apart from the applications of BBN in the field of CAVs (e.g., Sheehan et al., 2017; 

Sheehan et al., 2019) and other socio-technical system risk analysis (e.g., Trucco et al., 2008; 

Ashrafi, Davoudpour and Khodakarami, 2015; Luxhøj, 2015), System-Theoretic Process 

Analysis (STPA) method was offered to deal with safety and security risks of AVs 

(Sabaliauskaite, Liew and Cui, 2018). The system interdependence analysis method together 

with BBN method were also applied to study the performance of autonomous systems 

(Lidoris et al., 2011). 

     Many scholars, experts, technical communities and media have already warned about the 

newer risks and hazards that AVs can impose on the safety of roads (e.g., Maurer et al., 

2016, p.343; Bellet et al., 2019; Shannon et al., 2021). Deep uncertainties and lack of 

historical data complicate risk analysis and planning for safe deployment of such technology. 

Faisal et al. (2019) conducted a systematic literature review on capability, impact, planning 

and policy of AVs and identified a gap in the literature in planning for the future. Any 

rigorous analysis on the safety and reliability needs to be, to some degree, based on accurate 

quantification of risks and probability of failures under varying circumstances. This applies 

to policymaking as well where policy-makers need enough evidence for shaping public 

policy (Parkhurst, 2017).  

     To the best of my knowledge, there has not been any study to look at the risks of CAVs 

through the lens of socio-technical theory and model the influential variables and their 
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interdependence to measure the collision risks in urban ambience exploiting BBN technique 

and experts’ knowledge. The studies that used BBN to examine the risks of AVs (such as 

Sheehan et al., 2017; Sheehan et al., 2019) are different from this study in several ways. For 

instance, Sheehan et al. (2017) focused only on telematics data gathered from vehicles’ 

sensors which are useful for measuring controllable risks such as speeding. The BBN model 

in that study was designed to measure ‘aggregate claims loss’ for insuring purposes. The 

selection of variables was not based on rigorous research and merely contained ADAS risk 

factors. Sheehan et al. (2019) only concentrated on cyber risks, but the extent of this research 

is broader and encompasses wider range of variables.  

     This study intends to identify influential variables in four diverse but interactional spheres 

(i.e., technical, road environment, human and traffic environment) by conducting an 

integrative literature review and amalgamating them into a modular BBN model to provide 

estimation for the collision risk index. The aggregation of risk factors at vehicle, 

environment, traffic and operator levels will satisfy the first principle of Haimes’ framework 

(2018) for risk analysis of SoS. That principle puts forward a holistic system-based approach 

to account for the impacts of adverse initiating events on complex SoS (Haimes, 2018). 

     Denaro et al. (2014) called attention to ten major research areas in relation to AVs which 

were identified by industry, academic and government experts for further advanced 

multidisciplinary research. Some of these areas have not been addressed properly yet. 

Human-machine interactions (HMI), infrastructure, V2X communication and architecture, 

risks, cyber security and resiliency are among these research topics. Adopting a 

multidisciplinary approach besides socio-technical theory can enable us to bridge these 

areas. BBN has proved the capability to handle the complexity and generate satisfactory 

outcome especially in risk and uncertainty assessment. Furthermore, the safety issues of AVs 

are still a focal point in both industry and academia (Katrakazas, Quddus and Chen, 2019). 

The need for constructing decision-making support tools and delving into plausible scenarios 

become even more urgent while AV-related performance and collision data are still scarce 

(Pütz, Murphy and Mullins, 2019; Katrakazas et al., 2020). 

     Although traffic (micro)simulation studies (e.g., Morando et al., 2018; Papadoulis, 

Quddus and Imprialou, 2019; Wu et al., 2020) offer insights and can reduce uncertainties 

around the integration of CAVs into existing traffic systems, still they suffer from limitations 

and assumptions have to be made for some of parameters and variables such as penetration 

rate and transportation demand after AVs hit the roads. A compelling alternative to 

simulation is real-world testing which may be confined to stringent regulations and high 

expenses. A risk classification model based on road characteristics, traffic conditions and 
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vehicle reliability levels can therefore be exploited to rank municipal districts in a given time 

interval.  

     Likewise, insurers will require tools to estimate collision risk in the absence of 

sophisticated databases. A BBN model not only has the potential to satisfy this need, but 

also can learn from actual data when they become available and improve its accuracy. 

Miscalculating road and environmental condition risk levels by traffic agents (e.g., driving 

entities) can threaten safety of navigation (van Wyk, Khojandi and Masoud, 2020). 

Classification of collision risks based on spatio-temporal characteristics will also assist 

policymakers to prioritise the policy areas that need urgent and special attention for 

safeguarding road safety.  
 

2.3.2. Theoretical underpinnings of risk analysis for complex socio-technical systems  

     Compound and modern technologies are bringing fundamental changes into the causality 

of accidents and are revealing the need for adapted approaches in the explanatory 

mechanisms (Leveson, 2004). As socio-technical systems are becoming more complex and 

more integrated, traditional approaches are proving to be less effective (Manzur Tirado, 

Brown and Valdez Banda, 2019). Traditional approaches to safety analysis do not usually 

account for organisational, societal and human role in accidents (Leveson, 2004). Those 

hazard analysis techniques including fault tree analysis (FTA) and event tree analysis (ETA) 

assume that component failure is the only cause of accidents, and therefore risk analysts 

must focus their efforts on thinking of plausible scenarios of component failures (Manzur 

Tirado, Brown and Valdez Banda, 2019).  

     Then, based on system theory, Leveson (2004) proposed STAMP (Systems-Theoretic 

Accident Model and Processes) to model component failures, external disturbances, and 

dysfunctional interactions between system components in the design, development and 

operation of a complex socio-technical system. STAMP benefits from system dynamic 

approaches and defines any safety problem as a control problem which violation or 

ignorance of any safety constraints signals inadequate control (Kazaras, Kontogiannis and 

Kirytopoulos, 2014). Based on socio-technical system theory, Mohaghegh and Mosleh 

(2009) presented a framework (i.e., SoTeRiA) to incorporate organisational, external 

environment and human factors into PRA. A socio-technical system must be seen as an 

integrated whole and the role of social factors in conjunction with safety and reliability 

should be recognised (Qureshi, 2008). This is consistent with the view of Liu and Zhai 

(2018) in defining traffic problems (e.g., collisions) as not only technical but also social 
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problems. This approach has helped to inform the design of new technologies and explain 

the changes caused by novel technologies (Davis et al., 2014). 

     The socio-technical philosophy concerns with the integration between machine, or in a 

broader term technology, and humans in designing operational processes and/or systems 

(Ropohl, 1999; Dekkers, 2018; Sony and Naik, 2020). Autonomous vehicles can also be 

defined as complex socio-technical systems, since technological, business and policy 

innovations are concurrently at stake (Marletto, 2019). A comprehensive structural safety 

framework, according to Mohaghegh and Mosleh (2009), should contain and combine macro 

and micro perspectives. Hence, a “cross-level” causation theory is desirable. Principles D 

and E of SoTeRiA describe the multi-level framing and depth of causality (Mohaghegh, 

Kazemi and Mosleh, 2009). Depth of causality and level of details are crucial decisions to 

be made by a researcher to maintain comprehensiveness and avoid excessive complexity 

(parsimony) which may cost the accuracy of the model. This decision essentially depends 

on the impacts of different dimensions of each element and the sensitivity of the overall risk 

to those dimensions (Mohaghegh and Mosleh, 2009). Another boundary which needs to be 

established is the level of generality and the scope of safety concerns (i.e., road users’ safety 

in this study).  

     Based on the above theoretical discussions, Mohaghegh, Kazemi and Mosleh (2009) 

concluded that hybrid methods including BBN are perfectly fitted to address uncertnity in 

socio-etchnical systems. To reduce the uncertainty and quantify the associated risks, a BBN 

model can be adopted which can provide accurate estimations for the identified risk indices 

in a considered scenario and/or analyse accident paths in a retrospective backward approach 

(Ashrafi, Davoudpour and Khodakarami, 2015). BBN model is the intersection of graph 

theory, probability theory and statistics (Ben‐Gal, 2008). Probability theory (also known as 

inductive logic) is perhaps the oldest and best-established theory for representing and 

reasoning about a situation where categorical propositions can be only made by judging the 

likelihood or other ordinal attributes (D'Ambrosio, 1999). To develop the intended BBN 

model in this research, we follow the principles proposed in the SoTeRiA framework which 

are classified into four main categories: (I) designation and definition of objectives; (II) 

modelling perspectives (e.g., causality); (III) building blocks (e.g., link level); and (IV) 

techniques (e.g., measurement techniques). 

     In recent years, context-aware decision-making models are emerging to connect aspects 

of traffic environment with visibility conditions, occlusion and perception uncertainty that 

CAVs often face during their operation (Katrakazas et al., 2020). This highlights the 

criticality of traffic scene characteristics in collision risk analysis.  In fact, the physical space 
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around road users consists of built environment and traffic state. Variables in either of these 

spheres interact with and affect each other in a mutual way. For instance, road geometry can 

impact traffic congestion and it can affect velocity of vehicles. To include the influence of 

traffic conditions in collision risk analysis for AVs, a block of the model is dedicated to 

measure the complexity of traffic scene and evaluate its impact on the collision risk.  

     Mohaghegh and Mosleh (2009) placed a heavy emphasis on inclusion of organisational 

factors in assessing risks associated with socio-technical systems. An organisation comprises 

four key interacting constituents, namely structure, technology, agents (actors) and task 

(Leavitt, 1965). Urban traffic can be thoroughly fitted to this definition of organisation. 

Agents (traffic participants) use technologies (e.g., vehicles) within the urban traffic 

structure (constrained by traffic rules) to accomplish their tasks (i.e., commuting safely 

between destinations). Meanwhile, all those constituents interact with each other and change 

in one of them can affect the rest. Therefore, in the present context, traffic state variables can 

represent the organisational factors. 
 

2.4. Summary of the literature review and conclusions 

     In this chapter, an overview was provided to highlight the status of CAVs in the future of 

ITS. The amount of investments, trials, academic literature, and legislative works all suggest 

that AVs are going to be a core element of future transportation. This mandates careful risk 

analysis to ensure the safety of technology. The relevant definitions and terminologies were 

also covered to reflect the scope and discrepancies in use of language around CAVs. Next, 

the uncertainties and safety risks were discussed. It is evident that successful roll-out of AVs 

is intertwined with the safety of technology. The related works in this research domain were 

reviewed and the knowledge gap was ascertained.  

     Despite large number of studies that have already assessed collision risks and provided 

solutions to mitigate that risk, a wider view such as socio-technical approach to include the 

interactions and contributions of risk factors across environmental, technical, traffic and 

human levels is still lacking. Due to the complexity of CAVs, their operating environment, 

and their interactions with humans, a socio-technical approach is required to meet the 

objective of this research. A socio-technical lens can provide complementary insights into 

the problem of collision risk in AD beyond just vehicle kinematics. A theoretical framework 

was developed to lay a foundation for the methodological deliberations in the next chapter. 

SoTeRiA framework was concluded to be an appropriate and commensurate risk analysis 

framework to assess collision risks for CVAs as complex socio-technical system. 
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3. Methodology 

     This chapter delineates the selected philosophical and methodological perspectives and 

approaches to answer the specified research questions in the introduction. It is also described 

why BBN is appropriate technique to model risk in this study and a comparison is drawn to 

show advantages and deficiencies of BBN against other risk modelling techniques. Types of 

data required to build the model as well as the methods of data collection and sources are 

discussed in this chapter. Since this research benefits from mixed methodology, both 

qualitative and quantitative parts are covered in separate sections and in-depth discussions 

are provided to justify the development of the model. A framework for integrative literature 

review (ILR) as the main method for collecting qualitative data is developed and presented. 

Likewise, the means and strategies for eliciting and analysing expert judgements are set out. 
 

3.1. Ontology, epistemology, inductive or deductive? 

     In any kind of project, adopting clear and appropriate strategies is urgently important to 

achieve specified objectives. Along the same line, a PhD research project follows this rule. 

However, before formulating the strategies to answer research questions and pursue the 

objectives, it is vital to deepen an understanding of the nature of business research and 

explore the philosophical concepts behind the research questions and aims. This approach 

also provides insight into deductive/inductive and epistemological/ontological 

considerations which are cornerstones of the strategy adoption processes (Bryman and Bell, 

2015). For this reason, and to facilitate the discussion upon reasonable strategies for this 

research study, we first need to discuss the pertinent philosophical concepts. 

     Research, in general view, is designed to generate knowledge and provide answer(s) to 

specific question(s) in a particular field. To this end, there have to be assumptions to be made 

and develop knowledge based on those assumptions and beliefs (Saunders, Lewis and 

Thornhill, 2015). These assumptions relate to human knowledge (epistemological 

assumptions), realities the researcher faces during the research (ontological assumptions) 

and how personal values can influence the research processes (axiological assumptions) 

(Saunders, Lewis and Thornhill, 2015). Therefore, we will start from examining these 
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philosophical concepts in the next paragraphs and based on that discussion, conclude a fitting 

research strategy in the next section (3.3). 

     A key factor in determining the research strategy is epistemological considerations. 

Deciding on what is acceptable knowledge and how we should communicate it causes the 

main controversy in this sphere (Saunders, Lewis and Thornhill, 2015). Regarding and 

treating the social world with the same principles, methods, and ethos as used in natural 

sciences or taking a different approach is the central issue in this context too (Bryman and 

Bell, 2015). Positivism and interpretivism are two basic but contrasting epistemological 

positions, defining the relevance and the differences between social sciences and natural 

sciences (Bryman and Bell, 2015; Saunders, Lewis and Thornhill, 2015). Consequently, 

these two epistemological stances vary significantly on acceptability of knowledge, good-

quality of data, types of contribution to knowledge (Saunders, Lewis and Thornhill, 2015). 

Supporting each of these positions plays a determining role in choosing the appropriate 

research strategy. 

     One of the fundamental questions which must be answered before deciding on the 

research strategy and consequently research methodology is about the relationship between 

the theory and research (Bryman and Bell, 2015). Depending on the research aims, there are 

two possible responses to define this relationship. Firstly, as Bryman and Bell (2015) 

explain, a researcher can use theory to form a hypothesis, and further by collecting data and 

analysing them confirm or reject the hypothesis. This view is called deduction and based on 

what is known so far about a field of study, the researcher deduces hypothesis (or 

hypotheses) according to his/her empirical findings (Bryman and Bell, 2015). This process 

is depicted in figure 3.1. On the other hand, if research is intended to build a theory (or a 

conceptual framework) out of observations/findings the process would be then opposite the 

sequence of deductive theory. This approach, known as inductive theory, is used when the 

researcher is trying to construct a new theory rather than testing an already developed theory 

(Bryman and Bell, 2015). 

Fig. 3.1: the deduction theory steps (Bryman and Bell, 2015). 

     Along with epistemological assumptions, it also matters how a researcher sees the world 

of business management and defines phenomena in this world (Saunders, Lewis and 

Thornhill, 2015). Furthermore, the cause-and-effect relationship between social entities (e.g. 

organisation) and social actors (e.g. managers) has a meaningful impact on the 
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methodological analysis of the research. Two common views concerning the social ontology 

are objectivism and constructionism (Bryman and Bell, 2015). Objectivism asserts that social 

entities and social actors are independent from each other and social actors do not have any 

influence upon social phenomena as they occur (Bryman and Bell, 2015). Contrary to this 

ontological position, constructionism maintains that social phenomena are the result of social 

interactions and therefore are continuously revised. Taking each side mentioned above 

suggests different requirements and strategies for the research to deal with every phase of it 

from formulating research questions to data analysis. Due to the adoption of mixed 

methodologies (which will be explored in coming sections), considering the uncertainties 

around and complex nature of AVs, state-of-the-art risk assessment frameworks, and 

practical implications for risk assessment in this study, we decided on a balanced approach 

towards philosophical underpinnings and research paradigms. 

     Depending on what we assume to be considered as data, there can be three major research 

methodologies available to researchers. Many authors including Saunders, Lewis and 

Thornhill (2015) categorise data into two groups. First, numeric data or numbers, and 

secondly any kind of data other than numbers. The latter encompasses a wider range of 

materials such as words, images, video, clips, etc. (Saunders, Lewis and Thornhill, 2015), 

although they can be also converted in the format of numbers. Similar to ontological 

assumptions, choice of methodology dominantly determines the type of required data and 

instruments for data collecting processes. Although a researcher may decide to employ more 

than one of those instruments or an instrument can prove its ability to collect data for any 

chosen methodologies. With regards to the above introduction and the outlined research 

questions, the next sections will justify the choice of methodology and techniques in this 

research project. 
 

3.2. Applicable research methods and strategies 

     Studying the risks of a complex and multidisciplinary (if not interdisciplinary or even 

transdisciplinary) technology such as AV, accordingly, entails a comprehensive 

methodological framework to cover macro and micro risk factors to be able to accommodate 

multi-level and cross-level causation relationships. “Comprehensiveness”, in this context, 

denotes the inclusion of direct factors (e.g. physical components), indirect factors (e.g. safety 

practices), external environment, the regulatory environment, and the socio-economic 

environment (Mohaghegh and Mosleh, 2009). Nevertheless, it is vital to avoid unnecessary 

complexity by ignoring factors or variables that have small effect on the model output. It is 

not technically feasible to build an entirely accurate model and expanding the scope and 

level of details beyond a certain point may reduce the accuracy of the model (Robinson, 
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2008). Utilising computation models is subject to a common fallacy that adding more details 

to a model must necessarily advance its performance (Saltelli et al., 2008, p.278). Figure 3.2 

sketches a typical relationship between accuracy and complexity in modelling and 

simulation.  

 

Fig. 3.2: simulation model complexity and accuracy (Robinson, 2008). 
 

     In addition to the scope of analyses, measurement methods are of critical importance in 

risk assessment (Mohaghegh, Kazemi and Mosleh, 2009). Although hybrid methods (i.e. 

combination of objective and subjective data) may result in more accurate analyses, they are 

also more resource-intensive and demand a method, such as Bayesian approach, for merging 

both sources of information into a single assessment (measure) of the state of a variable 

(Mohaghegh and Mosleh, 2009). 

     Reviewing the research questions in this project reveals the need for both qualitative and 

quantitative data. Risk identification is a process which requires systematic approach and 

may contain elements of both qualitative and quantitative methods (Drennan and 

McConnell, 2007). In other words, building most of risk models needs the combination of 

real-world quantifications (also known as hard data) and soft or qualitative data (Koller, 

1999). This approach is supported by Pearl (2000) where he proposed practical methods for 

elucidating causal relationships from consolidation of knowledge and data. This approach 

provides the possibility for a more balanced evaluation (Teddlie and Tashakkori, 2009, 

p.13). 

     There is little doubt that risk analyses involve context-dependent assessments. Adopting 

mixed methods can deepen and broaden the scope of analyses and may offer more insight 

into the problem. Furthermore, “classification of accident causes can not only provide a 

comprehensive understanding of accident but also benefit causes statistics” (Li, Zhang and 

Liang, 2017). To clarify what is meant by causation it is helpful to quote the famous 

statement that “correlation is not causation” (Pearl and Mackenzie, 2018, p.5). Likewise, 

regression models fail to offer sufficient explanatory power in risk analysis (Fenton and Neil, 

2012, p.31). These statements imply that mere statistics is not sufficient to identify risk 
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causal factors, interpret data and construct a risk model (Pearl and Mackenzie, 2018). It is 

also supported by the fact that identification problems and statistical inference are mainly 

regarded separately in social sciences (Morgan and Winship, 2015). Mixed methodologies, 

above all, can pave the way to “causal inference”. Causal modelling provides a base for 

making predictions on how a system would react to hypothetical interventions such as policy 

decisions (Pearl, 2000). By the same token, the primary aim for setting up a risk assessment 

programme is to deliver a predictive tool (Kabir et al., 2015). Learning about cause-effect 

relationships is prerequisite to build a causal model and they can be deduced form a 

combination of qualitative causal assumptions and data (Pearl, 2000). Nevertheless, we must 

be aware of the constraints that social sciences encounter in gathering data (either qualitative 

or quantitative) and they can adversely affect the accuracy of causal inference (Morgan and 

Winship, 2015).  

     A large body of literature has emphasised on the interdisciplinary dimension of risk 

assessment (e.g., McDaniels and Small, 2004; Taylor-Gooby and Zinn, 2006; Renn, 2008; 

Büscher, 2011; Hansson and Aven, 2014). Renn (2008, p.68) explains that “the purpose of 

risk assessment is the generation of knowledge linking specific risk agents with uncertain 

but possible consequences”. He also maintains that inferential statistics and decision-

analytics tools have been developed to aggregate knowledge about cause-effect (causal) 

relationships and appraise the strength of them. Then the ambiguities and uncertainties can 

be characterised in the form of qualitative and quantitative data (Renn, 2008, p.70). The 

factors of a safety causal model, in this way, can be measured using subjective, objective, 

and hybrid methods. The main differences between the subjective and objective 

measurements lie in the sources of information and their related measurement instruments. 

Subjective and objective methods can be either qualitative (e.g. three or five-point Likert 

scale) or quantitative (e.g. rating from 0 to 10), or a mix of both (Mohaghegh and Mosleh, 

2009). 

     Reviewing the literature on the safety and reliability of AVs reveals that there are valuable 

but, in many cases, incomplete qualitative or quantitative data gathered and generated to 

investigate different safety aspects of AVs. These data are usually complementary and can 

be merged to facilitate the intended risk assessment in this research. Smart transportation, in 

general, entails quantitative analysis combined with qualitative perceptions (McBride, 

2016). In an attempt to model accidents of driverless cars (Geldmacher and Pleșea, 2016) 

and another study which was designed to assess safety of UAVs (Allouch et al., 2019), the 

alignments of qualitative and quantitative data were utilised as well. On those grounds, we 

can conclude that applying capable and effective techniques and tools can to some degree 

secure the benefits of mixed methods in this study. 
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     Although many scholars and researchers advocate that adopting and integrating multiple 

methods can improve the accuracy of results, mixed methods such as other methodological 

approaches face philosophical and methodological challenges. The main challenges can be: 

(a) there is no single mixed/integrated approach to regulate the level of integration. 

Depending on the research design, integration may happen, for example, at the research 

question or data analysis level (Teddlie and Tashakkori, 2009, p.133); (b) deciding between 

top-down or bottom-up approaches (Teddlie and Tashakkori, 2009, pp.317-318); (c) since 

both qualitative and quantitative methods have distinct basic assumptions/beliefs about a 

certain complex phenomenon, therefore merging the results can be problematic (Salehi and 

Golafshani, 2010); (d) there might be a degree of incompatibility between the techniques 

associated with either methods (Salehi and Golafshani, 2010); (e) deciding on which mixed 

methods are the best fitted to answer the research question is another pressing challenge 

(Almalki, 2016); and (f) requiring expertise and skills to manage the scope of research and 

reach accurate interpretations (Almalki, 2016). In the next sections we will introduce BBN 

technique and explain how it can exploit the benefits of mixed methods and deals with 

specified challenges. 
 

3.3. BBN and mixed methods 

     It was discussed in the previous section that using appropriate and tailored techniques 

and/or tools is a pivotal part of employing mixed methods. It this section, we will elaborate 

on BBN as the central technique used in this research. BBN has the capability to 

accommodate data from various sources and combine qualitative and quantitative data into 

a single predictive/diagnostic model (Groth and Mosleh, 2012). This technique equips 

analysts with a tool which can exploit deterministic or probabilistic data in the presence of 

large number of interdependent variables (Trucco et al., 2008). Building a rigorous risk 

assessment model requires scientific approaches to merge available knowledge and expert 

judgements (Kabir et al., 2015). This is also endorsed by Groth and Mosleh (2012) where 

they signified the importance of incorporating observational data as well as expert 

information into a risk assessment model. BBN model has the ability to handle three 

predominant but distinct paradigms of risk assessment: 1) technical factor focused; 2) human 

factor focused; and 3) safety/organisational factor focused (Ashrafi, Davoudpour and 

Khodakarami, 2015). Formal synthesis of qualitative and quantitative evidence is an 

effective way to identify influential factors to a variable under consideration in a variety of 

studies across different disciplines (Weber et al., 2012). For instance, The Bayesian 

approach was adopted to recognise influential factors in uptake of childhood immunisation 

(Roberts et al., 2002). In order to improve these capabilities, especially in risk and reliability 
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assessment, there have been modifications introduced to this technique such as Qualitative-

Quantitative Bayesian Belief Networks (QQBBN) (Wang and Mosleh, 2010).  

     The widespread applications can demonstrate the effectiveness and strength of BBNs in 

handling uncertainty in absence or scarce availability of prior probabilities for events. 

Academic literature on risk and reliability assessment shows a broad range of applications 

comprising assessing the safety performance of subsystems and components of a nuclear 

plant, uncertainty analysis of complex systems, examination of integrated fire protection and 

prevention systems, estimating the unknown prevalence of chronic disease, and modelling 

organisational factors in maritime transportation (Trucco et al., 2008). Besides, non-

parametric BBNs (NPBN) have been widely used to analyse safety and risks of 

transportation systems, earth dams building fires and flood (Hanea, Morales-Napoles and 

Ababei, 2015). 
 

3.4. Modelling dependable systems: Bayesian Belief Networks 

     Emerged from the field of cognitive science and artificial intelligence, probabilistic 

models based on directed acyclic graphs (known as DAG or BBNs) were initially developed 

in 1970s (Pearl and Russell, 2003). Over the last 30 years they also have elevated to a key 

method for reasoning under uncertainty in AI (Guo and Hsu, 2002). Judea Pearl (2018) in 

his book “The Book of Why” breaks down the calculus of causation into two languages: 

causal diagrams to represent what we already know, and a symbolic language to articulate 

what we aim to know. A BBN model comprises three basic components (Ismail et al., 2011; 

Kabir et al., 2015): a) a number of connected variables, b) a set of mutually and exhaustive 

states for each variable, and c) assigned conditional probability distributions for each 

variable which represents the conditional probability dependencies between variables. In the 

previous section we mentioned about the applications of BBNs in different fields to address 

distinct questions. More specifically, in risk assessment analysis, BBNs have proved to be 

an effective, flexible and reliable tool to reduce uncertainties and model interdependencies 

among variables. A cause-effect diagram or influence diagram is not frequently used in 

practice, despite graphically expressing the risks because some difficulties are faced such as 

complexity in detailed representation of the relationships. However, with a BBN it is 

possible to design a feedback loop for risk management (even if a Bayesian belief network 

has no feedback loop itself) (Lee, Park and Shin, 2009). This assists to present a cause-effect 

relation visually and provide conditional probabilistic estimations of risks. 

     A common approach to analyse dependability and reliability of a system is implementing 

probabilistic reasoning (Luigi and Daniele, 2015). Fenton and Neil (2012, p.31) argue that 
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regression model remains ineffectual in risk assessment since it lacks explanatory power 

(comparing to causal models) and sometimes would mislead risk analysts with irrational 

information. Instead, they suggested introducing causal explanations into modelling 

processes to overcome limitations of traditional statistical approaches. Nevertheless, a sound 

probabilistic model comprising of a set of random variables has to rely on the joint 

probability distribution (JPD) over such variables (Luigi and Daniele, 2015). Having a joint 

probabilistic model allows for it to propagate probabilities from one node to others and 

compute posterior probabilities (Grover, 2016). To build this kind of model, Luigi and 

Daniele (2015) advocate the framework of Probabilistic Graphical Models (PGM). If nodes 

(causal and influential factors) represent random variables (directed model) we have 

Bayesian (Belief) Networks, while if nodes represent decision variables, we deal with 

Decision Networks which are also known as Influence Diagrams (Barber, 2012; Luigi and 

Daniele, 2015). Either model should be able to resolve three different types of uncertainty 

(Korb and Nicholson, 2003): ignorance, physical randomness or vagueness. 

     BBNs are acyclic graphical models widely used for reasoning under uncertainty or in 

other words representing knowledge in probabilistic systems (Korb and Nicholson, 2003, 

p.29; Luigi and Daniele, 2015). The term Bayesian Networks was first used by Judea Pearl 

in 1985 (cited in Pearl, 2000) to highlight the subjectivity of input information, Bayes’ 

conditioning as the cornerstone of updating information and distinction between causal and 

evidential reasoning. The basic structure of BBNs consists of nodes which represent discrete 

or continuous variables and arcs representing direct dependencies between variables (Korb 

and Nicholson, 2003, p.29). A belief network, in general, is defined as follows (Barber, 2012; 

Luigi and Daniele, 2015; Ahmad et al., 2021): 

A Bayesian Network is a pair 𝑁 = 〈𝐺, 𝑃𝑟〉 where: 

• 𝐺 = (𝑉, 𝐸) is a DAG whose nodes 𝑉 = {𝑋1 , 𝑋2, … 𝑋𝑛 } are a set of discrete random 

variables and 𝐸 is a set of arcs where an edge 𝑒 = (𝑋𝑖 → 𝑋𝑗) ∈ 𝐸 from 𝑋𝑖to Xj means 

that Xj depends on 𝑋𝑖 (often interpreted as 𝑋𝑖 causes 𝑋𝑗); 

• 𝑃𝑟 is a probability distribution over X1, X2, X3 … Xn such that,  

𝑃𝑟(X1, X2, X3 … Xn) = ∏ Pr (𝑋𝑖|𝑝𝑎(𝑋𝑖)

𝑛

𝑖=1

) 

where 𝑝𝑎(X) is the set of parent variables of X in the DAG 𝐺. We say that 𝑃𝑟 factorises 

over 𝐺. 

     In order to construct a Bayesian Network, a practitioner or researcher needs to find 

answers for a number of questions (Korb and Nicholson, 2003): 
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1) What are the variables of interest (nodes)? What are their values/states? 

2) What is the graph structure? 

3) What are the parameters (probabilities)? 

4) What are possible decision nodes? What will be their impact if they are effected? 

5) What are utility nodes and their dependencies? 

6) What are the preferences (utilities)? 

Undertaking the above steps involves challenges and difficulties that can be even more 

severe where the model reflects higher levels of speciality and complexity. Determining edge 

directions, deciding between conditional and unconditional dependencies between nodes and 

choosing “divide” or “conquer” approach to cope with complexity are fundamental and 

common difficulties can be experienced (Fenton and Neil, 2012). There might be also 

ambiguities about the influential factors and number of nodes for a given problem. 

Conducting sensitivity analysis can test how sensitive the network is to changes in parameter 

values and validity of an expert-built model to see whether the network is robust or not (Korb 

and Nicholson, 2003; Fenton and Neil, 2012). 

     One of the basic requirements in modelling with Bayesian Networks is the assumption of 

the Markov property (Pearl, 2000; Korb and Nicholson, 2003). Pearl (2000) describes 

Markov property as: “conditioned on its parents (directed causes), each variable is 

independent of its nondescendants”. Many textbooks distinguish between global and local 

Markov properties for DAGs. The “Handbook of Graphical Models” (Maathuis et al., 2018) 

defines the global Markov property for DAG as follows: 

Every undirected acyclic graph G over N induces a formal independence model over N 

through the directional separation criterion. N represents the nodes (or random variables A, 

B and C), G stands for graph and 𝜏(𝑁) is the triplet model. 

𝑀𝐺 =  {〈𝐴, 𝐵|𝐶〉 ∈ 𝜏(𝑁): 𝐴      𝐵|𝐶 [𝐺]}, 

which is a disjoint graphoid. A probability measure P over N with 𝑀𝐺 ⊆ 𝑀𝑃 is called 

Markovian with respect to G and we also say that P satisfies the directed global Markov 

property relative to G: 

(DG) if A and B are directionally separated nodes by C in G then, 𝐴     𝐵|𝐶 [𝑃]. 𝑀𝐺  is 

therefore a probabilistic conditional independence structure for any G. 

The local Markov property is also defined as:  

If a node j is a descendant of a node i in G if a directed path exists in G from i to j; 𝑑𝑠𝐺 (i) 

denotes the set of all descendants of node i ∈ N in G. Note that i ∈ 𝑑𝑠𝐺 (i). A probability 

measure P over N satisfies a directed local Markov property relative to a DAG G over G if: 



Chapter 3 

56 
 

(DL) for all 𝑖 ∈ 𝑁       𝑖 ⊥ 𝑁 ∖ (𝑑𝑠𝐺(𝑖) ∪ 𝑝𝑎𝐺(𝑖)[𝑃]. 

     With respect to directed local Markov property, Korb and Nicholson (2003) categorised 

BBNs into three groups. First, Independence-maps or I-maps which have the Markov 

property, knowing that every independence suggested by the absence of an arc (direct cause) 

is real in the system. Minimal I-maps should be placed under this category too. In minimal 

I-maps, the removal of an arc should violate I-mapness by implying a non-existent 

independence in the system (Korb and Nicholson, 2003). Second, Dependence-map or D-

map where every arc denotes a direct dependence in the system. Lastly, BBNs which can be 

regarded as both I-map and D-map are called perfect map. 

     Before starting the discussions on conditional probability tables (or CPTs), it is worth 

having a review on Bayes’ theorem. There are three key axioms underpinning the Bayes’ 

theorem (Grover, 2016): 

• probabilities (chances for events to occur) cannot be negative, in other words they 

are at least zero, P(A) ≥ 0, 

• the likelihood that something happens in the universe is always equal to one hundred 

percent, 𝑃(∪) = 1, and 

• if two events are mutually exclusive, the probability of either occurs equals to the 

sum of chances that each of them happens, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵). If A and B 

are non-mutually exclusive, then we have: 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵). 

Based on these three axioms, the Bayes’ theorem is defined as (Pearl, 2000; Korb and 

Nicholson, 2003; Fenton and Neil, 2012; Grover, 2016): 

𝑃( 𝐴 ∣ 𝐵 ) =
𝑃(𝐴,𝐵)

𝑃(𝐵)
=

𝑃( 𝐵∣∣𝐴 )∗𝑃(𝐴)

𝑃(𝐵)
, 

where 𝑃( 𝐴 ∣ 𝐵 ) is the conditional probability of an observable event 𝐴, given the 

probability of another observable event 𝐵, which is equal to the joint probability of event 𝐵 

and event 𝐴 (i.e. 𝑃(𝐴, 𝐵) or 𝑃(𝐴 ∩ 𝐵)), upon the probability of the event 𝐵 (Grover, 2016). 

The expansion of 𝑃(𝐴, 𝐵) would also result in the latter equation. Hence, both 𝑃( 𝐴 ∣ 𝐵 ) and 

𝑃( 𝐵 ∣ 𝐴 ) are conditional probabilities in a way that in the first, 𝐴 is conditioned on 𝐵 and 

vice versa (Grover, 2016). Accordingly, 𝑃(𝐴) is the prior probability (either known or 

unknown, and subjective) and used as the initiating values. This likelihood is further updated 

during the Bayesian updating process (or inference) through posterior probability which here 

is 𝑃( 𝐴 ∣ 𝐵 ) (Pearl, 2000; Grover, 2016). 𝐵 is a set of observations and 𝐴 is a set variables 

(discrete or continuous) which are chosen because of their weight in either prediction or 

diagnosis (Pearl, 2000). It is worth noting that a BBN can contain unconditional probabilities 
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as well as conditional probabilities and conditionality is not necessary for these mathematical 

models (Grover, 2016). If this is the case the node with unconditional probability should 

have no parent node since are not conditioned on any other variable (Fenton and Neil, 2012). 

After completing the structure of the BBN model, the next stage is to construct and elicit 

node probability tables (NPTs). These probability tables are also called conditional 

probability tables (CPTs) in Korb and Nicholson (2003) and Luigi and Daniele (2015) while 

only analysing discrete variables. The NPT for each node reflects the strength of the 

relationship between it and its parents (Fenton and Neil, 2012). In general, an NPT provide 

the probability of nodes conditioned on every possible state of its parent(s) (Fenton and Neil, 

2012). When we manually update one or more nodes, through causal links (or joints) the 

posteriors will be automatically updated (Grover, 2016). Creating such a table for the nodes, 

first requires to specify all possible combinations of values of its parent nodes. Then, to 

complete the table we need to find the probability for each possible value of a given variable 

(node) (Korb and Nicholson, 2003). 

     Once the probabilistic assumptions as to how variables interact with each other are 

incorporated into the previously formed structure, all queries are answered through 

performing inference on the distribution. As a result, efficient and powerful inference 

algorithms are critical to generating reliable outcome (Barber, 2012). D'Ambrosio (1999) 

listed some of basic types of queries. Single marginal query refers to a situation which we 

want to know about the probability of some subsets of parameters in the model. Similarly, 

we may be interested to learn about the JPD function across a subset of the parameters. This 

type of query is called subjoint. The more general form of subjoint query is Boolean query 

an again the answer is the sum of probabilities that satisfy the query condition. Although we 

can iterate single marginal query for a set of parameters, applying all marginal query enables 

us to compute the marginal probability of all parameters rather than only a single one. When 

new evidence becomes available, conditional query can be performed to compute marginal 

probabilities given new evidence. Finally, maximum a posteriori probability can tell us about 

the most probable instantiation of two nodes in the net. A variety of application-specific 

queries including sensitivity analysis and expected utility can be devised based on the above 

queries (D'Ambrosio, 1999). There are also various methods of inference for BBN models 

to answer back to these queries. Those methods will be introduced in the next section.  

 

3.5. Inference in BBN 

     As soon as an expressive and concise model is available, performing inference can be 

initiated (D'Ambrosio, 1999; Pearl, 2000). A completely specified BBN model contains 
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necessary information to probabilistically address all queries about the variables in a domain 

(Pearl, 1988). Korb and Nicholson (2003) define “belief updating” or “probabilistic 

inference” as “to compute the posterior probability distribution for a set of query nodes, 

given values for some evidence nodes”. The evidence can be inserted about any node and 

results in updating beliefs in the rest of the structure (Korb and Nicholson, 2003). Three 

classes of efficient algorithms for inference in BBNs are reviewed in Daewiche (2003) 

corresponding to three notions including conditioning, variable elimination and tree 

clustering. The first class of algorithms comprises two subcategories known as cutset 

conditioning and recursive conditioning (Darwiche, 2003). The former group (cutset) of 

algorithms try to simplify the network to a tree, whereas the latter group (recursive) which 

try to decompose the network into smaller networks and solve it recursively (Darwiche, 

2003).  The second class of algorithms which stand on the basis of variable elimination, 

reduce a probabilistic model with 𝑛 variables to a model over 𝑛 − 1 variables (Darwiche, 

2003). The process is then iterated to the point that we can rapidly find the answers in a less 

complicated model (Darwiche, 2003). Lastly, the third class of inference algorithms 

transform the structure of a BBN to a jointree to facilitate performing tree-based inference 

(Darwiche, 2003). On the other hand, depending on the context and structure of the studied 

BBN there have been other categorisations of inference algorithms introduced in the 

technical literature. Exact and approximate inference algorithms are among those 

classifications (D'Ambrosio, 1999; Guo and Hsu, 2002; Korb and Nicholson, 2003). Figure 

3.3 illustrates these taxonomies. Max-product, most probable path, shortest path, and mixed 

inference are also the main methods explored in (Barber, 2012). 

 

 

 

 

 

 

 
 

Fig. 3.3: Classification of real time inference in BBNs (Guo and Hsu, 2002). 

     In addition to the aforementioned methods, junction tree is the most well-known method 

which is capable to deal with multiple queries without any prerequisite for computing 

separate structure for each (D'Ambrosio, 1999). There have been several approaches 

introduced to these methods for the purpose of optimisation and increasing its efficiency. 
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Lifted junction tree (Braun and Möller, 2016), incremental junction tree (Agli et al., 2016) 

and hierarchical junction trees (Puch, Smith and Bielza, 2004) are just a few to name.  

      Darwiche (2003) shows that any probability distribution computed by a BBN model can 

be expressed by a multi-linear function with certain properties and further develops a 

comprehensive framework on this basis for inference in BBNs. Such a function is defined 

over two types of variables: evidence indicators or network parameters. For variable X in 

the network, we assume a set of evidence indicators 𝜆𝑥. We also consider a set of network 

parameters 𝜃𝑥|𝑢 which represent conditional probability for each network family. Therefore, 

for a simple network containing two nodes (a and b), the multi-linear function can be defined 

as (Darwiche, 2003):  

𝑓 =  𝜆𝑎𝜆𝑏𝜃𝑎𝜃𝑏|𝑎 + 𝜆𝑎𝜆𝑏̅𝜃𝑎𝜃𝑏̅|𝑎 + 𝜆𝑎̅𝜆𝑏𝜃𝑎̅𝜃𝑏|𝑎̅ + 𝜆𝑎̅𝜆𝑏̅𝜃𝑎̅𝜃𝑏̅|𝑎̅ 

Hence, representing and evaluating the network polynomial prepare the ground for 

computing probabilities of instantiation. Furthermore, partial derivatives of the network 

polynomial disclose helpful information which can be used for answering a wide range of 

probabilistic queries. Figure 3.4 shows an example on inference in a BBN model with 

Boolean nodes. 

Fig. 3.4: an example of inference in BBN 

     To exemplify the inference process in BBN, imagine that the probability of fire occurring 

in the above example is 0.02 and the probability for tampering to happen is 0.05. Hence, the 

conditional probabilities for the alarm to sound are as presented in table 3.1. Performing an 

inference returns a probability of 0.0268 for true and 0.9732 for false alarms. 

Table 3.1: conditional probability tables for the BBN model in figure 3.4. 

 

 

       

     We close this section with emphasising the importance of adopting efficient inferential 

techniques or tailoring a method to a model depending on the graphical structure of a BBN 
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model. In principle, inference is computationally complicated and expensive (Barber, 2012). 

The prime reason for this complication is the multiplicity of parents of a given node which 

leads to exponential increase in the number of JPDs (e.g., Zagorecki and Druzdzel, 2012; 

Rohmer, 2020). The involvement of trivial variables adds to the complexity of the model 

and curtails the sensitivity of the network outcome to the key variables (Chen and Pollino, 

2012). Instead, inclusion of intermediate nodes can decrease the number of JPDs which need 

to be computed (Provan, 1995). These considerations must be taken into account at the 

design and model development stage to avoid further implications in performing inference.  
 

3.6. BBN: a powerful learning network 

     Modelling complex socio-technical systems which are deemed to operate under profound 

uncertainties is inherently demanding and requires several main characteristics to be 

considered in any model including (Weber et al., 2012): 

• the complexity and extent of the system, 

• the consolidation of qualitative and quantitative data, 

• the temporal aspects (system dynamics), 

• the fact that some components have more than one state (multi-state characteristic), 

• uncertainties on parameter estimation, 

• the (inter)dependencies between events and variables. 

     The technical and academic literature suggests a number of classical modelling 

techniques such as Markov chains, fault trees (FT), dynamic fault trees, artificial neural 

network (ANN), Petri net, system dynamics (SD), fuzzy cognitive maps (FCM), fuzzy rule-

based models (FRBM) and Bayesian belief network (BBN) to satisfy the above 

requirements. Among these modelling methods, BBN has received wide and prominent 

attention. “It can be used as a machine learning algorithm to learn the fault patterns and 

required a full set of fault data for learning” (Zhao, Xiao and Wang, 2013). BBNs have the 

capacity of structural learning from data by benefiting form a score-based algorithm, which 

tries to find a structure that maximises the chosen entropy scoring function or a constraint-

based algorithm, which maps out the model structure based on the conditional dependencies 

existing between each pair of chosen variables (Uusitalo, 2007; Chen and Pollino, 2012).  

     If techniques and algorithms are constructed for Bayesian networks to automatically learn 

from data, not only this will reduce the burden of knowledge engineering problem, it will 

also enable the automatic refinement of a model’s topology as new data is piled (Lam and 

Bacchus, 1994). For example, Hanea, Napoles and Ababei (2015) suggested a semi-

automated version of a learning algorithm which only needs an empty graph to begin with. 
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Since acquiring full set of data might be expensive or impossible, expert knowledge can be 

replaced to construct the model. Four well-known ML algorithms for structural learning in 

BBN are K2, hill climbing (HC), tree augmented naïve (TAN) Bayes, and Tabu search 

(Ahmad et al., 2021). The outcomes of structural learning can be enhanced when combined 

with expert input; for example, the expert specifies some known dependences in the system 

before the learning algorithm is run (Chen and Pollino, 2012). On the other hand, involving 

experts’ opinions and judgements can increase the risk of bias (O’Hagan, 2019). Selecting a 

diverse group of experts can mitigate that risk and help to diversify the range of 

expertise/experience, impacting their judgements (Verdolini et al., 2020). 

     BBNs offer some outstanding capabilities which make them distinctive from other 

modelling techniques. Being able to accommodate the modular structure of complex 

systems, especially in multidisciplinary problems is another prominent feature of BBNs 

(Chen and Pollino, 2012; Lee, Yang and Cho, 2015). Since in this study we are incorporating 

variables from diverse spheres and levels, this capability of BBN becomes very 

advantageous. It is also capable to rank different versions of AVs based on several key 

performance indicators (KPIs) (Ismail et al., 2011). In this research, KPIs can be, for 

example, collision avoidance (or collision rates). Furthermore, BBN can be used as an 

interpretive tool. To exploit this advantage, it is necessary to instantiate a set of variables 

corresponding to the input data, then measure their impact on the probabilities of those 

variables which are defined as hypotheses, and lastly select the most probable combination 

of these hypotheses (Pearl, 1988). In return, a query can be made to interpret certain input 

data or choose the best course of action if utility information is given (Pearl, 1988). In 

addition, the graphical structure of BBN models visualises the information, especially the 

interdependencies, and makes it more accessible for non-statisticians (Gonzalez-Redin et al., 

2016). Swiftness of BBN in responding to queries, even in complex networks, can save time 

for analysts and accelerate the process of risk assessment (Uusitalo, 2007). 

     With BBN, it becomes feasible to articulate expert beliefs (or judgments) about the 

interdependencies between different variables of a complex system and to effectively 

propagate the impact of (recently found) evidence on the probabilities of uncertain outcomes, 

such as estimating the performance of certain key indicators or future system reliability 

(Fenton and Neil, 1999). It was explained in section 3.3 that analysing the risks of 

complicated systems, demands collecting and combing data from different sources. Bayesian 

network models are able to easily and in a mathematically coherent manner incorporate 

knowledge of different accuracies and from different sources (Uusitalo, 2007). Another 

strength of BBN lies in handling discrete and continuous variables alike (Moral, Rumí and 

Salmerón, 2001; Weber et al., 2012; Marcot and Penman, 2019), although some software 
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packages may not be able to deal with continuous variables. There are several software 

packages exclusively built to handle BBN models and we will explore available software 

packages in part 3.8.1.5. 

     One of the merits of BBN is that there is no minimum sample size required to run the 

model. Under circumstances where missing data or incomplete data can hinder 

implementation of other modelling techniques, BBNs can still deal with small and/or 

imperfect data sets (Uusitalo, 2007). Nevertheless, when a large number of AVs are launched 

for public services in a variety of conditions or current porotypes generate more data, 

probability distribution of some variables in the model may need to be modified. Recent 

evidence (or observations) can be inserted at any stage and into different nodes and update 

the states of other nodes through the network by using Bayes' rule (Korb and Nicholson, 

2003; Ashrafi, Davoudpour and Khodakarami, 2015; Brito and Griffiths, 2016; Papakosta, 

Xanthopoulos and Straub, 2017; Matellini et al., 2018).  

     Due to complexity of a problem, availability of data or extensive range of variables it 

might be desired to create a meta-model and incorporate distinct variables/scenarios in an 

uncertain framework (Uusitalo, 2007). Marcot and Penman (2019) in a recent study surveyed 

the advances in Bayesian network modelling and possibilities of integrating it with other 

modelling frameworks or tools such as agent-based modelling, Quantum-like Bayesian 

Networks (QBN) utilising both quantum probability theory and graphical models (Moreira 

and Wichert, 2016; Huang, Yang and Jiang, 2019), object-oriented Bayesian Network 

(OOBN) which defines complex domains as inter-related objects (Koller and Pfeffer, 1997), 

and Bayesian Decision Networks (BDNs) which contains decision and utility nodes (Marcot 

and Penman, 2019). 

      Although BBN tool has many advantages, it also requires that continuous variables be 

discretised. In an analysis including continuous variables, which need to be transformed to 

discretised variables, the discretisation process could cause information loss. To avoid this 

pitfall, the researcher can only involve discretised variables (Lee, Park and Shin, 2009). 

Another problem in BBN is the exponential growth in JPDs when the number of parents of 

a node increase (Lam and Bacchus, 1994). To circumvent this disadvantage, intermediate 

nodes can be exploited. Likewise, the increase in connectivity of the network leads to more 

computational demand and complexity (Lam and Bacchus, 1994). Multi-connected 

networks present a space complexity problem and this complexity grows with the degree of 

connectivity (Lam and Bacchus, 1994). Causal interpretability of BBN models is also 

debateable. A BBN model can bespeak the causal structure of a system if and only if (1) 

every node and its direct predecessors represent variables involved in a distinct mechanism 
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in the system; and (2) nodes without any predecessors are exogenous variables (Druzdzel 

and Simon, 1993). 

 

3.7. Comparing BBN with other modelling techniques 

      Principle M in the SoTeRiA framework (Mohaghegh and Mosleh, 2009) outlines the 

necessary steps and requirements for choosing appropriate ‘modelling language’ and 

building a safety causal model. It indicates that a safety causal model should cover a very 

broad range of causal factors (variables) and paths of influence (interdependence) and 

include performance of technical systems, behaviour of individuals and organisational 

characteristics. It further favours the hybrid modelling techniques due to heterogeneity of 

modelling domains and multidisciplinary nature of complex socio-technical risk analysis. A 

hybrid model can integrate deterministic and probabilistic modelling perspective which is 

believed to result in a flexible and generic risk assessment tool for a variety of high-risk and 

complex socio-technical systems (Mohaghegh, Kazemi and Mosleh, 2009). Then, four most 

common hybrid modelling techniques are introduced: SD, BBN, event sequence diagram 

(ESD), and FT. A detailed comparison on different modelling (soft computing) techniques 

and learning networks is provided in (Sadiq, Kleiner and Rajani, 2010; Ismail et al., 2011) 

(please see Table 3.2). According to the table, BBN offers superior performance over DT, 

FRBM and ANN in most of attributes such as network capability and difficulty of 

modification. As far as the ability to express causality is concerned, BBNs demonstrate 

considerable competence. The main competitor to BBN in this table is (fuzzy) cognitive 

maps. Although there are studies (e.g., Liu, 2001; Douali et al., 2014) advocating that the 

accuracy of FCM takes over BBN and that FCM propagates causality in a more natural way, 

its weaknesses in maturity of science and ability to handle dynamic data discouraged us to 

adopt FCM. On the other hand, BBNs have been widely applied not only in academia but 

also in practice (Mohaghegh, Kazemi and Mosleh, 2009) which has helped significantly to 

mature and integrated with other modelling techniques such as neural networks.  

     Nearly all traditional risk assessment techniques including Failure Modes and Effect 

Analysis (FMEA), Fault Tree Analysis (FTA), Hazard and Operability Analysis (HAZOP), 

and PRA are developed based on a chain of cause and effect analysis, but they face 

limitations in establishing an efficient link between risk models and organisational/human 

factors (Ashrafi, Davoudpour and Khodakarami, 2015). Dynamic Fault Trees suffer from 

exponential growth with size of the system and modelling spares (Ashrafi, Davoudpour and 

Khodakarami, 2015). Marcot and Penman (2019) also compared BBN with structural 

equation modelling (SEM) and reported two major differences. Firstly, SEM is purely 

statistical, whereas BBNs which are probabilistic models (trainable by data) and are mainly 
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used for assessing the consequences of conditions or events on outcome(s). Secondly, SEM 

usually benefits from multivariate and frequentist approaches, whereas BBNs exploit 

conditional probabilities and Bayes' theorem.  

      ANNs have been widely adopted to address a broad range of problems in a variety of 

contexts (Carleo and Troyer, 2017). However, ANNs are not as efficient as BBNs in risk 

assessment. To identify cause-effect relationships, ANNs need significant historical data 

(and knowledge) (Kabir et al., 2015), whereas BBNs can be deployed to address problems 

under grave epistemic uncertainty and with conflicting information (Zhao, Xiao and Wang, 

2013). “BBN has shown superior performance compared with neural networks, support 

vector machines, decision trees” (Zhao, Xiao and Wang, 2013). 
 

Table 3.2.: comparing five common soft computing modelling techniques (Ismail et al., 2011). 

Attributes 
Soft computing techniques 

DT FRBM ANN BBN CM/FCM 

Network capability N L N H VH 

Ability to express causality H M N H VH 

Formulation transparency H H N H VH 

Ease in model development H M M M VH 

Ability to model complex systems M H VH H VH 

Ability to handle qualitative inputs H H N H VH 

Scalability and modularity VL L VL H VH 

Data requirements H L VH M L 

Difficulty in modification VH H M L N 

Interpretability of results VH VH VH VH H 

Learning/training capability H M VH H H 

Time required for simulation L L H L L 

Maturity of science VH H H VH M 

Ability to handle dynamic data L H H H M 

Ability to combine with other models H VH VH H H 

Ratings: N=No or Negligible; VL=Very Low; L=Low; M=Medium; H=High; VH=Very High 
 

DT: Decision tree                                                           FRBM: Fuzzy rule-based models                                 
ANN: Artificial neural network                                    BBN: Bayesian belief network                             
CM/FCM: Cognitive maps/Fuzzy cognitive maps 

 

 

3.8. Research methodology: steps in detail 

     The process of developing the BBN model is divided into two main phases. The 

development of the structure (structural learning) and eliciting knowledge and judgement of 

experts to build the CPTs (parameter learning) (Lee, Park and Shin, 2009). For the first 

phase, the data is collected through ILR which distinguishes this study from others in 

developing a BBN to address the risks of CAVs. A new method was also developed to 

construct the CPTs. Afterwards, a survey was designed and run to elicit the opinions of 

experts and determine the weights of influences that parent nodes have on their child nodes. 

Throughout this process, a multidisciplinary approach has contributed to the integrative risk 

analysis from the sociotechnical perspective.  
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3.8.1. Causal network model 

3.8.1.1. Identifying main influential variables (nodes)  

     The topology of a BBN model consisting of nodes, causal links and states within the 

nodes can be shaped based on priori data including simulations, expert input, qualitative 

data or a combination of these (McDonald, Ryder and Tighe, 2015). The identification of 

influential variables started with reviewing the literature on three main themes as depicted 

in figure 3.5. Literature reviews involved identifying themes related to the research topic in 

the narrative material being searched. Themes are recurrent patterns in narrative data; 

therefore, a literature review is a kind of QUAL analysis (Teddlie and Tashakkori, 2009). 

Then based on the literature, a set of keywords have been compiled for the ILR. These 

keywords are provided in appendix A (nodes column). Next, according to the defined 

framework in figure 3.6, ILR was conducted to validate the selection of these nodes and 

identify the relation between chosen nodes. Web of Science, DelphiS and Google scholar 

(Zhang, Angell and Bao, 2021) are the search databases for the ILR. The selected keywords 

for autonomous driving were “autonomous vehicle*” OR “autonomous car*” OR 

“automated vehicle*” OR “automated car*” OR “self-driving” OR “driverless”. These 

keywords gather a large pool of papers and studies corresponding to AVs. The number of 

results in DelphiS was 82,974 and in Web of Science platform was 18,234.  

     Afterwards, other keywords such as “risk”, “collision”, and those which were identified 

in the preliminary literature review (i.e. environmental, human, traffic, and technical 

exposures) were combined to narrow down the search to specific contexts and topics. 

Synonyms of the keywords and Boolean operators were applied where multiple 

terminologies for the same factor were detected in the reviewed literature. As explained in 

section 2.1.6, the inconsistencies and plurality in using terminology for AVs can pose a 

challenge in the ILR process. It might not be feasible to search for all these terms in a PhD 

project which is bounded by time limitations. As a result, it was decided to only search for 

the above keywords in the databases and exclude infrequent terms such as ‘robotic car’. This 

can be considered as one of limitations of this research project. Finally, thematic analysis 

was conducted to identify, organise and interpret themes emerging from the reviewed 

literature (Gioia, Corley and Hamilton, 2013). This is discussed in detail in 3.8.1.4. 53 risk 

factors and indices were subsequently found across the four blocks which were reported to 

have influence on the collision risk in AD in urban areas. These factors shape the topology 

of the BBN model in this study.   
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Fig. 3.5. Three central themes underpinning the ILR in this research 

     It has been argued earlier that to establish a causal relationship between a series of 

variables in studying complex systems, mere reliance upon quantitative methods/data (e.g. 

SEM) is not the best approach. As a result, qualitative data is involved to augment the quality 

of the model. According to the SoTeRiA framework the system is broken down into four 

main blocks (i.e. technical, human, environment and organisation) and variables are 

categorised accordingly, although overlaps are possible. This four-block structure was 

adopted by Ashrafi, Davoudpour and Khodakarami (2015) to analyse the risks of wind 

turbines. A similar approach is also supported in the ALFUS (autonomy levels for unmanned 

systems) (Huang et al., 2005). ALFUS specifies mission complexity (e.g. performance, 

organisation and situation awareness), environmental difficulty (e.g. urban, rural and 

climate) and human independence (e.g. trust and supervisory control) as three axes of a 

detailed model to address autonomy issues. The 2008 NHTSA crash causation survey 

collected data on vehicles, environmental conditions and human behavioural conditions to 

analyse their contribution to the occurrence of crashes (Choi et al., 2008). This can clearly 

show the importance of human, environmental and vehicular factors in any collision. In the 

same manner, Weber et al. (2012) suggested that to quantify failure scenarios and risks of 

complex systems modelling the interaction between different technical, human, 

organisational and nowadays environmental factors is requisite.  

     In addition to the verification for the structure, some relevant studies and 

accident/disengagement reports e.g. Sheehan et al. (2018 & 2019); Pollard, Morignot and 

Nashashibi (2013) can support the selection of nodes since there are several common 

variables in these studies. Notwithstanding the commonalities, differences are mostly due to 

the underlying theories and assumptions, adopted frameworks and scope of the analysis. The 

main aspects of the BBN model which distinguishes it from other models is the 

comprehensiveness (includes 54 nodes) and integrating the variables from four distinct but 

Autonomous 
Vehicles

Urban 
Driving 

Environment
Collision 

Risk



Chapter 3 

67 
 

interacting areas into a single model through the sociotechnical theory. The adopted 

methodology in this project (i.e., ILR, thematic analysis and scope of search) significantly 

reduces subjectivity in selecting variables whereas the above studies that relied on a narrow 

literature review, extreme assumptions or limited data to identify their nodes. 
  

3.8.1.2. Integrative literature review 

     The number of publications on the technical and social aspects of AVs is already large 

and this opens up the opportunity for researchers to base their research on the existing 

literature. In the meantime, the literature is scattered across diverse disciplines and this 

mandates a multidisciplinary approach to review and synthesise the collected data (Snyder, 

2019). Along with that, a scientific framework including clear criteria is required to minimise 

the subjectivity and maintain the quality of results. For this purpose, ILR was chosen to 

regulate the processes including selection of papers and defining a framework for identifying 

variables affecting the collision risks of AVs in urban environments.  

     Munn et al. (2018) classified systematic review types into ten categories and proposed a 

typology for systematic reviews in medical and healthcare sciences. “Etiology and/or risk 

reviews” are mainly designed to ascertain the existence and strength of any relationships 

between a risk factor (aka exposure) and a health outcome (illness) to inform clinical 

decision- and policy-making (Moola et al., 2015; Munn et al., 2018b). The overarching 

question in this type of review is to determine if there is a causal association between an 

independent variable (exposure) and a dependent variable (outcome). In Moola et al. (2015) 

two methods are suggested for narrative synthesis of data: textual description and thematic 

analysis. A tabular format can be further used to synthesise the collected data and group 

them based on, for example, context or results (Moola et al., 2015). In this process, 

transparency in defining the frameworks and criteria for identifying risk factors, the outcome 

and assessing the association between them plays a critical role (Munn et al., 2018b; 

Borgström, Daneback and Molin, 2019; Snyder, 2019). 
 

3.8.1.3. Defining a framework for ILR 

     For conducting rigorous analysis and generating reliable and replicable results, 

conventional reviews appear to be insufficient and lack thoroughness (Snyder, 2019). Thus, 

tailoring and applying a research protocol are indispensable to evaluate the rigour, 

completeness and replicability of a study for the sake of reducing any effects of arbitrary 

inclusion and increasing the legitimacy of findings (Righi, Saurin and Wachs, 2015). ILR 

has been used in medicine (e.g., Kashani et al., 2013), business analysis (e.g., Benzaghta et 
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al., 2021), education (e.g., Osam, Bergman and Cumberland, 2017) and engineering 

management (e.g., Yassine, 2019) and is becoming popular in other fields. Snyder (2019) 

introduces literature review as a research methodology and discusses three types of review 

in business research. Although there are similarities between these review approaches (i.e. 

systematic, semi-systematic and integrative review), each of them can show more 

competence in tackling certain research questions depending on the purpose, research 

question(s) and search strategy (Snyder, 2019). Exploring the studies which relied upon the 

literature as the main source of data reveals that a mixture of the aforementioned approaches 

also can be utilised to address a research problem. For instance, Borgström, Daneback and 

Molin (2019) combined a systematic and an integrative literature review approach to single 

out peer-reviewed studies for further thematic analysis.    

     Torraco (2005) suggested that ILR can be conducted to review, critique and synthesise 

‘representative literature’ on a particular research topic in an integrated manner. This method 

is applicable for both mature and emerging research areas (Torraco, 2005; Snyder, 2019). 

Risk assessment of CAVs in urban environment has both features of maturity and emergence 

since there is a large body of literature investigating, measuring and analysing various risk 

factors that can give a rise to (or reduce) the probability of collision, while developing a 

socio-technical approach towards AI-based autonomous systems is still in its infancy. 

     Based on the above discussions, the formulated protocol for selecting and reviewing 

pertinent literature borrows some characteristics from both systematic and integrative 

literature reviews. in order to find and assess causal relationships between risk factors and 

outcome variables, qualitative studies as well as quantitative studies can be useful. There are 

ample number of studies which underscore and explain a cause-effect relationship between 

two variables of interest in the format of text rather than presenting any correlative analysis. 

Therefore, whilst inclusion of both qualitative and quantitative evaluations satisfies one of 

the conditions for semi-systematic review, extending the search to books, technical reports, 

theses and patents can represent integrative review (Snyder, 2019). Table 3.3 summarises 

the main features of integrative review and semi-systematic review. 

Table 3.3: comparing two types of literature review in business research (Snyder, 2019) 

Approach Semi-systematic Integrative 

Purpose 
Overview research area and trace 

development chronologically 
Critique and synthesise 

Research question broad Narrow and broad 

Search strategy Systematic/not systematic Usually not systematic 

Sample characteristics Research articles Published text e.g., articles, books 

Analysis and evaluations Quantitative/qualitative Qualitative 

Main contributions 
State of knowledge, themes in literature, 

theoretical model, historical overview and 
research agenda 

Taxonomy and classification 
Theoretical model 
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     The protocol for identifying influential risk factors of AVs in exhibited in figure 3.6. Web 

of Science, DelphiS (internal to the University of Southampton), and Google scholar are the 

three main databases elected for searching relevant published text. The main criteria for 

including papers were relevance to the context, date of publication and clear specification of 

one or several risk factors which can affect the safe driving of AVs. These publications 

consist of journal articles, conference papers and proceedings and symposiums, technical 

reports, books, patents and a few news articles. Almost all of the included papers were 

published after 2005 (the first round of DARPA competitions). After screening the papers, 

they were populated into classified folders based on the main investigated theme in the paper. 

For example, if a study pinpointed the role of adverse weather conditions, it was stored under 

the category of environmental factors or if a paper studied the impact of sensor failure on 

collision risk, it was saved under technical risk factors category. In the final stage, thematic 

analysis was undertaken to determine the main sources of risks and their association with 

safe performance of the vehicle. Many of the reviewed papers specify more than one 

exposure. The redundant themes (other than the central focus of the paper) are labelled as 

‘other themes’ in appendix A. 

 

 

 

 

 

  

  

 

 

 

  

 

 

 

 

Fig. 3.6: The protocol for paper identification, adopted from (Liberati et al., 2009). 
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3.8.1.4. Thematic analysis (TA) 

     Despite the comprehensive use of qualitative methods specially in social sciences, lack 

of rigour and being prone to biases raise questions about the credibility and validity of results 

generated by grounded theory (Gasson, 2004). According to Mackieson, Shlonsky and 

Connolly (2019) ‘applied thematic analysis’ can discount those criticisms by setting up a 

structure and integrating ‘reflexivity’ in qualitative research. In qualitative research, 

reflexivity refers to a continuous process of researcher’s self-awareness and self-evaluation 

of his/her position in the research process and critically examine the effects that this position 

may have on the outcome (Berger, 2015). Applied thematic analysis is used to analyse 

collected textual data (e.g. interview transcriptions) and text from data sources (Mackieson, 

Shlonsky and Connolly, 2019). The key objective is to recognise themes (patterns) across 

given qualitative data sets through conducting interpretive analysis (Braun et al., 2019). A 

theme, as Braun et al. (2019) describe, is a reflecting pattern of shared semantic (or surface) 

meanings connecting scattered data across varied contexts. For example, in the literature 

concerned with the AVs’ risks, ‘poor’ or ‘adverse’ weather conditions are often correlated 

with the impaired performance of the technology. This pattern can reveal a cause-effect 

relationship between the weather conditions and the collision risks for AVs. Like ILR, 

devising a transparent framework which can exhibit traceability and replicability is deemed 

to be requisite. Fig. 3.7 presents a schematic framework for analysing themes emerging from 

the selected papers in this research. This framework complies with the Gioia methodology 

which proposed ‘1st Order Concepts’, ‘2nd Order Themes’, and ‘Aggregate Dimensions’ for 

conducting qualitative inductive research (Gioia, Corley and Hamilton, 2013). 

Fig. 3.7: The thematic analysis framework (Mackieson, Shlonsky and Connolly, 2019). 

First Level 
Analysis

• Skimmed the paper to identify mentioned risks, threats, dangers, degradations, reduction in 
performance, safety compromises , deficiencies, failures, faults, disengagements, etc. and 
highlight them for further analysis.

• Decided whether the paper should remain under the current class  (i.e. environmental, 
human, traffic and technical) or be moved to another class. This decision was made based on 
the predominant themes of the risk causes. 

Second Level 
Analysis

• Read the highlighted areas carefully and interpreted the provided data into thematic causes 
and reasons of the risks which were identified in the previous level. 

• Merged the synonymous themes into a single theme. 

Third Level 
Analysis

• Analysed and measured the frequencies of identified themes.

• Extracted and transferred the prevalent theme in a paper besides the shadow themes into 
the designed table. The new emerged thems were subsequently fed back into the literature 
search.
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     First level analysis consisted of two major tasks. Firstly, the gathered and grouped papers 

and documents were skimmed to locate the sections and paragraphs which hold discussions 

on the sources of collisions risks. Then, a decision needed to be made to whether keep the 

paper/document within the current predefined class (block) or move it to another class. It 

occurred that usually the reviewed paper encompassed a range of risks and their causes, but 

one theme (e.g. cybersecurity or human-machine interactions) predominated other themes 

in that paper. The stronger theme sometimes was not corresponding to the keywords used to 

find the paper. This mandated the researcher to change the class of the paper. For instance, 

searching “reaction time” AND “risk” AND “autonomous vehicles” in Google scholar 

returns a paper published by Sheehan et al. (2019) on the first page; however, the prevailing 

theme in that paper is ‘cybersecurity’ of AVs not ‘reaction time’. Consequently, reorganising 

the papers according to the main themes and overarching risk factors took place in the first 

level analysis. 

     In the next level, an interpretive analysis was attempted to indicate if a causal relationship 

exists between the specified malfunctions in the previous level and collision risk. 

Interpretation of the text becomes crucial where some of the mainstream themes in the 

collated literature, such as ‘trust’, do not always signify a risk to the safety of AVs. As a 

sample, Kaur and Rampersad (2018) investigated some of the factors which affect the safe 

operation of AVs and the concept of ‘trust’ in the technology is repeatedly brought up in this 

paper. Nonetheless, no association is reported to exist between ‘trust’ and collision risks. 

Instead, this paper shows a significant correlation between trust in the technology and users’ 

willingness to adopt it (Kaur and Rampersad, 2018). Next step in this level was dedicated to 

merging and unifying some parallel themes in the literature. Synonyms are often used to 

refer to an identical concept or variable. ‘Traffic congestion’, ‘traffic volume’, ‘traffic 

density’ and ‘traffic flow’ can be a clear example. These four variables have attracted 

considerable attention in the technical and accident literature for autonomous vehicles. 

Despite the differences in the proposed formulae for calculating these variables 

(Twagirimana, 2013), they all contribute to or measure a single variable which is number of 

vehicles on roads. Another example can be ‘roadway configuration’, ‘road layout’, ‘road 

design’, ‘road characteristics’ and ‘road geometry’. To avoid ‘information double-counting’ 

such as what frequently happens in Naïve Bayes models (Langseth and Nielsen, 2006) and 

prevent overcomplication of the model these variables were merged into one group.  

     Finally, the frequency and strength of the link between an emerged theme and any risk to 

the safe function of the vehicle (i.e. the collision risk) were evaluated. ‘Urban design’ can 

serve as an example here as it is common sense that the way urban areas are planned and 
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designed can have a great impact on the frequencies and severity of the accidents and those 

factors can mitigate the likelihood of fatality and severity of injuries in motor vehicle crashes 

(Thompson et al., 2020). Even though that causal relationship is proven to exist in the 

literature, the reverse relationship (the effect of launching AVs on the urban design) is widely 

discussed in the literature on autonomous driving risks. Thus, the ‘urban design’ theme 

which is not frequently and explicitly cited to have influence on the ‘road condition’ risk 

index as far as AVs are concerned, was broken down to its elements such as ‘road type’, 

‘roadway configuration’ and ‘road infrastructure’ to capture its impacts. The number of 

papers on the succeeding themes also shows there exists an association between the 

aforementioned themes and collision risk. In the final stage, the reviewed and analysed 

papers/documents were sorted in a table as suggested in 3.8.1.2 (please also see appendix 

A). Figure 3.8 shows the process of qualitative data collection in three major phases. 
 

 

 

Fig. 3.8: a schematic summary of the three phases to identify the influential factors. 
 

3.8.1.5. Developing the causal model 

     After the results of qualitative data collection (i.e., literature review) became available, 

the construction of the BBN model began. For this purpose, Hugin Lite software package 

(Madsen et al., 2003; Fenton, Neil and Caballero, 2007; Uusitalo, 2007; Ashrafi, 

Davoudpour and Khodakarami, 2015) was used to develop the network and NPTs. The 

developed causal model is demonstrated in figure 4.4. According to the socio-technical 

theory the environmental variables, traffic conditions, and human factors are accompanied 

by a technical module to represent a comprehensive and integrated assessment of system 

reliability beyond common reliability models constrained by the reliability of their physical 

components (Ashrafi, Davoudpour and Khodakarami, 2015). In environmental, traffic, and 

Phase 1

• Preliminary literature 
review in the context of 
AVs' risks

• Formulating/revising the 
keywords for ILR based on 
the preliminary lit. review.

Phase 2

• Searching for papers and 
documents in the 
databases using the 
keywords formulated in 
the previous phase.

• Applying the 
exclusion/inclusion 
criteria.

• Classifying the included 
papers according to the 
keywords.

Phase 3

• Conducting thematic 
analysis to discover and 
(re)categorise the 
predominant themes

• Generating a table to list 
and summarise the 
documents
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human reliability blocks, discrete variables are used in the form of ranked nodes to describe 

the system state and interactions. By applying this BBN model, risk analysts (e.g. in 

insurance and regulatory sectors) will be able to trace the impacts of various influential 

factors on the collision risk. In the meantime, it provides the possibility of analysing the role 

of on-board drivers and circadian mode through a cognitive approach in the reliability of 

AD.  

     The Hazard Classification and Analysis System (HCAS) outlines a taxonomy for 

discovering the hazard sources in aircraft operations (Luxhøj and Topuz, 2012). The hazard 

sources are categorised into four major groups: 1) environment such as weather conditions 

and obstacles; 2) airmen and operators; 3) vehicle related factors such as sensors and 

antennas; and 4) operation hazards including flight planning and airspace (established or 

temporary). This taxonomy besides the discussions in sections 3.8.1.1 and 4.2 formed the 

idea of structuring the model with four separate modules that the aggregated impact of each 

block affects the collision risk index. 

     Marcot et al. (2006) set out nine general guidelines for developing a BBN model. They 

favour having three or fewer parents for a node, as far as possible. This guideline was 

observed for most of the nodes in the model except for the aggregate nodes (e.g., risk 

indices). Next, using parentless nodes which typically represent environmental factors and 

indicator habitat nodes such as ‘date’ that their information can be extracted from existing 

data (e.g. geographic information). This criterion was satisfied in developing the BBN model 

by incorporating nodes such as ‘time of day’ and ‘day of week’. Designing intermediate 

nodes is another guideline recommended to summarise the major themes (or latent 

variables). An example can be risk indices designed to accumulate the influence of the 

variables in each block and link them to the overall risk (i.e. collision risk). As far as possible, 

nodes should be observable and quantifiable, although in some cases intermediate nodes or 

latent variables may not meet this criterion (Marcot et al., 2006). In framing the states for 

nodes, there must be a trade-off between having the fewest discrete states and achieving the 

desired precision. This guideline was also observed by ensuring that the states are enough 

for the range of input values and are not excessive causing exponential increase in the CPTs 

and confusion for the experts during elicitation process.  

     The guidelines suggest that the number of layers between a parentless node and the output 

of the model should not exceed four to prevent unnecessary uncertainty propagating in the 

model. Except a few cases, all layers in the model were kept at four or less. If an intended 

model contains several spatial scales, they should be developed simultaneously. In that way, 

output of one BBN model is used as input to another through instance node tool in Hugin. 
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This criterion was waived in this project to avoid complicating the model, however, can be 

a potential area for future research and extending the model. An explanation for the nodes 

and selection of states are attached to each node in the model to track their authorship. 

Finally, arcs must link the input nodes if they are likely to be correlated and any lack of link 

between the prior probabilities and input nodes reflects the assumption that they are 

uncorrelated (Marcot et al., 2006). Following the above guidelines, a Bayesian network was 

constructed in Hugin (please see figure 4.4). 
 

3.8.2. Conditional probability tables (CPTs): incorporating experts’ knowledge 

     In addition to the DAG which is also known as the ‘qualitative’ part of the model, CPTs 

(i.e. quantitative part) must be specified as well (Ben‐Gal, 2008). It is necessary then for 

each (discrete) variable of the model to have a CPT which consists of a number of labels. 

The labels give information about the state of variables and can be changed manually when 

evidence on one or a set of variables becomes available. For instance, the states for weather 

conditions can be sunny, rainy, and snowy or alternately it could be Boolean like adverse 

and fair. The number and types of risk indices depends on several factors including 

complexity of system, scope of research, and complexity of the model. The next step is to 

indicate the prior probability distributions for variables in the model. In this study, the 

judgment of experts is the main ground for obtaining and incorporating JPDs into the model. 

In the next subsection, this process will be justified and explained.  

     A novel method was developed to populate the NPTs in a way to generate uniform 

distributions for most of the nodes, except for those that were directly influenced by ‘time 

of day’ such as drowsiness and traffic density. For the nodes that are directly influenced by 

time of day, an approximation of the graphs and data provided in the literature (please see 

figures 4.1 & 4.2) were used to populate their NPTs accordingly. It starts with two 

assumptions. If all the parent nodes are in the most desirable states, the probability for the 

least risky state of the child node is one and it is zero for the rest of states and vice versa. 

Consider table 3.4 as an example for an NPT with n parents and m states. 𝑆1 is the state 1 

for Parent 1 and a is the number of states for this node. 𝑆𝑁
′′ is also the state 1 for Parent n and 

z is the number of states for this node and so forth. Therefore, this table consists of a x b x ... 

x z  = q rows to be populated. The number of cells subsequently equals q x m. The states in 

the left are the most and those in the right are the least desirable in terms of contributing to 

collision risk and other states are sorted between in accordingly. 𝑗𝑥𝑦 denotes the probability 

value for the cells in the table (x: column; y: row). The rest of rules are as follows: 
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 Table 3.4: an example for NPTs in Hugin. 

 

         Rule (1):        ∑ 𝑗1𝑦
𝑚
𝑦=1 =  ∑ 𝑗2𝑦

𝑚
𝑦=1 = ⋯ =  ∑ 𝑗𝑞𝑦

𝑚
𝑦=1 = 1 ; 

         Rule (2):        ∑ 𝑗𝑥1
𝑞
𝑥=1 =  ∑ 𝑗𝑥2

𝑞
𝑥=1 =  ∑ 𝑗𝑥3

𝑞
𝑥=1 =  ∑ 𝑗𝑥4

𝑞
𝑥=1  

     and 

         Rule (3):      for columns 0 to 𝑞
4
 :    𝑗(𝑥+1)1 = 𝑗𝑥1 − (

0.5
𝑞

4
−1

);   𝑗(𝑥+1)2 =  𝑗𝑥2 +  (
0.5

𝑞

4
−1

);   

𝑗𝑥3 = 0; and  𝑗𝑥4 = 0 
                              for columns 𝑞

4
 to 𝑞

2
 :    𝑗(𝑥+1)1 = 𝑗𝑥1 − (

0.5
𝑞

4
−1

);  𝑗𝑥2 = 0.5;               

𝑗(𝑥+1)3 = 𝑗𝑥3 +  (
0.5

𝑞

4
−1

); and  𝑗𝑥4 = 0 

                              for columns 𝑞
2
 to 3𝑞

4
:    𝑗𝑥1= 0;  𝑗(𝑥+1)2 =  𝑗𝑥2 − (

0.5
𝑞

4
−1

);  𝑗𝑥3 = 0.5;                 

and  𝑗(𝑥+1)4 = 𝑗𝑥4 +  (
0.5

𝑞

4
−1

) 

                              for columns 3𝑞

4
 to q:   𝑗𝑥1 = 0;  𝑗𝑥2 = 0;  𝑗(𝑥+1)3 = 𝑗𝑥3 − (

0.5
𝑞

4
−1

);                        

and  𝑗(𝑥+1)4 = 𝑗𝑥4 +  (
0.5

𝑞

4
−1

) 

 
     The tables must be symmetric (as shown in table 3.4) to the centre in a way that 𝑗11 and 

𝑗𝑞𝑚 are equal to one and other states in their columns are equal to zero. Depending on the 

number of states (either 3 or 4) the values for the columns on the edge of the first (𝑞

4
), second 

(𝑞

2
), and third quarter (3

4
𝑞) can vary between 0, 0.33, 0.5 and 0.67. The probability values for 

each child node were calculated in Microsoft Excel and transferred to Hugin. In cases where 

rules contradicted each other, rule 2 was prioritised over the first rule to generate uniform 

distributions. Hugin allows for the sum of values for each column to exceed 1.00 and 

automatically converts them to a percentage when instantiating. All probability distribution 

functions (PDFs) were automatically normalised after the model was run. When the sum of 

all possible results of a PDF is equal to one it is called to be normalised. Fig. 3.9 provides 

two examples of the NPTs for ‘hardware reliability’ and ‘other road users’ nodes. 

Parent 1 𝑆1 ... 𝑆𝑎 
Parent 2 𝑆1

′  ... 𝑆𝑏
′  

... ... 
Parent n 𝑆𝑁

′′ ... 𝑆𝑧
′′ 

State 1 𝑗11 =1 ... 0.5 ... 0 ... 0 ... 𝑗𝑞1 =0 
State 2 𝑗12 =0 ... 0.5 ... 0.5 ... 0 ... 𝑗𝑞2 =0 
... 𝑗1𝑦 =0 ... 0 ... 0.5 ... 0.5 ... 𝑗𝑞𝑦 =0 
State m 𝑗1𝑚 =0 ... 0 ... 0 ... 0.5 ... 𝑗𝑞𝑚 =1 
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Fig. 3.9: a & b: the NPTs for ‘hardware reliability’ and ‘other road users’ in Hugin. 
 

     In order for the automated NPT calculations to be performed, it may be mandatory to 

assign weights to applicable parent/child node combinations (Fenz, 2012; Rohmer, 2020). 

While this can turn to a very time-consuming task (depending on the topology of the model), 

it allows the domain experts to attach weights to different parent nodes and influence the 

NPT computation (Fenz, 2012). To extract those weights, a survey was designed and experts 

of relevant fields (e.g., robotics and extreme environments, HMI, urban traffic and AV 

development) took part in the survey.  
 

3.8.3. Expert knowledge elicitation 

     Experts knowledge elicitation has played a key role in decision-making, particularly 

where the aftermaths of an event or activity are unknown (O'Hagan et al., 2006, p.9). The 

process of eliciting opinions from one or more experts to constrain uncertainties of one or 

more influential variables feeds straight into the decision itself (O'Hagan et al., 2006, p.9). 

The probabilities required in a BBN are quantified with data and expert opinion, mostly the 

latter (Mohaghegh, Kazemi and Mosleh, 2009). There are numerous studies (e.g., Cooke, 

1991, p.19; Bedford, Quigley and Walls, 2006; Fenton, Neil and Caballero, 2007; Fenton 

and Neil, 2012, p.260; Pibouleau and Chevret, 2014; Verdolini et al., 2020) which advocate 

the use of experts’ beliefs in case of missing or imperfect data.  

     The utilisation of expert opinions in probabilistic risk assessment as a source of data 

became popular in the second half of twentieth century and has been reported in several 

fields including but not limited to breeder nuclear reactors, seismic risks, and fire hazards in 

nuclear powerplants (Cooke, 1991, p.29). Bedford, Quigley and Walls (2006) investigated 

the importance of expert opinions in a broader context termed as ‘assessing the reliability of 

engineering system design processes’. In recent years, the applications of expert knowledge 

elicitation are witnessed in a wider range of disciplines such as insurance (e.g., Mkrtchyan 

et al., 2022), oil and gas (e.g., Dimaio et al., 2021), health care (e.g., Bojke et al., 2022) 

ecosystem and environment (e.g., Kaikkonen et al., 2021), food safety risks (e.g., Lachapelle 

et al., 2021), and structure failure (e.g., Verzobio et al., 2021). 
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     Similar to the topology of a BBN model, the CPTs can be derived from several sources 

including experts (or stakeholders) knowledge (Fenton and Neil, 2012, p.260; Groth and 

Mosleh, 2012; Pibouleau and Chevret, 2014). O’Hagan et al. (2006, pp.185-187) and 

O’Hagan (2019) suggested two approaches for aggregating the elicited judgements. 

Mathematical aggregation approach (aka pooling) advises separate elicitations in which 

experts do not have interaction with each other, and a pooling rule is used aggregate the 

results. In contrast, behavioural aggregation allows experts to exchange their opinions and 

reach a consensus over a given query, then a distribution is fitted to represent the aggregated 

outcome. Since each block of the model aggregates the risks from different sources (i.e., 

environment, vehicle, traffic conditions and onboard drivers) and the selected experts for 

informing them were from diverse backgrounds, reaching consensus on the queried weights 

was not guaranteed. For this reason, mathematical aggregation was preferred over the latter 

approach. Assigning weight to experts’ judgements based on their competence/performance 

is a widely discussed method in expert elicitation (e.g., Cooke, 1991, pp.147-157; O’Hagan, 

2019). Nevertheless, O’Hagan et al. (2006, p.185) concluded that the best combination (i.e., 

pooling rule) is simple average of the two most experienced experts.  
 

3.8.3.1. Survey 

     Although BBNs are being used widely to solve real-world risk and uncertainty problems, 

their use still entails the difficulty of populating their CPTs. A key challenge is to construct 

relevant CPTs using the expert elicitation in an efficient manner, recognising that often it is 

not time (or cost) effective, or even viable, to elicit complete sets of probability values for a 

network (Fenton, Neil and Caballero, 2007; Perkusich, Perkusich and de Almeida, 2013). 

There are several methods and tools to elicit the knowledge of experts. Interview, (online) 

surveys and expert panel discussion are among popular means. Although the main method 

for this study was to run a workshop and form an expert panel to inform the model, due to 

the COVID-19 pandemic, time restrictions and insufficient budget, we have run an Internet-

based survey. There are several advantages of performing an online survey, such as 

(Perkusich, Perkusich and de Almeida, 2013): low cost to send questionnaire and pertinent 

documents including participant information sheet, saving time, reaching participants 

worldwide, may encourage participants to participate by providing an interactive survey 

process and can effectively reduce errors from transcription and coding in comparison with 

panel discussions. 

     Perkusich, Perkuich and de Almeida (2013) propose surveys to collect information from 

domain experts and with the collected data populate the network’s NPTs. There are also 

several studies (e.g., Pibouleau and Chevret, 2014) that practically used a survey to extract 
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judgements of domain experts. Nevertheless, a limitation of using surveys can be the scarce 

number of domain experts for some fields of study. Small population of experts can lead to 

small sample sizes and subsequently biased or imprecise estimates (Hertzog, 2008). 

Notwithstanding, there are studies (e.g., Yin et al., 2015; Rietbergen et al., 2016) that used 

limited number of experts (three and four) to take part in Bayesian analyses. Brito and 

Griffiths (2016) used a panel consisting of ten experts in a BBN model to assess collision 

risks for AUVs. In a research conducted by the US Environmental Protection Agency (2015, 

cited in Verdolini et al., 2020), 38 expert elicitation studies were reviewed and reported that 

60 percent used 6-8 experts and 90 percent of the studies had less than 12 experts.  

     In this research, nine experts were invited to attach appropriate weights to the links across 

the block in the model. The composition of the expert group and how they informed the links 

are discussed in the following section. The extracted weights were effected in the NPTs of 

child nodes. By doing this, a weight (out of 100%) was assigned to every parent of each 

child node in the model in a way that the sums of weights are equal to 1.  

     Two approaches were singled out for designing the survey. First, asking experts to 

distribute weights (out of 100%) among the parents of a node. Second, using a Likert scale 

to evaluate the strength of every node. Considering the drawbacks of Likert method, the 

second option was adopted for designing the survey (please see Appendix B). The drawbacks 

include the potential ambiguities over the definition of each option in the Likert system, lack 

of any feasibility for drawing a comparison between the parents of a node when answering 

every question, and higher number of questions for eliciting weights. In the next step, an 

ethical approval (ERGO No.: 63032) was obtained for the survey and ethical considerations 

were taken into account. The information sheet and the consent forms are attached in 

Appendix C. After receiving the ethical clearance, the experts were contacted via email and 

offered to take part in the study. The results of this survey are presented in section 4.3. 
 

3.8.3.2. The composition of the expert group 

     Nine experts from different backgrounds were surveyed and their judgments on the 

weights of each parent node on its child(ren) were elicited. The weights of links in human 

and traffic blocks were informed by two experts, whereas environmental and technical 

blocks which three experts apprised the weights of their links. One of the experts (i.e., Expert 

1) filled the surveys for two blocks. For the sake of privacy and due to ethical considerations, 

the survey was run anonymously. The expert panel comprised of six males and three females. 

The experts were selected based on their publication records and research relevance to the 
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field of AVs and their safety implications. The background and research areas of the experts 

are as follows: 

• Expert 1: his expertise falls within the field of Cognitive Approaches for Multimodal 

Sensor Data Perception and has eight years of forensic experience, investigating 

road traffic accidents. His PhD revolved around the technologies used in AVs and 

their impacts on traffic safety. 

• Expert 2: is currently PhD candidate at a German university and his research centres 

on motion prediction of AVs in the context of intelligent infrastructure systems. He 

also has been involved in a project aiming to build an intelligent infrastructure system 

on German highways. 

• Expert 3: is currently a post-doctoral researcher with wide expertise in the human-

swarm interaction and swarm robotics. His current research is on the trustworthiness 

of autonomous systems in extreme environments. 

• Expert 4: is a Professor of Computer Science and has many peer-reviewed 

publications in the field of AVs and robotic. Some of his papers have won the best 

paper prize from publishers and journals.  

• Expert 5: is an Associate Professor in Urban Planning. She also has had ample 

publications on transport politics and infrastructure planning. Her research is 

currently targeting the contemporary models of urban governance and transportation 

planning which are extendable to the area of autonomous driving. 

• Expert 6: being an Associate Professor in Human Factors and Sociotechnical 

Systems, her research covers potential safety risks that AVs can pose, particularly in 

the initial introductory phase. Her expertise also includes approaches based on 

complexity and systems theory to improve safety of transportation systems. 

• Expert 7: holds a PhD degree and one strand of his research aims to develop an 

international comparative comprehension of the urban impacts of novel mobility 

technologies such as AVs. 

• Expert 8: is an Assistant Professor in Smart and Sustainable Urbanism at an Irish 

University. His current research is to address questions about impact that artificial 

intelligence can have on urban design. He is also involved in a practical project 

intending to investigate the sustainability potential of self-driving cars in urban 

environments. 

• Expert 9: is a PhD candidate in Urban Mobility Systems. Her research contributes 

to coordination and trajectory planning of CAVs on freeway segments. She is also 

involved in a project infrastructure planning for CAVs. 
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     Apart from the questions for the assigned blocks to the experts, all experts answered the 

question concerning the impacts of KPIs (i.e., road condition, reaction time, traffic condition, 

and technical reliability) on the collision risk. The average of the allocated percentages to 

each link by the experts was calculated and used as the weighting scale. The results of the 

survey are presented in section 4.3. 
 

3.9. Underlying assumptions 

     An important attribute of a well-defined research problem is the articulation of its 

constraints that narrow down the scope of research and indicate data, materials and research 

methods required to solve it (Fortus, 2009). With all the involved variables/risk factors and 

dynamic environment that AVs are expected to operate in, it is almost impossible to build a 

risk model without making any assumptions and free from constraints. Fortus (2009) also 

maintains that making constraining subject assumptions can confine the solutions space and 

turn a broad problem into “more” defined problem. This section, therefore, is dedicated to 

reflecting the assumptions about technological specifications, environmental and traffic 

characteristics, and variable interdependencies in the BBN model. 

     In section 2.1.4 different levels of automation for AVs were presented and it was 

discussed that the embedded technologies and level of human intervention vary accordingly. 

These differences can shift the risk of collision to dissimilar levels for each of automation 

levels under identical circumstances. To avoid ambiguities over functionality and system 

specifications it was necessary to decide on the automation (autonomy) scale for modelling. 

Delineating the automation level is also essential for expert knowledge elicitation phase of 

this study as it certainly impacts the judgement of experts in evaluating the influence of 

variables on the collision risk. To settle this issue the automation level was decided to be 

SAE 4 which includes sophisticated autonomous driving technologies and still human 

interventions may be required in cases such as disengagement or hazardous situations that 

an AV cannot deal with.  

     The results of the literature review in this study (appendix A) reveal that the notion of 

connectedness and communication with other traffic participants in addition to infrastructure 

is attracting considerable attention in academic literature. There is a consensus that timely 

and secured communication between traffic participants and infrastructure can reduce 

collision risks. The connected and autonomous vehicle (aka CAV) term is also being now 

broadly used in academic and non-academic literature. The establishment of connection and 

communication between agents in urban traffic ambience, however, requires adequate 

infrastructure, customised protocols, and security measures in place. After all, this possibility 
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is assumed to be available for AVs to communicate through V2V, V2I and V2X channels 

and receive/send information. 

     Demographic characteristics including gender, age and education are extensively studied 

in traffic and accident analysis mainly because the impact of these factors on driving 

behaviour and risk taking is undeniable. Nonetheless, demographic characteristics were not 

included in the model, and it was assumed that they do not affect collision risk at SAE 4 

level. Likewise, driver impairment as a result of alcohol or drug consumption was omitted 

and it was assumed that the behaviour of road users (i.e., traffic safety culture) is 

homogenous across a society. 

     Among academics and technical communities there is debate on whether AVs must be 

strictly programmed to comply with the traffic rules, or they may be allowed to break traffic 

laws under certain conditions, for instance, where there is an immediate risk of loss of life 

or injury. If that is the case, several questions remain to be answered. For example, it must 

be delineated who can permit the vehicle to break traffic laws and how such risks are 

evaluated and by whom. To avoid those ambiguities the assumption here was that all traffic 

participants must be compliant with traffic rules and regulations and non-compliance will 

have adverse effect on traffic safety. 

     Various forms of cyber-attacks on connected AVs can disturb different functionalities 

and paralyse one or more components of an AV. Correspondingly, the consequences on 

traffic safety can be manifold. Sheehan et al. (2019) used a Bayesian Network to classify 

cyber-related risks for CAVs and discussed different types of attacks and their potential 

severities. Katrakazas et al. (2020) reviewed safety implications of cybersecurity for CAVs 

and investigated the probable scenarios for a compromised CAV. These consequences can 

vary depending on type of attack, intention of attacker(s), duration of attack, its magnitude 

and dozens of other factors. In this study, it was assumed that any cybersecurity breach will 

only degrade the communication channels of a CAV posing Denial of Service (DoS) threat 

(Katrakazas et al., 2020).  

     The term ‘collision’ limits accidents to a scenario that a CAV collides with one or more 

traffic participant(s) (e.g., vehicles, bikes, pedestrians, animals, etc.) and/or obstacles. There 

can be other safety incidents presumed for CAVs such as a data privacy breaches, injuries 

to occupants due to discomforting driving styles or compromised safety measures, and fire 

that are not led to collisions. Non-collision accidents are therefore excluded from the 

keywords in database searching and emphasis was placed on collision risks.  
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     In assessing the influences of selected variables on collision risk, the current level of 

technological progress for CAVs was set as a benchmark and experts were required to 

answer the questions of survey based on the state-of-the-art technologies available for CAVs. 

In that elicitation process the existing infrastructure was assumed to be the benchmark and 

expected advancements were disregarded.  
 

3.10. Summary of methodological discussions and conclusions 

     To summarise, this chapter put forward a set of criteria for qualifying relevant 

publications for thematic analysis and identification of risk factors. Integrative literature 

review and its protocols were discussed to regulate the selection and review of the 

publications. A framework for thematic analysis was provided to . It was discussed and 

justified why BBN is a fitted platform for synthesising qualitative and quantitative data in 

this research. A comparison with other potential modelling techniques (e.g., ANN) was 

drawn. The step-by-step development of the BBN model including construction of the 

network and filling in the CPTs was explained. A new and efficient method was introduced 

to populate CPTs. The proposed method is efficient in saving time during the elicitation 

process and simplifies the that for the domain experts. The process for expert judgement 

elicitation was described. A survey was designed to gather expert opinions on the weights 

of parent nodes on their child(ren). Finally, the major assumptions in designing frameworks 

and modelling were clarified. 

     The main conclusion from the methodological discussions and comparisons is that BBN 

has a proven capability to handle large number of variables and serves as a competent 

platform for integrating qualitative and quantitative data, particularly in risk analysis. The 

outcome (i.e., probability distribution) provides a base for performing scenario analysis and 

classifying risks to answer research questions in this study. Those features make BBN a 

powerful tool to address research questions specified in section 1.5. The unique elements in 

research method design in this study are adopting a socio-technical approach towards 

collision risks in urban environments and employing ILR to construct a BBN model.  
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4. Results and analysis 

     This chapter presents the findings of ILR and TA (i.e., 53 risk factors) which formed the 

skeleton of the BBN model. A description for every identified risk factor is provided to 

support their selection and inclusion in the BBN model. The results of the expert elicitation 

are exhibited and incorporated into the model. The outcomes of scenario and sensitivity 

analyses are also demonstrated. 

4.1.Results of the integrative literature review and thematic analysis 

     Among the main results of this project is the classification of the reviewed papers and 

documents which attribute the collision risk to environmental, human, traffic and technical 

causes. 594 papers were reviewed and the table in appendix A presents the main theme in 

each paper as well as the subordinate themes. A summary is provided for every paper to 

spotlight the topic and key points related to causes of safety degradations in AVs. These 

themes were converted into ‘ranked nodes’ (Fenton, Neil and Caballero, 2007; Laitila and 

Virtanen, 2016) to form the topology of the BBN model. In constructing the CPTs, labelled 

states which represent qualitative variables that are abstractions of some essential continuous 

quantities were used (Fenton, Neil and Caballero, 2007). Ranked nodes are especially helpful 

when modelling relationships in NPTs involving variables that are (near) continuous 

(Fenton, Neil and Caballero, 2007; Perkusich, Perkusich and de Almeida, 2013; Laitila and 

Virtanen, 2016). The states were likewise derived from the literature. In this section a brief 

explanation for every node in the model and justification for composition of states are 

presented as follows: 

Time of day: in accident reports involving AVs (Favarò et al., 2017) and analysis of datasets 

assessing the driveability for AVs (Guo, Kurup and Shah, 2019) ‘time of day’ has a bold 

presence. This is because there is a causal and correlative relationship between time of day 

and other variables which directly affect the probability of collision and accidents. ‘Traffic 

density’, ‘lighting conditions’ and ‘drowsiness’ are found to be dependent on time of day. 

The states for this node are three-hour time intervals for a whole day period (00:00 – 24:00) 
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as used in the Annual Road Traffic Estimates series published by the Department for 

Transport (Havaei-Ahary, 2019). 

Day of week: besides time of day, the accident reports take account of ‘day of week’ (Vorko-

Jović, Kern and Biloglav, 2006; Allen et al., 2017; Favarò et al., 2017; Aung et al., 2018). 

This variable directly affects the traffic volume as well as speed of vehicles. An ANN model 

developed to predict the traffic flow in heterogeneous condition displayed the highest 

sensitivity of traffic flow (as the output) to day of week and time of day (as inputs) 

respectively (Kumar, Parida and Katiyar, 2015). To avoid higher number of elicitations in 

the BBN model the state structure for this node was decided to be Boolean with only 

weekdays and weekend as the states (Allen et al., 2017; Verendel and Yeh, 2019).  

Weather conditions: one of the major sources of threat to the safe operation of AVs is 

adverse weather conditions such as precipitation, fog and sun glare (Yoneda et al., 2019). A 

literature review on the effectiveness of radars under rainy weather shows up to 45% 

reduction in the detection of radars (Zang et al., 2019). This factor can effect change in other 

environmental variables such as lighting conditions and road surface conditions. The states 

for this node are defined as clear/sunny, windy, rainy, snowy, foggy and dusty (Chen et al., 

2015). 

Lighting conditions: also specified as ‘illumination’ in the technical literature (Guo, Kurup 

and Shah, 2019), this factor can adversely affect the performance of visual cameras which 

are mounted on AVs to detect and recognise objects (Rashed et al., 2019). Reviewing the 

preliminary report on the fatal accident in Arizona involving an Uber driverless car and a 

pedestrian reveals that the section where the incident happened was “not directly illuminated 

by lighting” (NTSB, 2018). Moreover, Paul and Chung (2018) drew attention to the 

dysfunction that direct dazzling sunlight can trigger in the machine vision module of the 

AVs. In May 2016, a Tesla Model S collided with a truck-tractor dragging a 53-foot 

semitrailer and took the life of its driver. While the car was on autopilot mode both driver 

and emergency brake system failed to notice the white truck-tractor against the brightly lit 

sky (Paul and Chung, 2018; Winkle, Erbsmehl and Bengler, 2018). The states for this node 

are daylight, dawn/dusk and dark/night (Chen et al., 2015; Guo, Kurup and Shah, 2019). 

Visibility: obstructed visibility due to bad weather conditions, poor lighting or road layout 

can restrict or  thwart the perception and sensory module of the AVs (Bagheri, Siekkinen 

and Nurminen, 2016). Winkle, Erbsmehl and Bengler (2018) analysed 1,286,109 digital 

copies of accident reports to evaluate the role of limited visibility in accidents which 

occurred in the state of Saxony between 2004 and 2014. The results suggested that limited 

visibility is a risky scenario that must be taken into consideration for developing automated 
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vehicles (Winkle, Erbsmehl and Bengler, 2018). Various functions in AVs such as road 

marking detection hinge on camera-based vision systems (Mohsen et al., 2020). 

Inappropriate road design or landscaping may block the visibility splay of the vision systems. 

Poor visibility can blind these cameras or cause visual obstruction resulting in failure in 

detecting or recognising objects/obstacles. The states for this node are good and bad 

(Stroeve, Blom and Bakker, 2009; Zhang, Yau and Chen, 2013; García-Herrero et al., 2020). 

Road type: there are several factors that designing a road is highly dependent on them. ‘Road 

type’ has a decisive influence on the layout, geometry and design of roads. For example, 

Geometric Design of Roads Handbook explicitly states a link between the type of road and 

development of gradeline, design of speed, horizontal and vertical alignments, and design 

of urban drainage systems (Wolhuter, 2015). To enhance quality, preserve uniformity and 

provide safety design standards are defined for each functional road type (Benson and Lay, 

2016). Malin, Norros and Innamaa (2019) developed a risk profile for three road types and 

three geographical locations in Finland. Their results affirm that the risk of accident 

occurrence significantly varies across different road types. Therefore, this can be concluded 

that road type plays a crucial rule in the frequency of road vehicle accidents and affects 

variables such as permitted speed, traffic flow, driver reaction time and other road design 

characteristics. The themes for this concept were roadway configuration, road layout and 

road design, however, the former was used in the model as a node representing all those 

aspects. The Department for Transport classifies the road types into four groups: single 

carriageway, double carriageway, motorway and built-up areas (DfT, 2015). This 

classification determines the speed limit law for each of those types of roads. Since built-up 

areas are considered to be a type of road but any road can pass through built-up areas, this 

option was excluded from the final composition of states for this node. As a result, the states 

for this node were narrowed down to ‘single-carriageway’, ‘dual-carriageway’ and 

‘motorway’ (Piao et al., 2004). 

Roadway configuration: this factor and the variables that define its complexity have been 

discussed in depth in the field of transportation and mobility. Number of lanes (Malin, 

Norros and Innamaa, 2019), road curvature and slope (or gradient) (Yagar and Van Aerde, 

1983), and road type (Intan Suhana et al., 2014) are found to be determining characteristics 

of roads as far as safety is at stake. A´lvarez et al. (2020) performed a case-control study to 

locate urban road configurations in Valladolid that may needed redesigning to alleviate the 

odds of a run-off crash. In their study they found geometric design factors such as number 

of lanes,  presence of traffic lights and length of curves to be influential up to twelve times 

in the odds of a run-off crash (Álvarez et al., 2020). Wang et al. (2019) outlined the road 

geometric parameters as curvature, number of lanes, gradient, and ramp type. To capture the 
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impact of these factors a node with categorical states was incorporated into model. The states 

are appropriate, challenging and complex. These states can specify how the combination of 

the discussed factors above can provide a driving road environment for the vehicle. 

Number of lanes: reviewing the literature on the accident causes for both conventional and 

autonomous vehicles reveals that larger number of lanes exert influence on the increase of 

the likelihood for accident occurrence. Analysis of 1606 accidents over a three-year period 

in Central Florida shows that narrower lane width and larger number of lanes simultaneously 

heighten the risk of accident for both female and male drivers (Abdel-Aty and Radwan, 

2000). Further, Zurlinden, Baruah and Gaffney (2020) reported that the number of conflict 

points for two-lane, three lane and seven-lane roads are 2, 7 and 77 respectively. By the same 

token, safe lane departure for AVs is indispensable as lane-departure collisions between the 

ego vehicle and other traffic participants is a likely scenario (Olofsson and Nielsen, 2020). 

The states for this node are one lane, two lanes and multiple lanes. 

Road infrastructure: Milakis, van Arem and van Wee (2017) reviewed the literature to look 

at the policy-making and societal implications of AVs in urban areas. Among the keywords 

in their review, ‘road infrastructure(s)’ along with ‘road design’ and ‘road planning’ was 

used to search for the implications of transportation infrastructure in connection with the 

AVs. In another study Nitsche, Mocanu and Reinthaler (2014) investigated the interactions 

between road infrastructure and AVs. 76% respondents in the online questionnaire ranked 

road infrastructure as ‘very important’ while only two percent rated it as ‘not important at 

all’ (Nitsche, Mocanu and Reinthaler, 2014). Visibility and harmonisation of lane markings 

and traffic signs, road surface friction, and pedestrians/cyclists protection (e.g. shielding) at 

junctions were among the main listed factors with highest influence on the safety of AVs 

(Nitsche, Mocanu and Reinthaler, 2014). 

Work zones: roadwork operations are usually undertaken to maintain a standard level of 

quality for road networks. Research shows that driving in work zones incurs more risk 

comparing to non-work zones (Weng, 2011; Genders and Razavi, 2016). The peculiarity of 

some work zones, forcing the vehicle to change speed and/or lane, and creating blind or 

visually obstructed spots for the vehicle may incapacitate the perception and planning 

modules of AVs. Research suggests that road work can increase the motor vehicle crashes 

by 26% (Meng and Weng, 2013). In 2017 alone, a total of 158,000 vehicle crashes occurred 

around the work zones on the US roads (Tang et al., 2021). Frequent lane changing and 

merging manoeuvres can also add to the complication of the traffic scene (Wu et al., 2020). 

Presence of work zones also contributes to the presence of obstacles (e.g. debris, material, 

barriers, temporary signs, work equipment, etc.) (Weng, 2011). This includes encroaching 
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over the public roads by nearby construction sites. A Boolean node was therefore designed 

to involve this factor. The states for this node are ‘present’ and ‘not present’ refereeing to 

the presence of work zones in a given driving environment.  

Obstacles: a large body of literature in conjunction with many industrial projects are 

dedicated to design and operationalisation of collision avoidance systems. One of the tasks 

of path planning module of an AV is to generate a trajectory for the vehicle to avoid collision 

with consideration of obstacles’ geometric characteristics and the kinematic constraints of 

the vehicle (Ji et al., 2016). This task becomes even more crucially important where the ego 

vehicle reaches the edge of its stability limits and handling capabilities in constrained 

environments (Ji et al., 2016). The recent accident in California between a Tesla car 

(allegedly in autoploid mode) with a parked police car can demonstrate how presence of 

(static and dynamic) obstacles on roads can delude the AVs and run into an incident (Calvert 

et al., 2019).   

Road Conditions RI: this variable compiles the impacts of the environmental nodes and 

creates an intermediate node between them and the collision risk index as the outcome of the 

model. It also reflects the overall suitability or complexity of road conditions including 

surface friction (Kim et al., 2018) that an AV may face during its travel.  Malin, Norros and 

Innamaa (2019) suggested three scales (green, amber and red) to classify road conditions. 

‘Green’ denotes normal conditions, ‘yellow’ (or amber) represents poor, and ‘red’ refers to 

hazardous road conditions (Malin, Norros and Innamaa, 2019). 

Traffic rules enforcement: to reassure the safety of AVs the enforcement of traffic 

regulations is an implication which needs to be recognised and dealt with ahead of mass 

production and adoption of the technology (Baldini and Neisse, 2020). In fact, the effects of 

traffic rules is highly contingent upon the enforcement of the rules (Åberg, 1998). Research 

shows that the level of traffic laws enforcement makes a difference in drivers’ risk perception 

and attitude (Åberg, 1998; Stanojević, Jovanović and Lajunen, 2013). In a study comparing 

the safety culture in China, Japan and the US, it is argued that the way that standards and 

regulations are enforced has mutual interaction with (traffic) safety culture (Atchley, Shi and 

Yamamoto, 2014). The safety benefits of reduction in absolute vehicle speeds are not 

debateable. The World Health Organisation lays heavy emphasis on traffic law enforcement 

to increase the safety of roads (WHO, 2009). The results of a literature review provided 

strong evidence for a negative relationship between average speed enforcement and vehicle 

speeds (Soole, Watson and Fleiter, 2013). To appraise the effectiveness of certain traffic 

laws a three-point scale defined as low, medium and high was used before (Wali et al., 2017) 

and is adopted in this study too.  
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Traffic control infrastructure: investment on infrastructures is an intervention which 

policymakers can call for to facilitate the adoption and safe operation of AVs (Cohen and 

Cavoli, 2019; Soteropoulos et al., 2020). Traffic control in urban environments (particularly 

crossroads) is a hurdle on the way of AVs and requires specific infrastructure compatible 

with AVs to optimise operations at traffic intersections thereby reducing the risk of accident 

(Rey and Levin, 2019). Inadequacy and lack of appropriate traffic control infrastructure for 

collecting and transferring essential real-time data to traffic control centres can potentially 

change the traffic scenes, congestion and complexity (Kurzhanskiy and Varaiya, 2015). The 

US Department of Transportation (DoT) singled out infrastructure and traffic control devices 

as a key source for traffic congestions which can give rise to the number of accidents (De 

Souza et al., 2017). In a BBN model developed by Gregoriades and Mouskos (2013) to 

identify black spots through quantifying the collision risk index, ‘traffic control’ was 

included in the model as a node with three ordinal states. Hence, a node with three ordinal 

states (sophisticated, partially developed and poor) was embodied in the model to count the 

weight of varying levels of traffic control infrastructure in cities on the collision risk.  

Other road users: Statistics on the fatalities (nearly 5,000 per year) and injuries (207,000) 

of pedestrians alone in the US (Deb et al., 2018) can alone bespeak of the risk of collision 

between vehicles and other road users including pedestrians, cyclists, motorcyclists and 

animals. AVs are not exempt from this risk as the tragic accident between the Uber car and 

a pedestrian in March 2018 raised concerns about the safety of the technology. Having 

discussed earlier, elimination of humans from the driving loop can dramatically reduce the 

number of collisions, however, even after the rollout of CAVs still this technology will have 

to interact with humans on roads. While dealing with complex clutter and modelling 

interactions with other road users is requisite, this problem has not been completely solved 

for AD (Schwarting, Alonso-Mora and Rus, 2018). For that reason, the perception and 

planning modules must be able to recognise other road users precisely and timely, anticipate 

their trajectory and speed, and avoid colliding with them. Urban planners have suggested 

dedicated lanes for AVs (Ye and Yamamoto, 2018) or shielding (Nitsche, Mocanu and 

Reinthaler, 2014) to protect other road users against AVs in heterogeneous traffic flows. 

These solutions directly or indirectly affect the frequency that AVs must interact with road 

users other than AVs and HDVs. To measure this frequency, three states were defined for 

this node: never-rarely, occasionally/sometimes and often-always. 

Traffic composition: “Incompatibility of size between different types of road vehicles is a 

major risk factor” (Mohan et al., 2006). Even after the AVs become widely disseminated, 

mixed traffic will be a quite likely scenario for a relatively long period of time (Wagner, 

2016). Since we already counted the effect of other road users such cyclists and 
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motorcyclists, the ‘traffic composition’ node only concerns with the constitution of traffic in 

terms of AVs and HDVs. This node therefore consists of three states: only AVs, only HDVs 

and hybrid. 

Traffic culture: Özkan and Lajunen (2011) defined an accident as “either an independent 

or combined outcome of internal factors of the multilevel sociocultural and technical 

environment of traffic”. Ye and Yamamoto (2018) also showed that similar to varied 

accident rates, cities appear to have different cultures when it comes to traffic safety. 

Regardless of the antecedent reasons of this cultural variations, evidence confirms that 

establishing the highest level of traffic safety is incumbent upon the right cultural conditions 

(Atchley, Shi and Yamamoto, 2014). Sociotechnical approach also supports the involvement 

of culture in safety analysis of a system where (human) operators are having interactions 

with technology (Özkan and Lajunen, 2011). From these facts one can conclude that in 

addition to visible factors such as roadway characteristics, weather and lighting conditions, 

less tangible factors that contribute to forming a traffic environment (including traffic 

culture) are responsible for traffic safety (Shinar, 2017). Conservative, moderate and 

aggressive are the states of this node which were extracted from a study on driving style 

recognition (Yan et al., 2019; Li et al., 2021).  

Traffic density: in the field of aviation the relationship between traffic density and traffic 

complexity under higher levels of automation was scrutinised by Kopardekar, Prevot and 

Jastrzebski (2008). The results indicate that traffic density and complexity have a positive 

relationship and increase the risk of conflict (Kopardekar, Prevot and Jastrzebski, 2008). 

Even more so, higher traffic density can trigger more lane changing (Zurlinden, Baruah and 

Gaffney, 2020) and subsequently increase the risk of collision for ground vehicles. 

Ultimately, it can be concluded that the risk of traffic conflict heightens with an increase in 

density and a reduction in velocity (Kuang, Qu and Yan, 2017). Research shows that traffic 
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flow and traffic density are highly correlated with time of day (Wang et al., 2018b). Fig. 4.1 

depicts traffic flow distribution against time in Shenyang, China. Data for other major cities 

suggest similar traffic flow distributions (Verendel and Yeh, 2019). Accordingly, a node is 

dedicated to accumulating the impacts of variations in traffic density on traffic complexity. 

The states are defined as no traffic at all (free flow), light, heavy and jam (congested). 

Fig. 4.1: The variations of approximate traffic flow against time at a typical intersection (a) and a 

road (b) in Shenyang, China (Wang et al., 2018b) 

 

Speed: besides traffic density, among the significant traffic variables are speed and speed 

difference (Wang et al., 2019). Relative speed is also a determining variable in verifying the 

kinematic state of a vehicle (Wang, Yang and Hurwitz, 2019). A critical cause for traffic 

accidents (particularly under poor weather conditions) has been the improper speed choices 

(Yang, Ahmed and Gaweesh, 2019). In 2018, WHO revealed that reduction in average speed 

results in less road accidents (Calvi et al., 2020). The common technique for measuring 

collision risk compares traffic measurements such as speed and flow on a certain segment of 

the road just before the occurrence of a collision, with the measurements from the same 

segment under normal circumstances (Katrakazas, Quddus and Chen, 2019). In other studies 

which adopted BBN approach to assess the collision risks (e.g., Simoncic, 2004; Gregoriades 

and Mouskos, 2013; Sheehan et al., 2017), speed has a strong presence. Two states (i.e., safe 

and unsafe) were assigned to this node.  

Kinematic state: a collision avoidance system for AVs should be responsible for 

continuously assessing the collision and destabilisation risks by monitoring the kinematics 

and dynamics of the vehicle (He et al., 2019). Meanwhile, handling road dynamics and 

vehicle kinematics at the same time can be troublesome for the planning module and 

computing unit of the vehicle (Glaser et al., 2010). In studying collision risks, the kinematic 
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state of a vehicle can be defined in terms of its speed combined with longitudinal and lateral 

distance from the nearby vehicles (or obstacles) (Cheng et al., 2019). As far as the distance 

between the centroids of vehicles is not less than the safe separation distance they are in 

safe mode, but when this distance is shorter that SSD the risk of collision soars and the ego 

vehicle will be in unsafe mode (Campos and Marques, 2018). 

Traffic complexity RI: recent study conducted by Zurlinden, Baruah and Gaffney (2020) 

shed light on the relationship between traffic complexity (due to unstable flow or congestion) 

and conflict likelihoods. Katrakazas, Quddus and Chen (2019) asserted that AVs must be 

seen as interacting agents with the environment and other agents rather than an independent 

entity. In urban environments where other road users are pervasive, AVs face another 

dilemma to understand their intention and predict their course of actions, namely trajectory 

and speed (Rasouli, Kotseruba and Tsotsos, 2017). Such an interaction needs full and 

accurate perception of the environment as well as competent and sufficient planning 

capabilities to handle complex traffic scenarios. One of the challenges that technology 

developers are facing is to increase the capabilities of AVs to precisely perceive and interpret 

complex traffic situations (Winkle, Erbsmehl and Bengler, 2018). For instance, Wang et al. 

(2018) proposed a classification technique for the obtained sensory data to quantify the 

traffic scenario complexity on roads. Three classes (i.e. simple, medium and complex) were 

suggested in that research and are used as the states in this study too (Wang et al., 2018a). 

Training & experience: as long as humans remain in the loop, building knowledge and trust 

for users or those who are supposed to interact with the technology will act as a mitigator of 

unintended safety risks (Pradhan et al., 2019). To achieve this goal in addition to 

familiarising the users with capabilities and limitations of the technology, education and 

training become momentous (Cunningham and Regan, 2015; Pradhan et al., 2019). The 

level of trust in technology increases/decreases the level of risk that users perceive (Choi 

and Ji, 2015). Further, Akash et al. (2017) discussed the importance and yields of past 

experiences on forming the trust in HMI. Brinkley et al. (2019) reported a 20.75% increase 

in trust in the technology after the participants experienced interacting with a prototype self-

driving car. From that, one can conclude that training and experience are influential in how 

individuals interact with, treat and perceive the AVs. Those constructs can, to a considerable 

extent, contribute to the (collective) understanding of humans on how the technology works 

and where it may fail to fulfil its tasks. This will lead to calibrated reliance on the technology 

and can prevent safety incidents by timely and apposite interventions. Thereupon, three 

levels of training and experience are defined for this node to act as the states of its NPT. No 

training at all, basic trainings and extensive can reflect the level of trainings and experience 
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that users and interactors are supposed to receive before engaging with automated driving 

systems in the real-world situations. 

Trust & reliance: having discussed above, experience is the fundamental issue in how much 

drivers trust in AVs and to what magnitude they calibrate their trust and reliance after they 

experience the technology (Ho et al., 2017). ‘Learned trust’ is the accumulation of 

experiences with a system and influences that form the initial mindset of the individuals 

(Akash et al., 2017). The relationship between trust and HMI (especially in automated 

systems) has been the focus of researchers for long time. Akash et al. (2017) maintained that 

“to attain synergistic interactions between humans and autonomous systems, it is necessary 

for autonomous systems to sense human trust level and respond accordingly. This requires 

autonomous systems to be designed using dynamic models of human trust that capture both 

learned and dispositional trust factors”. This can explain the role of trust in the quality and 

extent of HMI in autonomous systems. Overtrust and under-reliance are two symptoms of 

uncalibrated trust in autonomous systems that can ultimately lead to a safety risks (Hoffman 

et al., 2013). To exemplify, Miller et al. (2016) reported that overtrust in the capabilities of 

an automated system such as AV can delay the take-over process in a hazardous situation or 

where the vehicle is disengaged. Therefore, three states were defined for this node as follows: 

overreliance, calibrated reliance and under-reliance. 

Perceived risks: in AI-based (autonomous) systems perceived risk is a product of delegating 

control to the machine and its control mechanisms (Hengstler, Enkel and Duelli, 2016). 

Perceived risk(s) can further affect drivers in adapting their behaviour to the road conditions 

(Oviedo-Trespalacios et al., 2018). Risk (or hazard) perception can be defined in terms of 

reaction times (as an operational KPI) that drivers record in responding to a risky situation 

(Sagberg and Bjørnskau, 2006; Barnard and Chapman, 2016; Sun and Hua, 2019). Drivers 

in order to avoid road traffic collisions need to detect an event, rate it in terms of risk, choose 

appropriate action(s) (or not taking any action) and finally enforce the decision(s) (Hulse, 

Xie and Galea, 2018). The time interval for this process may vary between drivers and must 

be short enough to avoid a collision. This perceptual factor, therefore, can contribute 

(mitigate) the collision risk in AVs under human supervision. Three states (i.e., high, medium 

and low) were defined for this node to measure the impact of perceived (level of) risk on the 

reaction times to the road dynamics (Arbabzadeh et al., 2019). 

Human-Machine Interactions (HMI): the current landscape of autonomous vehicles 

displays that passing through the semi-autonomous phase before reaching full autonomy is 

unavoidable (Bellet et al., 2019). While the interactions between humans and AVs are 

essential during this phase, analysing the quality and extent of the necessary interactions is 
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mandatory to ensure the safety of AVs (Fan et al., 2018). In the recent standard (ISO 21448) 

created by the automotive industry for ADAS, human-machine interaction issues are 

highlighted to be addressed (Koopman et al., 2019). Although the automotive industry has 

recognised the dire need to devise verification and validation approaches for HMI, detailed 

standards are still missing (Burke, 2020). Other than human drivers, other road users (e.g. 

pedestrians) need to have safe interactions with the AVs (Wang et al., 2020a), but the focus 

of this thesis is upon the interactions between the AV driver and the vehicle. The transition 

from ‘automation’ to ‘autonomy’ requires fundamentally new approaches to reinforcing 

HMI in AVs. Then this can be concluded that improper or lack of HMI can be a source of 

risk for AVs. This node comprises of four states: very effective, moderately effective, slightly 

effective and no interactions at all.  

Situation(al) awareness (SA): situation awareness is an ‘emergent property’ of a 

sociotechnical system (Stanton et al., 2017) and closely related to the concept of risk 

perception, and drivers need time to develop SA when they are required to tack back the 

control of vehicle (Vlakveld et al., 2018). Situation awareness and allowed time for taking 

over the control of vehicle are reported to be correlated (Vlakveld et al., 2018; Vogelpohl et 

al., 2019). For example, decreased SA is associated with delay in responding to hazardous 

situations (e.g. braking when faced with a failure) both in simulated and real-world driving 

(Jamson et al., 2013). There are some factors such as involvement in secondary tasks 

(Jamson et al., 2013; Endsley, 2018; Petersen et al., 2019; Zhou, Yang and Zhang, 2020), 

drowsiness (De Winter et al., 2014; Vogelpohl et al., 2019; Kaduk, Roberts and Stanton, 

2020b) and training (Schömig and Metz, 2013; Endsley, 2017) which affect the drivers’ 

situation awareness, and reaction time lastly. Petersen et al. (2019) conducted an 

experimental study to assess the impact of SA on drivers’ trust level. They manipulated SA 

in three levels: no SA, low SA and high SA (Petersen et al., 2019). These levels were adopted 

for defining the states of this node in the BBN model. 

Secondary task: non-driving related tasks also known as secondary tasks are supposed to be 

allowed in highly AD (e.g., SAE Level 3 and above), but its influence on drivers’ takeover 

performance especially with a limited time budget, has to be taken into account to avoid 

collisions (Zhou, Yang and Zhang, 2020). Longer reaction times (Lu, Coster and De Winter, 

2017; Mok et al., 2017; Minhas et al., 2020) and higher collision rates (Metz, Schömig and 

Krüger, 2011) are specified as the consequences of being engaged in secondary tasks while 

driving semi-autonomous vehicles. Depending on the autonomy level, technology 

capabilities and local law, the driver of an AV may or may not be allowed to divert his/her 

attention to one or a combination of secondary tasks for safety reasons. For instance, 

following the fatal crash of a Tesla car in 2016 which led to the death of its driver while the 
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autopilot mode was active, Tesla imposed further restrictions on hands-off driving (BBC, 

2017). Based on the above discussion, a Boolean node was inserted into the model to capture 

the (conditional) effect of involvement in secondary tasks on SA and reaction time.  

Drowsiness: drivers are generally more prone to drowsiness in AD and are expected to show 

slower reactions comparing to manual driving (De Winter et al., 2014; Vogelpohl et al., 

2019). Moreover, sleepiness can have crucial impacts on the time that drivers need to 

(re)gain SA to handle a takeover safely (Lu, Coster and De Winter, 2017). In semi-

autonomous driving where human supervision and control might be required at some point, 

drowsiness can potentially affect drivers’ situation awareness (Lee et al., 2019). Kaduk, 

Roberts and Stanton (2020b;a) observed that drowsiness, driving performance and time of 

day are strongly related (figure 4.2). Karolinska Sleepiness Scale (KSS) has been widely 

used to investigate drowsiness (sleepiness) in myriad contexts. This scale is adopted here as 

well to shape the states for the drowsiness node. Extremely alert, alert, neither alert nor 

sleepy, sleepy and extremely sleepy are the ordinal states for this node (Åkerstedt and 

Gillberg, 1990). 

 

Fig. 4.2: Changes in driving performance over a 24-hour period (circadian cycle) (Kaduk, Roberts 
and Stanton, 2020b;a)  

H-M interfaces: in general, human-machine interfaces are platforms designed to facilitate 

cognition and communication between human and machine (Gong, 2009). There is a strong 

link between HMI and H-M interface in the technical literature. Designing and integrating 

interfaces that promote calibrated trust in AVs is exceptionally vital for the safe operation of 

semi-autonomous vehicles, and this will rely upon a valid understanding of whether those 

interfaces are capable to build trust and improve SA (Dixit, Chand and Nair, 2016; Miller et 

al., 2016; Wintersberger and Riener, 2016). Users have expressed their concerns about the 
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competence of human-machine interfaces to maintain their SA and satisfy their location 

verification needs (Brinkley et al., 2019). Minhas et al. (2020) also emphasised that 

appropriate design of H-M interfaces is critical to ensure that takeover message is properly 

and timely conveyed to human driver. Using right interface can have profound impact on the 

reaction time in emergency scenarios (Petermeijer et al., 2017). Depending on the type, 

design and ease of use this impact can vary. To assimilate the effectiveness of the H-M 

interface(s) on the HMI and reaction time into the model a five-point Likert scale form 

extremely effective to not effective at all was used to set up the states for this node. 

Reaction time RI: one of the determining factors in collision likelihood and collision 

avoidance in manual driving is the timing of driver reaction to traffic dynamics and 

conditions on the road (Hugemann, 2002). Even with AVs, driving scenarios with short-time 

headways and unstable vehicle dynamics might emerge and lead to unpredictable extreme 

events (Roche, Thüring and Trukenbrod, 2020). In AD, particularly where humans are kept 

in the loop (i.e. SAV), this variable has yet decisive influence on collision risk. In a recent 

study, Shangguan et al. (2020) quantified the auto-drive vehicle collision risk by the Time-

to-Collision frequency. Russo et al. (2016) in a BBN model which was developed to assess 

the risk levels for AVs, included a separate module in the model to specifically measure 

reaction time. Some other researchers similarly estimated collision risk based on TTC (Russo 

et al., 2016). This variable can also act as a fitting KPI for human performance while required 

to intervene and avoid a collision (Greenlee, DeLucia and Newton, 2018; Roche, Thüring 

and Trukenbrod, 2020). Several scholars such as Arbabzadeh et al. (2019) and Dixit, Chand 

and Nair (2016) used a 0-8 second interval with a two-second step to analyse the driver 

reaction times. These intervals (i.e., 0-2, 2-4, 4-6 and 6-8) formed the states for this node.  

Perception accuracy: a combination of localisation systems (e.g., GPS), sensory systems, 

mathematical and intelligent algorithms shape the skeleton of the perception module of fully 

AVs (Marzbani et al., 2019). A wide range of the algorithms which have been developed for 

autonomous control of AVs and searching in unknown, rely on vision systems and sensors 

(Marzbani et al., 2019). However, deficiency of perception will occur when the artificial 

perception components of the vehicle fail to accurately sense the immediate surroundings of 

the vehicle and supply enough details to the processing and planning modules for deciding 

on the most legitimate (re)action in a timely manner (Lipson and Kurman, 2016). Many of 

these technical failures occur due to the uncertain environment in which AVs operate like 

road and weather conditions, inaccuracy in perceiving the environment and generating 

inadequate or imprecise sensory data (Khonji, Dias and Seneviratne, 2019). Sensor and 

algorithm limitations, high dynamism of the environment and hardware defects are just a 

few causes to name. Sensory system of AVs is yet unable to discern the subtle social aspects 
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of driving and traffic volatility in the way that human drivers do (Vinkhuyzen and Cefkin, 

2016). Inaccurate or inadequate perception of the environment dramatically increases the 

likelihood of collision particularly in highly dynamic and cluttered urban environments. The 

main sensory equipment installed in AVs consists of vision sensors (e.g. cameras), LiDAR 

and radar (Kocić, Jovičić and Drndarević, 2018; Schwarting, Alonso-Mora and Rus, 2018; 

Zhao, Liang and Chen, 2018; Novickis et al., 2020). Therefore, these sensors were set as the 

parent nodes of ‘perception reliability’ in the model. The states for the technical nodes are 

defined based on Automotive Safety Integrity Level (ASIL) (Koopman and Wagner, 2016) 

except for ‘system integration’ and ‘cybersecurity’. 

     Safety requirements in automotive industries may vary depending on the criticality of 

functions and local/regional standards. ISO 26262 defines detailed quantitative techniques 

and risk classification methods for verification and validation of vehicle safety (da Silva 

Azevedo et al., 2013; Sanguino, Domínguez and de Carvalho Baptista, 2020). Safety 

Integrity Levels (SILs) were originally stemmed from the UK Health and Safety Executives 

guidelines and serve as indicators of the level of safety of a function in safety-critical systems 

(Papadopoulos et al., 2010). ASILs are an automotive industry adoption of SILs for the 

functional safety of Electrical/Electronic/Programmable (E/E/PE) Safety-Related Systems 

in road vehicles (e.g., AVs) (Gheraibia, Djafri and Krimou, 2018). They range from least 

stringent (ASIL A) to most stringent (ASIL D) (Mader et al., 2012; Mariani, 2018). da Silva 

Azevedo et al. (2013) adopted ASILs for software and systematic failures too. According to 

ISO 26262, the acceptable probability (i.e., target values) for hardware or software failures 

for each class of ASILs are as follows (Lu and Chen, 2019; Török, Szalay and Sághi, 2020):  

• ASIL D: <10−8ℎ−1     

• ASIL C: <10−7ℎ−1 

• ASIL B: <10−7ℎ−1 

• ASIL A: <10−6ℎ−1  or hardware metric calculation not required 

∗ ℎ stands for hour (time) 

Sensor fusion: in addition to the deployed sensors, ‘sensor fusion’ plays a critical role in 

feeding accurate information to the processing and planning module to augment scene 

recognition (Kato et al., 2015). Sensor fusion entails simultaneously fusing various data 

coming from an array of sensors in order to reinforce the vehicle’s perception as well as the 

reliability of the system (Campbell et al., 2018). Sensor fusion is a basic method to overcome 

challenges such as limited sensing range, diversity of dynamic obstacles and large number 

of false positives and/or negatives (Zheng et al., 2018). The reliable function of sensor fusion 

component is crucial for autonomous control, navigation and planning (Patel et al., 2019), 
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but any failure in this component can have similar consequences to sensor failures. 

Disengaged or faulty sensor fusion unit will result in uncertain and noisy information and 

the deficiencies associated with every single sensor will not be compensated (Lamkin-

Kennard and Popovic, 2019).  

Software reliability: assuring safe operation of an autonomous system is conditional upon 

the reliable and robust operation of its critical software components (Hutchison et al., 2018). 

Reassuring that all software pieces are working safely requires formal verification of 

important properties along with identification of defects which can hinder the safe operation 

of the system and pose safety risks (Hutchison et al., 2018). Haynes and Thompson (1980) 

defined software reliability “as the probability of the absence of any software-related system 

malfunction for a given mission”. Such errors and defects in the software subsystems of the 

AVs can result in inadequate control (Koopman and Wagner, 2016; Abdulkhaleq et al., 

2017) and cause an irregular behaviour or collision (Sheehan et al., 2017). Some of these 

software malfunctions will happen during the operation of AVs and can have catastrophic 

consequences (Koopman and Wagner, 2016).  

There have been four major areas in the literature with a link to the software reliability of 

AVs. AI performance which refers to the capability and maturity of machine learning and 

deep learning algorithms of the perception and planning modules of the vehicle is 

determining factor for a reliable software system (Khonji, Dias and Seneviratne, 2019). AVs 

also must be capable of generating behaviour (like human performance) based on learning 

potentials and this task becomes even more important in mixed urban traffic (Guo et al., 

2017). Behaviour generation subsystem of AVs which is designed based on data-driven 

rather than modelling approaches (Wolf et al., 2018), has an immense role in software 

reliability and collision avoidance (Bernhard, Pollok and Knoll, 2019). Behaviour generation 

algorithms are in charge of analysing and examining the interactions between the nearby 

road users (Bernhard, Pollok and Knoll, 2019) and decide on the next action to achieve 

mission goals (Barbera et al., 2004). Planning module (consisting of path, trajectory and 

motion planning algorithms) of the vehicle is responsible for generating a geometric path 

between two spatial points and it influences both kinematic and dynamic properties of the 

vehicle (Gasparetto et al., 2015). Any abrupt motion can imperil the safety of the ego vehicle 

and surrounding road users (Gasparetto et al., 2015). Intelligent control technologies 

constitute a key component of AVs (Zhao, Liang and Chen, 2018). Control and following 

the generated path by path and trajectory planning modules while maintaining coordination 

between lateral and longitudinal stability is another significant problem associated with AVs 

in crowded driving environments. Vehicle dynamics have strongly non-linear characteristics 

and complex properties that make path-following a demanding job for the control 
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algorithms/systems of AVs (Wang et al., 2020b). Figure 4.3 demonstrates the overall 

structure of a control system designed for AVs. 

 

Fig. 4.3: Control system in AVs (Zhao, Liang and Chen, 2018). 

 

Hardware reliability: every AV is a combination of hardware components and software 

architecture (Koopman and Wagner, 2017; Schlatow et al., 2017). Collisions may occur due 

to both software or hardware failures (Goodall, 2020). Therefore, reliability of hardware 

components such as computing hardware and actuators is a risk factor in AD like 

conventional vehicles. The National Motor Vehicle Crash Causation Survey (NMVCCS) 

conducted by NHTSA between 2005 and 2007 highlighted the share of vehicle components’ 

failures (e.g. tyres, transition, and engine-related defects) in motor vehicle crashes in the US 

(Singh, 2015). Similar to software reliability, hardware reliability can be “defined as the 

probability of the absence of any hardware-related system malfunction for a given mission” 

(Haynes and Thompson, 1980). Although any component or part in a vehicle can fail or 

become faulty at some point, not all component failures pose a collision risk. Therefore, the 

focus in this research will be the reliability and failure of critical components.  

The concept of ‘health management’ stems from avionics and has been used in mission 

tracking for unmanned aerial vehicles (UAVs) (Valenti et al., 2007). The idea is that an 

autonomous vehicle should be capable of actively monitoring and managing vehicle 

subsystems to increase mission and functional reliability through more accurate and timely 

system self-awareness (Valenti et al., 2007). There are different definitions for self-

awareness and self-aware autonomous systems e.g. in Lipson and Kurman (2016, pp.283-

285), but in this research, self-awareness refers to the capacity and capability an AV to 

recognise its own state and limitations, feasible actions, and predict the result of these actions 

Vehicle station 

Driving target 

Traffic regulations 

Environment perception 

Driving knowledge 

Vehicle recognised map 

Vehicle control 

algorithms: e.g., 

local path planning, 

artificial decision-

making, and 

de/acceleration 

Vehicle 

control 

systems: 

direction, 

speed, 
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on the vehicle’s state and the surrounding road users (Schlatow et al., 2017; Ravanbakhsh et 

al., 2018). This includes the awareness of the states of vehicle’s components. Since the 

human driver is not fully (or at all) involved in the driving tasks, the vehicle must bear the 

responsibility of monitoring (or even rectifying) the state of its critical resources and 

components. It is urgent for an AV to decide whether to continue or halt a journey when a 

defect is detected. This requires the technology to be aware of the function of its components 

and have sufficient decision-making capacity to make such a trade-off. 

According to NHTSA levels of vehicle autonomy (please see table 2.2), the main principle 

to distinguish the levels of autonomy in automotive industry is the share of control between 

the vehicle and human driver on board (Goodall, 2020). In other words, the division of 

control over the key controllers and actuators such as throttle, steering, brakes and 

acceleration between the intelligent systems and human drivers determines the level of 

autonomy of a vehicle. The contribution of control algorithms has been discussed above, but 

any control systems in AVs comprises of software and hardware including actuators, gauges 

and sensors. In consequence, hardware reliability in AVs depends on the reliability and 

function of its control components.  

Communication reliability: Wilken and Thomas (2019) argue that ‘data acquisition’ and 

‘local processing’ are integral features for cars to become decision-making machines (i.e. 

intelligent or autonomous cars). Along with the data which is gathered through the sensors 

and detection devices of the vehicle, AVs are expected to obtain a large volume of data from 

the communication channels known as V2V, V2I and V2X (Wilken and Thomas, 2019). 

Meanwhile, due to the high vehicle mobility, vehicular communication anomalies such as 

packet loss and transmission delay can negatively affect the performance of the cooperative 

driving system (CDS) and subsequently impair the safe operation of AVs (Jia and Ngoduy, 

2016).  As a result, the performance of AVs can be significantly dependent on reliable and 

secure communication with other road users and traffic infrastructure (Yao, Shet and 

Friedrich, 2020).  

Cybersecurity: among the major risk factors which cause a grave concern for potential users 

about the safe and secure operation of AVs, cybersecurity is on the top of the list (Taeihagh 

and Lim, 2019). Likewise, policy-makers, regulators and insurers have amplified the same 

concern (Sheehan et al., 2019). The risk can arise from various sources including but not 

limited to uncoordinated design of infrastructure and inter-vehicular systems which provide 

room for hackers to take advantage of these security holes and take over the control of the 

vehicle. AVs are cyber-physical systems that rely on imbedded data processing systems for 

managing control systems of activities such as steering, acceleration/deceleration, braking 
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and lane keeping (Axelrod, 2015). Any attack on or breach of cybersecurity integrity of AVs 

(either infrastructure or the ego vehicle) is likely to cause disastrous collisions. Li et al. 

(2018) extensively studied the potential cyber-attacks on the communicated positions and 

speeds of AVs and their influence on longitudinal safety. Their results indicate that when an 

AV is under slight cyber-attacks, it is more hazardous if communicated positions are 

attacked than speeds (Li et al., 2018). Form that, it can be concluded that cybersecurity risks 

add to the collision risks for AVs. 

System integration: designing robust AVs entails coping with several integration challenges 

(Campbell et al., 2010). Many complicated functionalities of AVs such as lane-changing 

manoeuvres, adopting safe speed and emergency braking require full integration of the 

system and sub-systems involving sensing, planning and control architecture (Lin, Juang and 

Li, 2014). A fundamental challenge is to ensure that the integration of the hardware and 

software is designed and implemented at a level that provides adequate robustness and 

redundancy against component failures (Campbell et al., 2010). It is not unlikely that 

researchers and vehicle manufacturers may design and implement disparate control 

structures, but they need to ensure that at least the following four layers are well integrated 

to avoid any collision: environment perception, trajectory planning, trajectory execution and 

driver interface (Szalay et al., 2018). The states for this node were extracted from the  

Systems Integration Technical Risks (SITR) assessment framework and are as follows: 

critical, significant, moderate and low (Loutchkina et al., 2013). 

Collision RI: the objective of this research is to measure the collision risk in urban 

environments, then the outcome of the model should be the collision risk index (classifier) 

under the influence of the outcome of four blocks (environmental, human, traffic and 

technical factors) which were defined based on sociotechnical theory. The importance of 

collision avoidance in AVs was discussed in section 2.2.2. This node has therefore four 

parents (i.e. road condition RI, reaction time RI, traffic complexity RI and technical 

reliability RI). The states for this node were extracted from a research designed for 

classifying traffic scenarios for AVs based on ANN risk estimation (Dávid, Láncz and 

Hunyady, 2019). These states are Minimal, low, medium, high and extreme. 
 

4.2. The BBN Model  

     The final topology (structure) of the BBN model is presented and discussed in this section 

(figures 4.4 and 4.5). The network is divided into four blocks with distinct colours. The 

nodes in blue colour are dedicated to environmental factors that can affect road conditions. 

White nodes capture and accumulate the influence of human factors which can affect 
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reaction times of human drivers on board. The factors concerning with the traffic layout are 

represented in amber. These variables and the risk index measure the complexity of traffic 

conditions that AVs must be capable of handling them. Green was used for the technical 

factors that are influential in avoiding collisions by AVs. Finally, the collision RI as the 

outcome of the model and an indication of the collision risk is displayed in red. The outcome 

of each block is an RI node which is also one of the four parents of the ultimate outcome of 

the model (i.e., collision RI) and they act as intermediate nodes to aggregate the impacts of 

the observable nodes (Brito and Griffiths, 2016). Collision RI node categorises (minimal to 

extreme) the risk of colliding with an object or other road users for an AV based on the 

evidence that can be inserted at any node(s) of the model. The links also denote conditional 

relationships between the nodes.  

     Furthermore, in assessing the mission success for AUVs Thieme and Utne (2017) 

asserted that any overall risk model for AUV operation should encompass aspects related to 

the technical system, environmental conditions, and HOFs (human and organisational 

factors), that is, human-autonomy collaboration (HAC) (Thieme and Utne, 2017). 

Regulations imposed by authorities, stakeholder requirements, and societal expectations are 

issues that can come along later and future work remains to integrate all these aspects into 

one model. The HAC and inclusion of traffic conditions can be a major contribution of this 

thesis, since several works have already focused on the technical system performance and 

environmental conditions, as mentioned in 2.2.  

     In addition to Socio-technical Theory, SoTeRiA framework and the human-autonomy 

collaboration conceptual framework also support the four-block structure for assessing risks. 

The World Health Organisation (WHO) training manual for preventing road traffic injuries 

(Mohan et al., 2006, p.23) clearly suggests that “road traffic crash results from a 

combination of factors related to the components of the system comprising roads, the 

environment, vehicles and road users, and the way they interact”. In this research, human 

factors represent operators, technical factors concern with the competence and reliability of 

AVs, and environmental factors are the variables that appraise the impact of the surrounding 

environment on the collision risk. However, the environment surrounding AVs (or other road 

users) consists of physical characteristics as well as dynamic traffic conditions that vehicles 

face during their travel on roads. Along with that, Socio-technical Theory places a special 

emphasis on the inclusion of organisational factors in the risk analysis for complex technical 

equipment and assessing technological risks (Mohaghegh, Kazemi and Mosleh, 2009; 

Mohaghegh and Mosleh, 2009; Ashrafi, Davoudpour and Khodakarami, 2015; Pence et al., 

2019). The main reason for this emphasis is the relevance and significance of behavioural 

aspects (e.g., safety culture) to the notion of risk (Pence et al., 2019). The extensive research 
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(e.g., Wiegmann, von Thaden and Gibbons, 2007; Atchley, Shi and Yamamoto, 2014; 

Edwards et al., 2014) on traffic safety culture and its effect on collective safety-related 

behaviours in different cities and countries also can support this. For this purpose, the fourth 

block in the model was dedicated to the ‘traffic condition’ factors and variables which have 

influence on the collision risks. 

     Links between the identified variables and assigned weights can define the way that they 

interact with each other. The links (arcs) in the BBN model are drawn based on the findings 

of the ILR and thematic analysis and the logical relationships (Marcot and Penman, 2019) 

between the identified factors. Those findings were merged, in order to construct the 

network. Some variables have a reciprocal relationship with each other. This sometimes is a 

hard task to define clearly these arcs. Since BBNs are acyclic, it is not possible to model 

mutual influences (Thieme and Utne, 2017). In order to resolve mutual influences, the most 

frequently mentioned/cited direction of influence were taken to determine them.  

     When considering links between the nodes, it can be truly argued that, for example, 

‘weather conditions’ have usually influence on the speed that drivers/vehicles adopt, or poor 

visibility adversely affects the performance of visual cameras of the CAVs. As discussed in 

3.8.1.5 inter-block links were omitted to avoid overcomplicating the model and curbing the 

exponential growth of NPTs. Lack of inter-block links will not significantly damage the 

accuracy of the model, but represents conditional independence assumptions (Pearl, 1988; 

Hänninen, 2014). Nonetheless, some inter-block links were still essential. For example, there 

is a very strong relationship between ‘time of day’ and driver ‘drowsiness’ (please see figure 

4.2) (Kaduk, Roberts and Stanton, 2020b). Similarly, in many cities around the world, traffic 

density is highly correlated with time of day (please see figure 4.1). In areas except near 

North and South poles, the lighting condition is also a function of time. Moreover, although 

this node is in blue and placed under the category of environmental blocks, can be a universal 

variable in this model. Therefore, the links between time of day and those aforementioned 

variables cannot be neglected.  

     The NPTs were populated in a way to generate uniform distributions for JDPs (except for 

a few nodes that their distributions cannot be uniform e.g., drowsiness and lighting 

conditions). In this stage it is assumed that all parents of each child have equal influence on 

it and all the prior probabilities except for drowsiness and lighting conditions were assumed 

to be uniform. The NPTs with uniform distributions are exhibited in figure 4.4. From there 

we can insert the weight of each variable on its child node through multiplying the elicited 

weights by the corresponding values in the table.  
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     In section 3.5, it was explained that observations (evidence) can be entered at any node 

when they become available. For example, the reliability of sensors in different types of 

AVs, weather conditions across the world or even countries, and situation awareness among 

drivers can vary significantly. Depending on the AV models, geographical and urban 

locations, human factors and traffic environments the values for each input node (based on 

the observations) can therefore vary significantly and result in substantially dissimilar 

collision risks distributions. Figure 4.6 shows an instantiation based on inserted evidence at 

only one node in every block (i.e. visibility, HMI, sensor fusion and other road users) and 

the collision risk distributions for each instantiation. 
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     It has been discussed that evidence and observations can be fed into the model at any 

node in BBN models. A scenario is devised to show how inference works and JDPs change 

in the model when new observations (or significant amount of hard data) become available. 

It is assumed that the visibility is ‘good’ for a given location and time, HMI is ‘facilitated 

and very effective’, the presence of other road users is ‘never-rarely’ and the reliability of 

sensor fusion is at ‘ASIL D level’. These assumptions (imaginary observations) were 

incorporated into the model and figure 18a shows how the JPDs update themselves based on 

the new information. In the same manner, figure 18b demonstrates the instantiation on the 

same nodes but with assuming the other extreme ends this time. For this instantiation, the 

visibility is presumed to be ‘bad’, HMI is set on ‘no interaction’, presence of other road users 

is set to be ‘often-always’ and the reliability for sensor fusion is set as ‘ASIL A level’. The 

probability distribution for the collision RI was as follows:  

Table 4.1: JDPs of risk indices after insertion of new evidence. 

 

     Changes in the probability distributions of reaction time and traffic complexity RIs are 

apparent. Although the judgement of expert(s) has not been incorporated into the model, still 

we can witness the influence of selected nodes on the overall risk JPD for collision risk index 

and other four risk indices. Backward propagation can also be seen in those figures. Having 

discussed earlier, one benefit of BBN technique is the backward propagation when an 

observation is entered at output or intermediate nodes and may change the state probabilities 

in the parent nodes (Ghabayen, McKee and Kemblowski, 2006). 

In
p

u
t 

Visibility: good=1.00; bad=0.0 Visibility: good=0.0; bad=1.00 

HMI: facilitated & effective=1.00; 

moderately effective=0.0; weak=0.0; 

no interaction=0.0 

HMI: facilitated &effective=0.0; 

moderately effective=0.0; weak=0.0; 

no interaction=1.00 

Other road users: never/rarely=1.00; 

occasionally/sometimes=0.0; 

often/always=0.0 

Other road users: never/rarely=0.0; 

occasionally/sometimes=0.0; 

often/always=1.00 

Sensor fusion: ASIL D=1.00; ASIL 

B=0.0; ASIL C=0.0; ASIL D=0.0 

Sensor fusion: ASIL A=0.0; ASIL 

B=0.0; ASIL C=0.0; ASIL A=1.00 

R
I J

D
P

s 

 

Road condition RI 

Green=0.6702 

Road condition RI 

Green=0.0484 

Amber=0.2814 Amber=0.2815 

Red=0.0484 Red=0.6701 

Reaction time RI 

0-2 sec=0.4518 

Reaction time RI 

0-2 sec=0.1222 

2-4 sec=0.2061 2-4 sec=0.2221 

4-6 sec=0.2208 4-6 sec=0.2065 

6-8 sec=0.1212 6-8 sec=0.4492 

Traffic condition 

RI 

Simple=0.7322 
Traffic condition 

RI 

Simple=0.0091 

Moderate=0.2587 Moderate=0.2587 

Complex=0.0091 Complex=0.7322 

Technical RI 

ASIL A=0.2549 

Technical RI 

ASIL A=0.2451 

ASIL B=0.2500 ASIL B=0.2500 

ASIL C=0.2500 ASIL C=0.2500 

ASIL D=0.2451 ASIL D=0.2549 
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4.3. Results of the survey (expert judgements) 

     The table below show the average of the weights elicited for every parent node in the 

model. The standard deviation (SD) for each weight is reported next to it. Lower SD values 

(e.g., for the impact of traffic control infrastructure on the adoption of safe speed) indicate 

convergence in opinions and larger SDs (e.g., for the impact of software reliability on 

technical reliability) reflected controversy among the domain experts. The relatively low 

SDs for the weights of road condition, reaction time, traffic complexity and technical 

reliability RIs on the collision RI are mainly due to larger number of respondents as all the 

participants were asked to provide their opinions on them. 
 

Table 4.2: the average and SD of elicited weights for child nodes. 

Child node Parent nodes Weight SD 

Situation 
 awareness 

Drowsiness 0.1500 0.0500 

Training & experience 0.4500 0.1500 

Secondary task 0.4000 0.2000 

Trust & reliance 
Perceived risks 0.6000 0.1000 

Training & experience 0.4000 0.1000 

HMI 
Trust & reliance 0.4500 0.0500 

Human-machine interfaces 0.5500 0.0500 

Reaction time RI 

Perceived risks 0.2667 0.0665 

Situation awareness 0.3167 0.0165 

HMI 0.4166 0.0835 

Perception accuracy 

Vision cameras 0.2000 0.0500 

LiDAR 0.2667 0.0288 

RADAR 0.2833 0.0288 

Sensor fusion 0.2500 0.0500 

Software (reliability) 

AI performance 0.4834 0.1040 

Behaviour generation 0.2000 0.0866 

Planning 0.2333 0.1607 

Software control systems 0.0833 0.0577 

Communication 
channels 

GPS 0.1000 0.0707 

V2V 0.3750 0.0353 

V2I 0.3250 0.0353 

V2X 0.2000 0.0707 

Communication 
reliability 

Communication infrastructure 0.4667 0.1365 

Cybersecurity 0.3500 0.0500 

Communication channels 0.1833 0.1401 

Hardware reliability 
Control equipment 0.3000 0.2291 

Self-awareness 0.7000 0.2291 

Technical reliability RI 

Perception accuracy 0.2433 0.1913 

Software reliability 0.4000 0.4358 

Communication reliability 0.1567 0.1209 

System integration 0.1233 0.1167 

Hardware reliability 0.0767 0.0404 

Other road users 

Day of week 0.3500 0.3536 

Traffic rule enforcement 0.2500 0.0707 

Traffic control infrastructure 0.4000 0.2828 

Traffic density 

Day of week 0.5000 0.0000 

Time of day 0.3000 0.1414 

Traffic control infrastructure 0.2000 0.1414 

Speed 
Traffic rule enforcement 0.3000 0.0000 

Traffic control infrastructure 0.7000 0.0000 
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Kinematic state 
Traffic rule enforcement 0.3000 0.0000 

Speed 0.7000 0.0000 

Traffic complexity RI 

Traffic density 0.1500 0.0707 

Other road users 0.2000 0.0707 

Traffic composition 0.4000 0.0707 

Traffic culture 0.1500 0.0707 

Kinematic state 0.1000 0.1414 

Road configuration 
Road type 0.6333 0.1528 

No. of lanes 0.3667 0.1528 

visibility 

Lighting conditions 0.2780 0.1070 

Road configuration 0.2167 0.0289 

Weather conditions 0.2833 0.1041 

Road infrastructure 0.2220 0.0381 

Obstacles 
Work zones 0.4667 0.0577 

Road configuration 0.5333 0.0577 

Road condition RI 

Obstacles 0.1980 0.0035 

Visibility 0.2557 0.1261 

Road configuration 0.1742 0.0652 

Road infrastructure 0.1408 0.0707 

Weather conditions 0.2313 0.0595 

Collision RI 

Road condition RI 0.2500 0.0850 

Reaction time RI 0.2100 0.1125 

Traffic complexity RI 0.3100 0.0699 

Technical reliability RI 0.2300 0.0949 

 

     The ranked node technique proposed by Fenton, Neil and Caballero (2007) was used to 

incorporate elicited weights into the model. In ranked node technique, experts are asked to 

assign weights to nodes (Rohmer, 2020). For example, if there are n parent nodes and each 

of them has m states, then there will be only n parameters to elicit, while in full elicitation 

𝑛 × 𝑚 parameters are required to fill up the whole table. Parent nodes are defined in an 

interval from 0 to 1 and accumulated weights for all parents of a node must make up to 1. 

This gives ground for representing unequal influence of multiple factors and the functional 

representation of NPTs can be traced since uncertainties in the relationships become more 

explicit (Rohmer, 2020). Figure 4.7 shows the BBN after the incorporation of weights and 

the strengths of links between the nodes.  
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4.4. Scenario-based risk analysis 

     Scenario analysis is an effective tool for (strategic) decision-making in the presence of 

uncertainty (Postma and Liebl, 2005). Across different disciplines it is a common practice 

to quantify uncertainty in model output based on a set of formulated scenarios. Ambiguities 

over the behaviour of the model output can be reduced and trends can be detected by 

comparing them under unlike circumstances. Scenario analysis is not intended for generating 

forecasts; it projects conceivable images of the future development due to the changes in 

input variables (Postma and Liebl, 2005). In this section, the aim is to nominate a number of 

functional scenarios and study changes in the outcome. 

     A scenario describes a situation by determining the state of every input variable of the 

model at a certain or over a period of time. Six (four extreme and two random) scenarios are 

designed to provide a basis for comparison between risk distributions. First and fourth 

scenarios represent the situations that all 29 input variables in the model are in their least 

safe and safest states, respectively. Second and third scenarios represent the in-between 

situations. For instance, the input variables for the technical block were in ASIL A in the 

first scenario, ASIL B in the second scenario and so forth. For input nodes with three states, 

it was set on the least safe state in the first scenario, on the middle in the second and third 

scenarios, and on the safest state in the fourth scenario. For the input nodes with two states, 

it was substantiated on the unsafe state in the first and second scenarios, and on the safe state 

in the third and fourth scenarios. Finally, the risk distributions for these six scenarios were 

observed and compared. 

     The risk distributions (please see figure 4.8) indicate a shift in collision risk from extreme 

to minimal when we move from the worst-case scenario towards a scenario in which all 

variables are in their most desirable (i.e., safest) conditions. The corresponding exponential 

PDF drawn through the histogram of JPDs for collision RI in scenarios 1 and 4 are almost 

symmetrical along the line 𝑥 = 𝑎. The fitted trends in scenarios 2 and 3 are almost straight 

lines with inverse slopes and symmetrical along the line 𝑥 = 𝑏. Those trends in risk 

reduction from scenario 1 to 4 in addition to the sensitivity analysis in the following section 

can indicate the areas that have higher priorities in safety aspects of CAVs. 
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Fig. 4.8: Results of scenario analysis. Y axis represents probability. 
 

4.5. Sensitivity analysis 

     Saltelli (2002) defines that “sensitivity analysis [...] is the study of how the uncertainty in 

the output of a model (numerical or otherwise) can be apportioned to different sources of 

uncertainty in the model input”. In other words, sensitivity analysis enables us to observe 

which nodes have greatest or weakest influence on any target node (Fenton and Neil, 2012, 

p.264). The sensitivity analyses conducted by BBN tool can help to rank the uncertainties 

and then prioritise data collection for further research (Kabir et al., 2015). Sensitivity 
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analysis should be ideally run after uncertainty analysis (Saltelli et al., 2008, p.1). 

Uncertainty analysis, in this thesis was carried out in the form of scenario analysis in section 

4.4. 

     Nodes coloured in red in figure 4.9 are the variables that are important for the calculation 

of the posterior probability distributions in collision risk since it was set the target in 

sensitivity analysis. The intensity of red colour has a direct relationship with the sensitivity 

of the target node to the coloured nodes. The nodes in grey colour do not contain any 

parameters that are used in the calculation of the posterior probability distributions over the 

collision risk. Sensitivity of any of these nodes is zero and are determined qualitatively based 

on GeNIe relevance computation layer before any computation is initiated. It is important to 

caveat that the sensitivity analysis algorithm generates context-dependent results. The values 

of calculated derivatives depend on the current target(s) and the set of observations made in 

the network. Further observations or any changes in either CPTs, links between the nodes or 

assigned weights to links will prompt the algorithm to recalculate the derivatives and 

recolour the nodes. 

     A decision or in broader terms, a policy, may involve political, environmental, 

commercial, technical, financial and other types of input variables. To plan for a range of 

optimal outcomes, an essential task is to determine the most ‘contributing’ variables among 

risk-model input variables (Koller, 1999, p.169). In a risk model, as a decision-making tool, 

the quantity of risk can change by making any change to input variables. Hence, to determine 

the influence of a single input variable on the outcome (i.e., risk) all variables are held 

constant except one that is allowed to vary (Koller, 1999, p.171). The range of changes in 

the output variable is recorded. The result of sensitivity analyses is commonly presented in 

the format of a ‘tornado’ diagram (e.g., Fenton and Neil, 2012, p.265; Ashrafi, Davoudpour 

and Khodakarami, 2015). Figure 4.10 illustrates the tornado diagrams for the target node in 

BBN model in this study. It demonstrates the reachable ranges for the ten most influential 

combination of node states on the collision RI’s Extreme state. This can be analysed for 

other states such as Moderate or Minimal and any child nodes other than collision RI can be 

set as the target.  

 

 

 

 

 



Chapter 4 

115 
 

 

 

Fi
g.

 4
.9

: S
en

si
tiv

ity
 a

na
ly

si
s p

er
fo

rm
ed

 in
 G

eN
Ie

 M
od

el
er

 



Chapter 4 

116 
 

     Figure 4.10 depicts the tornado sensitivity diagram for the four states (i.e., Minimal, 

Moderate, High, and Extreme) of collision RI in GeNIe software. Label represents observed 

state, length of each bar corresponds to the magnitude of influence on model outcome 

achieved by changing specified state. The green side of bars denotes the resulting probability 

that 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑟𝑖𝑠𝑘_𝑖𝑛𝑑𝑒𝑥)  = 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑜𝑟 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑜𝑟 𝐻𝑖𝑔ℎ 𝑜𝑟 𝐸𝑥𝑡𝑟𝑒𝑚 for the states 

presented. The red bars represent the probability after reversing the observed states. The bars 

are sorted from the most to least sensitive parameters for a selected state of the target node. 

 

Fig. 4.10 a: Tornado diagram for 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑟𝑖𝑠𝑘_𝑖𝑛𝑑𝑒𝑥)  = 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 

Fig. 4.10 b: Tornado diagram for 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑟𝑖𝑠𝑘_𝑖𝑛𝑑𝑒𝑥)  = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 
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Fig. 4.10 c: Tornado diagram for 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑟𝑖𝑠𝑘_𝑖𝑛𝑑𝑒𝑥)  = 𝐻𝑖𝑔ℎ 

 

Fig. 4.10 d: Tornado diagram for 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑟𝑖𝑠𝑘_𝑖𝑛𝑑𝑒𝑥)  = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒 

 

     Table 4.3 ranks 19 nodes of the model across the four blocks based on the highest 

maximum sensitivity. The target node for the sensitivity analysis was set on the ‘collision 

risk RI’ node. The average sensitivity and minimum sensitivity for the nodes in that table 

are presented too. This table together with the scenario analysis in previous section form the 

main foundation of policy implication in following section (i.e., section 5.3). 
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Table 4.3: results of sensitivity analysis while collision RI was set as target 

Node 
Max 

sensitivity 

Avg. 

sensitivity 

Min 

sensitivity 

1 Traffic control infrastructure 0.306 0.074 0 

2 Weather conditions 0.118 0.02 0 

3 Traffic composition 0.114 0.021 0 

4 AI performance 0.04 0.008 0 

5 Day of week 0.035 0.013 0 

6 Traffic rule enforcement 0.029 0.007 0 

7 Traffic culture 0.014 0.003 0 

8 H-M Interfaces 0.01 0.002 0 

9 

Road type 0.009 0.002 0 

Planning (path, trajectory and 

motion) 
0.009 0.002 0 

10 RADAR 0.009 0.002 0 

11 Time of day 0.008 0.002 0 

12 
Traffic complexity 0.008 0.001 0 

Other road users 0.008 0.001 0 

13 
Road infrastructure 0.004 0.001 0 

Training & experience 0.004 0.001 0 

14 

LiDAR 0.002 0 0 

Communication infrastructure 0.002 0 0 

Behaviour generation 0.002 0 0 

 

     In the next step, the RIs (i.e., road conditions, reaction time, traffic complexity, and 

technical reliability) were set as target and sensitivity analysis was iterated. The only node 

that appeared among influential nodes but was not captured in the first round of sensitivity 

analysis was HMI. The results are summarised in table 4.4.  

Table 4.4: results of sensitivity analysis while the outcome node for each block was set as target 

 

4.6. Summary of results and conclusions 

     This chapter reported the results of ILR which were used to form the structure of BBN 

model. The results indicate that there are a relatively large number of variables that can pose 

a risk to safe operation of CVAs. A socio-technical approach allows us to categorise those 

Risk Index  Rank  Antecedent node Max sensitivity 

Traffic complexity 

1 Traffic control infrastructure 0.465 

2 Traffic composition 0.174 

3 Day of week 0.053    

Road conditions 

1 Weather conditions 0.595 

2 Road types 0.042 

3 Time of day 0.034 

Technical reliability 

1 AI performance 0.500 

2 Radar 0.105 

3 Planning 0.095 

Reaction time 

1 H-M interfaces 0.499 

2 Training and experience 0.173 

3 HMI 0.043 
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variables and construct a BBN model with four blocks (environment, human operators, 

traffic conditions, and technical reliabilities). The outcome of expert elicitation phase was 

also provided and incorporated into the model. The experts placed a heavy emphasis on the 

role of traffic conditions in collision risk, and the least emphasis was attached to human 

reaction capacity in highly autonomous driving.  

     The results of scenario analysis demonstrate an exponential relationship between the 

states of input variables and collision risk distribution for the outcome node in a way that 

deterioration of input variable states collision risk increases and while input variables are in 

their safest states a probability for collision risk tends to be minimal. Furthermore, the 

findings of sensitivity analysis suggest that only 17 nodes out of 53 appear to have a 

considerable influence on CAV collision risk and impact of other variables are trivial. It can 

be concluded that in large BBN models not every variable can have a meaningful influence 

on the outcome of the model, although this depends, to a substantial extent, on the topology 

of the model and how CPTs are composed. 

     The sensitivity analysis also revealed that the most decisive impact on collision risk 

comes from traffic control infrastructure. This opens up further avenues for exploration with 

regards to policy making endeavours to mitigate collision risk of autonomous driving. 

Among the technical variables, AI algorithms maturity (performance) appeared on the top 

of the list. This highlights the criticality of decision making in AVs. A sophisticated, mature 

and agile software system will eliminate the risk factors from the human block. If an AV is 

fully capable of handling every driving scenario (i.e., SAE level 5) no handover to (or 

reaction form) human driver will be required. As a consequence, with the current pace of 

advancements and technological progress some of the identified risk variables in 4.1 may 

not remain relevant in long term. 
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5. Discussions and policy implications 

     The following chapter is divided into three sections. Section 5.1 reviews the main 

challenges in developing a BBN model for the purpose of assessing risks in complex 

systems. Section 5.2 provides a critical review of the current autonomy classification 

approaches and their impact on safety of CAVs. Policy implications are discussed in section 

5.3. Lastly, the major research limitations are recognised in section 5.4. 

5.1. Pitfalls in developing a BBN model for complex systems 

     Identifying the variables and causal linkages between them was among the primary 

dilemmas (Korb and Nicholson, 2003, p.30; Pearl, 2009, pp.43-44; Groth and Mosleh, 

2012). Some of the variables are dependent and this can result in double counting (Li et al., 

2012; Landuyt et al., 2014). Such dependencies also exacerbate the difficulty of finding 

causal links and their directions. This challenge becomes even worse while developing a 

modular BBN. For example, it is supported by literature (e.g., Yoneda et al., 2019; Vargas 

et al., 2021) and there is ample evidence that perception accuracy of an AV depends on (or 

is affected) by weather conditions. In other words, adverse weather conditions can obstruct 

sensing of the environment through sensors and impair perception accuracy for an AV. 

Another example can be the causal link between visibility and reaction time of a human 

(supervisor) driver. These inter-block links, however, were omitted to avoid myriad links in 

the model. Inclusion of such links can significantly change the results of sensitivity analysis.  

     Aside from the above challenges, there were a number of others that needed to be 

overcome to ensure the quality of the research. Finding a balanced point between the 

qualitative and quantitative methods, trade-off between the comprehensiveness and 

simplicity of the BBN model and deciding on the knowledge elicitation methods and 

techniques were among the major challenges experienced during the modelling process. It 

is crucial for the model to consolidate major factors influencing the risk and avoid 

oversimplification, but it is also necessary to avoid complicating the model with redundant 

nodes (Fenton and Neil, 2012, p.162). Complicated structures with redundant nodes are 

likely to cause confusion for experts and slow down the elicitation process. 
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     Eliciting expert judgements for CPTs is inherently a tiering and time-consuming task for 

experts. Reducing the workload of experts in dealing with large CPT entries while ensuring 

the quality of results is a challenge to address (Rohmer, 2020). Two solutions were adopted 

to circumvent an exhausting elicitation. Firstly, the modular design which helped to divide 

the burden between domain experts. Secondly, using a new method to only elicit experts’ 

opinions on the weight of parent nodes on their children. Ranked node method was also used 

to incorporate the weights into the model. There are still some caveats to the combination of 

these methods. There is a possibility that the generated values for the CPTs (using the method 

developed in section 3.8.2) do not result in uniform distributions and therefore bring about 

unequal weights for parent nodes. A scaling factor can be used to equalise the weight of 

variables.  

     Absence of BBN validation due to lack of real-world data poses a real challenge to assess 

the accuracy and validity of the model (Farmani et al., 2012; McDonald, Ryder and Tighe, 

2015; Pütz, Murphy and Mullins, 2019). Growth and Mosleh (2012) also recognised this 

problem and maintained that since BBNs are used when data are scarce, finding a benchmark 

to validate human reliability assessment (i.e., expert elicitation) is impossible, although 

diversifying the sources of data and verifying experts can add to the robustness of the model. 

Lack of a benchmark or case study, prevents knowledge engineers to test the model against 

real-world results and calibrate the parameters of the model. It is noteworthy that a risk 

model is not supposed to completely capture the essence of a complex system and provide 

accurate estimates (Haimes, 2018), particularly when the uncertainty is deep. Rather, it can 

be seen as a supportive tool for decision making under uncertainty (Chen and Pollino, 2012; 

Farmani et al., 2012). 
 

5.2.  Autonomy: discrete or fuzzy? 

     The Law Commission of England and Wales and the Scottish Law Commission 

developed the concepts of ‘user-in-charge (UIC)’ and ‘no user-in-charge (NUIC)’ for laying 

a foundation to define a legal accountability system for AVs (Law Commission of England 

and Wales, 2022). Some automated driving systems (ADS) may be authorised NUIC mode 

which are referred to as NUIC features. This implies that some other features will still need 

a user to take charge of them. Therefore, H-M Interaction as one of the main sources of risk 

is not entirely eliminated at least from the legal perspective. With the current state of the 

technology, it may not be practical to draw a bright line between features that still need user’s 

attention during driving and those that do not need it. A large body of academic literature 

(e.g., Schömig and Metz, 2013; Mackenzie and Harris, 2015; Mok et al., 2017; Van Dam, 
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Kass and VanWormer, 2020) is concerned with the problem of passivity in driving where 

drivers have to shift from passively monitoring tasks to performing them actively.  

     A few widely adopted taxonomies for automation or autonomy levels in the context of 

vehicle automation were provided in section 2.1.4. To avoid a sheer scope, the focus of this 

research for collision risk analysis was set on SAE level 4 where the technology has more 

capability to handle more driving scenarios (comparing to level 2 and 3) and the possibility 

for human intervention is not completely ruled out yet. According to the definition provided 

by SAE, all aspects of the dynamic driving tasks during driving mode-specific performance 

are handled by an automated driving system, even though a human driver does not respond 

appropriately to an intervention request (SAE International, 2016). This raises some practical 

problems for implementation of autonomous driving and most importantly for regulators and 

legislators. The Law Commission joint report declares that even their recommendations 

heavily rely on SAE taxonomy (Law Commission of England and Wales, 2022). This 

indicates the importance of investigating the implications of that taxonomy on the safety of 

AVs. 

     Firstly, the ‘mode-specific’ attribute needs to be disclosed. One can envisage hundreds if 

not thousands of combined driving functions and traffic scenarios for road vehicles. It is not 

clear under what circumstances and in which driving scenarios the technology will reliably 

and safely navigate a vehicle and perform all dynamic driving tasks. This definition may be 

referring to vehicles similar to shuttles (without steering wheel and pedals) that traverse 

predefined routes at low speed and have no or limited interaction with other vehicles. Then 

the question will be who can intervene and how an intervention can be made in case the 

vehicle requests one? 

     The second challenge in that definition arises from ambiguities around intervention 

requests and ‘appropriate’ responses to them. It appears obscure if a level 4 AV can still 

operate safely without an appropriate response from a human driver to a take-over request 

issued by the vehicle, then why such a request is necessary to be made? That definition 

assumes that the vehicle is fully capable to drive itself safely even without human 

interventions. However, there can be situations that there is a failure in the system (either 

software or hardware). For example, imagine that the sensor fusion module of an AV stops 

working and at the same time the vehicle is receiving contradictory data from its sensors 

regarding a surrounding vehicle’s trajectory. Is the vehicle still competent to decide on a 

chain of appropriate (re)actions in a timely manner? What happens when the vehicle issues 

a take-over request to the driver in this situation, but the driver decides not to respond to the 
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request because his/her assumption is that the vehicle can still operate without any 

intervention? 

     Answering the above questions will be critical to developing and enforcing regulations 

as well as licensing users. If a level of human interventions is still required for level 4 AVs 

it needs to be clarified what interventions, under what conditions, in what driving scenarios, 

and through which interfaces are going to be requested from human drivers. Furthermore, 

more delineation is still needed to distinguish level 4 from level 3 and 5. The ambiguities 

and multiplicity of aspects of autonomous driving suggest that drawing a clear-cut border 

between autonomy levels is not straightforward. Apart from theoretical frameworks and 

general taxonomies for autonomy in AVs, it appears to be rather a fuzzy concept than 

discrete. A fuzzy approach towards measuring autonomy in road vehicles not only allows 

for more variability in the interval between non-automated and fully-automated, but also 

facilitates measuring autonomy of processes instead of output (Godin, 2002).  
 

5.3. Policy implications for safety of CAVs 

     Policies are prerequisite for promoting and regulating a disruptive technology on a wider 

scale (e.g., societal level). Thus, ITS cannot be governed and become functional without 

effective and coherent policies in action. Johnson (2017) maintains that the nature of policy 

decisions (both nationally and internationally) will drive how CAVs will be accommodated 

and what form of vehicle autonomy will be permitted. Among the primary aims of this 

research was to use the results for elaborating on policy implications and providing further 

insights for stakeholders. 

     Autonomous riding is now becoming more feasible than ever before, and policymakers 

need to address potential concerns without overly burdening taxpayers and confining its 

promised benefits. A legitimate and immediate concern that policymakers are facing is the 

safety of CAVs, especially in complex environments (Anderson et al., 2014, p.6; Kalra and 

Paddock, 2016; Koopman and Wagner, 2017; Khonji, Dias and Seneviratne, 2019; Koopman 

et al., 2019). The scenario and sensitivity analyses in previous sections in addition to the 

existing literature can shed light on the areas that have more decisive influence on collision 

risk in urban environments. Six major areas are highlighted which need special attention 

when it comes to the safety of CAVs. Those areas are discussed in the rest of this section. 

     The mass adoption of CAVs is predicted to introduce new requirements and standards for 

the design of infrastructure to pave the way for their safe operation as well as ensuring the 

safety of other road users (Gavanas, 2019). In fact, enabling infrastructure plays a critical 

role in reaping the benefits of socio-technical autonomous systems (Gopalswamy and 
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Rathinam, 2018; Manivasakan et al., 2021; Ramchurn et al., 2021). The BBN model in this 

study includes three nodes that require infrastructural requisites. Traffic control and 

management, road condition and communication reliability (e.g., V2I) majorly depend on 

sophisticated infrastructure. These three types of infrastructure and their roles in autonomous 

driving are also highlighted in the work of Maurer et al. (2016). 
 

5.3.1. Traffic management systems 

     The efficiency of road traffic systems hinges on the capacity of the traffic infrastructure 

(Maurer et al., 2016). For instance, a pedestrian at the side or in the middle of a road may 

present higher risk than one who is commuting on a separate and shielded pedestrian 

pavement along the road. Advanced traffic control devices and technologies such as loop 

detectors or magnetic sensors that spot the presence of vehicles at a stop bar in addition to 

conventional devices that can estimate the velocity and turn movements of vehicles enhance 

managing traffic flow at intersections (Guanetti, Kim and Borrelli, 2018). Traffic congestion 

and presence of too many agents with no or low organisation can confuse the path planning 

and object recognition algorithms of CAVs and increase the risk of collision. Therefore, 

upgrading and adapting the traffic control and management infrastructure can mitigate that 

risk. Effective traffic management systems reduce traffic complexity and improve traffic 

efficiency which directly affect traffic rule enforcement. 

     Designated lane(s) for CAVs is among widely discussed solutions for safety and traffic 

management considerations (e.g., Johnson, 2017; Ye and Yamamoto, 2018; Ivanchev et al., 

2019; Ma and Wang, 2019; Saeed, 2019; Manivasakan et al., 2021; Mirzaeian, Cho and 

Scheller-Wolf, 2021). Dedicated CAV lanes are believed to significantly reduce the 

probability of encountering unpredictable random behaviours triggered by human drivers 

(Ivanchev et al., 2019). The negative impacts of mixed traffic state can be alleviated to a 

large extent too. Although this seems to have safety benefits for CAVs and other traffic 

participants, the feasibility of that solution needs to be assessed. Road type, geometric 

constraints of existing roads, road capacity, merging segments, and proportion of CAVs to 

the total number of vehicles are important factors that need to be taken into consideration. 

While the capacity of motorways and highways can allow for those lanes, typical urban roads 

with two lanes may need extension to accommodate a dedicated lane for CAVs.  

     The existing traffic signs and lights are designed for human drivers and are expected to 

remain in place at least until conventional vehicles dominate the roads. Recognising traffic 

signs and signals can turn into a challenging task for CAVs in real world. That might be due 

to lighting and traffic conditions, cluttered background, occlusion, motion blur or deformity 
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(Yang et al., 2015; Lengyel and Szalay, 2018). Improving the capabilities of the perception 

and processing modules of CAVs can mitigate this challenge to some extent, but adjustments 

at infrastructural levels are still requited to augment the safety of roads and reducing collision 

risks. Uniform and well-maintained road signs is recommended by Liu et al. (2019) to 

address this issue. In addition, one of the main applications of V2I communication is 

proposed to be in traffic control and management by transmitting real-time traffic situations 

to CAVs (Li and Liu, 2020). Installation of RSUs (Liu et al., 2019; Kim et al., 2021), 

autonomous intersection management (AIM) (Manivasakan et al., 2021), and cellular 

interfaces (Bouk et al., 2018) facilitate V2I and provides a supplementary means for 

assessing traffic situations and following traffic rules. 
 

5.3.2. Secure and reliable communication platforms 

     The role of communication channels (i.e., V2V, V2I, and V2X) in facilitating 

autonomous driving was discussed in sections 2.1.7 and 4.1. Those channels, however, will 

not have a palpable safety effect if the existing infrastructure is not upgraded (McAslan, 

Gabriele and Miller, 2021). Gopalswamy and Rathinam (2018) label three levels of 

communication that enable V2I. Level 1 consists of close rage wireless communication 

between Multiple-Sensor Smart Packs (MSSPs) and nearby vehicles. Examples for this 

category of communication can be dedicated short range communications (DSRC), Wi-Fi, 

cellular, and 5G. Level 2 establishes communication between neighbouring MSSPs. Fibre 

optics technology is suggested for this level. Lastly, level 3 connects MSSPs and cloud-

based computing.  

     While more cyber connectivity expands vehicle and traffic control capacities, real-time 

data transfer, and diagnostic functions, it increases vehicles’ and transportation systems’ 

exposure to higher risks of cyberattacks (Zou, Choobchian and Rozenberg, 2021). Cyber 

security has been identified as a dilemma and major source of risk not only for CAVs, but 

also for other components of ITS such as Internet of Vehicles (IoV). Although cybersecurity 

did not appear among the most influential nodes of the BBN model, there is ample literature 

(e.g., Johnson, 2017; Parkinson et al., 2017; Bouk et al., 2018; Li et al., 2018; Lim and 

Taeihagh, 2018; Gavanas, 2019; Sheehan et al., 2019; Katrakazas et al., 2020, p.73; Török, 

Szalay and Sághi, 2020; Kim et al., 2021) that emphasises the criticality of this factor when 

it comes to safety considerations of CAVs. Connectivity attribute of cyber-physical systems 

stipulates sophisticated and integrated cyber-attack deterrence. The findings in the work of 

Kim et al. (2021) also confirms this.  
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     Classification of cyber threats, as Sheehan et al. (2019) suggest, is a fundamental step to 

contemplate their likely consequences and adopt appropriate measures to prevent or tackle 

them. Kim et al. (2021) extensively reviewed and classified the potential cyberattacks on 

CAVs at vehicular level and recommended defence measures for vehicle on-board 

architecture. Nevertheless, security measures at network and infrastructural levels must be 

resilient, up-to-date and under perpetual revision. Strategies for enhancing cyber resilience 

must be evolved to mitigate the impact of any future cyberattacks on transportation cyber-

physical systems (Zou, Choobchian and Rozenberg, 2021). Cyber resilience is responsible 

to adapt and mobilise the system to resist cyberattacks and remain operational during the 

disruption (Bouk et al., 2018). The systematic literature review conducted by Katrakazas et 

al. (2020, p.95) suggests that certifications and audits in compliance with standards and 

regulations developed for CAV cybersecurity is an active field of research. 
 

5.3.3. Urban design and planning 

     Weather condition appeared in the second place in the sensitivity analysis. Furthermore, 

the surveyed experts ranked road condition RI as the second influential among the four IRs 

specified in the BBN model. Alongside augmenting technical and technological capabilities 

of CAVs, interventions in urban design and planning are necessary to improve road 

conditions and provide a more CAV-friendly environment. Thompson et al. (2020) found 

that the risk ratio for road transport injury in the best performing city type is approximately 

as half as the poorest performing city type. Determining and eliminating blind zones (e.g., 

the corner edge of  intersections), severe curvatures and irregular patterns (Yoo, Jeong and 

Yi, 2021), improving lane markings and illumination conditions at night (Johnson, 2017; 

Ye, Hao and Chen, 2018; Liu et al., 2019; Saeed, 2019; Carrignon, 2020), reducing the 

number of speed bumps (Liu et al., 2019), and repairing potholes (Johnson, 2017) are the 

main remedies for mitigating the safety risks arising out of inappropriate road design and 

conditions. 
 

5.3.4. Regulation, standardisation and certification 

     It was explained in section 2.1.8 that perhaps the most significant distinction between 

CAVs and HDVs is delegating the tasks that are performed by human drivers in HDVs to 

AI algorithms. In sensitivity analysis, AI performance node of the BBN model was ranked 

as the fourth factor affecting the collision risk. Along with that, there are many academic 

papers (e.g., Scherer, 2015; Abduljabbar et al., 2019; Cunneen, Mullins and Murphy, 2019; 

Khonji, Dias and Seneviratne, 2019; Cummings, 2021) that underline the risks and 

limitations of AI in autonomous driving. Commensurate and sector-specific regulations, as 
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emphasised in the UK’s National AI Strategy, allows the risks to be addressed effectively 

(Office for Artificial Intelligence, 2021). In spite of that, technology developers and car 

manufacturers seem to be way ahead of the regulatory bodies and legislators which might 

be impacting them in a way that does not best serves public interests. This can be overcome 

by active engagement with the relevant industry sectors, academic communities, and other 

stakeholders to develop a more in-depth understanding of the risks and safety implications. 

Recent research projects such as Societal Level Impacts of Connected and Automated 

Vehicles (LEVITATE, 2019), Trustworthy Autonomous Systems (TAS Hub, 2020) and 

HumanDrive (UK Government, 2020) are intended to shorten the gap and support policy-

making processes with evidence. 

     Standardisation of CAV systems and determining the degree to which CAVs must be 

standardised are among the policy options for responding to safety concerns (Johnson, 

2017). Uniform standards for vehicle design and operation will contribute to overall system 

integration (Straub and Schaefer, 2019) and user experience as well. Incorporation of 

steering wheel and pedals (Hanna and Kimmel, 2017), software safety (Koopman et al., 

2019), testing methodologies (Silva et al., 2021), H-M interfaces (Straub and Schaefer, 

2019), and communication protocols (Johnson, 2017; Khonji, Dias and Seneviratne, 2019; 

Straub and Schaefer, 2019) are just a few examples of the areas that standardisation can 

ensure the safety of CAVs.  

     Vendor-specific hardware equipment and algorithms plus lack of recognised standards 

hinder data sharing across different transport/non-transport systems and geographies (Nur 

and Gammons, 2019). On the other side, Khonji, Dias and Seneviratne (2019) argue that 

transparency and explainable algorithms are a public request and vital for explaining the 

reasonings behind individual safety incidents. Still there are practical questions to be 

answered. Fagnant and Kockelman (2015) raised five questions about the data sharing, 

ownership and usage: who should own or control a CAV’s data? What types of data will be 

collated and retained? Who will have access to these data? In what ways will such data be 

made available? And, for what purposes will they be used? Data-sharing, along with privacy 

and security policies, make data a core element of policy-oriented transportation planning 

(Glassbrook, 2017, pp.77-80; McAslan, Gabriele and Miller, 2021).  

     The importance of certification for CAV cyber security was pointed out earlier. With 

more open road trials, the absence of safety certifications becomes more evident and 

increases risks to public safety. Rapid pace of developments and heterogeneous software and 

hardware configurations pose a challenge to developing uniform verification standards and 

so the consistent certification framework that encircles all variants of CAVs (Dia et al., 
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2021). A major safety certification concern arises from the self-adaptiveness (or real-time 

learning) ability of CAVs (Koopman and Wagner, 2017). The self-adaptiveness feature 

might engender a different behaviour pattern after interacting with other traffic agents than 

what was observed during testing and certification. Currently, certification frameworks have 

inadequacies to handle that uncertainty, because they require analysing almost all possible 

system behaviours up-front in the design, validation, and verification processes. 

     In automotive industries, certification of vehicles depends on an ability to pass rigorous 

testing of components for durability and reliability in case of an accident or failure (Martin 

et al., 2015). Testing for certification of CAVs should further verify how the underlying 

software and hardware components perform under various degrees of uncertainty that can 

jeopardise safety of passengers and other traffic participants (Cummings, 2019). In this 

sphere, policymakers and regulators should have an active role to ensure that stringent and 

transparent certification tests for consistent evaluation of CAVs will secure the safety 

benefits for public in first place (Dia et al., 2021). Yun et al. (2016) predicated that Google 

has leveraged the establishment of a certification system for autonomous driving in the US 

and that can sound the alarm for other countries. This is not to say that technology developers 

must not be involved in testing, regulatory and certification processes, but those processes 

must be governed by regulatory bodies and legislation. 

     The notion of licensing can be extended to users of CAVs. There are still ambiguities 

about the nature and level of interventions required from human drivers at higher automation 

tiers (i.e., SAE 3 to 5). According to the taxonomy developed by SAE, the driver in a level 

4 CAV is not going to be called for intervention, but can still take over the control of vehicle 

if wishes to. Since July 2014, state legislations in Florida, Michigan, California, Washington 

DC, and Nevada demand that all drivers involved in AV testing on public roads must be 

licensed and prepared to take over vehicle operation (Fagnant and Kockelman, 2015). This 

raises urgent questions about the competence and driving skills required to safely respond to 

a wide range of traffic situations and how those skills and competence are going to be 

certified. The driver licensing issue is one of the major policy implications for CAVs that 

needs careful deliberation (Lari, Douma and Onyiah, 2015; Johnson, 2017). Next question 

relates to the licensing of elderly drivers and those with special needs whose cognitive and 

physical abilities for using incorporated interfaces must be examined (Hancock et al., 2020). 

This may discount the pledged benefits of CAVs for those groups unless fully autonomous 

vehicles (i.e., level 4 & 5) become available.  
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5.3.5. Enabled and facilitated interaction between CAVs and humans 

     Even after CAVs are commercialised and largely adopted, we will still have a mixture of 

CAVs, HDVs, and pedestrians in urban traffic scenes. In addition to CAV riders, it is not 

clear yet how other road users such as pedestrians are going to interact with CAVs. There 

are several studies (e.g., Rasouli, Kotseruba and Tsotsos, 2017; Hulse, Xie and Galea, 2018; 

Rasouli and Tsotsos, 2019) that acknowledge the complexity and essentiality of interactions 

between CAVs and other road users. Whether through interfaces, communication channels 

(i.e., V2X) and/or other innovative means, timely and facilitated interactions between other 

traffic participants and CAVs will improve the traffic flow and safety (Rasouli and Tsotsos, 

2019). To increase the effectiveness of the interactions, uniformity of interfaces and 

familiarity of other road users with them must be promoted. Even though the influence of 

that form of interaction on safety considerations is undeniable, we are not yet hearing a 

consistent strategy about increasing public awareness, standardising interfaces, and 

amending current traffic laws based on new safety requirements and standards.   

     As the control of vehicles are gradually transferred to autonomous technologies, the law 

must be altered in both its code and implementation (Ilková and Ilka, 2017). The responses 

to the Consultation on the rules on use for Automated Lane Keeping Systems initiated an 

amendment to Rule 150 of The Highway Code which relieves the requirement for the drivers 

in AVs (in automated mode) of maintaining proper control of the vehicle at all times (UK 

Government, 2021). More revisions of driving legislation are underway to expedite the safe 

deployment of AVs on the UK roads (UK Government, 2021). Such revisions and 

amendments seem to be unavoidable, but the key question here is how the new rules are 

going to be enforced? According to the sensitivity analysis in this study, traffic rule 

enforcement is the sixth influential factor affecting the collision risk. More embedded 

technologies and capabilities of CAVs can certainly assist authorities in detecting any breach 

of traffic rules. For example, Ilková and Ilka (2017) put forward the idea of self-report 

function for CAVs which automatically reports any traffic law breach to authorities. 

     The above policy discussions are aligned with the six key questions stated by Anderson 

et al. (2014, p.6) and fall within the three major areas that are highlighted by Johnson (2017) 

for policymaking: 1) connected and autonomous technology; 2) the provision of suitable 

infrastructure; and 3) licensing of drivers. After pinpointing the areas that need further 

evidence for policymakers, the main question is who should bear the likely costs? Taxpayers, 

private sector, or both? There are on-going debates in academic and political forums about 

which parties should bear the costs of enabling infrastructures. Many ethical dimensions of 

CAVs also are open questions that need contemplation.  



Chapter 5 

131 
 

     One of the overarching decisions for policymakers is a conceptual choice with significant 

implications that will touch almost every aspect of CAVs. The choice is between assigning 

all driving tasks to the vehicle while a human driver is either not supposed to intervene at all 

or taking over control in certain circumstances, and keeping the human driver in charge with 

ADAS at his/her disposal to provide additional support (Johnson, 2017).  
 

5.4. Research limitations 

     Similar to other research projects, this study has a number of limitations. The first and 

main limitation here comes from the assumptions that we are making to be able to build the 

BBN model. The most fundamental assumption in BBN modelling is conditional 

independence which is seen as a crucial factor facilitating distributed computations (Pearl, 

1982). It is assumed that each variable is independent from its non-descendent parents in the 

graph given the state of the parents. This property sometimes cuts the number of parameters 

that are required to characterise the JPD of the random variables (Ben‐Gal, 2008). Depending 

on the research questions, availability of data and in order to avoid unnecessary complexity 

in the model it is inevitable for a researcher to make further assumptions which may limit 

the scope of research. Other major assumptions are discussed in 3.9 in detail. 

     Next limitation of this research is the scope of the ILR for identifying the influential 

variables (i.e. nodes). Due to the variety of terms used to refer to AVs, it is not technically 

possible to include all those terms in the search criteria. Therefore, a few keywords were 

used to search for papers in the databases: a) autonomous vehicles; b) automated vehicles; 

c) autonomous cars; d) automated cars; e) self-driving; and f) driverless. Exclusion of other 

names that are used to refer to self-driving vehicles (e.g., robotic cars, intelligent vehicles, 

smart vehicles, etc.) might have limited the scope of literature review. 

     Another factor that can be considered as a limitation is the number of databases accessed 

to conduct the literature review and collect qualitative data for identifying risk factors. 

Including more databases can possibly affect the replicability of the search. DelphiS database 

may not be a well-known to many, but it is a richer pool of papers comparing to Web of 

Science. Although searching “autonomous vehicle*” in Scopus generates slightly higher 

results comparing to DelphiS (the results checked on 24/02/2022: 72,890 for Scopus and 

67,276 for DelphiS), the accessibility of documents through DelphiS was more facilitated. 

This is perhaps because this database is internal to the University of Southampton. In 

identifying risk factors the top priority was set to be breadth of search and variety of 

publications over type and quality of publications. This was the main reason for opting 
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integrative literature review approach which in some papers is referred to as ‘scouping 

review’(e.g., Munn et al., 2018a; Munn et al., 2018b).  

     It has been discussed in this thesis that when epistemic uncertainty is present, a way to 

make reliable predictions on the performance of a complex system is eliciting experts’ 

judgments (please refer to section 3.8.3). Nonetheless, judgements of individuals, regardless 

of the level of expertise, is subject to some degrees of bias. Although the literature on 

minimising the bias and managing heuristics through applying methods and design 

techniques is rich (e.g., Renooij, 2001; O'Hagan et al., 2006; Tredger et al., 2016; Werner et 

al., 2017), it is plausible that different groups of experts may come up with contradictory 

opinions. Hence, biases can be another limitation for this project. Diversifying surveyed 

experts (e.g., Keeney and Von Winterfeldt, 1991; Verdolini et al., 2020) in terms of their 

domain expertise was an effective way to control the biases to some extent. The application 

of expert opinions in PRA is not free of challenge either. The reproducibility of the results 

and divergence of expert beliefs are two main problems in applying expert elicitation in PRA 

(Cooke, 1991, p.27). The large standard deviations for some of the elicited weights can be 

an indication of bias. 

     The number of participants (i.e., nine experts) in the survey was relatively low for 

rigorous quantitative analysis. Experts were predominantly from academic backgrounds, 

although several of them have had extensive industrial experience. Given the difficulties in 

finding and persuading domain experts to take part in the study, nine is a justifiable number 

since some other studies have used lower number of experts to inform their models. The 

external validity of expert judgements cannot be assessed yet because there is currently no 

sufficient conclusive evidence on the influence of identified risk factors in this study on 

collision risk. Nevertheless, higher number of experts could have strengthened the quality of 

elicitation and validity of results. 
  

5.5. Summary of discussions and conclusions 

     Especial care needs to be taken when constructing a BBN model to assess risks of 

complex systems to avoid misleading or outlying results. The major challenges in that way 

are identification and inclusion of risk variables, defining causal relationships, filling CPTs 

and capturing expert knowledge in a model. Studying autonomous systems requires a deep 

appreciation of autonomy as well as a non-mechanical classification system. Appropriate 

and timely policy interventions are essential to safeguard public interest and ensure a safe 

and viable transition towards CAVs. Among the research limitations noted in the previous 

section, limited number of surveyed experts can hinder the generalisability of findings.
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6. Conclusions and future research 

     This chapter presents a summary of this thesis in four sections. Section 6.1 highlights the 

motivations, research problems and employed research methods. The results, findings and 

policy recommendations are summarised in section 6.2. The main contributions are 

underscored in 6.3. Finally, the future research pathways are outlined in 6.4. 

6.1. Research problem, design and methods 

     Connected and autonomous vehicles and their enabling technologies are facing an 

unprecedented development especially in the last decade. The trial and road testing of these 

vehicles have started in several countries and car manufacturers as well as IT and technology 

corporations such as Apple have showcased their prototypes. Waymo, the Google brand for 

self-driving cars, seems to be leading in this transdisciplinary field and its AV taxi fleet is 

now operational in a few states in the US. The amount of investments and interest expressed 

by academic communities, industries, and local authorities indicate that we should consider 

autonomous driving as a reality. AV technology can offer enormous potentials to tackle 

many challenges in several areas such as transportation safety, environment, and inequality 

in transport. Realisation of the promised benefits, however, all depends on safe and reliable 

operation of the technology. 

     CAVs, akin to other complex and disruptive technologies, will have their own limitations 

and have to operate within technical and environmental constraints. The uncertainties over 

the performance and constraints of these vehicles are even more grave. Several reasons were 

mentioned for the intensity of the uncertainties. Complexity and novelty of the embedded 

technologies, integration of sheer number of hardware and software pieces, enormity of 

traffic situations that CAVs may encounter, socio-technical nature, insufficient real-world 

data, and absence of adequate well-established regulations for verifying/validating the 

reliability deepen the uncertainties over reliability of CAVs. When we take the human out 

of the loop, we risk losing reasoning ability in obscure scenarios. The reported fatal 
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accidents, collisions, and the disengagement history of AVs legitimise the functional safety 

concerns.  

     Although the results of testing and simulation scale down the uncertainties to some extent, 

modelling tools can aid further with uncertainty and risk analysis and shed light on obscure 

aspects of a safety problem. The usefulness of risk modelling becomes even more each the 

real-world data and testing are more limited. Developing risk models to measure (or at least 

classify) safety risks before deployment of AVs in large scales is one of the pathways to 

safety analysis and of paramount importance. Risk models can support decision making 

under uncertainty and facilitate scenario-based analysis. This study adopted a socio-technical 

perspective to evaluate safety of CAVs in various environmental and traffic conditions. To 

measure the risk, collision probability was selected as the risk index.  

     Ample published literature on safety implications and the criticality of collision 

avoidance systems in AVs give grounds for an extensive textual analysis to identify causes 

of collision (i.e., risk factors) in autonomous driving. 594 documents including journal 

article, conference papers, working papers, white papers, technical reports, policy 

documents, accident reports, patents, and news articles were reviewed, and after applying 

thematic analysis, 53 risk factors were discovered. The identified factors were used to 

construct a BBN model. The choice of BBN for modelling risk has multiple reasons. Firstly, 

it allows for PRA and is effective tool for informing decision making under deep 

uncertainties regarding the behaviour of a system, phenomenon, or external conditions. 

Secondly, it can be used for both diagnostic and prognostic reasoning. Thirdly, sensitivity 

analysis can be run using a BBN model to quantify the influence of variables on a target 

node. Fourthly, BBNs provide a platform for meta inference and synthesising qualitative and 

quantitative data. Finally, BBN is capable to handle large multivariate and multi-dependable 

models. 

     Hugin was used to construct the topology of the model. The CPTs were generated in 

Microsoft Excel and then transferred into Hugin. Later, GeNIe Modeler (another BBN tool) 

was utilised to demonstrate the strength of links between nodes and sensitivity analysis 

diagrams.  

     Besides the advantages, there are some challenges in building a BBN model. Populating 

CPTs, especially when there are more than a few non-binary nodes in the network, is a 

demanding and cumbersome task. A new technique was invented to overcome this difficulty. 

The CPTs are populated in a manner allowing all the JPDs (except lighting conditions and 

its children) to have uniform distributions before any of the nodes is instantiated. A 

probability of 100 percent was assigned to the best (most desirable) state of a child node 
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when all it parents were in their best states. Likewise, a probability of 100 percent was 

assigned to the worst (most undesirable) state of a child node when all its parents were in 

their worst states. An incremental transition of probabilities filled the blank cells in between, 

thereby creating a symmetric matrix to the centre of the tables. 

     A survey was designed to elicit expert opinions on the influence of each parent node on 

its child(ren). For that purpose, nine experts with expertise in at least one of the major 

domains (i.e., environmental, technical, traffic and human) in the context of CAVs and/or 

robotics took part in the survey. The average of the assigned percentages to each parent node 

was taken as the weight of that node and was incorporated into the model. GeNIe Modeler 

facilitated incorporation of weights by the Noisy-Adder feature. 
 

6.2. Findings and policy recommendations 

     The preliminary results of the integrative literature review revealed a new set of themes 

(i.e., risk factors or causes of collisions) that necessitated a second round of search in 

databases with the latter themes as keywords. At the end, 53 risk factors were identified and 

categorised into 4 major groups. The overarching theme of each paper besides the peripheral 

themes are summarised in a table (appendix A). The risk factors were allocated to the four 

major modules (blocks in the model) that constitute a socio-technical system. Since defining 

‘organisation’ and pinpointing ‘organisational factors’ in the context of autonomous driving 

is not straightforward and given that traffic conditions (ranked as the highest influential by 

the experts) exert direct effect on probability and severity of road collisions, organisational 

factors were replaced with traffic factors.  

     The literature review and identified factors provided a foundation for building the BBN 

model. Four overall themes (i.e., road condition, traffic condition, reaction time, and 

technical reliability) were selected to represent the aggregated risk and impacts of each block 

on collision risk for CAVs. Those overall themes acted as intermediate nodes in the model 

to avoid exponential growth in the number of CPTs. After running the model, the probability 

distributions for all the nodes (except the lighting condition’s children) were found to be 

uniform before any instantiations and insertion of expert opinions on the degree of influence 

for each parent node.  

     The results of the expert elicitation (i.e., the survey) suggested a considerable 

convergence of expert opinions in weighting some nodes (e.g., traffic control infrastructure, 

SD=0) and a wide divergence over the influence of other nodes (e.g., software reliability, 

SD=0.43). The main reason behind these variations is the limited number of experts took 

part in this study. The lower standard deviations for four RIs comparing to other nodes can 
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prove this. Another reason presumably was that the experts did not have a chance to 

exchange ideas and make a collective decision on the influence of each node on its children. 

Perhaps organising an expert panel discussion or running a focus group could have mitigated 

that problem to some extent. The average of the percentages assigned by the experts to each 

node were taken as the weight for that node. Using the noisy-adder (based on noisy-max) 

feature, the extracted weights were incorporated into the model.  

     Four extreme scenarios (1-4) were envisaged to demonstrate changes in collision risk 

distributions while the states of input variables shift from the least risky to the highest (figure 

4.8). Then, 29 input nodes were randomly instantiated (scenarios 5 and 6) to generate cases 

for comparative analysis. The fitted trends to the distributions vary substantially based on 

the changes in input variables. The risk distributions in the worst- and best-case scenarios (1 

and 4) were exponential while in moderate scenarios (2 and 3) resembled more like a linear 

trend. The random scenarios (5 and 6), however, had very unsimilar distributions. In scenario 

5, we witnessed a normal distribution skewed towards the Extreme end and High collision 

risk represented the peak.  

     Sensitivity analysis was conducted to measure the sensitivity of collision risk to every 53 

risk factors, in isolation. The results suggest that ‘traffic control infrastructure’, ‘weather 

conditions’, and ‘traffic composition’ are the most influential risk factors. Assigned weights 

by the experts and topology of the model are two main determinants of the influence that a 

node effects on the output (i.e., collision risk). The scenario and sensitivity analyses served 

as a basis for the policy implications to promote safe operation of CAVs.  

     The policy recommendations were extracted from the literature and focused on five 

overarching areas. Infrastructural upgrade and adaptations are among key requirements for 

introducing AVs on a vast scale. Traffic control and management has a significant role in 

traffic safety, particularly in mixed traffic scenarios. One of the main features of CAVs that 

is believed to contribute to collision avoidance is connectedness and the ability to send and 

receive real-time data. Exchanging real-time information of weather, traffic and road 

conditions will assist the planning unit of CAVs to safely plan and navigate the vehicle. 

Establishing secure and effective communication between vehicles (V2V) and connecting 

AVs to infrastructure (V2I) will need designing tailored communication platforms or 

expanding the existing infrastructures. While more connectivity helps to draw a clearer map 

for traffic controllers and traffic participants including CAVs, higher cyber threats will be 

the likely aftermath.  

     Environmental factors such as weather conditions are often beyond the control of policy 

makers. Consolidating technical competence of AVs to sense their surroundings more 
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accurately and react to hazards and risky situations timely is always an option for 

overcoming the challenges that poor weather conditions pose to AVs. Along with technical 

and technological enhancements, CAV-friendly design and planning of roads and highways 

will mitigate the collision risk. Improving the quality of lane markings, visibility of traffic 

signs (especially in absence of V2I), and lighting conditions will assist AVs in identifying 

objects, other road users, road boundaries and traffic signs.  

     Public education will increase awareness about interacting with and driving AVs. Since 

driver interventions might be still necessary to avoid a collision (particularly in SAE level 3 

and 4), licensing procedures and processes must include assessment of driving and 

interacting with CAVs. New interfaces, additional features and mixed traffic mandate a 

revision in training and licensing criteria for both CAV and non-CAV drivers. The topic of 

standardisation becomes the hard nut to break in this context. Disparities in interfaces and 

their functions will be a major challenge to establishing unified training and licensing 

schemes (at least at national level). 

     Similar to other safety-critical systems, regulatory requirements, certification and 

standardisation must govern the development and deployment of CAVs. Safety standards 

are compulsory in automotive sector to ensure functional safety. ISO 26262 shorts fall in 

verifying and validating all functional safety aspects of CAVs especially because exhaustive 

testing under all operational circumstances is impractical. Moreover, some functions such as 

cyber-security are difficult to test. Therefore, designing comprehensive safety standards that 

detail safety requirements at component, software, and system integration levels will be 

required to validate and verify a sufficient level of safety throughout a vehicle lifecycle. 
 

6.3. Contributions to literature and practice 

     The prime contribution of this research is the review of vast and diverse literature across 

multiple disciplines which led to identification of 53 collision risk factors in highly 

autonomous vehicles. The risk factors were categorised into four overarching groups. The 

aim of this project was to prioritise the breadth of literature review over depth. The 

identification of those risk factors can provide insight for designers, regulators, researchers 

and policy makers and trigger further research to test the relationship between those variables 

applying rigorous quantitative methods. The summary of reviewed literature (appendix A) 

can also assist researchers for finding relevant papers/documents in a specific context (e.g., 

H-M interfaces, traffic culture/style, road geometry/configuration/layout, etc.) in relation to 

functional safety of CAVs.    
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     Assessing the causal influences of the parent nodes in the BBN model on their children 

from the perspective of experts provides an indication of their ranks and importance in safety 

analysis. In addition to informing the BBN model in this research, the results of expert 

elicitation can provoke further research questions and test hypothesis about the strength of 

relationships between the identified risk factors. Expert knowledge can be relied on in the 

absence of real data, but a more detailed quantitative analysis can provide more reliable 

estimates.  

     The BBN model itself is a risk assessment tool that helps to classify RIs and collision 

risks based on a given set of spatio-temporal conditions of urban roads. Such a tool will 

support designers, insurers, policy makers, regulators and urban planners to rank roads 

according to the state of input variables. In case any evidence on the state of a node becomes 

available, uncertainty in other nodes can be reduced through inserting observations into the 

model and backward/forward propagation. Observations can be either deterministic or 

probability distributions. The model has the capability of running sensitivity analysis and 

enable comparison between collision risk levels in different scenarios. The results of 

scenario and sensitivity analyses formed the foundation for policy implications.  

     A new method was implemented to accelerate the process of populating CPTs. The values 

in each node’s table (except lighting conditions) are symmetrical to the centre of the table 

and a transition of risk is reflected in children’s JPDs by moving from the worst towards the 

best states. This method can save a lot of time and energy in constructing a BBN model. 

However, the pitfalls of this method (discussed in section 5.1) must be taken into account to 

avoid ending up with unequal weights for the parents of a child node.  

     The overarching policy recommendations were compiled to mitigate the risks from major 

sources (nodes with the highest sensitivity values). Sensitivity analysis provides an evidence 

base for prioritising policy measures in dealing with the safety concerns associated with the 

rollout of CAVs. Safety is currently one of the top priorities for the policy makers. 

Thereupon, the focal point of policy recommendations in this research was safety only. 

Nevertheless, coordination between safety and other policies that are designed to address 

other aspects (e.g., liability and environmental) is vitally important. Further research 

delineated in the next section can complement the contributions of this research. 
 

6.4. Future research 

     Two strands of research can be built on the results of this project. Firstly, linking the BBN 

model to big data (when become available) and developing learning algorithms to refine the 

model (Lam and Bacchus, 1994). Learning Bayesian Networks is a established approach in 
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constructing BBN by extracting the structure of the model from large data sets. The BBN in 

this research is a multiply-connected network that makes reasoning a difficult task. 

Refinement of the topology will therefore optimes the reasoning process. Some of the nodes 

may even become redundant as the selection process was based on the literature review and 

expert elicitation. When real data is accumulated, some of the variables may not prove to 

have a significant correlation with the RIs including collision risk. Likewise, the input for 

CPTs can be derived merely from data or in combination with prior expert knowledge 

(Rohmer, 2020). This will improve the robustness of CPTs and JPDs. 

     Secondly, with realisation of real-world data during and after testing phase of CAVs it 

will become possible to turn the current model into a Dynamic Bayesian Network (DBN) to 

estimate the probability of a collision by receiving real-time traffic dynamics data 

(Katrakazas, Quddus and Chen, 2019). Static BNs fail to capture dynamic nature. Traffic 

conditions are dynamic in nature and a DBN model will better represent temporal 

relationships. Indeed, DBN is an extension of Bayesian network. Three main steps need to 

be undertaken for converting a static BN to a DBN (Amin, Khan and Imtiaz, 2019): 1) 

reconfiguring the structure to accommodate process dynamics; 2) redesigning the states of 

nodes to capture temporal relationships between time slices; and 3) repeating the static BN 

with time if all the variables exert influence on the reasoning process and update the belief 

of time intervals. Another possible extension to BBN is influence diagram (ID). 

Incorporation of decision and utility nodes (in addition to the existing chance nodes) will 

evolve it to a decision-making tool which adds on decision components and their 

relationships (Sedki, Polet and Vanderhaegen, 2013; Landuyt et al., 2014). 
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Appendix A 

  

No. Main 
theme Other themes Summary Author(s) and 

source 

1 Situation 
awareness 

Autonomy level, reaction 
time, secondary task, 

driving style, longitudinal 
and lateral control, traffic 

density, HMI, trust, 
roadwork, obstacle, speed 

This study looked into the behaviour of 
drivers and drivers’ take-over after highly 
automated driving and the links into the 

situation awareness. 

Zeeb, Buchner and 
Schrauf 

Accident Analysis and 
Prevention, 2015 

2 Situation 
awareness 

Autonomy level, HMI, 
reaction time, roadwork, 
lateral and longitudinal 

controls, H-M Interfaces, 
speed, technical factors 

The aim of this research was to develop and 
validate an assessment framework for driver-

interaction concepts in semi-autonomous 
vehicles where the interaction between a 

human driver/supervisor and automation is 
still required. It also introduces an assessment 

framework to measure gained situation 
awareness in partially automated driving 

systems. 

Van den Beukel and van 
den Voort 

Applied Ergonomics, 2017 

3 Situation 
awareness 

Autonomy level, secondary 
task, response times, HMI, 

H-M Interface, driver 
experience, longitudinal and 
lateral control, trust, fatigue, 

cognitive workload, 
situation awareness, other 

road users, driving 
behaviour, trust 

A thematic analysis of video data was carried 
out to assess the effects of partially automated 
systems on drivers’ sustained monitoring task. 

The findings revealed that drivers are not 
being properly supported in adhering to their 

new monitoring tasks and instead show 
behaviour indicative of complacency (i.e., 
over-trust in the reliability of the system). 

These attributes may encourage drivers to take 
more risks whilst engaged in semi-

autonomous driving. 

Banks et al. 
Applied Ergonomics, 2018 

4 Situation 
awareness 

Autonomy level, other road 
users, complacency, path 

planning, driving behaviour, 
road infrastructure 

Human factors must be considered to ensure 
the safe and efficient operation of semi-

autonomous systems. This simulator study 
investigated the effects of automating vehicle 

steering and implement control and 
monitoring task automation on the situation 

awareness of drivers. The findings are in line 
with the hypothesis that a highly automated 

agricultural vehicle would reduce the 
operator's SA when compared to the semi-

automation scenarios. 

Bashiri and Mann 
Biosystems Engineering, 

2014 

5 Situation 
awareness 

Autonomy level, time to 
collision, overreliance, trust, 

road conditions, traffic 
situations, HMI, traffic 
intensity, speed, NDRT, 

perceived risk 

This paper examined the effects of vehicle 
automation and failures due to automation on 

driving performance and monitoring. The 
results suggest that driving performance 
degrades in higher automation levels. In 

addition, it is indicated that car drivers are 
worse at handling complete than partial 

deceleration failures. 

Strand et al. 
Transportation Research 

Part F, 2014 

6 Situation 
awareness 

Level of automation, 
workload, lateral and 
longitudinal motion, 

secondary task, other road 
users, visibility conditions, 
traffic conditions, traffic 

density, road infrastructure, 
reaction time, experience, 

speed, risk perception 

This study investigated the effects of adaptive 
cruise control (ACC) and highly automate 
driving (HAD) on drivers’ workload and 

situation awareness through a meta-analysis 
and narrative review of simulator and on-road 
studies. Drivers of a highly automated vehicle, 
and to a lesser extent, ACC drivers are likely 
to engage in secondary tasks. Both ACC and 

HAD can result in improved situation 
awareness compared to manual driving, if 

drivers are motivated or instructed to monitor 
the environment and detect objects. 

de Winter et al. 
Transportation Research 

Part F, 2014 

7 Situation 
awareness 

Autonomy level, perceived 
risk, HMI, Human-Machine 

Interface, reaction time, 
secondary task, roadworks, 
traffic density, number of 

lanes, 

This paper evaluated the possibility of using a 
real-time assessment system to monitor the 

drivers’ attention to the roadway in automated 
driving (AD). Another aim of this study was 

to investigate how quickly drivers were able to 
take over the control of vehicle after AD, 

when it was required, by analysing observable 
driving performance and eye tracking metrics. 

Merat et al. 
Transportation Research 

Part F, 2014 

8 Situation 
awareness 

Autonomy level, NDRT, 
reaction time, HMI, H-M 

Interface, drowsiness, traffic 
density, training 9and 

experience, traffic flow, 
workload, driver behaviour, 

This paper proposes a framework and surveys 
the literature on human factors (mental 

underload/overload and situation awareness) 
of transitions in automated (autonomous) 
driving. It also discusses two concepts: 

monitoring transition and control transition. 

Lu et al. 
Transportation Research 

Part F, 2016 
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9 Situation 
awareness 

Workload, secondary task, 
situation awareness, HMI, 

H-M Interface, reaction 
time, traffic flow, driving 

style, autonomy level, trust 
in automation, longitudinal 

and lateral control 

An empirical study was conducted to 
investigate the secondary task engagement and 

disengagement in the context of highly 
automated driving. The findings suggest that 
participants demonstrated a clear preference 

for task engagement during highly automated 
compared to manual driving. Furthermore, 

drivers avoided more demanding tasks prior to 
the situations which may trigger take-over 
request when they had the opportunity to 

anticipate them (predictive HMI). 

Wandtner, Schömig and 
Schmidt 

Transportation Research 
Part F, 2018 

10 Situation 
awareness 

NDRT, longitudinal and 
lateral acceleration, traffic 

laws, traffic density, time of 
day, day of week 

This study investigates the impact of 
peripheral visual information in alleviating 

motion sickness when engaging in non-driving 
tasks in fully automated driving. 

Karjanto et al. 
Transportation Research 

Part F, 2018 

11 Situation 
awareness 

Trust, HMI, road conditions, 
reaction time, secondary 
task, control, experience, 
perceived trustworthiness, 

drowsiness, other road 
users, traffic composition 

The issue of trust in AVs is pinpointed in this 
article. The main factors (including situational 
awareness) affecting collision risks in urban 
environments are discussed. The interactions 

between the technology and human driver that 
can impact the reactions times in responding 

to a hazard are assessed as well. 

Olaverri-Monreal 
Nature Electronics, 2020 

12 Situation 
awareness 

Secondary task, number of 
lanes, traffic conditions, 

traffic flow, reaction time, 
speed, weather conditions, 

time of day, visibility 

The aim of this paper was to evaluate the 
impact of a group of distracting activities on 
drivers’ performance. To this end, a driving 

simulator experiment was designed to collect 
data on several driver performance measures 

while engaged in different non-driving 
activities. 

Farah et al. 
Advances in 

Transportation Studies an 
international Journal, 2016 

13 Situation 
awareness 

Autonomy level, workload, 
control, algorithms, HMI, 

H-M Interfaces, speed, 
reaction time, trust, 

complacency 

This study assesses the effects of automation 
levels on human-system performance, 
situation awareness and workload in a 

dynamic control task. 

Endsley and Kaber 
Ergonomics, 1999 

14 Situation 
awareness 

Other road users, 
computational power, traffic 
behaviour, kinematic state 

This paper presents a novel approach to 
artificial situation awareness for an 

autonomous vehicle operating in complex 
dynamic environments populated by other 

agents. 

McAree, Aitken and Veres 
IFAC-PapersOnLine, 

2017 

15 Situation 
awareness 

HMI, secondary tasks, H-M 
Interfaces, weather 

conditions, sensors, self-
awareness, construction 

zones, pedestrians, traffic 
density, blind spots, control, 

training and experience, 
response time 

This study investigated the impacts of auditory 
alerts (i.e. speech alert) on situation awareness 

of drives in autonomous vehicles. It further 
highlights the need for a cooperative effort 

between humans and the automation 
technology whereby human drivers will still 
have to maintain situation awareness during 

automated driving. 

Nees et al. 
Human Factors and 

Ergonomics Society, 2016 

16 Situation 
awareness 

Software, sensors, radar, 
LiDAR, GPS, pedestrians, 

machine learning, AI 
maturity, hardware, 
computing power 

In order for a self-driving car to work at all, 
the vehicle’s software needs to be provided 

with situation awareness at all times. To 
continuously sense its 360-degree 

surroundings, it uses multiple sensors: colour-
aware visible light cameras, radar 

transceivers, LiDAR, GPS, etc. 

Cerf 
Communications of the 

ACM, 2018 

17 Situation 
awareness 

Autonomy level, software, 
HMI, traffic congestion, 

interface, trust, over-
reliance, pedestrians, traffic 
composition, hardware, road 
conditions, secondary task, 

AI, traffic conditions 

This paper suggests an oversight model 
(HASO) which is believed to facilitate human-

autonomy design for semi-autonomous 
vehicles thereby improving safety which is 

dependent on maintaining situation awareness. 

Endsley 
International 

Ergonomics Association, 
IEA 2018 

18 Situation 
awareness 

Autonomy level, HMI, road 
conditions, traffic 

conditions, trust, secondary 
tasks, over-reliance, speed, 

vehicle control, path 
planning, 

The research was designed to examine and 
reveal potential issues associated with the use 

of semi-autonomous systems, exploring 
impacts on willingness to engage in secondary 
non-driving related tasks, and driver allocation 

of visual attention while operating under 
LAADS. 

Llaneras, Salinger and 
Green 

Driving Assessment 
Conference, 2013 

19 Situation 
awareness 

Weather conditions, control, 
HMI, cybersecurity 

This paper investigates impacts of AVs form a 
Traffic Engineering Perspective and enlighten 

trends and challenges surrounding this 
technology and related infrastructure 

developments. 

Tettamanti, Varga and 
Szalay 

Periodica Polytechnica 
Transportation 

Engineering, 2016 
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20 Situation 
awareness 

Sensors, LiDAR, cameras, 
algorithms, V2V, other road 

users, road infrastructure, 
work zones, road geometry 

Situational awareness is crucial in AVs. This 
research went beyond the traditional functions 

of situation awareness in robotic an 
autonomous driving, such as traffic signal 
recognition, lane departure warning, lane 
detection, etc. and suggested a method to 
model complexities of road surfaces and 

dynamic environments. This further 
contributed to stretching of semantic 

understanding and situation awareness in AVs. 

Mathibela 
PhD thesis, 2014 

21 Situation 
awareness 

Reaction time, hazard 
perception, trust, H-M 

Interfaces, road conditions, 
traffic conditions, other road 

users, speed, visibility, 
obstacles, secondary task, 

system failure, traffic 
density, demographics, 

construction zone, 
autonomy level 

The present study suggests that situation(al) 
awareness for latent hazards is not 

immediately present while drivers have to 
resume manual driving after a taking over the 

control of vehicle and when they were not 
previously engaged in driving activities since 

the vehicle was operating in autonomous 
mode. A simulator was deployed to determine 
whether drivers could spot latent hazards in a 

traffic scenario immediately after manual 
driving had become obligatory (i.e., after a 

take-over request). The findings indicate that 
drivers need time to construct a mental 

representation and activate picture that allow 
them to recognise latent hazards. 

Vlakveld et al. 
Transportation Research 

Part F, 2018 

22 Situation 
awareness 

Trust, traffic rules, 
communication, speed, self-
awareness, vehicle control, 

sensors, H-M Interface, 
perception limitations, V2V, 

V2X, weather conditions, 
task planning 

The objective of the paper is to investigate the 
problem of safety assurance for autonomous 

systems where external events and interaction 
with the environment and other systems have 
essential influence on safety. This also links 
the concept of situation awareness with trust 

and risk perception in the context of 
autonomous robots. 

Wardziński 
25th International 

Conference SAFECOMP, 
2006 

23 Weather 
conditions 

Sensors, perception 
accuracy, localisation, V2V, 
V2I, path planning, vehicle 

control, road conditions, 
fatigue, algorithms, vehicle 
state, road infrastructure, 
other road users, obstacle, 

road layout, cameras, 
lighting conditions, sensor 
fusion, software, LiDAR, 
Radar, speed limit, H-M 

interfaces, HMI, drowsiness, 
traffic conditions, traffic 

rules 

This article provides up-to-date information 
about the advantages, disadvantages, limits, 

and ideal applications of specific AV sensors. 
It also highlights crucial areas which 

developers needed to focus on incl. poor 
weather conditions and complex urban 

scenarios. Perception accuracy is one the main 
themes in this study. 

Van Brummelen et al 
Transportation Research 

C, 2018 

24 Weather 
conditions 

Visibility, reaction time, 
traffic condition, traffic 

control, visibility, speed, 
traffic flow, algorithms, 

road conditions, road 
geometry, density, interface, 

traffic control 

The primary objective of this study was to 
develop a control strategy of variable speed 

limits (VSL) to reduce the risks of secondary 
collisions during inclement weathers. The 
VSL strategy is proposed to dynamically 

adjust the speed limits according to the current 
traffic and weather conditions. 

Li et al. 
Accident Analysis and 

Prevention, 2014 

25 Weather 
conditions 

Traffic conditions, traffic 
density/volume, speed, 

visibility, road type, number 
of lanes, road conditions, 
temperature, geometrical 
characteristics, sensors,  

This paper investigated the impact of weather 
and traffic conditions on the road safety. 

Various variables/metrics were discussed and 
analysed. 

Theofilatos and Yannis 
Accident Analysis and 

Prevention, 2014 

26 Weather 
conditions 

Lighting conditions, sensors, 
software, LiDAR, radar, 
cameras, road conditions, 
situation awareness, AI, 

SLAM, algorithms, traffic 
conditions, obstacles, road 

infrastructure, GPS, AI 

The contribution of multimedia technologies 
to autonomous driving is recognised in this 

article (EIC message). The multimedia 
technology is capable to overcome 

conventional computer vision limitations 
namely under adverse weather and lighting 

circumstances. 

Chen 
IEEE Computer Society, 

2019 

27 Weather 
conditions 

Regulations, cybersecurity, 
control, other drivers’ 
behaviour, planning, 
perception accuracy, 

software and hardware 
reliability,  

This study proposes innovative methods to 
calculate the number of miles of driving that 
would be needed to provide clear statistical 
evidence of autonomous vehicle safety. It 

concludes that AV’s regulations are adaptive 
and evolutionary. 

Kalra and Paddock 
Transportation Research 

Part A, 2016 

28 Weather 
conditions 

Visibility, reaction time, 
radar, sensors, road 
conditions, V2V, 

communication, road 
geometry, speed, 

algorithms, automated 
perception, car-following 

behaviour, control 

This article evaluated the impacts of different 
longitudinal driver assistance systems (i.e. 

FCW, AEB, ACC, CACC) on reducing multi-
vehicle rear-end collisions during small-scale 

adverse weather. 

Li et al. 
Accident Analysis and 

Prevention, 2017 
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29 Weather 
conditions 

Speed, traffic conditions, 
road conditions, lighting 
conditions, traffic flow, 

driver response 

This paper surveys empirical literature on the 
effects of climate change and weather 

conditions on the transport sector. It considers 
factors such as temperature and precipitation. 

Koetse and Rietveld 
Transportation Research 

Part D, 2009 

30 Weather 
conditions 

Visibility, lighting 
conditions, cameras, vehicle 
navigation, hardware, road 

geometry, algorithms, 
sensors 

Light scattering due to bad weather conditions 
affects outdoor images and results in poor 

contrast and faded colours. These effects can 
be critical in applications such as video 

surveillance, driving assistance or perception 
accuracy autonomous driving. This study 
proposes a novel algorithm to restore the 

contrast of images under inclement weather 
conditions (e.g., fog, mist or haze). The 

proposed method blends several techniques to 
provide an algorithm fast enough to detect 

colour and process grey images. 

Andrade 
IEEE Latin America 
Transactions, 2017 

31 Weather 
conditions 

V2V, V2I, V2X, 
communication, work zone, 

sensors, roadside 
infrastructure, 

communication 
infrastructure, situational 

awareness, visibility, 
cameras, radar, sensor 
fusion, vehicle control, 
obstacles, perception, 

algorithms, AI  

Handling adverse weather conditions is a 
challenge for AVs. On average, inclement 
weather causes 5,300 fatalities alone in the 
US. Although AVs can mitigate this figure, 

co-operation between the meteorological and 
transportation sector needs to be established 

and aimed at generating solutions for this 
problem. For example, advancing sensory 
systems and updating AVs’/drivers with 

accurate and timely weather 
conditions/forecasts could address this 

challenge to some extent. 

Walker et al. 
American Meteorological 

Society, 2020 

32 Weather 
conditions 

Traffic conditions, road 
conditions, traffic volume, 

road capacity, road 
infrastructure, visibility, 

speed 

This article examines variations in road traffic 
volume due to adverse weather in an arctic 

region as well as vulnerability of 
transportation systems to adverse weather 

affecting efficiency and reliability. 

Bardal 
Journal of Transport 

Geography, 2017 

33 Weather 
conditions 

Sensors, LiDAR, radar, 
navigation, algorithms, 

vision, perception 
capabilities, speed, 

localisation, path planning, 
sonar, obstacles 

The performance of different types of sensors 
(i.e. LiDAR, vision, sonar and UWB radar) 
under adverse weather is surveyed in this 
paper. These are prevalent sensors used in 

autonomous systems/robots. 

Yamauchi 
IEEE International 

Conference on Robotics 
and Automation, 2010 

34 Weather 
conditions 

Visibility, sensors, software, 
cameras, algorithms, road 

geometry, image processing, 
lane markings 

This article identifies adverse weather 
conditions as a degrading factor for the 

performance of advanced driver assistance 
systems (ADAS). To tackle this problem, it 
presents two novel approaches that aim to 

detect unfocused raindrops on a car 
windscreen using only images from an in-

vehicle camera. 

Cord and Gimonet 
IEEE Robotics & 

Automation Magazine, 
2014 

35 Weather 
conditions 

Software, sensors, LiDAR, 
road conditions, localisation, 

road infrastructure, 
algorithms, GPS, obstacles, 

system integration 

This paper develops on a fast-multiresolution 
scan matcher for vehicle localization in urban 

environments for self-driving vehicles. 3D 
light detection and LiDAR can often fail when 

facing adverse weather conditions. Then a 
novel scan matching algorithm that leverages 

Gaussian mixture maps to exploit the structure 
in the environment. This is important for 
detecting lane markings, traffic signs, etc. 

Wolcott and Eustice 
IEEE International 

Conference on Robotics 
and Automation, 2015 

36 Weather 
conditions 

Localisation, mapping, 
software, GPS, 

communication, road 
geometry, speed, lateral and 

longitudinal localisation, 
algorithms, trajectory/path 

planning, traffic conditions, 
other road users, perception 
accuracy, information fusion 

This paper proposes a survey of the 
Simultaneous Localization and Mapping 

(SLAM) field when considering the recent 
evolution of AD. Building maps in various 

conditions (e.g., weather) is the focus of this 
study. It concludes that the safety of 

localization algorithms is critical factor in 
safety analysis. Multiple sources of data 

should be envisaged and strategies to safely 
switch among them must be devised. 

Bresson et al. 
IEEE Transactions on 

Intelligent Vehicles, 2017 

37 Weather 
conditions 

Sensors, radar, visibility, 
road conditions, software, 
road geometry, algorithms, 
sensors, LiDAR, cameras, 

sensor fusion, road 
infrastructure, road 

structure, speed, CAN 

This study investigated radar-based 
technologies that collects information about 
road curves under undesired conditions (i.e. 

adverse weather) in which optical sensors can 
be impaired or their performance is degraded. 

This paper asserts that the road curvature 
measurement results would be more realistic 

and reliable if the corresponding road 
infrastructure, car velocity reference signal, 

and intelligent pre-processing as well as 
postprocessing algorithms are available. 

Lee et al. 
IEEE Sensors Journal, 

2018 
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38 Weather 
conditions 

HMI, TOT, traffic rules, 
visibility, reaction time, age, 

road type, time of day 

This study investigates the effect of age and 
weather on takeover control performance 
among drivers from Highly Automated 

Vehicles (HAV). 

Li et al. 
IET Intelligent Transport 

Systems, 2018 

39 Weather 
conditions 

Traffic conditions, traffic 
flow, speed, road conditions, 

time of day, day of week, 
roadway type, visibility, 

control 

This paper conducted literature review and 
considered the recent research (carried out by 
the Center for Transportation Research and 

Education) on the impacts of weather 
conditions on traffic demand, traffic safety, 

and traffic flow relationships. 

Maze, Agarwal and 
Burchett 

Journal of the 
Transportation Research 

Board, 2006 

40 Weather 
conditions 

Work zone, reaction time, 
traffic conditions, speed, 
driver distraction, driving 

behaviour, roadway 
conditions, traffic 

congestion, sensors, V2V, 
V2I, traffic flow, 

environmental 
characteristics, traffic 

management infrastructure, 
time of day, other road 

users, algorithms, visibility 
conditions, situation 

awareness, human factors, 
road geometry, kinematic 

state, H-M Interface    

Three simulation studies were conducted to 
evaluate the safety benefits of driver speed 

selection. Findings of these simulations 
provide early insights into the effectiveness of 

connected vehicles Traveler Information 
Messages (TIMs), which can facilitate 

developing more efficient transportation 
management strategies under inclement 

weather. 

Yang et al. 
Accident Analysis and 

Prevention, 2020 

41 Weather 
conditions 

Visibility, software, 
cameras, algorithms, 
sensors, pedestrians, 

obstacles, speed 

This paper proposes an extended algorithm for 
camera-based ADAS which better handles 
road images and enhances visibility under 

heterogeneous fog. 

Tarel et al. 
IEEE Intelligent Vehicles 

Symposium, 2010 

42 Weather 
conditions 

Driver behaviour, speed, 
road conditions 

This study addressed the effects of adverse 
weather and traffic weather forecasts on driver 
behaviour in Finland. The results suggest that 

the on-road driving behaviour is 
predominantly affected by the prevailing 

observable conditions. 

Kilpela¨inen and Summala 
Transportation Research, 

2007 

43 Weather 
conditions 

Software, road conditions, 
sensors, visibility, cameras, 

hardware, obstacles 

In this paper, a solution is proposed thanks to 
a contrast restoration approach to tackle the 

impact of adverse weather on Free space 
detection is a primary task in autonomous 

navigation. 

Hautière et al. 
Machine Vision and 
Applications, 2014 

44 Weather 
conditions 

Visibility, software, AI, 
lighting conditions, road 

infrastructure, time of day, 
traffic rules 

This news article discusses the struggles 
autonomous cars encounter in spotting traffic 

signs in rain and surveys a computer 
programme (machine-learning algorithm) to 

overcome this obstacle. 

Brewster 
News article on 

sciencemag.org, 2017 

45 Weather 
conditions 

Sensors, software, GPS, 
visibility, road conditions, 

LiDAR, time of day, 
lighting conditions, sensor 

fusion, algorithms, 
obstacles, path planning, 

road infrastructure, speed, 
V2X, hardware, road 
geometry, perception 

accuracy, CAN 

In this paper, it is suggested to equip 
autonomous cars with sensor fusion 

algorithms able to operate in various weather 
conditions (e.g., rain). The proposed algorithm 

was used in testing the self-driving car 
EureCar (KAIST) to assess its applicability for 
real-time use.  The vehicle accomplished self-

driving task by using GPS, cameras, and 
LiDARs in addition to vehicle information. 

Path information improved the lane estimation 
performance. 

Lee et al. 
International Journal of 

Automotive Technology, 
2018 

46 Weather 
conditions 

Speed, road conditions, 
driver behaviour, traffic 

volume, lighting conditions, 
time of day, speed, 

visibility, 

This paper assessed trends in motor vehicle 
fatalities associated with adverse weather and 
presents spatial variation in fatality rates by 

state in the US. 

Saha et al. 
Environmental Health, 

2016 

47 Weather 
conditions 

Autonomy level, visibility, 
software, traffic conditions, 
lighting conditions, sensors, 
cameras, algorithms, radar, 

sensor fusion, road 
configuration, traffic 

density, road condition, 
perception accuracy 

This article proposes a using a fuzzy system 
and line segment algorithms to overcome 

various illumination problems which can be 
caused by internal and external factors such as 

road quality, occlusion, weather conditions, 
and illumination. 

Hoang et al. 
Sensors, 2017 

48 Weather 
conditions 

Infrastructure, time of day, 
visibility, sensors, software, 

other road users, 
cybersecurity, LiDAR, 
obstacles, time of day, 
communication, road 

configuration, 
communication 
infrastructure 

The authors investigated the changes and 
uncertainties about timing, scale, and nature of 
AVs which can present substantial challenges 

for the city planners, traffic engineers, and 
other public officials. This paper suggests 

focusing efforts around policy making when it 
comes to AVs. 

Guerra and Morris 
Planning Theory & 

Practice, 2018 
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49 Weather 
conditions 

Sensor, autonomy level, 
situation awareness, self-

awareness, velocity, 
distance from other vehicles, 

control, actuators, V2I, 
drivers’ state, traffic 

conditions, road 
infrastructure, traffic 

regulations, algorithms, 
software architecture, 

obstacles, kinematic state, 
communication, lighting 

conditions, road 
configuration, road type, 

time of day, HMI, 
drowsiness, localisation 

This study proposes an ontology-based model 
to determine the automation level of an 

automated vehicle for co-driving. It discusses 
main challenges in achieving fully automation 

in all situations (adverse weather or traffic 
conditions, etc.). several factors including 

human, environmental and traffic variables are 
discussed and evaluated in terms of their 
influence on the performance of AVs in 

different automation levels. 

Pollard, Morignot and 
Nashashibi 

16th International 
Conference on 

Information Fusion, 2013 

50 Weather 
conditions 

Fatigue, velocity, traffic 
density, VANET, road 

infrastructure, time of day, 
day of week, speed, lighting 
conditions, road conditions, 
road type, communication 

channels, sensors and 
cameras, pedestrians, traffic 
control, traffic composition 

To ensure the safety of road commuters in a 
mixed traffic environment, it is crucial to 
advance the performance of ADAS.  This 

paper proposes an accident prediction system 
for Vehicular ad hoc networks (VANETs) in 

urban environments, in which the crash risk is 
seen as a latent variable that can be observed 

using multi-observation such as velocity, 
weather condition, risk location, nearby 

vehicles density and driver fatigue. 

Aung et al. 
Information, 2018 

51 Weather 
conditions 

LiDAR, sensor, control, 
speed, software, V2X, data 

fusion, planning layer, 
hardware, radar, road-side 

units, road conditions, 
environment perception, 

algorithms, traffic density 

This article concentrated on developing a 
baseline for novel LIDAR which can be 

deployed in future autonomous cars. Such 
detector requires perception not only in clear 

weather, but also under adverse weather 
conditions such as fog, rain and snow. 

Development of automotive laser scanners is 
bound to the following requirements: 

maximise sensor performance, assess the 
performance level and keep the scanner 

component costs reasonable (i.e., less than 
1000 €) even if more expensive optical and 

electronic components are still required. 

Kutila et al. 
IEEE 19th International 

Conference on Intelligent 
Transportation Systems, 

2016 

52 Weather 
conditions 

Sensors, pedestrians, 
malicious activity by other 
road users, traffic control, 

pedestrians, technical 
failures, traffic composition, 
perception, traffic density, 
HMI, speed, traffic rules, 

visibility, roadwork, type of 
road, time to collision, 

traffic participants 
experience, actuator control, 

longitudinal and lateral 
safety distances, autonomy 

level 

This article provides a definition for safe state 
in the automated (autonomous) driving 

context. Several events are identified which 
can influence the risk and the capabilities of 

the vehicle guidance system. Change in 
environmental conditions (e.g. rain and/or fog) 

are among these events. 

Reschka and Maurer 
IT: Information 

Technology, 2015 

53 Weather 
conditions 

Sensors, radar, GPS, 
cameras, sonar, pedestrians, 
traffic infrastructure, time of 

day, visibility, perception 
accuracy, obstacles, 

algorithms, 

A systematic literature review was conducted 
to characterise and evaluate the effect of 

adverse weather conditions on different types 
of sensors such as radar, visual cameras and 

LiDAR which typically compose the 
perception hardware in AVs. The results 

suggest that adverse weather can reduce the 
detection range of radars up to 45%. 

Zang et al. 
IEEE Vehicular 

Technology Magazine, 
2019 

54 Weather 
conditions 

Lighting conditions, 
LiDAR, cameras, sensors, 
radar, traffic conditions, 
control, static/dynamic 

obstacles, visibility, road 
type, road structure, road 

conditions, other road users, 
traffic rules, traffic density, 
speed, V2X, surrounding 

perception, algorithms 

The ability to assess various traffic 
conditions/scenarios and navigate safely is a 

serious challenge for AVs. Another important 
challenge is the development of a robust 
recognition system that can account for 

adverse weather conditions. Sun glare, rain, 
fog, and snow are the weather conditions that 

can occur in the driving environment and 
affect the performance of AVs. This paper 

summarised research focused on AD 
technologies and discussed challenges to 

recognition of adverse weather by vehicle and 
other situations that increase the risk, thus 

complicating the introduction of automated 
vehicles to the market. 

Yoneda et al. 
IATSS Research, 2019 
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55 Weather 
conditions 

Software, road conditions, 
traffic conditions, traffic 
compositions, road type, 
vehicle controller, speed, 

reaction time, driving style, 
traffic density, traffic 

infrastructure, algorithms, 
kinematic state 

This paper demonstrates the applicability of a 
reconfigurable vehicle controller agent for 

AVs that adapts the parameters of a used car-
following model at runtime, so as to maintain 
a high degree of traffic quality (efficiency and 

safety) under different weather conditions. 
The results suggest that as the intensity of the 

rain builds up, vehicle acceleration was 
reduced up to 25.96% and time headway rose 

up to 78.95% under heavy rain, which are very 
close to the expected variations for human 

drivers with decrements in acceleration up to 
20.86% and increments in time headway up to 

77.50%. 

Horcas et al. 
Journal of Software: 

Evolution and Process, 
2017 

56 Urban design 
traffic conditions, traffic 
culture, software, road 

conditions, 

This news article considers different obstacles, 
challenges and impacts in respect to test, 

launch and prevalent use of self-driving cars 
in developing cities. 

Waddell 
www.wired.com, 2017 

57 Urban design Sensors, software, traffic 
conditions, traffic culture 

In this paper, authors propose a real time 
genetic algorithm with Bezier curves for 

trajectory planning. The main contribution is 
the integration of vehicle following and 

overtaking behaviour for general traffic as 
heuristics for the coordination between 
vehicles in the absence of speed lanes. 

Kala and Warwick 
Applied Soft Computing, 

2014 

58 Urban design 

Communication, sensors, 
software, traffic 

conditions/culture, trust, 
inter-vehicle interactions, 

traffic rules 

This paper briefly summarises the approaches 
that different teams used in the DUC, with the 
goal of describing some of the challenges that 

the teams faced in driving in urban 
environments. 

Campbell et al. 
Philosophical Transactions 

of the Royal Society A, 
2010 

59 Urban design 
Sensors, traffic conditions, 

road conditions, 
communication 

This article examines how large metropolitan 
planning organizations (MPOs) are preparing 
for autonomous vehicles. Uncertainties about 
the new technology have kept mention of self-

driving cars out of nearly all long-range 
transportation plans. 

Guerra 
Journal of Planning 

Education and Research, 
2016 

60 Urban design Traffic conditions/rules, 
speed 

This paper studies “Caroline”, an autonomous 
car which participated in Urban Challenge 

competition in 2007 and later was adopted to 
master the challenge of realising autonomous 

driving in the domain of Braunschweig’s inner 
ring road. 

Wille, Saust and Maurer 
IEEE Intelligent Vehicles 

Symposium, 2010 

61 Urban design Software 

This paper presents an autonomous driving 
test held in Parma on urban roads and 

freeways open to regular traffic. It also 
reviews other Intelligent Vehicles Tests 

including their scenarios, sensors used in the 
vehicle and adopted approaches. 

Broggi et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2015 

62 Urban design Sensors, communication, 
autonomy level 

This study surveys the mutual impacts of AVs 
and different aspects of urban design, urban 

infrastructure and vehicle form. 

Durate and Ratti 
Journal of Urban 

Technology, 2018 

63 Urban design Collision avoidance, car 
dynamics, software 

The author considers an extension of Multi-
lane Spatial Logic (MLSL) for autonomous 

cars to deal with urban traffic scenarios, 
thereby focusing on crossing manoeuvres at 

intersections. 

Schwammberger 
Theoretical Computer 

Science, 2018 

64 Urban design Traffic conditions/culture, 
integration 

This paper reflects on how the relationship 
between traffic, people, and places might be 

otherwise. It tries to define the relationship of 
traffic engineering and urban design which 
might offer possibilities for reconciling the 

competing and conflicting demands for safe, 
efficient movement with the quality and 

legibility of the built environment. 

Hamilton-Baillie 
Urban Technology, 2004 

65 Urban design Community design, Traffic 
conditions 

This study investigates the relationship 
between community design/urban planning 

and traffic safety. 

Dumbaugh and Rae 
JAPA, 2009 

66 Urban design Traffic conditions/culture, 
speed, road types 

Starting from Alker Tripp's seminal ideas 
about city design, street morphology, and 

accident risk, this article summarises results 
from an increasingly sophisticated line of 

enquiry at the boundaries between transport 
geography, network modelling, urban 

geography, and planning. 

Sarkar, Webster and 
Kumari 

International Journal of 
Sustainable 

Transportation, 2018 
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67 Urban design Traffic rules/culture, speed, 
software 

This paper addresses the problem of motion 
planning of an autonomous vehicle amidst 

other vehicles on a straight road is considered. 
Challenges include assessing a possible 

overtaking opportunity, cooperating with other 
vehicles, partial driving on the “wrong” side 
of the road and safely going to and returning 

from the “wrong” side. 

Kala and Warwick 
Electronics, 2015 

68 Urban design 
Software, sensor, traffic 

conditions/culture, speed, 
communication 

The paper describes the current status of and 
main trends in automated vehicles, a 

preliminary vision of the future city with 
mobility supported mainly by automated 

vehicles, and freight distribution. 

Alessandrini et al. 
Transportation Research 

Procedia, 2015 

69 Urban design Speed, traffic conditions, 

Sprawl has been studied in relation to many 
topics from residential energy use to social 

capital. This work studies direct and indirect 
relationship between sprawl and fatal/non-

fatal crash rates 

Ewing, Hamidi and Grace 
Urban Studies, 2016 

70 Urban design Speed, traffic conditions, 
pedestrians, sprawl 

This paper considers the rise of traffic 
accidents in the creation of the modern city. 
The notion of accidents is deconstructed. It 
also reviews a range of recent papers that 

explore the causal connections between urban 
design and traffic accidents. 

Short & Pinet-Peralta 
Mobilities, 2010 

71 Urban design Visibility, collision 
avoidance, visibility 

This paper deals with accidents between 
reversing vehicles and pedestrians occurring 
on public roads and other places open to the 

public in France. It also analyses the accident 
cases to contribute to reflections on possible 
preventive measures, notably in the field of 

urban planning and design. 

Brenac and Fournier 
The Open Transportation 

Journal, 2018 

72 Urban design 
Infrastructure, traffic 

conditions, communication, 
software 

This work describes two phases of a project 
designed to adapt an existing commercial 

traffic simulation package and use the 
simulation model to develop and demonstrate 

the operation of a new automatic incident 
detection algorithm based on these messages. 

Waterson, Cherrett and 
McDonald 

Journal of the Operational 
Research Society, 2005 

73 Urban design Infrastructure 

This article indicates in which ways 
Autonomous Vehicles can be disruptive and 

further highlights the major barriers to 
adopting AVs in urban area. 

Cox 
D/SRUPTION 

(disruptionhub.com), 2017 

74 Urban design 
Motion planning, algorithm, 
traffic conditions, speed and 

road type 

The purpose of this paper is to present the 
numerous extensions made to the standard 

RRT 
algorithm that enable the on-line use of RRT 
on robotic vehicles with complex, unstable 

dynamics and significant drift, while 
preserving safety in the face of uncertainty 

and limited sensing. 

Kuwata et al. 
IEEE/RSJ International 

Conference on Intelligent 
Robots and Systems 

Intelligent Robots and 
Systems, 2008 

75 Urban design 
Speed, time of day, car type, 

weather conditions, road 
design, traffic conditions 

To analyse various factors influencing the 
accident severity of urban river-crossing 

tunnels, twelve influence factors were chosen 
according to the three traffic elements of 

vehicle, road, and environment. These factors 
were based on the historical data of 14 urban 

river-crossing tunnels in Shanghai. 

He et al. 
Journal of Engineering 

Science and Technology 
Review, 2018 

76 Autonomy level Trust, UA, UX, HMI 
interactions, control 

This study surveys the relationship between 
the degree of autonomy in cars, User 

Acceptance (UA) and User Experience (UX). 

R¨odel et al. 
6th International 
Conference on 

Automotive User 
Interfaces and Interactive 
Vehicular Applications, 

2014 

77 Autonomy level Sensors, software, urban 
design, control 

Section 6 of this paper describes a low-level 
reactive subsystem empowered to respond to 

exceptions often due to failures in higher level 
autonomy layers. 

Kelly et al. 
The International Journal 

of Robotics Research, 
2006 

78 Autonomy level Software, perception 

This paper reviews a framework for 
Autonomy Levels for Unmanned Systems 
(ALFUS) which has been developed by a 

group at NIST to address the autonomy issues. 

Huang et al. 
Proceedings of the 

AUVSI’s Unmanned 
Systems North America, 

2005 

79 Autonomy level Control, software, H-M 
interactions 

This research explores the notion of adjustable 
autonomy. It also discusses a porotype system 
which allows human users to interface with a 
remote robot at various levels of autonomy. 

Goodrich et al. 
American Association for 

Artificial Intelligence, 
2001 
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80 Autonomy level Control, communication, 
liability, software 

This paper addresses some of the early policy 
concerns about “connected cars” and 

driverless vehicles and challenges the concept 
of full autonomy in such vehicles. It also 

categorises car automation into 5 levels and 
addresses risk factors. 

Thierer and Hagemann 
Mercatus working paper, 

2014 

81 Work zones 

Road geometry, road 
conditions, weather 

conditions, traffic rule 
enforcement, speed, road 

infrastructure, control, 
sensors, algorithms, weather 
conditions, visual cameras 

To be deployed in real-world driving 
environments, AVs must be able to detect, 

recognise and handle exceptional road 
conditions, such as highway work zones as 
such peculiar events can alter previously 

known traffic rules and road geometry. These 
events can be challenging for AVs and pose 
safety risks. For example, the line of sight 

between a sign and a camera perceptually and 
computationally changes the colour of a work 
zone sign from that of the sign template. This 

can make it difficult for the vehicle to 
recognise the signs. 

Seo et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2015 

82 Work zones 

Road geometries, traffic 
conditions, speed, reaction 

time, road conditions, traffic 
flow, longitudinal and 

lateral 

Transition taper length has crucial effect on 
work zone safety since too short a transition 

taper length can result in higher collision risks 
and if the transition taper length is too long 
can lead to longer traffic delays. This paper 
evaluated the effect of taper length on the 
longitudinal lane changing distance and 
emergency stopping distance which are 
determinants of collision in work zones. 

Various traffic conditions and road geometries 
are taken into account for that purpose. 

Weng 
Transportation Planning 
and Technology, 2011 

83 Work zones 

V2V, V2I, communication 
infrastructure, GPS, traffic 

network, algorithms, 
velocity, weather conditions, 
traffic conditions, roadside 
unites, path planning, time 

of day, day of week, driving 
behaviour, traffic control, 
traffic volume, situation 

awareness, obstacles 

The primary objective of this research was to 
evaluate the potential safety benefits of 

deploying connected vehicles on a traffic 
network in the presence of a work zone. A 

relationship was observed between the safety 
benefits of rerouting around work zones and 

the detriments of longer average trip distances, 
which increased safety risks. 

Genders and Razavi 
Journal of Computing in 
Civil Engineering, 2015 

84 Work zones 

Velocity, traffic flow, lane 
changing, longitudinal and 
lateral distance, other road 
users, traffic conditions, 
traffic congestion, traffic 

capacity, reaction time, time 
to collision, trajectory 

planning 

Presence of work zones can affect the 
freeways’ traffic metrics in a negative way 

(e.g., traffic delays, emission and speed 
variations). This research proposed a 

cooperative cellular automata model (CCAM) 
to be incorporated into CAVs as a 

collaborative component. 

Zou and Qu 
Journal of Intelligent and 
Connected Vehicles, 2018 

85 Work zones 

Motion control, lane-
changing control, traffic 

flow, traffic composition, 
speed limits, traffic 

conditions, V2I, algorithms, 
traffic density, traffic 
control infrastructure, 

number of lanes, weather 
conditions, road section, 
road conditions, motion 

planning 

This paper aimed to simulate and assess the 
traffic performance around work zone under 

the CAV-based coordinated control of 
variable speed limits (VSL) and lane-changing 

(LC) strategies in mixed traffic flow. The 
simulation consisted of: a) a multi-layer 
control structure is applied in work zone 
traffic control; b) the work zone traffic 

simulation model is constructed based on 
cellular automata; and c) the six CAVs-based 
control strategies composed of NC, VSL, LC 
and their coordinated control strategies are 

simulated. 

Wu et al. 
International Journal of 

Modern Physics B, 2020 

86 Work zones 

Speed variation, traffic 
conditions, traffic volume, 
other road users, actuators, 

V2V, GPS, software, 
hardware, traffic control, 
obstacle, environmental 
conditions, lateral and 
longitudinal positions, 

control, driving behaviour 

Road maintenance operations such as bridge 
flushing and pothole patching are essential for 
safety of roads and highways. Nevertheless, it 

is vital to consider the hazards for the 
maintenance workers and public. This 

research can help transportation agencies that 
may consider deploying autonomous vehicles 

and to apply knowledge gained in 
transportation modelling and simulation 

practices. This paper developed a 
methodology for evaluation of an autonomous 
truck-mounted attenuator (ATMA) system and 

the results of field tests performed in April 
2019 in Sedalia, Missouri. 

Tang et al. 
Transportation Research 

Record, 2021 
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87 Work zones 

Environmental conditions, 
traffic conditions, 

perception accuracy, 
planning algorithms, system 
integration, vehicle control, 

infrastructure, weather 
conditions, lighting 

conditions, component 
failure, other traffic 

participants, visibility, type 
of road, number of lanes, 

road geometry 

It is held that to ensure the robustness of an 
AV architecture, dimensioning the parameters 

related to functional scenarios is of high 
importance. In this paper, a risk analysis 
approach is developed which intends to 

qualitatively identify hazardous patterns and 
by this way the underlying critical situations 

including work zones. 

De Galizia, Bracquemond 
and Arbaretier 

Safety and Reliability – 
Safe Societies in a 

Changing World, 2018 

88 Work zones 

Road geometry, traffic 
control infrastructure, traffic 

flow, communication, 
weather conditions, speed, 

V2V, V2I, V2X, traffic 
composition, GPS, sensor, 

reaction time, LiDAR, 
lighting conditions, driver 
behaviour, path planning, 

algorithms, RSU, cameras, 
road conditions, obstacles 

Due to increase in construction and 
maintenance activities, work zones are 

becoming common areas on highways. Work 
zones can expose both conventional and 

autonomous vehicles to a sudden and complex 
geometric change in the roadway environment 

and subsequently speed change which may 
challenge many of CAV navigation and 

control capabilities. To avoid collision, CAVs 
should be able to reliably traverse work zone 

geometry. This paper investigates the key 
concepts of deploying CAV systems at work 

zones focusing on mobility, safety, and 
infrastructure considerations. 

Dehman and Farooq 
Working paper, 2021 

89 Work zones 

Number of lanes, V2X, V2I, 
mixed traffic, traffic control, 

driving state, traffic flow, 
road infrastructure, road 

geometry, obstacles, traffic 
congestion, trajectory 

planning 

When it comes to CAVs lane changing is seen 
as a risky activity as it can cause lateral 

collisions when coordination is not 
appropriately performed. Nevertheless, in 
many traffic scenarios such as work zones, 

changing the lane is inevitable for the vehicle. 
This study developed a risk function to 

estimate the risk of a collision between a pair 
of vehicles, and then a predictive control 

model was used to solve the resulting 
constrained nonlinear optimisation problem. 

Xu et al. 
Transportation Research 

Part C, 2020 

90 Work zones 

V2V, V2I, traffic flow, level 
of autonomy, mixed traffic, 

traffic conditions, 
communication, speed, 
algorithm, data fusion, 

tome-to-collision 

The recent advent of CAVs is believed to pose 
an additional risk to traffic flow performance 
and safety around highway work zones. This 
paper developed a novel and utilised existing 

vehicle-driver models to simulate manual 
driving, mixed traffic and infrastructure-
assisted highly automated traffic around 

highway work zones. 

Mintsis et al. 
IEEE 23rd International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2020 

91 Work zones 

HMI, sensors, actuators, 
communication buses, radar, 
control structure, obstacles, 
vehicle environment, other 
traffic participants, weather 

conditions, vehicle 
dynamics 

This study centred the “Automated Unmanned 
Protective Vehicle for Highway Hard 

Shoulder Road Workers” (aFAS). It aimed at 
designing unmanned protective vehicles to 

address the risk of injuries due to accidents for 
road maintenance staff in Germany. This 

paper applies a new method based on system 
theory and System-Theoretic Process Analysis 

(STPA). 

Bagschil, Stolte and 
Maurer 

4th European STAMP 
Workshop, 2016 

92 Work zones 

Motion control, 
environment perception, H-

M Interfaces, HMI, 
obstacles, traffic rule 

enforcement, other traffic 
participants, road geometry, 
speed, longitudinal control, 

communication, sensors 

This paper conducted hazard analysis for an 
unmanned protective vehicle operating 

without human supervision for motorway hard 
shoulder roadworks. 

Stolte et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2017 

93 Cybersecurity 
Weather conditions, control, 

H-M interaction, and 
situation awareness 

This paper investigates impacts of AVs form a 
Traffic Engineering Perspective and enlighten 

trends and challenges surrounding this 
technology and related infrastructure 

developments. It further highlights the cyber 
vulnerabilities of Autonomous Vehicles. 

Tettamanti, Varga and 
Szalay 

Periodica Polytechnica 
Transportation 

Engineering, 2016 

94 Cybersecurity 
V2V & V2I, H-M 

interactions, traffic laws, 
weather, road type, speed 

The Federal Automated Vehicles Policy 
includes vehicle cybersecurity in a framework 

for evaluating performance guidance of 
Highly Automated Vehicles (HAVs). It 

provides guidance on minimising safety risks 
due to Cyber-security threats and 

vulnerabilities. 

US Department of 
Transportation 
NHTSA, 2016 

95 Cybersecurity Liability, ethics, 
communication 

This study provides a review of the strategies 
formulated by multiple countries to govern the 

development of AVs. 

Taeihagh and Lim 
Transport Reviews, 2018 
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96 Cybersecurity Communication, VANET, 
IDS, V2V & V2I 

It is emphasised that VANETs (a network of 
wireless links which are used to connect 
mobile vehicles) are exposed to security 

threats in communication systems. This paper 
focuses on two types of attacks (i.e. “control 
of a vehicle’s resources” and “jamming the 

communication channels”) and adopts a new 
approach to secure external communication. 

Alheeti, Gruebler and 
McDonald-Maier 

IEEE 12th Consumer 
Communication and 

Networking Conference, 
2015 

97 Cybersecurity 
Situation awareness, H-M 
interactions, reaction time, 

speed, communication 

Some major concerns over the adoption of 
autonomous cars are highlighted in this article. 
It considers cybersecurity as one of the safety 

components of AVs and relates this to the 
vulnerability of on-board computers. 

Elbanhawi, Simic and 
Jazar 

IEEE Intelligent 
Transportation Systems 

Magazine, 2015 

98 Cybersecurity 
RSU, AI, sensors, VANET, 
infrastructure, RSU, other 

road users, V2V, algorithms 

This paper proposes a four-layer IDS for 
VANETs used in self-driving cars to detect 
potential threats and secure communication 

networks. 

Straub et al. 
12th System of Systems 
Engineering Conference, 

2017 

99 Cybersecurity 

IoT, software, infrastructure, 
V2V & V2I, 

communication, traffic 
rules, 

It is discussed that uncoordinated evolution of 
complex systems-of-systems while they are 
interconnected and integrated can expose a 

multitude of vulnerabilities and pose 
cyberattack threats. Main reasons are seen to 
be lack of standards and inadequate design. 

Then, cybersecurity requirements are 
proactively introduced to mitigate such risks. 

Axelrod 
IEEE Long Island 

Systems, Applications and 
Technology Conference, 

2017 

100 Cybersecurity 
VANET, software, 

communication, sensors, 
speed, 

Security of driverless cars and the catastrophic 
fallouts which may be imposed on the society 
due to security issues are centred in this paper. 

Current communication technologies 
(VANET & ANN) which are used for 

driverless cars in addition to possible attacks 
on these systems are explored as well. 

Ydenberg, Heir and Gill 
IEEE 8th Annual 
Computing and 
Communication 

Workshop and Conference 
(CCWC), 2018 

101 Cybersecurity 

Software, hardware 
reliability, CAN, bus, 

communication, V2V, V2I, 
V2X, infrastructure, 
regulation, sensors 

In this study, autonomous and unmanned 
vehicles are examined in terms of their 

cybersecurity vulnerabilities. Threats and 
attacks which may exploit these 

susceptibilities are identified and categorised. 

Yağdereli, Gemci and 
Aktaş 

Journal of Defense 
Modeling and Simulation: 

Application, 
Methodology, 

Technology, 2015 

102 Cybersecurity 
Communication, V2V, V2I, 

HMI, infrastructure, 
regulations, trust 

This journal article finds the privacy and 
cybersecurity risks of AVs as crucial and 
examines the measures taken by several 

governments around the world to mitigate 
these risks. The implications of AVs’ 

cybersecurity for safety are highlighted too. 

Lim and Taeihagh 
Energies, 2018 

103 Cybersecurity 
Communication, software, 

integration, regulation, 
standardisation, bus 

This report was presented to the congressional 
requesters to investigate the vulnerabilities of 

modern vehicles (including autonomous 
vehicles and self-driving cars) to cyberattacks 
and the impacts they can have on passengers’ 
safety. Key vehicle interfaces can be exploited 

through direct access, short-range wireless 
and long-range wireless. 

GAO 
United States Government 

Accountability Office, 
2016 

104 Cybersecurity Communication, V2V, V2I, 
bus, recovery 

The security issues arising from external 
wireless communication in connected vehicles 
(V2V & V2I) are investigated. A defence-in-

depth strategy is adopted to address these 
issues. 

Larson and Nilsson 
4th Annual Cyber Security 

and Information 
Intelligence Research 

Workshop, 2008 

105 Cybersecurity 

Communication, V2V, V2I, 
RSU, situation awareness, 

self-awareness, CAN, LIM, 
MOST 

This journal article underlines the wireless 
gateway (as an entry point to the automobile 

in-vehicle network) to compromise 
cybersecurity of the vehicles and networks. 

The requirements and prerequisites for an in-
vehicle forensic investigation system are 

proposed and discussed. 

Nilsson and Larson 
International Journal of 

Digital Crime and 
Forensics (IJDCF), 2009 

106 Cybersecurity Communication, bus, CAN, 

Prominent and established communication 
systems in vehicles besides potential attacks 
and exposures are investigated in this study. 
Cryptographic mechanisms are proposed to 
provide secrecy, prevent manipulation and 
mitigate the bus security issues of vehicles. 

Wolf, Weimerskirch and 
Paar 

Workshop on Embedded 
IT-Security in Cars, 2004 

107 Cybersecurity Communication, CAN, bus, 
V2V 

The authors analyse the potential security risks 
and their repercussions on safety measures 

when vehicles are equipped with and IP based 
protocol. 

Lang et al 
26th International 

Conference, SAFECOMP 
2007 

108 Cybersecurity 

Software, hardware. ECU, 
communication, V2V, V2I, 

organisational structure, 
DES, autonomy level, 

infrastructure, integration, 
HMI 

This study recognises IT security as one of the 
pivotal technologies for the next generation of 
vehicles. It further reflects on an interrelation 
technical failure (safety issue) and malicious 

attack (security issue). 

Wolf, Weimerskirch and 
Wollinger 

EURASIP Journal on 
Embedded Systems, 2007 
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109 Cybersecurity ECU, communication, 
software, BUS, 

This paper raises concerns over the reliability 
and robustness of computer codes embedded 

in the highly automated and computerised 
vehicles. Any failure or deficiency can 

provide the possibility for attackers to obtain 
remote code execution on the electronic 

control units (ECU) and take control over 
steering, braking, acceleration and display. 

These attacks are deemed to potentially 
endanger the physical safety. 

Valasek and Miller 
IOActive technical white 

paper, 2014 

110 Cybersecurity 

Autonomy level, regulation, 
H-M interface, 

communication, V2I, V2V, 
machine learning, HMI, 

traffic culture, traffic control 
infrastructure, GPS, control 

The author critiques the current developed 
self-driving cars (e.g. Oxford University’s 

RobatCar) to be fully and truly autonomous 
and defines an autonomous car as self-

contained, self-determining, self-correcting, 
self-healing, and ultimately self-aware. 

Therefore, any engagement in communities 
can give rise to the cybersecurity risks due to 

security breaches, hacking and privacy 
violations. 

McBride 
Computers & Society, 

2015 

111 Cybersecurity Communication, design, 
software, hardware 

This document is an overview of the SAE 
Cybersecurity Guidebook for Cyber-Physical 

Vehicle Systems (SAE J3061). The 
motivations and necessities (e.g. lack of 

common principals, processes, and 
terminologies between OEMs and Tier 1 

suppliers) for developing such a practice as 
well as the link between System Safety and 

System Cybersecurity are defined. 

Boran, Czerny and Ward 
SAE International, 2016 

112 Cybersecurity 
Communication, sensors, 
GPS, radar. LiDAR, ECU, 

CAN, V2V, V2I 

The author maintains that cyber threats are 
among main concerns of AV developers and 
draws a positive (direct) relationship between 
the level of autonomy and the possibility of 

cyber-attacks. 

Raiyn 
Transport and 

Telecommunication, 2018 

113 Cybersecurity 
V2V, V2I, V2X, software, 
CAN, ECU, LIN, sensors, 

LiDAR 

The advent of connected vehicles (including 
AVs) has of necessity called for protection 

methods against cyber-attacks to circumvent 
such attacks and secure connected services. 
This paper surveys recent trends in cyber-

attacks and cybersecurity countermeasures. 

Takahashi 
IEICE Transactions on 

Information and Systems, 
2018 

114 Cybersecurity 
Communication, V2V, V2I, 
hardware, software, design, 
integration, standardisation 

The rise in inter-vehicle connections as well as 
networking with non-vehicle entities (which is 

a prominent feature of AVs) impose new 
challenges to the assurance of dependability 

for Cyber-Physical Systems (CPS). 

Macher et al 
24th European 

Conference, EuroSPI, 
2017 

115 Cybersecurity 
AI, machine learning, deep 
learning, neural networks, 

hardware 

Due to the exponential increase in deployment 
of Cyber-Physical Systems and machine 

learning (ML) techniques (e.g. AVs), new 
cybersecurity vulnerabilities are introduced 

into these systems. This work provides a brief 
overview of security threats in ML-based 

systems (during training and inference) and 
their threat models. 

Khalid et al 
International Conference 

on Frontiers of 
Information Technology, 

2018 

116 Cybersecurity IoT, communication, V2V, 
integration, 

This paper scrutinises the V2V 
communication in CPSs and acknowledges the 
issue of network security in V2V connections. 

Wan et al 
Computer Science & 
Information Systems, 

2013 

117 Cybersecurity CAN, bus, WiFi 

The link between cyber-attacks and safety 
physical repercussions in CPSs and AVs due 
to their mobility is indicated. To facilitate the 
automatic detection of cyber-attacks on those 

systems, the authors have developed a 
detection mechanism to oversee large amount 
of real-time data form various sources such as 

sensors and networks. 

Bezemskij et al 
15th International 

Conference on Ubiquitous 
Computing and 

Communications and 2016 
International Symposium 

on Cyberspace and 
Security 

118 Cybersecurity Traffic, communication, 
VANET, 

This paper investigates the reaction of traffic 
flaw to false-accident attacks (a form of 
cyber-attack) in connected vehicles. The 

experimental results show that this class of 
cyber-attack may or may not significantly 

affect the traffic congestion and traffic 
perturbation. The extent of impact varies 

depending on the initial conditions, 
behavioural assumptions, and attacking 

parameters. 

Jin et al 
International Conference 
on Connected Vehicles 

and Expo (ICCVE), 2013 
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119 Cybersecurity Physical safety, collision 

The mounting integration of autonomous 
systems (e.g. parcel delivery and driverless 

cars) with publicly available networks, ad-hoc 
wireless and satellite networks and other 

remote operators can potentially expose them 
to cybersecurity threats. Therefore, designing 

security mechanisms is integral CPSs. 

Xu and Zhu 
IEEE 54th Annual 

Conference on Decision 
and Control (CDC), 2015 

120 Cybersecurity 

Trust, V2X, infrastructure, 
hardware, ECU, cloud, 

software, traffic 
infrastructure 

With the advancement of V2X technologies 
and assimilation of AVs into the intelligent 

traffic infrastructure, remote interaction 
between safety-critical components becomes 

investable. Although the realisation of such an 
integrated system is appraised to have 

benefits, the main challenge with AVs and 
their interconnectivity is their vulnerability to 
cyber-physical attacks.  In this study, a remote 

testimony architecture is proposed to 
receive/send testimony of correctly executed 

programmes without “integrity violation”. 

Alesiani and Gajek 
IEEE 83rd Vehicular 

Technology Conference 
(VTC Spring), 2016 

121 Cybersecurity ECU, software, hardware, 
integration, CAN, firmware, 

This paper takes security implications of on-
board network of ECUs into account and 

develops an automated, quantitative, 
probabilistic method and metric for attack 

surface and vulnerability assessment 
automation. The focus is mainly on injecting 

malicious code which can exploit the 
vulnerabilities of the actual implementation. 

Salfer and Eckert 
12th International Joint 

Conference on e-Business 
and Telecommunications 

(ICETE), 2015 

122 Cybersecurity Communication, V2X, 
CAN, VLAN 

With V2X communication and distributed 
connected nature of AVs, security becomes a 
focal issue of future automotive systems. The 

security, safety and their interactions in 
Ethernet-based automotive networks are 

discussed in this study. 

Lin and Yu 
53rd ACM/EDAC/IEEE 

Design Automation 
Conference (DAC), 2016 

123 Cybersecurity IoT, CAN, integration, 
VIMP 

Considerable increased attack surface, 
complexity, heterogeneity and number of 

interconnected resources are major challenges 
in securing and protecting advanced 

information services in interconnected smart 
vehicles as a result of IoT realisation. A 

framework (ISDF) is therefore developed by 
the authors to build secure and trustworthy 

AV networks. 

Pacheco et al 
IEEE Conference on 

Intelligence and Security 
Informatics (ISI), 2016 

124 Cybersecurity 

Communication, hardware, 
software, infrastructure, 

V2I, V2V, V2X, CAN, bus, 
FlexRay, sensors, 

integration, GPS, autonomy 
level, infrastructure, cloud 

In this paper, interconnectivity is seen as a 
factor which can heighten the risk of a 

cybersecurity breach. Higher automation 
(autonomy level) can exacerbate the 

consequences of any breach or attack. This 
paper presents a review of publicly accessible 
literature and categorises the vulnerabilities in 

CVs and AVs. 

Parkinson et al 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2017 

125 Cybersecurity 

Software, hardware, 
communication, V2V, V2I, 
V2X, situation awareness, 
sensors, CAN, ECU, GPS 

This study develops a proactive cybersecurity 
risk classification model (Bayesian Network) 

and by incorporating known software 
susceptibilities into the model tries to 

overcome this issue in CAVs. 

Sheehan et al 
Transportation Research 

Part A: Policy and 
Practice, 2019 

126 Cybersecurity Pedestrian, software, AI 

It is shown that if the decision-making 
processes and functions of an autonomous 

vehicle are transparent and perfectly known, 
then the risk of manipulation caused by 

malicious, opportunistic, terrorist, criminal 
and non-civic individuals increases. This 

manipulation can be either physical or cyber. 

Osório and Pinto 
International Journal of 

Human-Computer Studies, 
2019 

127 Cybersecurity IoT, systemic collapse, 

Extreme automation until ‘‘everything is 
connected to everything else’’ can pose 

vulnerabilities that have not raised too much 
concerns until now. For example, highly 

integrated systems are susceptible to systemic 
risks such as total network collapse in the 
event of failure of (or glitch in) one of its 

parts, for instance, by hacking or computer 
viruses or malwares that can put integrated 

systems at serious risks. 

Özdemir and Hekim 
Journal of Integrative 

Biology, 2018 

128 Cybersecurity 

Human factors, trust, 
communication, 
infrastructure, 

standardisation, training and 
experience 

Human factors are seen to be the most 
common contributor to successful 

cyberattacks. In this paper, the role of human 
factors in AVs’ cybersecurity is studied and 
recommendations are made to strengthen the 

security of this technology. 

Linkov et al. 
Frontiers in Psychology, 

2019 
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129 Cybersecurity Communication, V2X, V2I, 
V2V, 

Although ample amount of generated and 
transferred data play a pivotal role in data-
driven economies of scale as far as AVs are 
concerned, privacy and integrity-dependent 

scenarios can pose a challenge. The concept of 
‘hyperconnected vehicle’ as well as security 

techniques are developed in this paper to 
tackle these challenges. There are some safety 

risks identified in this paper such as wrong 
information fed into the navigation module of 
the car or security and safety issues due V2I. 

Karnouskos and 
Kerschbaum 

Proceedings of IEEE, 
2017 

130 Cybersecurity 

Communication 
infrastructure, V2V, other 
road users, hardware and 

software reliability, traffic 
composition, sensor 

reliability 

Several factors that can affect the adoption of 
AVs and users’ trust are discussed in this 

article. Among them, there are some risks and 
concerns about the performance of the 

technology. Security, hardware/software 
reliability, sensor reliability and network 

security are identified to have impact on the 
safe performance of the vehicle. For example, 
it is asserted that any failure of the sensors can 

cause a fatal accident. 

Kaur and Rampersad 
Journal of Engineering 

and Technology 
Management, 2018 

131 Cybersecurity 
Traffic conditions, sensors, 
actuators, kinematic state, 

speed 

AVs are inherently cyber-physical systems. 
This means such vehicles will have novel 
security vulnerabilities that entail both the 

cyber aspects of the vehicle including the on-
board computing software and any 

communication channel, with the physical 
nature and hardware of the vehicle including 

its sensors, electronics and actuators. 

Mascareñas, Stull and 
Farrar 

Mechanical Systems and 
Signal Processing, 2017 

132 Cybersecurity 

Communication, 
connectivity, V2I, V2V, 
RSU, traffic flow, traffic 
conditions, position and 

speed, congestion, reaction 
time, road capacity, control, 

number of lanes 

The impacts of cyber-attacks on CAVs based 
on the proportion of attacked vehicles, cyber-
attack severity and attack range are evaluated 

in this research. Four indicators including 
safety were singled out to analyse the 

performance of transportation system in case 
any cyber-attack occurs. The findings of this 

study provide useful insights for the prediction 
and mitigation of cyber-attacked traffic system 

in future. 

Dong et al. 
IEEE Access, 2020 

133 Communication Infrastructure, collision 
avoidance 

This study evaluates Carcel on a state-of-the-
art autonomous driving system which can 

facilitate communication between AVs and 
roadside infrastructure to reduce the average 
time vehicles need to detect obstacles such as 

pedestrians. 

Kumar, Gollakota and 
Katabi 

Association for 
Computing Machinery, 

2012 

134 Communication Infrastructure, traffic, and 
speed 

This research tries to answer whether V2V 
and V2I communication platforms in self-

driving vehicles can efficiently improve travel 
quality while reducing the risk of collisions. 

To this end, the researchers developed a 
simulation software to visualise traffic flow. 

Gora and Rüb 
Transportation Research 

Procedia, 2016 

135 Communication 
Sensors, control, processing, 
situation awareness, traffic, 

security, infrastructure 

This study provides a summary on the Internet 
of Vehicles (similar to IOT) as well as 

vehicular cloud and explains implications of 
V2I and V2V in autonomous driving 

scenarios. 

Gerla et al 
IEEE World Forum on 

Internet of Things, 2014 

136 Communication 
Security, traffic, speed, 
autonomy level, control, 

sensors 

This study presents a first look at the effects of 
security attacks on the communication channel 

as well as sensor tampering of a connected 
vehicle stream equipped to achieve 

CACC. 

Amoozadeh et al 
IEEE Communications 

Magazine, 2015 

137 Communication 
Sensors, GPS, 

infrastructure, traffic, 
vulnerability, software 

To increase the security of VANET which are 
deployed in self-driving cars, the authors 
propose an intrusion detection mechanism 
using Artificial Neural Networks to detect 

Denial of Service. 

Alheeti and Gruebler and 
McDonald-Maier 

IEEE 12th Consumer 
Communication and 

Networking Conference, 
2015 

138 Communication Infrastructure, situation 
awareness, speed 

This paper reviews traditional comfort 
measures and proposes autonomous passenger 

awareness factors. It also highlights some 
concerns with autonomous cars (e.g. road 

safety, software reliability and cybersecurity). 

Elbanhawi, Simic and 
Jazar 

IEEE Intelligent 
Transportation Systems 

Magazine, 2015 

139 Communication Situation awareness, speed, 
sensor 

This paper develops a conceptual model to 
assess the situation risks for autonomous 
motion planning in urban environments. 

Wardziński 
1st International 

Conference 
on Information 

Technology, 2008 



Appendix A 

154 
 

  

140 Communication 
Cybersecurity, VANET, 

RSU, DSRC, type of road, 
infrastructure, sensors, V2I 

Vehicular Ad hoc Network (VANET) enables 
inter-vehicular communication as well as 

communication between vehicles and various 
road side units (RSU). This work proposes a 
novel message authentication scheme that 

protects cars from bogus messages and makes 
VANET resilient to Denial-of-Service (DoS) 

attacks. 

Abueh and Liu 
Symposium on 

Technologies for 
Homeland Security (HST), 

2016 

141 Communication 
Platooning, car-following 
strategies, control, mixed 

traffic 

This study presents a car-following strategy 
for mixed traffic stream which involves 

platoon development in a connected 
automated vehicle (CAV) environment. The 

study also explores various platoon 
configurations to determine platoon 

parameters at different traffic states to obtain 
utmost benefits. 

Seraj, Li and Qiu 
Journal of Advanced 
Transportation, 2018 

142 Communication 
V2V, cybersecurity, path 

planning, sensors, VANET, 
RSU 

This paper investigates the security risks of 
vehicle to vehicle communications. Further it 
proposes an intrusion detection system for the 
self-driving car network system-of-systems. 

Straub et al 
12th System of Systems 
Engineering Conference 

(SoSE), 2017 

143 Communication 
VANET, Cybersecurity, 
RSU, software, control, 

security protocols, integrity 

This study applies Artificial Neural Networks 
(ANN) to tackle the security problems with 

Vehicle Ad Hoc Networks (VANET). It 
divides the attacks into two groups with 

different purposes: 1) take the control of a 
vehicle’s resources and 2) jam the 

communication channels. 

Ydenberg, Heir and Gill 
IEEE 8th Annual 
Computing and 
Communication 

Workshop and Conference 
(CCWC), 2018 

144 Communication 

Software, sensor, 
regulations, pedestrians, 

self-awareness, V2V, V2I, 
traffic congestion 

This paper provides an overview and short 
history of self-driving vehicles. It also reviews 
different levels of autonomy and divides the 

technology into four basic components: 
sensor, mapping, perception and 

communication. 

Lutin, Kornhauser and 
Lerner-Lam 

ITE Journal, 2013 

145 Communication Infrastructure, sensors, 
cameras, road conditions 

This article mainly focuses on liability and 
insurance risks of autonomous cars. It 

highlights the facilitated communication 
between vehicles and infrastructure as a 

potential risk factor. 

Stankard 
Aon Risk Solutions, 2017 

146 Communication Ethics, Cybersecurity, 
regulations, standardisation 

This study adopts a broader perspective (than 
just complexities arising from a single vehicle) 
and analyses the impacts and interactions that 

AVs can have on each other and the socio-
technical systems. The discussion includes the 

apprehensions that need to be addressed to 
implement V2V communication successfully. 

Borenstein, Herkert and 
Miller 

Science and Engineering 
Ethics, 2017 

147 Communication 

Situation awareness, 
collision avoidance, control, 

pedestrian, V2V, V2I and 
V2X 

This paper reviews the evolution of 
technologies which facilitate the 

communication between vehicles and between 
vehicles and infrastructure. It also emphasises 
the benefits of such technologies in collision 
avoidance, increasing situational awareness 

and detecting threats. 

Narla 
ITE Journal, 2013 

148 Communication Self-awareness, take over 
control and cybersecurity 

This paper addresses some of the early policy 
concerns about “connected cars” and 

driverless vehicles. 

Thierer and Hagemann 
MERCATUS Working 

Paper, 2014 

149 Communication 

V2V, V2I, V2X, HMI, 
VANETs, H-M interface, 

situation awareness, traffic 
environment, 

The role of V2X and V2I in design and 
improvement of HMI and reduction in 
accidents is highlighted in this study. 

Olaverri-Monreal and 
Jizba 

IEEE Transactions on 
Intelligent Vehicles, 2016 

150 Communication 

Control, sensors, LiDAR, 
cameras, weather 

conditions, other road users, 
algorithms, V2X, V2V, V2I, 

road infrastructure, speed, 
visibility, work zones, road 
conditions, communication 

infrastructure 

This paper sees communication as an 
additional sensor feeding traffic/road 

information to the vehicle. For example, under 
adverse weather conditions that the sensors 

and LiDAR can be impaired, communication 
channels (e.g., V2I) can relay information. 

Uhlemann 
IEEE Vehicular 

Technology Magazine, 
2018 

151 Communication 
Big data, infrastructure, 

cybersecurity, regulations, 
software, sensors 

This article investigates the challenges and 
opportunities pertaining to transportation 

policies that may arise as a result of emerging 
Autonomous Vehicle (AV) technologies. 

Bagloee et al 
Journal of Modern 

Transportation, 2016 

152 Communication 

V2X, algorithm, traffic 
congestion, traffic control 
infrastructure, VANET, 
communication, vehicle 

control, traffic regulation, 
RSU, traffic flow, traffic 

condition, vehicle velocity, 
traffic complexity 

A vehicle-to-everything V2X is combined 
with AI algorithms to enhance traffic 

management efficiency. This proposed 
concept can be applied to intersections and 

assist with collision avoidance. 

Xu et al. 
IEEE Internet of Things 

Journal, 2021 
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153 Communication 
infrastructure 

Communication, 
cybersecurity, V2I, V2V, 

IoT 

The evolution of smart automobiles and 
vehicles within the Internet of Things (IoT) -
particularly as that evolution leads toward a 

proliferation of completely autonomous 
vehicles - has sparked considerable interest in 

the subject of vehicle/automotive security. 
While the attack surface is wide, there are 
patterns of exploitable vulnerabilities. As 
vehicles become more connected, road 

infrastructure components become an intrinsic 
part of these growing transportation 

computing networks. 

Brewer and Dimitoglou 
International Conference 

on Computational Science 
and Computational 

Intelligence (CSCI), 2019 

154 Communication 
infrastructure 

Communication, 
cybersecurity, V2I, V2V, 

V2X, RSI, RSU, H-M 
interface 

In this paper, the authors developed a 
communication model for autonomous 

vehicles and identified threats to the security 
of the fully autonomous vehicle 
communication infrastructure. 

Oham, Jurdak and Jha 
arXiv preprint, 2019 

155 Communication 
infrastructure 

Traffic flow, 
communication, regulations, 

V2I, V2V, 

This article explores and investigates possible 
interventions and their impacts which can be 
made by governments to manage congestion 
or protect accessibility in the AV scenarios. 

AV is seen as an emerging technology which 
offers both benefits and poses risks which 

must be governed. 

Cohen and Cavoli 
Transport Reviews, 2019 

156 Communication 
infrastructure 

Communication, V2I, V2V, 
V2X, control, speed, 

regulation, road geometry, 
traffic flow, time of day, 

The results of this research could provide 
valuable insights to policy makers regarding 
the reconfiguration of existing infrastructure 
to accommodate CAVs, the trustworthiness 
of existing connected AV equipment and the 
optimal platoon size that should be enforced 

according to the market penetration rate. 

Papadoulis 
Doctoral thesis, 2019 

157 Communication 
infrastructure 

Road infrastructure, 
integrity, cybersecurity, 

V2I, V2V, V2X, control, 
human factors, other road 

users, 

This study identifies cybersecurity risks as a 
result of ‘uncoordinated design and 

development’, particularly of supporting 
infrastructure systems. It is also concluded 
that if infrastructure systems, both physical 

and cyber, do not receive the attention 
required to achieve sufficient levels of 

cybersecurity and safety, AV developers will 
hit a roadblock. 

Axelrod 
13th International 

Conference and Expo on 
Emerging Technologies 

for a Smarter World 
(CEWIT), 2017 

158 Communication 
infrastructure 

Communication, V2V, road 
infrastructure, traffic 

density, traffic conditions, 
sensors, LiDAR 

Changing lanes can be risky in some traffic 
scenarios. This paper proposes two protocols 
to reduce this risk for CAVs when performing 
lane change. These protocols are designed to 

increase the safety of lane changing to the 
highest level. 

Hodgkiss, Djahel and 
Hadjadj-Aoul 

16th IEEE 
Consumer 

Communications & 
Networking Conference, 

2019 

159 Communication 
infrastructure 

Self-awareness, situation 
awareness, communication, 
sensors, LiDAR, RADAR, 
V2I, V2V, GPS, vehicle 

dynamics, road design, RSU 

The concept of ‘infrastructure enabled 
autonomy’ is developed in this study. A 

Bayesian Network Model-based framework is 
proposed for assessing the risk benefits of 

such a distributed intelligence architecture. It 
is believed that in the context of AVs, 

infrastructure plays a critical role. 

Gopalswamy and 
Rathinam 

IEEE Intelligent Vehicles 
Symposium, 2018 

160 Communication 
infrastructure 

Traffic composition, V2V, 
traffic flow, RSU, road 

infrastructure, reaction time 

This study highlights the role of V2V 
communication in collision avoidance and 

reaction time to hazardous situations. 

Li et al. 
Transportation Research 

Part C, 2020 

161 Communication 
infrastructure 

Cybersecurity, software 
failure, trust, HMI 

A system dynamic (SD) model is simulated to 
assess the risks and opportunities of adopting 
AVs from the insurance perspective. Several 
factors are identified to have impact on the 

‘crash rate’, ‘loss rate’ and ‘loss ratio’. 

Liu, Rouse and Belanger 
IEEE Systems Journal 
Systems Journal, 2020 

162 System 
integration 

Path planning, control, 
software, algorithms, 

LiDAR, Visual cameras, 
actuators, sensors, sensor 
fusion, motion planning, 

GPS, speed, kinematic state 

System integration besides perception, 
planning and control is seen to have a key role 

in development of AVs. The robustness and 
reliability of an AV depends on the integration 

of all sub-systems. This report provides an 
overview of the system architecture of AVs 
and develops a real-time path planning and 

speed control algorithm for autonomous 
vehicles to avoid obstacles. 

Chu, Kim and Sunwoo 
SAE technical paper 

series, 2012 

163 System 
integration 

Other road users, traffic 
culture, traffic regulation, 

road infrastructure, 
regulation, visibility, time of 

day, weather conditions, 
HMI 

‘System integration’ can be a challenge with 
serious consequences in diverse disciplines. 

Improper system integration can lead to risks 
and loss of lives and/or assets. Further, 
‘integration’ can be a key performance 

indicator of cost, quality and time. This study 
suggests consideration of both technical and 

non-technical factors in system integration and 
develops a theoretical foundation for properly 

integrating (engineering) systems. 

Rajabalinejad, van 
Dongen and Ramtahalsing 

Safety and Reliability, 
2020 
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164 System 
integration 

system complexity, 
hardware & software 

components, human and 
environmental factors 

System integration technical risk assessment is 
a challenging task particularly in large 

complex engineering systems with both 
software and hardware components. A BBN 
model is proposed to tackle this challenge. 

Several risk exposure variables are 
determined, and states are qualitatively 

defined: critical, significant, moderate, and 
low. 

Loutchkina et al. 
Journal of Intelligent & 
Fuzzy Systems, 2013 

165 System 
integration 

Trajectory generation, V2I, 
V2V, other road users, work 

zone, AI, sensors, 
localisation, radar, cameras, 

H-M Interfaces, control, 
actuators, motion planning, 

path tracking, software 
infrastructure, algorithms, 
hardware, velocity, vehicle 

kinematic models, 
communication, perception, 
GPS, LiDAR, sensor fusion, 

work zone, obstacles 

The Carnegie Mellon University (CMU) 
autonomous vehicle research platform has 
been tested extensively on public roads to 

evaluate its safety and reliability. Various AD 
capabilities of this platform e.g. lane 

changing, intersection handling and trajectory 
planning are discussed in this paper. 

Wei et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2013 

166 Sensor fusion 

Weather conditions, sensors, 
target perception, cameras, 

LiDAR, tracking algorithms, 
control systems, radar, other 
road users, relative velocity, 

vehicle intelligence, 
roadside infrastructure, 
obstacles, perception 

accuracy 

This study discusses the increasing risk of 
using single sensor for detecting obstacles by 
AVs and advocates the installation of an array 

of sensors. To achieve an integrated 
perception system, a multi-sensor fusion and 
tracking algorithm are proposed in this paper. 

Yi, Zhang and Peng 
Journal of Automobile 

Engineering, 2019 

167 Sensor fusion 

Other road users, traffic 
density, dynamic object 

perception, traffic 
conditions, speed, trajectory 
tracking, time-to-collision, 
kinematical state, sensors, 
LiDAR, radar, traffic rules, 

road conditions, traffic 
control, human-vehicle-

environment interactions, 
object type, AD algorithms 

A risk assessment method based on multi-
sensor fusion is developed to integrate 4 states 
of track life into a generic fusion framework 
thereby improving the performance of multi-
object perception by AVs. The results of the 
testing reflect low false and missing tracking.  

Zheng et al. 
Journal of Intelligent and 
Connected Vehicles, 2018 

168 Sensor fusion 

Traffic laws, LiDAR, 
sensors, radar, HD cameras, 

GPS, control system, 
obstacles, perception, path 
planning, redundancy of 

software/hardware 
components, number of 

sensors  

Relying merely on LiDAR sensors even in 
low-speed AVs (LSAV) carries risk and can 

lead to collision. Therefore, sensor fusion 
system is requited to verify the authenticity of 
the information provided by sensors. “In this 
paper, an observer system is present for fault 
detection of automated sensor fusion system 
for a LSAV, which functions based on octree 

fusion”. 

Raouf et al. 
IEEE 91st Vehicular 

Technology Conference, 
2020 

169 Sensor fusion 

Obstacles, sensors, 
environmental conditions, 
speed, laser scanner, depth 

cameras, plausibility 
algorithm, latency  

In order for AVs to avoid collisions, it is 
essential to detect small-size obstacles 

accurately and in a timely manner.  This study 
investigates the distance detection fusion of a 
target away from two uncorrelated, different 

sensors (i.e., depth camera and laser). 

Khesbak 
18th International Multi-
Conference on Systems, 
Signals & Devices, 2021 

170 Sensor fusion 

Environment perception, 
sensors, wireless 

communication, other road 
users, trajectory prediction, 
V2X, longitudinal and the 

lateral motion control, 
weather conditions, radars, 

cameras, lidars, lighting 
conditions, V2I, V2N, V2V, 
matching algorithms, CAN, 

RSU, relative speed, 
localisation, position 

accuracy, time-to-collision, 
road configuration, traffic 

signals      

This study presented a configuration for 
environment perception based on the fusion of 

vehicular wireless communications and 
remote sensors. A track-to-track fusion of 

high-level sensor data and vehicular wireless 
communication data were collected and 

analysed to locate the remote target in the 
vehicle radios and predict their future 

trajectory. The proposed approach was 
implemented and tested in vehicle on vehicles. 

Baek et al. 
Sensors, 2021 
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171 Sensor fusion 

Wireless communication, 
velocity, acceleration, V2V, 

radar, risk assessment 
algorithm, other traffic 

participants, road geometry, 
kinematic state, traffic flow, 

vehicle trajectory, traffic 
behaviour models    

To avoid collisions and increase ride comfort 
it is vital for AVs to monitor and predict the 
behaviour of other traffic agents in nearby. 

This paper derives desired steering angle and 
longitudinal acceleration to pinpoint a safe 
kinematic state for the ego vehicle based on 
the probabilistic prediction of other traffic 

participants using radar or radar/V2V 
information fusion. 

Shin et al. 
IEEE 18th International 

Conference on Intelligent 
Transportation Systems, 

2015 

172 Sensor fusion 

Perception, traffic 
conditions, camera, LiDAR, 

sensor tolerances, radar, 
dynamic sensors, 

plausibility sensors, 
software algorithms, 
trajectory prediction, 

geometry of the vehicle, 
weather conditions, lighting 
conditions, V2X, obstacles, 

speed, driver behaviour   

This paper developed a novel method for 
evaluating collision risk in the precrash phase 
based on information fusion using camera and 
LiDAR for bullet vehicle detection together 
with physical motion model-based collision 

detection. 

Lugner et al. 
IEEE 3rd Connected and 

Automated Vehicles 
Symposium, 2020 

173 Sensor fusion 

5G, radar, LiDAR, sensors, 
V2X, V2V, V2I, IoT, 

cameras, RSU, 
communication 

infrastructure, ML 
algorithms 

A collision avoidance system is proposed 
which uses data fusion to predict potential 
collision events. The performance of this 
system was evaluated within a testbed.  

Lee, Yang and Moessner   
International Conference 

on Information and 
Communication 

Technology Convergence 
(ICTC), 2020 

174 Sensor fusion 

Parked cars, traffic 
participants behaviour, 

trajectory planning, other 
traffic participants, machine 

learning, perception, 
mapping, localisation, object 

tracking, weather 
conditions, time of day, 

cameras, sensors, vehicle 
specification, radar, lane 

characteristics, construction 
sites, obstacles, traffic 
density, visibility, road 

topology   

This paper focuses on the challenge of parked 
vehicles for AVs and introduces a list of 

features as candidate predictors to classify 
parked cars on urban roads. To detect objects 

sensor fusion becomes crucial to achieve a 
more realistic perception of the environment 
including parked vehicles. For this purpose, 
the information from every individual sensor 

are combined to generate a more accurate map 
of the surrounding for AVs. 

Behrendt et al. 
IEEE Intelligent Vehicles 

Symposium, 2019 

175 Sensor fusion 

Data integrity, V2X, 
sensors, cyber-attacks, 

control algorithms, LiDAR, 
cameras, radar, perception, 

road boundaries, speed, 
lighting conditions, deep 

learning 

Connectedness of AVs exposes them to 
cybersecurity risks including compromised 

sensors and/or manipulating sensory data. One 
of the possible ways to construct an array of 

sensors for AVs is the centralised data fusion 
architecture. In this structure, multiple sensors 
are linked to the decision-making (perceiving 

and planning) module through different 
interfaces. In this paper, a 3D QIM based 

data-hiding techniques to safeguard data from 
LiDAR sensors. 

Changalvala and Malik 
IEEE Symposium Series 

on Computational 
Intelligence (SSCI), 2019 

176 Sensor fusion 

Path planning, monocular 
cameras, LiDAR, obstacles, 

localisation, radar, vision 
sensors, algorithms, sensor 

modalities, objection 
detection 

This study develops a framework for detecting 
and tracking objects for AVs using LiDAR 
sensors, cameras, and a fusion of range and 

vision sensors. 

Rangesh and Trivedi 
IEEE Transactions on 

Intelligent Vehicles, 2019 

177 Sensor fusion 

Sensors, data alignment, 
path planning, obstacles, 

other roadway users, 
communication 

infrastructure, LED radar, 
ultrasonic sensors, LiDAR, 

stereovision, relative 
velocity   

Autotaxi is a safety critical sensory system 
which is proposed in this paper to perceive 

surrounding environment for an AV. To 
address the multiple-sensor multiple-target 

tracking data fusion problem, a decentralised 
structure known as sequential pair-wise track-

to-track fusion is proposed. 

Escamilla-Ambrosio and 
Lieven 

7th International 
Conference on 

Information Fusion 
(FUSION), 2005 

178 Sensor fusion 

Control, laser range finder, 
GPS, trajectory planning, 
obstacles, radar, velocity, 

kinematic model, curvature 

Two major research areas in the field of AD 
are road-following and collision avoidance. A 
sensor fusion system is proposed for electric 

AVs’ navigation and control. It is designed to 
integrate signals of laser range finders, 

magnetometers and inertial measurement 
units (IMUs). 

lee, chen and Li 
IEEE International 

Conference on Systems, 
Man, and Cybernetics, 

2011 

179 Sensor fusion 

Localisation integrity, gyro, 
smart cameras, HD maps, 

GNSS, GPS, LiDAR, 
trajectory planning, road 

curvature  

To bound the estimation errors with low 
probability risk for AVs, the classical Kalman 

filter is substituted with a Student’s t filter. 
Besides, a novel real-time adaptive 

computation of the degree of freedom is 
suggested to utilise the heavy tailored 

property of t distribution. 

Al Hage, Xu and 
Bonnifait   

22th International 
Conference on 

Information Fusion 
(FUSION), 2019 
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180 Sensor fusion 

Other road users, object 
tracking, trajectory 

estimation, sensory systems, 
algorithms, localisation, 

environmental perception, 
LiDAR, GNSS, cameras, 

system integration, 
hardware limitations, 

software, motion planning, 
cybersecurity, vehicle 

control, weather and lighting 
conditions, obstacles, radar, 

ultrasonic, exteroceptive 
sensors, relative velocity, 

visibility 

The emphasis is placed on the objection 
detection criticality for AVs especially when 

dynamic elements such as pedestrians and 
cyclists are present in the scene. Different 

sensory systems were tested and scrutinised to 
evaluate their advantages, limitations and 

applications in AVs. Sensor fusion and its role 
in overcoming limitations of individual 

sensors are broadly discussed in this paper. 

Khatab et al. 
Integration, 2021 

181 Sensor fusion 

Sensors, obstacles, 
algorithms, perception, 
vision cameras, LiDAR, 
radar, software, vehicle 

control, weather conditions, 
other road users, system 

integration, planning, V2X, 
actuators, IoT, localisation, 
path planning, ultrasonic 

sensors, environment 
mapping, road 

infrastructure, traffic 
conditions, lighting 
conditions, visibility     

This paper reviews recent multi-sensor fusion 
algorithms for detecting on-road object in AD. 

The challenges that can hurdle fusing 
information from different sensors are 

highlighted.  

Yeong et al. 
Sensors, 2021 

182 Self-awareness 

Cameras, GPS, sensors, 
machine learning, 

algorithms, actuators, 
planning, control, 

perception, obstacle, radar 

One of the fundamental challenges in the field 
of robotics is how to systematically integrate 
self-awareness (SA) capabilities into artificial 
agents. This paper presented “a bio-inspired 

framework for generative and descriptive 
dynamic models that supports SA 

computationally and efficiently”. This is 
expected to contribute to the evolution of 

autonomous systems. 

Regazzoni et al. 
Proceedings of the IEEE, 

2020 

183 Self-awareness 

Trajectory planning, 
pedestrian, obstacles, 

velocity, algorithms, animal 
crossing, weather 

conditions, driving style, 
perception, machine 

learning, communication 
capabilities, environmental 
conditions, sensors, HMI 

Self-awareness is necessary for autonomous 
vehicles as an element of Intelligent 

Transportation Systems. This study introduced 
an original method to achieve self-awareness 

in AVs. A data-driven Dynamic Bayesian 
Network was developed to use multi-sensory 

data to detect anomalies. 

Kanapram et al. 
Robotics and Autonomous 

Systems, 2020 

184 Self-awareness 

Machine learning, control, 
sensors, planners risk 

analysis modules, HMI, 
reinforcement learning, 
hardware components, 

actuators, system 
integration, control 

algorithms, environmental 
perception, system 

architecture 

This paper offers an overview of building self-
aware autonomous systems and how self-

aware behaviour can be verified. This 
framework is based on a modular architecture 
where key autonomous decision making takes 

place. It is deemed that self-awareness is 
crucial for safety, reliability, and verifiability 

of autonomous systems.  

Dennis and Fisher 
Proceedings of the IEEE, 

2020 

185 Self-awareness 
Machine learning, system 

configuration, control cycle, 
algorithms 

This paper offers a solution for incorporating 
self-awareness principles in electronic design 
automation (EDA) for autonomous systems 
such as autonomous cars. The Information 

Processing Factory (IPF) metaphor was used 
as an exemplar to demonstrate how self-
awareness can be realised across multiple 

abstraction levels. 

Sadighi et al. 
Design, Automation & 

Test in Europe Conference 
& Exhibition (DATE), 

2018 

186 Self-awareness 
Visual perception, system 

integration, sensors, 
cameras, algorithms 

This study proposed a novel approach for 
learning self-awareness models and 

integrating it into AVs. This proposed 
technique relies on the availability of 

synchronised multi-sensor 
dynamic data. 

Ravanbakhsh et al. 
21st International 

Conference on 
Information Fusion 
(FUSION), 2018 

187 Self-awareness 

System integration, machine 
learning, communication, 

sensors, hardware/software 
platform, other traffic 

participants, CAN 
controller, cameras, LiDAR, 

radar, control algorithms, 
actuators, hardware 
reliability, weather 

conditions 

The notion of self-awareness has been 
intertwined with autonomy of computing 

systems. In automotive systems, self-
awareness mechanisms of all layers need to be 

coherent and integrated to avoid conflicting 
decisions and subsequent catastrophic 

consequences. 

Schlatow et al. 
Design, Automation & 

Test in Europe Conference 
& Exhibition (DATE), 

2017 
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188 Self-awareness 

Maintenance, sensors, 
software, processing, 

communication, mission 
planning, component failure, 

control, HMI, sensors, 
perception, 

This study investigates the costs and benefits 
of integrated system health management and 

autonomous control in autonomous and 
robotic exploration. Intelligent Self-situational 
awareness refers to the ability of a system to 
autonomously assess its health and condition 
and to interpret the impact of its current and 

future health and condition on current mission 
objectives. 

Reichard et al. 
1st Space Exploration 

Conference, 2005 

189 Road 
infrastructure 

Traffic density, traffic flow, 
speed, algorithms, traffic 

control infrastructure 

This paper analyses numerical results to 
explore insights from the introduced 

modelling framework for AV network 
equilibrium. This is because a reliable 

estimation of network traffic pattern serves as 
the foundation of system assessment and 

governmental policymaking for infrastructure 
development. 

Zhang, Liu and Waller 
Computer-Aided Civil and 

Infrastructure 
Engineering, 2019 

190 Road 
infrastructure 

Communication, hardware, 
software, system integrity 

A question is raised about how the current 
road infrastructure must be changed to 

accommodate AVs and achieve the desired 
performance. 

Maurer et al. 
Autonomous Driving, 

2016 

191 Road 
infrastructure 

Road configuration, 
communication, V2V, V2I, 

traffic flow, V2X 

The main goal of this study is to design a 
microscopic traffic simulation model for AVs, 

including a robust protocol for exchanging 
information. The question arises as to whether 
such communication system may efficiently 

improve travel quality while reducing the risk 
of collisions. The transport infrastructure in 

this work includes multiple junctions, 
optionally equipped with traffic lights, and 
roads with varying number of travel lanes. 

Each vehicle is assigned a fixed route leading 
to a randomly chosen destination point. 

Gora and Rüb 
Transportation Research 

Procedia 14, 2016 

192 Road 
infrastructure 

Traffic control 
infrastructure, traffic 

congestion, other road users, 
positioning,  

This report emphasises the need for 
investment in Finnish road infrastructure to 

host self-driving and electric cars. 

Hyytinen, Määttänen and 
Vihriälä 

The Research Institute of 
the Finnish Economy, 

2018 

193 Road 
infrastructure 

Other road users, vehicle 
dynamics, static and 

dynamic obstacles, road 
geometry, road type, 

environmental factors, 
traffic conditions, motion 

control 

Several risk factors to the trajectory planning 
for AVs are identified in this study. Static road 

infrastructure (e.g. roadside trees) are 
mentioned among factors which can affect the 

path planning systems of AVs. 

Wei et al. 
Transportation Research 

Part C: Emerging 
Technologies, 2019 

194 Road 
infrastructure 

Cybersecurity, other road 
users, GPS, regulation, 

This report discusses the benefits and costs of 
AVs and predicts their likely development and 

implementation based on experience with 
previous vehicle technologies. It also 

highlights the need for additional roadway 
infrastructure for AVs. 

Litman 
Victoria Transport Policy 

Institute, 2014 

195 Road 
infrastructure 

Road conditions, traffic 
density, speed, human 
factors, road geometry 

This paper investigates the impacts of road 
infrastructure on drivers’ behaviour and 

collision risks. A new method based on field 
strength is developed to assess the risks of 

road infrastructure. 

Li and Chen 
Journal of Advanced 
Transportation, 2018 

196 Road 
infrastructure 

Speed, traffic flow, traffic 
control, road configuration 

Historical data are used to develop a BN 
model to quantify the risks of accidents. The 

BN model was mainly developed using 
machine learning through combination of 

accident 
data from the Cyprus Police and traffic data 

generated with VISTA. The enriched dataset, 
enabled the specification of the BN variables’ 

causal relationships and the corresponding 
CPTs. 

Gregoriades and Mouskos 
Transportation Research 

Part C, 2013 

197 Road 
infrastructure 

Communication, visual 
cameras, lighting conditions, 

work zones, HMI, H-M 
interface, reaction time, 

other road users, AI 
maturity, objects, weather 

conditions, regulatory 
requirements, V2V, V2I, 
RSU, speed, traffic rules 

This article identifies main challenges ahead 
of mass adoption of self-driving cars and 

requirements to increase their safety while 
operating in complex environments such as 

urban areas. It is seen to be necessary to 
standardise the driving environment and invest 

in road infrastructure. 

Oliver, Potočnik, and 
Calvard 

Harvard Business Review, 
2018 
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198 Road 
infrastructure 

Road configuration, 
regulatory requirements, 

The author argues that several changes other 
than technical aspects, for example in road 
configuration and infrastructure, must take 

place to facilitate the introduction of AVs to 
public roads. 

Sclar 
Financial Times, 2018 

199 Road 
infrastructure 

Road type, road surface, 
weather conditions, lighting 

conditions, work zones, 
traffic control, traffic 

composition, traffic flow, 
other road users, 

This paper provides a taxonomy of 
infrastructure related factors which have 

impact on accident risks in urban areas. Then, 
it ranks those risk factors based on a colour 

coding system to assess their influence on the 
safety of roads (accidents risk, frequency, etc.) 

Papadimitriou et al. 
Accident Analysis and 

Prevention, 2019 

200 Road 
infrastructure 

Communication, traffic 
composition, V2X, V2V, 
autonomy level, traffic 

congestion, navigational 
software, time of day, 

sensors, LiDAR, radar, 
cameras, fatigue, driving 

behaviour, distracted 
driving, reaction time, 

adverse weather, 
regulations, public 

perception, cybersecurity, 
blind spots, speed, control 

After the introduction of AVs, the risk 
ecosystem is expecting to change and pose 

new challenges and opportunities for primary 
insurers. Although the economic benefits are 
anticipated to arise, they will be offset by the 

economic detriment incurred by emerging 
risks and the increased scrutiny attached to 
current risks. In this study, four plausible 

scenarios are designed to analyse the rate of 
injury claims after the introduction of CAVs. 
Risk factors associated with CAVs and traffic 

dynamics are discussed. 

Shannon et al. 
Risk Management and 

Insurance Review, 2021 

201 Road 
infrastructure 

Human factors, lateral and 
longitudinal motion 

controls, LiDAR, radar, 
other road users, motion 

planning, sensors, vehicle 
dynamics constraints, 

drowsiness, path planning, 
trajectory system, actuator, 

obstacles, traffic rule 
enforcement, V2V, V2X, 

road infrastructure    

This paper reviewed advances in collision 
mitigation technologies for ADAS as a 
prelude platform for fully autonomous 

vehicles. AVs can facilitate vehicle platooning 
strategy thereby reducing congestion on public 

roads. Nevertheless, implementation of this 
strategy is still a challenging concept due to 
the needs to modify/strengthen existing road 

infrastructures.   

Zamzuri et al. 
PERINTIS eJournal, 2016 

202 Path planning 

Obstacles, algorithms, 
sensors, actuators, control, 
trajectory generation, road 
geometry, number of lanes, 
other road users, velocity, 

driving behaviour 

A novel method is introduced for AVs to plan 
a safe path and follow the front vehicle safely 

in highway environment. 

Arrigoni et al. 
24th International 

Symposium on Dynamics 
of Vehicles on Roads and 

Tracks, 2015 

203 Path planning 

Obstacles, speed, road type, 
perception, control, 
algorithms, vehicle 

dynamics, traffic rules, 
localisation, sensors, 

cameras, radars, number of 
lanes, road topology  

The aim of this paper is to develop a local path 
planning approach for AVs. This methods id 

real-time and dynamic that allows AVs to 
avoid both static and dynamic obstacles. 

Hu et al. 
Mechanical Systems and 
Signal Processing, 2018 

204 Path planning 

Time-to-collision, 
perception, algorithms, 

obstacles, sensors, 
localisation, kinematic state, 
control architecture, traffic 

regulations, traffic 
conditions, other traffic 
participants, velocity, 

reaction time 

This paper develops a multi-level Bayesian 
decision-making for AD in highway 

environments. In the proposed multi-controller 
architecture, path planning is one of the 

critical and determining modules. 

Iberraken, Adouane and 
Denis   

IEEE/RSJ International 
Conference on Intelligent 

Robots and Systems 
(IROS), 2018 

205 Path planning 

Sensors, mixed traffic, other 
road users, algorithms, 

computer vision, LiDAR, 
radar, infrared sensors, 

ultrasonic sensors, sensor 
fusion, localisation, control, 
kinematic state, pedestrian 

density, road geometry, 
weather conditions, 

obstacles, reaction time, 
cameras, behaviour 

prediction  

To avoid collision in AD, it is critical for an 
AV to monitor the behaviour of surrounding 
traffic participants and detect any potential 

unusual maneuverers. This paper proposes two 
indices (i.e., lane-index and lane-change-

index) in addition to position and velocity to 
detect lane-changing maneuverers of nearby 
agents (including human-driven vehicles). 

Wang et al. 
22nd International 

Conference on 
Information Fusion, 2019 

206 Path planning 

Weather conditions, road 
conditions, obstacles, 

communication, V2V, V2I, 
V2X, algorithms, sensors, 
LiDAR, other road users, 

visibility, regulation, vehicle 
dynamics 

In this work, a system architecture is proposed 
for risk-aware AVs to enable them to 

deliberately bound the risk of collision below 
a given threshold, defined by the policymaker. 
Several key components and factors that can 
be a source of risk to the performance of AVs 

are discussed. 

Khonji, Dias and 
Seneviratne 

Working paper, Cornell 
University Library, 

preprint, 2019 

207 Path planning 

Path planning, traffic 
conditions, speed, road 

configuration, localisation, 
road map, traffic 

regulations, other road users 

This paper investigates the relationship 
between AD system configuration and safety.  

Zhang et al. 
IEEE 31st International 
Symposium on Software 
Reliability Engineering 

(ISSRE), 2020 
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208 Path planning 

Algorithms, visibility, 
mapping, environment, 

perception, motion control, 
sensors, localisation, 

obstacles, AI 

This research intended to evaluate algorithms 
that enable semi-autonomous vehicles to 

search an object in a known environment and 
avoid colliding with them. 

Marinheiro and Bianchini 
Proc. of the 2nd 

International Conference 
on Electrical, 

Communication and 
Computer Engineering 

(ICECCE), 2020 

209 Path planning 

Path planning, obstacles, 
vehicle dynamics, 
algorithms, motion 

planning, road geometry, 
kinematic states, road 

condition, other road users  

This paper presented a vehicle lane change 
system applying model predictive path 
planning (MPPP) built on the artificial 

potential field (APF) for speeding vehicles. 
The simulation results suggest that the MPPP 

algorithm is highly effective in high-speed 
lane change scenarios while avoiding dynamic 

obstacle vehicles. 

Lin et al. 
20th International 

Conference on Control, 
Automation and Systems 

(ICCAS), 2020 

210 Path planning 

Obstacles, other road users, 
algorithms, velocity, road 

infrastructure, motion 
planning, traffic conditions, 
kinematic state, number of 
lanes, road configuration, 
road conditions, sensors 

A risk estimation model is proposed to 
evaluate potential risks by considering nearby 

vehicles’ relative positions, velocities, and 
accelerations. This model uses a predictive 
occupancy map (POM) to choose the safest 

path with the minimum risk values. 

Shen et al. 
0 IEEE Intelligent 

Vehicles Symposium (IV), 
2020 

211 Path planning 

Control, system integration, 
obstacles, algorithms, 

perception, vehicle 
dynamics, relative velocity, 

motion planning, road 
boundaries 

This work utilises Model Predictive Control to 
develop an integrated Path Planning for AVs 

to select a collision-free path.  

Ko et al. 
20th International 

Conference on Control, 
Automation and Systems 

(ICCAS), 2020 

212 Trajectory 
planning 

Training and experience, 
trust, other road users, 

control, velocity, traffic 
conditions, longitudinal and 

lateral distance  

The possibility of teaching AVs by drivers to 
choose their preferred trajectories (and 

manoeuvres) in real traffic is put forward in 
this study.  

Nagahama et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2020 

213 Trajectory 
planning 

Control algorithms, other 
road users, traffic 
conditions, traffic 

complexity, traffic rules, 
road geometry, road limits, 

vehicle limits, kinematic 
state, cameras, sensors, 

driver’s psychology, driving 
style, obstacles, V2X, V2V, 

V2I, mixed traffic, GPS  

This paper is concerned with the overtaking 
scenario in highways under mixed traffic 

conditions. the proposed solution is developed 
based on quadratic programming optimization 

and assesses traffic situation online and 
performs an overtaking manoeuvre safely by 

selecting a safe trajectory. 

Coskun 
Engineering Science and 

Technology, an 
International Journal, 2021 

214 Trajectory 
planning 

Road geometry, surrounding 
vehicles, motion predictor, 

velocity, mixed traffic, 
cameras, radar, algorithms, 
vehicle dynamic, actuator 

limit, vehicle control 

AVs need to adjust their performance to road 
geometry and other vehicles’ behaviour. This 
paper suggests a trajectory planner that can 

predict motions of surrounding vehicles 
exploiting artificial potential field method. 

Song, Kim and Huh 
International Symposium 

on Intelligent Signal 
Processing and 

Communication Systems 
(ISPACS), 2019 

215 Trajectory 
planning 

Algorithms, traffic 
complexity, road geometry, 
perception, control, driving 

behaviour, velocity, 
obstacles, GPS, radar, 

cameras, path generation, 
vehicle kinematic 

constraints, actuator 
limitations, road conditions    

This work presents a trajectory planning 
algorithm using the quartic Bézier curve and 

dangerous potential field for AVs. To generate 
collision-free trajectories, potential field 

functions are developed to weigh the collision 
risk of available paths. 

Zheng et al. 
IET Intelligent Transport 
Systems (the Institute of 

Engineering Technology), 
2020 

216 Trajectory 
planning 

Algorithms, traffic rules, 
kinematic state, H-M 

Interface, path planning, 
obstacles, perception, 

vehicle control, actuators, 
weather conditions, sensors, 

traffic conditions, traffic 
density, speed, sensor 
fusion, road geometry, 
reaction time, system 

integration, number of lanes, 
HMI  

This study presents the development and 
initial test in a simulator of a trajectory-
planning algorithm for highly automated 

vehicles and discusses hoe it enables AVs to 
adapt to traffic on a structured road 

environment such as highways. That algorithm 
is designed to run on a fail-safe embedded 

environment with low computational power 
e.g. an engine control unit, to be feasible for 

mass produced AVs. 

Glaser et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2010 
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217 Trajectory 
planning 

Obstacles, visibility, 
perception, motion planning, 
environmental complexity, 

algorithms, motion 
planning, driving style, 
vehicle state, behaviour 
planning, velocity error, 

blind spots, vehicle control, 
kinematic models, sensor 
coverage, LiDAR, other 
traffic participants, road 

type, traffic rule 
enforcement, traffic 

conditions, road boundaries, 
time-to-collision    

This paper presents a trajectory generation 
method for AVs to overtake unexpected 

obstacles in a dynamic urban environment. 
The possibility and implications of perception 
impairment dur to occlusion is also taken into 

account.  

Andersen et al. 
IEEE Transactions on 

Intelligent Vehicles, 2020 

218 Trajectory 
planning 

Sensor malfunction, 
environment perception, 

weather conditions, vehicle 
control, other traffic 

participants, behaviour 
planning, V2X, algorithms, 

trajectory planning, velocity, 
vehicular dynamic, driving 
behaviour, LiDAR, sensors, 

radar, stereo cameras, 
obstacle 

Collision probability and accident severity 
assessment are incorporated into an approach 
that considers environment uncertainties in 

planning a safe trajectory for AVs. 

Hruschka et al. 
IEEE International 

Conference on Vehicular 
Electronics and Safety 

(ICVES), 2019 

219 Motion 
planning 

Visibility, weather 
conditions, occlusion, 

perception, sensors, sensor 
fusion, localisation, other 

road users, behaviour 
planning, road 

infrastructure, velocity, 
reaction time  

Inclement weather and occlusions in urban 
environments can impair perception. The 

uncertainties are handled in different modules 
of an AV, ranging from sensor level over 
situation prediction until motion planning. 

Sahin Tas and Stiller 
IEEE Intelligent Vehicles 

Symposium (IV), 2018 

220 Motion 
planning 

Traffic control 
infrastructure, perception, 
vehicle control, other road 

users, LiDAR, front camera, 
localisation, algorithms, 
V2V, machine learning, 
GPS, V2X, velocities, 

sensors, number of lanes, 
road geometry, perception 

reaction time, time-to-
collision 

This paper proposes a motion planning 
framework for AVs operating in urban 

environments with uncontrolled intersections. 
Computer simulation a well as vehicles tests 
were conducted to evaluate the effectiveness 

of the presented framework. The results 
suggest that it is reliable at uncontrolled 

intersections generating a human like driving 
pattern. 

Jeong and Yi 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2021 

221 Motion 
planning 

Control, localisation, 
perception, obstacles, 

velocity, algorithms, traffic 
conditions 

One of the major problems in AD is collision-
free motion and trajectory planning.  

Banzhaf et al. 
21st International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2018 

222 Motion 
planning 

Other road users, sensor 
noise, blind zones, trajectory 

planning, mixed flow, 
dynamic obstacles, vehicle 

dynamics, control 
mechanisms, road 

boundaries, behaviour 
generation, speed, path 

planning, kinematic 
constraints, road geometry, 
drivers’ behaviour, traffic 

complexity, radar, LiDAR, 
weather conditions, traffic 

rules 

Handling a mixed-flow intersection while 
interacting with other traffic participants (e.g., 
pedestrian and other motorised vehicles) is a 
challenging task for AVs. Sensor noise and 
blind spots can add to the complexity of that 

scenario too. This paper presents a 
hierarchical framework that splits the driving 
function into a decision, planning and action 

layers. This segregation makes motion 
planning feasible for that scenario. 

Zhou, Ma and Sun 
IEEE Transactions on 

Intelligent Vehicles, 2020 

223 Motion 
planning 

Control, road conditions, 
sensory system, trajectory 

planning, algorithms, 
obstacles, vehicle model, 

Vehicle Kinematics, driver’s 
risk perception, speed, road 

edges    

This paper proposes an advanced driver 
assistance system (ADAS) for AVs with a 
focus on motion planning and control. The 

motion planning algorithm for collision 
avoidance is formulated utilising artificial 

potential field approach based on perceived 
risk by human drivers. 

Wahid et al. 
IEEE International 

Conference on 
Mechatronics (ICM), 2017 

224 Behaviour 
generation 

Traffic composition, other 
road users, traffic 

environment, algorithms, 

This study focuses on the importance of 
behaviour generation in AVs (beyond SAE 3) 

in dealing with risks arising from uncertain 
traffic environment. 

Bernhard, Pollok and 
Knoll 

IEEE Intelligent Vehicles 
Symposium, 2019 
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225 Behaviour 
generation 

Traffic composition, stereo 
cameras, path planning, 
speed, kinematic state, 

pedestrian, reaction time, 
environmental perception, 
sensors, traffic conditions, 

perception accuracy 

In order for AVs to safely operate in mixed 
urban traffic, it is crucial for them to perceive 

the surrounding traffic participants and 
interact with them harmoniously. To achieve 

harmony in the mixed traffic, this paper 
proposes a vision-based approach to 

implement the humanlike autonomous driving 
function along a predefined lane level route in 

the complex urban environment with daily 
traffic. 

Guo et al. 
IEEE Transactions on 

Intelligent Vehicles, 2018 

226 Behaviour 
generation 

Software reliability, path 
planning, speed, situation 
awareness, traffic rules, 

vehicle control, algorithms, 
road layout, AI maturity, 

trajectory planning, traffic 
conditions, number of lanes, 

vehicle characteristics, 
longitudinal control, types 

of road 

This paper developed a risk-aware multi-
objective decision-making algorithm to choose 

between the optimal behaviour to execute a 
successful navigation mission. In that manner 
it is necessary for the autonomous vehicle to 

be able to perceive its surrounding and 
understand scenario context. 

Rodrigues et al. 
IEEE 20th International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2017 

227 Behaviour 
generation 

Perceived risk, mixed 
traffic, control algorithms, 

time to collision, safe 
distance, reaction time, 

speed, weather conditions, 
road type, number of lanes, 
trust, driver’s experience, 

GPS 

Lane changing is inevitable in driving and can 
increase the risk of collisions. This paper 

developed a lane-change decision model for 
AVs that conforms to a driver’s risk 
perception and safely change lane. 

Wang et al. 
Sensors, 2020 

228 Behaviour 
generation 

Traffic density, learning 
algorithms, traffic 

complexity, trajectory 
planning 

The behaviour generation methods must be 
capable of handling complex real-world 

traffic. To this end, data-driven approaches 
can be used to train the algorithms. In this 
paper, reinforcement learning is combined 
with local optimisation to generate safe and 

reliable behaviour for AVs. 

Hart, Rychly and Knoll 
IEEE Intelligent 

Transportation Systems 
Conference (ITSC), 2019 

229 Behaviour 
generation 

Algorithm, neural network, 
traffic density, other road 
users, trajectory planning, 
GPS, V2X, radar, LiDAR, 

sensor fusion, velocity, 
traffic conditions, 

perception, kinematic state 

Analysing an AV’s decision-making algorithm 
that plan a series of manoeuvres is the aim of 
this paper. The focus is on machine-learning 

algorithms (e.g., neural networks) for risk 
estimation. A BBN is also developed for 

behaviour planning.  

Dávid, Láncz and 
Hunyady 

Design, 2019 

230 Behaviour 
generation 

Traffic density, other traffic 
participants, kinematic state, 

sensors, actuator control, 
visibility, reaction time, 

weather conditions, 
predictive risk, obstacles, 

number of lanes, risk 
awareness   

This study proposes a risk-aware 
Responsibility Sensitive Safety (RSS) layer 

for AVs to increase vehicle’s situation 
awareness, reduce safety margins and achieve 

a desired balance between safety and 
usefulness. 

Oboril and Scholl 
IEEE Intelligent Vehicles 

Symposium (IV), 2020 

231 H-M Interfaces 

Situation awareness, urban 
areas, trust, human-machine 

communication, road 
surface, other road users, 

road infrastructure, 
experience, traffic rule 
enforcement, obstacles, 
weather conditions, road 

conditions, road type, speed, 
traffic conditions, V2I, 
pedestrian density, road 

layout 

Urban areas are challenging AVs, since even 
highly reliable systems may face traffic 

situations that need agile driving manoeuvres 
in hard-to-predict. This can adversely surprise 

the driver and cause discomfort, anxiety or 
loss of trust. To tackle that challenge, this 

paper proposed an interface benefiting from 
augmented reality (AR) to maintain situation 

awareness of drivers during a ride. 

Lindemann, Lee and 
Rigoll   

Multimodal Technologies 
and Interaction, 2018 

232 H-M Interfaces 

Time to collision, 
localisation, environmental 
conditions, secondary tasks, 

situation awareness, 
algorithms, longitudinal 

control, sensors, road 
infrastructure, radar, 

LiDAR, cameras, weather 
conditions, visibility, road 

configuration, traffic 
conditions, control, sensor 
fusion, perception, traffic 

law, other road users     

This paper investigates appropriateness of 
human-machine interfaces for each phase of 
autonomous driving. The objective here is to 

establish accurate situation awareness. 

Debernard et al. 
IFAC Papers Online, 2016 
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233 H-M Interfaces 

Vehicle control, HMI, 
trajectory planning, sensors, 

traffic regulations, traffic 
flow, speed limit, V2I, V2V, 
traffic control infrastructure, 
human-machine cooperation 
(HMC), weather conditions, 

road conditions, reaction 
time, trust, obstacle, traffic 

complexity   

This paper proposes a cooperative approach to 
the control issue of AVs which may require 
human interventions to avoid collisions in 

real-world traffic. A cooperative interface is 
supposed to eliminate the need for full 

handover when human input is necessary. 32 
participants took part in a simulation study 
and were tasked to choose how the system 

should handle traffic situations. 

Walch et al. 
Proceedings of the 8th 

International Conference 
on Automotive User 

Interfaces and Interactive 
Vehicular Applications, 

2016 

234 H-M Interfaces 

Vehicle control, takeover, 
sensors, traffic law 

enforcement, situation 
awareness, HMI, 

demographics, reaction 
time, weather conditions, 

trust, road conditions, road 
type, other road users, traffic 

conditions, traffic flow, 
driving experience, obstacle 

The topic of adjusting Human-Machine 
Interfaces to older users of highly autonomous 

vehicles has been around for a while. This 
paper developed three Human-Machine 

Interface concepts based on older drivers’ 
needs and conducted a driving simulator 

investigation with 76 drivers (39 old and 37 
younger drivers) to investigate the 

effectiveness and relative merits of these 
interfaces on drivers’ takeover performance, 

workload and attitudes. 

Li et al. 
Transportation Research 

Part F, 2019 

235 H-M Interfaces 

other traffic participants, 
control, weather conditions, 
construction sites, static and 

dynamic objects, road 
infrastructure, driving 

behaviour, sensors, reaction 
time, road type  

This paper examined the possibility of using 
augmented reality (AR) in designing 

interfaces for semi-autonomous vehicles (i.e., 
level 3). The participants took part in 

simulation experiment and faced unplanned 
short-notice take-over request (TOR). The 
results show that VR can be effective in 

reducing driver workload and improving take-
over performance in a subset of possible of 

TOR. 

Lindemann, Muller and 
Rigoll 

IEEE Intelligent Vehicles 
Symposium (IV), 2019 

236 H-M Interfaces 

Driver distraction, road 
conditions, demographics, 

NDRT, HMI, traffic 
conditions, reaction time, 
traffic density, visibility, 
road geometry, weather 
conditions, algorithms, 

cameras, sensors, drivers’ 
experience, construction 
sites, speed, actuators, 

kinematic state, obstacles, 
trust, mental workload, 
driving style, road type 

Machine learning techniques and a simulation 
experiment were used to assess the 

predictability of driver’s reaction to major 
hazards during take-over of vehicle control in 

HAVs. 

Alrefaie 
PhD Thesis, 2019 

237 
HMI (Human-

Machine 
Interaction) 

Communication, trust 

This study investigates the interactions 
between pedestrians/bicyclists and driverless 

cars. A vehicle was designed to appear to have 
no driver and a driver was trained to emulate 
an autonomous system. Then, observations 
were made to learn about the interactions of 
pedestrians and cyclists with the vehicle at a 

crosswalk. 

Rothenbücher et al. 
25th IEEE International 

Symposium on Robot and 
Human Interactive 

Communication, 2016 

238 
HMI (Human-

Machine 
Interaction) 

Software 

The AV-AV, human-human and AV-human 
interaction on the roads in terms of decision 

making is the focus of this study. Game theory 
and Nash equilibrium are used to analyse 

these interactions. 

Harris 
Annual Conference 

Towards Autonomous 
Robotic Systems, 2017 

239 
HMI (Human-

Machine 
Interaction) 

Communication, V2V, 
sensors, algorithms 

AVs and human drivers are expected to 
coexist for a long time. Thus, it is important to 

consider their interactions. the implicit and 
complex states and behaviours of human 

drivers like distractions and fatigue, which are 
hard to detect by the AVs, may result in 
sudden brakes and subsequent accidents 

because of the late alert to the following AVs. 

Yan et al. 
IEEE-INST Electrical 

Electronics Engineering 
INC., 2019 

240 
HMI (Human-

Machine 
Interaction) 

Weather conditions, 
visibility, road conditions, 

road user behaviour, lighting 
conditions, time of day, 

sensors 

This study proposes the concept of 
“driveability” for AVs to identify and handle 
driving risks. To this end, road datasets are 

reviewed and driveability factors are identified 
and categorised into majors groups: 1) 

environmental factors; and 2) road users’ 
interactions. 

Guo, Kurup and Shah 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

241 
HMI (Human-

Machine 
Interaction) 

Situation awareness, 
weather conditions, road 

conditions, perception and 
trust 

This papers centres on the interactions 
between pedestrians and AVs. It developed a 

situation awareness model and included 
environmental as well as individual factors to 
describe the interaction between a pedestrian 

and an AV. 

Rodríguez Palmeiro et al. 
Transportation Research 

Part F: Traffic Psychology 
and Behaviour, 2018 
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242 
HMI (Human-

Machine 
Interaction) 

H-M Interface, Autonomy 
level, reaction time, 

situation awareness, training 
and experience, traffic 

density, trust, perceived risk, 
secondary task, vehicle 
control, speed, weather 

conditions, road 
characteristics, drowsiness, 

driving styles, road 
infrastructure, visibility, 
other road users, driver 

state, driver skills, sensors, 
obstacles,   construction 

zone 

There are concerns about the performance of 
human drivers when it comes to partially 

(semi) automated vehicles. This paper 
explores the role of human drivers and 
challenges that they may face in semi-

autonomous driving and provides inspiration 
for conceptualising the driving task more 

completely. 

Zhang, Angell and Bao 
Transportation Research 

Interdisciplinary 
Perspectives, 2021 

243 
HMI (Human-

Machine 
Interaction) 

Algorithms, control, speed, 
trust, traffic condition, 

traffic congestion 

The results of this experiment revealed that 
there is significant value in evaluating human 
factors in a highly technological system such 
as an AV. Human behaviours and sentiments 

may complicate the development of safe 
algorithms for AVs. 

Brown et al. 
Systems and Information 

Engineering Design 
Symposium, 2018 

244 
HMI (Human-

Machine 
Interaction) 

Other road users, 
algorithms, traffic 

conditions, speed, traffic 
congestion, sensors, 

visibility, road geometry, 
obstacles, vehicle dynamics, 

geometry, traffic culture, 
urban design 

The primary aim of this study is to model the 
risk of collision at junctions and intersections 

and evaluate the impact of full and shared 
autonomous systems on safety. With respect 
to human drivers, collisions at intersections 

often occur due to inattention or misjudgement 
of the other cars’ dynamics. This remains an 

open problem for autonomous vehicles, which 
can struggle to navigate intersections without 

incident or to interact naturally with cars 
driven by humans. 

McGill et al 
IEEE Robotics and 

Automation Letters, 2019 

245 
HMI (Human-

Machine 
Interaction) 

Speed, algorithms, 
communication, V2V, V2X, 

traffic conditions, 

In this study, with accurately predicted motion 
of a remote vehicle, a collision risk and the 
automated drive mode are determined by 

incorporating human factors. Effects of the 
V2V communication on a human-cantered 

risk assessment algorithm have been 
investigated through a safe triangle analysis. 

Shin, Park and Park 
Applied Sciences, 2018 

246 
HMI (Human-

Machine 
Interaction) 

Trust, rules, risk perception, 
familiarity 

This paper studied the attributed values and 
perceived safety as predictors of the intention 
to use autonomous vehicles. The human factor 

is seen central in traffic. Therefore, it is 
important to focus on the need of formulating 
strategies that might prepare the public for a 
live interaction with autonomous vehicles. 

Montoro et al. 
Safety Science, 2019 

247 
HMI (Human-

Machine 
Interaction) 

Hardware, software, 
communication, V2X, V2V, 

traffic congestion, 
cybersecurity, drowsiness, 

speed, algorithms 

This design study examines the trade-offs that 
occur in autonomous vehicle hardware and 

software development. It also investigates the 
role of humans in the car accidents and the 

significance of that in the scaled vehicle 
construction process. 

Rowley et al. 
Systems and Information 

Engineering Design 
Symposium (SIEDS), 

2018 

248 
HMI (Human-

Machine 
Interaction) 

Pedestrians, traffic 
conditions, human-driven 

cars, algorithms, road 
design, 

The risks and risky encountering cases of 
pedestrian-(autonomous) vehicle interactions 
are classified. A list of descriptive variables is 
provided and the ability of ML algorithms in 

classification of pedestrian-car conflicts is 
evaluated. 

Gandhi, Luo and Tian 
International Conference 

on Human-Computer 
Interaction, 2019 

249 
HMI (Human-

Machine 
Interaction) 

Algorithms, vehicle 
dynamics, collision 
avoidance, traffic 

conditions, pedestrians, 

A motivational driver model is developed to 
design a rear-end crash avoidance system. 

These motivations simplify both autonomous 
driving algorithms and human-machine 

interactions. Moreover, the motivations are 
used as risk assessment factors for driver–

machine interaction in dangerous situations. 

Mozaffari and Nahvi 
Journal of System and 

Control Engineering, 2020 

250 
HMI (Human-

Machine 
Interaction) 

Sensors, weather conditions, 
obstacles, other road users, 

algorithms, 

Examples for uncertainty from the 
environment are hidden RWM (road world 
model) states due to occlusions from large 
obstacles or sharp turns, or parameters that 

cannot be physically sensed such as intentions 
of humans participating in the environment, 

including other drivers, cyclists, and 
pedestrians. 

Naghshvar, Sadek and 
Wiggers 

NeurIPS Workshop on 
Machine Learning for 

Intelligent Transportation 
Systems (MLITS), 2018 

251 
HMI (Human-

Machine 
Interaction) 

Pedestrians, environmental 
conditions, demographics, 
traffic conditions, HMI, 

traffic culture, 
communication, V2V, V2I, 

V2P, V2X, time of day 

The pedestrian behaviour, as the most 
vulnerable road user, id discussed and 

influential factors as well as their 
interrelations are studied. This necessitate the 
communication between the AVs and other 

road users. 

Rasouli and Tsotsos 
IEEE Transactions on 

Intelligent Transactions, 
2019 
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252 
HMI (Human-

Machine 
Interaction) 

Trust, other road users, 
traffic conditions, sensor, 

AI, 

Autonomous systems in logistics provide a 
new level of challenge for the analysis and 

design of human–machine interaction 
concepts. A comprehensive case study 

regarding automated lorry driving in logistics 
is provided in order to test the concept 

concerning practical implications. 

Klumpp 
International Journal of 
Logistics Research and 

Applications, 2018 

253 
HMI (Human-

Machine 
Interaction) 

H-M interface, situation 
awareness, drowsiness, 

reaction time, traffic 
conditions, driver state, 
traffic rule enforcement, 

algorithms, technical 
failures, trust, perceived risk 

The central focus of this paper is about the 
Human Machine Interactions (HMI) which are 

progressively moving as Human Machine 
Transitions (HMT), according to the recent 

advances in AVs. Emerging risks due to 
takeover/handover of the control are also 

investigated. 

Bellet et al. 
Transportation Research 

Part F, 2019 

254 
HMI (Human-

Machine 
Interaction) 

Algorithms, regulation, bias, 
cybersecurity, hardware, 

component, path planning, 
sensors, obstacles, control, 

This article investigates the ethical and 
technical concerns surrounding algorithmic 
decision-making in AVs by exploring how 

driving decisions can perpetuate 
discrimination and create new safety risks for 

the public. Modelling and understanding 
human-vehicle interactions is essential for safe 
navigation in mixed traffic to build consumer 

trust in AVs, although this remains a challenge 
for decision-making algorithms. 

Lim and Taeihagh 
Sustainability, 2019 

255 
HMI (Human-

Machine 
Interaction) 

Road geometry, visibility, 
lighting conditions, road 

infrastructure, animals, road 
conditions, pedestrians 

This study focuses on the environmental, 
human and road factors influencing the car 

crashes in South Africa and discusses how the 
introduction of self-driving cars can mitigate 

the accident risks. 

Verster and Fourie 
South African Journal of 

Science, 2018 

256 
HMI (Human-

Machine 
Interaction) 

Algorithms, perceived risk, 
sensor, control, 

 

With the ever-expanding capabilities of 
technical systems, user-appropriate design 
issues are becoming increasingly important. 

That importance comes from two aspects. One 
is about capability of single vehicle; The other 
is about capability of the whole traffic system 

before all the on-road vehicles become 
capable of fully autonomous driving. 

Hu et al. 
Journal of Advanced 
Transportation, 2017 

257 
HMI (Human-

Machine 
Interaction) 

Speed, reaction time, 
reliability, trust, 

takeover/handover, sensors, 
weather conditions, road 

configuration 

This article sees this essential to consider 
human-vehicle interactions in order to study 

the reaction times in takeover/handover 
situations in automated driving which 
inherently involve the collision risks. 

Kim and Yang 
IEEE Transactions on 

Human-Machine Systems, 
2017 

258 
HMI (Human-

Machine 
Interaction) 

Other road users, H-M 
Interface, training & 
experience, traffic 

composition, road features, 
traffic rules, road 

infrastructure, vehicle shape, 
environment perception 

This study investigates the challenges that 
integration of AVs into mixed traffics can 
pose to the safe operation of them. Four 

categories of information were emerged from 
the literature review in this paper: 1) vehicle 
driving mode, 2) AVs’ manoeuvres, 3) AVs’ 
perceptions of the environment; and 4) AVs’ 

cooperation capabilities. The 
recommendations place a strong emphasis on 

HMI and H-M Interfaces. 

Schieben et al. 
Cognition, Technology & 

Work, 2019 

259 
HMI (Human-

Machine 
Interaction) 

Sensor fusion, trust, traffic 
control infrastructure, 

This work evaluated the future of mobility and 
transportation in the age of autonomous 

driving. Several impacts and challenges that 
AVs can have for the developers and users are 

discussed. The authors adopted a human-
centric approach to analyse this technology 

will be experienced by human drivers. 

Hancock, Nourbakhsh and 
Stewart 

Proceedings of the 
National Academy of 
Sciences of the United 

States of America, 2019 

260 
HMI (Human-

Machine 
Interaction) 

Road infrastructure, 
neighbourhood 

environment, other cars, 
bicyclists, pedestrians 

perceived risk, weather 
conditions 

This paper studies the factors that influence 
people's views of the interactions between 
AVs and other road users based on a large 

sample from the 2015 and 2017 Puget Sound 
Travel Surveys. The neighbourhood 

environment and road infrastructure are 
specifically underlined in this work. Results 

reveal that 

Wang and Akar 
Transportation, 2019 

261 Training & 
Experience 

Situation awareness, HMI, 
H-M Interface, V2V, V2I, 

overtrust, sensors 

This article concentrates on the role of human 
behaviour in the safety of intelligent vehicles 

(i.e. AVs). In this study the importance of 
providing appropriate training for the drivers 

of this type of vehicle is highlighted. It is 
asserted that training is one of the most crucial 
factors to the acquisition and maintenance of 

safety critical hazard mitigation skills that 
perhaps will never be acquired if Level 3 

autonomous vehicles become a reality for the 
a large number of drivers from the moment 
they try this technology for the first time. 

Fisher et al. 
IEEE Transactions on 

Intelligent Vehicles, 2016 
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262 Training & 
Experience 

Reliability, trust, HMI, 
situation awareness, 

handover 

This project was aimed to study the ‘handover 
problem’ in HAD. In this way, it takes the 

effects of training and experience into account 
and underlines their role in handling handover 

situations. 

Morgan, Alford and 
Parkhurst 

Project Report, Venture 
Project, University of the 
West of England, 2016 

263 Training & 
Experience 

Trust, HMI, system 
reliability, H-M interface 

This study focuses on the importance of ‘trust 
repair’ in human-machine interactions 

especially in autonomous systems. The ‘level 
of experience’ is believed to have a 

considerable impact on the human-machine 
relationships. The experience can affect the 

level of trust in the capabilities of an 
autonomous systems. 

de Visser, Pak and Shaw 
ERGONOMICS, 2018 

264 Training & 
Experience 

Secondary tasks, HMI, 
driving behaviour, cultural 

environment, situation 
awareness, lateral and 

longitudinal control, other 
road users, hardware and 
software reliability, road 

infrastructures 

This paper highlighted the benefit of research 
on the role of driver ‘experience’ in safety of 

AVs. This becomes particularly important 
because training and experience not only 

contributes to apprehending system 
limitations, but also in reacting to complex 

and hazardous situations. 

Demeulenaere 
Technological Forecasting 

& Social Change, 2020 

265 Training & 
Experience 

Overreliance, road users, 
MHI, 

The issue of drivers’ skills and enough 
experience to handle critical safety situations, 
handovers and long-term trips was studied in 

this work. It is argued that initial and 
sufficient training are crucial for drivers in 
taking over the control of the vehicle when 

facing hazards or uncertainty. 

Trösterer et al. 
Proceedings of the 8th 

International Conference 
on Automotive User 

Interfaces and Interactive 
Vehicular Applications, 

2016 

266 Training & 
Experience Trust, HMI, H-M Interface, 

This study emphasises the need for modified 
trainings for drivers to be able to engage with 

AVs and benefit from their capabilities. 

Kyriakidis et al. 
Theoretical Issues in 

Ergonomics Science, 2019 

267 Training & 
Experience 

Road users, age, pedestrians, 
obstacles, communication, 
handover/takeover, control 

This book deals with the human factors 
affecting the interactions between ADSs and 

humans. The significance of training and 
experience is highlighted here: “Many, if not 

most, will have no specific training in how the 
technology works, but will have experience 
interacting with human-driven vehicles. The 
risks are significant—getting an interaction 
wrong can result in injury or death. Major 

design problems could result in many death”. 

Fisher et al. 
Handbook of Human 

Factors for Automated, 
Connected, and Intelligent 

Vehicles, 2020 

268 Training & 
Experience 

Trust, safety perception, 
HMI, training & experience, 

125 participants take part in this survey and 
experienced a ride on an AV in a large clinic 
area in Berlin, Germany. Results show that 

this experience had significant impact on the 
trust and safety perceptions of the participants. 

Zoellick et al. 
PLoS ONE, 2019 

269 Training & 
Experience 

HMI, trust, situation 
awareness, perceived 

reliability, Human-Machine 
Interface, speed limit, 

training and experience, 
trust, other road users 

Concerns about interactions between humans 
and AVs are studied in this paper. A quasi-
naturalistic study was conducted on public 

roads to examine to test a self-driving vehicle 
human–machine interface, ATLAS. The 

results show that following interaction with 
this prototyped system, participants expressed 

an improved trust in self-driving vehicle 
technology, an increased belief in its likely 
usability, and a decreased fear of probable 

operational failures. 

Brinkley et al. 
International Journal of 

Human–Computer 
Interaction, 2019 

270 Training & 
Experience Trust, HMI 

An expert panel was designed to discuss the 
implications of human factors in automated 

driving. The impact of trust and education on 
the control and usability of AVs are 

accentuated. This becomes crucial when we 
expect humans (e.g. other road users) to 

interact with the technology. 

Pradhan et al. 
Road Vehicle Automation 

5, 2019 

271 Training & 
Experience System integration, culture 

Human errors are often reported as the ‘root 
cause’ of accidents in socio-technical systems. 

However, these errors can be due to other 
factors such as training machine design, or 

culture. 

Swallom, Lindberg and 
Smith-Jackson 

Handbook of Human 
Systems Integration, 

Chapter 14, 2003 

272 Training & 
Experience 

Weather conditions, speed, 
trust, road conditions, road 
type, road configuration, 

road infrastructure, 
perceived risk, number of 

lanes, speed, perceived 
reliability,  

The results of this study show that providing 
‘explanations’ on the autonomous driving 

process for the occupants of the vehicle can 
improve their level of trust in the technology. 

The participants reported a significant increase 
in their trust when provided with ‘attributional 

explanations’ in diverse driving situations 
including adverse weather conditions, poor 

road conditions and high speeds. 

Ha et al. 
Transportation Research 

Part F, 2020 
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273 Training & 
Experience 

Perceived risk, experience, 
HMI, H-M interface, 
reaction time, control, 

drowsiness and fatigue, 
situation awareness, over-
trust, weather conditions, 
other road users, traffic 
conditions, speed and 
distance, sensor, over-

reliance, road conditions 

The current study reports an improvement in 
technology acceptance, trust levels and 

perceived risks by participants in automated 
driving.  Use of a partially automated vehicle 
on a public highway increased drivers’ trust 

and perceptions of safety around AVs, 
consistent with greater acceptance of and 

intention to use AV technology. 

Wilson et al. 
Safety Science, 2020 

274 Drowsiness Time of day, circadian 
factors, secondary task 

This work analyses some potential aftermaths 
of ‘sleep-related’ issues in the context of 
autonomous driving and suggests new 

multidisciplinary areas for future research 
between social and drowsy scientists. The 

authors categorise the current state-of-
technology as semi-autonomous vehicles 

(level 4) and see the issue of drowsiness still 
to be relevant. Therefore, sleepiness or 

drowsiness is believed to increase the risk of 
accident. 

Grunstein and Grunstein 
International Conference 

on Intelligent Human 
Systems Integration, 2020 

275 Drowsiness 

Situation awareness, 
weather conditions, road 

characteristics, time of day, 
reaction time, 

While there might be situations that the 
control transition between an AV and a driver 

can be initiated due to some environmental 
conditions or road characteristics, the states of 
drivers play a role in safe take-over of control. 

Vogelpohl et al. 
Accident Analysis and 

Prevention, 2019 

276 Drowsiness 
HMI, situational awareness, 
non-driving tasks, control, 

reaction time 

This research suggests that non-driving tasks 
can manage driver drowsiness in automated 

driving. 71 employees of the AUDI AG 
participated in this experiment. The results 

show that different activities such as texting, 
listening to music and using body exercisers 

can have different impacts on driver 
drowsiness. 

Weinbeer, Muhr and 
Bengler 

Proceeding of the 20th 
Congress of the 

International Ergonomics 
Association, 2018 

277 Drowsiness 

Reaction times, situation 
awareness, secondary tasks, 

time of day, weather 
conditions, lighting 

conditions, work zones, road 
conditions, physiological 

factors 

Evidence suggests that drivers will be more 
prone to falling asleep during automated 

driving. In higher levels of vehicle 
automation, the need for monitoring the state 
of the human driver will become vital. This 
study aimed to find potential physiological 
measures as a basis for developing systems 

that can detect driver drowsiness in automated 
driving. 

Wörle et al. 
IET Intelligent Transport 

Systems, 2019 

278 Drowsiness 

Non-driving tasks, reaction 
time, system failure, 

situation awareness, speed, 
pedestrians, 

Drowsiness and distraction are known as risk 
factors in AD. This research suggests that 
secondary or non-driving tasks (as major 

cause of distraction) can be used to prevent 
drivers from sleeping during automated 

driving. This can reduce the time requited for 
the driver to gain situation awareness and 

react to a hazardous situation. 

Miller et al. 
Proceedings of the Human 
Factors and Ergonomics 

Society 59th Annual 
Meeting, 2015 

279 Drowsiness 

H-M Interface, reaction 
time, HMI, traffic situation, 

weather condition, driver 
state, other road users, take-

over, speed 

In the lower levels of driving automation 
where intervention of human driver is still 

required, drowsiness as a risk factor can play a 
crucial role and lead to dangerous situations. 
The findings reveal that driving time, driving 
mode as well as age have a significant impact 
on driver drowsiness. Furthermore, this study 
reports that the participants got drowsier in 
AD comparing to manual driving, with the 
younger participants experiencing higher 

levels of drowsiness. 

Kundinger et al. 
Proceeding of the 25th 

International Conference 
on Intelligent User 

Interfaces, 2020 

280 Drowsiness 

Reaction time, secondary 
task, Human-Machine 

Interface, autonomy level, 
sensors, work zone, 

Drowsiness and secondary tasks are reported 
to impair drivers’ ability to safely and timely 
handle take-over performance. The results of 
this research suggest a relationship between 

the driver’s drowsiness and non-driving 
related tasks (NDRT) engagement in semi-
autonomous vehicles, but not in highly AD. 

Naujoks et al. 
Accident Analysis and 

Prevention, 2018 

281 Drowsiness 
Reaction time, HMI, 

secondary task, work zone, 
driver state, speed 

Due to the operational limitations of AVs, it is 
critical to ensure that human intervention is 

made in a timely manner to avoid a collision. 
Drowsy driving can increase the reaction time 
of human drivers. This driving simulator study 

evaluates the impact of scheduled manual 
driving on driver drowsiness and performance, 

as well as age differences therein. The 
findings reveal that driver drowsiness 

meaningfully declines when scheduled manual 
driving begins. 

Wu et al. 
Accident Analysis and 

Prevention, 2019 
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282 Drowsiness Reaction time, NDRT, trust, 
traffic density, training 

This paper investigated the impact of 
drowsiness on different aspects of take-over 
performance. 31 participants took part in an 

experiment which was conducted on the 
motorway A9 in Germany. No significant 

influence of the drowsiness level was reported 
on take-over-time aspects. 

Weinbeer et al. 
8. Tagung Fahrerassistenz 

Conference, 2017 

283 Drowsiness 

HMI, driver state, AI 
algorithms, perception, 

navigation planning, vehicle 
control, H-M Interfaces, 
sensor robustness, V2V, 
V2I, behaviour planning, 

motion planning 

This paper discusses the concept of ‘shared 
autonomy’ and the idea of ‘Human-Cantered 
Autonomous Vehicle Systems’. The author 

argues that it is achievable for AI systems and 
humans to collaborate effectively. This can 
contribute to the design, development and 
testing of AVs. Several challenges and risk 

factors including driver drowsiness are 
discussed as well. 

Fridman 
arXiv preprint 

arXiv:1810.01835, 2018 

284 Drowsiness 

Trust and reliance, driver 
state, sensor malfunction, 

response time, pedestrians, 
communication, V2I, V2V, 

V2X, training and 
experience 

This study investigates the reliance of drivers 
on AD and discusses the human factors. The 
results show that prior knowledge about the 
possibility of AV failures leads to calibrated 
reliance on AVs and increases the awareness 
of drivers. Conversely, over-reliance on AV’s 

performance can inhibit drivers to 
appropriately respond to system failures. 

Arakawa 
International Journal of 
Innovative Computing, 

Information and Control, 
2018 

285 Drowsiness 

Reaction time, NDRT, 
sensors, actuators, 

perception accuracy, speed, 
control, traffic conditions, 

situation awareness, driving 
duration, driver state, traffic 

density 

This paper investigated the impact of 
durations of automated driving on the take-

over performance. The findings suggest that 1 
hour of automated driving affects the driver's 
behaviour, leading to deterioration of take-
over quality, increased reaction time and 

increased drowsiness. 

Bourrelly et al. 
IET Intelligent Transport 

Systems, 2019 

286 Drowsiness 

Weather and lighting 
conditions, reaction time, 

speed, vehicle control 
system, sensors, cameras, 
driver state, path planning, 
pedestrians, V2V, intention 
recognition, vehicle state, 

LiDAR, H-M Interface 

This study defines a collaborative driving 
framework consisting of two elements:  an 

automated co-pilot and a human driver. This 
framework is based on internal and external 

risk assessment. The internal risk is defined in 
terms of driver drowsiness and intention 

recognition, and the external risk comprises of 
a collision avoidance system to estimate the 
collision probability between the ego vehicle 

and surrounding vehicles. 

Tran et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

287 Drowsiness 

Driver’s state, secondary 
task, traffic density, road 
curvature, H-M Interface, 

lighting conditions, situation 
awareness 

The influence of HAD on driver’s drowsiness 
development was studied. The findings 
demonstrate that the drivers experienced 
highest level of drowsiness when drivers 

proceeded driving manually as well as when 
in HAD mode but without being engaged in 

NDRT inside the vehicle. 

Schömig et al. 
6th International 

Conference on Applied 
Human Factors and 
Ergonomics, 2015 

288 Drowsiness 

Circadian phase, time of 
day, situation awareness, 

driver state, visibility, HMI, 
perceived risk, trust, mental 

workload, control 
perception, driver state, 

fatigue 

Driving in the night is notably more hazardous 
and it is not merely attributed to poorer 
visibility or sleep deprivation. Circadian 

changes in human cognitive performance also 
play a role. This study suggests an extended, 
multi-period, Consensus Model of the driver 

that includes circadian rhythmicity during 
semi-automated driving. The results of the 

literature also support the idea that circadian 
rhythmicity must be taken into account when 

researching semi-automated driving. 

Kaduk, Roberts and 
Stanton 

Theoretical Issues in 
Ergonomics Science, 2020 

289 Drowsiness 

Reaction time, fatigue, 
NDRT, weather conditions, 

traffic density, visibility, 
control 

This study investigated the effect of NDRTs 
on drivers’ fatigue on highly automated 
driving. Three factors were monitored to 

measure the participants’ fatigue: percentage 
of eye-lid closure, blink related eye-tracking 

parameters and self-report Karolinska 
Sleepiness Scale (KSS). The results suggest 

that “the monotonous monitoring task induced 
task related fatigue after a time-on task of 25 

min, which could be demonstrated by a rise of 
subjective KSS ratings, PERCLOS and blink 

related parameters”. 

Jarosch et al. 
Driving Assessment 
Conference, 2017 
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290 Drowsiness 

Visibility conditions, traffic 
density, driving duration, 

fatigue, vigilance, circadian 
rhythm, time of day, 

reaction time, 
longitudinal/lateral control 

The impact of semi-automated driving on 
drivers’ vigilance and passive fatigue was 

investigated in this research. An automated 
vehicle was used by the participants and a 

vigilance task became the primary active task 
besides passive monitoring. The remaining 

eye tracking indicators for fatigue (pupil 
diameter, blink frequency, blink duration) 

except 
PERCLOS showed a significant increase in 
fatigue in course of the experimental drive. 

This directly affects the vigilance performance 
and subsequently drivers’ reaction time. 

 

Körber et al. 
6th International 

Conference on Applied 
Human Factors and 
Ergonomics, 2015 

291 Reaction time 

Mixed traffic, traffic flow, 
demographics, road 

geometry, traffic 
complexity, road capacity, 

traffic rules, weather 
conditions, driving 
behaviour, traffic 

conditions, reaction time, 
speed, sensory system, 

traffic control 

This study suggests a novel cellular automata 
model to address the issue of drivers’ 

characteristics in mixed traffic where different 
AVs (e.g., cars and buses) and HDVs are 
compared in terms of fundamental traffic 

parameters. 

Tanveer et al. 
Sustainability, 2020 

292 Reaction time 

Velocity, cybersecurity, 
machine learning 

algorithms, road conditions, 
vehicle dynamics, control, 

lane configuration 

A data-driven tool is developed to evaluate the 
safety of AVs involving sensitivity analysis 

and Automotive Safety Integrity Levels 
(ASILs). 

Fan, Qi and Mitra 
arXiv:1704.06406, 2017 

293 Reaction time 

Traffic flow, other traffic 
participants, traffic density, 

mixed traffic, control, 
velocity, road conditions, 

weather conditions, number 
of lanes 

To test the capability of AVs in harmonising 
with HDVs in real traffic, thousands of 

vehicle-recorded data in the US was used and 
reaction time was chosen to be a performance 

indicator. 

Althoff and Lösch 
IEEE 19th International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2016 

294 Reaction time 

Sensors, communication, 
speed, road infrastructure, 
obstacles, traffic density, 
VANET, V2V, V2I, other 

road users, trajectory 
planning, radar, LiDAR, 

GPS, H-M Interface, road 
conditions, driving style, 

driver’s state, weather 
conditions, road type, 

fatigue, situation awareness, 
driver’s age, kinematic state, 
temperature, road geometry, 

traffic conditions 

This paper proposes a tool for assessing 
collision risk for AVs. This tool includes 

environmental, vehicle, and driver factors and 
exploits a Bayesian Network to model 

collision risks. 

Russo et al. 
IFAC Conference Paper 

Archive, 2016 

295 Reaction time 

Fatigue, secondary task, 
HMI, speed, vehicle control, 
driver state, training, human 
factors, visibility, other road 
users, weather conditions, 

traffic density 

This study tested the hypothesis that 
monitoring roadway during AD affects driver 
vigilance. A 40-minute simulated drive was 

designed and on-board drivers were tasked to 
watch out the roadway for hazards. The results 

suggest that hazard detection rate dwindles 
and reaction times slows as AD carries on. 

Greenlee, DeLucia and 
Newton  

Human Factors, 2018 

296 Reaction time 
Algorithms, road conditions, 
velocity, vehicle dynamics, 

software 

The application of hierarchical control in AVs 
and ADAS is highlighted in this paper. It is 

upheld that conventional design and test 
methodologies are insufficient for ensuring 
safety of AVs. One of the variables which is 
used to characterise safety is reaction time.  

Fan, Qi and Mitra 
IEEE Design and Test, 

2018 

297 Reaction time Secondary task, perceived 
risk, training and experience 

In case of any failure in the automation 
system, drivers’ ability and readiness to take 
over the manual control play a vital role in 

safe performance of AVs. This article shows 
the results of an experimental study to test the 

impact of ‘risk attitude’ on acceptability, 
productivity and safety (reaction times) under 

failure of autonomous driving systems. 

Dixit et al. 
Accident Analysis & 

Prevention, 2019 

298 Reaction time 

Secondary task, drowsiness, 
training and experience, 

trust, perceived risk, 
situation awareness 

A driving simulator study was conducted to 
test the impact of ‘time budget’ and secondary 

(non-driving-related) tasks on take-over of 
control in low crash risks (LCR) against high 
crash risk (HCR) drivers. The results found 

that HCR drivers had lower risk perception in 
comparison with LCR participants. In 

addition, engagement in reading news and 
watching video had similar impact on the 
reaction time of drivers in both groups. 

Lin et al. 
Accident Analysis & 

Prevention, 2020 
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299 Reaction time 

H-M Interfaces, vehicle 
control, weather conditions, 
hardware reliability, non-

driving related task, 
drowsiness, fatigue, time of 
day, obstacles, situational 

awareness 

Takeover modality in highly automated 
vehicles is the focus of this research. 60 

participants were required to handle a stalled 
park vehicle after being awoken from a light 
sleep.  Half of participants were exposed to a 
peppermint odour stimulation, while the other 

half received a placebo (air). The results 
indicate that the presence of peppermint did 

not affect the participants’ reaction time.   

Tang et al. 
Human Factors, 2020 

300 Reaction time 

V2V, algorithms, 
communication, radar, 

sensors, HMI, other traffic 
participants, driving style, 
GPS, obstacle, kinematic 

models, velocity, road 
geometry, sensor fusion, 

driver’s sensitivity     

Reaction time was used to measure collision 
risk in AD while V2V wireless is fused with 

radar to anticipate motion of a remote vehicle. 

Shin et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

301 Reaction time 

H-M Interfaces, weather 
conditions, road conditions, 
traffic conditions, control, 

situation awareness, driving 
behaviour, driver 

distraction, training, 
secondary task, trust 

Driver’s distraction is still an issue even in 
semi- and highly automated vehicles. Two 

streams of research were conducted 
investigate the capabilities of Human-Machine 

Interfaces to address driver distraction.  

Geitner 
University of Warwick 

WMG Experiential 
Engineering, 2018 

302 Reaction time 

Situation awareness, 
secondary task, hardware 
failures, sensor failures, 
obstacles, traffic density, 

V2X, overreliance, 

This work investigated the effect of V2X 
communication channel on the allowed time 
for control transition from the autonomous 

system to the driver. The findings show that 
benefiting from V2X can add 6-7 seconds to 
the time allowed by local perception thereby 

reducing the risk of collision. 

Demmel et al. 
Proceedings of the 2nd 
IFAC Conference on 
Cyber-Physical and 

Human Systems CPHS, 
2019 

303 Road type Traffic conditions, speed 

The effect of a specific type of ADAS (i.e. 
lane change driver support system) is 

evaluated in this study. ‘Road type’ is among 
studied variables and is categorised into five 
groups: European highways, highways, city 

roads, roundabouts, and unspecified. 

Isaksson-Hellman and 
Lindman 

Journal of Traffic Injury 
Prevention, 2017 

304 Road type 
Road configuration, 

obstacle, road alignment, 
speed 

The results suggest that “the adjusted Odds-
Ratio of run-off crash was five times higher in 
double direction roads with median strip than 

in one-way urban roads”. Then the authors 
identify urban road configurations that may 

need to be redesigned to reduce the odds of a 
run-off crash. A series of risk factors including 
road geometry, road layout, road width, road 

type and road alignment are highlighted in this 
study. 

Álvarez et al. 
PLoS ONE, 2020 

305 Road type 

Reaction time, road 
characteristics, secondary 

tasks, other road users, 
environmental variables, 

weather conditions, lighting 
conditions, human factors, 
situation awareness, speed 

This research explores the contributing factors 
and mechanisms of the accidents involving 
autonomous vehicles. The paper concludes 

that “the highway is identified as the location 
where sever injuries are likely to happen due 

to high travel speed”. Other factors and causes 
also mentioned in this paper including 

environmental and human factors. 

Wang and Li 
PloS ONE, 2019 

306 Road type 

Weather conditions, traffic 
density, number of lanes, 

visibility, time of day, road 
geometry 

This paper investigated the effect of multiple 
variables such road type, weather conditions 

and road conditions on the accident risk. 

Malin, Norros and 
Innamaa  

Accident Analysis and 
Prevention, 2019 

307 Road type 

Road geometry, trust, 
driving style, vehicle 
control, speed, traffic 

conditions, road 
infrastructure, traffic 
infrastructure, control 

This study used a set of models to evaluate the 
effect of road environments and road elements 

such as road segment and road type on the 
speed behaviour of drivers. The results 
indicate the need for the design of AV 
controllers that can adapt their driving 

behaviour to the road environment. 

Paschalidis et al. 
Analytic Methods in 

Accident Research, 2020 

308 Road type 

Driving style, traffic 
density, weather conditions, 
lighting conditions, relative 

speed, reaction time, 
secondary task, driver visual 

attention, training and 
experience, number of lane 
changes, kinematic state, 

other road users, road 
situation 

This paper examines the relationships between 
the road situational risk and angry driving 

style on lane-changing decisions in drivers and 
the allocation of visual attention of angry-

driving-style drivers based on video clips of 
driving. The findings of this research are 

applicable in the field of AD and development 
of ADAS. 

Huo, Ma and Chang 
Transportation Research 

Part F, 2020 
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309 Road type 

Situational awareness, GPS, 
cameras, sensors, road 

environment, traffic flow, 
traffic rules, weather 

conditions, road quality, 
obstacles, LiDAR, other 

road users, lighting 
conditions, self-awareness 

In this thesis, a novel video-based framework 
for the automatic assessment of collision risk 

in a road scene is proposed. The proposed 
framework classifies road type to achieve 
higher accuracy than the state-of-the-art 

methods, for each 
road type separately. 

Muhammad 
PhD Thesis, 2016 

310 
Road 

configuration 
(layout/design) 

Visibility, speed, collision 
avoidance, pedestrian, HMI 

This paper discusses the framework for a risk 
predictive driver assistance system that 

dynamically shares control authority between 
the elderly driver and the ADAS depending on 
the potential risk of the situations, in order to 

cope with uncertainty and complexity in urban 
areas. 

Saito and 
Raksincharoensak 

IEEE Transactions on 
Intelligent Vehicles, 2016 

311 
Road 

configuration 
(layout/design) 

Human factors 

The aim of this research project was to analyse 
how precisely the drivers perceive hazardous 

degrees of the four common mountainous 
highway traffic risk factors by drawing an 
analogy between subjective and objective 

risks. Those four risk factors are sharp turns, 
continuous long downhills, multi-tunnel 

sections and dangerous roadside environment. 

Xue and Wen 
Journal of Cognition 
Technology & Work, 

2020 

312 
Road 

configuration 
(layout/design) 

Road conditions, speed 
limit, V2V, V2I, traffic 

congestion, sensors, trust & 
acceptance, obstacles, 

weather conditions, road 
infrastructure, GPS 

This study investigates the road design 
requirements required to accommodate AVs 

on roads. It is maintained that “the problem of 
road design compatible with AVs could 

become the assessment of that quantity DE”. 

Colonna et al. 
International Conference 

on Applied Human 
Factors and Ergonomics, 

2017 

313 
Road 

configuration 
(layout/design) 

Speed, other road users, 

This paper explores the effects of roadside 
vegetation and/or cover on the probability of 
vehicular collisions with deer by identifying 

and simulating dangerous animal-vehicle 
interaction scenarios for autonomous driving.  
The methodology used in this study produces 
recommended safe driving speeds for vehicles 
employing each driver assist system given a 

particular road configuration. 

Font and Brown 
Advances in 

Transportation Studies; 
Special Issue, 2020 

314 
Road 

configuration 
(layout/design) 

Weather conditions, time of 
day, lighting conditions, 

road design, road 
conditions, vehicle 

parameters, width of road, 
traffic flow, traffic density, 

speed, obstacles, 

Darmstadt Risk Analysis Method (DRAM) is 
developed in this work to deal with 

uncertainties and get access to the cause-and-
effect chains of the road systems. Several 

factors influencing the probability and severity 
of traffic accidents are identified and 

incorporated into the chain. 

Bald et al. 
Proceedings of the 

Transport Research Arena 
(TRA) Europe, 2008 

315 
Road 

configuration 
(layout/design) 

Road surface friction, road 
geometry, weather 

conditions 

The complications due to the vehicle status, 
environmental factors and road geometry are 

taken into account to study potential collisions 
involving AVs. The risk here is defined as 
“faster-than-expected lead vehicle braking 
maneuver combined with a slower-than-
expected ego vehicle braking maneuver”. 

Koopman, Osyk and 
Weast 

International Conference 
on Computer Safety, 

Reliability, and Security, 
2019 

316 
Road 

configuration 
(layout/design) 

Other road users, road 
infrastructure, traffic 

composition 

This paper stresses the necessity for 
‘appropriate street design’ to mitigate the risk 
of collision and conflict between motorised 

and non-motorised travels after launch of AVs 
in mass number on public roads. It is believed 
that technological advancements are outpacing 

urban planning and policy. In this study a 
workshop was designed to gather the opinions 
of experts on the role of urban and road design 

on how AVs can be integrated into public 
roads. 

Riggs et al. 
Automated Vehicles 
Symposium, 2019 

317 
Road 

configuration 
(layout/design) 

Cybersecurity, physical 
infrastructure, digital 

infrastructure, AI maturity, 
traffic composition, other 

road users 

This study introduces the idea of “automation 
readiness” in the context of urban design and 
mobility. It further underscores the challenges 

arising in the field of street redesign. 

van Arem et al. 
Automated Vehicles 
Symposium, 2019 

318 
Road 

configuration 
(layout/design) 

Traffic control 
infrastructure, human 

factors, geometric design, 
speed, trajectory planning, 

communication, algorithms, 
traffic flow, number of 

lanes, driving style 

This paper looks into the safety of freeway on-
ramp merging areas and the factors affecting 
the performance of AVs in handling the risks 

in those areas. Several critical factors 
including environmental and human ones are 

highlighted in this study. 

Zhu and Tasic 
Accident Analysis and 

Prevention, 2021 
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319 No. of lanes 

Speed, time-to-collision, 
road type, other road users, 
interface, road conditions, 

traffic conditions  

An intelligent Speed Adaptation (ISA) was 
developed to reduce the number of lane 

changes and short time-to-collision events. 
Two of the main factors in this study was the 

road type (i.e., single-carriageway, dual-
carriageway, and motorway) and the number 

of lanes.  

Piao et al. 
IEEE Intelligent 

Transportation Systems 
Conference, 2004 

320 No. of lanes 

Traffic density, driver 
behaviour, speed, radar, 

road type, traffic conditions, 
other road users, reaction 

time 

Changing lanes during driving (both 
conventional and automated vehicles) can 
contribute to the criticality of the traffic 

situation and subsequently causing slow traffic 
flow and higher collision risks.  

Isaksson-Hellman and 
Lindman   

Traffic Injury Prevention, 
2018 

321 No. of lanes 

Other road users, kinematic 
state, algorithms, secondary 

tasks, drossiness, path 
planning, obstacles, 

trajectory planning, motion 
planning, time-to-collision, 

road conditions  

Predictive occupancy map (POM), is proposed 
to assess potential risks associated with 
surrounding vehicles based on relative 
position, velocity, and acceleration. In 

generating a risk map, environmental risks are 
grouped into two categories: 1) driveable 
regions; and 2) traffic lanes. switching to 

another lane in order to avoid a collision can 
be relatively riskier than accelerating or 

decelerating the vehicle in the same lane. 

Lee and Kum 
IEEE Access, 2019 

322 No. of lanes 

AI, velocity, surrounding 
traffic participants, traffic 
rules, motion planning, 

camera, LiDAR, dynamic 
obstacles, control, sensors, 
kinematic state, algorithms, 

traffic density     

A deep reinforcement learning (RL) algorithm 
is developed to learn drive as close as possible 

to a desired velocity by performing safe 
manoeuvres (i.e., lane changes) on simulated 
highways with an arbitrary number of lanes. 

Mirchevska et al. 
21st International 

Conference on Intelligent 
Transportation Systems, 

2018 

323 No. of lanes 

Algorithms, traffic flow, 
V2V, V2I, reaction times, 

road conditions, path 
prediction, communication 
infrastructure, speed, other 

road users    

Among various vehicular manoeuvres, lane 
changing is considered as the most 

challenging one. This paper presents an 
algorithm to minimise the disruption of traffic 
flow by optimising for the number of safe lane 

changes, which is expected to result in 
increasing throughput and reduction in traffic 

congestion. 

Desiraju and Chantem 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2015 

324 No. of lanes 

Tire friction, situation 
awareness, approach angle, 

road geometry, velocity, 
vehicle dynamic, control, 
obstacles, velocity, road 

curvature, sensors, 
computing power     

It is held that the number of collisions between 
vehicles due to lane departure is slightly more 
than collisions with objects/obstacles (other 

than vehicles). However, in some traffic 
scenarios it may not practically be possible to 
avoid changing lane. Therefore, a safe speed 

needs to be adopted to reduce the risk of 
collision. This study developed a framework 

based on current historic data using numerical 
optimisation to predict the potential value of 

future autonomous vehicle manoeuvres at-the-
limit of tire friction in safety-critical 

situations. 

Olofsson and Nielsen 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2020 

325 No. of lanes 

Other traffic participants, 
traffic complexity, sensors, 
actuators, vehicle dynamics, 
driving behaviour, weather 

conditions, traffic flow, 
perceived risk, lighting 

conditions, control 

A scene-graph augmented data-driven risk 
assessment is developed to classify various 
driving manoeuvres for AVs. Lane change 
was chosen as a use case. One of the main 

elements to define the characteristic of a road 
scene is traffic lane. 

Yu et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2021 

326 Road 
conditions 

Sensors, machine learning, 
vehicle control, other road 
users, LiDAR, obstacles, 

GPS 

Adaptation to human driving style is a 
problem in the field of autonomous driving. 

This paper proposes a human-like AD system 
which considers road scene perception 
method and empirical decision-making 

network. It also analyses factors that can have 
influence in decision-making process. 

Li, Ota and Dong 
IEEE Transactions on 
Vehicular Technology, 

2018 

327 Road 
conditions 

Speed, algorithms, collision 
avoidance 

The role of ACC in collision avoidance for 
semi-autonomous electric vehicles is studied 
in this paper. Low friction is considered to 

complicate the road conditions for a vehicle. 

Ren et al. 
Journal of Automobile 

Engineering, 2019 

328 Road 
conditions 

Speed, dynamical 
characteristics, traffic 
conditions, obstacles 

This study suggests a risk-based control 
framework for AVs. Direction of the road and 
physical characteristics are categorised as the 

key risk attributes for these vehicles. 

Vismari et al. 
IEEE International 

Conference on Vehicular 
Electronics and Safety 

(ICVES), 2018 

329 Road 
conditions 

V2V, V2X, obstacle, 
algorithms, road geometry, 

control 

This paper is objected towards developing a 
risk-assessment algorithm that could control a 
vehicle to keep the presented lane and avoid a 
collision that may be caused by a road object. 
In this manner, the vehicular dynamics and 

road geometries are modelled to test different 
scenarios. 

Fahmy et al. 
29th International 

Conference on 
Microelectronics (ICM), 

2017 
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330 Road 
conditions 

V2V, speed, collision 
avoidance, 

Conventional autonomous emergency braking 
(AEB) systems consider a fixed friction 

coefficient without regards to different road 
conditions. This study proposes a control 
method that adjusts the automatic brake 

application time to road conditions. 
Additionally, collision risks at an intersection 

were calculated using various road friction 
coefficients and the V2V-based speed inputs 
from adjacent vehicles. The efficacy of the 

proposed AEB system was validated through 
tests under various scenarios, applying the 

road friction coefficient and vehicle speed as 
variables. 

Jeon, Kim and Kim 
International Journal of 

Software Engineering and 
Its Applications, 2015 

331 Road 
conditions 

Traffic rules, traffic density, 
speed, weather conditions, 

communication, 
infrastructure 

A DBN model is developed to assess the 
collision risks for AVs. The contextual and 

situational factors including traffic conditions 
are incorporated into the model. It is endorsed 
that the influence of the geometry of the road 
on the actions and the knowledge of the road 
geometry and traffic rules are crucial factors. 

Katrakazas, Quddus and 
Chen 

Accident Analysis & 
Prevention, 2019 

332 Road 
conditions 

Weather conditions, road 
surface, vehicle dynamics, 

This work proposes a simulation-based 
framework to assess the safety performance of 
vehicles under hazardous driving conditions. 
This study has potential applications to not 

only regular vehicles, but also advanced traffic 
management and control algorithms for 

connected and autonomous vehicles. Complex 
geometric (e.g. road curvature) and 

environmental conditions are simultaneously 
considered. 

Hou, Chen and Chen 
Transportation Research 

Part C: Emerging 
Technologies, 2019 

333 Road 
conditions 

Weather conditions, 
visibility, HMI, road user 

behaviour, lighting 
conditions, time of day, 

sensors, traffic conditions 

This study proposes the concept of 
“driveability” for AVs to identify and handle 
driving risks. To this end, road datasets are 

reviewed and driveability factors are identified 
and categorised into majors groups: 1) 

environmental factors; and 2) road users’ 
interactions. 

Guo, Kurup and Shah 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

334 Road 
conditions 

Situation awareness, 
communication, VANET, 
V2V, V2I, infrastructure 

Vehicular networks (cloud) play a key role in 
enabling the realisation of AVs. Such a 

network can facilitate the transfer of vital data 
like road conditions between nearby vehicles 

and allow them to signal potential risks. 

Olariu, Eltoweissy, and 
Younis 

ICST Transactions on 
Mobile Communications 
and Applications, 2011 

335 Road 
conditions 

Weather conditions, sensors, 
GPS, infrastructure, 

visibility 

The impact of lane departure warning (LDW) 
and lane keeping aid (LKA) on passenger car 
injury accidents is studied based on Swedish 
accident data. These systems can be used in 

autonomous vehicles in addition to other 
technologies to ensure the lateral control of 

the vehicle. 

Sternlund et al. 
Traffic Injury Prevention, 

2017 

336 Sensors  

LiDAR, radar, camera, 
ultrasound, perception, 
surrounding vehicles, 

localisation, reaction time, 
speed, time-to-collision, 

actuators, hazardous driving 
behaviours    

A fallback approach is presented in case 
senser failure occurs in AD. This approach is 
expected to navigate the impaired vehicle to a 
safe stop on the designated parking zone. A 
simulation was run in Simulink environment 
to evaluate the proposed approach in two test 

scenarios. 

Xue et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2018 

337 Sensors 

Weather conditions, road 
conditions, mixed traffic, 
other road users, vehicle 
control, LiDAR, radar, 
ultrasonic sensors, 3D 

cameras, road curvature, 
obstacles, sensor fusion 
algorithms, localisation, 

communication, AI 
algorithms, environment 

configurations, V2X, 
cybersecurity, velocity, 
trajectory prediction, 

behaviour of road users  

Challenges in the way of testing and 
validating AVs are reviewed. A simulation 

based on scenario-assessment was run for this 
purpose. Future questions around safe 

operation of AVs are further discussed.  

Koné et al. 
International Conference 

on Complex Systems 
Design & Management, 

2019 
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338 Sensors 

Perception accuracy, motion 
planning, control, LiDAR, 

trajectory planning, 
algorithms, localisation, 
other traffic participants, 

dynamic traffic conditions, 
obstacles, GPS, vehicle 

dynamics, velocity, visual 
cameras, vehicle control  

Detecting and analysing the dynamics of 
surrounding environment is a key component 

of AVs. ObserveNet Control is a vision-
dynamics approach to address the predictive 

control dilemma of AVs. 

Ginerica et al. 
IEEE Robotics and 

Automation Letters, 2021 

339 LiDAR 

Weather conditions, 
visibility, perception 

accuracy, speed, control, 
software, V2X, data fusion, 

behavioural planning, 
trajectory planning, vehicle 
integration, H-M Interfaces, 

radar, obstacle, cameras, 
RSU, road conditions 

This paper studies the development baseline of 
a new LiDAR sensor for AVs, which require 

accurate perception both under clear and 
adverse weather conditions such as 

precipitation and fog. 

Kutila et al. 
IEEE 19th International 

Conference on Intelligent 
Transportation Systems, 

2016 

340 LiDAR 

Deep neural networks, 
detection accuracy, cameras, 

obstacles, sensors, 
localisation   

Accuracy and integrity of the object detection 
module in AVs is crucial to ensure that AVs 
can safely handle traffic scenarios on public 

roads. This paper proposes a practical method 
to address uncertainties in a 3D vehicle 

detector for LiDAR point cloud. 

Feng, Rosenbaum and 
Dietmayer   

21st International 
Conference on Intelligent 
Transportation Systems 

(ITSC), 2018 

341 LiDAR 

Sensors, computer vision, 
GPS, other road users, road 
signs, sensor fusion, control 

algorithms, velocity, 
software, cameras, 
obstacles, lighting 

conditions, appropriate 
hardware    

A Bayesian Network is developed to estimate 
quantitative probabilistic of system safety for 
the AVs using computer vision and LiDAR 

sensors. 

Duran et al. 
Proceedings of the 2013 
Federated Conference on 

Computer Science and 
Information Systems, 

2013 

342 Radar 

Stereo vision, sensor fusion, 
sensors, algorithms, other 

road users, obstacle, 
environment perception, 

weather conditions, 
visibility, motion planning, 
system integration, traffic 

density, relative speed, 
number of lanes, space 

geometry 

This paper presents a solution for detection 
and tracking of moving objects within the 
context of ADAS. A multisensory setup 
consisting of a radar and a stereo camera 

mounted on top of a vehicle are used in that 
system.  

Ćesić et al. 
Robotics and Autonomous 

Systems, 2016 

343 Radar 

Communication, weather 
conditions, deep 

reinforcement learning 
algorithms, visibility, V2I, 

velocity, cameras, road 
conditions 

This paper suggests an intelligent Real-time 
Dual-functional Radar-Communication 

(iRDRC) system for AVs. This system equips 
an AV with both radar and data 

communication functions to maximise 
bandwidth utilisation thereby significantly 

enhancing safety. The data communications 
function enables an AV to transmit data such 

as traffic information to edge computing 
systems and the radar function is applied to 

improve the reliability and reduce the collision 
risks of AVs. 

Hieu et al. 
IEEE Wireless 

Communications Letters, 
2020 

344 Radar 

Tracking algorithms, other 
vehicles, relative velocity, 
LiDAR, cameras, sensor 

fusion, path planning    

This paper is concerned with objective vehicle 
detection in AD. A data-driven object vehicle 
estimation approach is developed to address 

the measurement uncertainty and latency 
problems in radars incorporated into AVs. 

Choi, Yang and Chung    
Sensors, 2021 

345 Cameras 
(vision) 

Trajectory planning, 
perception, control, motion 
planning, sensors, weather 

conditions, lighting 
conditions, path planning, 
dynamic obstacles, GPS, 

sensor fusion  

An uncertainty-aware end-to-end trajectory 
generation network developed in this paper 
can obtain spatiotemporal features from the 

front camera images for scene perception, and 
then plan collision-free trajectories several 
seconds into the future. The experimental 

results in this work suggest that under varying 
weather and light conditions, that network can 

reliably generate trajectories in dissimilar 
urban environments, such as turning at 

intersections and slowing down for avoiding 
collision. 

Cai et al. 
IEEE Transactions on 

Intelligent Vehicles, 2021 

346 Cameras 
(vision) 

Reinforcement learning, 
control systems, weather 

conditions, velocity, 
algorithms, human errors, 

GPS, deep learning, vision-
based algorithms, 

perception, sensors, 
actuators, vehicle dynamics, 

number of lanes, traffic 
rules  

Vision-based robust controllers for keeping an 
AV in the centre of a lane coping with 

uncertainties and disturbances, is a 
challenging toping in the field of DA. This 
work proposes a hybrid control architecture 
that couples Deep Reinforcement Learning 

(DRL) with Robust Linear Quadratic 
Regulator (RLQR) to develop a vision-based 

lateral controller for AVs.  

Morais et al. 
Control Engineering 

Practice, 2020 
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347 Cameras 
(vision) 

Situational awareness, 
onboard sensors, dynamic 

objects, localisation, 
pedestrians, radars, GPS, 

other road users, 
infrastructure, radar, 

LiDAR, software, path 
planning, angular velocities, 

prediction algorithms, 
visibility    

This paper presents a system that integrates a 
vision-based offboard pedestrian tracking 

subsystem with an onboard localization and 
navigation subsystem to enable warnings to be 

communicated and effectively extends the 
vehicle controller’s field of view to include 

areas that would otherwise be blind spots. This 
is applicable in autonomous vehicles and can 

improve pedestrian detection. 

Borges, Zlot and Tews   
IEEE Transactions on 
Intelligent Transaction 

Systems, 2013 

348 Hardware 
reliability 

Traffic composition, 
transportation infrastructure, 
LiDAR, radar, GPS, camera 

vision, communication, 
infrared sensor, ultrasonic 

sensor, backup sensor, 
system integration, software, 
algorithms, database, HMI, 

H-M Interfaces, driving 
style, other road users, 

weather conditions, 
construction zones, road 

conditions 

A fault tree is developed to analyse AVs’ risk 
from the vehicular component and 

infrastructure component perspectives. This 
analysis produced failure a probability of 

around 14% resulting from a sequential failure 
of the AV components solely in the vehicle’s 

lifetime, with a focus on the components 
responsible for automation. 

Bhavsar et al. 
Transportation Research 
Record: Journal of the 

Transportation Research 
Board, 2017 

349 Hardware 
reliability 

Trajectory tracking, 
software algorithms, 

perception, global route 
planning, behaviour 
reasoning, trajectory 

planning, sensors, vehicle 
kinematic, dynamic 

constraints, path planning, 
localisation, weather 

conditions, road geometry, 
road surface, static/dynamic 

obstacle, road 
infrastructures, cameras, 

speed       

To avoid high costs and risks of real-world 
testing, this paper proposes a Hardware-in-

the-Loop Scaled Platform which comprises of 
scaled AV, roadway, monitoring centre, 

transmission device, positioning device, and 
computing device. The results of experiments 
show a satisfactory effectiveness of the HiL 

scaled platform. 

Xu et al. 
Journal of Advanced 
Transportation, 2017 

350 Hardware 
reliability 

Control algorithms, sensors, 
actuators, speed, 

localisation, sensor fusion, 
cameras, LiDAR, 

ultrasound, path planning, 
planning algorithms, V2V, 

V2I, angular velocity, radar, 
GPS, Inertial Measurement 

Unit (IMU), monocular 
camera, other road users, 
obstacle, communication, 

vehicle state, road structure, 
kinematic car model, traffic 

complexity, traffic rule 
compliance, traffic 

management      

This work proposed a novel simulation 
platform with hardware-in-the-loop (HiL). 

This platform consists of four layers: vehicle 
simulation, virtual sensors, virtual 

environment and the Electronic Control Unit 
(ECU) which enable hardware control. This 
platform offers threefold capabilities: (1) it 
builds and simulates kinematic car models, 

various sensors and virtual testing fields; (2) it 
implements a closed-loop evaluation of 

surrounding perception, path planning and 
vehicular control algorithms, whilst running 
multi-agent interaction system; (3) it further 
allows for a rapid transition of control and 

decision-making algorithms from the virtual 
environment to real self-driving cars. 

Chen et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2018 

351 Hardware 
reliability 

Sensors, obstacles, velocity, 
LiDAR, radar, reaction 
time, motion planning, 
software, sensor fusion, 

algorithms, system 
integration  

This paper introduces criteria for intervention 
on braking and steering in AD evaluating the 

occupants’ injury risk. To develop such 
criteria software-in-the-loop and hardware-in-

the-loop are introduced.  

Vangi 
Journal of Automobile 

Engineering, 2020 

352 Hardware 
reliability 

Software, system 
integration, perceptual 

positioning, control 
execution, planning, weather 

conditions, illumination 
conditions, vehicle 

kinematics, algorithms, 
control interfaces, road 

conditions, road gradient, 
sensors    

A hardware-in-the-loop simulation is 
performed to avoid high risks and costs of real 
road testing. This simulation aimed to evaluate 

autonomous emergency braking (AEB) 
control algorithms. Physical hardware and 
software components were included in the 

simulation platform. 

Gao et al. 
IEEE 23rd International 

Conference on Intelligent 
Transportation Systems 

(ITSC) Intelligent 
Transportation Systems 

(ITSC), 2020 

353 Hardware 
reliability 

Cybersecurity, vehicle 
controllers, sensors, LiDAR, 
actuators, algorithms, road 

geometry, control 
reconfiguration, obstacles, 

communication, speed 
sensors, system integrity,  

Cybersecurity of AVs in the focus of this 
paper. A security architecture is introduced 
and a HiL platform is developed to test that 

architecture. In this simulation, both hardware 
and software architectures are taken into 

account. 

Potteiger, Zhang and 
Koutsoukos   

Microprocessors and 
Microsystems, 2020 
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354 (Vehicle) 
control 

Obstacles, LiDAR, sensor 
fusion, algorithms, road 

structure, trajectory 
planning, sensors, security 

standards, GPS, pedestrians, 
road type, kinematic state, 

hardware 

A system is proposed to avoid obstacles based 
on the lateral and longitudinal velocity of 

AVs. It was tested and validated on a three-
wheel vehicle. 

Hasmitha et al. 
IEEE International 

Conference for Innovation 
in Technology 

(INOCON), 2020 

355 (Vehicle) 
control 

V2I, communication, 
number of lanes, LiDAR, 

radar, cameras, system 
integration, obstacles, 

algorithms, other road users, 
traffic flow, velocity, 

vehicle trajectory, 
reinforcement learning, 

machine learning, fusion 
algorithms, traffic control 

infrastructure, sensors 

A fusion-based Q-learning method is 
developed in this paper to achieve an optimal 
bird-view control for CAVs in multi-lane road 

scenarios. This system can assist CAVs to 
tackle complex traffic scenarios and crossing 

traffic. 

Wang, Hou and Wang 
Computer-Aided Civil and 

Infrastructure 
Engineering, 2020 

356 (Vehicle) 
control 

Mixed traffic, velocity, V2I, 
traffic density 

Model Predictive Control is applied to control 
AVs in intersection scenarios under mixed 

traffic circumstances. 

Mihály et al. 
IFAC PapaersOnline 
(Conference Paper 

Archive), 2021 

357 (Vehicle) 
control 

Driving style, traffic 
environment, trajectory 

planning, trust, algorithms, 
traffic environment, 

obstacles, AI, speed, vehicle 
kinematic, other road users, 

number of lanes, driving 
behaviour, reaction time 

It is discussed that AVs must adapt to human 
driving styles and characteristics of human 
driver to develop trust in automation and 

encourage user acceptance. This work 
suggested an algorithm for trajectory 

planning/tracking and ultimately optimised 
control of AVs. 

Li et al. 
IEEE Access, 2021 

358 (Vehicle) 
control 

Stabilisation, path tracking, 
obstacles, trajectory 

following algorithms, 
vehicle dynamics, system 

integration, road conditions, 
road geometry, velocity, 

vehicle state, sensors, radar, 
cameras  

Vehicle stabilisation plays a crucial role for 
AVs in emergency scenarios. This study 
proposes a novel control structure that 

integrates path tracking, vehicle stabilisation, 
and collision avoidance to mediate among 
them in case of conflicting objectives by 
assigning the highest priority to collision 

avoidance. 

Funke et al. 
IEEE Transactions on 

Control System 
Technology, 2017 

359 (Vehicle) 
control 

Algorithms, V2I, 
cybersecurity, road type, 

obstacles, other road users, 
weather conditions, road 
infrastructure, cameras, 

velocity, time of day, GPS, 
lighting conditions, sensor 
characteristics, radar, time 

to collision 

This paper reports the current state of AVs in 
Russia. It scrutinises possible road situations 
that AVs may encounter and must respond to 

them while avoiding collisions. 

Ivanov et al. 
IOP Conf. Series: 

Materials Science and 
Engineering, 2019 

360 (Vehicle) 
control 

Sensing/perceiving, 
planning, traffic law, other 
road users, road conditions, 
weather conditions, unsafe 

speed, driving style, LiDAR, 
V2I, V2V, reaction time, 

lighting conditions, 
visibility, road design, 

roadway geometry, 
hardware reliability, road 

infrastructure 

This study pinpoints the causal chain of 
vehicle accidents and discusses what 

humanlike errors AVs must avoid for safety. 
Those factors are categorised into four groups: 

1) sensing and perceiving surrounding 
environment; 2) predicting; 3) planning; and 

4) executing plans. 

Mueller, Cicchino and 
Zuby 

Journal of Safety 
Research, 2020 

361 (Vehicle) 
control 

Reinforcement learning, 
algorithms, control policy, 

trajectory planning, number 
of lanes, velocity 

Reinforcement learning can be used to 
improve efficiency and reduce failures in AD. 

The outcome is control policy that can 
increase efficiency and safety for AVs. 

Ma, Driggs-Campbell and 
Kochenderfer   

IEEE Intelligent Vehicles 
Symposium (IV), 2018 

362 (Vehicle) 
control 

Motion planning, 
perception, obstacles, rout 
planning, radar, LiDAR, 

GPS, sensors, vehicle 
dynamics, kinematic 

constraints, path planning, 
obstacles, algorithms, 

trajectory planning, other 
road users 

Robust execution of safety-critical tasks such 
as motion planning are key to the safe 

performance of AVs in dynamic environments 
shared with other traffic participants. This 

work surveys the state of planning and control 
algorithms by the time it was prepared (i.e., 

2016). 

Paden et al. 
IEEE Transactions on 

Intelligent Vehicles, 2016 

363 (Vehicle) 
control 

Sensors, obstacles, 
actuators, mission planning, 
path planning, localisation, 

reaction time, lighting 
conditions, kinematic state, 

perception, motion planning, 
speed, hardware, system 

integration, trajectory 
generation, behaviour 

generation 

This paper adopted neural models and 
biologically inspired approach to develop a 
control architecture for autonomous vehicles 

(both ground and aerial). 

Vaidyanathan et al. 
Journal of Systems and 

Control Engineering, 2011 
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364 (Unsafe) speed 

, time of day, lighting 
condition, road conditions, 

weather conditions, 
algorithms, traffic 

environment, other traffic 
participants, control, 

sensors, kinetic energy, 
traffic control infrastructure, 

road configuration, lane 
type, V2X, risk perception, 
traffic complexity, time of 
day, information fusion, 

compliance with traffic rules 

This paper tires to develop a ‘crash injury 
severity prediction’ model for autonomous 

decision-making under emergency situation. 
14 variables including lighting conditions are 

selected as the impact indicators. 

Liao et al. 
Electronics, 2018 

365 (Unsafe) speed 

Road geometry, motion 
planning, vehicle kinematic 

state, motion control, 
actuators, vehicle dynamics, 

weather conditions, road 
conditions, sensors, path 

planning, algorithmic 
failures, hardware reliability  

This paper presents the theory and algorithms 
to formulate and test a concept for a future 
Automated Emergency Cornering (AEC) 

system. The simulation for this concept was 
performed in CarMaker software package. The 
developed Automated Emergency Cornering 

(AEC) system utilises a digital map and 
vehicle kinematic data to trigger and update 

the motion reference. It further receives 
friction estimation to operate in a near-optimal 

way. 

Gao and Gordon 
IEEE Transactions on 
Vehicular Technology, 

2019 

366 (Unsafe) speed 

Risk perception, road type, 
road design, traffic density, 

road layout, weather 
conditions, traffic 
composition, road 

infrastructure, other road 
users, road geometry, 

visibility, traffic conditions, 
compliance with traffic law 

This study tested three hypotheses to evaluate 
the relationship between driver risk 

perception, compliance with speed limits and 
speed limit credibility. An automated driving 
car simulator was used to rate risk perception. 

Yao et al. 
Transportation Research 

Part F, 2019 

367 (Unsafe) speed 

Obstacles, traffic conditions, 
motion planning, trajectory 

planning, path planning, 
road geometry, kinematic 

constraints, other road users 

This paper aimed to address the optimisation 
problem for dynamic obstacles avoidance with 

smoothness, risk and efficiency variables. 
That problem was transformed into a path 

searching problem to avoid collision and build 
an efficient speed portfolio. 

Du et al. 
International Journal of 
Systems Science, 2020 

368 (Unsafe) speed 

Other road users, time of the 
day, weather conditions, 

traffic load, driving 
behaviour, road traffic law 

enforcement 

This article argues that setting ‘mandatory 
speed alerts’ has moral justification. ‘techno-

regulation’ is also discussed. “Techno-
regulation exploits technology and technical 

capabilities of a system to regulate and 
challenge an agent’s conducts. 

Smids 
Journal of Applied 
Philosophy, 2018 

369 (Unsafe) speed Control, sensor, cameras, 
other road users 

“The article focuses on a preliminary National 
Transportation Safety Board (NTSB) report 
regarding the fatal crash involving Tesla in 

self-driving mode in July 2016, which says the 
car was traveling 9mph over the posted 65 

mph speed limit”. 

Jaillet 
Commercial Carrier 

Journal, 2016 

370 (Unsafe) speed 

Algorithm, control, traffic 
flow, weather conditions, 

traffic and road conditions, 
obstacles, V2V, V2I, traffic 

control infrastructure, 
reaction time 

A Variable Speed Limit (VSL) control 
algorithm is developed for AVs. This 

framework focuses on individual driver 
behaviour and uses a multi-objective 

optimisation function to find an optimum 
between mobility, safety and sustainability. 

Khondaker and Kattan 
Transportation Research 

Part C, 2015 

371 (Unsafe) speed 

Traffic flow/density, 
algorithms, time of day, 
kinematic state, traffic 

conditions, reaction time, 
road conditions, weather 

conditions 

This study is concerned with the relationship 
between traffic density, speed and likelihood 

of crash on freeways.  

Kononov et al. 
Transportation Research 
Record: Journal of the 

Transportation Research 
Board, 2012 

372 (Unsafe) speed 

Fatigue, poor visibility, time 
to collision, weather 

conditions, traffic 
composition, algorithms, 

traffic conditions, dilemma 
zone, traffic volume, road 

geometry, time of day, 
number of lanes, secondary 
tasks, human factors, road 
conditions, reaction time  

A simulation study was run to evaluate the 
impact of AVs on unsignalized crossroads. 

Two crossroads in Tehran were chosen for this 
purpose. Vissim software package was used to 

simulate the probability of collision against 
AV penetration rate.  

Khashayarfard and Nassiri 
Journal of Advanced 
Transportation, 2021 
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373 (Unsafe) speed 

Number of lanes, 
transportation infrastructure, 

lateral and longitudinal 
control, roadway 

infrastructure, traffic 
density, visibility, road 

conditions, traffic 
composition, environmental 
perception, cameras, radar, 

LiDAR, GPS, image 
processing, algorithms, road 

configuration, actuators, 
obstacles, path planning, 
vehicle dynamics, traffic 

conditions, human factors, 
road geometry, weather 

conditions 

Designating an exclusive lane to AVs has 
been the topic of several studies. This paper 

scrutinised implications of including a narrow 
and reversible AV-exclusive lane to 

expressways. For this purpose, the I-15 
expressway in San Diego was chosen. Among 
the primary collision factors used in this study, 

unsafe speed had the highest frequency. 
Besides, improper turning and unsafe lane 
change were the main causes of collisions. 

Ghanipoor Machiani et al. 
Journal of Advanced 
Transportation, 2021 

374 (Unsafe) speed 

Driving infrastructure, 
control, other traffic 
participants, machine 

learning algorithms, V2V, 
sensor, lighting conditions, 

weather conditions, 
obstacles, road conditions, 
traffic law enforcement, 
traffic density, driving 

behaviour  

Unwillingness of auto makers to share 
automation data can lead to unsafe decisions 

and ultimately accidents. This article is 
concerned with data sharing (including 

disengagements and failures) of self-driving 
vehicles. NHTSA has made event data records 

mandatory for conventional vehicles. Black 
boxes can capture fifteen data elements 

including speed. 

Krompier 
Journal of Law, 

Technology & Policy, 
2017 

375 (Unsafe) speed 

Other road users, obstacles, 
reaction time, software, 

situation awareness, sensors, 
traffic congestion, roadway 

type, traffic rules, road 
conditions, visibility, 

roadway infrastructure, V2I, 
mapping system, traffic 
control infrastructure, 
lighting conditions, 

construction zones, roadway 
design 

One of the major variables affecting the 
likelihood and severity of accidents is vehicle 

velocity, which directly determines the 
amount of kinetic energy asserted during a 

collision. This article highlights the necessity 
for regulating speed in highly autonomous 

driving.  

Leshner, Boyd and 
Grossman 

Institute of Transportation 
and Engineers (ITE 

Journal), 2020 

376 Time of day 

Algorithms, deep learning, 
lighting conditions, 

visibility, cameras, weather 
conditions, other traffic 
participants, perception, 

visual perception 

Darkness considerable affects the quality and 
images of roads obtained by visual cameras 

mounted on CAVs. This can undermine safety 
of CAVs. To mitigate this risk, a light 

enhancement net (LE-net) is developed which 
utilises convolutional neural network. 

Li et al. 
Knowledge-Based 

Systems, 2021 

377 Time of day 

Human factors, AI, route 
planning, roadway 

conditions, other road users, 
weather and light 

conditions, road type, 
reaction time, LiDAR, 

machine learning 
algorithms, visibility, traffic 

density       

This paper examines the influencing factors of 
injury outcomes involving AVs based on field 

test data. The data were obtained from the 
reports of traffic accidents involving AVs in 

California. 

Ye et al. 
Injury Prevention (BMJ 

Journals), 2021 

378 Time of day 

Road conditions, weather 
conditions, speed, lighting 
conditions, sensors, road 

type, software, cyber-
attacks, fatigue, driving 
style, V2I, V2V, GPS, 

construction zones, reaction 
time, other road users, road 

geometry, traffic rule 
enforcement, traffic 

conditions  

The causes and factors which can contribute to 
the accident of semi-autonomous vehicles are 
identified and used to develop a BBN model 

to assess pertinent risks. 

Sheehan et al. 
Transportation Research 

Part C: Emerging 
Technologies, 2017 

379 Time of day 

Sensors, software, traffic 
control infrastructure, 
weather conditions, 
algorithms, traffic 

participants, LiDAR, traffic 
conditions, road conditions, 
cameras, driving behaviour, 

reaction time, lighting 
conditions, traffic density, 
traffic rules, path planning, 

vehicle dynamics, kinematic 
state, vehicle control, 

driving culture, perception, 
hardware, sensor fusion, 
speed, number of lanes 

AutonoVi-Sim is a simulation platform and is 
suggested for testing the performance of 

autonomous driving under varying weather 
conditions and time of day to generate robust 
data in complex traffic scenarios. There are 

two variables used to define the environment: 
time of day and weather conditions. 

Best et al. 
Proceedings of the IEEE 
Conference on Computer 

Vision and Pattern 
Recognition, 2018 
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380 Time of day 

Weather conditions, traffic 
conditions, other road users, 
sensors, road infrastructure, 
V2X, lighting conditions, 

traffic rules, 

This paper presents an open-source simulation 
environment for 360-degree traffic imaging. 

The implemented features include self-driving 
vehicles, pedestrians, various weather effects, 

and different time of day lightings. 

Niemirepo et al. 
IEEE International 

Conference on Connected 
Vehicles and Expo & 

IEEE Vehicular 
Networking Conference 

(VNC), 2019 

381 Time of day 

Road type, other road users, 
road configuration, road 

infrastructure, reaction time, 
trust, AI, algorithms 

This work analyses the accident reports 
involving AVs in California which were filed 

by five manufacturers from September 2014 to 
March 2017. Various factors and causes of 
accidents in addition to the severity of these 

accidents are examined. The analyses revealed 
important information on AV accidents 

dynamics including the most recurrent type of 
accidents, the break-down of damages 

locations and impact forces, and calculated 
accident frequencies. 

Favarò et al. 
PLoS ONE, 2017 

382 Time of day 

Static obstacles, road 
configuration, road 

infrastructure, weather 
conditions, speed, human 

factors, road type, other road 
users, road conditions 

work zone safety is a critical aspect for state 
agencies and traffic engineers. To evaluate the 

impacts of various variables on the injury 
severity of crashes in different time periods of 
a day, this study a total of 10,218 crashes that 
occurred in highway work zones in the state of 
Washington for the period between 2007 and 
2013 were used. Time of day is disaggregated 
into four subgroups: 6-11 am, 12-5 pm, 6-11 
pm and 12-5 am. The results show variations 

in the indicators of injury severity and some of 
variables. 

Al-Bdairi 
Journal of Safety 
Research, 2020 

383 Time of day 

Weather conditions, road 
type, V2V, V2I, pedestrian, 

traffic congestion, 
communication, lighting 
conditions, day of week 

This embodiment is related to autonomous and 
semi-autonomous vehicles functionality and 

can enable risk assessment and premium 
determination for vehicle insurance policies 
for vehicles which benefit from autonomous 

operation features. A series of factors 
including time of day are deemed to be related 

to insurance risks. 

Konrardy et al. 
Google Patents, 2017 

384 Time of day 

Speed limit, weather 
conditions, lighting 

conditions, road 
configuration, day of week 

In this patent, a method is disclosed for 
mitigating the risks associated with operating 
an autonomous or semi-autonomous vehicle 

by evaluating computed route traversal values 
to select less risky travel routes and/or modify 

vehicle operation. Various approaches to 
achieving this risk mitigation are presented. 

Among influential factors, time of day is 
counted. 

Slusar 
Google Patents, 2017 

385 Time of day 

Path planning, algorithms, 
handover, road type, road 

configuration, weather 
conditions, speed limit, 

spatial frequency, hardware, 
software, other road users, 
road infrastructure, HMI, 
cybersecurity, GPS, AI, 

sensors, traffic congestion, 
day of week, public 

perception 

This study devised a risk-aware path planning 
methodology for AVs based on telematics 

behavioural data. Multiple risk factors 
including time of day and day of week are 
identified. A correlation between spatial 

frequency of events and accident frequency is 
demonstrated too. 

Ryan, Murphy and 
Mullins 

Transportation Research 
Part A, 2020 

386 Time of day 

Weather conditions, lighting 
conditions, road conditions, 

road configuration, 
visibility, communication, 
V2V, V2I, day of week, 

speed, road type, GPS, road 
infrastructure, sensors 

A Bayesian network is developed to assess the 
severity of accidents for AVs and semi-

autonomous vehicles using the naturalistic 
driving data gathering approach. 16 variables 
contributing to the severity of car crashes are 

identified and incorporated into the BN model. 
The data was extracted from the Michigan 

Traffic Crash Facts (MTCF) website 
for the year 2016. 

van Wyk, Khojandi and 
Masoud 

Proceedings of SAI 
Intelligent Systems 
Conference, 2019 

387 Time of day Speed, type of road, reaction 
time, 

This article discusses the ‘emerging risks’ 
associated with new technology in the domain 
of insurance. UAVs and self-driving cars are 
examples of these technologies. This paper 

refers to ‘telematics’ to monitor the behaviour 
of drivers and other characteristics including 

‘time of day’ and combine them with 
traditional rating factors to rate drivers and 

vehicles. 

Barlow 
Claims Magazine, 2016 
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388 
Traffic 

conditions 
(complexity) 

Autonomy level, situation 
awareness, secondary tasks, 
vehicle design, driving style, 
other road users, training & 
experience, traffic density, 

longitudinal and lateral 
acceleration, control, take-

over, number of lanes, 
fatigue 

This study focuses on the behaviour of drivers 
experiencing high vehicle automation in 

different traffic conditions (e.g., light/heavy 
traffic). The aim of this paper was to provide 
insight for vehicle designers in balancing the 

control and supervisory tasks between the 
vehicle and human drivers. The results suggest 

that in light traffic, higher grades of 
automation increase safety margins associated 

with car following. In heavy traffic those 
margins were reduced to those measured in 

manual driving mode. 

Jamson et al. 
Transportation Research 

Part C, 2013 

389 
Traffic 

conditions 
(complexity) 

Speed, road geometry, 
traffic congestion, route 

planning, algorithms 

This paper aimed to address the problem of 
optimising the routes and the speeds of 

autonomous lorries making deliveries under 
uncertain traffic conditions. several factors 
including speed and traffic conditions are 

identified to have impact on the collision risks. 

Nasri, Bektas and Laporte 
Computers and Operations 

Research, 2018 

390 
Traffic 

conditions 
(complexity) 

V2V, V2I, V2X, traffic 
control infrastructure, other 
traffic participants, traffic 
culture, LiDAR, sensors, 

radar, visual cameras, sonar, 
sensor fusion, VANET, 

algorithms, ML, HD maps, 
control systems 

This paper investigates the necessary 
technologies required to facilitate and realise 

AD in cities. It is believed that communication 
between vehicles (V2V) can prevent collisions 

and provide warnings of problematic traffic 
conditions. 

Seif and Hu 
Engineering, 2016 

391 
Traffic 

conditions 
(complexity) 

Time-to-collision, vehicle 
configuration, vehicle 

control, traffic congestion, 
GPS, radar, sensors, type of 

road, weather conditions, 
lighting conditions, velocity, 
other road users, kinematic 

state, traffic violation 

The capability of AVs to handle complex 
traffic environments and avoid collision is the 

focus of considerable public concern. This 
paper focuses on cut-in scenarios with time-

to-collision less than three seconds. 200 cut-in 
events were extracted from Shanghai 

Naturalistic Driving Study data, and the 
corresponding scenario characteristics for each 

event was transferred into a simulation 
platform. The Responsibility-Sensitive Safety 

(RSS) model demonstrated promising 
performance. 

Liu et al. 
Transportation Research 

Part C, 2021 

392 
Traffic 

conditions 
(complexity) 

Environmental factors, road 
conditions, technological 

factors, other traffic 
participants, HMI, control, 

experience 

This paper argues that driving/using a self-
driving car involves risks and one can 

question the behaviour, intelligence, autonomy 
and ‘thinking’ of the car when facing various 
traffic scenarios. The focus here is on ethics 

and responsibility dilemmas of replacing 
human drivers with machines. 

Coeckelbergh 
Applied Artificial 
Intelligence, 2016 

393 
Traffic 

conditions 
(complexity) 

Traffic composition, traffic 
density, reaction time, 

weather conditions, 
kinematic state, road type, 

road conditions, road 
topology, sensors, behaviour 

generating, control, 
algorithms 

AVs need to generate behaviours adapting 
themselves to the traffic conditions, as well as 

the weather conditions and road type, in a 
safely way and efficient and mixed traffic 

scenarios. This work demonstrates the 
applicability of a reconfigurable vehicle 
controller agent for AVs that adapts the 

parameters of a used car-following model at 
runtime, to maintain a high degree of traffic 

quality (efficiency and safety) under dissimilar 
weather conditions. 

Horcas et al. 
Journal of Software: 

Evolution and Process, 
2017 

394 
Traffic 

conditions 
(complexity) 

Speed, road type, obstacles, 
perception, sensors, 

manoeuvre planning, traffic 
density, other road users, 

road geometry, traffic rules, 
V2V, V2I, weather and 

visibility conditions, 
LiDAR, cameras, time of 

the day, lighting conditions, 
day of the week, traffic 

composition, path/trajectory 
planning, behaviour 
generating, vehicle 

kinematics, number of lanes, 
road infrastructure, 

algorithms, cybersecurity, 
time to collision 

In the traffic engineering, a collision can be 
predicted in real-time based on current data on 
traffic dynamics such as the average speed and 

flow of vehicles on a road segment. This 
thesis aimed to integrate vehicle-level 

collision prediction approaches for AVs with 
network-level collision prediction in the 

context of traffic engineering. 

Katrakazas 
PhD thesis, 2017 
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395 
Traffic 

conditions 
(complexity) 

Traffic density, speed, 
traffic behaviour, traffic 

composition, vehicle 
density, traffic flow, number 

of lanes, V2V, collision 
avoidance, reaction time, 

traffic control infrastructure 

One of the solutions for improving safety in 
mixed traffic scenarios is designating a 

separate lane to AVs. In this research, AVs’ 
behaviour is modelled at the macroscopic 

level by modifying the fundamental diagram 
relating hourly traffic flow and vehicle 

density, a step that is justified by adjusting a 
parameter from Newell’s car-following model 

at the microscopic level and reversing to a 
macroscopic analysis. 

Vander Laan and Farokhi 
Sadabadi 

International Journal of 
Transportation Science 
and Technology, 2017 

396 
Traffic 

conditions 
(complexity) 

Sensors, cameras, LiDAR, 
radar, road 

geometry/topology, 
obstacles, time to collision, 
number of lanes, visibility, 

communication 
infrastructure, speed, 

kinematic state, control, 
traffic composition 

This chapter (Probabilistic Vehicle Motion 
Modeling and Risk Estimation) develops a 
layered approach to model behaviours of 

vehicles under normal traffic conditions and 
estimate the risk of collision. The estimated 
risk of collision can be further used to assist 

an AV in planning a suitable trajectory to 
minimise its risks. 

Tay, Mekhnacha and 
Laugier 

Handbook of intelligent 
vehicles, 2012 

397 
Traffic 

conditions 
(complexity) 

Road geometry, speed, 
weather conditions, 

vehicle’s trajectory, time to 
collision, traffic control 

infrastructure, traffic 
density, control, road type, 

communication 

There have been several real-time safety 
studies investigating the idea that the segment 
conditions, including traffic, geometric, and 
weather affect the occurrence of an accident. 

The occurrence of a collision can be due to the 
upstream traffic conditions where and when 

the vehicle travels from. On that basis, a 
quasi-vehicle-trajectory-based real-time crash 

analysis was conducted in this study. 

Wang et al. 
Transportation Research 

Part C, 2019 

398 
Traffic 

conditions 
(complexity) 

Sensors, LiDAR, cameras, 
radar, road geometry, road 

infrastructure, path 
planning, motion planning, 

behaviour generation, 
longitudinal and lateral 
control, road conditions, 

obstacles, other road users, 
weather conditions, AI 

Traffic scenes have their own unique 
complexity and dynamics. Therefore, if a self-

driving vehicle is expected to achieve fully 
autonomous driving in a complex traffic 

scene, it must have the ability to learn and 
make predictions. Autonomous vehicles face 
many different scenes and road conditions, 
such as high-speed scenes, low-speed urban 

roads, and unstructured roads. this study 
deeply discusses some basic scientific issues 

of the self-driving approach based on 
cognitive construction, as well as the methods, 

computing models and technical routes to 
solve adaptability to complex situations of 

self-driving 
system. 

Chen et al. 
SCIENCE CHINA 

Information Sciences, 
2019 

399 
Traffic 

conditions 
(complexity) 

Traffic density, traffic 
control, road infrastructure, 

road geometry, weather 
conditions, traffic control 

infrastructure, reaction time, 
speed, driving behaviour, 
static obstacles, other road 

users, number of lanes, road 
conditions 

The dynamic of the traffic flow contributes to 
the complexity of traffic scenes. This further 

gives rise to the number of crashes. This paper 
examined the link between traffic complexity 
and collision risk (number of crashes) under 
urban motorway conditions. It was expected 
that linking the number of events (exposure) 
such as ‘harsh lane change to crash numbers 

can provide more insights into the relationship 
between causation and effect. The concepts 
developed for urban motorways but can also 

be applicable to other high-volume multi 
carriageway roads. 

Zurlinden, Baruah and 
Gaffney 

Journal of Road Safety, 
2020 

400 
Traffic 

conditions 
(complexity) 

Road type, algorithms, other 
road users, road geometry, 

weather conditions, 
obstacles, LiDAR, road 

conditions, lighting 
conditions, sensors, 

cameras, speed 

Comprehensive traffic data scenario is often 
necessary to evaluate the performance of 
unmanned ground vehicles (UGVs) and 

measure the scene complexity. This study 
developed a traffic sensory data classification 
paradigm based on quantifying the scenario 
complexity for every segment of roads. This 

quantification is based on road semantic 
complexity and traffic element complexity. 

Wang et al. 
IEEE Intelligent Vehicles 

Symposium, 2018 

401 
Traffic 

conditions 
(complexity) 

Control, kinematic state, 
traffic rules, path planning, 

obstacles, actuators, 
cameras, LiDAR, radar, 

speed, other traffic 
participants 

This paper proposed a ‘cooperative control’ 
approach for AVs to safely perform 

manoeuvres in complex traffic situations such 
as lane changing or crossing road 

intersections. This model is based on a cost 
function and collision avoidance objective for 

various traffic scenarios. 

Mohseni, Frisk and 
Nielsen 

IEEE Transactions on 
Intelligent Vehicles, 2021 

402 
Traffic 

conditions 
(complexity) 

Road type, other road users, 
algorithms, number of lanes, 

speed limits, time-to-
collision, static and dynamic 

objects, traffic volume, 
mixed traffic, path planning, 

environment perception 

This study adopted scenario-based testing for 
the validation and verification of CAVs.  

189,752 scenarios including various collision 
scenarios were simulated for this purpose. To 
evaluate the risks faced by CAVs in different 

traffic situations, a new criticality metric 
(Scenario Risk Index) was defined. 

Yue et al. 
IEEE Open Access, 2020 
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403 
Traffic 

conditions 
(complexity) 

Algorithms, machine 
learning, cybersecurity, 

other traffic participants, 
motion planning, perception, 

trajectory generation, 
control, kinematic state, 
traffic composition, road 
infrastructure, time-to-

collision, hardware, sensors, 
velocity 

In this work, a “fully model-based multi-
modal parallelizable” is developed to analyse 

and evaluate the criticality of the complex 
traffic scene ahead of AVs. The extension of 
this algorithm can include road infrastructure 
and mobile objects. This algorithm is capable 
of handling a traffic scenario with 11 objects 

(over 86 million pose combinations) in 21 ms. 

Morales et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2019 

404 
Traffic 

conditions 
(complexity) 

Situation awareness, 
velocity, perception 

algorithms, V2I, V2V, 
kinematic state, road 

geometry, sensors, trajectory 
planning 

Crossroads are a complex traffic situation for 
autonomous vehicles. This paper proposed a 
system with two functionalities. First, it is 

capable of predicting the motion of a 
surrounding vehicle in general traffic 

situation, and second, is its ability to estimate 
the probability of a collision given the current 

ego trajectory. 

Annell, Gratner and 
Svensson 

IEEE 19th International 
Conference on Intelligent 
Transportation Systems 

(ITSC), 2016 

405 
Traffic 

conditions 
(complexity) 

Other traffic participants, 
algorithms, dynamic 

obstacles, control, trajectory 
planning, radar, cameras, 
lighting conditions, speed, 
sensors, LiDAR, motion 

state 

AVs should inevitably interact with other road 
users such as pedestrians while traveling in 
complex traffic environments. All potential 

collisions must be avoided during the 
interactive process to ensure the safety. This 
paper analysed the active obstacle collision 

avoidance algorithm. 

Zhang et al. 
Journal of Intelligent & 
Fuzzy Systems, 2018 

406 
Traffic 

conditions 
(complexity) 

Time-to-collision, vehicle 
dynamics, algorithms, 

sensors, road type, sensor 
fusion, V2V, V2I, control, 
obstacles, kinematic state, 

GPS, other road users, road 
parameters, trajectory 

planning, speed 

An anti-collision strategy based on hazard 
cognition is proposed to enable AVs safely 

passing through intersections while interacting 
with other vehicles. The algorithm was built 

and simulation was performed in 
MATLAB/Simulink. The simulation results 

have shown that the algorithm is reliable 
enough to prevent collisions. 

Jia et al. 
Chines Automation 

Congress (CAC), 2019 

407 Traffic (safety) 
culture 

Perceived risk, training, 
traffic law enforcement, 

speed, population density, 
safety culture 

This study maintains that without a deeper 
understanding of the nature and structure of 
traffic safety culture, discussions regarding 

changes to traffic safety culture are restricted. 
The authors attach a high significance to the 

‘traffic safety culture’ and its impact on traffic 
safety. 

Edwards et al. 
Transportation Research 

Part F, 2014 

408 Traffic (safety) 
culture 

Traffic rules enforcement, 
speed, other road users, 

perceived risk, training and 
experience, road and traffic 

control infrastructure 

It is asserted that traffic safety culture stems 
from a country’s cultural norms and values. 

This work investigates how culture influences 
traffic safety standards in three countries (i.e., 

Japan, China and US) with very different 
traffic safety outcomes. The results show that 

due to a large population and intense 
competition the risk acceptance is higher. In 

the US, the personal freedom culture 
adversely affects the safety culture and law 
enforcement, whereas Japan which leans 

towards limiting drivers’ freedom for the sake 
of safety. These may explain the significant 

difference between fatality rates in these 
countries. 

Atchley, Shi and 
Yamamoto 

Transportation Research 
Part F, 2014 

409 Traffic (safety) 
culture 

Speed, rule violation, 
perceived risk, traffic rules 

enforcement 

The purpose of the study was to examine the 
country cluster differences, based on the 

Culture’s Consequences framework, in road 
traffic risk perception, attitudes towards traffic 

safety and driver behaviour among samples 
from eight countries: Norway, Russia, India, 
Ghana, Tanzania, Uganda, Turkey and Iran. 

This paper concluded that cultural factors are 
strong predictors of driver behaviour which 

can affect accident risks. 

Nordfjærn, Şimşekoğlu 
and Rundmo 

Accident Analysis and 
Prevention, 2014 

410 Traffic (safety) 
culture 

Speed, traffic complexity, 
traffic density, road 

characteristics 

This study draws attention to driving style as a 
very important indicator and a crucial 

measurement of a driver’s performance and 
ability to drive in a safe and protective 

manner. It also suggests that a driving style 
recognition module can be incorporated into 
AVs, which integrates different modules to 

improve driving automation, safety and 
comfort, and then the driving safety can be 

increased by pre-warning the drivers or 
adjusting the vehicle’s controlling parameters 

when the dangerous driving style is 
recognised. Driving styles are categorised into 
three types:  Aggressive type, Moderate type, 

and Conservative type. 

Yan et al. 
Frontiers in Psychology, 

2019 
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411 Traffic(safety) 
culture 

Risk perception, speed, 
demographics 

The aim of this paper is to enhance the 
understanding of how attitudes, beliefs, and 

values toward driving behaviour affect 
different subgroups of a population in 

adopting driving styles. This was used as a 
base to assess the ‘traffic safety culture’ 

among different class of drivers (e.g., low risk 
or high risk). 

Coogan et al. 
Transportation Research 

Part F, 2014 

412 Traffic (safety) 
culture 

Traffic rules, public 
perception, 

This study is focused on ethical dilemmas of 
AVs to set the foundations of an ethics test 

for them. The authors suggest that daily 
driving scenarios can inspire “edge-case” 

common sense testing of AVs, both in 
simulation and real road tests that can assess 

how the software behaves in a series of 
expected and unexpected driving situations 
that are not typically encountered during a 

standard test, but that may eventually arise on 
real roads. Besides traffic rules, the authors 
recommend incorporating idiosyncrasies of 

the local driving culture to improve the setup 
of driverless dilemmas to increase their 

realism and relevance to actual AVs. 

De Freitas et al. 
Proceedings of the 

National Academy of 
Sciences, 2021 

413 Traffic (safety) 
culture 

Risk perception, experience 
and training, secondary 
tasks, drowsiness, road 

design, traffic rules 
enforcement, demographics, 

speed 

It is important and practical to understand 
risky behavioural habits among sub-cultures 
and thereby focussing on groups of drivers 
instead of individuals, because groups are 
easier to approach and drivers within sub-
cultures are found to influence each other. 

This paper investigated the driving behaviours 
based on drivers’ sub-cultural backgrounds in 

Qatar. Results suggest that acceptance of 
speeding is highest among the young Arabic 
students and acceptance of distraction and 

drivers’ negligence such as using phone and 
not wearing a seatbelt is highest among male 

Arab drivers. Acceptance of extreme risk-
taking like intoxicated driving and red-light 

running is highest among South-Asian 
business drivers. 

Timmermans et al. 
Journal of Safety 
Research, 2020 

414 Traffic (safety) 
culture 

Perceived risk, 
demographics, situation 

awareness, other road users, 
traffic rule enforcement, 

secondary task, driving style 

This paper validates traffic safety climate 
attitudes based on a representative sample of 
road users of all travel modes. Traffic safety 
climate is defined as “the road users’ (e.g. 
drivers’) attitudes and perceptions of the 

traffic in a context (e.g., country) at a given 
point in time”. Further, traffic safety culture is 
defined as ‘‘the sum of all factors that affect 
skills, attitudes, and behaviours of drivers as 

well as vehicles and infrastructure’’. 

Gehlert, Hagemeister and 
Özkan 

Transportation Research 
Part F, 2014 

415 Traffic (safety) 
culture 

Speed, secondary task, 
demographics, perceived 
risk, road design, training 

and experiment, traffic rules 
enforcement, other road 

users, drowsiness, impaired 
driving 

This study analysed the results of a survey to 
test the correlations between 

sociodemographic factors which risk 
perception and other constructs shaping the 
traffic safety culture of road users. It was 

found that country-specific culture might not 
have a strong association with risk perception; 

however, culture is associated with risk 
behaviour and therefore a valid predictor of 

traffic safety. 

Tazul Islam, Thue and 
Grekul 

Transportation Research 
Record: Journal of the 

Transportation Research 
Board, 2017 

416 Traffic (safety) 
culture 

Traffic composition, time-
to-collision, speed, reaction 
time, control, algorithms, 

vehicles’ kinematics, 
headway distance, hardware, 

traffic conditions, weather 
conditions, roadway type, 

acceleration, driving 
volatility 

This paper aimed to quantify uncertainties in 
the interaction of HDVs and AVs in mixed 

traffic and measure main impacts of AVs on 
conventional vehicles as well as their drivers’ 
behaviours. On average, a driver that follows 

an AV recorded lower driving volatility in 
terms of speed and acceleration. This can 

result in a more stable traffic flow behaviour 
and lower collision risk. 

Mahdinia et al. 
Accident Analysis and 

Prevention, 2021 

417 Traffic (safety) 
culture 

Weather/road conditions, 
other traffic participants, 

traffic conditions, 
kinematics, reaction time, 

perception, motion planning, 
path planning, speed, 
behaviour generation, 

algorithms, controllers, 
number of lanes, obstacles, 

V2V 

A decision-making algorithm is suggested to 
assess the risks of colliding with surrounding 

traffic participants for AVs. The findings 
advocate that the proposed method is 
sufficiently reliable for AVs to avoid 

collisions in multi-scenarios with different 
driving style preferences (i.e., aggressive, 

moderate, and conservative). 

Li et al. 
Transportation Research 

Part C, 2021 
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418 Traffic (safety) 
culture 

Traffic laws, traffic 
conditions, traffic density, 
obstacles, reaction time, 
other traffic participants, 

kinematic state, path 
planning, algorithms, 

weather conditions, road 
conditions, perceived risk 

For AVs to obey the traffic laws, objective 
measurements of safe and cautious behaviour 

in normal driving conditions are essential. 
This study put forward the conception, 

implementation and primary testing of an 
objective scoring algorithm that matches 

safety indices to observed driving style, and 
accumulates them to provide an overall safety 
score for a given driving session. This method 

can be applied to AVs’ behaviour in real 
traffic. 

Schönera et al. 
Traffic Injury Prevention, 

2021 

419 Traffic (safety) 
culture 

lateral and longitudinal 
control, algorithms, 

reinforcement learning, 
velocity, traffic flow, traffic 
conditions, traffic density, 

environmental factors, 
sensors, GPS, cameras, 

LiDAR, radar, perception 
accuracy, kinematic state, 
road geometry, weather 

conditions, number of lane, 
other traffic participants 

This paper developed a ‘deep deterministic 
policy gradient (DDPG) algorithm’ to 

coordinate the lateral and longitudinal control 
of AVs in complex traffic scenes. For 

avoiding collisions and allowing different 
expected lane-changing distances that 
represent different driving styles are 

considered for security, and the angular 
velocity of the steering wheel and jerk are 

considered for comfort. 

Hu et al. 
Sensors, 2020 

420 Trust & 
Reliance HMI 

This study focuses on the effects of trust (as a 
fundamental factor in human-automation 

interaction) in AV technology. Three 
acceptance measures (general acceptance, 
behavioural intention, and WTP) and two 

vehicle automation levels (HAV and FAV) 
were considered. 

Liu et al. 
International Journal of 

Human–Computer 
Interaction, 2019 

421 Trust & 
Reliance 

H-M Interface, experience 
& tech literacy, algorithms, 

This paper emphasises the importance of trust 
in human-automation interactions and 

relations especially in applied AI. Trust 
provides a valid foundation for describing the 
relationship between humans and automation. 

Hengstler, Enkel and 
Duelli 

Technological Forecasting 
and Social Change, 2016 

422 Trust & 
Reliance experience & tech literacy 

The attitude structure of public towards the 
AVs is measured in three dimensions (i.e. 

cognitive, affective, and behavioural 
components) before and after direct 

experience. 

Liu and Xu 
Technological Forecasting 
and Social Change, 2020 

423 Trust & 
Reliance 

Training, pedestrians, other 
road users, HMI, H-M 

Interface, 

This paper argues that successful achievement 
of fully/highly automated driving hinges upon 
demonstrating and resolving the trust issues. 

Training of the potential users (and 
interactors) to acquaint them with system 

boundaries and limitation plays a crucial role 
in safe operation of safety-critical systems. 

Wintersberger and Riener 
i-com, 2016 

424 Trust & 
Reliance Control, communication, 

This article argues that ‘trust’ is essential to 
decreasing perceived risk. In AI-based 

technologies, perceived risk further stems 
from the delegation of control to a machine 

and its control mechanisms. 

Hengstler, Enkel and 
Duelli 

Technological Forecasting 
and Social Change, 2016 

425 Trust & 
Reliance HMI, public attitude 

The authors see trust as a core concept in 
human machine interaction as well as human-

automation interaction in advanced 
technologies. The results show that trust and 

risk acceptance are correlated. 

Liu, Wang and Vincent 
Journal of Experimental 

Psychology: Applied 

426 Trust & 
Reliance HMI, control 

This study maintains that trust in autonomous 
vehicles is especially important, because 

driving is a risky task and may result in fatal 
consequences. Therefore, in order to ensure a 
desirable interaction between the technology 

and human. 

Rödel et al. 
6th International 
Conference on 

Automotive User 
Interfaces and Interactive 
Vehicular Applications, 

2014 

427 Trust & 
Reliance 

Experience, HMI, 
component failure, hardware 

reliability 

The results of this study demonstrate that the 
real-life driving experience improves trust 

calibration in automated cars. This paper also 
suggests a strong relation between user 
(human agent) and system performance. 

Walker et al. 
Journal of Advanced 
Transportation, 2018 

428 Trust & 
Reliance 

Situation awareness, 
dynamic objects, traffic 

culture 

This study maintains that ‘trust’ affects the use 
of automated systems. With overreliance (or 
over-trust), an interactor’s trust level exceeds 

the system capabilities, resulting in risk. 

Sonoda and Wada 
IEEE Transactions on 

Intelligent Vehicles, 2017 



Appendix A 

186 
 

  

429 Trust & 
Reliance 

HNI, situation awareness, 
H-M interfaces 

The concept of “human-autonomy teaming” is 
developed in this paper and is linked to the 

study of human factors to address the 
challenges of interacting with complex and 

increasingly autonomous systems. It is 
maintained that if implemented properly, HAT 

can foster desired teamwork and result in 
increased trust and reliance on the system, 

which in turn will reduce workload, increase 
situation awareness, and improve 

performance. 

Ho et al. 
IEEE/AIAA 36th Digital 

Avionics Systems 
Conference (DASC), 2017 

430 Trust & 
Reliance Experience, perceived risk 

A survey was conducted to investigate the 
relation between experience and trust in 

automated driving systems. Trust was related 
to several attitudinal and behavioural factors, 

and experience shaped the level of trust in 
these technologies. 

Dikmen and Burns 
IEEE International 

Conference on Systems, 
Man, and Cybernetics 

(SMC), 2017 

431 Trust & 
Reliance 

Shared goals, information 
sharing, acceptability, 

This study provide evidence that trust is 
important for the acceptability of smart 

systems. Further it shows that ‘shared goal’ 
and ‘giving information’ can increase the 

trustworthiness of smart systems. 

Verberne, Ham and 
Midden 

Human Factors, 2012 

432 Trust & 
Reliance 

Reaction time, HMI, 
training and experience, 
perceived risk, situation 

awareness, H-M interface, 
road infrastructure 

The concept of ‘trust fall’ is introduced to 
investigate trust in automated systems. This 
paper concludes that ‘overtrust’ in systems 

that are perceived to be safe but still prone to 
infrequent and hazardous failures can present 

a significant risk. 

Miller et al. 
Proceedings of the Human 
Factors and Ergonomics 
Society Annual Meeting, 

2016 

433 Trust & 
Reliance 

Reliance, perceived risk, 
predictability, functionality, 

behavioural intention 

This study shows a strong correlation 
between, perceived risk, trust and behavioural 

intention in the context of AVs. 

Choi and Ji 
International Journal of 

Human-Computer 
Interaction, 2015 

434 Trust & 
Reliance 

Urban settings, other road 
users, pedestrians, human-

driven cars, communication 

This study cites the Nissan IDS concept which 
shows that human-cantered issues such as 
social acceptance, trust in the AV, and the 

evocation of emotions are of great importance 
when people get faced with this new 

technology. This further investigates the 
impact of 

Zimmermann and Wettach 
Proceedings of the 9th 

ACM International 
Conference on 

Automotive User 
Interfaces and Interactive 

Vehicular 
Applications, 2017 

435 Trust & 
Reliance 

Training, practice, 
experience, reaction time, 

over trust, distrust 

The correlation between trust and fully 
automated driving (FAD) performance was 
tested. The results show that a correlation 

exists between trust and reaction time in the 
simple practice group (i.e., higher trust meant 

a longer reaction time), but not in the 
elaborate practice group. This finding 

indicated that to mitigate the adverse impact 
of overtrust on reaction time, more appropriate 

practice and training may be needed for 
drivers. 

Payre, Cestac and 
Delhomme 

Human Factors, 2016 

436 Trust & 
Reliance 

Environmental conditions, 
experience, HMI 

In this article, the role of ‘automation trust’ in 
monitoring behaviour of drivers and human-

machine interactions during highly automated 
driving is investigated. A consistent 

relationship between drivers’ automation trust 
and gaze behaviour was reported. Participants 
reporting higher automation trust were more 

likely to monitor the automation less 
frequently. Further analyses showed that 

higher automation trust was associated with 
lower monitoring frequency of the automation 
during (non-driving-related task) NDRTs, and 

an increase in trust over the experimental 
session was connected with a decrease in 

monitoring frequency. 

Hergeth et al. 
Human Factors and 

Ergonomic Society, 2016 

437 Trust & 
Reliance 

HMI, system design, 
experience, 

This study emphasises the importance of 
‘operator’s trust’ in fielded unmanned systems 

and sees this factor as a critical factor 
affecting the success of these systems. It 

suggests a framework for assessing operator’s 
trust based on heuristics such as ‘Visibility of 

system capabilities & limitations’ and 
‘Visibility of current system behaviour’. 

Jackson et al. 
Proceedings of the Human 
Factors and Ergonomics 

Society, 2016 
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438 Trust & 
Reliance 

Situation awareness, 
overreliance, reliability, 
training and experience 

This article investigates the importance of 
situation awareness (SA) of the driver in 
autonomous driving and highlights three 

crucial factors affecting SA. These factors are 
Attention and Trust, Engagement and 

Workload and Mental Model. It is maintained 
that “… [SA] is affected by the level of trust 

in the automation and the presence of 
competing secondary tasks and which is 

mediated by the effectiveness of the vehicle 
displays”. 

Endsley 
Journal of Cognitive 

Engineering and Decision 
Making, 2017 

439 Trust & 
Reliance 

Road type, reaction time, 
weather conditions, road 
infrastructure, other road 

users, obstacles, 
construction zone, light 

conditions, human driven 
vehicles, H-M interface 

This study focuses on the role of human 
factors in disengagements, accidents and 

reaction times. It is asserted that “the ultimate 
success of automated vehicles will depend on 

drivers' trust in them [AVs] and on how 
people choose to use and interact with them, 
and the ensuing safety risk”. Results show a 
positive correlation between the cumulative 

vehicles mile travelled and reaction time 
which contributes to drivers’ trust. 

Dixit, Chand and Nair 
PLoS ONE, 2016 

440 Trust & 
Reliance 

Technical competence, 
HMI, 

The role of anthropomorphism in building and 
enhancing trust in autonomous vehicles is 
investigated. Trust is seen as an ‘essential 

condition’ for accepting and relying on 
autonomous vehicles and successful use of the 
technology depends on whether people trust it 

or not. 

Niu, Terken and Eggen 
Human Factors and 

Ergonomics in 
Manufacturing & Service 

Industries, 2018 

441 Trust & 
Reliance 

Communication, sensors, 
software, traffic 

conditions/culture, inter-
vehicle interactions, urban 

design, traffic rules 

This paper briefly summarises the approaches 
that different teams used in the DUC, with the 
goal of describing some of the challenges that 

the teams faced in driving in urban 
environments. The issue of inter-vehicle trust 

in case the traffic rules are breached is 
suggested as an avenue for further research. 

Campbell et al. 
Philosophical Transactions 

of the Royal Society A, 
2010 

442 Trust & 
Reliance 

HMI, experience, tech 
literacy, reliability 

This study investigates the influence of ‘Trust 
Metrics’ on the employments of Autonomous 

Systems in high risk environments and 
applications. To test their hypothesis of trust 

in technology, the authors identified constructs 
that facilitate measurement of human 

interaction with the technology. Experience 
and knowledge are among these constructs. 

Anderson and Mun 
Sixteenth Annual 

Acquisition Research 
Symposium, 2019 

443 Trust & 
Reliance 

Traffic rules, traffic culture, 
regulations, control, traffic 

environment, HMI, situation 
awareness, H-M Interface 

The issue of trust in driverless cars is studied 
in this work. It is believed that until trust is 

established, the vehicle has the potential to be 
underutilized, misused, or even unused. In 

order to tackle this, the authors suggest the use 
of knowledge about human behaviour and 

the social sciences to design safer systems and 
interfaces between these vehicles and the 

people using them. 

Schaefer and Straub 
IEEE International Multi-
Disciplinary Conference 
on Cognitive Methods in 
Situation Awareness and 
Decision Support, 2016 

444 Trust & 
Reliance 

Overtrust, distrust, HMI, 
situation awareness, 

This paper centres on the influential factors 
that can affect trust in automated cars. It is 

believed that if users have too little trust, they 
are less likely to rely on and take full 
advantage of the capabilities of the 

technology. On the other hand, if users trust 
the technology too much, they are again less 
likely to monitor the system in challenging 
environmental conditions which cause the 

systems to operate at the edge of their 
capabilities. 

Carlson et al. 
The Intersection of Robust 
Intelligence and Trust in 
Autonomous Systems: 
Papers from the AAAI 

Spring Symposium, 2014 

445 Trust & 
Reliance 

HMI, Human-Machine 
Interface, control, handover 

This research focuses on the importance of 
public opinion on design of H-M Interface. 
Semi-structured interviews besides focus 

groups were conducted to gain insights into 
the perception of public on AVs and 

requirements which needed to be considered 
in the design of this technology. 

Langdon et al. 
International Conference 

on Applied Human 
Factors and Ergonomics, 

2017 

446 Trust & 
Reliance 

HMI, over-trust, mistrust, 
perceived risk, reaction 

time, cybersecurity, 

An acceptance model for semi-autonomous 
vehicles (level 3) is developed in this paper. 

‘Trust’ is specified as a major factor 
determining HMI. 

Zhang et al. 
Transportation Research 

Part C, 2019 
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447 Trust & 
Reliance 

HMI, perceived risk, 
training and experience, 

This paper hypothesises that “there is a 
significant correlation in users’ 

psychophysiological response when exhibiting 
varying levels of trust towards AVs’”. Then it 
shows a significant correlation between users’ 

psychophysiological responses when 
exhibiting varying levels of trust towards 

AVs’ during interactions. 

Ajenaghughrure, da Costa 
Sousa and Lamas 
13th International 

Conference on Human 
System Interaction (HSI), 

2020 

448 Trust & 
Reliance 

H-M Interface, overtrust, 
undertrust, situation 

awareness, 

This paper outlines the results of a driving 
simulator study conducted for the European 

CityMobil project. The aim was to investigate 
the impacts of FAD and HAD on the drivers’ 

behaviour. Situation awareness, too much trust 
and too little trust are among the expressed 

concerns about the interactions between 
drivers and highly automated vehicles. 

Merat and Jamson 
Proceedings of the Fifth 

International Driving 
Symposium on Human 

Factors in Driver 
Assessment, Training and 

Vehicle Design, 2009 

449 Perceived risk 
Trust, reliance, 

predictability, functionality, 
behavioural intention 

This paper investigated the importance of trust 
in adopting AVs. The authors argue that 

‘perceived risk’ is an essential component of a 
trust model.  Perceived risk is a key 

determinant linked to trust, particularly with 
regards to the decision to use an automated 

device, or not to use it. 

Choi and Ji 
International Journal of 

Human-Computer 
Interaction, 2015 

450 Perceived risk 

Overreliance, situation 
awareness, training & 

experience, trust, HMI, H-M 
interface, 

The aim of this study is to discuss human-
factors issues associated with AVs, with a 

concentration on car following. There is more 
emphasis placed on human factors issues of 
safety, usability, and acceptance rather than 

technical challenges ahead of this technology. 
A negative relationship is demonstrated to 

exist between experience and perceived risk. 

Saffarian, de Winter and 
Happee 

Proceedings of the Human 
Factors and Ergonomics 

Society 56th Annual 
Meeting, 2012 

451 Perceived risk Training and experience, 
trust, 

A survey was conducted to investigate the 
relation between experience and trust in 

automated driving systems. Trust was related 
to several attitudinal and behavioural factors, 

and experience shaped the level of trust in 
these technologies. A strong and negative 
correlation was reported to exist between 

‘initial trust’ and the level of ‘perceive risk’. 

Dikmen and Burns 
IEEE International 

Conference on Systems, 
Man, and Cybernetics 

(SMC), 2017 

452 Perceived risk 
Experience, cybersecurity, 

hardware failure, trust, V2X, 
traffic environment 

This study explores the risk perceptions 
toward connected and autonomous driving 
technology in comparison to conventional 
driving vehicles. Findings of this research 

show that with increased experience, the risk 
perception decreases. Statistically, a 

significant omnibus interaction effect between 
experience, risk area, and driving technology 
was found. It is also maintained that gaining 

understanding on ‘risk perception’ in 
autonomous driving can foster a successful 

implementation of AVs. 

Brell, Philipsen and Ziefle 
Risk Analysis, 2019 

453 Perceived risk 

Other road users, public 
perception, vehicular 
parameters, weather 

conditions, road conditions, 
lighting conditions, traffic 

conditions, speed, law 
enforcement, HMI, culture, 
cybersecurity, training and 
experience, reaction time 

This study surveyed almost 1000 participants 
on their risk perceptions, particularly with 

regards to safety and acceptance of AVs. The 
interactions between AVs and humans, other 
vehicles and road users are discussed in this 

paper. 

Hulse, Xie and Galea 
Safety Science, 2018 

454 Perceived risk 

V2X, sensors, LiDAR, 
cameras, obstacles, other 

road users, traffic 
infrastructure, reaction time, 
trust, kinematic state, H-M 

Interfaces, vehicle 
dynamics, traffic density, 

number of lanes, perception 
accuracy, vehicle control, 

situation awareness, 
communication channels, 

sensor fusion 

This paper analyses the role of V2X and 
‘collective perception’ in object update rate, 

redundancy, and awareness. Collective 
perception was measured in terms of three 

types of performance metrics: 1) effect on the 
communication channel; 2) environmental; 

perception; and 3) safety metrics. The 
findings agree with other studies and suggest 
that collective perception affects the load of 
the communication channel. This highlights 
the need for appropriate congestion control 

mechanisms. 

Schiegg et al. 
Sensors, 2021 
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455 Perceived risk 

Communication, time-to-
collision, kinematic state, 

traffic flow, vehicle 
performance, road 
conditions, traffic 

infrastructure, algorithms, 
traffic composition 

This study proposed a new methodology for 
risk perception and warning strategy based on 

safety potential field model to minimise 
collision risk in AD. A novel driving risk 
indicator (potential field indicator) was 

defined to evaluate the level of driving risk. 
Based on that, an early warning strategy was 

developed to prevent collisions and its 
performance was tested by a series of 

simulations carried out in SUMO simulator. 

Li et al. 
Accident Analysis and 

Prevention, 2020 

456 Perceived risk 

Trust and reliance, reaction 
time, secondary task, HMI, 
visibility, other road users, 
H-M Interface, obstacle, 
experience in autonomy 

Lack of trust in automation is a reason for the 
failure of drivers to fully exploit a vehicle’s 
autonomy. It is also stipulated that “the form 
of trusting belief is based on the perceived 
level of risk, and a lower perceived level of 

risk leads to higher levels of trust”. 

Petersen et al. 
Ground Vehicle Systems 

Engineering and 
Technology Symposium, 

2018 

457 
Secondary task 

(non-driving 
tasks) 

driver fatigue, control of 
vehicle, speed, reaction 

time, perceived risk, 
weather conditions, traffic 

complexity, driving 
experience, road layout, H-

M Interface, situational 
awareness, other vehicles, 

kinematic state 

A challenging topic for researchers in the field 
AD involves an understanding of whether a 

period of automated driving is likely to lessen 
driver fatigue rather than increase the risk of 

distraction, specifically when drivers are 
involved in a secondary task (e.g., watching a 

video) while behind the wheel. It is 
maintained that from a human factor 

perspective, the exclusion of drivers from the 
control loop caused by their engagement in 

non-driving-related tasks (NDRTs) can make 
it harder for them to take over control of the 
vehicle. This can further affect the reaction 

time to hazardous situations. 

Calvi et al. 
Transportation Research 

Part F, 2020 

458 
Secondary task 

(non-driving 
tasks) 

Longitudinal and lateral 
control, speed, sensors, 

cameras, software 
reliability, obstacles, other 

road users, road 
configuration, reaction time, 
trust, H-M Interfaces, traffic 

rule enforcement, traffic 
density, automations 

capacities awareness, mental 
control 

Human interventions deem to be necessary in 
AD at least until the technology functions 

perfectly and permanently. This study 
conducted two simulator experiments to 

examine the impact of vehicle’s autonomy 
level on the performance of onboard drivers in 
performing secondary tasks (reading a book or 

watching video). 

de Winter et al. 
International Journal of 
Vehicle Design, 2016 

459 
Secondary task 

(non-driving 
tasks) 

Perceived risk, take-over 
time, driver behaviour, 
situational awareness, 
experience, trust and 

reliance 

AVs are still unequipped to safely handle 
many unexpected hazards and conditions in 

real-world traffic. This paper quantified 
changes in driver attention allocation before 

and during exposure, and after the lane 
keeping system was disabled. To this end, the 
number of secondary tasks completed by the 

participants, accuracy of those tasks, and eyes-
off-road glance durations were measured. An 

important finding in this research is that 
drivers become more willing to take risks each 

they feel more comfortable with the AVs. 

Miller and Boyle 
Transportation Research 

Part F, 2019 

460 
Secondary task 

(non-driving 
tasks) 

Drivers’ mental mode, trust, 
longitudinal and 

lateral control, trust, 
overreliance, situation 

awareness, reaction time, 
control loop, HMI, H-M 
Interface, traffic density, 
traffic regulation, traffic 

conditions, velocity, other 
road users, obstacles, 
weather conditions, 
technical failures 

A group of 20 Tesla drivers who had relatively 
high experience (one to five months) with 

Autopilot were interviewed to pinpoint their 
behavioural adaptation, mental models, and 
trust during the period of AD. The results 
suggested that those who had experienced 

semi-autonomous driving had a very positive 
attitude towards the technology and drivers 
universally engaged in non-driving related 

tasks (NDRTs) during AD. They also learnt 
from their experiences to figure out relatively 
safe usage conditions and considered a safety 
margin to avoid exposure to excessively risky 

situations. 

Lin, Ma and Zhang 
Applied Ergonomics, 2018 

461 
Secondary task 

(non-driving 
tasks) 

Sensors, V2X, 
communication 

infrastructure, H-M 
Interface, trust, vehicular 
control, other road users, 

obstacles, road design, road 
conditions, user experience 

A survey of 29 in-vehicle information items 
was conducted among 156 participants, who 

drove a virtual indoor simulator in both 
manual- and autonomous-driving modes. The 

findings show that in the AD mode, the 
drivers’ preference for information about the 

secondary tasks of driving diminished, 
whereas the tertiary-task information, 
particularly communication-related 

information that was reported higher. This 
work is useful as it can provide a basic 

guideline for designers of user experiences 
and user interfaces. 

Lee, Park and Ju 
International Journal of 

Automotive Technology, 
2020 
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462 
Secondary task 

(non-driving 
tasks) 

HMI, reaction time, 
perceived risk, H-M 

Interfaces, velocity, weather 
conditions, obstacles, 

fatigue, situational 
awareness, trust, road 

geometry, other road users 

In highly automated driving, where most of 
the research is focusing on SAE Level 4, take-
over performance is also a key factor to ensure 

collision avoidance. This study aimed to 
examine how the immersion in NDRTs affects 
the take-over performance of drivers in given 

traffic scenarios. 

Minhas et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2020 

463 
Secondary task 

(non-driving 
tasks) 

Reaction time, situation 
awareness, drowsiness, 

speed, road infrastructure, 
traffic density, human 

factors, lateral and 
longitudinal vehicle control 

SAE Level 3 automation allows the on-bord 
driver to engage in NDRTs, although the 

driver is still required to take over the control 
if the technology cannot handle a risky 

situation. This paper examined the impact of 
the type of NDRTs and the complexity of the 

situation on driver performance. 

Dogan et al. 
Transportation Research 

Part F, 2019 

464 
Secondary task 

(non-driving 
tasks) 

time to react, situation 
complexity, traffic densities, 

road geometry, motion 
awareness, obstacle 

AVs with higher levels of autonomy (i.e., 3 
and 4) allow the drivers to divert their 

attention to NDRTs (e.g., texting, reading, or 
watching videos) during a ride. Nevertheless, 

these systems can still be prone to failure. 
Based on that, human intervention may 

become inevitable in critical situations. This 
paper proposes a new mean of communicating 

take-over requests (TOR) using human 
actuation through proprioception. 

Faltaous et al. 
18th International 

Conference on Mobile and 
Ubiquitous Multimedia 

(MUM), 2019 

465 
Secondary task 

(non-driving 
tasks) 

Trust, driver behaviour, H-
M Interface, visibility, HMI, 

weather conditions, 
obstacle, perceived risk, 
experience, other traffic 

participants, reaction time, 
control, situational 

awareness, environmental 
conditions 

This study investigated the relationship 
between AD reliability, user trust and external 

risk (low visibility).  37 licensed drivers 
participated to use a simulator as part of the 

experiment. Internal risk was manipulated by 
AD reliability and external risk by visibility, 

producing a 2 (ADS reliability) × 2 (visibility) 
design. 

Azevedo-Sa et al. 
Transportation Research 

Part C, 2021 

466 
Secondary task 

(non-driving 
tasks) 

HMI, trust, H-M Interface, 
situation awareness, sensors, 

weather conditions, 
construction site, time to 

collision, control 

Each automated system makes errors. The aim 
of this study was to evaluate whether 

communicating automation uncertainty 
improves the driver–automation interaction. A 

driving simulator was conducted to allow 
participant interacting with a highly automated 

driving system under varying automation 
reliability levels. 

Beller, Heesen and 
Vollrath 

Human Factors, 2013 

467 
Secondary task 

(non-driving 
tasks) 

Trust and reliance, obstacle, 
perception of an 

automation's reliability, 
experience and training, 

time-to-collision, situation 
awareness, speed, Human-
Machine Interface, HMI 

The impact of trust promoting and trust 
lowering on the reported trust was measured 
in this study.  40 participants took part in an 

experiment and faced three situations in a 17-
min highway drive with a SAE Level 3 

vehicle. Situation 1 and Situation 3 were non- 
critical situations where a take-over was not 

necessary. Situation 2 included a risky 
situation where an intervention was essential 
to avoid a collision. Drivers were required to 
engage in a non-driving-related task (NDRT) 
between the situations to track their allocation 

of visual attention. Participants recording a 
higher trust level spent less time looking at the 

road or instrument cluster and more time 
focusing on the NDRT. The manipulation of 
introductory information resulted in medium 
differences in reported trust and influenced 

participants' reliance behaviour. 

Körber, Baseler and 
Bengler 

Applied Ergonomics, 2018 

468 
Secondary task 

(non-driving 
tasks) 

Fatigue, traffic flow/density, 
lighting conditions, weather 
conditions, road conditions, 

number of lanes, day of 
week, speed, driver age, 

road design 

This paper focuses on the risk of driver 
distraction in partially automated vehicles. It 

is proposed to apply technological 
countermeasures in partially automated 

vehicles to prevent drivers from engaging in 
secondary tasks such as using mobile phones 

while driving. 

Flannagan, Bärgman, 
Bálint 

Transportation Research 
Part F, 2019 

469 
Secondary task 

(non-driving 
tasks) 

Lateral and longitudinal 
control, driver workload, 
situation awareness, road 

conditions, adverse weather, 
road infrastructure, H-M 
Interface, HMI, trust and 
reliance, reaction time, 
automation capability 

awareness 

One of the main concerns in AD is that with 
higher levels of automation, drivers will be 

gradually out of the control loop. In this study, 
the comments of YouTube users were 

categorised into four main groups: 1) NDRTs; 
2) automation capability awareness; 3) 

situation awareness; and 4) warning 
effectiveness. It is reported that reviewers 

have extreme positive and negative opinions 
about NDRTs than other topics 

Zhou, Yang and Zhang 
International Journal of 

Human–Computer 
Interaction, 2020 
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470 
Secondary task 

(non-driving 
tasks) 

Longitudinal &lateral 
control, time-to-collision, 
perceived physical danger, 
trust and reliance, situation 
awareness, velocity, H-M 

Interfaces, prior experience, 
traffic conditions, driving 
styles, velocity, other road 

users, traffic density, 
number of lanes, road 
geometry, visibility, 
automation level, age 

Research has shown that one implication of an 
increase in the degree of vehicle autonomy is 

the tendency of drivers to engage in secondary 
tasks during a ride. 

This paper attempted to examine the effect of 
autonomy level on subjective and objective 

driving during an on-road experiment in real-
world traffic. 32 participants took part in this 

study which was conducted in rush-hour 
traffic on a highway. 

Naujoks, Purucker and 
Neukum 

Transportation Research 
Part F, 2016 

471 
Secondary task 

(non-driving 
tasks) 

Vehicle control, reaction 
time, road type, weather 

conditions, road geometry 

This paper investigated the effects of takeover 
request (TOR) modalities on drivers’ takeover 
performance after they engaged in NDRTs in 

highly automated driving (HAD). 

Yoon, Kim and Ji 
Accident Analysis and 

Prevention, 2019 

472 
Obstacles 
(static and 
dynamic) 

Algorithms, LiDAR, 
sensors, collision avoidance, 

speed, vehicle dynamics, 
traffic rules 

A dynamic obstacle avoidance Model 
Predictive Control (MPC) method is 

introduced for autonomous driving that uses 
deep learning technique for velocity-

dependent collision avoidance in unknown 
environments. The ultimate goal is to control 
an autonomous vehicle in order to perform 

different traffic manoeuvres in a safe way with 
maximum comfort of passengers, and in 
minimum possible time, accounting for 

manoeuvring capabilities, vehicle dynamics, 
and in the presence of traffic rules, road 

boundaries and static and dynamic unknown 
obstacles 

Mohseni, Voronov and 
Frisk 

IFAC Conference Paper 
Archive, 2018 

473 
Obstacles 
(static and 
dynamic) 

Speed, algorithms, sensors, 

The presence of stationary (static) and moving 
(dynamic) obstacles is diagnosed as a risk 

factor for AVs. A polar algorithm is proposed 
which automatically computes the avoidable 

set given the dynamics. 

Chen, Peng and Grizzle 
IEEE Transactions on 

Control Systems 
Technology, 2018 

474 
Obstacles 
(static and 
dynamic) 

Sensors, LiDAR, collision 
avoidance, 

The problem of this paper is to estimate states 
of unobservable free spaces and obstacles 

occluded by other obstacles. Knowledge about 
blind spots helps autonomous vehicles make 
better decisions, such as avoiding a probable 
collision risk. The proposed method can also 
detect blind spots ahead of vehicle as driving 

risks in real outdoor dataset. 

Sugiura and Watanabe 
IEEE Intelligent 

Transportation Systems 
Conference (ITSC), 2019 

475 
Obstacles 
(static and 
dynamic) 

Path planning, speed, road 
geometry, road type, 

visibility, traffic rules, 

Obstacles are deemed to block the mounted 
detection sensors on ego vehicle by limiting 
the visibility. Estimating the risk of collision 
with moving vehicles in an occluded area is 
difficult because their locations and speeds 

cannot be detected. 

Lee, Sunwoo and Jo 
Robotics and Autonomous 

Systems, 2018 

476 
Obstacles 
(static and 
dynamic) 

Lighting conditions, speed, 
sensors, algorithms, LiDAR, 

radar, cameras, 

In this paper, the authors discuss the obstacle 
avoidance context for autonomous vehicles in 
dynamic and unknown environments, and they 

develop a new method for Collision Risk 
Estimation based on Pearson’s Correlation 

Coefficient (PCC). 

Miranda Neto et al. 
IEEE Workshop on Robot 

Vision (WORV), 2013 

477 
Obstacles 
(static and 
dynamic) 

Communication, V2V, V2I, 
sensors, LiDAR, radar, 

weather conditions, control 

Conventional intelligent vehicles have 
performance limitations owing to the short 

road and obstacle detection range of the 
installed sensors. In this study, to overcome 

this limitation, the authors tested the usability 
of a new conceptual autonomous emergency 
braking (AEB) system that employs vehicle-
to-vehicle (V2V) communication technology 
in the existing AEB system. This method is 
proposed to lower the collision risk of the 
existing AEB system, which uses only a 
sensor cluster installed on the vehicle, is 

realised. 

Cho, Kim and Kim 
Journal of Applied 
Mathematics, 2014 

478 
Obstacles 
(static and 
dynamic) 

Algorithms, control, sensor, 
road geometry, speed 

An optimisation model is presented to assess 
the vehicle risk and control for lane-keeping 

and collision avoidance at low-speed and 
high-speed scenarios. The optimisation 

approach is also able to deal with a variety of 
different obstacles and the corresponding 

optimal smooth obstacle path. 

Fahmy, Abd El Ghany and 
Baumann 

IEEE Transactions on 
Vehicular Technology, 

2018 

479 
Obstacles 
(static and 
dynamic) 

Path planning, algorithms, 
speed, road conditions, 

vehicle dynamics 

A risk index is constructed and introduced into 
the cost function to realise collision avoidance 
by combining the relative position relationship 

between vehicle and obstacles in the 
predictive horizon. 

Li et al. 
IEEE, 2019 
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480 
Obstacles 
(static and 
dynamic) 

Traffic conditions, 
pedestrians, HMI, speed, 

This paper presents a pedestrian crossing 
model in congested traffic conditions, taken 
from mobile robotics motion planning that 

constructs a trajectory according to the 
probabilistic collision risks. The idea of 

finding the “best motion” for autonomous 
vehicles in a dynamic environment is 
considered in robotics by the Velocity 

Obstacle Space (VOS), which is a set of all 
relative velocities characterized by the 

Collision Cone (CC). 

Hacohen, Shvalb and 
Shoval 

Transportation Research 
Part C: Emerging 

Technologies, 2018 

481 
Obstacles 
(static and 
dynamic) 

Path planning, algorithms, 
cameras, LiDAR, 

As mobile robots and autonomous vehicles 
become increasingly prevalent in human-
centred environments, there is a need to 

control the risk of collision. A novel method is 
developed to compute the risk of collision for 

mobile robots and autonomous vehicles. 

Blake et al. 
IEEE Robotics and 

Automation Letters, 2020 

482 
Obstacles 
(static and 
dynamic) 

Algorithms, sensor, path 
planning, road geometry, 
vehicle geometry, GPS 

A novel probability navigation function (NF) 
is defined to reduce the risks of collision 

during the AV’s motion. It is assumed that the 
obstacles and the workspace geometries are 
known, while their positions are stochastic 

variables. 

Hacohen, Shoval and 
Shvalb 

International Journal of 
Control, Automation and 

Systems, 2019 

483 
Obstacles 
(static and 
dynamic) 

Traffic conditions, vehicle 
dynamics, traffic rules, other 

road users, environment, 
speed, sensors, cameras, 

A system view of the environment is 
generated by data fusion and data 

interpretation based on data stored in the 
dynamic data base that represents the current 
scene. This system view is transformed into a 

riskmap representation which integrates 
information about the street, the relative 

position and speed of obstacles and traffic 
signs. 

Reichardt and Schick 
Proceedings of the 94 

Symposium of Intelligent 
Vehicles, 1994 

484 
Obstacles 
(static and 
dynamic) 

Path planning, traffic rules, 
traffic congestion, 

algorithms, 

This study suggests static and dynamic path 
planning for AVs to avoid collision. 

Obstacles, therefore, are divided into static or 
dynamic categories simulations have been run 

to test the effectiveness the algorithms. 

Lim, Shim and Takahashi 
Proceedings 6th IEEE 

International Workshop on 
Robot and Human 

Communication, 1997 

485 
Obstacles 
(static and 
dynamic) 

Algorithms, sensors, road 
conditions, speed, vehicle 
dynamics, traffic condition 

Planning safe trajectories for AVs under such 
conditions requires both accurate prediction 

and proper integration of future obstacle 
behaviour within the planner. An autonomous 

vehicle can safely navigate a complex 
environment in real-time while significantly 
reducing the risk of collisions with dynamic 

obstacles. This paper presents a real-time path 
planning algorithm that guarantees 

probabilistic feasibility for autonomous robots 
with uncertain dynamics operating amidst one 

or more dynamic obstacles with uncertain 
motion patterns. 

Aoude et al. 
Autonomous Robots, 2013 

486 
Obstacles 
(static and 
dynamic) 

Situational awareness, 
visibility, sensors, traffic 

conditions, traffic density, 
traffic rule enforcement, 

algorithms, road 
configuration, speed 

This paper explores a moving vehicle 
detection and tracking module that was 
developed and used for the autonomous 

driving robot Junior. The robot won second 
place in the DARPA Urban Grand Challenge, 
an autonomous driving race organised by the 

US Department of Defense in 2007. The 
module provides reliable detection and 

tracking of moving vehicles from a high-speed 
moving platform using laser range finders. 

Petrovskaya and Thrun 
Autonomous Robots, 2009 

487 
Obstacles 
(static and 
dynamic) 

Speed, algorithms, path 
planning, 

This letter addresses the time-optimal risk-
aware motion planning problem for curvature-

constrained variable-speed vehicles in the 
presence of obstacles. Due to complexities of 

the environment, it is also critical that the 
time-optimal path is safe for the vehicle. 

Song, Gupta and 
Wettergren 

IEEE Robotics and 
Automation Letters, 2019 

488 Traffic density 

Speed, obstacles, time of 
day, other road users, HMI, 

road type, training and 
experience, situation 

awareness, V2I, regulations 

This paper presents a high-level safety case 
that identifies key factors for credibly arguing 
the safety of an on-road AV test program. A 
similar approach could be used to analyse 
potential safety issues for high capability 

semiautonomous production vehicles. 

Koopman and Osyk 
SAE International Journal 
of Advances and Current 

Practices in Mobility, 
2019 

489 Traffic density 

LiDAR, traffic composition, 
sensors, optical cameras, 

V2V, V2I, visibility, 
weather conditions, road 
conditions, GPS, speed, 

obstacles, road 
infrastructure, actuators, 
algorithms, pedestrians 

This study a simulation approach to test AVs 
in urban traffic scenarios. Simulations allow 
testing more scenarios than those that would 

be possible with real world testing, in addition 
to testing hazardous situations involving 
humans. The performance of AVs under 

varying circumstances are analysed. 

Figueiredo et al. 
Proceedings of the 12th 

International IEEE 
Conference, 2009 
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490 Traffic density 
Traffic composition, speed, 
target, communication, time 

to collision 

This paper investigated the impact of traffic 
flow optimisation on the traffic safety problem 
in hybrid and only-AV traffic scenarios. It is 
reported that the optimal control for the CAV 
mixed traffic flow can mitigate vehicle rear-

end collision risks. For the case of traffic flow 
with only CAVs, the rear-end collision risks of 
conventional vehicles flow can be decreased 

by more than 85.81% when the time-to-
collision threshold is less than 2 seconds. This 

can be reduced by 48.22% to 78.80% if the 
time-to-collision threshold is more than 2 

seconds. 

Qin and Wang 
 

China Journal of Highway 
and Transport, 2018 

491 Traffic density 
Traffic conditions, speed, 

time-to-collision, road 
geometry, time of day 

Crash surrogate metrics were used in this 
study to examine the relationship between 
collision risks and traffic flow. It has been 

widely recognised that one traffic flow 
corresponds to two distinct traffic states with 

different speeds and densities. 

Kuang, Qu and Yan 
PLoS ONE, Traffic safety 

fundamental diagram, 
2017 

492 Traffic density 

Speed, traffic conditions, 
drivers’ behaviour, 

following distance, day of 
week, road geometry, road 

type, pedestrians 

It is recognised that accident risk can vary as 
traffic conditions change due to special events 

or within-day variations in traffic. 
Furthermore, current predictive tools are 

mainly statistical, and this may not well fit to 
the environments which host automated 

vehicles. This study discusses how both issues 
can be addressed by supplementing standard 

statistical modelling together with models 
describing collision mechanisms. Brill’s 

random walk model of how traffic 
shockwaves lead to rear-end accidents is 

merged with a traffic flow model based on a 
fundamental diagram to evaluate the relation 
between traffic density and rear-end collision 

risk. 

Davis et al. 
Journal of Transportation 

Engineering, Part A: 
Systems, 2021 

493 Traffic density 

Traffic conditions, speed, 
rules, weather conditions, 

trajectory planning, 
communication, traffic 
control, human factors 

This paper examines traffic complexity 
variables under higher levels of automation 

where the human controller is still in the loop, 
but is being supported by advanced conflict 

detection and resolution automation. A set of 
variables affecting the complexity for higher 

traffic densities were found in this article. 

Kopardekar, Prevot and 
Jastrzebski 

AIAA Guidance, 
Navigation and Control 
Conference and Exhibit, 

2008 

494 Traffic density 

Control, HMI, H-M 
Interfaces, traffic 

complexity, speed, situation 
awareness, reaction time, 
takeover, demographics, 

other road users, number of 
lanes, obstacles, non-driving 

related tasks 

This article intended to assess the effect of 
traffic density and verbal tasks on takeover 

performance in highly automated driving. 72 
participants were faced takeover situations 

needing an evasive manoeuvre on a three-lane 
highway with different traffic density levels 

(zero, ten, and twenty vehicles per kilometre). 
The results suggest that the presence of traffic 

affects the reaction time and quality of 
takeover. The traffic state appears to be a 

major factor in the study of HMI in AVs and 
takeover situations. 

Gold et al. 
Human Factors, 2016 

495 Traffic density 

traffic condition, traffic 
control infrastructure, V2V, 
V2I, communication, traffic 
composition, speed, vehicle 
control, driving behaviour, 
reaction time, perception, 
road conditions, weather 

condition, road conditions, 
work zone, number of lanes, 

sensor limitations, radar, 
control algorithms, mixed 

traffic, road geometry, 
situation awareness   

This paper develops a framework to simulate 
various types of vehicles with different 

communication capabilities. The analyses in 
this study took traffic composition (mixed 

traffic) into account.  

Talebpour and 
Mahmassani   

Transportation Research 
Part C, 2016 

496 Kinematic state 

Time of day, weather 
conditions, other road users, 

reaction time, perceived 
risk, traffic composition, 

traffic density, speed, road 
conditions 

A hybrid approach is adopted in this study to 
determine the factors which have influence on 
driver reaction time in traffic safety incidents. 

A causal model is presented to depict the 
influential factors in traffic safety incidents. 
Based on this model, it is asserted that “the 

driver reaction time is one of the parameters 
of the kinematic and space-state models for 

trajectory reconstruction”. 

Arbabzadeh et al. 
Transportation Research 

Part C, 2019 
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497 Kinematic state 
Sensors, traffic density, 
speed, path planning, 

LiDAR, perception accuracy 

The aim of this study was to accurately 
calculate the risks which are caused by each 

road user (including AVs) in time. Four states 
of track life are integrated into a generic 

fusion framework to improve the performance 
of multi-object perception in dense traffic 

environments in highways and urban roads. 

Zheng and Huang 
Journal of Intelligent and 
Connected Vehicles, 2018 

498 Kinematic state 

Road topology, traffic flow, 
vehicle density, road 

conditions, number of lanes, 
perception accuracy, human 

factors, LiDAR, AI, path 
planning 

The congestion problems of traffic networks 
after the introduction of self-driving cars at 

both micro and macro levels is studied here. In 
the developed model, the collision avoidance 
equation consists of two factors: velocity and 
the distance from the following car/vehicle. 

Ji 
AIP Conference 

Proceedings, 2018 

499 Kinematic state 

Visibility, cameras, sensors, 
algorithms, LiDAR, radar, 

obstacles, weather 
conditions, road geometry 

Safe operation under poor visibility conditions 
is a requirement for AVs. In this study an 

algorithm is developed to exploit the vehicle 
dynamics from proprioceptive sensors and 

include it in sensitivity study.  

Boussard, Hautiere and 
d'Andrea-Novel 

IEEE/RSJ International 
Conference on Intelligent 
Robots and Systems, 2008 

500 Kinematic state 

Road conditions, trajectory 
tracking, vehicle control, 

speed, perception, 
algorithms, actuator, 

LiDAR, cameras, sensors 

This work presented a novel method for an 
optimisation problem which combines vehicle 
kinematics and trajectory tracking control of a 

vehicle with high speed and under complex 
off-road conditions. 

Zhao et al. 
Mechanical Systems and 
Signal Processing, 2019 

501 Other road 
users 

Road type, planning, 
perception, hardware and 
software, control, reaction 

time, road conditions, 
weather conditions, LiDAR, 
radar, lighting conditions, 

time of day, driving culture, 
traffic control, 

environmental conditions, 
algorithms, road geometry 

This paper considers and studies the sequence 
of events that can lead to a collision. ‘A crash 

sequence of events describes the AV’s 
interactions with other road users before a 
collision in a temporal manner’. Analysing 

the subsequences revealed that the most 
prevalent pattern in AV crashes is “collision 

following AV stop”. 

Song, Chitturi and Noyce  
Accident Analysis and 

Prevention, 2021 

502 Other road 
users 

Environmental conditions, 
demographics, traffic 
conditions, HMI, road 
structure, weather and 

lighting conditions, V2V, 
V2X 

This study investigates the (major and minor) 
factors influencing the behaviour of 

pedestrians in interacting with AVs. A wide 
range of factors including human, 

environmental and social factors are studied to 
analyse and predict the behaviour (intention) 
of pedestrians in dealing with autonomous 

vehicles. 

Rasouli and Tsotsos 
IEEE Transactions on 

Intelligent Transactions, 
2019 

503 Other road 
users 

Traffic composition, driving 
behaviour, control, H-M 
Interfaces, reaction time, 
road type, traffic flow, 

communication channels, 
LiDAR, vehicle kinematics 

This paper claims that HDVs hitting AVs 
from behind account for the most of accidents 

involving AVs. To address this problem, a 
study was designed to evaluate the detection 

of AVs’ behaviours in front of human drivers. 

Stanton et al. 
Human Factors and 

Ergonomics in 
Manufacturing & Service 

Industries, 2020 

504 Other road 
users 

Environment perception, 
dynamic obstacles, control 

architecture, traffic 
condition, traffic rules, 

trajectory planning, time to 
collision, sensors, reaction 

time, number of lanes   

A probabilistic overall strategy for risk 
assessment is proposed for AVs in highways. 

This system can assess the risks of 
manoeuvres and generate appropriate evasive 

actions to avoid colliding with dynamic 
obstacles. 

Iberraken, Adouane and 
Denis 

IEEE Intelligent Vehicles 
Symposium (IV), 2019 

505 Other road 
users 

Road geometry, reaction 
time, traffic conditions, 

trajectory planning, sensors, 
static/dynamic obstacles, 
path planning, velocity, 

algorithms, traffic regulation  

It is crucial for the safe path planning in AD to 
predict stochastic occupancy of the road by 
other vehicles. The prediction must consider 

uncertainties stemming from the 
measurements and the possible behaviours of 
other road users. Furthermore, the interaction 
of traffic participants, as well as the limitation 

of driving manoeuvres due to the road 
configuration needs to be considered. The 

result of the proposed approach in this study is 
the likelihood of a collision for a specific 

trajectory of an AV. 

Althoff, Stursberg and 
Buss   

IEEE Transaction on 
Intelligent Transactions 

Systems, 2009 

506 Other road 
users 

Human factors, pedestrians, 
bicycles 

This paper discusses the human preferences 
for moral judgments in risky and uncertain 
situations that AVs are subject to face when 

operating in urban environments. It also 
highlights that due to the dynamic driving 

environments in the real world and presence 
of AVs, human-operated vehicles, bicyclists, 

and pedestrians some collisions will be 
unavoidable. 

Meder et al. 
Society for Risk Analysis, 

2018 
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507 Other road 
users 

Perception, algorithms, 
control, path planning, 

camera, LiDAR, ultrasonic, 
time to collision, sensors, 

road infrastructure, weather 
conditions, obstacles, global 
navigation satellite system 

(GNSS), velocity  

A risk assessment method (decision making 
algorithm) is developed for AVs to 1) be 

predictable by other road users (drivers) and 
2) to maintain a desirable level of comfort for 

passengers. 

Mechernene et al. 
International Conference 
on Control, Automation 
and Diagnosis (ICCAD), 

2020 

508 Traffic control 
infrastructure 

Trajectory planning, traffic 
flow, V2V, V2I, velocity, 
other road users, traffic 

rules, road capacity  

A coordination scheme is presented for AVs 
which can eradicate the need for traffic lights 
at intersections. The optimal collision risk is 
worked out to choose the optimal trajectory.  

Kamal et al. 
Proceedings of the 16th 

International IEEE Annual 
Conference on Intelligent 
Transportation Systems 

(ITSC), 2013 

509 Traffic control 
infrastructure 

Traffic composition, driving 
behaviour, reaction time, 

autonomy level, traffic flow, 
traffic conditions, V2I, 

V2V, V2X, communication, 
other road users, road 

capacity, speed, geometric 
characteristics, 

This paper investigates the performance of 
signalised intersections under the mixed flow 

conditions and analyses the probability of 
conflict as well as the mitigation impacts of 

communication channels e.g. V2I. 

Pan et al. 
Arabian Journal for 

Science & Engineering, 
2020 

510 Traffic control 
infrastructure 

Communication, traffic 
density, weather conditions, 

work zones, algorithms, 
number of lanes, V2I, V2V, 

traffic congestion 

This paper proposes a new traffic control 
system excluding traffic lights at intersections. 

It is assumed that vehicles are fully 
autonomous and infrastructure is there to 

eliminate collision risks completely.  

Park and Lee 
2011 IEEE Vehicular 

Technology Conference 
(VTC Fall), 2011 

511 Traffic control 
infrastructure 

Weather conditions, road 
conditions, visibility, 

sensors, communication, 
V2V, V2I, traffic 

conditions, road type, time 
of day, day of week, speed, 

control 

The authors suggest that to increase the 
effectiveness the AVs it is necessary to 

transform the current human-based safety 
infrastructure. In this paper, they focus on 

accident report infrastructure and the 
escalation procedures required to avoid 

systemic risks. 

Sahawneh et al. 
IEEE, 2019 

512 Traffic control 
infrastructure 

RSUs, V2I, communication, 
number of lanes, traffic 

conditions, speed, traffic 
flow, lighting condition, 

V2V, traffic density, road 
geometry, kinematic state, 

other road users’ behaviour, 
reaction time  

A visible light communication (VLC)-based 
collision avoidance system is developed to 
effectively coordinate AVs in roundabouts. 

Heavy emphasis is placed on the traffic 
infrastructure and readiness for managing AV 

traffics. 

Fakirah et al. 
EURASIP Journal on 

Wireless Communications 
and Networking, 2020 

513 
Traffic 

conditions 
(complexity) 

Sensors, LiDAR, cameras, 
radar, road geometry, road 

infrastructure, path 
planning, motion planning, 

behaviour generation, 
longitudinal and lateral 
control, road conditions, 

obstacles, other road users, 
weather conditions, AI 

Traffic scenes have their own unique 
complexity and dynamics. Therefore, if a self-

driving vehicle is expected to achieve fully 
autonomous driving in a complex traffic 

scene, it must have the ability to learn and 
make predictions. Autonomous vehicles face 
many different scenes and road conditions, 
such as high-speed scenes, low-speed urban 

roads, and unstructured roads. this study 
deeply discusses some basic scientific issues 

of the self-driving approach based on 
cognitive construction, as well as the methods, 

computing models and technical routes to 
solve adaptability to complex situations of 

self-driving 
system. 

Chen et al. 
SCIENCE CHINA 

Information Sciences, 
2019 

514 
Traffic 

conditions 
(complexity) 

Traffic density, traffic 
control, road infrastructure, 

road geometry, weather 
conditions, traffic control 

infrastructure, reaction time, 
speed, driving behaviour, 
static obstacles, other road 

users, number of lanes, road 
conditions 

The dynamic of the traffic flow contributes to 
the complexity of traffic scenes. This further 

gives rise to the number of crashes. This paper 
examined the link between traffic complexity 
and collision risk (number of crashes) under 
urban motorway conditions. It was expected 
that linking the number of events (exposure) 
such as ‘harsh lane change to crash numbers 

can provide more insights into the relationship 
between causation and effect. The concepts 
developed for urban motorways but can also 

be applicable to other high-volume multi 
carriageway roads. 

Zurlinden, Baruah and 
Gaffney 

Journal of Road Safety, 
2020 

515 
Traffic 

conditions 
(complexity) 

Road type, algorithms, other 
road users, road geometry, 

weather conditions, 
obstacles, LiDAR, road 

conditions, lighting 
conditions, sensors, 

cameras, speed 

Comprehensive traffic data scenario is often 
necessary to evaluate the performance of 
unmanned ground vehicles (UGVs) and 

measure the scene complexity. This study 
developed a traffic sensory data classification 
paradigm based on quantifying the scenario 
complexity for every segment of roads. This 

quantification is based on road semantic 
complexity and traffic element complexity. 

Wang et al. 
IEEE Intelligent Vehicles 

Symposium, 2018 



Appendix A 

196 
 

516 
Traffic 

conditions 
(complexity) 

Control, kinematic state, 
traffic rules, path planning, 

obstacles, actuators, 
cameras, LiDAR, radar, 

speed, other traffic 
participants 

This paper proposed a ‘cooperative control’ 
approach for AVs to safely perform 

manoeuvres in complex traffic situations such 
as lane changing or crossing road 

intersections. This model is based on a cost 
function and collision avoidance objective for 

various traffic scenarios. 

Mohseni, Frisk and 
Nielsen 

IEEE Transactions on 
Intelligent Vehicles, 2021 

517 
Traffic 

conditions 
(complexity) 

Road type, other road users, 
algorithms, number of lanes, 

speed limits, time-to-
collision, static and dynamic 

objects, traffic volume, 
mixed traffic, path planning, 

environment perception 

This study adopted scenario-based testing for 
the validation and verification of CAVs.  

189,752 scenarios including various collision 
scenarios were simulated for this purpose. To 
evaluate the risks faced by CAVs in different 

traffic situations, a new criticality metric 
(Scenario Risk Index) was defined. 

Yue et al. 
IEEE Open Access, 2020 

518 
Traffic 

conditions 
(complexity) 

Algorithms, machine 
learning, cybersecurity, 

other traffic participants, 
motion planning, perception, 

trajectory generation, 
control, kinematic state, 
traffic composition, road 
infrastructure, time-to-

collision, hardware, sensors, 
velocity 

In this work, a “fully model-based multi-
modal parallelizable” is developed to analyse 

and evaluate the criticality of the complex 
traffic scene ahead of AVs. The extension of 
this algorithm can include road infrastructure 
and mobile objects. This algorithm is capable 
of handling a traffic scenario with 11 objects 

(over 86 million pose combinations) in 21 ms. 

Morales et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2019 

519 
Traffic 

conditions 
(complexity) 

Situation awareness, 
velocity, perception 

algorithms, V2I, V2V, 
kinematic state, road 

geometry, sensors, trajectory 
planning 

Crossroads are a complex traffic situation for 
autonomous vehicles. This paper proposed a 
system with two functionalities. First, it is 

capable of predicting the motion of a 
surrounding vehicle in general traffic 

situation, and second, is its ability to estimate 
the probability of a collision given the current 

ego trajectory. 

Annell, Gratner and 
Svensson 

IEEE 19th International 
Conference on Intelligent 
Transportation Systems 

(ITSC), 2016 

520 
Traffic 

conditions 
(complexity) 

Other traffic participants, 
algorithms, dynamic 

obstacles, control, trajectory 
planning, radar, cameras, 
lighting conditions, speed, 
sensors, LiDAR, motion 

state 

AVs should inevitably interact with other road 
users such as pedestrians while traveling in 
complex traffic environments. All potential 

collisions must be avoided during the 
interactive process to ensure the safety. This 
paper analysed the active obstacle collision 

avoidance algorithm. 

Zhang et al. 
Journal of Intelligent & 
Fuzzy Systems, 2018 

521 
Traffic 

conditions 
(complexity) 

Time-to-collision, vehicle 
dynamics, algorithms, 

sensors, road type, sensor 
fusion, V2V, V2I, control, 
obstacles, kinematic state, 

GPS, other road users, road 
parameters, trajectory 

planning, speed 

An anti-collision strategy based on hazard 
cognition is proposed to enable AVs safely 

passing through intersections while interacting 
with other vehicles. The algorithm was built 

and simulation was performed in 
MATLAB/Simulink. The simulation results 

have shown that the algorithm is reliable 
enough to prevent collisions. 

Jia et al. 
Chines Automation 

Congress (CAC), 2019 

522 Traffic 
composition 

Human factors, other road 
users, kinematic state, HMI, 

traffic flow, LiDAR, 
sensors, cameras, traffic 

conditions, road type, 
number of traffic lanes, 

weather conditions, 
visibility 

This paper analysed traffic accidents with AVs 
that occurred in California between 2015 and 
2017. Drivers’ manoeuvres of conventional 

vehicles do not differ in mixed or 
homogeneous traffic. Drivers’ errors of 

conventional vehicles that are more often in 
accidents with AVs are “unsafe speed” and 

“following too closely”. 

Petrović, Mijailović and 
Pešić 

Transportation Research 
Procedia 45, 2020 

523 Traffic 
composition 

Time-to-collision, traffic 
volume/flow, speed, 

position, cameras, sensors, 
radar, communication 

channels, control 
algorithms, system 

integration, V2V, road 
environment, human factors, 
road capacity, acceleration, 

number of lanes, vehicle 
characteristics, road 

conditions 

We will experience periods that both CAVs 
and HDVs share public roads as it needs time 

for all vehicles on the road to upgrade to 
CAVs. This study analysed the stability of 

mixed traffic flow under different penetration 
rates of CAVs. This paper suggests that if 

communication failure occurs the Cooperative 
Adaptive Cruise Control (CACC) vehicles 

will degenerate into ACC vehicles and 
subsequently the safety risk of mixed traffic 

flow increases considerably. 

Yao et al. 
Journal of Safety 
Research, 2020 

524 Traffic 
composition 

Traffic flow, control, speed, 
algorithms 

This work focuses on the challenge of 
controlling AVs in mixed traffic 

environments. The control algorithm 
introduced in this paper is based on the same 
components of standard platoon control, but 

adjust them to mixed environment. 

Orki and Arogeti 
IEEE International 

Conference on Connected 
Vehicles and Expo 

(ICCVE), 2019 

525 Traffic 
composition 

Reaction time, traffic 
conditions, control, 

communication, driving 
behaviour, V2V 

This paper looked into the impact of vehicle 
connectivity on the collision risk in mixed 

traffic (AVs and HDVs) streams. An 
optimisation problem was defined to minimise 

the collision risk while AVs and HDVs are 
expected to interact with each other. This 

paper suggests that mixed traffics can increase 
the probability of traffic conflicts. 

Li et al. 
Working paper, 2020 
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526 Traffic 
composition 

Kinematic state, 
communication, control, 
traffic conditions, road 

design, traffic flow, reaction 
time 

This study presents a car-following strategy 
for mixed traffic stream which involves 

platoon development in a connected 
automated vehicle (CAV) environment. The 

study also explores various platoon 
configurations to determine platoon 

parameters at different traffic states to obtain 
utmost benefits. 

Seraj, Li and Qiu 
Journal of Advanced 
Transportation, 2018 

527 Traffic 
composition 

Collision avoidance, 
software, communication, 
weather conditions, HMI, 
sensor, speed, actuators, 

V2V, V2I 

This paper considers the problem of 
controlling an autonomous vehicle that must 
share the road with human-driven cars and 

presents proactive collision avoidance 
algorithms which can adapted to various 

driving manners and road/weather conditions. 

Osipychev et al. 
American Control 

Conference (ACC), 2017 

528 Traffic 
composition 

Traffic conditions, traffic 
flow, algorithms, 

communications, V2V, V2I, 
speed, traffic control, 
reaction time, control 

strategies, kinematic state 

Constrained the one-step model predictive 
control (MPC) are applied to control the 
movement of the connected AV platoon 

upstream or downstream of the HDV platoon 
so that both transient traffic smoothness and 

asymptotic stability of this sample mixed flow 
platoon can be ensured, leveraging the 

communication and computation technologies 
equipped on connected AVs. Considering the 

absence of the centralised computation 
facilities and severe changes of the platoon 
topology, this study develops a distributed 

algorithm to solve the MPCs according to the 
properties of the optimisers, such as solution 

uniqueness, sequentially feasibility, and 
nonempty interior point of the solution space. 

Gong and Du 
Transportation Research 

Part B, 2018 

529 Traffic 
composition 

Drowsiness, fatigue, traffic 
flow/density, perception, 

sensors, algorithms, lighting 
conditions, time of day, 
weather conditions, road 
conditions, speed, road 
infrastructure, time to 

collision, other road users, 
HMI, obstacles, 

lateral/longitudinal control, 
secondary task, cameras, 

cybersecurity  

A scoping literature review on CAVs was 
conducted to analyse current trends in 

academic literature, evaluate models and 
anticipate future research directions. The main 
focus of this paper in on safety performance of 

CAVs. 

Sohrabi et al. 
Accident Analysis and 

Prevention, 2021 

530 Traffic 
composition 

Speed, traffic rule 
enforcement, V2I, traffic 

control infrastructure, 
weather conditions, traffic 

congestion/flow, driver 
behaviour, communication, 
reaction time, algorithms 

In early stages of deployment, AVs are 
expected to coexist with HDVs on motorways. 

This study explored methods to implement 
variable speed limits (VSL) under a mixed 
traffic condition where connected AVs and 

HDVs share public roads. VSLs can improve 
safety of motorway through harmonisation of 

traffic flow. 

Li et al. 
IET Intelligent Transport 

Systems, 2017 

531 Software 
reliability 

Behaviour planning, path 
planning, algorithms, 
vehicle control, V2V, 

number of lanes, other road 
users, road layout, traffic 

rules, GPS, sensors, 
actuators, sensor fusion, 

cameras, LiDAR, 
construction zone, obstacles, 
localisation, kinematic state, 

trajectory planning 

This study proposes a behaviour/path planning 
algorithm that is responsible for safe AD in 

structured environments such as urban roads. 

Kim et al. 
 IFAC Intelligent 

Autonomous Vehicles 
Symposium, the 

International Federation of 
Automatic Control, 2013 

532 Software 
reliability 

Software control, 
environment perception, 
localisation, planning, 

LiDAR, obstacles, other 
road users, algorithms, 

weather conditions, 
hardware, GPS, object 
recognition, trajectory 

tracking, velocity, lighting 
conditions, sensors, 

cameras, traffic conditions, 
takeover, construction 

zones, software 
infrastructure, system 

integration 

This work looks into the integration of 
systems, subsystems, algorithms and hardware 

that enable AD in challenging urban traffic 
scenarios.  

Levinson et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2011 
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533 Software 
reliability 

Weather conditions, sensors, 
other road users, control 

loop, environmental 
conditions, motion planning, 

actuators, perception 

Robustness testing for autonomous systems is 
still immature. On the other hand, AVs need 
novel approaches when it comes to testing. 

This paper presents Autonomous Stress 
Testing for Autonomy Architecture (ASTAA) 

and compares it with similar traditional 
robustness testing methods for software used 

in autonomous systems. 

Hutchison et al. 
ICSE-SEIP ’18, 2018 

534 Software 
reliability 

Algorithms, actuators, 
control, perception, road 

geometry, other road users, 
machine learning, visibility, 
weather conditions, time of 
day, speed, LiDAR, traffic 
rules, mixed traffic, road 
infrastructure, road type, 

hardware, system 
integration 

This study highlights five major challenge 
areas in testing AVs based on the V model: 1) 

driver out of the loop, 2) complex 
requirements, 3) non-deterministic algorithms, 

4) inductive learning algorithms; 5) and fail 
operational systems. 

Koopman and Wanger 
SAE World Congress, 

2016 

535 Software 
reliability 

Motion planning, 
algorithms, obstacles 

An efficient and robust motion planner is 
essential for safe operation of AVs in real 

urban traffic. This paper presents a risk-aware 
planning algorithm that benefits from chance-

constraint approximation to leverages the 
asymptotically optimal property of RRT* 

framework. 

Liu and Ang Jr. 
IEEE International 

Conference on Robotics & 
Automation (ICRA), 2014 

536 Software 
reliability 

VANET, sensors, 
algorithms, AI, machine 

learning, acceleration 
sensors, LiDAR, radar, 

traffic density, road 
conditions, communication, 
ultrasonic sensors, speed, 

other agents 

To tackle the dynamic and complex traffic 
scenarios that can result in collision, this study 

proposes a Reinforced Cooperative 
Autonomous Vehicle Collision AvoidancE 

(RACE) framework. Co-DDPG algorithms are 
also developed to train AVs. The VANET is 
used to protect location privacy of vehicles. 
These systems are supposed to reduce the 

collision risks for AVs. 

Yuan et al. 
IEEE Transactions on 
Vehicular Technology,  

537 Software 
reliability 

Software, sensors, 
perception, motion planning, 

CAN, GPS, algorithms, 
behavioural execution, road 
blockage, number of lanes, 

road geometry, road 
infrastructure, other road 
users, obstacles, velocity, 

sensor fusion, construction 
zones, traffic density, radar, 

LiDAR, traffic rules 

This article provides a summary on Urban 
Challenge competitions and studies Boss 
which was announced as the winner and 
analyses different aspects of that autonomous 
car such as software architecture and 
performance. 

Urmson et al. 
Association for the 

Advancement of Artificial 
Intelligence, 2009 

538 Lighting 
conditions 

Visibility, road 
infrastructure, road 
conditions, traffic 
congestion, speed 

The focus of this study is on perceiving the 
environment by AVs and in particular 

recognising the road signs and markings. The 
situations which can cause difficulty for the 

sensors and increase the risk are identified and 
classified based on the quality, status, 

quantity, visibility, perception, recognisability, 
clarity, and interpretability of the boards at 

the permitted speed. 

Lengyel and Szalay 
International Conference 
on Manufacturing, 2018 

539 Lighting 
conditions 

Cameras, sensors, weather 
conditions, algorithms, 

This paper, proposes and evaluates DeepTest, 
a systematic testing tool for automatically 
detecting erroneous behaviours of DNN-

driven vehicles that can potentially lead to 
fatal crashes. In this paper, the cause of a fatal 
accident involved the Tesla autopilot mode, is 
diagnosed as ‘image contrast’ and failing to 
detect the white truck against a bright sky. 

Tian et al. 
ACM/IEEE 40th 

International Conference 
on Software Engineering, 

2018 

540 Lighting 
conditions 

Time of day, algorithms, 
sensors, visual cameras, 

This paper offers an algorithm to tackle the 
challenges and risks arising from the direct 

dazzling sun light. This problem can blind the 
machine vision in AVs as well as human 

drivers. The fatal accident between a Tesla 
Model S and a white tractor trailer serves as a 

notable example to signify the risk. 

Paul and Chung 
Computers in Industry, 

2018 

541 Lighting 
conditions 

Road infrastructure, 
pedestrian, sensors, time of 

day, obstacles 

Road environmental recognition is seen as a 
key ability for AVs. This paper presents the 

test results of various object detection 
algorithms using single monocular camera for 
autonomous vehicle in real driving conditions. 

Pedestrian detection, traffic sign and traffic 
light recognition under various lighting 

conditions are three main issues this study 
covers. 

Jeon et al. 
13th International 

Conference on Ubiquitous 
Robots and Ambient 

Intelligence (URAl), 2016 
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542 Lighting 
conditions 

Integration, communication, 
sensors, GPS, 

ForeSight is developed to integrate the 
observations coming from an array of devices 

(sensors) in AVs. Bad light conditions is 
diagnosed as an influential factor in the 

performance of on-board cameras. 

Li et al. 
IEEE Conference on 

Computer 
Communications, 2014 

543 Lighting 
conditions 

Cameras, sensors, 
algorithms, obstacle, 
weather conditions 

In railway scenarios a camera in front of the 
train can aid drivers with the identification of 

obstacles or strange objects that can pose 
danger to the route. Image processing in these 

applications is not easy of performing. The 
changing conditions create scenes where 

background is hard to detect, lighting varies, 
and process speed must be fast. 

Uribe, Fonseca and 
Vargas 

46th Annual IEEE 
International Carnahan 
Conference on Security 

Technology, 2012 

544 Lighting 
conditions 

Obstacles, cameras, 
hardware, algorithms, time 

of day, infrastructure, 
visibility, perception, 

planning, control 

This paper developed a method based on the 
shadow of objects to detect static and dynamic 
objects and avoid collision for mobile robots 

and AVs. 

Naser et al. 
21st International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2018 

545 Lighting 
conditions 

Sensors, cameras, traffic 
conditions, obstacles, 

pedestrians, road design, 
algorithms, GPS 

This US patent considers risks in active 
sensing for autonomous vehicles. Light 

detection by on-board cameras is one of the 
main discussions of this document. 

Teller et al. 
United States Patent, 2014 

546 Lighting 
conditions Weather conditions 

This work classifies the types of collisions 
AVs may encounter. According to this 

research, unlit roadways and adverse weather 
conditions increase the risk of rear end 

collision. 

Parkin et al. 
VENTURE, 2016 

547 Lighting 
conditions 

Environmental conditions, 
demographics, traffic 
conditions, HMI, road 
structure, weather and 

lighting conditions, V2V, 
V2X, lighting conditions 

This study investigates the (major and minor) 
factors influencing the behaviour of 

pedestrians in interacting with AVs. A wide 
range of factors including human, 

environmental and social factors are studied to 
analyse and predict the behaviour (intention) 
of pedestrians in dealing with autonomous 

vehicles. 

Rasouli and Tsotsos 
IEEE Transactions on 

Intelligent Transactions, 
2019 

548 Lighting 
conditions 

Sensors, weather, visibility, 
component failure, human 
factors, algorithms, traffic 

conditions 

This paper surveys the challenges of testing 
autonomous vehicles. Five different categories 

of reasons for exposure to accidents were 
identified: component failure, environmental 

conditions and failing to perceive the 
environment accurately, algorithms, 

behavioural factors and rule compliance, and 
HMI. 

Schöner 
International Stuttgart 

Symposium, 2018 

549 Lighting 
conditions 

Visibility, weather 
conditions, sensors, speed, 

CAN, V2I, V2V, pedestrian, 
infrastructure 

This US patent develops a method for 
assessing risks of automated vehicles. This 

method has been implemented in an electronic 
processing system that includes a memory and 
one or more processors, includes receiving, at 
the electronic processing system, operational 

data indicative of when a vehicle is driven 
according to an automated control mode. 

Binion et al. 
United States Patent, 2015 

550 Lighting 
conditions 

Sensors, cameras, 
algorithms 

This experimental work evaluated the 
performance of an autonomous grand vehicle 
in bad environmental situations (e.g. rain and 

low lighting). The negative impact of low 
visibility conditions on the system is among 

limitations of the proposed system in this 
study. 

Foresti and Regazzoni 
IEEE Transactions on 
Vehicular Technology, 

2002 

551 Lighting 
conditions 

Weather conditions, GPS, 
sonar, radar, LiDAR, 
information fusion, 
algorithms, cameras 

AVs operating in urban environments need to 
detect traffic lights and recognise their states 

(i.e., red, amber or green). This work proposes 
a vision-based traffic light structure detection 

which can work under various lighting and 
weather conditions. 

Saini et al. 
IEEE Intelligent Vehicles 

Symposium (IV), 2017 

552 Lighting 
conditions 

Weather conditions, 
visibility, HMI, road user 
behaviour, time of day, 

sensors, traffic conditions 

This study proposes the concept of 
“driveability” for AVs to identify and handle 
driving risks. To this end, road datasets are 

reviewed and driveability factors are identified 
and categorised into majors groups: 1) 

environmental factors; and 2) road users’ 
interactions. 

Guo, Kurup and Shah 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

553 Lighting 
conditions 

Weather conditions, speed, 
road configuration, time of 
day, other road users, traffic 
composition, traffic control, 

road conditions 

This paper identifies significant factors 
contributing to rear-end accidents and 

incorporates them into a BBN model to assess 
the collision risk under varying weather and 

lighting conditions. 

Chen et al. 
Accident Analysis and 

Prevention, 2015 
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554 Lighting 
conditions 

Weather conditions, radar, 
camera, dynamic/static 
obstacle, reaction time, 

hardware reliability, 
algorithms, time of day, 

Whether in manual or automated driving, 
detection and recognition of brake lights are 
essential to avoid collisions and accidents in 

urban traffics. The experiments in this 
research were conducted on real video road in 

various sequence on roads under various 
weather and lighting conditions. the result 
showed that the proposed mobile decision-

making system warning against traffic risks is 
highly effective. 

Małecki and Wątróbski 
Procedia Computer 

Science, 2017 

555 Visibility 

Dynamic obstacles, weather 
conditions, traffic flow, 
communication, lighting 

conditions, road conditions, 
takeover, HMI 

Poor visibility is identified as a risk factor in 
developing and operationalising AVs. 374 

accidents mainly due to bad weather 
conditions were analysed. Adverse weather 
conditions are believed that impacted the 

perception and caused ‘visual obstruction’. 

Winkle, Erbsmehl and 
Bengler 

European Transport 
Research Review, 2018 

556 Visibility 

Weather conditions, 
obstacles, other road users, 

communication 
infrastructure, time of day, 
traffic density, road type 

This patent offers methods for determining 
fault for collisions/accidents involving a 

vehicle encompassing one or more 
autonomous or semi-autonomous features. 
Several influencing factors are identified to 
contribute (or cause) theses faults. Namely, 

pedestrians, weather conditions (e.g. rain, fog 
and wind), road conditions and road 

infrastructure (e.g. road signs, lane marking 
and traffic signals) are mentioned to have 

impact on the sensor functionality. 

Konrardy et al. 
United States Patent (US 

9,805, 423 B1), 2017 

557 Visibility Weather conditions, lighting 
conditions, time of day 

One of the crucial and challenging tasks for 
AVs is to detect the road boundaries and lanes 
using vision systems (i.e. visual camera). This 

paper adopts an approach to address this 
problem despite lighting change and shadows. 

Assidiq et al. 
Proceedings of the 

International Conference 
on Computer and 
Communication 

Engineering, 2008 

558 Visibility 

Obstacles, sensors, visible 
and infrared spectrum 
camera), radar, laser-

scanner, sonar, lighting 
conditions, weather 

conditions, algorithms, 
speed, GPS, other road 

users, time of day, sensor 
fusion, lateral and 

longitudinal distance  

Obstacle detection is critical to mobile 
autonomous systems and too many obstacle 

detection systems have been developed so far. 
This study classified the main types of 

sensors. For a reliable solution, such a system 
must operate under varying range of 

visibilities, lighting and weather conditions. 

Discant et al. 
30th International Spring 
Seminar on Electronics 

Technology (ISSE), 2007 

559 Visibility 

Communication, obstacle, 
algorithms, motion 
planning, velocity, 

kinematic state, sensors, 
control, cameras 

An algorithm is proposed to tackle the 
challenge of cooperative motion coordination 

of nonholonomic mobile robots facing 
visibility and communication constraints in 

obstacle environments.  

Panagou and Kumar 
IEEE Transactions on 

Robotics, 2014 

560 Visibility 

Optical sensors, road 
geometry, cameras, 

algorithms, CAN, weather 
conditions, object detection, 

radar, LiDAR, sensor 
fusion, machine learning, 

vehicle dynamics, 
algorithms, kinematic state, 

control software, time of 
day, road infrastructure, 

hardware    

This study focuses radar-based technologies 
that can gather and transfer road geometry 

information (i.e., curvature) to the driver while 
the optical sensors are impaired. Optical 

sensors are widely used in AVs, but they are 
sensitive to weather conditions such as fog 

poor visibility conditions (e.g., nigh 
illumination). 

Lee et al. 
IEEE Sensors Journal, 

2018 

561 Visibility 

Sensors, cyber-attacks, 
V2V, communication, time-
to-collision, speed control, 
human errors, lateral and 
longitudinal control, other 

road users, traffic 
conditions, vehicle dynamic, 

traffic flow, weather 
conditions  

Under the low-visibility conditions (due to 
inclement or fog), the sensing distance of 

adaptive cruise control (ACC) will be shorter, 
which may be from 25 to 250 meter. If the 

visibility drops to 25m the collision risk will 
slightly increase. 

Tu et al. 
Journal of Safety 
Research, 2019 

562 Visibility 

Path planning, motion 
planning, perception, path 

geometry, kinematic 
constraint, obstacles, 

algorithms, speed 

Motion planning is one of the main drivers of 
the moving efficiency for an autonomous 

agent. It defines how the agent (i.e., vehicle) 
moves and interacts with other surrounding 

agents. This paper offered a new approach to 
exploit Visibility Diagrams and plan the 

optimum holonomic paths.  

Sedighi et al. 
IEEE Intelligent 

Transportation Systems 
Conference (ITSC), 2019 
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563 Visibility 

Behaviour generation, 
occlusion, obstacles, 
sensors, other traffic 

participants, road curvature, 
reaction time, velocity, trust,  

This paper presents an approach that assists 
AVs to drive efficiently in scenarios with 

occlusions, ensuring safety and comfort. The 
visibility risk (VR) represents the collision 

risk with possible hidden obstacles in 
occlusions and anticipate the predictive VR. 
This metric is quantified by forecasting the 

scene in the short-term. 

Wang, Lopez and Stiller 
IEEE 23rd International 

Conference on Intelligent 
Transportation Systems 

(ITSC), 2020 

564 Visibility 

Perception accuracy, 
weather conditions, sensors, 

obstacle, radar, LiDAR, 
ultrasonic, cameras, far-
infrared, sensor fusion, 
localisation, planning, 

control, GPS, V2V, V2I, 
road infrastructure, speed, 

machine learning, other road 
users, road geometry, road 

conditions, road type, traffic 
volume, traffic lanes, 
lighting conditions, 

hardware and software 
architecture, integration, 

actuators 

This paper investigates the impact of weather 
conditions on visibility and subsequently on 

the perception accuracy of Intelligent Ground 
Vehicles. A fusion perspective is proposed to 
augment the reliability and robustness of the 

perception module of such vehicles. 

Mohammed et al. 
Sensors, 2020 

565 Visibility 

Weather conditions, time 
headway, speed, situation 

awareness, other road users, 
driver experience 

Reduced visibility (due to bad weather 
conditions e.g. fog) generally led to a shift in 

comfortable following distances towards 
larger headways. These results have 

implications for the introduction of highly 
automated vehicles and their time headway 

adjustments, which will need to be adaptive to 
speed and visibility in the road environment. It 

was reported that while there was no 
significant difference of comfort ratings 

between the fog and the truck condition, there 
was a significant interaction of visibility and 

speed. 

Siebert and Wallis 
Transportation Research 

Part F, 2019 

566 AI performance 

Software reliability, time of 
day, algorithms, HMI, 

control, speed, type of road, 
traffic density, computing 

hardware reliability 

The reliability of AI-based systems is 
comprehensively analysed in this paper. It is 
asserted that reliability of such systems needs 
to be appraised. However, the availability of 

reliability data for AI systems is currently 
sparse posing challenge to rigorously 

evaluating system reliability. 

Hong et al. 
Working paper, 2021 

567 AI performance 

Other road users, obstacles, 
vision algorithms, machine 

learning, perception, 
sensors, weather conditions, 

hardware reliability, 
LiDAR, radar, cameras, 
consumer expectation 

Applications of AI in safety-critical systems 
are most concerning due to any failure can 

result in deadly consequences. Transportation 
is one of those fields that requires high safety 

standards. An example cited in this work is the 
fatal collision between a pedestrian and an 
Uber self-driving car in Arizona, in 2018. 

Cummings 
AI Magazine, 2021 

568 AI performance 

Machine learning, deep 
learning, algorithms, 
hardware reliability, 

maintenance, other traffic 
participants, obstacles, road 
boundaries, sensor fusion, 

temperature, lighting 
conditions, weather 

conditions 

Soft Error Rate (SER) is a critical element of 
safety-critical autonomous systems. With AI 
algorithms in charge of decision making in 
these systems, an essential requirement is to 

test and model vulnerabilities of these system 
and assess their reliability. This paper is 
concerned with soft errors affecting the 

reliability of ground/air autonomous systems. 

Athavale et al. 
50th Annual IEEE/IFIP 

International Conference 
on Dependable Systems 

and Networks Workshops 
(DSN-W), 2020 

569 AI performance 

Weather conditions, speed, 
traffic, Human-machine 

interactions, public 
perception 

The AI decisionality in AVs and its 
differences with human driving decision-

making is the focus in this article. The authors 
maintain that pure statistics are inadequate and 

impotent to justify the superiority of AI 
decisionality over humans. 

Cunneen, Mullins & 
Murphy 

Applied Artificial 
Intelligence, 2019 

570 AI performance Trust, reliance, algorithms, 
compliance with traffic rules 

This paper centres on the issue of AI 
trustworthiness. It is discussed that AI cannot 
be trusted with common dominant definitions 

of trust. 

Ryan 
Science and Engineering 

Ethics, 2020 
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571 AI performance 

Hardware failure, traffic 
conditions, control, AI, 

software reliability, road 
type, road conditions, 

roadworks, traffic density, 
algorithms 

This study centres on the problem of using 
operational testing to demonstrate high 

reliability for AVs. One of the main 
challenges to the reliability of AVs is that they 
rely on machine learning (ML). “There is an 

expectation that AV safety improves as the AV 
evolves (i.e. its ML-based core systems 

“learn”) with driving experience, or that the 
AV is deployed in different environments with 

different road/traffic conditions, and both 
kinds of change will affect the frequency of 

failures”. 

Zhao et al. 
Journal of Information and 

Software Technology 
(IST), 2020 

572 AI performance 

Software, sensors, control, 
HMI, localisation, deep 

learning, perception, trust, 
interfaces, V2V, V2I, V2X, 

road geometry, sensor 
fusion, LiDAR, radar, visual 
sensors, infrared, obstacles, 

route planning, motion 
planning, algorithms, 
reaction time, weather 
conditions, visibility, 

perceived risk    

It is maintained that AVs must be capable of 
considering the failures or errors of each 

component as well as their ultimate impact on 
the performance of the whole system. This 

paper discussed open challenges for research 
within the safety, compliance and trust themes 

in the context of AV safety. 
 

McAllister et al. 
Proceedings of the 

Twenty-Sixth 
International Joint 

Conference on Artificial 
Intelligence, 2017 

573 AI performance 

Driving behaviour, dynamic 
traffic environment, other 
road users, path planning, 

velocity 

Decision-making for AVs can be challenging 
under complex urban environments. This 

study developed a rough-set artificial neural 
network to be trained and learn from highly 
competent human drivers. Findings of this 

work can be adopted to address the problem of 
car-flowing under complex traffic 

circumstances. 

Chen et al. 
Journal of Central South 

University, 2017 

574 AI performance 
Weather conditions, objects, 
control, lighting conditions, 

time of day 

One of the major obstacles for systems which 
benefit from deep learning techniques is 

acquiring data to train those systems. 
However, for self-driving cars, it takes a lot of 

time and cost to get real world driving data. 
Lack of enough training data can expose the 

vehicle to unforeseen situations and impact its 
perception and planning power. 

Kim et al. 
International Conference 
on Artificial Intelligence 

in Information and 
Communication (ICAIIC), 

2019 

575 
Traffic rules & 

regulations 
(enforcement) 

Speed, road type, takeover 

This issue of traffic laws and regulations is 
raised by the author as a challenge for the 

performance and adoption of AVs. Besides 
liability and insurance dilemmas, 

contradictions in the Highway Code and Road 
Traffic Act/Motorway Traffic Regulations 

when comes to AD are highlighted. 

Kilpatrick 
Car magazine, 2020 

576 
Traffic rules & 

regulations 
(enforcement) 

Traffic composition, static 
obstacles, traffic conditions, 

road conditions, control 
software, kinematic state, 
number of lanes, speed, 

sensors, algorithms, other 
road users 

This study focuses on automatic synthesis of 
provably correct controllers for AVs 
operating in urban environments with 

presence of static obstacles and real-world 
traffic. The traffic rules are taken into account. 

For example, collision avoidance, vehicle 
separation, speed limit, lane following, 

passing, merging and intersection precedence 
requirements are the rules that traffic 

participants including AVs are supposed to 
comply with. 

Wongpiromsarn, Karaman 
and Frazzoli 

14th International IEEE 
Conference on Intelligent 
Transportation Systems, 

2011 

577 
Traffic rules & 

regulations 
(enforcement) 

RSU, traffic density, 
weather conditions, traffic 

conditions, road conditions, 
technical standards, road 
infrastructure, sensors, 

control, speed, other road 
users 

One the main requirements for AVs that is 
specified in this report is compliance of AVs 
with the road traffic law. One of the actions 
for the Government (No. 14) is to “consider 

appropriate measures to ensure that automated 
vehicles are designed to respect road traffic 

law”. 

 
DfT, 2015 

578 
Traffic rules & 

regulations 
(enforcement) 

Algorithms, traffic 
conditions, traffic 

composition, time-to-
collision, sensors, other road 

users, hardware platform, 
speed 

A probabilistic collision threat assessment 
algorithm for AD at road intersections is 

proposed to assess a traffic situation for AVs 
even if the traffic rules are violated by other 

vehicles. Human drivers may not obey traffic 
rules and this can be problematic particularly 

at intersections. 

Noh 
IEEE/RSJ International 

Conference on Intelligent 
Robots and Systems 

(IROS), 2018 

579 
Traffic rules & 

regulations 
(enforcement) 

Pedestrian, infrastructure, 
LiDAR, radar, ultrasonic 

sensors, mixed traffic, 
velocity, weather conditions 

It is maintained that the law needs to keep up 
with the technology when it comes to self-
driving vehicles.it is deemed possible to 

change the law as well as infrastructure to 
treat the driverless cars as a benchmark rather 
than exceptions. Current legal system leaves a 
lot of room for uncertainty and this can cause 

confusion for developers and users. 

Greenblatt 
IEEE Spectrum, 2016 
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580 
Traffic rules & 

regulations 
(enforcement) 

Traffic control 
infrastructure, driving style, 

time of day, socio-
demographic characteristics, 
road type, road conditions, 
lighting conditions, speed, 
other road users, weather 

conditions, traffic volume, 
road infrastructure 

This PhD thesis investigated the effectiveness 
of police enforcement on Road Traffic 

Accidents. Results indicate that the trend 
linking increased police enforcement with 

declining ‘Killed and Seriously Injured’ (KSI) 
accident rates. This can be applied to the 

mixed traffic environment that hosts AVs as 
both human drivers and AVs will be required 

to obey with the traffic rules. 

Scott 
PhD Thesis, 2010 

581 
Traffic rules & 

regulations 
(enforcement) 

Speed, types of road, traffic 
flow, traffic control 
infrastructure, road 

characteristics 

This study investigated the effect of speed 
enforcement cameras on the quantity of road 
accidents in the UK. A significant decrease in 
the number of accidents (at all severity levels) 

was recorded in the areas covered by speed 
cameras. Speed cameras were reported to be 

most effective in reducing collisions up to 200 
meters from camera sites and no evidence of 

accident migration was found. 

Li, Graham and Majumdar 
Accident Analysis and 

Prevention, 2013 

582 
Traffic rules & 

regulations 
(enforcement) 

Traffic composition, vehicle 
control, software control 

This article discusses the need for changes in 
traffic law enforcement after the AVs hit 
public roads in mass. It is maintained that 

adoption of AVs entails significant 
implications for law enforcement. 

Cowper and Levi 
FBI Law Enforcement 

Bulletin, 2018 

583 
Traffic rules & 

regulations 
(enforcement) 

Sensors, HD mapping, 
network connectivity, speed, 

human factors, other road 
users, cybersecurity, GPS, 
obstacles, control, weather 
conditions, road conditions, 
time of day, traffic volume, 

driving style 

There are serious worries around the law 
enforcement in the era of autonomous 

vehicles. Still policymakers and scholars can 
work on this and consider how AVs will affect 

police work so that the technology can 
develop in ways that mutually benefit officers 
and civilians during police encounters. Several 
risk factors together with consequences of lack 
an adapted law enforcement system are further 

discussed in this work. 

Wood 
Northwestern University 

Law Review, 2019 

584 
Traffic rules & 

regulations 
(enforcement) 

Communication, 
infrastructure, cybersecurity, 

other road users, trust 

As socio-technical agents, AVs will have 
important consequences for law enforcement 
and significant upsides for traffic safety. One 
is the compliance of AVs with traffic rules. 

Lyakina et al. 
Contemporary Readings in 

Law and Social Justice, 
2019 

585 
Traffic rules & 

regulations 
(enforcement) 

Other traffic participants, 
motion planning, traffic 

behaviour, trajectory 
planning, traffic complexity, 

kinematic variables, 
velocity, lateral and 

longitudinal dynamics, 
vehicle control, obstacles, 
environmental constraints, 

road configuration, 
perception accuracy, 

occlusion, traffic behaviour 

One challenge for AVs to plan their motion 
without colliding with other road users is that 

the behaviour of other traffic participants 
cannot be predicted since traffic participants 
are often hidden due to occlusions. A legal 

specification is therefore necessary for 
defining which behaviours are considered to 

be acceptable. It explicitly represents our 
assumptions based on traffic rules, while the 
degree of conformity to traffic rules can be 
parameterised by the road user. Based on 

formalized traffic rules and nondeterministic 
motion models, the authors performed 

reachability analysis to predict the set of 
possible occupancies and velocities of 

vehicles, pedestrians, and cyclists. 

Koschi and Althoff 
IEEE Transactions on 

Intelligent Vehicles, 2021 

586 Perception 
accuracy 

Sensors, V2I, V2V, radar, 
laser scanner, obstacles, 

algorithms, other road users, 
GPS, actuators, sensor 

fusion, traffic conditions, 
kinematic state, road 
geometry, road type, 

visibility,  

The need for further research and 
improvements on current perception systems 

for AVs is highlighted. The possibility of 
transmitting the collected data from the sensor 

arrays through the wireless communication 
channels is put forward. The criticality of 

accurate perception system is even more for 
detecting obstacles and assess the risks that 
they may pose to the ego vehicle. For this 

purpose, it is discussed how AVs can generate 
digital maps to locate obstacles, estimate their 

velocity and indicate their directions.  

Jiménez, Naranjo and 
Gómez 

Sensors, 2012 

587 Perception 
accuracy 

Visibility, software, weather 
conditions, sensors, lighting 
conditions, radar, LiDAR, 

cameras, sensor fusion, road 
infrastructure, GPS, path 
planning, obstacles, road 

type, road, drowsiness, road 
attributes, traffic density, 

algorithms, hardware, 
software, system integration, 

speed regulation, 
communication, autonomy 
level, control, HMI, H-M 

Interface, situation 
awareness 

This paper provides an overview on reliability 
and robustness implications of sensors data 

processing and perception. To ensure a desired 
level of safety for autonomous driving, it is 

vital to guarantee a reliable level of quality for 
the perception mechanisms. To this end, this 
paper detailed critical perception stages and 

provided a presentation of applicable sensors. 
To process the information gathered and/or 
generated by an array of sensors, the multi-
sensors data fusion algorithms constitute a 
mandatory step. Furthermore, the human 
factors must be taken into account in the 

design of automated driving systems, as it is 
suggested in the SAE classification. 

Gruyer et al. 
Annual Reviews in 

Control, 2017 
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588 Perception 
accuracy 

Localisation, planning, 
control, software, LiDAR, 

sensor, V2V, actuator, 
behaviour planning, motion 

planning, path planning, 
trajectory planning, road 

conditions, other road users, 
algorithms, GPS, road rules 
enforcement, road geometry, 

speed, traffic conditions, 
radar, ultrasonic sensors, 

sensor fusion, system 
integration, obstacles, time 

to collision, computing 
power, lighting conditions 

The notion of ‘time integration’ is discussed 
in this study which focuses on perception, 

planning, control and coordination for AVs. It 
is contended that perceiving the surrounding is 

a fundamental function which is essential to 
enable AD.  

Pendleton et al. 
Machines, 2017 

589 Perception 
accuracy 

Sensors, perception 
accuracy, weather 

conditions, algorithms, 
LiDAR, AI, static/dynamic 

obstacles, pedestrians, 
vehicle control, cameras, 

time of day, road geometry, 
radar, ultrasonic, hardware 
architecture, concurrency, 

This paper briefly summarises the recent 
progress on visual perception algorithms and 

their corresponding hardware implementations 
for the emerging application of AD. 

Algorithm design, hardware design, and 
system validation are the main areas discussed 

in this study. 

Shi et al. 
INTEGRATION, the 
VLSI journal, 2017 

590 Perception 
accuracy 

Integration, actuators, path 
planning, obstacles, sensors, 

control, AI, computer 
vision, GPS, algorithms, 

map matching, localisation, 
road infrastructure, traffic 
control, road layout, lane 

type, road conditions, 
communication 

infrastructure, LiDAR, 
radar, vision sensors, 

velocity, vehicle conditions, 
weather conditions, urban 

environment, hardware and 
software, data fusion, mixed 

traffic 

This paper identifies and discusses the key 
technologies which pave the path for AVs to 
operate in public traffic. Especial emphasis is 
placed on the criticality of perception module 

to detect and recognise objects, signs, road 
users, etc. 

Zhao, Liang and Chen 
International of Intelligent 
Unmanned Systems, 2018 

591 Perception 
accuracy 

Machine learning, sensory 
data, path planning, road 

agents, lighting conditions, 
weather conditions, 

localisation and mapping, 
LiDAR, cameras, radar, 

sonar, algorithms, occlusion, 
obstacles, time of day, 

sensor configuration, sensor 
fusion, V2X, road 

infrastructure, GPS, road 
geometry, visibility, vehicle 

control,  

Accurate perception is vital for AVs to 
function reliably. Object detection is central to 
the perception module in AVs and it is crucial 
to avoid collisions. This paper surveys a 3D 

object detection method which is fed by 
sensors and datasets. Fusion methods are 

discussed too. 

Arnold et al. 
IEEE Transactions on 

Intelligent Transportation 
Systems, 2019 

592 Perception 
accuracy 

Sensors, radar, LiDAR 
cameras, ultrasonic, 

actuators, planning, control, 
localisation, motion 

planning, behavioural 
planning, motion planning, 
path trajectory, trajectory 
tracking, V2V, GPS, road 
type, weather conditions, 

road conditions, other road 
users, traffic law, traffic 

conditions, kinematic states, 
integrity of system, system 

integration 

A systematic review of the perception systems 
for AVs is presented in this paper. It discusses 

the physical fundamentals, principle 
functioning, and electromagnetic spectrum 

applied in the most common sensors 
embedded in AVs’ perception systems 

(ultrasonic, RADAR, LiDAR, cameras, IMU, 
GNSS, RTK, etc.). 

Rosique et al. 
Sensors, 2019 

593 Perception 
accuracy 

Sensors, radar, LiDAR, 
weather conditions, GNNS, 

GPS, infrared, prebuilt 
maps, ultrasonic, camera, 
sensor fusion, software, 
algorithms, obstacles, 

lighting conditions, speed, 
visibility, road 

infrastructures, traffic 
control, V2I  

This paper examined the effects of diverse 
weather conditions on an array of sensors 
(e.g., radar, LiDAR, and cameras) used in 

AVs. It concluded that despite breakthroughs 
in the field of sensory, severe weather 

circumstances can obstruct on-board visibility 
and adversely affect the performance of 

sensors, thereby increasing the probability of 
accident. 

Vargas et al. 
Sensors, 2021 
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594 Perception 
accuracy 

Control, weather conditions, 
road infrastructure, 

construction zone, other 
road users, obstacles, 
hardware reliability, 

communication, software 
reliability, sensors, cameras, 

motion planning, 
localisation, operator 

takeover, reaction time, 
HMI, traffic flow, road 

geometry, traffic control 
infrastructure, training of 

operators, speed limit, 
situational awareness, time 

of day, trust 

This article analysed the around 160,000 
disengagement and accident reports involving 
AVs in the California Department of Motor 

Vehicle’s repository. The disengagements are 
classified into six categories. The contributing 
factors for each category are highlighted and 

discussed. 

Boggs, Arvin and Khattak 
Accident Analysis and 

Prevention, 2020 
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Appendix B 

 

Questionnaire: 

First of all, I would like to sincerely thank you for agreeing to take part in this short survey and I 

appreciate your valuable time. Before starting the survey there are some definitions provided for 

the terms used in the survey. Some of those terms are used interchangeably with other terms and 

some of them may encompass more than one concept or variable. Therefore, the following 

definitions can provide a better insight and clarify the variables used in this questionnaire. In the 

meantime, if you feel unsure about what exactly is tried to convey by the terms and words used in 

the survey, you are more than welcome to contact the researcher (s.toliyat@soton.ac.uk) and 

discuss your concerns.  

 

Please note that all the questions are designed with respect to SAE Level 4 of automation in urban 

environments, so please adjust your answers to that level when answering the questions. The 

sum of assigned weights in each question must add up to 100%. There are also a set of 

assumptions: 

• Autonomous vehicles (AVs) must comply with the traffic rules. 

• AVs are sharing the roads with other road users (e.g. pedestrians, cyclists, etc.) and can 

encounter any obstacles (e.g. temporary road signs like cones) that human drivers may do 

while driving. 

• We are assessing the risks based on the current level and maturity of available 

technologies deployed in AVs. 

• It is also assumed that main communication channels for AVs (i.e., V2V, V2I and V2X) are 

enabled. 

 

 

Definitions:  

 

Road configuration: this refers to the geometric characteristics (e.g. length of curves, slop or 

gradient and ramp type) as well as the layout of road infrastructure such traffic signs and lights, 

curbs, humps and roadside vegetation. 

Visibility: this variable concerns with the quality of visibility for both human drivers and vision 

cameras mounted on AVs and quantity (length and splay) which can be affected by several factors 

such as adverse weather conditions, time of day, geometric characteristics of a road and road 

infrastructure (lights). 

Lighting conditions: the lighting conditions of any given road can vary depending on the time of 

day. This variable is designed to convert time of day to quality of light (e.g. daylight, dark and 

dawn) for any roads. 

Weather condition: comprises of 6 different states: clear (sunny), windy, rainy, snowy, foggy, 

dusty. 

mailto:s.toliyat@soton.ac.uk
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Road infrastructure: the equipment and facilities which are essential for safe driving in urban 

areas including road signs, traffic lights, lane markings, lighting equipment, appropriate surface 

etc. 

Obstacles: dynamic and static obstacles can appear on the way of both conventional and 

autonomous cars and pose a risk to the operation of the vehicle. A moving trolly, flying plastic bag 

or big waste bin can be examples. 

Work zones:  areas designated to road maintenance or construction sites which encroach and 

occupy some areas of roads, 

Road condition Risk Index (RI): this variable is aimed to capture the risk that may arise from the 

environment (public urban roads) that AVs are supposed to travel.  

Reaction time RI: time is a critical factor for human drivers to (re)act and avoid a collision when 

facing a hazardous situation. There are number of factors which can affect this variable as the 

outcome of human factors affecting the safety of AVs. 

Traffic complexity RI: the more complex traffic scenarios can increase the probability of collision 

and affect the safe operation of AVs. This variable was therefore designed to aggregate the effect 

of the human factors which can influence the risk of collision for SAE Level 4 AVs. 

Technical reliability RI: this variable refers to both software and hardware competence and 

reliability of AVs to operate in urban environments. Reliability of components such as sensors, 

algorithms, data processors, control systems and equipment, actuators and communication 

channels, etc. is called into question here. 

Situation(al) awareness: the situation awareness of human drivers is of concern here. Although in 

SAE level 4 the majority of driving tasks are performed by the AV, drivers may be required to take 

over the control while the AV is disengaged. 

Trust and reliance: the level of trust that a user (i.e., human driver) has in the safety of AVs and 

subsequently adjusts his/her reliance on the vehicle. 

Perceived risk: the level of safety risk perceived by the users (human drivers on board). 

Human-machine interaction (HMI): lack of appropriate and timely HMI can lead to accidents. This 

variable was incorporated into the model to measure the quality and ease of interactions 

between the human drivers and AVs through embedded interfaces. 

Other road users: includes pedestrians, human driven vehicles (HDVs), cyclists, motorcycles, 

animals, etc. 

Day of week: weekdays or weekends 

Kinematic state: the kinematic state of vehicles in this research is defined in terms of their speed, 

longitudinal and lateral distance from the nearby vehicles (or obstacles). 

Traffic composition: the mixture of AVs and HDVs (hybrid), only AVs, or only HDVs 

Traffic culture (style): this varies from country to country and city to city. In different areas 

(according to research) drivers mostly adopt conservative, moderate or aggressive driving styles.  

AI performance: refers to the capability and maturity of machine learning, deep learning 

algorithms, artificial neural networks and other AI-based algorithms used in the perception and 

planning modules of the vehicle. 

System integration: since the components, parts and pieces of software may come from different 

OEMs or software developers, integration of these elements plays a substantial role in preventing 



Appendix B 

208 
 

failures and minimising errors. As a result, this variable was inserted in the model to assess the 

level of integration between those components and measure their influence on the technical 

reliability of AVs. 

 

Environmental factors: 

 

1. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the ‘road configuration’ suitability for the AVs. The sum of weights must add up to 

100%. 

    Road type (single carriageway, dual carriageway and motorway) ……………………….. 

    Number of lanes (one, two, and multiple) ……………………… 

2. Assign a respective weight (out of 100%) to the following factors regarding their impact 

on the ‘visibility’ index (sight quality) of AVs. 

 Lighting conditions ……………………….. 

 Road configuration ……………………….. 

 Weather conditions ……………………….. 

 Road infrastructure ……………………….. 

3. Assign a respective weight (out of 100%) to the following factors regarding their impact 

on the probability of presence of an (disruptive) ‘obstacle’ on the way of AVs in urban 

environments. 

 Work zones (e.g., construction or road maintenance) ……………………….. 

    Road configuration ……………………….. 

4. Assign a respective weight (out of 100%) to the following factors regarding their impact 

on the ‘road condition RI’ for AVs. 

    Presence of obstacles ……………………….. 

    Visibility ……………………….. 

 Road configuration ……………………….. 

 Road infrastructure ……………………….. 

 Weather conditions ……………………….. 

5. Assign a respective weight (out of 100%) to the following factors regarding their impact 

on the ‘collision RI’. Reaction time refers to the average time that takes for a human 

driver to react to a potential hazard. 

Road condition RI ……………………….. 

Traffic complexity RI ……………………….. 

Reaction time RI ……………………….. 

Technical reliability RI ……………………….. 
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Human factors: 

 

1. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the drivers’ ‘situation awareness’ in SAE 4 automated driving. The sum of weights must 

add up to 100%. 

Drowsiness ……………………….. 

Training & experience ……………………….. 

Engagement in secondary (non-driving) task ……………………….. 

2. Assign a respective weight (out of 100%) to the following factors regarding their impact on 

the ‘trust & reliance’ level of AV users. 

Perceived risks ……………………….. 

Training & experience ……………………….. 

3. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘human-machine interaction (HMI)’ in the context of AVs. 

Trust & reliance ……………………….. 

Human-machine interfaces ……………………….. 

4. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘reaction time RI’. 

Perceived risks ……………………….. 

Situation awareness ……………………….. 

HMI ……………………….. 

5. Assign a respective weight (out of 100%) to the following factors regarding their impact on 

the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to 

react to a potential hazard. 

Road condition RI ……………………….. 

Traffic complexity RI ……………………….. 

Reaction time RI ……………………….. 

Technical reliability RI ……………………….. 
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Traffic factors: 

 

1. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the probability of encountering ‘other road users’ (e.g., pedestrians, HDVs, cyclists and 

buses) for an AV. The sum of weights must add up to 100%. 

Day of week ……………………….. 

Traffic rule enforcement ……………………….. 

Traffic control infrastructure ……………………….. 

2. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘traffic density’. 

Day of week ……………………….. 

Traffic control infrastructure ……………………….. 

3. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘speed’ adopted by drivers. 

Traffic rule enforcement ……………………….. 

Traffic control infrastructure ……………………….. 

4. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘kinematic state’ of AVs. 

Traffic rule enforcement ……………………….. 

speed ……………………….. 

5. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on ‘Traffic complexity RI’ for AVs. 

   Traffic density ……………………….. 

   (Presence of) other road users ……………………….. 

   Traffic composition ……………………….. 

   Traffic culture ……………………….. 

    Kinematic state ……………………….. 

6. Assign a respective weight (out of 100%) to the following factors regarding their impact on 

the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to 

react to a potential hazard. 

Road condition RI ……………………….. 

Traffic complexity RI ……………………….. 

Reaction time RI ……………………….. 

Technical reliability RI ……………………….. 
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Technical factors: 

 

1. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the probability of failure in the ‘perception’ module (e.g., detecting/recognising an 

object, estimating the distance/velocity/direction, detecting road signs, etc.) for SAE level 4 

AVs. The sum of weights must add up to 100%. 

Vision cameras ……………………….. 

LiDAR ……………………….. 

RADAR ……………………….. 

   Sensor fusion ……………………….. 

2. Assign a respective weight (out of 100%) to the following factors regarding their share in the 

‘software’ module failures for SAE level 4 AVs.  

AI (e.g. machine learning) performance ……………………….. 

Behaviour generation ……………………….. 

Planning ……………………….. 

Software control systems ……………………….. 

3. To what extent each of the following communication and data transferring channels feed 

data to the AVs. Assign a respective weight (out of 100%) to each of the following channels. 

GPS ……………………….. 

V2V ……………………….. 

V2I ……………………….. 

V2X ……………………….. 

4. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the ‘reliability of communication’ in SAE level 4 AVs.  

Communication infrastructure ……………………….. 

Cybersecurity ……………………….. 

Communication channels ……………………….. 

5. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the ‘hardware reliability’ in SAE level 4 AVs. 

Control equipment ……………………….. 

Self-awareness ……………………….. 

6. Assign a respective weight (out of 100%) to the following factors regarding their influence 

on the ‘technical reliability’ of AVs at SAE level 4. 

Perception accuracy (and reliability) ……………………….. 

Software reliability ……………………….. 

Communication reliability ……………………….. 
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System integration ……………………….. 

Hardware reliability ……………………….. 

7. Assign a respective weight (out of 100%) to the following factors regarding their impact on 

the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to 

react to a potential hazard. 

Road condition RI ……………………….. 

Traffic complexity RI ……………………….. 

Reaction time RI ……………………….. 

Technical reliability RI ……………………….
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Appendix C 

Consent form  
 

I, the undersigned, confirm that (please tick box as appropriate):  

 

 

 

 

 

1 I have read and understood the information about the project, as provided in 

the Information Sheet dated (      ). 

 

2 I have been given the opportunity to ask questions about the project and my 

participation (      ). 

 

3 I voluntarily agree to participate in the project (      ).  

4 I understand that I can withdraw at any time without giving reasons and that I 

will not be penalised for withdrawing nor will I be questioned on why I have 

withdrawn (      ). 

 

5 The procedures regarding confidentiality have been clearly explained (e.g. 

use of names, pseudonyms, data, etc.) to me (      ). 

 

6 If applicable, separate terms of consent for interviews/surveyees, audio, 

video or other forms of data collection have been explained and provided to 

me (      ). 

 

7 The use of the data in research, publications, sharing and archiving has 

been explained to me (      ). 

 

8 I understand that other researchers will have access to this data only if they 

agree to preserve the confidentiality of the data and if they agree to the 

terms I have specified in this form (      ). 

 

9 Select only one of the following: 

• I would like my name used and understand what I have said or written as 

part of this study will be used in reports, publications and other research 

outputs so that anything I have contributed to this project can be 

recognized (      ). 

 

• I do not want my name used in this project (      ). 

 

10 I, along with the Researcher, agree to sign and date this informed consent 

form (      ). 
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Participant:  
 

Name of Participant: ……………………       Signature …………………     Date 

……………… 

 

Researcher:  
 

Name of Researcher: ……………………       Signature …………………     Date 

……………… 
 

 

 

 

 

Participant Information Sheet 

 

Study Title: Assessing safety risks for autonomous vehicles in urban environments 

 

Researcher: Seyed Mohammad Hossein Toliyat 

ERGO number: 63032       

 

You are being invited to take part in the above research study. To help you decide 

whether you would like to take part or not, it is important that you understand why the 

research is being done and what it will involve. Please read the information below 

carefully and ask questions if anything is not clear or you would like more information 

before you decide to take part in this research.  You may like to discuss it with others, but 

it is up to you to decide whether to take part or not. If you are happy to participate you 

will be asked to sign a consent form. 

 

What is the research about? 

 

This research is undertaken by Seyed Toliyat, a PhD candidate at the University of 

Southampton as a PhD thesis. 

 

This research is about developing a risk assessment model to estimate associated safety 

(collision) risks that autonomous vehicles (AVs) may encounter while operating in urban 

environments. The objectives are: 
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    ▪ Identify variables that can influence the collision risks of AVs in urban environments. 

    ▪ Integrate the identified variables into a risk (uncertainty) quantification model. 

    ▪ Extract expert knowledge and judgements to inform the model in terms of the 

strengths of links between the variables. 

▪ Evaluate the sensitivity of the outcome (collision risk) to the identified variables. 

 

All participants will receive an electronic copy of the questionnaire via email. 

 

Why have I been asked to participate? 

 

As data for the performance of autonomous vehicles in urban environments are scarce, 

incomplete, and unavailable due to the commercial nature, knowledge of experts is 

required to inform some aspects of the model developed in this study. All participants 

should be domain experts in the relevant contexts e.g. human-machine interactions, 

artificial intelligence, urban traffic, etc. Participants are required to assign respective 

weights to the relationship between influential variables in the model. 

 

What will happen to me if I take part? 

 

All participants will receive an electronic copy of the questionnaire via email. All 

communications will be via email. There are four questionnaires designed for each area of 

expertise. Every expert will be required to answer only questionnaire which will not take 

more than 10 minutes. Each questionnaire includes 5-7 questions (depending on the 

expertise domain).  

 

This survey will last at least two months. However, there will be a one-week allowance for 

the participants to return completed questionnaires since they receive them. There will be 

no harmful, stressful or private questions and information being collected. There will be 

no negative consequences in any forms.  

 

Are there any benefits in my taking part? 

 

This research is expected to contribute to the safety of autonomous vehicles (AKA 

driverless and self-driving cars) and provide insights for policymakers, insurers, urban 

designers and planners, technology developers and traffic planners. You will also be 

provided with the findings of the research upon your request. 

 

Are there any risks involved? 

 

This research contains no risk in any forms. 

 

Will my participation be confidential? 
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The experts will remain anonymous and their identities will be kept strictly confidential.  

 

Only members of the research team and responsible members of the University of 

Southampton may be given access to data about you for monitoring purposes and/or to 

carry out an audit of the study to ensure that the research is complying with applicable 

regulations. Individuals from regulatory authorities (people who check that we are 

carrying out the study correctly) may require access to your data. All of these people have 

a duty to keep your information, as a research participant, strictly confidential. 

 

Do I have to take part? 

 

No, it is entirely up to you to decide whether or not to take part. If you decide you want to 

take part, you will need to sign a consent form to show you have agreed to take part.  

 

What happens if I change my mind? 

 

You have the right to change your mind and withdraw at any time without giving a reason 

and without your participant rights being affected. 

 

If you withdraw from the study, we will keep the information about you that we have 

already obtained for the purposes of achieving the objectives of the study only. 

 

 

What will happen to the results of the research? 

 

Your personal details will remain strictly confidential. Research findings made available in 

any reports or publications will not include information that can directly identify you 

without your specific consent. 

 

Where can I get more information? 

 

If there is any questions, doubts and further information you would like to acquire about 

this research, you can contact via Email: s.toliyat@soton.ac.uk or via MS Teams. 

 

What happens if there is a problem? 

 

If you have a concern about any aspect of this study, you should speak to the researchers 

who will do their best to answer your questions. You can contact via Email: 

s.toliyat@soton.ac.uk or via MS Teams. 

 

mailto:s.toliyat@soton.ac.uk
mailto:s.toliyat@soton.ac.uk
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If you remain unhappy or have a complaint about any aspect of this study, please contact 

the University of Southampton Research Integrity and Governance Manager (023 8059 

5058, rgoinfo@soton.ac.uk). 

 

Data Protection Privacy Notice 

 

The University of Southampton conducts research to the highest standards of research 

integrity. As a publicly-funded organisation, the University has to ensure that it is in the 

public interest when we use personally-identifiable information about people who have 

agreed to take part in research.  This means that when you agree to take part in a 

research study, we will use information about you in the ways needed, and for the 

purposes specified, to conduct and complete the research project. Under data protection 

law, ‘Personal data’ means any information that relates to and is capable of identifying a 

living individual. The University’s data protection policy governing the use of personal 

data by the University can be found on its website 

(https://www.southampton.ac.uk/legalservices/what-we-do/data-protection-and-foi.page).  

 

This Participant Information Sheet tells you what data will be collected for this project and 

whether this includes any personal data. Please ask the research team if you have any 

questions or are unclear what data is being collected about you.  

 

Our privacy notice for research participants provides more information on how the 

University of Southampton collects and uses your personal data when you take part in one 

of our research projects and can be found at 

http://www.southampton.ac.uk/assets/sharepoint/intranet/ls/Public/Research%20and%2

0Integrity%20Privacy%20Notice/Privacy%20Notice%20for%20Research%20Participants.pdf  

 

Any personal data we collect in this study will be used only for the purposes of carrying 

out our research and will be handled according to the University’s policies in line with 

data protection law. If any personal data is used from which you can be identified directly, 

it will not be disclosed to anyone else without your consent unless the University of 

Southampton is required by law to disclose it.  

 

Data protection law requires us to have a valid legal reason (‘lawful basis’) to process and 

use your Personal data. The lawful basis for processing personal information in this 

research study is for the performance of a task carried out in the public interest. Personal 

data collected for research will not be used for any other purpose. 

 

For the purposes of data protection law, the University of Southampton is the ‘Data 

Controller’ for this study, which means that we are responsible for looking after your 

information and using it properly. The University of Southampton will keep identifiable 

information about you for 1 year after the study has finished after which time any link 

between you and your information will be removed. 

 

To safeguard your rights, we will use the minimum personal data necessary to achieve our 

research study objectives. Your data protection rights – such as to access, change, or 

transfer such information - may be limited, however, in order for the research output to 

be reliable and accurate. The University will not do anything with your personal data that 

you would not reasonably expect.  

mailto:rgoinfo@soton.ac.uk
https://www.southampton.ac.uk/legalservices/what-we-do/data-protection-and-foi.page
http://www.southampton.ac.uk/assets/sharepoint/intranet/ls/Public/Research%20and%20Integrity%20Privacy%20Notice/Privacy%20Notice%20for%20Research%20Participants.pdf
http://www.southampton.ac.uk/assets/sharepoint/intranet/ls/Public/Research%20and%20Integrity%20Privacy%20Notice/Privacy%20Notice%20for%20Research%20Participants.pdf
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If you have any questions about how your personal data is used, or wish to exercise any 

of your rights, please consult the University’s data protection webpage 

(https://www.southampton.ac.uk/legalservices/what-we-do/data-protection-and-foi.page) 

where you can make a request using our online form. If you need further assistance, 

please contact the University’s Data Protection Officer (data.protection@soton.ac.uk). 

 

Thank you. 
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