University of Southampton

Faculty of Social Sciences

Southampton Business School

Developing A Bayesian Belief Network to Assess Collision Risks for Connected and
Autonomous Vehicles in Urban Environments: A Socio-Technical Synthesis

by
Seyed Mohammad Hossein Toliyat

ORCID ID: 0000-0002-7673-9210

Thesis for the degree of Doctor of Philosophy

November 2022


https://www.southampton.ac.uk/




University of Southampton

Abstract
Faculty of Social Sciences
Southampton Business School

Doctor of Philosophy

Developing A Bayesian Belief Network to Assess Collision Risks for Connected and Autonomous Vehicles in
Urban Environments: A Socio-Technical Synthesis

by

Seyed Mohammad Hossein Toliyat

Intelligent Transportation Systems (ITS) with the aim of enhancing mobility and sustainability are gaining
momentum across public policy sector. Connected and Autonomous Vehicles (CAVs) constitute an integral
element of ITS. The rapid advances in the realm of Artificial Intelligence (Al) and relevant disciplines have
accelerated the development and evolution of CAVs which are believed to thoroughly transform the
transportation landscape in coming decades or even years. There are manifold potential benefits (e.g.,
increased safety and accessibility, convenience, saving time and energy, reducing traffic congestion, etc.)
perceived for this disruptive technology. Nevertheless, there is a considerable extent of uncertainties over the
safe and secure performance of intelligent self-driving cars in urban environments. These uncertainties can
deteriorate the existing driving risks and incur new risks which can undermine the functional safety and
technical reliability of those vehicles.

The interdependencies between risk factors have neither been yet studied within an integrative framework
nor from the sociotechnical perspective. In this study, an interdisciplinary approach was adopted to construct
a Bayesian Belief Network (BBN) in order to capture influential risk factors in urban settings as well as the
interdependencies between them, thereby providing estimates for the risk indices under varying and volatile
circumstances. This will enable us to estimate the collision risk for intelligent self-driving cars in urban
environments and evaluate the impact of risk mitigation actions. Furthermore, such a model can be used to
classify the urban districts based on the estimated risks and serve policymakers in allocating resources to
maximise the benefits of CAVs and avoid potential safety consequences.

Sociotechnical theory as an interdisciplinary approach was adopted to form the foundation of BBN model.
The factors were accordingly divided into four blocks and the intersection of these blocks represent collision
risk index to quantify the safety risk in urban environments. To identify the risk factors, integrative literature
review together with thematic analysis (TA) were used. A new technique was formulated to populate the node
probability tables (NPTs) and generate uniform distributions. Afterwards, nine domain experts assigned
weights to the identified links between the nodes and influence of the probability distributions. Sensitivity
analysis was conducted to examine the influence of the incorporated nodes on the collision risk index. The
outcome of the model (i.e., collision risk index) showed the highest sensitivity to traffic control infrastructure,
weather conditions and traffic composition, respectively. Six scenarios were also devised to investigate the
fluctuations of collision risk index due to variations in input nodes. The results of this research can provide
insights for policymakers in contemplating policy choices such as investing in new or upgrading existing
infrastructure, introducing new legislations, imposing regulatory requirements, licensing, and technology
standardisation.
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Chapter 1

Chapter 1

1. Introduction

The following chapter provides a background and highlights the motivations for the
present study. To justify the relevance and importance of studying safety risks in the context
of autonomous driving, the recent trends and progressions in evolution of autonomous
vehicles (AVs) are reviewed. The uncertainties over disruptive technologies are reflected
and an overall structure for vehicles with self-driving feature is sketched out. The criticality
of scrutinising collision risk in urban areas as a major operating environment for AVs is
discussed. The research objectives are stated and finally the chapter closes with conclusions

and providing a lay out for the rest of the thesis.

1.1. The advent of Autonomous Vehicles and new challenges

The ever-expanding interest in developing and deploying autonomous systems together
with the recent technological breakthroughs, particularly in computer sciences, has led to
tremendous evolution of these systems (Bosch and Olsson, 2016). Driverless (or self-
driving) cars, as a prime example of an autonomous system, have recently become one of
the research focal points in both industry and academia (Gruel and Stanford, 2016). With the
realisation of novel and disruptive technologies in the disciplines which make a direct
contribution to the evolvement of AVs, this concept is not anymore a science fiction at least
from technical and technological perspectives. Nevertheless, devising complex, disruptive
and safety-critical technologies involves inherent and deep uncertainties over technological
feasibility and reliability, commercial viability, organisational capability and social
acceptability (Hall and Martin, 2005). These uncertainties—especially when are evaluated
to be grave—can pose serious risks to securing the pre-defined objectives and expected
benefits of the intended technology. Severe consequences of some risks associated with
cutting-edge technologies emphasise the necessity of identifying and evaluating those risks
as precisely and swiftly as possible. In spite of significant advancements in computing
capabilities and development of tools to forecast the future, it is still a demanding task to
predict the overall outcomes and impacts of such technologies on humans, environment and

economy. This is, partially, due to the presence of uncertainties arising from diverse sources.
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Conducting rigorous uncertainty and risk analysis, therefore, is indispensable and
determinant to guarantee the promised returns and optimise the likelihood and/or the severity
of drawbacks before fully and broadly operationalising the technology. Fatal accidents
(Katrakazas, Quddus and Chen, 2019), statistics of disengagements, lack of sophisticated
and clear regulations, accelerated pace of development and the potentiality of ‘black swans’
and ‘perfect storms’ (Paté-Cornell, 2012), all signal the urgency for conducting in-depth
uncertainty and risk analysis before replacing current human-driven vehicles with AVs on

the road.

According to our research and literature review, there has not been a general and
multidisciplinary/interdisciplinary classification of risk factors/variables which impinge on
the safety and reliability of driverless (i.e. fully autonomous) cars in urban environments
where dynamism is relatively high. So far, the key factors influencing trust in self-driving
cars (Carlson et al., 2014; Kaur and Rampersad, 2018), Advanced Driver Assistance
Systems (ADAS) risk factors (Sheehan ef al, 2017), cyber risks for connected and
autonomous vehicles (Petit and Shladover, 2014; Parkinson et al., 2017; Sheehan et al.,
2019), collision avoidance risk assessment (Fahmy, El Ghany and Baumann, 2018; Yu,
Vasudevan and Johnson-Roberson, 2019), and trajectory risk analysis for surrounding
vehicles and objects (Katrakazas, Quddus and Chen, 2019) were explored. Considerable
scholarly literature has been published to cover safety and reliability risks of other divisions
of AVs such as autonomous underwater vehicles (AUV) (Brito, Griffiths and Challenor,
2010; Brito and Griffiths, 2016) and unmanned aerial vehicles (UAV) (Zhang et al., 2018;
Allouch et al., 2019). Nonetheless, the gap has not been fully addressed yet and a
computational and predictive model is imperative to provide a reliable quantitative

estimation of risks attached to the operation of AVs in any given circumstances.

A generic and multidisciplinary risk model involving a wider range of variables can assist
decision makers and inform their decisions before adopting the technology. Further, in order
to be able to quantify the risks, ascertaining the interdependencies between these variables
is vital. To this end, Bayesian Belief Network (BBN) technique as an advanced and
updatable means (Chen and Lin, 2019) is adopted in this study to model the
interdependencies between the identified risk factors (variables) and produce estimates for
those risks and evaluate the impact of policies and risk mitigation measures. Fundamental
theories underpinning the model are socio-technical theory (Rasmussen, 1997), and Socio-
Technical Risk Analysis (SoTeRiA) framework (Mohaghegh, Kazemi and Mosleh, 2009;
Mohaghegh and Mosleh, 2009). Influential (risk) factors are subsequently divided into four
main blocks: technical, environmental, traffic and human factors. To address the gaps and

define the scope of research, five key research questions are formulated.
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The research questions are as follows:

I.  What are influential factors/variables which affect the reliability and collision risks
associated with highly autonomous vehicles in urban settings?
II. What are the interdependencies (relationships) between the identified
factors/variables?
III.  What would be the quantity of collision risk for given road and traffic conditions?
IV.  How the overall collision risk is sensitive to the identified factors/variables?
V.  What active policies can be adopted to mitigate the collision risks in urban

environments after the rollout of CAVs?

In order to find the answer of the first question, an integrative literature review (ILR) and
thematic analysis framework are designed to pinpoint the factors/variables that have impact
on the risks of AVs in the urban environments. ILR is also recommended for exploring future

policies in a topic (Torraco, 2016). The detailed steps and criteria for conducting ILR are

The BBN modelling technique is employed to address the rest of questions. The BBN
tool has been extensively used to measure and model risk problems in a tremendous variety
of disciplines. The primary data for constructing the model is collected from the relevant
literature through conducting integrative literature review in two platforms (databases): Web
of Science and DelphiS. For the probability distributions of the nodes (variables in the
model), a combination of a new quantitative method and a survey was used to elicit and
incorporate the knowledge and expertise of field experts. The quantitative methods will be

defined in detail in sections 3.8.2 and 3.8.3.

Table 1.1 summarises the contributions to the related disciplines after the above research
questions are addressed. The applied research methods and techniques for answering each
of those questions are mentioned too. The major contributions of this research are
identification of risk factors for CAVs while operating in urban settings, the BBN model as
a risk classification tool and policy recommendations. It is noteworthy that the risk
identification through ILR is based on the state-of-the-art technologies, recent literature
(between 2010 and 2021) and a few fatal accidents involving CAVs. As a consequence, some
of the risk factors or variables may become redundant soon should we witness any

breakthroughs in enabling technologies or infrastructure.
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Table 1.1: major contributions, research methods and relevant research areas.

. Contribution after answering the research L
Question ] Methods Disciplines
question

Transportation Safety
ITS
Autonomous vehicles

Providing a quantification means for the collision
| risk of a highly autonomous car (SAE level 4) in ILR, TA & BBN

dynamic urban environments. . .
Uncertainty modelling

Human factors in accidents

Weighing the strength of relationship (link) s . Applied artificial
urveyin
between the variables in the model through . ying intelligence
I . N . domain experts : .
expert judgement elicitation allows to inform the 2 BBN Urban traffic planning
model with assigning weights to the links. Environmental factors in
robotics

Providing a decision-making tool for the key

stakeholders of the technology for conducting . .
o . L Scenario Urban design
preliminary risk analyses and classifying urban . .
im o ) . i analysis Traffic law
districts according to the collision risk levels for

& BBN CAV regulatory

different types and models of CAVs.

Sensitivity risk analysis can also assist decision

. o . _ System Safety

v makers to split and distribute the remaining| Sensitivity Risk Analvsi
isk Analysis
uncertainty in the output of the model to different | analysis & BBN " y .
S ) Conditional probability
sources of uncertainty in the model’s input.

Recommending a set of policies based on the| Scenarioand ITS
Y, results of scenario and sensitivity analyses and Sensitivity Autonomous vehicles
literature to mitigate the collision risk for CAVs. analyses Transportation
& BBN policymaking

In the rest of this chapter, the motivations, history and important milestones in the
evolution of driverless cars, safety risks and uncertainties surrounding this technology while
operating in urban areas, and research objectives are discussed. The literature review and
methodological frameworks to address the research questions are presented in chapters two
and three respectively. In chapter four, the results and analysis are provided. Chapter five
contains policy implications and discussions around the cruciality of accurately defining and
classifying autonomy levels in safety considerations. Finally, chapter six includes a summary

of main findings and contribution, closing remarks, and future research directions.

1.2. Motivations for delving into collision risks of CAVs

A few fatal car crashes involving self-driving cars have raised reasonable doubts about
the reliability of autonomous driving technology. The first fatal crash with the Tesla self-
driving car (while it was on autopilot mode) occurred in Florida, in July 2016 (Kohl et al.,
2018). On 18" of March 2018 an Uber self-driving car hit a 49-year-old woman and took

her life when she was crossing the road in Arizona, US (the Guardian, 2018; Lisinska and
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Kleinman, 2021). Just a few days later, another Tesla car during the time that its autopilot
mode was active crashed into the roadside barrier in California and the driver died shortly
after the accident (BBC, 2018). In December 2021 the largest Paris taxi firm suspended its
Tesla model 3 fleet (which offer self-driving features) after one of them was involved in a

road crash leaving one dead, three in critical conditions and over a dozen injured (BBC,

2021; the Guardian, 2021).

In addition to the above incidents, the reported disengagement statistics for AVs on US
roads can also sound the alarm for risk analysts. The number of disengagements, on average,
varies from nearly 1.1 per 1000 miles for Google to 980 for Mercedes-Benz between
September 2014 to November 2015 (Dixit, Chand and Nair, 2016). There are two main
groups of disengagements: automatic (passive) and manual (active) (Lv et al., 2017).
Automatic disengagements occur when the system recognises a failure or foresees a potential
failure under autonomous driving (AD) conditions. On the other hand, manual
disengagements refers to a state where the driver suspects a precarious situation in response
to other road users, due to discomfort with the autonomous mode, adverse weather
conditions, construction activities, poor road infrastructure, et cetera (Dixit, Chand and Nair,
2016). Hence, from exploring these incidents and proportion of them to the small number of
operational AVs we can conclude that the AV technology can pose serious risks which must

be addressed before this technology becomes ubiquitous.

As the technology matures, AVs are expected to be deployed in the same environments
as manned vehicles, and this can raise problems (Vellinga, 2017). One of the main challenges
for AVs on public roads is the dynamic nature of urban environments and presence of other
moving road users which increases the risk of collision. Lipson and Kurman (2016) pointed
out that “while it’s possible to set up a tidy closed-world environment in a factory setting, in
the real world, streets and highways are chaotic and unpredictable”. Dealing with
interactions that are guided by rules of conduct which can be either vague or highly situation-
specific can profoundly challenge the software (Lipson and Kurman, 2016). Recent research
has shown that environmental complexity is a key indicator of performance for mobile robot
systems, but there are currently no agreed and satisfactory metrics to assess the performance
of a robotic system in a complex and dynamic environment and define operational domains
for a robot, particularly environmental complexity (Young, Mazzuchi and Sarkani, 2017).
This lack of satisfactory metrics can imply how environmental complexity is challenging

and complicating for AVs.

The amount of (real) data that an AV receives from different sources is ample.

Recognising other vehicles and pedestrians, road signs and signals, traffic lanes and
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static/dynamic obstacles need extensive, precise and agile data processing capabilities. Some
researchers assert that it is demanding for the vehicle (i.e. its software) to discern all the
surrounding in urban settings (Abduljabbar et al., 2019). Tackling other software challenges
such as security and integrity of the system is a critical consideration in software architecture
for AVs especially in the absence of consistent standards and detailed regulations. Ground
vehicles are approximately two-ton metal boxes that commute on public roads and if any
fault or glitch with the software system (e.g. path planning, navigation and actuator

controllers) might result in a major and even tragic accident (Lipson and Kurman, 2016).

If AVs successfully evolve to be as competent and skilled as human drivers, we can
expect a massive reduction in fatal accidents. This is because drunk-driving, distraction and
fatigue (drowsiness) as the major causes of fatal accidents (cumulative of 53.5 percent) in
the US will not apply to AVs (Kalra and Paddock, 2016). They may also be even safer due
to higher precision in perceiving the surrounding and executing driving tasks. However,
there are inherent safety risks which may be worse than the risks of manned vehicles
(Manzur Tirado, Brown and Valdez Banda, 2019). We must be aware about the differences
between human and Al decisionality (i.e., decision-making capacity) and that the artificial
driving intelligence will fall short of certain decisional capacities at some point (Cunneen,
Mullins and Murphy, 2019). The significant challenge with machine learning (ML)
techniques is that they are more based on inductive training and reasoning approaches which
are inherently difficult to be validated (Koopman and Wagner, 2017). Moreover, CAVs may
not be able to eliminate all accidents immediately after they are launched. Factors such as
inclement weather, complex driving environments and cybersecurity threats (for connected

vehicles) still need to be addressed (Kalra and Paddock, 2016).

Having discussed earlier, lack of accurate, case-specific and reliable data is a major
source of (epistemic) uncertainty in predicting the behaviour of the AV technology. To
provide a few examples, lack of formal measures of the impact of spatially-extended
characteristics on the network outputs (Kim and Canny, 2017) and restricted or absolute lack
of exposure to various traffic scenarios (Schoettle and Sivak, 2015) were reported as the
limitations of those research projects about autonomous driving. Lack of enough and
effective test and evaluation (T&E) of AVs also add to the safety implications (Li et al.,
2016). Infeasibility of complete testing (requiring one billion operating hours or more)
(Koopman and Wagner, 2016), complexity of the software autonomous features (Kim et al.,
2016; Mullins, Stankiewicz and Gupta, 2017) and high costs (Tao et al., 2019) are among
the main challenges in testing autonomous vehicles. More importantly, ambiguities about
the regulations and regulatory bodies deepen the safety implications of public autonomous

driving as the technology is still in its infancy.
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Although the keyword ‘risk’ is one of the predominant themes in the AV literature, there
has not been an integrative risk model yet developed to depict the main influential factors
and analyse the interdependencies between them. In this research a risk assessment model
encompassing environmental, human, traffic and technical variables is developed to evaluate
the performance of AVs in urban environments from the perspective of uncertainty and risk.
This model can be seen as a generic model which can be applied for various types of AVs,
environmental and traffic conditions to estimate the collision risks based on the
characteristics of the environment, human driver, traffic scene and technical reliability of the

vehicle.

1.3. History of driverless (self-driving) cars

Almost a century ago, the ideas of substituting errant human drivers with technology
started to emerge (Maurer et al., 2016). Thanks to the technological advancements in
aviation and radio engineering first remote-controlled vehicle was unveiled in the US, on 5™
of August, 1921 (Maurer et al., 2016; Kellerman, 2018). However, with current definitions
of self-driving vehicles, that invention is seen to be neither self-driving nor driverless as the
driver (or navigator) was just outside the vehicle. About two decades later, in 1939, General
Motors exhibited a creative conception and vision of the then-distant future technological
innovations mainly in the realm of transportation (Auer et al., 2016). One of the thrilling
showcases at the 1939 World’s Fair in New York was the GM’s “Futurama.: Highways &
Horizons” which introduced one of the contemporaneous concepts of driverless cars to the
fairgoers (Lipson and Kurman, 2016). Although the main emphasis of Futurama was placed
on automated highways and vehicles, the driver was still required to take the controls and
carry out instructions which were going to be issued by “experts” and transmitted to the
driver via radio (Maurer et al., 2016, p.49). The reliance on the driver to decide on or perform
driving tasks, kept these concepts and developments under the category of radio-controlled

rather than driverless vehicles.

The second half of the 20" century witnessed new endeavours to realise automated
driving. Massive investments in the military sector during the World War II resulted in the
development of technologies such as computers, laser, radar, magnet detectors and guide-
wire principle. After the war, some of these technologies were crossed into civil industries
including car manufacturing and even play a critical role in the design of today’s driverless
cars (Clark, Parkhurst and Ricci, 2016; Lipson and Kurman, 2016, p.118). Media also played
its role as in 1953 George Gibson put forward the idea of crash-proof highways and
development of cars equipped with automatic pilots in the Mechanix Illustrated magazine.

One of the clearest depictions of automated driving appeared in an advertisement which was
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published in LIFE Magazine, in 1956 (Maurer et al., 2016). This was followed by a TV
programme that was broadcasted by Disney in 1958. ‘Magic Highway U.S.A.’ tried to
present an imaginary picture of the future transportation where punch cards could be used to

code a destination into an automated vehicle guided by coloured highway lanes (Anderson

et al., 2014; Lipson and Kurman, 2016, p.121).

Apart from the futurists who had envisaged vehicles driving themselves without any
human interventions, the actual prototypes of driverless cars came into view from robotics
labs in the 1980s and 1990s (Lipson and Kurman, 2016, p.155). For instance, the DARPA
Autonomous Land Vehicle (ALV) was assembled on an all-terrain platform with an array of
sensors ranging from video cameras to laser detectors. The vehicle enclosed six computer
racks programmed with algorithms and receiving images from a camera situated on the
rooftop of the vehicle to steer safely along the path without need for human assistance. The
ALYV testing started in 1985 at a speed of three km/h over a one-kilometre straight route.
Over the following two years, the ALV was upgraded to complete longer courses at faster
speeds with varying turns and pavement types, while circumventing obstacles (Auer et al.,
2016). Other attempts were also made by the German autonomous vehicle pioneer Ernst
Dickmanns who created several prototypes of robot cars that benefitted from probabilistic
approaches and parallel computers to drive themselves (Vishnevsky and Kozyrev, 2016).
Simultaneously, in Italy, Professor Alberto Broggi built a vehicle that exploited machine
vision software to recognise and follow coloured lane markers (Lipson and Kurman, 2016).
Developing and incorporating Advanced Driver Assistance Systems (ADAS) into cars was
another step towards solving urban traffic problems through automation. Several European
car manufacturers and research centres invested in multiple projects under the Prometheus
research programme (initiated in 1986) to provide intelligent driver support systems for
individual drivers (Brookhuis, De Waard and Janssen, 2019). Well-known examples of
ADAS technologies are Adaptive Cruise Control (ACC), Anti-lock Braking System,
Automatic Parking, Blind Spot Monitor and Lane Departure Warning System. As these
technologies take over driving tasks from human driver, they are believed to increase the
safety of roads. In contrast, a group of scholars including Lipson and Kurman (2016) do not
support the staged transition for Autonomous Driving technology to evolve out of ADAS

because of excessive risks.

The beginning of the 21* century coincided with the launch of competitions which is seen
as a landmark in the evolution of modern driverless cars. For the first time, in 2004, DARPA
sponsored a competition titled ‘Grand Challenge’ which was designed for field vehicles to
autonomously (without any driver on board) complete a 150-mile course in Mojave Desert,

California (Spenko, Buerger and lagnemma, 2018). None of the 15 participants in the race
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could reach the final line and the best performer only travelled five percent of the planned
route (Buehler, lagnemma and Singh, 2007). The next round was held in Nevada desert in
the following year where the race was shortened to 132 miles and five vehicles succeeded to
cross the end line (Broggi et al., 2010). This challenge was followed in 2007 (DARPA Urban
Challenge), but this time requiring autonomous vehicles to compete in a simulated dynamic
environment and interact with other vehicles, traffic signals and pedestrians (Spenko,
Buerger and lTagnemma, 2018). The improved performance and number of vehicles that
successfully managed to traverse the designed route under more dynamic and uncertain
circumstances signalled that the attainment of autonomous driving is not far away from
reality. The prominent presence of universities and scientific institutions rather than top
leading auto and vehicle manufacturers was the peculiarity of these challenges. This point
can reflect the significance of software programming against hardware sophistication in

developing self-driving cars.

Fig. 1.1: a 20" century concept of driverless cars. LIFE Magazine, J anuary 956, p- 8. Adopted
from Maurer et al. (2016, p.51).

It did not take long after the DARPA competitions that many IT corporations, major car
manufacturing companies, research institutes and Transportation Network Companies
(TNCs) set up to unveil their prototypes in testing sites and even on public streets. Google,
as a known example, was one of the groundbreakers which joined the race and hired
researchers form the teams who had been engaged in DARPA Challenges to develop its own
driverless car (Clark, Parkhurst and Ricci, 2016; Meyer and Shaheen, 2017; Vanderbilt,

2018). Despite its different field of operation, Google has made notable progressions in
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developing and testing driverless cars and finally in 2010 announced that the prototype of a
self-driving car (today known as Waymo) was completed (Poczter and Jankovic, 2014).
Figure 1.2 depicts three types of Waymo self-driving vehicles. Commercialisation plans
have been also announced by car vendors including but not limited to Mercedes Benz, Tesla,
Toyota, Audi, BMW, Volvo, Ford, Jaguar, Land Rover, Nissan/Renault, and GM
(Dimitrakopoulos and Bravos, 2017).

In September 2016, a headline from the Daily Telegraph reviled that Uber had planned
to deploy a fleet of self-driving cars in Pittsburgh to lift its passengers. Although the service
was claimed to be self-driving, there were two crew members on board: a safety driver and
an engineer who was in charge of monitoring the performance of the vehicle (Wolmar,
2018). In addition to TNCs, there have been many other companies emerging or expanding
in the past decade alone in the UK to design and provide test beds (e.g., HORIBA MIRA,
RACE), develop software and self-driving technologies (e.g., Wayve), and offer consultancy
(e.g., TRL, Zenzic).

Many technology firms and car manufacturers (including those mentioned above) have
recently pursued joint ventures to merge their resources, technologies, know-hows and
expertise into a vehicle which would be capable of safely driving itself and performing all
driving tasks without any direct human assistance. The co-operation between Daimler AG
and BMW Group to develop innovative automated driving (Tobin, 2019), the £5.57 billion
Argo Al joint project undertaken by Ford and Volkswagen (Tobin, 2019), the Autolive Inc.
and Volvo’s Zenuity (Walz, 2017), and the £3.1 billion agreement signed by Hyundai Motor
Group and Aptive Plc. in October 2019 (Park and Trudell, 2019), are just a few to name.
Several similar ventures have been formed in like manner to secure a share for the investors
and developers in any potential future market for self-driving cars. More recently, start-ups
like Zoox (now subsidiary of Amazon) and Aurora are looking beyond just AVs and are
developing concepts and prototypes to blend AVs with electric vehicles (EVs), robo-taxis,

and logistics. We will discuss the future prospects of autonomous driving in section 2.1.3.

The share of universities and research institutes in the evolution of CAVs did not remain
confined to DARPA competitions. Several universities including Carnegie Mellon
University, Stanford University, University of Michigan and Massachusetts Institute of
Technology are influencing and accelerating the development of CAVs technologies (Salter,
2021). In the UK, Oxbotica was founded by two professors at the University of Oxford in
2014 and has now become a leading innovator in CAV industry (Hopkins and Schwanen,

2018).
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Flg 1 2: three generations of Waymo self-driving car. Addpfed form Vanderbilt (2018).

1.4. Uncertainties over disruptive technologies

Historians of media and technology have reported that an emerging technology is often a
field onto which a wide range of hopes and worries are expressed (Natale and Ballatore,
2017). Innovation, by its nature is about dealing with unknowns and involves various degrees
of uncertainty (Tidd and Bessant, 2014). Teece, Peteraf and Leih (2016) also assert that deep
uncertainty is a prominent feature of connected interdependent economies confronting fast
technological transitions. Uncertainties revolve mainly around the impacts of innovation,
whether the technology will perform as expected, what will be the behaviour of market and
probable changes may be introduced by the governments to regulations (Tidd and Bessant,
2014). Meanwhile, the degree of uncertainty is subject to steep increase as long as the global
economy is becoming more interdependent and complex (Teece, Peteraf and Leih, 2016).
Under such circumstances where there are incomplete facts and figures available to decision
makers, and they feel themselves under pressure to announce a decision within time
constraints, heuristics and biases are deemed to give rise to systematic error (Gilovich,
Griffin and Kahneman, 2002). Much influential work has been done to avoid systematic
human cognitive biases, but this is not to ignore the inevitability of subjectivity in expert

knowledge elicitation.

Even allowing for the fact that innovation and disruptive technologies can offer
tremendous competitive advantages to a business or strengthen its existing core competence,

managing innovation is inherently challenged by some level of uncertainty (Tidd, Bessant
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and Pavitt, 2005; Gluckman, 2016). Perceived technological uncertainty, in scholarly
literature refers to inability of an individual to comprehend all or some aspects of
technological environment (Song and Montoya-Weiss, 2001). Most new technologies do not
reach the stage of turning into commercial products or services, and a large number of those
which pass through that stage do not achieve commercial success for developers (Walsh,
2004; Tidd, Bessant and Pavitt, 2005). Neglecting the trends of disruptive technologies,
however, can lead to further consequences in terms of losing market share to pioneers of
innovative technologies which currently seem to be inferior (Tellis, 2006). Thus, conducting
detailed studies on different uncertain facets of any technologies is vital to avoid mentioned
losses. Autonomous vehicles as a fast-growing technology are not exempted from those
uncertainties which provoked prominent academics to urge their counterparts in industry and

academia to take part in identifying and studying serious AV risks.

Lari, Douma and Onyiah (2015) recognise AV technology as disruptive since it displays
the ability to transform transportation infrastructures, reshape urban landscapes, change the
way cars are driven and liabilities are split among involved parties. Therefore, AVs are not
exempted from being subject to uncertainties. When talking about uncertainties it is crucial
to draw a distinction between epistemic and aleatory uncertainty (Hoffman and Hammonds,
1994; Renn, 2008; Eldred, Swiler and Tang, 2011; Haimes, 2018). The seventh principle in
Haimes’ framework for modelling risks in complex and interdependent systems advocates
that risk analysis of those systems must entail both epistemic and aleatory uncertainties.
Hoffman and Hammonds (1994) defined that epistemic uncertainty is “due fo the lack of
knowledge” and aleatory uncertainty is “due to variability”. While studying the uncertainties
around driverless cars, we face both epistemic and aleatory uncertainties. The criticality of
epistemic uncertainty or “uncertainty on uncertainty” in the Al-assisted systems in AVs has
been recently acknowledged, and there are ongoing research efforts towards assessing the

robustness of AVs to rare events (Varshney and Alemzadeh, 2017).

Occurrence of worst-case variability and uncertainty may also adversely affect vehicle
permissiveness, and in some situations can compromise safety of the vehicle (Koopman,
Osyk and Weast, 2019). Furthermore, in designing intelligent systems, one of the most
difficult problems is structuring the decision-making core (Chandler and Pachter, 1998).
Practical reasoning itself, mostly carries implications of uncertainty (Walley, 1996). This
uncertainty is categorised by Chandler and Pachter (1998) as: 1) unknown parameters; 2)
unknown dynamics; 3) disturbances; 4) noise; 5) actions of non-co-operative agents; 6)
actions of co-operative agents; 7) unmeasured or unmeasurable information; and 8)
erroneous information. In the context of radically new transportation technologies, Rowe

(1994, cited in Van Geenhuizen and Nijkamp, 2003) made a division into dimensions of
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uncertainty in the “absence of information”. These dimensions and their definitions are

summarised in Table 1.2.

Table 1.2: divisions of technological uncertainty in transportation systems (Van Geenhuizen and
Nijkamp, 2003).

Dimension of Uncertainty Description

This dimension refers to the prediction uncertainty

Temporal about the future state of the transport technology.

This dimension relates to modelling complexity of a
Structural transportation system. Number of parameters and
interactions are determining here.

The central issues here are the difficulty with deciding
Metrical on an appropriate metrics to measure
performance/preferences, precision and validity.

This arises from how results of analysis and modelling
are communicated through the policy context.
Interpretation of values and objectives of various
stakeholders becomes vital.

Translational

Although automated driving systems are designed to eradicate human driver errors and
reduce the possibility of collisions, there are still several sources of uncertainty and odds of
failure that can lead to potential safety hazards in these systems. Unreliable, interrupted or
noisy sensor signals (e.g., GPS data or video signals in adverse weather conditions),
constraints of computer vision systems, and unpredicted changes in the surrounding
environment (e.g. unknown driving scenes or unexpected objects on the road) can negatively
impact the ability and/or capacity of control systems in learning and perceiving the
environment necessary for making safe and timely decisions (Varshney and Alemzadeh,
2017). An immediate challenge in the development of an appropriate treatment of
uncertainty in an analysis of a complex system is the selection of a mathematical structure
to be used in the representation of uncertainty (Helton et al., 2010). The appropriate

methodology and modelling techniques are expanded in sections 3.4, 3.5 and 3.6.

1.5. CAV’s structure and urban environment

Verifying and validating functional safety of highly autonomous vehicles demands a
multi-disciplinary approach at every levels of functional hierarchy, from hardware fault
tolerance, to resilient machine learning, to cooperating with other vehicles, to control
systems for operation in both structured and unstructured environments, and to effective
regulatory regimes (Koopman and Wagner, 2017). To adopt a multi-disciplinary approach,

the overall architecture of AVs and their operational environment need to be defined.

Structure of autonomous vehicles can depend on several factors including but not limited
to autonomy level, adopted technologies, regulatory requirements and purpose of use. This

makes it almost impossible to speculate a universal structure for AVs. There are yet modules
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in autonomous vehicles that are ubiquitous in different classes and types of AVs: perception,
planning, and control (Chu, Kim and Sunwoo, 2012; Pendleton et al., 2017; Serban, Poll and
Visser, 2018; Zhao, Liang and Chen, 2018). Perception module is one of those that is tasked
to sense the surroundings and gather information of environment and nearby agents to feed
the planning and decision-making module. The filtered and fused data is then transferred to
the planning module to be analysed and determine a safe speed, de/acceleration, braking,
trajectory, path, motion, behaviour, maneuverer, lane changing, etc. for a vehicle in self-
driving mode. The control module continuously monitors the execution competency of an
AV and translates the planned commands into inputs at hardware level for navigating the
vehicle (Pendleton er al., 2017). Although the architecture and integration of these three
modules can differ fundamentally among AVs, every vehicle that is supposed at some point

to navigate autonomously comprises them.

This abstraction helps us to identify risk factors that can arise from the replacement of
human driver by hardware and software components (e.g., sensors, algorithms and
actuators). Failure in any module and its components can result in degradation of the
performance of vehicle and lead to a collision. Apart from the inherent uncertainties and
risks of novel technologies, new and complex risks can emerge when human factors are not
entirely absent and a degree of interaction between humans and AVs is still inevitable to
avoid collisions (Bellet ef al., 2019). Among primary steps to locate and estimate safety
risks, is the comprehension of the structure of a typical autonomous vehicle. The zoom range
in mapping the structure depends on the theoretical framework and research questions. In
the present study, the intention is to analyse collision risks from a sociotechnical lens and
examine how causal variables in different spheres affect the probability of collision in urban
environments. Based on that, the structure outlined above can provide sufficient insights into

the mechanism and functionality of an AV.

According to Bellet et al. (2019) urban traffic is the most complex scenario among others
for AVs. Presence of various agents, closure or obstruction of roads, volatile traffic
situations, compliance with traffic rules and discrepancies in road infrastructure as well as
driving behaviour of other road users mandate AVs to constantly perceive their surroundings
and react to changes (Pendleton et al., 2017). The aforementioned challenges give rise to
both exposure and likelihood as two determinants of hazard. On the other hand, cities are a
major part of transportation networks that currently host large number of human-driven
vehicles (HDVs) and CAVs are anticipated to replace them. This makes urban areas perilous

in nature for CAVs.
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An extremely difficult task in urban driving is to predict the trajectories of agents in
scenes (e.g., intersections and roundabouts) in which their behaviours have clear interactions
(Luo et al., 2020; Villagra et al., 2020). This requires a CAV’s planning unite to receive,
process and analyse information in timely and precise manners and feed planned decisions
into the control unite. Planning in dynamic environments is structurally reliant on a predict-
and-plan mechanism. In the prediction phase, a planner depends on a forecasting module to
map future positions of mobile traffic agents, and during the planning phase, the prediction
is used for generating a safe path and behaviour for the ego vehicle (Hardy and Campbell,

2013; Sarkar et al., 2017).

The control module in CAVs must also handle emergency situations to avoid colliding
with appearing obstacles and moving traffic participants such as pedestrians and rapidly
approaching vehicles (Berntorp, 2017). The control block is in charge of computing adjusted
control commands and adopts the reference trajectories from the motion planner (Berntorp
et al., 2018). The control commands are subsequently sent to the actuator control unit which
executes functions such as steering, (de)acceleration and breaking (Pérez, Milanés and
Onieva, 2011). Any error or delay in receiving, processing and performing control
commands can result in a collision. Autonomous driving remains yet as a challenge due to
the immensely complex real-world urban environments and an infeasibility to test AVs in a
wide variety of scenarios (Cai et al., 2020). In this sense, risk analysis provides insights into
safety critical situations and will enable designers, regulators and policymakers to make risk-

informed decisions.

1.6. Research objectives

The research objectives actively state how this study plans to address the specified
research questions in table 1.1 (Farrugia ef al., 2010). First, to locate the knowledge gaps
and design a review framework for classifying relevant publications (e.g., journal articles,
conference papers, technical reports, white papers, policy documents, etc.) that recognise the
collision risk for AVs. The same framework should include a protocol for identifying the
influential risk factors which can degrade the safe operation of AVs (in terms of collision

risk) in urban environments.

Second objective is to construct a causal network (aka Bayesian Belief Network) which
can be capable of estimating the collision risk for AVs in urban environments. Such model
must reflect the influential strength between risk factors in the model. Expert knowledge can
be fed into the model to assign weights to causal links in the model. The model will provide

a tool for resolving the third research question.
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Running a sensitivity analysis to determine the affectability of the outcome (i.e., collision
risk index) against the influential risk variables is the next research objective. This can
address the fourth research question of this thesis. Sensitivity analysis is a common approach
for peritonising research in risk assessment studies (Christopher Frey and Patil, 2002;
Saltelli, 2002; Saltelli et al., 2008, p.11). Sensitivity analysis can be performed by using the
BBN model.

Finally, possible policy implications will be discussed. Sensitivity and scenario analyses
can indicate where policymakers need to concentrate their attentions in assessing safety
implications of AVs. Some of the policy implications in section 5.3 of this thesis were
merged into the response for a consultation on UK Connected and Automated Mobility

(CAM) which was opened in July 2021 (Ramchurn et al., 2021).

1.7. Conclusions and structure of the rest of thesis

The desire for developing autonomous mobility means has a longer history than just a
few past decades. However, the recent technological advancements, in particular Al, have
accelerated the development of CAVs. The discussions about uncertainties over the
performance of CAVs in complex traffic scenarios, lack of sufficient and reliable historical
data, and the fatal accidents involving CAVs in recent years all signify an urgency for
identifying and analysing the factors that can lead to collision as far as AD is concerned.
Therefore, identification and mitigation of those factors is necessary for creating a risk
profile, computational risk models, and informing future policies based on reliable estimates.
In this way, multi and interdisciplinary approaches can broaden the scope of analysis and lay

a foundation for socio-technical synthesis of findings.

The rest of this thesis proceeds as follows. Chapter two provides a literature review on
definitions, structure, operations, stakeholders and risks of CAVs. Chapter three discusses
and develops the methodological approaches, Bayesian Belief Networks as the modelling
framework, types of data and the means for collecting them, data analysis tools and the main
assumptions which were made to construct the BBN model. Chapter four presents the
findings including the identified risk factors, the BBN model, expert opinions, scenario and
sensitivity analyses. Chapter five interprets the results, relates them to the research questions,
recognises the research limitations, and explores the policy implications for safe operation
of CAVs in urban environments. Finally, chapter six concludes the thesis with the main

findings and contributions, key policy implications, and potential areas for future research.
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Chapter 2

2. Literature review

The literature review chapter consists of three main sections. The discussions around
AVs, their significance in the future mobility, benefits, definitions, and enabling
technologies are presented in 2.1. The safety concerns and a high priority for risk-informed
policymaking are reviewed in 2.2. Finally, in section 2.3 the knowledge gaps are pinpointed,

and a theoretical framework is proposed. This chapter ends with a summary and conclusions.

2.1. Autonomous vehicles

2.1.1. The motives and challenges in designing autonomous systems

In fact, endeavours to create systems that have the ability to operate autonomously (i.e.
without direct human control) originate from ancient times (Ieropoulos, Melhuish and
Greenman, 2003). Nevertheless, the cross-disciplinary technological advances and the
growing demand for replacing humans with robots in hazardous missions have driven the
rapid proliferation of unmanned autonomous systems (UASs) in the past three decades
(Perhinschi, Napolitano and Tamayo, 2010; Madan, Banik and Bein, 2019; Leslie et al.,
2022). Autonomous systems are currently being developed, deployed and operated namely
but not exclusively in industrial minerals sector (Rogers et al., 2019), railway maintenance
sector (Vithanage, Harrison and DeSilva, 2019), harsh environments (e.g. where high levels
of radiation, temperature or pressure is present) (Wong et al., 2018; Leslie et al., 2022),
autonomous transport robotics (Aniculaesei ef al., 2018), space missions (Frost, 2010; Fong,
2018), healthcare (Aguiar Noury et al., 2019; Tan and Taeihagh, 2021), unmanned aerial
vehicles (Zhang et al., 2017), logistics (Stampa ef al., 2021), stock-trading algorithms and
household appliances (Scharre, 2015). The outlined prospects for autonomous systems in the
literature also promise a more ubiquitous distribution across a wider range of industries and
that they will become an integral part of our day-to-day lives in the near future (Lyons et al.,

2017; Mostafa, Ahmad and Mustapha, 2019; Nahavandi, 2019).

There are various reasons and purposes for heightening the autonomy of different systems
in diverse disciplines. For instance, mitigating latency, cost-effect operation in long term,
undertaking maintenance in the face of failure or damage, and extending the scientific team
through virtual presence are among the main motives for equipping a space vehicle with

autonomous systems (Frost, 2010). In railway maintenance, the introduction of robotic and
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autonomous systems (RAS) is expected to achieve cost benefits and release technicians from
working under unfavourable and unergonomic conditions (Vithanage, Harrison and DeSilva,
2019). Furthermore, the crucial role of autonomous machines in lowering workload,
increasing speed, improving efficiency, effectiveness and reliability in today’s industrial
setting is underscored in Rogers et al. (2019). In addition, improving the self-sufficiency of
machines in a way that they can be relied on to act in a self-directed manner is a primary
motivation to increase a machine’s capabilities (Bradshaw et al., 2013; Fong, 2018).
Nonetheless, there remain challenges, questions and uncertainties about creating
autonomous systems, levels of autonomy and how they can be measured, and the feasibility

for an artificial system to reach full autonomy.

Despite the clear tendency towards fitting autonomy into systems and the promising
applications in the successful examples described above, obstacles remain in the way of
integrating autonomous systems into the existing platforms. Autonomy, undeniably,
necessitates fundamental analysis from both theoretical and philosophical points of view
(Hexmoor, Castelfranchi and Falcone, 2012). In practice, it becomes even more crucial to
address key uncertainties and questions while designing an autonomous system. For
example, in systems which possess adjustable autonomy it is critical to determine whether
and how such a system should hand over decision-making control to another agent or entity
depending on the situation (Scerri, Pynadath and Tambe, 2002). Bradshaw et al. (2013)
identified seven prevalent misconceptions about autonomous systems. The article opposes
the idea of “full autonomy” and casts doubt on whether such a concept is either possible or
desirable. It also argues that higher autonomy of autonomous systems requires different sorts
of human skills and expertise and not necessarily fewer or no human control. Even if
possible, full autonomy does not eliminate the need for human-machine collaboration
(Bradshaw et al., 2013). Mostafa, Ahmad and Mustapha (2019) specified environment’s
dynamism complexity, heavy workload, and risk measurement as the roots of software and
hardware challenges in developing autonomous systems. They subsequently projected seven
requirements (i.e. representation, measurement, distribution, adjustment, human—agent
interaction and assessment) of formulating adjustable autonomy. Above all other, the central
question and one of the main concerns about autonomy is how to amalgamate ethics into
intelligent autonomous systems (Charisi et al., 2017; Winfield et al., 2019). This dilemma
is among major obstacles to mass deployment of AVs on public roads and warrants
interdisciplinary research approaches (Bonnefon, Shariff and Rahwan, 2016; Maurer et al.,

2016; McBride, 2016).

Another difficulty in developing autonomous systems is the flexibility of the term

‘autonomous’ and its dependence on the context (Ieropoulos, Melhuish and Greenman,
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2003). The definitions and aspects of autonomy are going to be more elaborated in sections
2.1.4 and 2.1.6. Hereupon, analysing the dimensions of any context that we aim to evaluate
autonomy in that, is inevitable. Similar to other fields, the notion of autonomy has provoked
serious debates in the realm of AVs and needs rigorous consideration. Promising benefits of

autonomous systems continue to provide enough incentives to overcome the challenges.

2.1.2. Perceived benefits for AVs

Having explained in the introduction chapter, one of the main goals for creating a vehicle
without human driver is improving safety as the very first concepts of AVs arose from the
high number of fatalities that was effected by the mass motorisation of transportation system
in the United States (Maurer et al., 2016, p.95). Figures show that more than 90 percent of
fatal accidents in the US involve human factors such as alcohol, drug, speeding, and
distracted driving (Katyal, 2013; Fagnant and Kockelman, 2015; Kalra and Paddock, 2016;
Ryan, 2019). Eliminating human from the loop, if other functions of the technology are at
least as competent as human drivers, can make an enormous contribution to safety of
vehicles. Indeed, numerous articles and papers put emphasis on the safety aspect of AVs to
benefit humans (e.g., Katyal, 2013; Lutin, Kornhauser and Lerner-Lam, 2013; Lari, Douma
and Onyiah, 2015; Kalra and Paddock, 2016; Chan, 2017; Faisal et al., 2019; Rashidi ef al.,
2020; Lundgren, 2021). This is not to say that AVs are risk free, but just to demonstrate how
excluding human factors and errors can reduce the risk of fatalities (Milakis, Van Arem and

Van Wee, 2017).

In every society, there are people who have limitations to drive a car by themselves. AVs
can offer more accessibility and independence to elders, those without a valid driving license
(including teenagers and kids), those suffering from severe disabilities and persons under the
impression of drug or alcohol (Lari, Douma and Onyiah, 2015; Ryan, 2019). Increased
efficiency and productivity are also two perceived benefits for AVs. The occupant(s) of a
self-driving car can use his/her time more efficiently whilst do not need to actively drive
(Lutin, Kornhauser and Lerner-Lam, 2013; Manfreda, Ljubi and Groznik, 2021). The vehicle
is by default programmed to identify better (shorter and/or less congested) routs (Lari,
Douma and Onyiah, 2015) and is capable to operate in a platoon (Zhang et al., 2020), thus
reduction in fuel consumption can be achieved. Reduction in operational costs of freight
vehicles and permitting the transit vehicles to operate for longer hours are the presumable
benefits for freight industries (Schlossberg ef al., 2018). There is ongoing debate about the
impact of AVs on traffic congestion (e.g., Litman, 2017), but the fuel consumption is

believed to decrease (Katyal, 2013; Litman, 2015; Faisal et al., 2019). If realised, this will
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directly and positively impact the environment due to reduction in greenhouse gas (GHG)

emissions (Chan, 2017; Milakis, Van Arem and Van Wee, 2017).

Capacity has often a bold presence among the perceived benefits for AVs (Lari, Douma
and Onyiah, 2015). According to cost-benefit analyses that were made, the adoption of an
automated system on the British motorways was projected to be repaid by end of the century,
to increase the road capacity by at least 50%, and to prevent around 40% of the accidents
(Lari, Douma and Onyiah, 2015). Overall, one estimate from the Eno Center for
Transportation Studies, a DC-based industry research group, put cost savings in the range of
$25 billion to over $450 billion, depending mainly upon the rate of technology adoption
(Lari, Douma and Onyiah, 2015). Although there are on-going debates about the impact of
AVs on carbon emissions, some studies (e.g., Fagnant and Kockelman, 2015; Taiebat et al.,
2018) suggest that AVs have great potentials for contributing to carbon saving policies in
road transport sector. Enabled mechanisms such as eco-driving (Gawron et al., 2018),
vehicle light-weighting (Taiebat ef al., 2018), rightsizing (Rashidi et al., 2020), shorter
headway distances (Lu and Tettamanti, 2021), and efficient route planning (Massar et al.,

2021) are expected to lower GHG emissions.

AVs are supposed to transform the way transportation systems are operating around the
globe and their impacts on traffic safety and traffic congestions are predominantly cited in
the literature (e.g., Ye and Yamamoto, 2019). This can lead to change in the travel behaviour
of people and alter different social structures and urban design. Car and ride sharing due to
pushing the existing barriers and emergence of new business models will become more
beneficial and popular among travellers (Abduljabbar et al., 2019). Similarly, shift in car
ownership may occur (Greene, 2016; Guerra, 2016). Consequently, land use (e.g. parking
lots and sprawls) is subject to change (Riggs, 2018). Although increased safety is among
primary expectations, the possibility for collision will be still present (Kalra and Paddock,
2016). Therefore, in case if there is any accident, sharing liability between involved parties
with existing legal terms in many parts of the world poses a dilemma (Katyal, 2013;

Taethagh and Lim, 2019; Davey, 2020; Kassens-Noor et al., 2020).

In the modern world, cars are a part of social identity of individuals. Transferring the
driving skills of people to cars may trigger social and personal identity crisis (McBride,
2016). Controlling a car can mean as a form of freedom for a group of people, then loss of
freedom may equate to loss of identity. Apart from societal impacts, the economy might be
affected in different ways as well. KPMG estimated in a report that CAVs can create 320,000
jobs alone in the UK by 2030 (KPMG, 2015b). On the other hand, many professions such as
taxi and lorry drivers inevitably and gradually fade (Thierer and Hagemann, 2015).
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2.1.3. Anticipations on the future of AVs

While many concerns about the safety and security of AVs remain unaddressed, the rush
to commercialise the technology and the race towards shaping the regulatory environment
due to the fierce competition between multiple developers are adding to the complication of
the problem. Reviewing the statistics on the investments and anticipations for the AV fleets
to take over the roads from conventional vehicles reveals that we are not far from that point.
Some observers estimated limited availability of driverless cars by 2020, with wide
availability to the public by 2040 (Lari, Douma and Onyiah, 2015). In another study released
in early 2014, IHS Automotive predicted that nearly 54 million self-driving cars will hit the
roads worldwide by 2035 and almost all of vehicles are expected to be autonomous after the
year 2050 (Cohen, 2015). Faisal et al. (2019) investigated the “smart city” agenda and
prefigured that by 2045 AVs would account for half of the vehicles on roads. Some figures
also hint that the first commercial generation of AVs must be available for sale in 2025, and
by 2035, around ten percent of newly manufactured vehicles would be fully autonomous
(Lipson and Kurman, 2016). The insurance market predicted that in 2025, a “broad-based
transformation” will begin and all new cars will be equipped with autonomous capabilities

(KPMG, 2015a).

Chan (2017) provided estimates for the time horizons that major AV developers were
going to release their products. Several of those milestones are now passed, but the promised
technologies have not become available yet. For example, it was estimated that Toyota and
Volvo were going to sell “zero fatality” cars by 2020. Similarly, it was expected that Audi
would introduce fully autonomous vehicles by 2021. Other authors (e.g., Pernestil Brenden,
Kristoffersson and Mattsson, 2019) had also provided optimistic estimates for realisation of
fully autonomous vehicles by early 2020s. Litman (2015), however, anticipated that level 5
AVs will be ready and legal to use before 2030.

The tendency towards investing in AV development is growing accordingly. The UK
government alone has endorsed a plan to invest £200 million in AV research and
development (McBride, 2016). Almost 5 years ago, the US government started to devise a
national plan to invest 4 billion dollars over a period of ten years (Lardinois, 2016). The
budget was allocated to co-operate with the tech companies and auto manufacturers to
develop and test CAVs. The estimations of potential market size for AVs are promising. By
2030, it is estimated that the sales of AVs may reach 87 billion dollars (Zhao et al., 2016).
That is, however, distinct from the figures that Lipson and Kurman (2016) estimated for the

global market of AVs, worth 38 billion dollars in 2035 (Lipson and Kurman, 2016).
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Municipal departments and authorities around the world are revising their policies and
plans to facilitate the transition and embrace AVs (Faisal et al., 2019). This is mainly because
urban planners along with other stakeholders need to proactively plan, ensure provisions and
improve infrastructures for adopting AVs (Khan et al., 2019). Faisal et al. (2019) listed the
names of 36 cities in the UK, US, Netherlands, Australia, Japan, UAE, Finland, Sweden,
France, Norway, Canada, Singapore, and Korea which had started pilot testing of AVs before
2017. Several other cities such as Auckland in New Zealand, Sao Paulo in Brazil and Buenos
Aires in Argentina were also preparing to test AVs (Faisal ef al., 2019). In the European
Union, recent projects have reported successful testing of autonomous transit in seven cities,
conveying more than 60,000 passengers while sharing the infrastructure with other road
users (Rojas-Rueda et al., 2020). These reports besides the recent prototypes of partially
automated vehicles all indicate that there is willingness to develop and adopt vehicles which

require less or no human interventions.

In different modelling and simulation attempts for studying AVs (e.g., Fagnant and
Kockelman, 2015; Lu and Tettamanti, 2021), adoption rate (aka penetration or deployment
rate) is among underlying assumptions. The magnitude of some outcomes such as safety
improvements and GHG reduction depend on the proportion of AVs to conventional
vehicles. The literature suggests a broad range estimates for adoption of CAVs in the next
three decades. Whereas some optimistic predictions that expect 100% adoption by 2040,
there are other estimates that offer only a small proportion (i.e., 15%) of vehicles will be
CAVs by 2050 (Rashidi ef al., 2020). Any mass adoption of AVs, however, is contingent on
overcoming barriers such as integration of several intelligent vehicles, regulations, costs,

cybersecurity, safety, liability, and data privacy (Raj, Kumar and Bansal, 2020).

2.1.4. The notion of autonomy in AVs

Despite the usefulness of the taxonomies provided for autonomous systems to categorise
them based on their capabilities, there are still shortcomings in these categorisations which
analysts must be aware of them. First, such representations appear to be over-specific in
some dimensions, while are vague in others and even some descriptions contain hidden
assumptions (Hancock, 2019). It is also arguable that whether we can measure machine
autonomy on a single ordered scale with increasing levels (Bradshaw et al., 2013). The
conceptualisation of levels of autonomy might not be even a developmental road map for
manufacturers. Ranking autonomy according to the function is problematic too, since
autonomy is more related to the context of activity (Bradshaw et al., 2013). Such typologies

can offer technical clarity to some extent, yet there are ambiguities over functionality and
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system specifications for each step in the automation ladder. Hence, care must be taken about

these caveats when applying those scales for analysing autonomous systems.

The topic of autonomy in ground vehicles in general, and particularly in cars, has attracted
considerable attention across different disciplines comparing to other applications of
autonomous systems (Xie and Zhong, 2016). After all, there are only a few organisations
who have already provided a gradation and definitions for each level of autonomy in AVs.
The Society of Automotive Engineers (2016) divided the autonomy (automation) for on-
road vehicles into six levels from ‘No Automation’ to ‘Full Automation’ (please see Table
2.1). Similarly, the National Highway Traffic Safety Administration (NHTSA) defined five
levels of vehicle autonomy for vehicles (please see Table 2.2). German Federal Highway
Research Institute (BATs) proposes a similar taxonomy for varying levels of vehicle
autonomy (Kaur and Rampersad, 2018). Frost, Goebel and Celaya (2012) also presented a
categorisation for autonomous functions based on a four-stage information processing model
of humans (figure 2.1). An autonomous system gathers data form multiple sources, analyses
the data and makes a decision based on the processed data, and finally implements the

decided action. Tables 2.1 and 2.2 provide classifications from two different organisations.

Table 2.1: illustrates the levels of autonomy (automation) for on-road vehicles (SAE International,

2016).
Execution of o Fallback System
. Monitoring o
SAE . . Steering and L. Performance | Capability
Name Narrative Definition of Driving R L.
Level De/Accele Environment of Dynamic | (Driving
ration Driving Tasks | Modes)
Human driver monitors the driving environment
Full-time performance by human
No . . . Human .
0 . driver of all aspects of dynamic | Human driver . Human driver n/a
Automation . driver
driving task
Driver Drlvmlg mode.-speaﬁc execution Human driver Human . S‘.’”.”e
1 . by a driver assistance system (e.g., . Human driver | driving
Assistance . . and system driver
steering or de/acceleration modes
. Driving mode-specific execution Some
Partial . . Human . .
2 . by one or more driver assistance System . Human driver | driving
Automation driver
systems modes
Automated driving system monitors the driving
environment
Driving mode-specific
performance by an automated
- L . Some
Conditional driving system with the . L
3 . . . . System System Human driver | driving
Automation|expectation that human driver will modes
appropriately respond to a take-
over request
Driving mode-specific
Hich performance by an automated Some
4 g ' driving system even if human System System System driving
Automation . .
driver does not appropriately modes
respond to a take-over request
Full-ti f b i
Full dr-time pe.r F)rmance el All driving
5 . automated driving system under System System System
Automation . " modes
all road/environmental conditions
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Table 2.2: NHTSA levels of vehicle autonomy and examples of automated tasks for each level (Rodel

etal.,2014).

Description Example of (driving) automated tasks

No-Automation: The driver is in
Level 0 |complete and sole control of the primary none — all driving tasks are performed by driver
vehicle controls

Examples include electronic stability control or pre-

. . . charged brakes, where the vehicle automatically assists
Function-specific Automation: . . . .
. . . with braking to enable the driver to regain control of
Level 1 | Automation at this level involves one or . ) .
" . the vehicle or stop faster than possible without
more specific control functions. . . ) . .
assistance. A parking assist helps the driver with

auditory feedback out of the parking space.

An example of combined functions enabling a level 2
Combined Function Automation: This system is adaptive cruise control in combination with
level involves automation of at least two |lane cantering. Steering is handled automatically by the

Level 2 | primary control functions designed to vehicle. Exceeding the speed limit is prevented by a
work in unison to relieve the driver of | cruise control. In the stop-and-go traffic the speed and

control of those functions. the distance to the car in front are controlled by an
active cruise control.

Limited Self-Driving Automation:
. f, 9 . The Google car [by then] is an example of limited self-
Vehicles at this level of automation o . .
. driving automation. The driver is supported by the
enable the driver to cede full control of ) . o )
. . ] parking assist. When vehicle is switched to
all safety-critical functions under certain . . .
Level 3 ) ) o autonomous mode and it handles accelerating, steering
traffic or environmental conditions. The . .
L . and braking completely autonomously. When reaching
driver is expected to be available for . . . .
) . o the highway exit, the car requires that the driver takes
occasional control, but with sufficiently
N . back control.
comfortable transition time.

Such a design anticipates that the (remote) driver will
Full Self-Driving Automation: The vehicle |only provide destination or navigation input. During the
Level 4 is designed to perform all safety-critical ride the car operates within the speed limits,
driving functions and monitor roadway |accelerates, brakes and steers fully autonomously, and
conditions for an entire trip. avoids obstacles while the driver may be engaged in

other activities than driving.

The degree of autonomy for an autonomous system depends on how autonomously it is
capable of gathering data, processing them, making decisions and implementing them. The
performance of an AV can be simplified in the basic functions above. An AV detects an
object on the road through its sensors, analyses different characteristics of the object (e.g.
type, size, distance, speed, direction, etc.), weighs up possible options available and decides,
for example, to accelerate or deaccelerate, and finally puts that decision into action. Several
papers tried to equate autonomy to intelligence and measure the level of system intelligence
instead of examining the autonomy grade of the system (Clough, 2002). A system can be
notably intelligent, but simultaneously not able to act autonomously. As a consequence,
ranking the autonomy level of a vehicle is a critical step before studying it. However,

definitional ambiguities about autonomy obstructs understanding and engineering
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autonomous systems as well as evaluating the degree of their autonomy (Froese, Virgo and
Izquierdo, 2007). Durst and Gray (2014) reported that defining autonomy in a
comprehensive and quantitative manner is among three biggest challenges that the ground
vehicle test and evaluation (T&E) community confronts. Representatives from disparate US
agencies initiated a joint effort in July 2003 to address autonomy issues of unmanned
systems. Forming a common vernacular terminology (i.e. standard terms and definitions) to
articulate capabilities as well as problems and devising metrics, methods and processes for
measuring the autonomy of unmanned systems were overall objectives of this initiative
(Huang et al., 2005). Characterising the levels and facilitating the evaluation and
measurement of autonomy can be the main contributions of such a framework. Pollard,
Morignot and Nashashibi (2013) proposed an ontology-based model and define a spectrum

of automation/autonomy levels exclusively for ground vehicles to represent knowledge.

Information l Information Decision and Action

acquisition analysis ' action selection - implementation

Fig. 2.1: basic functions of an autonomous system (Frost, Goebel and Celaya, 2012).

Although full autonomy of ground vehicles has been a major objective of the Intelligent
Transportation Systems (ITS) community (Pollard, Morignot and Nashashibi, 2013), the
concept of full autonomy has received fierce criticisms. According to McBride (2016), a
fully autonomous car which has no reliance on infrastructure or connection with central
systems must be self-determining, self-correcting, self-healing and ultimately self-aware.
Regardless of feasibility and achievability, he casts doubt on desirability of creating such a
fully autonomous car. Engineers, designers, technologists and manufacturers who are more
concerned with technical aspects of the technology, are seriously challenged and constrained
in dealing with social, moral, and political issues (Hancock, 2019). Thus, for many designers
and manufacturers keeping the human driver in the loop and assigning some (but not all) of
driving tasks to machine has been a start point towards fully automated/autonomous

vehicles.

In the hierarchical control structure for an autonomous vehicle developed by Qu (2009),
multi-level autonomy (control) plays the key role. In this structure (figure 2.2), reaching
high-level tactical decisions is facilitated through human-machine interactions and a multi-
objective decision-making construct which is capable to learn online (Qu, 2009). Adjustable
autonomy, accordingly, can be a solution for autonomous systems which operate in dynamic
environments (Scerri, Pynadath and Tambe, 2002; Mostafa, Ahmad and Mustapha, 2019).
Adjustable autonomy is the underpinning principle of semi-autonomous vehicle (SAVs)

architecture. The distributed autonomy between human and machine, however, can be a
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source of risk. For instance, Hancock (2019) asserts that the issue of taking over or handing
over the control of a semi-autonomous ground vehicle in cases of emergency or likelihood
of collision is not going to be as smooth and straightforward as in civil aviation. In the same
context, drowsiness and overreliance are mentioned to be typical problems in the behavioural

adaptation to Advanced Driving Assistance Systems (ADAS) (Eskandarian, 2012).

Mission and Global Planner (offline)

-

Multi-Objective Decision Making

\4

\4
A

Non-Regret and Bayesian Learning

(—

Tactical Strategies

Teaming, Resource Allocation, Coverage,
and Waypoint Selection

(—

Networked Control

> Cooperation, Formation and other
Behaviour

L U

Real-time Trajectory : : Closed-loop Vehicle
Planning Tracking Control

Fig. 2.2: control hierarchy for AV systems (Qu, 2009)

2.1.5. Definitions of AV from the perspective of diverse disciplines

Although it may not be always feasible to arrive at exact, precise and clear-cut definitions
for a complex phenomenon or system, defining the boundaries, recognising the intended
functions and outlining key entities can still yield insight into mechanisms and functional
implications of them. This applies to AVs as well where there is much ambiguity on the
definition of a ‘driverless’ or ‘autonomous car’ and a universal or at least widely agreed
definition for autonomous vehicles is still missing (Wolmar, 2018). Drawing a comparison
between the definitions provided for AVs in diverse disciplines as well as desired

functionalities might help to ease this problem if not eliminate it.
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Vellinga (2017) in an article discussing the legal challenges of driverless cars, refers to
this technology as “motor vehicle that can operate during a whole trip without human
interference; it does not require a user to intervene when a problem occurs”. In a general
description for AVs, Li et al. (2016) also pointed towards the ability of the vehicles to
perceive information, retain knowledge, and adopt adaptive behaviours within an
environment. From the transportation perspective, Abduljabbar et al. (2019) considered the
desired functionality of fully autonomous vehicles as to move safely, in between other
vehicles on road avoiding obstacles, and pedestrians. The authors further break down the
overall architecture of AV technology into two major components which are hardware (e.g.
sensors and actuators) and software (e.g. Al algorithms). Similar definition is adopted in the
field of distributed computers and communication networks. Vishnevsky and Kozyrev
(2016) define that an autonomous car is an autonomous vehicle which is capable of fulfilling
main transportation tasks of a conventional car plus sensing its surrounding environment and
navigating without human instruction. This is also endorsed by Craig and Liu (2018) in their
article where they evaluate the impacts of AVs on real estate sector. The ambition for such
a vehicle is claimed to be navigating and sensing the environment without human input and
reach a level to transport without encountering traffic, struggling to find a car park and even

needing to stay awake (Craig and Liu, 2018).

Governmental departments and organisations have offered definitions for AVs too. For
instance, UK Department for Transport initially defined driverless cars as “vehicles with
increasing levels of automation will use information from on-board sensors and systems to
understand their global position and local environment. This enables them to operate with
little or no human input (be driverless) for some, or all, of the journey” (Department for
Transport, 2015). The US Department of Transport, however, based its definition of “highly
automated vehicles” on the SAE automation levels and describe them as “automated vehicle
systems that are capable of monitoring the driving environment as defined by SAE J3016”
(Department of Transport, 2016). From these definitions and expected performance we can
conclude that excluding the human driver from the loop (at least for a part of a trip), sensing

the surrounding environment and navigating safely are three prominent features of AVs.

2.1.6. Discrepancies in the terminology

Interchangeably, and even confusingly, driverless, self-driving, automatic, automated
and autonomous vehicles are the main terms employed in the academic and technical
literature to refer to vehicles or cars which perform some or all driving tasks by themselves.
Aside from ‘driverless’ and ‘self-driving’ cars which are more popular terminology in news

articles and non-technical literature, autonomous vehicles and automated vehicles have
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provoked more debates on the grounds that each has a fundamentally different definition.
Clough (2002) describes that the basic difference lies in delegating decision making to one
or a collection of intelligent autonomous systems, whereas an automated system is one that
implements a pre-programmed process. Similarly, Frost (2010) explains that an automated
system is not designed to independently generate possible courses of action and make a
choice between them and simply follows a script, but an autonomous system tries to achieve
its defined objectives without human interference and does make choices. SAE International
(2016) also considers the confusion and draws a line between these two terms: according to
the Oxford English Dictionary, since automation involves the replacement of human labour
with electronic or mechanical devices, then automation is a more precise term for those
systems that perform dynamic driving tasks. Kellerman (2018) scrutinises the differences
between these two terms. It is maintained that automation denotes self-operating
mechanisms that are now an integral element in humans’ operations, while the timings are
still decided by human agents. On the other hand, autonomy in the context of mobility and
driving refers to two automatic elements embedded in and autonomous vehicle (AV). First,
automated decision-making processes for driving tasks during the entire vehicle journeys,
and second, a wholly automatic operation of the vehicle including sensing its environment,
navigating, driving, transmission and ignition. Therefore, “autonomous mobility via AVs, as
well as via other mobility modes, constitutes the most advanced level for the wider range of

automated mobility modes and technologies” (Kellerman, 2018).

The necessity for clarification on nomenclature before proceeding to an examination on
different aspects of these vehicles is stressed in Hancock’s work (2019) too. The focus of his
discussion is upon differences between the definitions of automation and autonomy.
Automation is defined as “automated systems are those designed to accomplish a specific
set of largely deterministic steps, most often in a repeating pattern, in order to achieve one
of an envisaged and limited set of pre-defined outcomes” (Hancock, 2019). An autonomous
system, on the contrary, is characterised as a generative system which learns, evolves and
constantly adapts its functional capabilities based on the contextual and operational
information that it gathers (Hancock, 2019). Moreover, autonomous agents pursue goals that
are generated within rather than adopted from other agents (Hexmoor, Castelfranchi and
Falcone, 2012). Theoretically, an automated vehicle system can be denoted as an
“autonomous” system, only when all the dynamic driving functions, at all driving
environments, can be performed by the vehicle’s automated systems (Faisal et al., 2019).
The discrepancy between autonomous and automated systems is apparent and requires
researchers to pay immediate attention to this notion to avoid confusion, misperception and

diminished credibility (SAE International, 2016).
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Besides the disputes over the appropriate terminology to represent the technology, the
concept of full autonomy in vehicles has received substantive criticisms. For example,
McBride (2016) argues that a fully autonomous vehicle should rely on no external sources
of information (i.e. receiving external input) such as GPS. Such a vehicle should be self-
contained and have no dependency upon external sources and merely rely on its own
capabilities (McBride, 2016). Thus, before recognising that a vehicle is autonomous, its
dependence on communication and/or co-operation with external agents and entities must
be questioned. There are driving systems that are truly autonomous as they can complete all
of their defined tasks independently. However, if these systems still need to rely on
communication or co-operation with external entities, they should be categorised under co-
operative rather than autonomous (SAE International, 2016). Hence, with the above
definitions it appears that terms such as connected and autonomous vehicles (CAVs) can
sound paradoxical and controversial. Hancock (2019) accordingly asserts that although
autonomy as defined earlier will be born out of pre-existing levels of automation, without a

doubt, none of the current vehicles on the road can claim to be autonomous.

After all, as the term autonomy is concurrently and widely used in the literature and the
aim of this research is to investigate higher levels of automation, we opt to use connected
autonomous vehicles (CAVs) to refer to highly automated vehicles in the rest of this thesis.
CAYV has been also used as an abbreviation for connected and automated vehicles in many
recent academic publications besides policy statements and includes the connectedness
feature of those vehicles. There are instances where AV is used in the text. In those contexts,
emphasis is placed on the autonomous (or automated) feature of the technology rather than

connectedness aspects.

2.1.7. Advancements in pertinent technologies

To study and scrutinise implications and risks of CAVs, it can be illuminating to glance
back and review the development trajectories of technologies and key components enabling
the core functions and affecting safety records. This also allows breaking down the overall
system into smaller and less complicated components to be analysed separately and later as
awhole. For these reasons, this section is dedicated to the technological enhancements which
have made a notable contribution to the evolution of AVs hitherto. A variety of technologies
from diverse disciplines must be integrated into a vehicle to achieve autonomous navigation
in dynamic environments such as urban areas. Computer science, mechanical engineering,
electronics and electrical engineering as well as control engineering are prominent examples
of these disciplines (Bimbraw, 2015). Merging innovations from the above disciplines has

led to improvements in sensory (e.g. LiDAR), communication systems (e.g. DSRC),
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navigation systems (e.g., GPS), data analysis and data storage (Narla, 2013; Denaro et al.,
2014; Bimbraw, 2015; Lari, Douma and Onyiah, 2015; Russo et al., 2016). More recent
technological platforms such as could computing and Internet of Things (IoT) have also
made a major contribution to the development of CAVs, especially in facilitating the
communication between vehicles (V2V) and infrastructure (V2I) (Guerrero-Ibanez,
Zeadally and Contreras-Castillo, 2015). In another research, Englund et al. (2018) classify
enabling technologies within the field of automated driving into five categories. Table 2.3
summarises these categories and representative examples. In their comprehensive study,
Winner et al. (2016) mapped a relatively complete picture on and investigated multiple
facets of ADAS. Sensors, data fusion and environment perception, actuation and human-
machine interfaces are the main focus. In addition to former and state-of-the-art systems,
they try to portray the future of ADAS considering the current trends of technology
development.

Table 2.3: Enabling technology contributing to the evolution of AV technology, adopted from
(Englund et al., 2018)

Technology Category Example
. o Global Navigation Satellite System (GNSS)
Position, Localisation and . .
a. . GPS L1/L2, GLONASS, BeiDou and Galileo
Mapping

real-time kinematics (RTK)

Algorithms for Guidance . .
b. Deep learning algorithms
and Control

Dedicated Short Range Communication (DSRC)
3G/4G/5G/LTE
Powerful, yet low-cost cameras
Radar
LiDAR
Fusion of Vision

c. Hybrid Communications

d. Sensing and Perception

Online databases from sensor readings
Vision-based systems to learn from e.g. driver behaviour

. Cooperative Intelligent Transportation Systems (C-ITS)
Technologies for Data )
e. Cooperative Awareness Message (CAM)

Ownership and Privac
P y Decentralised Notification Message (DENM)

There is an apparent scholarly consensus that autonomous driving is well emerging out
of pre-existing levels of automation (ADAS) or what SAE names as Automated Driving
Systems (ADS) (Chan, 2017; Englund et al., 2018; Hancock, 2019). Many (if not all) of the
above technological advances and innovations have been used in the development of ADAS
before (Winner et al., 2016). In other words, integration of several driving assistance systems
can bring about autonomous driving (Lipson and Kurman, 2016, pp.186-194). The
integration of complementary technologies, quality and breadth of human-machine
interactions can potentially add to the complexity and to the uncertainties. The notion of

integration and human-machine interfaces will be covered in coming sections. For that
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reason, exploring the enabling technologies which form the backbone of CAVs and have
been formerly tested in lower levels of automated driving can offer valuable insights into the

uncertainty and risk analysis in this project.

2.1.8. The decisive role of Al in developing autonomous systems

The invention of semiconductor integrated circuits was just the beginning of the
subsequent revolutions and breakthroughs in virtually all areas of industrial and economic
sectors (Mack, 2011). Over the years, computing capabilities have grown to become faster
and more efficient, but physical components have shrunk in size (Anderson, 2017). In other
words, smaller devices mean to be faster devices. This trend is known as Moore’s Law in
academic literature which “predicts that the number of electronic devices that can be
crammed onto a little chip of silicon will double roughly every 1-2 years” (Anderson, 2017).
One of the fields which directly benefitted from increased computational power, without a
doubt, is artificial intelligence (AI) (Yudkowsky, 2008). Thanks to computing power
increase, many early obstacles of devising Al-based systems are quickly being overcome
(Warwick, 2013). To reflect the extension and degree of the influence, Kuruczleki et al.
(2016) indicated Al and machine learning (ML) as the two main pillars of the fourth

industrial revolution (Industry 4.0).

Reviewing the literature on the current studies of Al applications advocates that almost
every realm and industry is being currently touched by Al or will be in the near future. Well-
known examples are e-commerce and marketing (Cannella, 2018), healthcare and medicine
(Hamet and Tremblay, 2017; Briganti and Le Moine, 2020), autonomous vehicles (e.g.,
Hengstler, Enkel and Duelli, 2016), education (Wenger, 2014), data processing (Russell and
Norvig, 2016), banking and finance (Bahrammirzaee, 2010; Rohmer, 2020), aerospace
industries (Girimonte and 1zzo, 2007; Rohmer, 2020), manufacturing (Li et al., 2017), law
(Abduljabbar et al., 2019) and military. Undoubtedly and despite the widespread ambiguities
around Al, it is the technology that is altering many aspects of the world (West and Allen,
2018). Figure 2.3 presents more details about the applications of Al across different
industries as well as the economic, social and business values that adoption of Al can
generate in each sector. In some disciplines the pace of change and extent of influence is
considerable enough to cause deep concerns for prominent scientists and even can be
considered as a national security issue. In the meantime, massive investments in Al research
together with fast and remarkable technological progress in other areas (e.g. computability
and software programming) can manifest the extent of future achievements which might

completely overshadow the current performance (Hawking ef al., 2014). This acceleration
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has consequently convinced many individuals to call for regulations on Al development and

imposing restrictions on Al operations (Scherer, 2015).

Incremental value from Al usage

Advanced Electronics/Semiconductors
Insurance

Medical Products
Telecommunications

Public & Social Sectors
Healthcare Systems/Services
Banking
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Consumer Packaged Goods
Basic Materials

Media & Entertainment
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Oil & Gas

High Tech

Automative & Assembly
Retail

Transport & Logistics

Industries using Al techniques

Travel

o
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Economic, social and business values (%)

Fig. 2.3: economic, social and business values which Al can generate in diverse industries.
Adopted form (Abduljabbar et al., 2019)

Having mentioned earlier, autonomous driving has also been heavily impacted by the
advances in Al systems. Figure 2.3 shows travel and transportation which are tightly linked
with mobility and are expected to benefit most from Al The inclusion of artificial
intelligence allows designers to close the gap between purely analytical systems and rule-
based systems which can mimic human decision-making and behaviour (Maurer et al.,
2016). The applications of Al in CAVs are vast and machine learning techniques have been
broadly adopted to improve the performance of them (Kuderer, Gulati and Burgard, 2015).
Computer vision (Lipson and Kurman, 2016; Mohammed, Khan and Bashier, 2016), object
classification (Lipson and Kurman, 2016), steering and navigation (Kuderer, Gulati and
Burgard, 2015), vehicle path control systems (Maurer et al., 2016; Varshney and Alemzadeh,
2017), cybersecurity (Alheeti, Gruebler and McDonald-Maier, 2015), in-car problem
diagnosis (Huang and Rust, 2018) and collision avoidance (Hardy and Campbell, 2013) are
only a few examples of the wide applications of Al in developing CAVs.

Above examples besides other Al-based technologies implanted in CAVs can vividly
demonstrate the central role of artificial intelligence in realisation of fully autonomous

vehicles. In fact, the capacity of AV risk mitigation across the literature is evaluated based
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on the AV competence to make driving decisions (Cunneen, Mullins and Murphy, 2019).
This explains the one billion dollar investment plan which has been announced by Toyota to
be made in artificial intelligence research (Lipson and Kurman, 2016). The main concern
with Al however, is its potential risks (Wadhwa and Salkever, 2017). Hawking et al. (2014)
maintain that there are huge benefits that can be derived from deployment of Al, but leaving
the technology uncontrolled and neglecting the risks might have serious repercussions
including elimination of human civilisation. Therefore, a very sophisticated and integrated
risk assessment system must be in place to secure yielding the benefits and avoiding the
risks. Notwithstanding the exigency of addressing consequential uncertainties around the
technology, relatively little academic literature has been yet devoted to analysing and
measuring risks associated with Al utilisation (Yigitcanlar et al., 2020). The need for
extensive and interdisciplinary research must be recognised for all kinds of risks from safety
and security to business risks. In addition to adopting an overall and universal approach to
analyse risks from Al at a catastrophic and existential level (Yudkowsky, 2008; Turchin and
Denkenberger, 2018), a bottom-up strategy is also required to break down the overall risks
into narrower and more technical areas to scrutinise them more deeply. In this regard, this
research project has been proposed to model collision risk of CAVs in urban and suburban

environments.

2.2. Associated safety risks with AVs

2.2.1. Uncertainties and risks surrounding the AVs

In section 1.3 it has been argued that disruptive and innovative technologies transfer
and/or transform the risks rather than eliminating them completely. This section explores the
uncertainties that can pose safety risks while AV technology is deployed in urban regions.
Lipson and Kurman (2016, p.15) explain that 99 percent of the time, driving is predictable
and therefore the Al can be trusted to accomplish its tasks with high reliability. In spite of
that, in one percent of the time, the technology can find itself in an unpredicted situation
which has not been yet trained to react safely or timely. There are different terminologies in
the literature to refer to these types of events. ‘Black swans’ (Aven, 2013; Flage and Aven,
2015), ‘corner cases’ (Lipson and Kurman, 2016, p.16) and ‘unknown unknowns’ (Ward
and Chapman, 2003; Aven, 2013; Flage and Aven, 2015). The inability to detect and predict
these events is attributable to the ultimate epistemic uncertainty or lack of fundamental
knowledge not only about the distribution of a variable but also about the existence of the
event itself (Paté-Cornell, 2012). In another hand, occurrence of rare but known events may
be overlooked by risk analysts. Notwithstanding the rareness, if such events occur, can have

catastrophic or at least unpleasant consequences. Paté-Cornell (2012) referes to this type of
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events as ‘perfect storms’ which the existence is proven or imaginable, but the probabilities
are still unknown. Hence, it becomes essential to measure the AV operation safety to avoid

or reduce the collision risk by assessing the drive safety (Shangguan et al., 2020).

While biological life forms (e.g. human beings) follow so-called ‘simple’ instinct to react
to unforeseen events, robots may struggle to decide on the most appropriate course of action
in a timely manner (Lipson and Kurman, 2016, p.16). For instance, a Tesla S sports car
(operating in Autopilot mode) collided with a lorry trailer in May 2016 after failing to detect
it, resulting in the death of the Tesla driver. This was the first reported fatality in over 130
million miles of testing the automated driving system by that time. The accident was caused
under extremely rare circumstances of the extra height of the lorry, its white colour under
the brightly lit sky which blinded the visual cameras of Tesla, combined with the positioning
of the both vehicles across the highway (Varshney and Alemzadeh, 2017). While a broad
consensus suggests that autonomous vehicles will improve driving safety, several steps still
remain to secure these benefits (Lari, Douma and Onyiah, 2015; Ryan, 2019). These
scenarios may seem to be unlikely, but when millions of AVs are on the roads even rare
events are bound to occur (Bonnefon, Shariff and Rahwan, 2016). Although some scholars
(e.g., Watzenig and Horn, 2016) advocate that most of core technologies enabling fully
autonomous driving have become available and many are even mature, the reliability of the
technological elements of AV systems is questionable. The fatal accidents together with
disengagement statistics released by AV developers in the US can support the assertion that
Al decisionality has shortcomings compared with human decisionality at least in early stages

of development.

By accepting the fact that the key difference between AVs and conventional vehicles lies
in replacing human drivers with Al, it becomes crucial to investigate the limitations of Al
more closely. Abduljabbar et al. (2019) acknowledged a number of these limitations
specifically in the field of transportation. Firstly, artificial neural network (ANN) establishes
relationship between the input and output without demonstrating any knowledge about how
these relationships are developed. Secondly, there is a suspicion that ANN makes
generalisations when the data sets are imperfect or some information is missing. To tackle
this challenge, some experts recommend combining the ANN technique with other Al tools,
but this demand for hybridisation is also seen as another weakness for ANN. Thirdly, where
Al needs real-world data to learn and improve (during training), deployment of the
technology in real-world environment can pose excessive risks. Another limitation relates to
biases which can be introduced in the training data sets owing to the involvement of humans
who are prone to biases and error in labelling processes. In spite of the fact that an AV must

be capable of forecasting traffic flows, unexpected events and overcoming poor weather
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conditions, current Al algorithms are inadequate to map out such events and circumstances.
Furthermore, Al-based technologies pose a risk to the customer privacy. Restrictions on data
collection affects the quality of the input into Al-based technologies (Agrawal, Gans and
Goldfarb, 2019). On the other hand, the risk associated with privacy and data security in
data-driven and Al-based technologies is serious and needs special consideration (Taeihagh
and Lim, 2019). Lastly, the design of algorithms warrants a trade-off between effectiveness
in terms of processing large amount of input data and sufficiency in terms of using
computation capacity and time to analyse those data. An AV can receive data from multiple
sources such as sensors, GPS, cloud applications, roadside units (RSU), etc. Hence, high
computation complexity can also challenge the effectiveness and efficiency of the Al

algorithms in an autonomous vehicle (Abduljabbar ef al., 2019).

Despite the fact that regulations and regulatory bodies play a pivotal role in ensuring the
reliability of safety-critical systems, it appears that regulatory bodies cannot catch up with
the rapid speed of advancements in autonomous driving (Schreurs and Steuwer, 2015). In
the case of more disruptive technological developments which can cause more radical
changes in the regulatory environment, decision makers are under pressure to make quick
and maybe momentous decisions. The ambiguity around the regulatory environment is
another major source of uncertainty for stakeholders of AVs. To avoid these ambiguities
regulatory bodies must ideally take proactive rather than reactive approaches in regulating

different aspects of AV technology (Lipson and Kurman, 2016).

Car manufacturers, insurers, buyers, legal authorities and other stakeholders need clear
and detailed regulations to make decisions and judgments. For example, Kalra and Paddock
(2016) mentioned about the lack of adequate statistics on autonomously driven miles and
discuss how this hinders drawing a comparison between the performance of human and
autonomous vehicle failures. Then they raise the question of “how many miles would
autonomous vehicles have to be driven without failure to demonstrate that their failure rate
is below some benchmark?” and try to address it. Lundgren (2020) estimated that 84-500
years will take for CAVs to statistically (with 95% confidence and 80% power) prove that
their failure rates are 20% less than human drivers. Another example could be the Vienna
Convention which may need amendments to allow the introduction of fully driverless cars
to the UK roads (Glassbrook, 2017, p.18, p.38). These imply that there are still many
questions about how the AV technology is or going to be regulated. Lack of regulations,
therefore, is among primary sources of uncertainty in autonomous driving which can
potentially affect the safety measures and erect barriers to establishing standardisation

between manufacturers and states (Ryan, 2019).
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In addition to the technological and legal facets, infrastructure readiness and public
perception (acceptance) towards the safety of AVs need extensive research (Konig and
Neumayr, 2017). The existing physical infrastructure has been designed and adapted to
human driving. Saeed (2019) highlights the increased awareness about poor readiness of
current infrastructure to accommodate AVs. Autonomous vehicles may necessitate changes
to the existing road infrastructure such as traffic signage, lane width and colour, on-road
telematics, crash barriers, etc. (KPMG, 2018). Several variables such as market penetration
rates, the proportion of human driven vehicles and level of automation will drive changes in
infrastructure. As a result, it is imperative to account for the AV-related infrastructure

uncertainties and examine the readiness of the existing infrastructure and roadways to host

AVs (Saeed, 2019).

Hengstler, Enkel and Duelli (2016) argue that perceiving risks of novel technologies is a
social process and technologies are not separable from their social context and cultural
values. There are discrepancies between scientifically calculated (or proven) risks and what
public perceives as risk. The gap can become even broader when it comes to radical
innovations and automated technologies with higher degrees of uncertainties and unknown
consequences. This can further affect trust, attitudes, and the way individuals interact with
the technology. How people would react to autonomous vehicles is still a dilemma for
researchers. Research has shown that the reason for high failure rates, particularly in
revolutionary technologies, often cross the technical boundaries and to some extent involve
customer knowledge and levels of perceived risks (Hengstler, Enkel and Duelli, 2016). For
this reason, AECON is testing mini-driverless pods (without any dedicated supervisor
inside) in the UK city centres to study the reactions of pedestrians, prams and bikes to
autonomous driving (Whitehead, 2020). Nevertheless, more research is required to pinpoint
all aspects of human-machine interactions in the context of AVs. For example, the results of
some studies (e.g., Hulse, Xie and Galea, 2018) reveal that although perceived risks for AVs
appear to be low, participants expressed numerous concerns such as possible
system/equipment failure, cyber-attacks and ethical issues. The latter together with moral
and value-driven concerns play a critical role in shaping users’ perception and acceptance

(Kaur and Rampersad, 2018).

2.2.2. Collision risks and avoiding them

It has been discussed that reliability and safety of AVs are a chief concern for industry
and policy makers to ensure their competence over human drivers and guarantee their safety
benefits. As far as safety of AVs is at stake, one of the most challenging tasks for an AV is

to plan an appropriate collision-free trajectory even under emergency circumstances when
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an unexpected obstacle abruptly blocks the pre-planned path of the vehicle (Hajiloo et al.,
2020). In such situations, an AV must be capable of deciding on and undertaking the safest
action and using available actuators timely to optimally avoid any collision or reduce the
severity when a collision is unavoidable. To achieve that level of reliability and an acceptable
functional safety level, detecting and averting hardware failures, software bugs and firmware

malfunctions are vital (Mariani, 2018).

It is noteworthy to draw a line between an accident and a collision. In Cambridge
Dictionary an ‘accident’ is defined as “something bad that is not expected or intended and
that often damages something or injures someone” (Cambridge Dictionary, 2008, p.8).
Oxford English dictionary suggests almost the same definition for the word ‘accident’
(Glassbrook, 2017, p.135). For example, if a vehicle is being driven on road and suddenly
catches fire because of a fuel tank leak, we can say that an accident has occurred, but it may
not necessarily lead to a collision. On the other hand, a collision refers to “an accident that
happens when two vehicles hit each other with force” (Cambridge Dictionary, 2008, p.268).
Now it is useful to know that 97.8% of all traffic accidents in the US are collision type (He
et al., 2019). Thus, eliminating or mitigating factors that cause collisions will considerably

level up road safety.

In road traffic (similar to maritime and aviation), one of the indicators of safety is the
absence of collision or conflict between road participants (Campos and Marques, 2018). That
being the case, avoiding collision becomes a primary objective for CAVs. He et al. (2019)
explores several advanced collision avoidance systems and strategies for CAVs that evaluate
risks of colliding with other vehicles, obstacles or pedestrians and adjust a vehicle’s velocity
and/or trajectory to safely navigate through traffic. Li er al. (2021) categorised current
collision avoidance systems into three groups. Among them is the risk-based assessment
model which first assesses the risk of colliding with the objects surrounding the subject (or
ego) vehicle and then generates a prioritised series of actions to avoid collisions. Still risk
sources remain in place and can incapacitate the collision avoidance systems. Examples of
fatal accidents and disengagements highlighted in section 1.1 suggest that concerns over the

safety of CAVs are legitimate and need to be investigated.

With increasing complexity of systems, number of subsystems and their
interdependencies, the challenge of modelling and assessing risks in these systems becomes
greater. Haimes (2018) manifested ten principles for modelling risk in interdependent
complex system of systems (SoS). Since CAVs are categorised under SoS (Madni et al.,
2018), those principles provide a guiding framework for analysing risks for systems

comprising many interconnected subsystems with multiple functions and operations.
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Principles eight and ten in that framework advocate appropriate choice of metrics for

measuring risks.

Different metrics can be used to measure collision risk. Time to collision (TCC), time
headway (THW), and time to react (TTR) have been previously used in deterministic studies
for that purpose (Noh, 2018; Li et al., 2021). The problem with deterministic approaches is
that they neglect the uncertainties in input data (Noh, 2018) and fail to model multi-lane
scenarios (Li et al., 2021). Those deficiencies of deterministic methods divert attentions to
probabilistic approaches to measure collision risks. Modelling methods such as fuzzy logic,
partially observable Markov decision process (POMDP), and Bayesian networks not only
involve temporal and spatial relationships between traffic participant/environment but also
takes input data uncertainty into account (Noh, 2018). Traffic dynamics and comparing
traffic variables (e.g., flow and occupancy) can be utilised to estimate spatio-temporal risk

in terms of hazardous traffic conditions (Katrakazas, Quddus and Chen, 2019).

The above discussion indicates two major sources of collision risk: 1) presence of objects
(mainly other vehicles) in the vicinity of subject vehicle; and 2) lack of competence and
capability of a human driver or an autonomous system (or a combination of both) to avoid a
collision. These two sources comprise four major domains that include risk factors. Presence
of object directly depends on the environmental and road (traffic) conditions. The
competence of an autonomous vehicle to bypass a collision depends on software and
hardware capabilities of the vehicle and reaction of its driver (when required). Fig. 2.4
illustrates the mutual interactions between the four domains. This classification scheme lays

the foundation for the BBN model in this research.

The external of the system

The environment of the system

Fig. 2.4: the organic connections between elements that constitute a road system (Liu and Zhai,
2018)
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2.2.3. Safety of CAVs and overall policies

Despite fast technical progresses and promising trials of CAVs, development of policy
responses in this field is still in initial stage (Milakis, Thomopoulos and Van Wee, 2020).
This lag between the evolution of technology and policy making can slow down the roll-out
of CAVs at commercial scale and achievement of their benefits. A recent policy landscape
review of AVs in the UK reveals that although some progress has been made to ensure the
safety of CAVs, we are still away from a satisfactory and thorough policy response to this
phenomenon (Lisinska and Kleinman, 2021). The authors highlight three major concerns
that need to be addressed by introducing effective policies: 1) certification of the technology
to overcome harsh circumstances such as adverse weather conditions; 2) transition of control
between the vehicle and driver and clarity of human driver’s responsibilities; and 3)

cybersecurity and privacy.

Anderson et al. (2014, p.161) also reported three important policy gaps that are directly
related to the safety of CAVs. According to their analysis, human-machine interfaces,
standards and regulations, and state laws are the areas that policymakers together with other
stakeholders should address. This gap still exists and needs immediate attention (Zhang, Shu
and Yu, 2021). Furthermore, the rapid pace of technological development turns
standardisation into an extremely challenging task since the risk of obsolescence and
irrelevance is serious (Anderson ef al., 2014, p.162). Finally, variations in laws (e.g., traffic
or liability laws) from one country to another (in Europe) or between the 50 states (in the
US) can confuse the technology developers. While compliance with traffic rules appears to
remain a requirement for CAVs at least as long as mixed traffic is the case, an unequivocal
formalisation of traffic rules is a complicated task (Maierhofer et al., 2020). The

inconsistencies in traffic laws across the regions adds to the complexity of that task.

Mixed traffic environment merits new policy considerations to ensure the safety of CAVs
and non-CAV road users. Straub and Schaefer (2019) found that ensuring public safety is
the most significant challenge in the territory of AV policy. Reviewing other recent
publications on policy directions and challenges for CAVs suggests that safety is of prime
importance (e.g., Lundgren, 2020; Milakis, Thomopoulos and Van Wee, 2020; Sohrabi,
Khreis and Lord, 2020; Acheampong et al., 2021; Lisinska and Kleinman, 2021). There are
also growing concerns over the impacts of cybersecurity failures/attacks on CAV safety
(Katrakazas et al., 2020). Since CAVs can disruptively affect the stakeholders across the
transportation ecosystem, clear and coherent policies are integral to regulate different aspects

of this technology including safety (Rebalski et al., 2021).
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2.2.4. Stakeholders

The integration of CAVs into existing transport system is a socio-technical transition that
calls for active engagement with vast arrays of stakeholders (Rebalski et al., 2021).
Involving stakeholders and eliciting subjective expert judgements is a well-established
method to tackle uncertainties during the design phase as well as probabilistic risk
assessment (PRA) (Cooke, 1991, pp.27-29; Bedford, Quigley and Walls, 2006). Therefore,
mapping the stakeholder groups that are going to encounter with CAVs in different ways is
a primary step for recognising and engaging them in safety analysis and policymaking

Processces.

The development and emergence of AV technology widens the field of actors and gives
rise to the emergence of new stakeholders (Schreurs and Steuwer, 2015; Maurer et al., 2016).
From different aspects it is crucial to identify the key stakeholders of AVs and evaluate how
they will affect the safety and how will be affected by safety implications. It becomes even
more important when we intend to elect experts for knowledge elicitation out of key
stakeholders. Reviewing the relevant literature suggests several players at stake. The results

are summarised in Table 2.4.

Table 2.4: summarises the key stakeholders of AVs cited in the literature.
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According to the reviewed literature and after excluding overlaps, the list of main

stakeholders can be shortened to transportation professionals, car insurance industry,
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software developers (including Al community), automotive industry, regulatory bodies (e.g.,
Driver and Vehicle Standard Agency), consultancies, ICT & communication industries,
lawyers, OEMs and automotive part suppliers, urban planners and designers, governmental
departments and agencies (e.g., Department for Transport), academics and research

institutions.

2.3. Theoretical framework

2.3.1. Related works and the knowledge gaps

The impact of AVs on traffic safety and safety-related risks are among the primary
focuses of academic research and addressing them is one of the top priorities of technology
developers and practitioners. The fact that safety perceptions have a critical influence on AV
adoption is not deniable (e.g., Moody, Bailey and Zhao, 2020; Manfreda, Ljubi and Groznik,
2021). The criticality of safety considerations has resulted in a rich body of literature and
industrial initiatives not only to ensure that AVs can outperform human drivers in driving
safety, but also to influence public perception about the safety of them. This section
investigates the studies that tried to capture and measure risks associated with CAVs at

vehicular or network levels.

In the previous section road vehicle insurers were identified as one of the main
stakeholders of the AV technology. As a result, it is a requisite for the car insurance industry
to conduct full and detailed risk analysis before the technology becomes pervasive. To this
end, Piitz, Murphy and Mullins (2019) performed rigorous qualitative analysis to assess the
impacts of vehicle automation on motor-third party risks and future insurance policies. From
an insurance perspective, the frequency of collisions is expected to decrease, although the
average loss will go up due to technology expenses and complexity of repair works. Shannon
et al. (2021) further examined four scenarios in how CAVs can change injury claims and
discussed how CAYV risk factors and traffic dynamics can transform road environments.
Their actuarial results indicate that with an increase in automation level a reduction in

frequency and severity of collisions will be experienced.

Ye and Yamamoto (2019) ran a simulation to calculate the frequency of hazardous
situations and time-to-collision for CAVs in heterogenous traffic flow (i.e., a mix of
conventional and autonomous vehicles). The findings of the simulation suggest that the
overall traffic safety improves with the increase in CAV deployment rate. Li ef al. (2021)
carried out a probabilistic risk assessment to develop an algorithm for collision avoidance
under various scenarios. They used time-to-escape (TTE) as a metric to measure lateral

driving risk. In another attempt, Wang et al. (2021) proposed a low-risk and high-efficiency
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path planning algorithm for AVs. In that study, the trajectory and velocity of surrounding
vehicles were used to assess the collision risk and plan a path with minimum risk and high

driving efficiency.

Besides a wide range of approaches and modelling techniques for risk analysis, BBN
models have also been used in several studies. For instance, Sheehan et al. (2017) adopted a
network risk transfer approach and proposed a BBN model to quantify the risks of semi-
autonomous vehicles. In a similar study, but in a different context, another BBN model was
developed by Sheehan et al. (2019) to classify the cybersecurity risks in connected and
autonomous vehicles. Allouch et al. (2019) also employed the BBN tool to carry out
qualitative and quantitative risk analysis for UAVs. BBN technique was also used to assess
the risks wind turbine in Ashrafi, Davoudpour and Khodakarami (2015). The structure of
their model encompasses four major group of factors: technical, environmental, human and
organisational. In addition, a BBN-based portfolio risk assessment framework was
developed for evaluating R&D projects at NASA (Geuther and Shih, 2016). Brito and
Griffiths (2016) benefited from BBN to assess the risks of deploying AUVs in harsh

environmental conditions.

Apart from the applications of BBN in the field of CAVs (e.g., Sheehan et al., 2017;
Sheehan et al., 2019) and other socio-technical system risk analysis (e.g., Trucco et al., 2008;
Ashrafi, Davoudpour and Khodakarami, 2015; Luxhgj, 2015), System-Theoretic Process
Analysis (STPA) method was offered to deal with safety and security risks of AVs
(Sabaliauskaite, Liew and Cui, 2018). The system interdependence analysis method together

with BBN method were also applied to study the performance of autonomous systems

(Lidoris et al., 2011).

Many scholars, experts, technical communities and media have already warned about the
newer risks and hazards that AVs can impose on the safety of roads (e.g., Maurer ef al.,
2016, p.343; Bellet et al., 2019; Shannon et al., 2021). Deep uncertainties and lack of
historical data complicate risk analysis and planning for safe deployment of such technology.
Faisal ef al. (2019) conducted a systematic literature review on capability, impact, planning
and policy of AVs and identified a gap in the literature in planning for the future. Any
rigorous analysis on the safety and reliability needs to be, to some degree, based on accurate
quantification of risks and probability of failures under varying circumstances. This applies
to policymaking as well where policy-makers need enough evidence for shaping public

policy (Parkhurst, 2017).

To the best of my knowledge, there has not been any study to look at the risks of CAVs

through the lens of socio-technical theory and model the influential variables and their
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interdependence to measure the collision risks in urban ambience exploiting BBN technique
and experts’ knowledge. The studies that used BBN to examine the risks of AVs (such as
Sheehan et al., 2017; Sheehan et al., 2019) are different from this study in several ways. For
instance, Sheehan et al. (2017) focused only on telematics data gathered from vehicles’
sensors which are useful for measuring controllable risks such as speeding. The BBN model
in that study was designed to measure ‘aggregate claims loss’ for insuring purposes. The
selection of variables was not based on rigorous research and merely contained ADAS risk
factors. Sheehan et al. (2019) only concentrated on cyber risks, but the extent of this research

is broader and encompasses wider range of variables.

This study intends to identify influential variables in four diverse but interactional spheres
(i.e., technical, road environment, human and traffic environment) by conducting an
integrative literature review and amalgamating them into a modular BBN model to provide
estimation for the collision risk index. The aggregation of risk factors at vehicle,
environment, traffic and operator levels will satisfy the first principle of Haimes’ framework
(2018) for risk analysis of SoS. That principle puts forward a holistic system-based approach

to account for the impacts of adverse initiating events on complex SoS (Haimes, 2018).

Denaro et al. (2014) called attention to ten major research areas in relation to AVs which
were identified by industry, academic and government experts for further advanced
multidisciplinary research. Some of these arecas have not been addressed properly yet.
Human-machine interactions (HMI), infrastructure, V2X communication and architecture,
risks, cyber security and resiliency are among these research topics. Adopting a
multidisciplinary approach besides socio-technical theory can enable us to bridge these
areas. BBN has proved the capability to handle the complexity and generate satisfactory
outcome especially in risk and uncertainty assessment. Furthermore, the safety issues of AVs
are still a focal point in both industry and academia (Katrakazas, Quddus and Chen, 2019).
The need for constructing decision-making support tools and delving into plausible scenarios
become even more urgent while AV-related performance and collision data are still scarce

(Piitz, Murphy and Mullins, 2019; Katrakazas et al., 2020).

Although traffic (micro)simulation studies (e.g., Morando et al., 2018; Papadoulis,
Quddus and Imprialou, 2019; Wu et al., 2020) offer insights and can reduce uncertainties
around the integration of CAVs into existing traffic systems, still they suffer from limitations
and assumptions have to be made for some of parameters and variables such as penetration
rate and transportation demand after AVs hit the roads. A compelling alternative to
simulation is real-world testing which may be confined to stringent regulations and high

expenses. A risk classification model based on road characteristics, traffic conditions and
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vehicle reliability levels can therefore be exploited to rank municipal districts in a given time

interval.

Likewise, insurers will require tools to estimate collision risk in the absence of
sophisticated databases. A BBN model not only has the potential to satisfy this need, but
also can learn from actual data when they become available and improve its accuracy.
Miscalculating road and environmental condition risk levels by traffic agents (e.g., driving
entities) can threaten safety of navigation (van Wyk, Khojandi and Masoud, 2020).
Classification of collision risks based on spatio-temporal characteristics will also assist
policymakers to prioritise the policy areas that need urgent and special attention for

safeguarding road safety.

2.3.2. Theoretical underpinnings of risk analysis for complex socio-technical systems

Compound and modern technologies are bringing fundamental changes into the causality
of accidents and are revealing the need for adapted approaches in the explanatory
mechanisms (Leveson, 2004). As socio-technical systems are becoming more complex and
more integrated, traditional approaches are proving to be less effective (Manzur Tirado,
Brown and Valdez Banda, 2019). Traditional approaches to safety analysis do not usually
account for organisational, societal and human role in accidents (Leveson, 2004). Those
hazard analysis techniques including fault tree analysis (FTA) and event tree analysis (ETA)
assume that component failure is the only cause of accidents, and therefore risk analysts
must focus their efforts on thinking of plausible scenarios of component failures (Manzur

Tirado, Brown and Valdez Banda, 2019).

Then, based on system theory, Leveson (2004) proposed STAMP (Systems-Theoretic
Accident Model and Processes) to model component failures, external disturbances, and
dysfunctional interactions between system components in the design, development and
operation of a complex socio-technical system. STAMP benefits from system dynamic
approaches and defines any safety problem as a control problem which violation or
ignorance of any safety constraints signals inadequate control (Kazaras, Kontogiannis and
Kirytopoulos, 2014). Based on socio-technical system theory, Mohaghegh and Mosleh
(2009) presented a framework (i.e., SoTeRiA) to incorporate organisational, external
environment and human factors into PRA. A socio-technical system must be seen as an
integrated whole and the role of social factors in conjunction with safety and reliability
should be recognised (Qureshi, 2008). This is consistent with the view of Liu and Zhai

(2018) in defining traffic problems (e.g., collisions) as not only technical but also social
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problems. This approach has helped to inform the design of new technologies and explain

the changes caused by novel technologies (Davis ef al., 2014).

The socio-technical philosophy concerns with the integration between machine, or in a
broader term technology, and humans in designing operational processes and/or systems
(Ropohl, 1999; Dekkers, 2018; Sony and Naik, 2020). Autonomous vehicles can also be
defined as complex socio-technical systems, since technological, business and policy
innovations are concurrently at stake (Marletto, 2019). A comprehensive structural safety
framework, according to Mohaghegh and Mosleh (2009), should contain and combine macro
and micro perspectives. Hence, a “cross-level” causation theory is desirable. Principles D
and E of SoTeRiA describe the multi-level framing and depth of causality (Mohaghegh,
Kazemi and Mosleh, 2009). Depth of causality and level of details are crucial decisions to
be made by a researcher to maintain comprehensiveness and avoid excessive complexity
(parsimony) which may cost the accuracy of the model. This decision essentially depends
on the impacts of different dimensions of each element and the sensitivity of the overall risk
to those dimensions (Mohaghegh and Mosleh, 2009). Another boundary which needs to be
established is the level of generality and the scope of safety concerns (i.e., road users’ safety

in this study).

Based on the above theoretical discussions, Mohaghegh, Kazemi and Mosleh (2009)
concluded that hybrid methods including BBN are perfectly fitted to address uncertnity in
socio-etchnical systems. To reduce the uncertainty and quantify the associated risks, a BBN
model can be adopted which can provide accurate estimations for the identified risk indices
in a considered scenario and/or analyse accident paths in a retrospective backward approach
(Ashrafi, Davoudpour and Khodakarami, 2015). BBN model is the intersection of graph
theory, probability theory and statistics (Ben-Gal, 2008). Probability theory (also known as
inductive logic) is perhaps the oldest and best-established theory for representing and
reasoning about a situation where categorical propositions can be only made by judging the
likelihood or other ordinal attributes (D'Ambrosio, 1999). To develop the intended BBN
model in this research, we follow the principles proposed in the SoTeRiA framework which
are classified into four main categories: (I) designation and definition of objectives; (II)
modelling perspectives (e.g., causality); (III) building blocks (e.g., link level); and (IV)

techniques (e.g., measurement techniques).

In recent years, context-aware decision-making models are emerging to connect aspects
of traffic environment with visibility conditions, occlusion and perception uncertainty that
CAVs often face during their operation (Katrakazas et al., 2020). This highlights the

criticality of traffic scene characteristics in collision risk analysis. In fact, the physical space
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around road users consists of built environment and traffic state. Variables in either of these
spheres interact with and affect each other in a mutual way. For instance, road geometry can
impact traffic congestion and it can affect velocity of vehicles. To include the influence of
traffic conditions in collision risk analysis for AVs, a block of the model is dedicated to

measure the complexity of traffic scene and evaluate its impact on the collision risk.

Mohaghegh and Mosleh (2009) placed a heavy emphasis on inclusion of organisational
factors in assessing risks associated with socio-technical systems. An organisation comprises
four key interacting constituents, namely structure, technology, agents (actors) and task
(Leavitt, 1965). Urban traffic can be thoroughly fitted to this definition of organisation.
Agents (traffic participants) use technologies (e.g., vehicles) within the urban traffic
structure (constrained by traffic rules) to accomplish their tasks (i.e., commuting safely
between destinations). Meanwhile, all those constituents interact with each other and change
in one of them can affect the rest. Therefore, in the present context, traffic state variables can

represent the organisational factors.

2.4. Summary of the literature review and conclusions

In this chapter, an overview was provided to highlight the status of CAVs in the future of
ITS. The amount of investments, trials, academic literature, and legislative works all suggest
that AVs are going to be a core element of future transportation. This mandates careful risk
analysis to ensure the safety of technology. The relevant definitions and terminologies were
also covered to reflect the scope and discrepancies in use of language around CAVs. Next,
the uncertainties and safety risks were discussed. It is evident that successful roll-out of AVs
is intertwined with the safety of technology. The related works in this research domain were

reviewed and the knowledge gap was ascertained.

Despite large number of studies that have already assessed collision risks and provided
solutions to mitigate that risk, a wider view such as socio-technical approach to include the
interactions and contributions of risk factors across environmental, technical, traffic and
human levels is still lacking. Due to the complexity of CAVs, their operating environment,
and their interactions with humans, a socio-technical approach is required to meet the
objective of this research. A socio-technical lens can provide complementary insights into
the problem of collision risk in AD beyond just vehicle kinematics. A theoretical framework
was developed to lay a foundation for the methodological deliberations in the next chapter.
SoTeRiA framework was concluded to be an appropriate and commensurate risk analysis

framework to assess collision risks for CVAs as complex socio-technical system.
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Chapter 3

3.  Methodology

This chapter delineates the selected philosophical and methodological perspectives and
approaches to answer the specified research questions in the introduction. It is also described
why BBN is appropriate technique to model risk in this study and a comparison is drawn to
show advantages and deficiencies of BBN against other risk modelling techniques. Types of
data required to build the model as well as the methods of data collection and sources are
discussed in this chapter. Since this research benefits from mixed methodology, both
qualitative and quantitative parts are covered in separate sections and in-depth discussions
are provided to justify the development of the model. A framework for integrative literature
review (ILR) as the main method for collecting qualitative data is developed and presented.

Likewise, the means and strategies for eliciting and analysing expert judgements are set out.

3.1. Ontology, epistemology, inductive or deductive?

In any kind of project, adopting clear and appropriate strategies is urgently important to
achieve specified objectives. Along the same line, a PhD research project follows this rule.
However, before formulating the strategies to answer research questions and pursue the
objectives, it is vital to deepen an understanding of the nature of business research and
explore the philosophical concepts behind the research questions and aims. This approach
also provides insight into deductive/inductive and epistemological/ontological
considerations which are cornerstones of the strategy adoption processes (Bryman and Bell,
2015). For this reason, and to facilitate the discussion upon reasonable strategies for this

research study, we first need to discuss the pertinent philosophical concepts.

Research, in general view, is designed to generate knowledge and provide answer(s) to
specific question(s) in a particular field. To this end, there have to be assumptions to be made
and develop knowledge based on those assumptions and beliefs (Saunders, Lewis and
Thornhill, 2015). These assumptions relate to human knowledge (epistemological
assumptions), realities the researcher faces during the research (ontological assumptions)
and how personal values can influence the research processes (axiological assumptions)

(Saunders, Lewis and Thornhill, 2015). Therefore, we will start from examining these
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philosophical concepts in the next paragraphs and based on that discussion, conclude a fitting

research strategy in the next section (3.3).

A key factor in determining the research strategy is epistemological considerations.
Deciding on what is acceptable knowledge and how we should communicate it causes the
main controversy in this sphere (Saunders, Lewis and Thornhill, 2015). Regarding and
treating the social world with the same principles, methods, and ethos as used in natural
sciences or taking a different approach is the central issue in this context too (Bryman and
Bell, 2015). Positivism and interpretivism are two basic but contrasting epistemological
positions, defining the relevance and the differences between social sciences and natural
sciences (Bryman and Bell, 2015; Saunders, Lewis and Thornhill, 2015). Consequently,
these two epistemological stances vary significantly on acceptability of knowledge, good-
quality of data, types of contribution to knowledge (Saunders, Lewis and Thornhill, 2015).
Supporting each of these positions plays a determining role in choosing the appropriate

research strategy.

One of the fundamental questions which must be answered before deciding on the
research strategy and consequently research methodology is about the relationship between
the theory and research (Bryman and Bell, 2015). Depending on the research aims, there are
two possible responses to define this relationship. Firstly, as Bryman and Bell (2015)
explain, a researcher can use theory to form a hypothesis, and further by collecting data and
analysing them confirm or reject the hypothesis. This view is called deduction and based on
what is known so far about a field of study, the researcher deduces hypothesis (or
hypotheses) according to his/her empirical findings (Bryman and Bell, 2015). This process
is depicted in figure 3.1. On the other hand, if research is intended to build a theory (or a
conceptual framework) out of observations/findings the process would be then opposite the
sequence of deductive theory. This approach, known as inductive theory, is used when the
researcher is trying to construct a new theory rather than testing an already developed theory

(Bryman and Bell, 2015).

. Hypothesis -
|, . L Data 0 . J . J Revision of
Theory [ {Hypothesw B {collection s { Findings  [1 {Conﬁ,rmed theory
or rejected

Fig. 3.1: the deduction theory steps (Bryman and Bell, 2015).
Along with epistemological assumptions, it also matters how a researcher sees the world
of business management and defines phenomena in this world (Saunders, Lewis and
Thornhill, 2015). Furthermore, the cause-and-effect relationship between social entities (e.g.

organisation) and social actors (e.g. managers) has a meaningful impact on the
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methodological analysis of the research. Two common views concerning the social ontology
are objectivism and constructionism (Bryman and Bell, 2015). Objectivism asserts that social
entities and social actors are independent from each other and social actors do not have any
influence upon social phenomena as they occur (Bryman and Bell, 2015). Contrary to this
ontological position, constructionism maintains that social phenomena are the result of social
interactions and therefore are continuously revised. Taking each side mentioned above
suggests different requirements and strategies for the research to deal with every phase of it
from formulating research questions to data analysis. Due to the adoption of mixed
methodologies (which will be explored in coming sections), considering the uncertainties
around and complex nature of AVs, state-of-the-art risk assessment frameworks, and
practical implications for risk assessment in this study, we decided on a balanced approach

towards philosophical underpinnings and research paradigms.

Depending on what we assume to be considered as data, there can be three major research
methodologies available to researchers. Many authors including Saunders, Lewis and
Thornhill (2015) categorise data into two groups. First, numeric data or numbers, and
secondly any kind of data other than numbers. The latter encompasses a wider range of
materials such as words, images, video, clips, etc. (Saunders, Lewis and Thornhill, 2015),
although they can be also converted in the format of numbers. Similar to ontological
assumptions, choice of methodology dominantly determines the type of required data and
instruments for data collecting processes. Although a researcher may decide to employ more
than one of those instruments or an instrument can prove its ability to collect data for any
chosen methodologies. With regards to the above introduction and the outlined research
questions, the next sections will justify the choice of methodology and techniques in this

research project.

3.2. Applicable research methods and strategies

Studying the risks of a complex and multidisciplinary (if not interdisciplinary or even
transdisciplinary) technology such as AV, accordingly, entails a comprehensive
methodological framework to cover macro and micro risk factors to be able to accommodate
multi-level and cross-level causation relationships. “Comprehensiveness”, in this context,
denotes the inclusion of direct factors (e.g. physical components), indirect factors (e.g. safety
practices), external environment, the regulatory environment, and the socio-economic
environment (Mohaghegh and Mosleh, 2009). Nevertheless, it is vital to avoid unnecessary
complexity by ignoring factors or variables that have small effect on the model output. It is
not technically feasible to build an entirely accurate model and expanding the scope and

level of details beyond a certain point may reduce the accuracy of the model (Robinson,

49



Chapter 3

2008). Utilising computation models is subject to a common fallacy that adding more details
to a model must necessarily advance its performance (Saltelli ez al., 2008, p.278). Figure 3.2
sketches a typical relationship between accuracy and complexity in modelling and

simulation.

100%

Model accuracy

M oim e

Scope and level of detail (complexity)

Fig. 3.2: simulation model complexity and accuracy (Robinson, 2008).

In addition to the scope of analyses, measurement methods are of critical importance in
risk assessment (Mohaghegh, Kazemi and Mosleh, 2009). Although hybrid methods (i.e.
combination of objective and subjective data) may result in more accurate analyses, they are
also more resource-intensive and demand a method, such as Bayesian approach, for merging
both sources of information into a single assessment (measure) of the state of a variable

(Mohaghegh and Mosleh, 2009).

Reviewing the research questions in this project reveals the need for both qualitative and
quantitative data. Risk identification is a process which requires systematic approach and
may contain elements of both qualitative and quantitative methods (Drennan and
McConnell, 2007). In other words, building most of risk models needs the combination of
real-world quantifications (also known as hard data) and soft or qualitative data (Koller,
1999). This approach is supported by Pearl (2000) where he proposed practical methods for
elucidating causal relationships from consolidation of knowledge and data. This approach

provides the possibility for a more balanced evaluation (Teddlie and Tashakkori, 2009,
p.13).

There is little doubt that risk analyses involve context-dependent assessments. Adopting
mixed methods can deepen and broaden the scope of analyses and may offer more insight
into the problem. Furthermore, “classification of accident causes can not only provide a
comprehensive understanding of accident but also benefit causes statistics” (Li, Zhang and
Liang, 2017). To clarify what is meant by causation it is helpful to quote the famous
statement that “correlation is not causation” (Pearl and Mackenzie, 2018, p.5). Likewise,
regression models fail to offer sufficient explanatory power in risk analysis (Fenton and Neil,

2012, p.31). These statements imply that mere statistics is not sufficient to identify risk
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causal factors, interpret data and construct a risk model (Pearl and Mackenzie, 2018). It is
also supported by the fact that identification problems and statistical inference are mainly
regarded separately in social sciences (Morgan and Winship, 2015). Mixed methodologies,
above all, can pave the way to “causal inference”. Causal modelling provides a base for
making predictions on how a system would react to hypothetical interventions such as policy
decisions (Pearl, 2000). By the same token, the primary aim for setting up a risk assessment
programme is to deliver a predictive tool (Kabir ef al., 2015). Learning about cause-effect
relationships is prerequisite to build a causal model and they can be deduced form a
combination of qualitative causal assumptions and data (Pearl, 2000). Nevertheless, we must
be aware of the constraints that social sciences encounter in gathering data (either qualitative
or quantitative) and they can adversely affect the accuracy of causal inference (Morgan and

Winship, 2015).

A large body of literature has emphasised on the interdisciplinary dimension of risk
assessment (e.g., McDaniels and Small, 2004; Taylor-Gooby and Zinn, 2006; Renn, 2008;
Biischer, 2011; Hansson and Aven, 2014). Renn (2008, p.68) explains that “the purpose of
risk assessment is the generation of knowledge linking specific risk agents with uncertain
but possible consequences”. He also maintains that inferential statistics and decision-
analytics tools have been developed to aggregate knowledge about cause-effect (causal)
relationships and appraise the strength of them. Then the ambiguities and uncertainties can
be characterised in the form of qualitative and quantitative data (Renn, 2008, p.70). The
factors of a safety causal model, in this way, can be measured using subjective, objective,
and hybrid methods. The main differences between the subjective and objective
measurements lie in the sources of information and their related measurement instruments.
Subjective and objective methods can be either qualitative (e.g. three or five-point Likert
scale) or quantitative (e.g. rating from 0 to 10), or a mix of both (Mohaghegh and Mosleh,
2009).

Reviewing the literature on the safety and reliability of AVs reveals that there are valuable
but, in many cases, incomplete qualitative or quantitative data gathered and generated to
investigate different safety aspects of AVs. These data are usually complementary and can
be merged to facilitate the intended risk assessment in this research. Smart transportation, in
general, entails quantitative analysis combined with qualitative perceptions (McBride,
2016). In an attempt to model accidents of driverless cars (Geldmacher and Plesea, 2016)
and another study which was designed to assess safety of UAVs (Allouch et al., 2019), the
alignments of qualitative and quantitative data were utilised as well. On those grounds, we
can conclude that applying capable and effective techniques and tools can to some degree

secure the benefits of mixed methods in this study.
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Although many scholars and researchers advocate that adopting and integrating multiple
methods can improve the accuracy of results, mixed methods such as other methodological
approaches face philosophical and methodological challenges. The main challenges can be:
(a) there is no single mixed/integrated approach to regulate the level of integration.
Depending on the research design, integration may happen, for example, at the research
question or data analysis level (Teddlie and Tashakkori, 2009, p.133); (b) deciding between
top-down or bottom-up approaches (Teddlie and Tashakkori, 2009, pp.317-318); (c¢) since
both qualitative and quantitative methods have distinct basic assumptions/beliefs about a
certain complex phenomenon, therefore merging the results can be problematic (Salehi and
Golafshani, 2010); (d) there might be a degree of incompatibility between the techniques
associated with either methods (Salehi and Golafshani, 2010); (e) deciding on which mixed
methods are the best fitted to answer the research question is another pressing challenge
(Almalki, 2016); and (f) requiring expertise and skills to manage the scope of research and
reach accurate interpretations (Almalki, 2016). In the next sections we will introduce BBN
technique and explain how it can exploit the benefits of mixed methods and deals with

specified challenges.

3.3. BBN and mixed methods

It was discussed in the previous section that using appropriate and tailored techniques
and/or tools is a pivotal part of employing mixed methods. It this section, we will elaborate
on BBN as the central technique used in this research. BBN has the capability to
accommodate data from various sources and combine qualitative and quantitative data into
a single predictive/diagnostic model (Groth and Mosleh, 2012). This technique equips
analysts with a tool which can exploit deterministic or probabilistic data in the presence of
large number of interdependent variables (Trucco et al., 2008). Building a rigorous risk
assessment model requires scientific approaches to merge available knowledge and expert
judgements (Kabir ef al., 2015). This is also endorsed by Groth and Mosleh (2012) where
they signified the importance of incorporating observational data as well as expert
information into a risk assessment model. BBN model has the ability to handle three
predominant but distinct paradigms of risk assessment: 1) technical factor focused; 2) human
factor focused; and 3) safety/organisational factor focused (Ashrafi, Davoudpour and
Khodakarami, 2015). Formal synthesis of qualitative and quantitative evidence is an
effective way to identify influential factors to a variable under consideration in a variety of
studies across different disciplines (Weber et al., 2012). For instance, The Bayesian
approach was adopted to recognise influential factors in uptake of childhood immunisation

(Roberts et al., 2002). In order to improve these capabilities, especially in risk and reliability

52



Chapter 3

assessment, there have been modifications introduced to this technique such as Qualitative-

Quantitative Bayesian Belief Networks (QQBBN) (Wang and Mosleh, 2010).

The widespread applications can demonstrate the effectiveness and strength of BBNs in
handling uncertainty in absence or scarce availability of prior probabilities for events.
Academic literature on risk and reliability assessment shows a broad range of applications
comprising assessing the safety performance of subsystems and components of a nuclear
plant, uncertainty analysis of complex systems, examination of integrated fire protection and
prevention systems, estimating the unknown prevalence of chronic disease, and modelling
organisational factors in maritime transportation (Trucco et al., 2008). Besides, non-
parametric BBNs (NPBN) have been widely used to analyse safety and risks of
transportation systems, earth dams building fires and flood (Hanea, Morales-Napoles and

Ababei, 2015).

3.4. Modelling dependable systems: Bayesian Belief Networks

Emerged from the field of cognitive science and artificial intelligence, probabilistic
models based on directed acyclic graphs (known as DAG or BBNs) were initially developed
in 1970s (Pearl and Russell, 2003). Over the last 30 years they also have elevated to a key
method for reasoning under uncertainty in Al (Guo and Hsu, 2002). Judea Pearl (2018) in
his book “The Book of Why” breaks down the calculus of causation into two languages:
causal diagrams to represent what we already know, and a symbolic language to articulate
what we aim to know. A BBN model comprises three basic components (Ismail et al., 2011;
Kabir et al., 2015): a) a number of connected variables, b) a set of mutually and exhaustive
states for each variable, and c) assigned conditional probability distributions for each
variable which represents the conditional probability dependencies between variables. In the
previous section we mentioned about the applications of BBNs in different fields to address
distinct questions. More specifically, in risk assessment analysis, BBNs have proved to be
an effective, flexible and reliable tool to reduce uncertainties and model interdependencies
among variables. A cause-effect diagram or influence diagram is not frequently used in
practice, despite graphically expressing the risks because some difficulties are faced such as
complexity in detailed representation of the relationships. However, with a BBN it is
possible to design a feedback loop for risk management (even if a Bayesian belief network
has no feedback loop itself) (Lee, Park and Shin, 2009). This assists to present a cause-effect

relation visually and provide conditional probabilistic estimations of risks.

A common approach to analyse dependability and reliability of a system is implementing

probabilistic reasoning (Luigi and Daniele, 2015). Fenton and Neil (2012, p.31) argue that
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regression model remains ineffectual in risk assessment since it lacks explanatory power
(comparing to causal models) and sometimes would mislead risk analysts with irrational
information. Instead, they suggested introducing causal explanations into modelling
processes to overcome limitations of traditional statistical approaches. Nevertheless, a sound
probabilistic model comprising of a set of random variables has to rely on the joint
probability distribution (JPD) over such variables (Luigi and Daniele, 2015). Having a joint
probabilistic model allows for it to propagate probabilities from one node to others and
compute posterior probabilities (Grover, 2016). To build this kind of model, Luigi and
Daniele (2015) advocate the framework of Probabilistic Graphical Models (PGM). If nodes
(causal and influential factors) represent random variables (directed model) we have
Bayesian (Belief) Networks, while if nodes represent decision variables, we deal with
Decision Networks which are also known as Influence Diagrams (Barber, 2012; Luigi and
Daniele, 2015). Either model should be able to resolve three different types of uncertainty

(Korb and Nicholson, 2003): ignorance, physical randomness or vagueness.

BBNs are acyclic graphical models widely used for reasoning under uncertainty or in
other words representing knowledge in probabilistic systems (Korb and Nicholson, 2003,
p.29; Luigi and Daniele, 2015). The term Bayesian Networks was first used by Judea Pearl
in 1985 (cited in Pearl, 2000) to highlight the subjectivity of input information, Bayes’
conditioning as the cornerstone of updating information and distinction between causal and
evidential reasoning. The basic structure of BBNs consists of nodes which represent discrete
or continuous variables and arcs representing direct dependencies between variables (Korb
and Nicholson, 2003, p.29). A belief network, in general, is defined as follows (Barber, 2012;
Luigi and Daniele, 2015; Ahmad et al., 2021):

A Bayesian Network is a pair N = (G, Pr) where:

e G = (V,E)isaDAG whose nodes V = {X;,X,, ... X;, } are a set of discrete random

variables and E is a set of arcs where an edge e = (X; - X;) € E from X;to X; means
that X; depends on X; (often interpreted as X; causes X;);

e Pr is a probability distribution over X, X,, X3 ... X, such that,

n
Pr(Xy, Xo Xs - Xn) = | [ Pr (Kilpa(x)
i=1

where pa(X) is the set of parent variables of X in the DAG G. We say that Pr factorises

over G.

In order to construct a Bayesian Network, a practitioner or researcher needs to find

answers for a number of questions (Korb and Nicholson, 2003):
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1) What are the variables of interest (nodes)? What are their values/states?

2) What is the graph structure?

3) What are the parameters (probabilities)?

4) What are possible decision nodes? What will be their impact if they are effected?

5) What are utility nodes and their dependencies?

6) What are the preferences (utilities)?
Undertaking the above steps involves challenges and difficulties that can be even more
severe where the model reflects higher levels of speciality and complexity. Determining edge
directions, deciding between conditional and unconditional dependencies between nodes and
choosing “divide” or “conquer” approach to cope with complexity are fundamental and
common difficulties can be experienced (Fenton and Neil, 2012). There might be also
ambiguities about the influential factors and number of nodes for a given problem.
Conducting sensitivity analysis can test how sensitive the network is to changes in parameter
values and validity of an expert-built model to see whether the network is robust or not (Korb

and Nicholson, 2003; Fenton and Neil, 2012).

One of the basic requirements in modelling with Bayesian Networks is the assumption of
the Markov property (Pearl, 2000; Korb and Nicholson, 2003). Pearl (2000) describes
Markov property as: “conditioned on its parents (directed causes), each variable is
independent of its nondescendants”. Many textbooks distinguish between global and local
Markov properties for DAGs. The “Handbook of Graphical Models” (Maathuis et al., 2018)
defines the global Markov property for DAG as follows:

Every undirected acyclic graph G over N induces a formal independence model over N
through the directional separation criterion. N represents the nodes (or random variables 4,

B and C), G stands for graph and 7(N) is the triplet model.
M¢ = {(4,BIC) € t(N): AL BIC [G]},

which is a disjoint graphoid. A probability measure P over N with M; & Mp is called
Markovian with respect to G and we also say that P satisfies the directed global Markov
property relative to G:

(DG) if 4 and B are directionally separated nodes by C in G then, ALLB|C [P]. M; is

therefore a probabilistic conditional independence structure for any G.
The local Markov property is also defined as:

If a node j is a descendant of a node i in G if a directed path exists in G from i to j; dsg (i)
denotes the set of all descendants of node i € N in G. Note that i € ds; (i). A probability

measure P over N satisfies a directed local Markov property relative to a DAG G over G if:
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(DL)foralli e N i L N\ (dsg(i) Upag(i)[P].

With respect to directed local Markov property, Korb and Nicholson (2003) categorised
BBNs into three groups. First, Independence-maps or I-maps which have the Markov
property, knowing that every independence suggested by the absence of an arc (direct cause)
is real in the system. Minimal I-maps should be placed under this category too. In minimal
[-maps, the removal of an arc should violate I-mapness by implying a non-existent
independence in the system (Korb and Nicholson, 2003). Second, Dependence-map or D-
map where every arc denotes a direct dependence in the system. Lastly, BBNs which can be

regarded as both I-map and D-map are called perfect map.

Before starting the discussions on conditional probability tables (or CPTs), it is worth
having a review on Bayes’ theorem. There are three key axioms underpinning the Bayes’

theorem (Grover, 2016):

e probabilities (chances for events to occur) cannot be negative, in other words they
are at least zero, P(A) > 0,

o the likelihood that something happens in the universe is always equal to one hundred
percent, P(U) = 1, and

e if two events are mutually exclusive, the probability of either occurs equals to the
sum of chances that each of them happens, P(AU B) = P(A) + P(B). If A and B
are non-mutually exclusive, then we have: P(AU B) = P(A) + P(B) — P(AN B).

Based on these three axioms, the Bayes’ theorem is defined as (Pearl, 2000; Korb and

Nicholson, 2003; Fenton and Neil, 2012; Grover, 2016):

P(AB) _ P(B|A)«P(4)

PCAIB) =20 P@B)

where P(A | B) is the conditional probability of an observable event A, given the
probability of another observable event B, which is equal to the joint probability of event B
and event A (i.e. P(4, B) or P(A N B)), upon the probability of the event B (Grover, 2016).
The expansion of P(4, B) would also result in the latter equation. Hence, both P(A | B ) and
P(B | A) are conditional probabilities in a way that in the first, A is conditioned on B and
vice versa (Grover, 2016). Accordingly, P(A) is the prior probability (either known or
unknown, and subjective) and used as the initiating values. This likelihood is further updated
during the Bayesian updating process (or inference) through posterior probability which here
is P(A | B) (Pearl, 2000; Grover, 2016). B is a set of observations and A is a set variables
(discrete or continuous) which are chosen because of their weight in either prediction or

diagnosis (Pearl, 2000). It is worth noting that a BBN can contain unconditional probabilities
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as well as conditional probabilities and conditionality is not necessary for these mathematical
models (Grover, 2016). If this is the case the node with unconditional probability should

have no parent node since are not conditioned on any other variable (Fenton and Neil, 2012).

After completing the structure of the BBN model, the next stage is to construct and elicit
node probability tables (NPTs). These probability tables are also called conditional
probability tables (CPTs) in Korb and Nicholson (2003) and Luigi and Daniele (2015) while
only analysing discrete variables. The NPT for each node reflects the strength of the
relationship between it and its parents (Fenton and Neil, 2012). In general, an NPT provide
the probability of nodes conditioned on every possible state of its parent(s) (Fenton and Neil,
2012). When we manually update one or more nodes, through causal links (or joints) the
posteriors will be automatically updated (Grover, 2016). Creating such a table for the nodes,
first requires to specify all possible combinations of values of its parent nodes. Then, to
complete the table we need to find the probability for each possible value of a given variable

(node) (Korb and Nicholson, 2003).

Once the probabilistic assumptions as to how variables interact with each other are
incorporated into the previously formed structure, all queries are answered through
performing inference on the distribution. As a result, efficient and powerful inference
algorithms are critical to generating reliable outcome (Barber, 2012). D'Ambrosio (1999)
listed some of basic types of queries. Single marginal query refers to a situation which we
want to know about the probability of some subsets of parameters in the model. Similarly,
we may be interested to learn about the JPD function across a subset of the parameters. This
type of query is called subjoint. The more general form of subjoint query is Boolean query
an again the answer is the sum of probabilities that satisfy the query condition. Although we
can iterate single marginal query for a set of parameters, applying all marginal query enables
us to compute the marginal probability of all parameters rather than only a single one. When
new evidence becomes available, conditional query can be performed to compute marginal
probabilities given new evidence. Finally, maximum a posteriori probability can tell us about
the most probable instantiation of two nodes in the net. A variety of application-specific
queries including sensitivity analysis and expected utility can be devised based on the above
queries (D'Ambrosio, 1999). There are also various methods of inference for BBN models

to answer back to these queries. Those methods will be introduced in the next section.

3.5. Inference in BBN

As soon as an expressive and concise model is available, performing inference can be

initiated (D'Ambrosio, 1999; Pearl, 2000). A completely specified BBN model contains
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necessary information to probabilistically address all queries about the variables in a domain
(Pearl, 1988). Korb and Nicholson (2003) define “belief updating” or “probabilistic
inference” as “to compute the posterior probability distribution for a set of query nodes,
given values for some evidence nodes”. The evidence can be inserted about any node and
results in updating beliefs in the rest of the structure (Korb and Nicholson, 2003). Three
classes of efficient algorithms for inference in BBNs are reviewed in Daewiche (2003)
corresponding to three notions including conditioning, variable elimination and tree
clustering. The first class of algorithms comprises two subcategories known as cutset
conditioning and recursive conditioning (Darwiche, 2003). The former group (cutset) of
algorithms try to simplify the network to a tree, whereas the latter group (recursive) which
try to decompose the network into smaller networks and solve it recursively (Darwiche,
2003). The second class of algorithms which stand on the basis of variable elimination,
reduce a probabilistic model with n variables to a model over n — 1 variables (Darwiche,
2003). The process is then iterated to the point that we can rapidly find the answers in a less
complicated model (Darwiche, 2003). Lastly, the third class of inference algorithms
transform the structure of a BBN to a jointree to facilitate performing tree-based inference
(Darwiche, 2003). On the other hand, depending on the context and structure of the studied
BBN there have been other categorisations of inference algorithms introduced in the
technical literature. Exact and approximate inference algorithms are among those
classifications (D'Ambrosio, 1999; Guo and Hsu, 2002; Korb and Nicholson, 2003). Figure
3.3 illustrates these taxonomies. Max-product, most probable path, shortest path, and mixed

inference are also the main methods explored in (Barber, 2012).

Polytree Algorithm Stochastic Sampling
Clustering
Model Simplification
Conditioning
Exact A i
: Elimination Pprommate Search-based
inference inference
Arc Reversal Loopy Propagation

Symbolic

Differential Methods

Fig. 3.3: Classification of real time inference in BBNs (Guo and Hsu, 2002).
In addition to the aforementioned methods, junction tree is the most well-known method
which is capable to deal with multiple queries without any prerequisite for computing
separate structure for each (D'Ambrosio, 1999). There have been several approaches

introduced to these methods for the purpose of optimisation and increasing its efficiency.
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Lifted junction tree (Braun and Mdller, 2016), incremental junction tree (Agli et al., 2016)

and hierarchical junction trees (Puch, Smith and Bielza, 2004) are just a few to name.

Darwiche (2003) shows that any probability distribution computed by a BBN model can
be expressed by a multi-linear function with certain properties and further develops a
comprehensive framework on this basis for inference in BBNs. Such a function is defined
over two types of variables: evidence indicators or network parameters. For variable X in
the network, we assume a set of evidence indicators A,. We also consider a set of network
parameters 6y, which represent conditional probability for each network family. Therefore,
for a simple network containing two nodes (a and b), the multi-linear function can be defined

as (Darwiche, 2003):
f= Aa/lbgagbla + /1a/159a05|a + Adlbgdgbld + /1&/159&95%

Hence, representing and evaluating the network polynomial prepare the ground for
computing probabilities of instantiation. Furthermore, partial derivatives of the network
polynomial disclose helpful information which can be used for answering a wide range of

probabilistic queries. Figure 3.4 shows an example on inference in a BBN model with

Fig. 3.4: an example of inference in BBN

Boolean nodes.

To exemplify the inference process in BBN, imagine that the probability of fire occurring
in the above example is 0.02 and the probability for tampering to happen is 0.05. Hence, the
conditional probabilities for the alarm to sound are as presented in table 3.1. Performing an

inference returns a probability of 0.0268 for true and 0.9732 for false alarms.

Table 3.1: conditional probability tables for the BBN model in figure 3.4.

Fire ’ Pr(fire) Tampering H Pr(tampering)

Yes 0.02 Yes 0.05

No 0.98 No 0.95

Fire | Tampering |Alarm| Pr(alarm | fire, tampering) Fire | Tampering |Alarm| Pr(alarm | fire, tampering)
Yes| Yes | True 0.9998 No | Yes |True 0.85

Yes Yes False 0.0002 No Yes False 0.15

Yes No True 0.99 No No True 0.0001

Yes No False 0.01 No No False 0.9999

We close this section with emphasising the importance of adopting efficient inferential

techniques or tailoring a method to a model depending on the graphical structure of a BBN
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model. In principle, inference is computationally complicated and expensive (Barber, 2012).
The prime reason for this complication is the multiplicity of parents of a given node which
leads to exponential increase in the number of JPDs (e.g., Zagorecki and Druzdzel, 2012;
Rohmer, 2020). The involvement of trivial variables adds to the complexity of the model
and curtails the sensitivity of the network outcome to the key variables (Chen and Pollino,
2012). Instead, inclusion of intermediate nodes can decrease the number of JPDs which need
to be computed (Provan, 1995). These considerations must be taken into account at the

design and model development stage to avoid further implications in performing inference.

3.6. BBN: a powerful learning network

Modelling complex socio-technical systems which are deemed to operate under profound
uncertainties is inherently demanding and requires several main characteristics to be

considered in any model including (Weber et al., 2012):

e the complexity and extent of the system,

¢ the consolidation of qualitative and quantitative data,

e the temporal aspects (system dynamics),

o the fact that some components have more than one state (multi-state characteristic),
e uncertainties on parameter estimation,

e the (inter)dependencies between events and variables.

The technical and academic literature suggests a number of classical modelling
techniques such as Markov chains, fault trees (FT), dynamic fault trees, artificial neural
network (ANN), Petri net, system dynamics (SD), fuzzy cognitive maps (FCM), fuzzy rule-
based models (FRBM) and Bayesian belief network (BBN) to satisfy the above
requirements. Among these modelling methods, BBN has received wide and prominent
attention. “It can be used as a machine learning algorithm to learn the fault patterns and
required a full set of fault data for learning” (Zhao, Xiao and Wang, 2013). BBNs have the
capacity of structural learning from data by benefiting form a score-based algorithm, which
tries to find a structure that maximises the chosen entropy scoring function or a constraint-
based algorithm, which maps out the model structure based on the conditional dependencies

existing between each pair of chosen variables (Uusitalo, 2007; Chen and Pollino, 2012).

If techniques and algorithms are constructed for Bayesian networks to automatically learn
from data, not only this will reduce the burden of knowledge engineering problem, it will
also enable the automatic refinement of a model’s topology as new data is piled (Lam and
Bacchus, 1994). For example, Hanea, Napoles and Ababei (2015) suggested a semi-

automated version of a learning algorithm which only needs an empty graph to begin with.
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Since acquiring full set of data might be expensive or impossible, expert knowledge can be
replaced to construct the model. Four well-known ML algorithms for structural learning in
BBN are K2, hill climbing (HC), tree augmented naive (TAN) Bayes, and Tabu search
(Ahmad et al., 2021). The outcomes of structural learning can be enhanced when combined
with expert input; for example, the expert specifies some known dependences in the system
before the learning algorithm is run (Chen and Pollino, 2012). On the other hand, involving
experts’ opinions and judgements can increase the risk of bias (O’Hagan, 2019). Selecting a
diverse group of experts can mitigate that risk and help to diversify the range of

expertise/experience, impacting their judgements (Verdolini ez al., 2020).

BBNs offer some outstanding capabilities which make them distinctive from other
modelling techniques. Being able to accommodate the modular structure of complex
systems, especially in multidisciplinary problems is another prominent feature of BBNs
(Chen and Pollino, 2012; Lee, Yang and Cho, 2015). Since in this study we are incorporating
variables from diverse spheres and levels, this capability of BBN becomes very
advantageous. It is also capable to rank different versions of AVs based on several key
performance indicators (KPIs) (Ismail et al, 2011). In this research, KPIs can be, for
example, collision avoidance (or collision rates). Furthermore, BBN can be used as an
interpretive tool. To exploit this advantage, it is necessary to instantiate a set of variables
corresponding to the input data, then measure their impact on the probabilities of those
variables which are defined as hypotheses, and lastly select the most probable combination
of these hypotheses (Pearl, 1988). In return, a query can be made to interpret certain input
data or choose the best course of action if utility information is given (Pearl, 1988). In
addition, the graphical structure of BBN models visualises the information, especially the
interdependencies, and makes it more accessible for non-statisticians (Gonzalez-Redin et al.,
2016). Swiftness of BBN in responding to queries, even in complex networks, can save time

for analysts and accelerate the process of risk assessment (Uusitalo, 2007).

With BBN, it becomes feasible to articulate expert beliefs (or judgments) about the
interdependencies between different variables of a complex system and to effectively
propagate the impact of (recently found) evidence on the probabilities of uncertain outcomes,
such as estimating the performance of certain key indicators or future system reliability
(Fenton and Neil, 1999). It was explained in section 3.3 that analysing the risks of
complicated systems, demands collecting and combing data from different sources. Bayesian
network models are able to easily and in a mathematically coherent manner incorporate
knowledge of different accuracies and from different sources (Uusitalo, 2007). Another
strength of BBN lies in handling discrete and continuous variables alike (Moral, Rumi and

Salmerén, 2001; Weber ef al., 2012; Marcot and Penman, 2019), although some software

61



Chapter 3
packages may not be able to deal with continuous variables. There are several software
packages exclusively built to handle BBN models and we will explore available software

packages in part 3.8.1.5.

One of the merits of BBN is that there is no minimum sample size required to run the
model. Under circumstances where missing data or incomplete data can hinder
implementation of other modelling techniques, BBNs can still deal with small and/or
imperfect data sets (Uusitalo, 2007). Nevertheless, when a large number of AV are launched
for public services in a variety of conditions or current porotypes generate more data,
probability distribution of some variables in the model may need to be modified. Recent
evidence (or observations) can be inserted at any stage and into different nodes and update
the states of other nodes through the network by using Bayes' rule (Korb and Nicholson,
2003; Ashrafi, Davoudpour and Khodakarami, 2015; Brito and Griffiths, 2016; Papakosta,
Xanthopoulos and Straub, 2017; Matellini et al., 2018).

Due to complexity of a problem, availability of data or extensive range of variables it
might be desired to create a meta-model and incorporate distinct variables/scenarios in an
uncertain framework (Uusitalo, 2007). Marcot and Penman (2019) in a recent study surveyed
the advances in Bayesian network modelling and possibilities of integrating it with other
modelling frameworks or tools such as agent-based modelling, Quantum-like Bayesian
Networks (QBN) utilising both quantum probability theory and graphical models (Moreira
and Wichert, 2016; Huang, Yang and Jiang, 2019), object-oriented Bayesian Network
(OOBN) which defines complex domains as inter-related objects (Koller and Pfeffer, 1997),
and Bayesian Decision Networks (BDNs) which contains decision and utility nodes (Marcot

and Penman, 2019).

Although BBN tool has many advantages, it also requires that continuous variables be
discretised. In an analysis including continuous variables, which need to be transformed to
discretised variables, the discretisation process could cause information loss. To avoid this
pitfall, the researcher can only involve discretised variables (Lee, Park and Shin, 2009).
Another problem in BBN is the exponential growth in JPDs when the number of parents of
a node increase (Lam and Bacchus, 1994). To circumvent this disadvantage, intermediate
nodes can be exploited. Likewise, the increase in connectivity of the network leads to more
computational demand and complexity (Lam and Bacchus, 1994). Multi-connected
networks present a space complexity problem and this complexity grows with the degree of
connectivity (Lam and Bacchus, 1994). Causal interpretability of BBN models is also
debateable. A BBN model can bespeak the causal structure of a system if and only if (1)

every node and its direct predecessors represent variables involved in a distinct mechanism
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in the system; and (2) nodes without any predecessors are exogenous variables (Druzdzel

and Simon, 1993).

3.7. Comparing BBN with other modelling techniques

Principle M in the SoTeRiA framework (Mohaghegh and Mosleh, 2009) outlines the
necessary steps and requirements for choosing appropriate ‘modelling language’ and
building a safety causal model. It indicates that a safety causal model should cover a very
broad range of causal factors (variables) and paths of influence (interdependence) and
include performance of technical systems, behaviour of individuals and organisational
characteristics. It further favours the hybrid modelling techniques due to heterogeneity of
modelling domains and multidisciplinary nature of complex socio-technical risk analysis. A
hybrid model can integrate deterministic and probabilistic modelling perspective which is
believed to result in a flexible and generic risk assessment tool for a variety of high-risk and
complex socio-technical systems (Mohaghegh, Kazemi and Mosleh, 2009). Then, four most
common hybrid modelling techniques are introduced: SD, BBN, event sequence diagram
(ESD), and FT. A detailed comparison on different modelling (soft computing) techniques
and learning networks is provided in (Sadiq, Kleiner and Rajani, 2010; Ismail et al., 2011)
(please see Table 3.2). According to the table, BBN offers superior performance over DT,
FRBM and ANN in most of attributes such as network capability and difficulty of
modification. As far as the ability to express causality is concerned, BBNs demonstrate
considerable competence. The main competitor to BBN in this table is (fuzzy) cognitive
maps. Although there are studies (e.g., Liu, 2001; Douali ef al., 2014) advocating that the
accuracy of FCM takes over BBN and that FCM propagates causality in a more natural way,
its weaknesses in maturity of science and ability to handle dynamic data discouraged us to
adopt FCM. On the other hand, BBNs have been widely applied not only in academia but
also in practice (Mohaghegh, Kazemi and Mosleh, 2009) which has helped significantly to

mature and integrated with other modelling techniques such as neural networks.

Nearly all traditional risk assessment techniques including Failure Modes and Effect
Analysis (FMEA), Fault Tree Analysis (FTA), Hazard and Operability Analysis (HAZOP),
and PRA are developed based on a chain of cause and effect analysis, but they face
limitations in establishing an efficient link between risk models and organisational/human
factors (Ashrafi, Davoudpour and Khodakarami, 2015). Dynamic Fault Trees suffer from
exponential growth with size of the system and modelling spares (Ashrafi, Davoudpour and
Khodakarami, 2015). Marcot and Penman (2019) also compared BBN with structural
equation modelling (SEM) and reported two major differences. Firstly, SEM is purely

statistical, whereas BBNs which are probabilistic models (trainable by data) and are mainly
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used for assessing the consequences of conditions or events on outcome(s). Secondly, SEM
usually benefits from multivariate and frequentist approaches, whereas BBNs exploit

conditional probabilities and Bayes' theorem.

ANNSs have been widely adopted to address a broad range of problems in a variety of
contexts (Carleo and Troyer, 2017). However, ANNs are not as efficient as BBNs in risk
assessment. To identify cause-effect relationships, ANNs need significant historical data
(and knowledge) (Kabir et al., 2015), whereas BBNs can be deployed to address problems
under grave epistemic uncertainty and with conflicting information (Zhao, Xiao and Wang,
2013). “BBN has shown superior performance compared with neural networks, support

vector machines, decision trees” (Zhao, Xiao and Wang, 2013).

Table 3.2.: comparing five common soft computing modelling techniques (Ismail et al., 2011).

Attributes Soft computing techniques

DT FRBM ANN BBN CM/FCM
Network capability N L N H VH
Ability to express causality H M N H VH
Formulation transparency H H N H VH
Ease in model development H M M M VH
Ability to model complex systems M H VH H VH
Ability to handle qualitative inputs H H N H VH
Scalability and modularity VL L VL H VH
Data requirements H L VH M L
Difficulty in modification VH H M L N
Interpretability of results VH VH VH VH H
Learning/training capability M VH H H
Time required for simulation L L H L L
Maturity of science VH H H VH M
Ability to handle dynamic data L H H H M
Ability to combine with other models H VH VH H H
Ratings: N=No or Negligible; VL=Very Low; L=Low; M=Medium; H=High; VH=Very High
DT: Decision tree FRBM: Fuzzy rule-based models
ANN: Artificial neural network BBN: Bayesian belief network
CM/FCM: Cognitive maps/Fuzzy cognitive maps

3.8. Research methodology: steps in detail

The process of developing the BBN model is divided into two main phases. The
development of the structure (structural learning) and eliciting knowledge and judgement of
experts to build the CPTs (parameter learning) (Lee, Park and Shin, 2009). For the first
phase, the data is collected through ILR which distinguishes this study from others in
developing a BBN to address the risks of CAVs. A new method was also developed to
construct the CPTs. Afterwards, a survey was designed and run to elicit the opinions of
experts and determine the weights of influences that parent nodes have on their child nodes.
Throughout this process, a multidisciplinary approach has contributed to the integrative risk

analysis from the sociotechnical perspective.
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3.8.1. Causal network model

3.8.1.1. Identifying main influential variables (nodes)

The topology of a BBN model consisting of nodes, causal links and states within the
nodes can be shaped based on priori data including simulations, expert input, qualitative
data or a combination of these (McDonald, Ryder and Tighe, 2015). The identification of
influential variables started with reviewing the literature on three main themes as depicted
in figure 3.5. Literature reviews involved identifying themes related to the research topic in
the narrative material being searched. Themes are recurrent patterns in narrative data;
therefore, a literature review is a kind of QUAL analysis (Teddlie and Tashakkori, 2009).
Then based on the literature, a set of keywords have been compiled for the ILR. These
keywords are provided in appendix A (nodes column). Next, according to the defined
framework in figure 3.6, ILR was conducted to validate the selection of these nodes and
identify the relation between chosen nodes. Web of Science, DelphiS and Google scholar
(Zhang, Angell and Bao, 2021) are the search databases for the ILR. The selected keywords
for autonomous driving were “autonomous vehicle*” OR “autonomous car*” OR
“automated vehicle*” OR “automated car*” OR “self-driving” OR “driverless”. These
keywords gather a large pool of papers and studies corresponding to AVs. The number of

results in DelphiS was 82,974 and in Web of Science platform was 18,234.

Afterwards, other keywords such as “risk”, “collision”, and those which were identified
in the preliminary literature review (i.e. environmental, human, traffic, and technical
exposures) were combined to narrow down the search to specific contexts and topics.
Synonyms of the keywords and Boolean operators were applied where multiple
terminologies for the same factor were detected in the reviewed literature. As explained in
section 2.1.6, the inconsistencies and plurality in using terminology for AVs can pose a
challenge in the ILR process. It might not be feasible to search for all these terms in a PhD
project which is bounded by time limitations. As a result, it was decided to only search for
the above keywords in the databases and exclude infrequent terms such as ‘robotic car’. This
can be considered as one of limitations of this research project. Finally, thematic analysis
was conducted to identify, organise and interpret themes emerging from the reviewed
literature (Gioia, Corley and Hamilton, 2013). This is discussed in detail in 3.8.1.4. 53 risk
factors and indices were subsequently found across the four blocks which were reported to
have influence on the collision risk in AD in urban areas. These factors shape the topology

of the BBN model in this study.
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Autonomous
Vehicles
Urban
Collision Driving
Risk Environment

Fig. 3.5. Three central themes underpinning the ILR in this research

It has been argued earlier that to establish a causal relationship between a series of
variables in studying complex systems, mere reliance upon quantitative methods/data (e.g.
SEM) is not the best approach. As a result, qualitative data is involved to augment the quality
of the model. According to the SoTeRiA framework the system is broken down into four
main blocks (i.e. technical, human, environment and organisation) and variables are
categorised accordingly, although overlaps are possible. This four-block structure was
adopted by Ashrafi, Davoudpour and Khodakarami (2015) to analyse the risks of wind
turbines. A similar approach is also supported in the ALFUS (autonomy levels for unmanned
systems) (Huang et al., 2005). ALFUS specifies mission complexity (e.g. performance,
organisation and situation awareness), environmental difficulty (e.g. urban, rural and
climate) and human independence (e.g. trust and supervisory control) as three axes of a
detailed model to address autonomy issues. The 2008 NHTSA crash causation survey
collected data on vehicles, environmental conditions and human behavioural conditions to
analyse their contribution to the occurrence of crashes (Choi ef al., 2008). This can clearly
show the importance of human, environmental and vehicular factors in any collision. In the
same manner, Weber et al. (2012) suggested that to quantify failure scenarios and risks of
complex systems modelling the interaction between different technical, human,

organisational and nowadays environmental factors is requisite.

In addition to the verification for the structure, some relevant studies and
accident/disengagement reports e.g. Sheehan et al. (2018 & 2019); Pollard, Morignot and
Nashashibi (2013) can support the selection of nodes since there are several common
variables in these studies. Notwithstanding the commonalities, differences are mostly due to
the underlying theories and assumptions, adopted frameworks and scope of the analysis. The
main aspects of the BBN model which distinguishes it from other models is the

comprehensiveness (includes 54 nodes) and integrating the variables from four distinct but
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interacting areas into a single model through the sociotechnical theory. The adopted
methodology in this project (i.e., ILR, thematic analysis and scope of search) significantly
reduces subjectivity in selecting variables whereas the above studies that relied on a narrow

literature review, extreme assumptions or limited data to identify their nodes.

3.8.1.2. Integrative literature review

The number of publications on the technical and social aspects of AVs is already large
and this opens up the opportunity for researchers to base their research on the existing
literature. In the meantime, the literature is scattered across diverse disciplines and this
mandates a multidisciplinary approach to review and synthesise the collected data (Snyder,
2019). Along with that, a scientific framework including clear criteria is required to minimise
the subjectivity and maintain the quality of results. For this purpose, ILR was chosen to
regulate the processes including selection of papers and defining a framework for identifying

variables affecting the collision risks of AVs in urban environments.

Munn et al. (2018) classified systematic review types into ten categories and proposed a
typology for systematic reviews in medical and healthcare sciences. “Etiology and/or risk
reviews” are mainly designed to ascertain the existence and strength of any relationships
between a risk factor (aka exposure) and a health outcome (illness) to inform clinical
decision- and policy-making (Moola et al., 2015; Munn et al., 2018b). The overarching
question in this type of review is to determine if there is a causal association between an
independent variable (exposure) and a dependent variable (outcome). In Moola et al. (2015)
two methods are suggested for narrative synthesis of data: textual description and thematic
analysis. A tabular format can be further used to synthesise the collected data and group
them based on, for example, context or results (Moola et al., 2015). In this process,
transparency in defining the frameworks and criteria for identifying risk factors, the outcome
and assessing the association between them plays a critical role (Munn et al., 2018b;

Borgstrom, Daneback and Molin, 2019; Snyder, 2019).

3.8.1.3. Defining a framework for ILR

For conducting rigorous analysis and generating reliable and replicable results,
conventional reviews appear to be insufficient and lack thoroughness (Snyder, 2019). Thus,
tailoring and applying a research protocol are indispensable to evaluate the rigour,
completeness and replicability of a study for the sake of reducing any effects of arbitrary
inclusion and increasing the legitimacy of findings (Righi, Saurin and Wachs, 2015). ILR

has been used in medicine (e.g., Kashani et al., 2013), business analysis (e.g., Benzaghta et
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al., 2021), education (e.g., Osam, Bergman and Cumberland, 2017) and engineering
management (e.g., Yassine, 2019) and is becoming popular in other fields. Snyder (2019)
introduces literature review as a research methodology and discusses three types of review
in business research. Although there are similarities between these review approaches (i.e.
systematic, semi-systematic and integrative review), each of them can show more
competence in tackling certain research questions depending on the purpose, research
question(s) and search strategy (Snyder, 2019). Exploring the studies which relied upon the
literature as the main source of data reveals that a mixture of the aforementioned approaches
also can be utilised to address a research problem. For instance, Borgstrom, Daneback and
Molin (2019) combined a systematic and an integrative literature review approach to single

out peer-reviewed studies for further thematic analysis.

Torraco (2005) suggested that ILR can be conducted to review, critique and synthesise
‘representative literature’ on a particular research topic in an integrated manner. This method
is applicable for both mature and emerging research areas (Torraco, 2005; Snyder, 2019).
Risk assessment of CAVs in urban environment has both features of maturity and emergence
since there is a large body of literature investigating, measuring and analysing various risk
factors that can give a rise to (or reduce) the probability of collision, while developing a

socio-technical approach towards Al-based autonomous systems is still in its infancy.

Based on the above discussions, the formulated protocol for selecting and reviewing
pertinent literature borrows some characteristics from both systematic and integrative
literature reviews. in order to find and assess causal relationships between risk factors and
outcome variables, qualitative studies as well as quantitative studies can be useful. There are
ample number of studies which underscore and explain a cause-effect relationship between
two variables of interest in the format of text rather than presenting any correlative analysis.
Therefore, whilst inclusion of both qualitative and quantitative evaluations satisfies one of
the conditions for semi-systematic review, extending the search to books, technical reports,
theses and patents can represent integrative review (Snyder, 2019). Table 3.3 summarises

the main features of integrative review and semi-systematic review.

Table 3.3: comparing two types of literature review in business research (Snyder, 2019)

Approach Semi-systematic Integrative
Overview research area and trace -, .
Purpose . Critique and synthesise
development chronologically
Research question broad Narrow and broad
Search strategy Systematic/not systematic Usually not systematic
Sample characteristics Research articles Published text e.g., articles, books
Analysis and evaluations Quantitative/qualitative Qualitative
State of knowledge, themes in literature, e s
. T . . . . Taxonomy and classification
Main contributions theoretical model, historical overview and .
Theoretical model
research agenda
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The protocol for identifying influential risk factors of AVs in exhibited in figure 3.6. Web
of Science, DelphiS (internal to the University of Southampton), and Google scholar are the
three main databases elected for searching relevant published text. The main criteria for
including papers were relevance to the context, date of publication and clear specification of
one or several risk factors which can affect the safe driving of AVs. These publications
consist of journal articles, conference papers and proceedings and symposiums, technical
reports, books, patents and a few news articles. Almost all of the included papers were
published after 2005 (the first round of DARPA competitions). After screening the papers,
they were populated into classified folders based on the main investigated theme in the paper.
For example, if a study pinpointed the role of adverse weather conditions, it was stored under
the category of environmental factors or if a paper studied the impact of sensor failure on
collision risk, it was saved under technical risk factors category. In the final stage, thematic
analysis was undertaken to determine the main sources of risks and their association with
safe performance of the vehicle. Many of the reviewed papers specify more than one
exposure. The redundant themes (other than the central focus of the paper) are labelled as

‘other themes’ in appendix A.

Identification

additional records

records identified through identified through
searching in WoS searching in DelphiS and

Google scholar

y

Screening

records after duplicates are removed

records excluded

\ 4

records screened

Eligibility

> articles excluded

surveyed publications assessed for eligibility

\ 4

Included

studies included in qualitative synthesis

A 4

No. of studies included in qualitative synthesis

Fig. 3.6: The protocol for paper identification, adopted from (Liberati et al., 2009).
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3.8.1.4. Thematic analysis (TA)

Despite the comprehensive use of qualitative methods specially in social sciences, lack
of rigour and being prone to biases raise questions about the credibility and validity of results
generated by grounded theory (Gasson, 2004). According to Mackieson, Shlonsky and
Connolly (2019) ‘applied thematic analysis’ can discount those criticisms by setting up a
structure and integrating ‘reflexivity’ in qualitative research. In qualitative research,
reflexivity refers to a continuous process of researcher’s self-awareness and self-evaluation
of his/her position in the research process and critically examine the effects that this position
may have on the outcome (Berger, 2015). Applied thematic analysis is used to analyse
collected textual data (e.g. interview transcriptions) and text from data sources (Mackieson,
Shlonsky and Connolly, 2019). The key objective is to recognise themes (patterns) across
given qualitative data sets through conducting interpretive analysis (Braun ef al., 2019). A
theme, as Braun et al. (2019) describe, is a reflecting pattern of shared semantic (or surface)
meanings connecting scattered data across varied contexts. For example, in the literature
concerned with the AVs’ risks, ‘poor’ or ‘adverse’ weather conditions are often correlated
with the impaired performance of the technology. This pattern can reveal a cause-effect
relationship between the weather conditions and the collision risks for AVs. Like ILR,
devising a transparent framework which can exhibit traceability and replicability is deemed
to be requisite. Fig. 3.7 presents a schematic framework for analysing themes emerging from
the selected papers in this research. This framework complies with the Gioia methodology
which proposed ‘1t Order Concepts’, ‘2™ Order Themes’, and ‘Aggregate Dimensions’ for

conducting qualitative inductive research (Gioia, Corley and Hamilton, 2013).

e Skimmed the paper to identify mentioned risks, threats, dangers, degradations, reduction in
performance, safety compromises , deficiencies, failures, faults, disengagements, etc. and
highlight them for further analysis.

First Level | ° Decided whether the paper should remain under the current class (i.e. environmental,
Analysis human, traffic and technical) or be moved to another class. This decision was made based on

the predominant themes of the risk causes. J

\

¢ Read the highlighted areas carefully and interpreted the provided data into thematic causes
and reasons of the risks which were identified in the previous level.

Second Level| « Merged the synonymous themes into a single theme.
Analysis y,

4

¢ Analysed and measured the frequencies of identified themes.

¢ Extracted and transferred the prevalent theme in a paper besides the shadow themes into
Third Level the designed table. The new emerged thems were subsequently fed back into the literature

: search.
Analysis y

<

N

Fig. 3.7: The thematic analysis framework (Mackieson, Shlonsky and Connolly, 2019).
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First level analysis consisted of two major tasks. Firstly, the gathered and grouped papers
and documents were skimmed to locate the sections and paragraphs which hold discussions
on the sources of collisions risks. Then, a decision needed to be made to whether keep the
paper/document within the current predefined class (block) or move it to another class. It
occurred that usually the reviewed paper encompassed a range of risks and their causes, but
one theme (e.g. cybersecurity or human-machine interactions) predominated other themes
in that paper. The stronger theme sometimes was not corresponding to the keywords used to
find the paper. This mandated the researcher to change the class of the paper. For instance,
searching “reaction time” AND “risk” AND ‘“autonomous vehicles” in Google scholar
returns a paper published by Sheehan et al. (2019) on the first page; however, the prevailing
theme in that paper is ‘cybersecurity’ of AVs not ‘reaction time’. Consequently, reorganising
the papers according to the main themes and overarching risk factors took place in the first

level analysis.

In the next level, an interpretive analysis was attempted to indicate if a causal relationship
exists between the specified malfunctions in the previous level and collision risk.
Interpretation of the text becomes crucial where some of the mainstream themes in the
collated literature, such as ‘trust’, do not always signify a risk to the safety of AVs. As a
sample, Kaur and Rampersad (2018) investigated some of the factors which affect the safe
operation of AVs and the concept of ‘trust’ in the technology is repeatedly brought up in this
paper. Nonetheless, no association is reported to exist between ‘trust’ and collision risks.
Instead, this paper shows a significant correlation between trust in the technology and users’
willingness to adopt it (Kaur and Rampersad, 2018). Next step in this level was dedicated to
merging and unifying some parallel themes in the literature. Synonyms are often used to
refer to an identical concept or variable. ‘Traffic congestion’, ‘traffic volume’, ‘traffic
density’ and ‘traffic flow’ can be a clear example. These four variables have attracted
considerable attention in the technical and accident literature for autonomous vehicles.
Despite the differences in the proposed formulae for calculating these variables
(Twagirimana, 2013), they all contribute to or measure a single variable which is number of
vehicles on roads. Another example can be ‘roadway configuration’, ‘road layout’, ‘road
design’, ‘road characteristics’ and ‘road geometry’. To avoid ‘information double-counting’
such as what frequently happens in Naive Bayes models (Langseth and Nielsen, 2006) and

prevent overcomplication of the model these variables were merged into one group.

Finally, the frequency and strength of the link between an emerged theme and any risk to
the safe function of the vehicle (i.e. the collision risk) were evaluated. ‘Urban design’ can

serve as an example here as it is common sense that the way urban areas are planned and
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designed can have a great impact on the frequencies and severity of the accidents and those
factors can mitigate the likelihood of fatality and severity of injuries in motor vehicle crashes
(Thompson et al., 2020). Even though that causal relationship is proven to exist in the
literature, the reverse relationship (the effect of launching AVs on the urban design) is widely
discussed in the literature on autonomous driving risks. Thus, the ‘urban design’ theme
which is not frequently and explicitly cited to have influence on the ‘road condition’ risk
index as far as AVs are concerned, was broken down to its elements such as ‘road type’,
‘roadway configuration’ and ‘road infrastructure’ to capture its impacts. The number of
papers on the succeeding themes also shows there exists an association between the
aforementioned themes and collision risk. In the final stage, the reviewed and analysed
papers/documents were sorted in a table as suggested in 3.8.1.2 (please also see appendix

A). Figure 3.8 shows the process of qualitative data collection in three major phases.

/ Phase 1

¢ Preliminary literature
review in the context of
AVs' risks

e Formulating/revising the
keywords for ILR based on
the preliminary lit. review.

~

/ Phase 2

* Searching for papers and
documents in the
databases using the
keywords formulated in
the previous phase.

e Applying the
exclusion/inclusion
criteria.

~

/ Phase 3

* Conducting thematic
analysis to discover and
(re)categorise the
predominant themes

* Generating a table to list
and summarise the
documents

e Classifying the included
papers according to the
keywords.

Fig. 3.8: a schematic summary of the three phases to identify the influential factors.

3.8.1.5. Developing the causal model

After the results of qualitative data collection (i.e., literature review) became available,
the construction of the BBN model began. For this purpose, Hugin Lite software package
(Madsen et al., 2003; Fenton, Neil and Caballero, 2007; Uusitalo, 2007; Ashrafi,
Davoudpour and Khodakarami, 2015) was used to develop the network and NPTs. The
developed causal model is demonstrated in figure 4.4. According to the socio-technical
theory the environmental variables, traffic conditions, and human factors are accompanied
by a technical module to represent a comprehensive and integrated assessment of system
reliability beyond common reliability models constrained by the reliability of their physical

components (Ashrafi, Davoudpour and Khodakarami, 2015). In environmental, traffic, and
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human reliability blocks, discrete variables are used in the form of ranked nodes to describe
the system state and interactions. By applying this BBN model, risk analysts (e.g. in
insurance and regulatory sectors) will be able to trace the impacts of various influential
factors on the collision risk. In the meantime, it provides the possibility of analysing the role

of on-board drivers and circadian mode through a cognitive approach in the reliability of

AD.

The Hazard Classification and Analysis System (HCAS) outlines a taxonomy for
discovering the hazard sources in aircraft operations (Luxhej and Topuz, 2012). The hazard
sources are categorised into four major groups: 1) environment such as weather conditions
and obstacles; 2) airmen and operators; 3) vehicle related factors such as sensors and
antennas; and 4) operation hazards including flight planning and airspace (established or
temporary). This taxonomy besides the discussions in sections 3.8.1.1 and 4.2 formed the
idea of structuring the model with four separate modules that the aggregated impact of each

block affects the collision risk index.

Marcot et al. (2006) set out nine general guidelines for developing a BBN model. They
favour having three or fewer parents for a node, as far as possible. This guideline was
observed for most of the nodes in the model except for the aggregate nodes (e.g., risk
indices). Next, using parentless nodes which typically represent environmental factors and
indicator habitat nodes such as ‘date’ that their information can be extracted from existing
data (e.g. geographic information). This criterion was satisfied in developing the BBN model
by incorporating nodes such as ‘time of day’ and ‘day of week’. Designing intermediate
nodes is another guideline recommended to summarise the major themes (or latent
variables). An example can be risk indices designed to accumulate the influence of the
variables in each block and link them to the overall risk (i.e. collision risk). As far as possible,
nodes should be observable and quantifiable, although in some cases intermediate nodes or
latent variables may not meet this criterion (Marcot et al., 2006). In framing the states for
nodes, there must be a trade-off between having the fewest discrete states and achieving the
desired precision. This guideline was also observed by ensuring that the states are enough
for the range of input values and are not excessive causing exponential increase in the CPTs

and confusion for the experts during elicitation process.

The guidelines suggest that the number of layers between a parentless node and the output
of the model should not exceed four to prevent unnecessary uncertainty propagating in the
model. Except a few cases, all layers in the model were kept at four or less. If an intended
model contains several spatial scales, they should be developed simultaneously. In that way,

output of one BBN model is used as input to another through instance node tool in Hugin.
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This criterion was waived in this project to avoid complicating the model, however, can be
a potential area for future research and extending the model. An explanation for the nodes
and selection of states are attached to each node in the model to track their authorship.
Finally, arcs must link the input nodes if they are likely to be correlated and any lack of link
between the prior probabilities and input nodes reflects the assumption that they are
uncorrelated (Marcot et al., 2006). Following the above guidelines, a Bayesian network was

constructed in Hugin (please see figure 4.4).

3.8.2. Conditional probability tables (CPTs): incorporating experts’ knowledge

In addition to the DAG which is also known as the ‘qualitative’ part of the model, CPTs
(i.e. quantitative part) must be specified as well (Ben-Gal, 2008). It is necessary then for
each (discrete) variable of the model to have a CPT which consists of a number of labels.
The labels give information about the state of variables and can be changed manually when
evidence on one or a set of variables becomes available. For instance, the states for weather
conditions can be sunny, rainy, and snowy or alternately it could be Boolean like adverse
and fair. The number and types of risk indices depends on several factors including
complexity of system, scope of research, and complexity of the model. The next step is to
indicate the prior probability distributions for variables in the model. In this study, the
judgment of experts is the main ground for obtaining and incorporating JPDs into the model.

In the next subsection, this process will be justified and explained.

A novel method was developed to populate the NPTs in a way to generate uniform
distributions for most of the nodes, except for those that were directly influenced by ‘time
of day’ such as drowsiness and traffic density. For the nodes that are directly influenced by
time of day, an approximation of the graphs and data provided in the literature (please see
figures 4.1 & 4.2) were used to populate their NPTs accordingly. It starts with two
assumptions. If all the parent nodes are in the most desirable states, the probability for the
least risky state of the child node is one and it is zero for the rest of states and vice versa.
Consider table 3.4 as an example for an NPT with n parents and m states. S; is the state 1
for Parent 1 and a is the number of states for this node. Sy is also the state 1 for Parent n and
z 1s the number of states for this node and so forth. Therefore, this table consists of a x b x ...
x z = g rows to be populated. The number of cells subsequently equals g x m. The states in
the left are the most and those in the right are the least desirable in terms of contributing to
collision risk and other states are sorted between in accordingly. jy, denotes the probability

value for the cells in the table (x: column; y: row). The rest of rules are as follows:
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Table 3.4: an example for NPTs in Hugin.

Parent 1 5'1 ‘ ‘ Sa
Parent 2 S; ‘ ‘ Sy,
Parent n SI’V’ S,
State 1 jll =1 0.5 0 0 qu =0
State 2 J12 =0 0.5 0.5 0 jqz =0
iy =0 | .. 0 0.5 0.5 i | Jgy =0
Statem | j.o =0 0 0 0.5 Jgm =1
Rule (1): Yy=ifiy = Xy=ijoy == Xyeijgy = 1
Rule (2): Zgzljxl = Zg=1jx2 = Z§=1jx3 = Z§=1jx4
and

. . 05, . . 0.5
Rule 3):  forcolumns 0107 : jirsy =jm = (@) Jxsnz = Juz + (@)
4 4
Jx3 = 0;and j,, =0
. . 05, .
for columns % tog D1 =Jxn = @5 Jxz = 0.5
4
. . 0.5 .
Jix+1)3 = Jx3 t (E); and jy, =0
4
3. . . : 05, .
for COlumnS%tO Tqi Jx1= 05 Jrnz = Jxz — (@) Jxs = 0.5
4
. . 0.5
and jix11)s = jxa t (E)
4
3 . : : . 05
for columns jq t0q: jx1 =05 jx2 =05 joxs1)3 = Jxz — (E);
4

. ) 0.5
and J(x+1)4 = Jxa + (E)
4

The tables must be symmetric (as shown in table 3.4) to the centre in a way that j;; and

Jqm are equal to one and other states in their columns are equal to zero. Depending on the

number of states (either 3 or 4) the values for the columns on the edge of the first (%), second

(%), and third quarter (% q) can vary between 0, 0.33, 0.5 and 0.67. The probability values for

each child node were calculated in Microsoft Excel and transferred to Hugin. In cases where
rules contradicted each other, rule 2 was prioritised over the first rule to generate uniform
distributions. Hugin allows for the sum of values for each column to exceed 1.00 and
automatically converts them to a percentage when instantiating. All probability distribution
functions (PDFs) were automatically normalised after the model was run. When the sum of
all possible results of a PDF is equal to one it is called to be normalised. Fig. 3.9 provides

two examples of the NPTs for ‘hardware reliability” and ‘other road users’ nodes.
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Hardware reliablity

Control equ... ASILD ASILC ASILB ASIL A

Self awaren...| SAILD ASILC ASILB ASILA SALLD ASILC ASILB ASILA SAILD ASILC ASILB ASILA SAILD ASILC ASILB ASILA

ASILD 0.833333 0666667  |0.5 0.5 0.333333 0.166667 [0 0 0 0 0 ] 0 0

ASIL C 0.166667  |0.333333 0.5 0.5 0.5 0.5 0.5 0.5 10333333 0.166667 |0 0] 0 0

I

1
0
ASIL B 0 0 0] 0] 0 0.166667 10.333333 0.5 0.5 0.5 0.5 0.5 0.5 10.333333 0.166667
ASIL A 0 0 0 0 0 0 0 o 0 0.166667  |0.333333 0.5 0.5 0.665667  [0.833333

Other road users

Traffic cont... Sophisticated Partly developed Poor

Day of week Weekend Weekday Weekend Weekday Weekend Weekday
Traffic rules... High Medium Low High Medium Low High Medium Low High Medium Low High Medium Low High Medium Low
Nerver-rarely 0.9175 0.835 10,7525 0.67 10,5875 0.505 10.4225 0.3333 0.3333 10.2475 0.165 10.0825 0 0 0 0 0
[Occasionally... |0 10.0825 0.165 10.2475 0.33 0.33 0.33 0.33 0.3333 0.3333 0.33 0.33 0.33 0.33 10,2475 0.165 10,0825 0
(Often-always |El |U 0 0 0 10,0825 0.165 10.2475 0.3333 0.3333 0.4225 0.505 10,5875 0.67 0.7525 0.835 0.9175 1

Fig. 3.9: a & b: the NPTs for ‘hardware reliability’ and ‘other road users’ in Hugin.

In order for the automated NPT calculations to be performed, it may be mandatory to
assign weights to applicable parent/child node combinations (Fenz, 2012; Rohmer, 2020).
While this can turn to a very time-consuming task (depending on the topology of the model),
it allows the domain experts to attach weights to different parent nodes and influence the
NPT computation (Fenz, 2012). To extract those weights, a survey was designed and experts
of relevant fields (e.g., robotics and extreme environments, HMI, urban traffic and AV

development) took part in the survey.

3.8.3. Expert knowledge elicitation

Experts knowledge elicitation has played a key role in decision-making, particularly
where the aftermaths of an event or activity are unknown (O'Hagan ef al., 2006, p.9). The
process of eliciting opinions from one or more experts to constrain uncertainties of one or
more influential variables feeds straight into the decision itself (O'Hagan et al., 2006, p.9).
The probabilities required in a BBN are quantified with data and expert opinion, mostly the
latter (Mohaghegh, Kazemi and Mosleh, 2009). There are numerous studies (e.g., Cooke,
1991, p.19; Bedford, Quigley and Walls, 2006; Fenton, Neil and Caballero, 2007; Fenton
and Neil, 2012, p.260; Pibouleau and Chevret, 2014; Verdolini ef al., 2020) which advocate

the use of experts’ beliefs in case of missing or imperfect data.

The utilisation of expert opinions in probabilistic risk assessment as a source of data
became popular in the second half of twentieth century and has been reported in several
fields including but not limited to breeder nuclear reactors, seismic risks, and fire hazards in
nuclear powerplants (Cooke, 1991, p.29). Bedford, Quigley and Walls (2006) investigated
the importance of expert opinions in a broader context termed as ‘assessing the reliability of
engineering system design processes’. In recent years, the applications of expert knowledge
elicitation are witnessed in a wider range of disciplines such as insurance (e.g., Mkrtchyan
et al., 2022), oil and gas (e.g., Dimaio et al., 2021), health care (e.g., Bojke et al., 2022)
ecosystem and environment (e.g., Kaikkonen et al., 2021), food safety risks (e.g., Lachapelle

et al.,2021), and structure failure (e.g., Verzobio et al., 2021).
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Similar to the topology of a BBN model, the CPTs can be derived from several sources
including experts (or stakeholders) knowledge (Fenton and Neil, 2012, p.260; Groth and
Mosleh, 2012; Pibouleau and Chevret, 2014). O’Hagan et al. (2006, pp.185-187) and
O’Hagan (2019) suggested two approaches for aggregating the elicited judgements.
Mathematical aggregation approach (aka pooling) advises separate elicitations in which
experts do not have interaction with each other, and a pooling rule is used aggregate the
results. In contrast, behavioural aggregation allows experts to exchange their opinions and
reach a consensus over a given query, then a distribution is fitted to represent the aggregated
outcome. Since each block of the model aggregates the risks from different sources (i.e.,
environment, vehicle, traffic conditions and onboard drivers) and the selected experts for
informing them were from diverse backgrounds, reaching consensus on the queried weights
was not guaranteed. For this reason, mathematical aggregation was preferred over the latter
approach. Assigning weight to experts’ judgements based on their competence/performance
is a widely discussed method in expert elicitation (e.g., Cooke, 1991, pp.147-157; O’Hagan,
2019). Nevertheless, O’Hagan et al. (2006, p.185) concluded that the best combination (i.e.,

pooling rule) is simple average of the two most experienced experts.

3.8.3.1. Survey

Although BBNs are being used widely to solve real-world risk and uncertainty problems,
their use still entails the difficulty of populating their CPTs. A key challenge is to construct
relevant CPTs using the expert elicitation in an efficient manner, recognising that often it is
not time (or cost) effective, or even viable, to elicit complete sets of probability values for a
network (Fenton, Neil and Caballero, 2007; Perkusich, Perkusich and de Almeida, 2013).
There are several methods and tools to elicit the knowledge of experts. Interview, (online)
surveys and expert panel discussion are among popular means. Although the main method
for this study was to run a workshop and form an expert panel to inform the model, due to
the COVID-19 pandemic, time restrictions and insufficient budget, we have run an Internet-
based survey. There are several advantages of performing an online survey, such as
(Perkusich, Perkusich and de Almeida, 2013): low cost to send questionnaire and pertinent
documents including participant information sheet, saving time, reaching participants
worldwide, may encourage participants to participate by providing an interactive survey
process and can effectively reduce errors from transcription and coding in comparison with

panel discussions.

Perkusich, Perkuich and de Almeida (2013) propose surveys to collect information from
domain experts and with the collected data populate the network’s NPTs. There are also

several studies (e.g., Pibouleau and Chevret, 2014) that practically used a survey to extract
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judgements of domain experts. Nevertheless, a limitation of using surveys can be the scarce
number of domain experts for some fields of study. Small population of experts can lead to
small sample sizes and subsequently biased or imprecise estimates (Hertzog, 2008).
Notwithstanding, there are studies (e.g., Yin et al., 2015; Rietbergen et al., 2016) that used
limited number of experts (three and four) to take part in Bayesian analyses. Brito and
Griffiths (2016) used a panel consisting of ten experts in a BBN model to assess collision
risks for AUVs. In a research conducted by the US Environmental Protection Agency (2015,
cited in Verdolini et al., 2020), 38 expert elicitation studies were reviewed and reported that

60 percent used 6-8 experts and 90 percent of the studies had less than 12 experts.

In this research, nine experts were invited to attach appropriate weights to the links across
the block in the model. The composition of the expert group and how they informed the links
are discussed in the following section. The extracted weights were effected in the NPTs of
child nodes. By doing this, a weight (out of 100%) was assigned to every parent of each

child node in the model in a way that the sums of weights are equal to 1.

Two approaches were singled out for designing the survey. First, asking experts to
distribute weights (out of 100%) among the parents of a node. Second, using a Likert scale
to evaluate the strength of every node. Considering the drawbacks of Likert method, the
second option was adopted for designing the survey (please see Appendix B). The drawbacks
include the potential ambiguities over the definition of each option in the Likert system, lack
of any feasibility for drawing a comparison between the parents of a node when answering
every question, and higher number of questions for eliciting weights. In the next step, an
ethical approval (ERGO No.: 63032) was obtained for the survey and ethical considerations
were taken into account. The information sheet and the consent forms are attached in
Appendix C. After receiving the ethical clearance, the experts were contacted via email and

offered to take part in the study. The results of this survey are presented in section 4.3.

3.8.3.2. The composition of the expert group

Nine experts from different backgrounds were surveyed and their judgments on the
weights of each parent node on its child(ren) were elicited. The weights of links in human
and traffic blocks were informed by two experts, whereas environmental and technical
blocks which three experts apprised the weights of their links. One of the experts (i.e., Expert
1) filled the surveys for two blocks. For the sake of privacy and due to ethical considerations,
the survey was run anonymously. The expert panel comprised of six males and three females.

The experts were selected based on their publication records and research relevance to the
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field of AVs and their safety implications. The background and research areas of the experts

are as follows:

e Expert 1: his expertise falls within the field of Cognitive Approaches for Multimodal
Sensor Data Perception and has eight years of forensic experience, investigating
road traffic accidents. His PhD revolved around the technologies used in AVs and
their impacts on traffic safety.

e Expert 2: is currently PhD candidate at a German university and his research centres
on motion prediction of AVs in the context of intelligent infrastructure systems. He
also has been involved in a project aiming to build an intelligent infrastructure system
on German highways.

e Expert 3: is currently a post-doctoral researcher with wide expertise in the human-
swarm interaction and swarm robotics. His current research is on the trustworthiness
of autonomous systems in extreme environments.

e Expert 4: is a Professor of Computer Science and has many peer-reviewed
publications in the field of AVs and robotic. Some of his papers have won the best
paper prize from publishers and journals.

e Expert 5: is an Associate Professor in Urban Planning. She also has had ample
publications on transport politics and infrastructure planning. Her research is
currently targeting the contemporary models of urban governance and transportation
planning which are extendable to the area of autonomous driving.

e Expert 6: being an Associate Professor in Human Factors and Sociotechnical
Systems, her research covers potential safety risks that AVs can pose, particularly in
the initial introductory phase. Her expertise also includes approaches based on
complexity and systems theory to improve safety of transportation systems.

e Expert 7: holds a PhD degree and one strand of his research aims to develop an
international comparative comprehension of the urban impacts of novel mobility
technologies such as AVs.

e Expert 8: is an Assistant Professor in Smart and Sustainable Urbanism at an Irish
University. His current research is to address questions about impact that artificial
intelligence can have on urban design. He is also involved in a practical project
intending to investigate the sustainability potential of self-driving cars in urban
environments.

e Expert 9: is a PhD candidate in Urban Mobility Systems. Her research contributes
to coordination and trajectory planning of CAVs on freeway segments. She is also

involved in a project infrastructure planning for CAVs.
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Apart from the questions for the assigned blocks to the experts, all experts answered the
question concerning the impacts of KPIs (i.e., road condition, reaction time, traffic condition,
and technical reliability) on the collision risk. The average of the allocated percentages to
each link by the experts was calculated and used as the weighting scale. The results of the

survey are presented in section 4.3.

3.9. Underlying assumptions

An important attribute of a well-defined research problem is the articulation of its
constraints that narrow down the scope of research and indicate data, materials and research
methods required to solve it (Fortus, 2009). With all the involved variables/risk factors and
dynamic environment that AVs are expected to operate in, it is almost impossible to build a
risk model without making any assumptions and free from constraints. Fortus (2009) also
maintains that making constraining subject assumptions can confine the solutions space and
turn a broad problem into “more” defined problem. This section, therefore, is dedicated to
reflecting the assumptions about technological specifications, environmental and traffic

characteristics, and variable interdependencies in the BBN model.

In section 2.1.4 different levels of automation for AVs were presented and it was
discussed that the embedded technologies and level of human intervention vary accordingly.
These differences can shift the risk of collision to dissimilar levels for each of automation
levels under identical circumstances. To avoid ambiguities over functionality and system
specifications it was necessary to decide on the automation (autonomy) scale for modelling.
Delineating the automation level is also essential for expert knowledge elicitation phase of
this study as it certainly impacts the judgement of experts in evaluating the influence of
variables on the collision risk. To settle this issue the automation level was decided to be
SAE 4 which includes sophisticated autonomous driving technologies and still human
interventions may be required in cases such as disengagement or hazardous situations that

an AV cannot deal with.

The results of the literature review in this study (appendix A) reveal that the notion of
connectedness and communication with other traffic participants in addition to infrastructure
is attracting considerable attention in academic literature. There is a consensus that timely
and secured communication between traffic participants and infrastructure can reduce
collision risks. The connected and autonomous vehicle (aka CAV) term is also being now
broadly used in academic and non-academic literature. The establishment of connection and
communication between agents in urban traffic ambience, however, requires adequate

infrastructure, customised protocols, and security measures in place. After all, this possibility
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is assumed to be available for AVs to communicate through V2V, V2I and V2X channels

and receive/send information.

Demographic characteristics including gender, age and education are extensively studied
in traffic and accident analysis mainly because the impact of these factors on driving
behaviour and risk taking is undeniable. Nonetheless, demographic characteristics were not
included in the model, and it was assumed that they do not affect collision risk at SAE 4
level. Likewise, driver impairment as a result of alcohol or drug consumption was omitted
and it was assumed that the behaviour of road users (i.e., traffic safety culture) is

homogenous across a society.

Among academics and technical communities there is debate on whether AVs must be
strictly programmed to comply with the traffic rules, or they may be allowed to break traffic
laws under certain conditions, for instance, where there is an immediate risk of loss of life
or injury. If that is the case, several questions remain to be answered. For example, it must
be delineated who can permit the vehicle to break traffic laws and how such risks are
evaluated and by whom. To avoid those ambiguities the assumption here was that all traffic
participants must be compliant with traffic rules and regulations and non-compliance will

have adverse effect on traffic safety.

Various forms of cyber-attacks on connected AVs can disturb different functionalities
and paralyse one or more components of an AV. Correspondingly, the consequences on
traffic safety can be manifold. Sheehan ef al. (2019) used a Bayesian Network to classify
cyber-related risks for CAVs and discussed different types of attacks and their potential
severities. Katrakazas et al. (2020) reviewed safety implications of cybersecurity for CAVs
and investigated the probable scenarios for a compromised CAV. These consequences can
vary depending on type of attack, intention of attacker(s), duration of attack, its magnitude
and dozens of other factors. In this study, it was assumed that any cybersecurity breach will
only degrade the communication channels of a CAV posing Denial of Service (DoS) threat

(Katrakazas et al., 2020).

The term ‘collision’ limits accidents to a scenario that a CAV collides with one or more
traffic participant(s) (e.g., vehicles, bikes, pedestrians, animals, etc.) and/or obstacles. There
can be other safety incidents presumed for CAVs such as a data privacy breaches, injuries
to occupants due to discomforting driving styles or compromised safety measures, and fire
that are not led to collisions. Non-collision accidents are therefore excluded from the

keywords in database searching and emphasis was placed on collision risks.
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In assessing the influences of selected variables on collision risk, the current level of
technological progress for CAVs was set as a benchmark and experts were required to
answer the questions of survey based on the state-of-the-art technologies available for CAVs.
In that elicitation process the existing infrastructure was assumed to be the benchmark and

expected advancements were disregarded.

3.10. Summary of methodological discussions and conclusions

To summarise, this chapter put forward a set of criteria for qualifying relevant
publications for thematic analysis and identification of risk factors. Integrative literature
review and its protocols were discussed to regulate the selection and review of the
publications. A framework for thematic analysis was provided to . It was discussed and
justified why BBN is a fitted platform for synthesising qualitative and quantitative data in
this research. A comparison with other potential modelling techniques (e.g., ANN) was
drawn. The step-by-step development of the BBN model including construction of the
network and filling in the CPTs was explained. A new and efficient method was introduced
to populate CPTs. The proposed method is efficient in saving time during the elicitation
process and simplifies the that for the domain experts. The process for expert judgement
elicitation was described. A survey was designed to gather expert opinions on the weights
of parent nodes on their child(ren). Finally, the major assumptions in designing frameworks

and modelling were clarified.

The main conclusion from the methodological discussions and comparisons is that BBN
has a proven capability to handle large number of variables and serves as a competent
platform for integrating qualitative and quantitative data, particularly in risk analysis. The
outcome (i.e., probability distribution) provides a base for performing scenario analysis and
classifying risks to answer research questions in this study. Those features make BBN a
powerful tool to address research questions specified in section 1.5. The unique elements in
research method design in this study are adopting a socio-technical approach towards

collision risks in urban environments and employing ILR to construct a BBN model.
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Chapter 4

4. Results and analysis

This chapter presents the findings of ILR and TA (i.e., 53 risk factors) which formed the
skeleton of the BBN model. A description for every identified risk factor is provided to
support their selection and inclusion in the BBN model. The results of the expert elicitation
are exhibited and incorporated into the model. The outcomes of scenario and sensitivity

analyses are also demonstrated.
4.1.Results of the integrative literature review and thematic analysis

Among the main results of this project is the classification of the reviewed papers and
documents which attribute the collision risk to environmental, human, traffic and technical
causes. 594 papers were reviewed and the table in appendix A presents the main theme in
each paper as well as the subordinate themes. A summary is provided for every paper to
spotlight the topic and key points related to causes of safety degradations in AVs. These
themes were converted into ‘ranked nodes’ (Fenton, Neil and Caballero, 2007; Laitila and
Virtanen, 2016) to form the topology of the BBN model. In constructing the CPTs, labelled
states which represent qualitative variables that are abstractions of some essential continuous
quantities were used (Fenton, Neil and Caballero, 2007). Ranked nodes are especially helpful
when modelling relationships in NPTs involving variables that are (near) continuous
(Fenton, Neil and Caballero, 2007; Perkusich, Perkusich and de Almeida, 2013; Laitila and
Virtanen, 2016). The states were likewise derived from the literature. In this section a brief
explanation for every node in the model and justification for composition of states are

presented as follows:

Time of day: in accident reports involving AVs (Favaro et al., 2017) and analysis of datasets
assessing the driveability for AVs (Guo, Kurup and Shah, 2019) ‘time of day’ has a bold
presence. This is because there is a causal and correlative relationship between time of day
and other variables which directly affect the probability of collision and accidents. ‘Traffic
density’, ‘lighting conditions’ and ‘drowsiness’ are found to be dependent on time of day.

The states for this node are three-hour time intervals for a whole day period (00:00 — 24:00)
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as used in the Annual Road Traffic Estimates series published by the Department for
Transport (Havaei-Ahary, 2019).

Day of week: besides time of day, the accident reports take account of ‘day of week’ (Vorko-
Jovi¢, Kern and Biloglav, 2006; Allen et al., 2017; Favaro et al., 2017; Aung et al., 2018).
This variable directly affects the traffic volume as well as speed of vehicles. An ANN model
developed to predict the traffic flow in heterogeneous condition displayed the highest
sensitivity of traffic flow (as the output) to day of week and time of day (as inputs)
respectively (Kumar, Parida and Katiyar, 2015). To avoid higher number of elicitations in
the BBN model the state structure for this node was decided to be Boolean with only

weekdays and weekend as the states (Allen ef al., 2017; Verendel and Yeh, 2019).

Weather conditions: one of the major sources of threat to the safe operation of AVs is
adverse weather conditions such as precipitation, fog and sun glare (Yoneda et al., 2019). A
literature review on the effectiveness of radars under rainy weather shows up to 45%
reduction in the detection of radars (Zang ef al., 2019). This factor can effect change in other
environmental variables such as lighting conditions and road surface conditions. The states
for this node are defined as clear/sunny, windy, rainy, snowy, foggy and dusty (Chen ef al.,

2015).

Lighting conditions: also specified as ‘illumination’ in the technical literature (Guo, Kurup
and Shah, 2019), this factor can adversely affect the performance of visual cameras which
are mounted on AVs to detect and recognise objects (Rashed ef al., 2019). Reviewing the
preliminary report on the fatal accident in Arizona involving an Uber driverless car and a
pedestrian reveals that the section where the incident happened was “not directly illuminated
by lighting” (NTSB, 2018). Moreover, Paul and Chung (2018) drew attention to the
dysfunction that direct dazzling sunlight can trigger in the machine vision module of the
AVs. In May 2016, a Tesla Model S collided with a truck-tractor dragging a 53-foot
semitrailer and took the life of its driver. While the car was on autopilot mode both driver
and emergency brake system failed to notice the white truck-tractor against the brightly lit
sky (Paul and Chung, 2018; Winkle, Erbsmehl and Bengler, 2018). The states for this node
are daylight, dawn/dusk and dark/night (Chen et al., 2015; Guo, Kurup and Shah, 2019).

Visibility: obstructed visibility due to bad weather conditions, poor lighting or road layout
can restrict or thwart the perception and sensory module of the AVs (Bagheri, Siekkinen
and Nurminen, 2016). Winkle, Erbsmehl and Bengler (2018) analysed 1,286,109 digital
copies of accident reports to evaluate the role of limited visibility in accidents which
occurred in the state of Saxony between 2004 and 2014. The results suggested that limited

visibility is a risky scenario that must be taken into consideration for developing automated
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vehicles (Winkle, Erbsmehl and Bengler, 2018). Various functions in AVs such as road
marking detection hinge on camera-based vision systems (Mohsen et al., 2020).
Inappropriate road design or landscaping may block the visibility splay of the vision systems.
Poor visibility can blind these cameras or cause visual obstruction resulting in failure in
detecting or recognising objects/obstacles. The states for this node are good and bad

(Stroeve, Blom and Bakker, 2009; Zhang, Yau and Chen, 2013; Garcia-Herrero et al., 2020).

Road type: there are several factors that designing a road is highly dependent on them. ‘Road
type’ has a decisive influence on the layout, geometry and design of roads. For example,
Geometric Design of Roads Handbook explicitly states a link between the type of road and
development of gradeline, design of speed, horizontal and vertical alignments, and design
of urban drainage systems (Wolhuter, 2015). To enhance quality, preserve uniformity and
provide safety design standards are defined for each functional road type (Benson and Lay,
2016). Malin, Norros and Innamaa (2019) developed a risk profile for three road types and
three geographical locations in Finland. Their results affirm that the risk of accident
occurrence significantly varies across different road types. Therefore, this can be concluded
that road type plays a crucial rule in the frequency of road vehicle accidents and affects
variables such as permitted speed, traffic flow, driver reaction time and other road design
characteristics. The themes for this concept were roadway configuration, road layout and
road design, however, the former was used in the model as a node representing all those
aspects. The Department for Transport classifies the road types into four groups: single
carriageway, double carriageway, motorway and built-up areas (DfT, 2015). This
classification determines the speed limit law for each of those types of roads. Since built-up
areas are considered to be a type of road but any road can pass through built-up areas, this
option was excluded from the final composition of states for this node. As a result, the states
for this node were narrowed down to ‘single-carriageway’, ‘dual-carriageway’ and

‘motorway’ (Piao et al., 2004).

Roadway configuration: this factor and the variables that define its complexity have been
discussed in depth in the field of transportation and mobility. Number of lanes (Malin,
Norros and Innamaa, 2019), road curvature and slope (or gradient) (Yagar and Van Aerde,
1983), and road type (Intan Suhana ef al., 2014) are found to be determining characteristics
of roads as far as safety is at stake. A’lvarez et al. (2020) performed a case-control study to
locate urban road configurations in Valladolid that may needed redesigning to alleviate the
odds of a run-off crash. In their study they found geometric design factors such as number
of lanes, presence of traffic lights and length of curves to be influential up to twelve times
in the odds of a run-off crash (Alvarez et al., 2020). Wang et al. (2019) outlined the road

geometric parameters as curvature, number of lanes, gradient, and ramp type. To capture the
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impact of these factors a node with categorical states was incorporated into model. The states
are appropriate, challenging and complex. These states can specify how the combination of

the discussed factors above can provide a driving road environment for the vehicle.

Number of lanes: reviewing the literature on the accident causes for both conventional and
autonomous vehicles reveals that larger number of lanes exert influence on the increase of
the likelihood for accident occurrence. Analysis of 1606 accidents over a three-year period
in Central Florida shows that narrower lane width and larger number of lanes simultaneously
heighten the risk of accident for both female and male drivers (Abdel-Aty and Radwan,
2000). Further, Zurlinden, Baruah and Gaftney (2020) reported that the number of conflict
points for two-lane, three lane and seven-lane roads are 2, 7 and 77 respectively. By the same
token, safe lane departure for AVs is indispensable as lane-departure collisions between the
ego vehicle and other traffic participants is a likely scenario (Olofsson and Nielsen, 2020).

The states for this node are one lane, two lanes and multiple lanes.

Road infrastructure: Milakis, van Arem and van Wee (2017) reviewed the literature to look
at the policy-making and societal implications of AVs in urban areas. Among the keywords
in their review, ‘road infrastructure(s)’ along with ‘road design’ and ‘road planning’ was
used to search for the implications of transportation infrastructure in connection with the
AVs. In another study Nitsche, Mocanu and Reinthaler (2014) investigated the interactions
between road infrastructure and AVs. 76% respondents in the online questionnaire ranked
road infrastructure as ‘very important’ while only two percent rated it as ‘not important at
all’ (Nitsche, Mocanu and Reinthaler, 2014). Visibility and harmonisation of lane markings
and traffic signs, road surface friction, and pedestrians/cyclists protection (e.g. shielding) at
junctions were among the main listed factors with highest influence on the safety of AVs

(Nitsche, Mocanu and Reinthaler, 2014).

Work zones: roadwork operations are usually undertaken to maintain a standard level of
quality for road networks. Research shows that driving in work zones incurs more risk
comparing to non-work zones (Weng, 2011; Genders and Razavi, 2016). The peculiarity of
some work zones, forcing the vehicle to change speed and/or lane, and creating blind or
visually obstructed spots for the vehicle may incapacitate the perception and planning
modules of AVs. Research suggests that road work can increase the motor vehicle crashes
by 26% (Meng and Weng, 2013). In 2017 alone, a total of 158,000 vehicle crashes occurred
around the work zones on the US roads (Tang et al., 2021). Frequent lane changing and
merging manoeuvres can also add to the complication of the traffic scene (Wu et al., 2020).
Presence of work zones also contributes to the presence of obstacles (e.g. debris, material,

barriers, temporary signs, work equipment, etc.) (Weng, 2011). This includes encroaching
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over the public roads by nearby construction sites. A Boolean node was therefore designed
to involve this factor. The states for this node are ‘present’ and ‘not present’ refereeing to

the presence of work zones in a given driving environment.

Obstacles: a large body of literature in conjunction with many industrial projects are
dedicated to design and operationalisation of collision avoidance systems. One of the tasks
of path planning module of an AV is to generate a trajectory for the vehicle to avoid collision
with consideration of obstacles’ geometric characteristics and the kinematic constraints of
the vehicle (Ji ef al., 2016). This task becomes even more crucially important where the ego
vehicle reaches the edge of its stability limits and handling capabilities in constrained
environments (Ji et al., 2016). The recent accident in California between a Tesla car
(allegedly in autoploid mode) with a parked police car can demonstrate how presence of
(static and dynamic) obstacles on roads can delude the AVs and run into an incident (Calvert

et al., 2019).

Road Conditions RI: this variable compiles the impacts of the environmental nodes and
creates an intermediate node between them and the collision risk index as the outcome of the
model. It also reflects the overall suitability or complexity of road conditions including
surface friction (Kim ef al., 2018) that an AV may face during its travel. Malin, Norros and
Innamaa (2019) suggested three scales (green, amber and red) to classify road conditions.
‘Green’ denotes normal conditions, ‘yellow’ (or amber) represents poor, and ‘red’ refers to

hazardous road conditions (Malin, Norros and Innamaa, 2019).

Traffic rules enforcement: to reassure the safety of AVs the enforcement of traffic
regulations is an implication which needs to be recognised and dealt with ahead of mass
production and adoption of the technology (Baldini and Neisse, 2020). In fact, the effects of
traffic rules is highly contingent upon the enforcement of the rules (Aberg, 1998). Research
shows that the level of traffic laws enforcement makes a difference in drivers’ risk perception
and attitude (Aberg, 1998; Stanojevié, Jovanovi¢ and Lajunen, 2013). In a study comparing
the safety culture in China, Japan and the US, it is argued that the way that standards and
regulations are enforced has mutual interaction with (traffic) safety culture (Atchley, Shi and
Yamamoto, 2014). The safety benefits of reduction in absolute vehicle speeds are not
debateable. The World Health Organisation lays heavy emphasis on traffic law enforcement
to increase the safety of roads (WHO, 2009). The results of a literature review provided
strong evidence for a negative relationship between average speed enforcement and vehicle
speeds (Soole, Watson and Fleiter, 2013). To appraise the effectiveness of certain traffic
laws a three-point scale defined as low, medium and high was used before (Wali et al., 2017)

and is adopted in this study too.

87



Chapter 4

Traffic control infrastructure: investment on infrastructures is an intervention which
policymakers can call for to facilitate the adoption and safe operation of AVs (Cohen and
Cavoli, 2019; Soteropoulos et al., 2020). Traffic control in urban environments (particularly
crossroads) is a hurdle on the way of AVs and requires specific infrastructure compatible
with AVs to optimise operations at traffic intersections thereby reducing the risk of accident
(Rey and Levin, 2019). Inadequacy and lack of appropriate traffic control infrastructure for
collecting and transferring essential real-time data to traffic control centres can potentially
change the traffic scenes, congestion and complexity (Kurzhanskiy and Varaiya, 2015). The
US Department of Transportation (DoT) singled out infrastructure and traffic control devices
as a key source for traffic congestions which can give rise to the number of accidents (De
Souza et al., 2017). In a BBN model developed by Gregoriades and Mouskos (2013) to
identify black spots through quantifying the collision risk index, ‘traffic control’ was
included in the model as a node with three ordinal states. Hence, a node with three ordinal
states (sophisticated, partially developed and poor) was embodied in the model to count the

weight of varying levels of traffic control infrastructure in cities on the collision risk.

Other road users: Statistics on the fatalities (nearly 5,000 per year) and injuries (207,000)
of pedestrians alone in the US (Deb et al., 2018) can alone bespeak of the risk of collision
between vehicles and other road users including pedestrians, cyclists, motorcyclists and
animals. AVs are not exempt from this risk as the tragic accident between the Uber car and
a pedestrian in March 2018 raised concerns about the safety of the technology. Having
discussed earlier, elimination of humans from the driving loop can dramatically reduce the
number of collisions, however, even after the rollout of CAVs still this technology will have
to interact with humans on roads. While dealing with complex clutter and modelling
interactions with other road users is requisite, this problem has not been completely solved
for AD (Schwarting, Alonso-Mora and Rus, 2018). For that reason, the perception and
planning modules must be able to recognise other road users precisely and timely, anticipate
their trajectory and speed, and avoid colliding with them. Urban planners have suggested
dedicated lanes for AVs (Ye and Yamamoto, 2018) or shielding (Nitsche, Mocanu and
Reinthaler, 2014) to protect other road users against AVs in heterogeneous traffic flows.
These solutions directly or indirectly affect the frequency that AVs must interact with road
users other than AVs and HDVs. To measure this frequency, three states were defined for

this node: never-rarely, occasionally/sometimes and often-always.

Traffic composition: “Incompatibility of size between different types of road vehicles is a
major risk factor” (Mohan et al., 2006). Even after the AVs become widely disseminated,
mixed traffic will be a quite likely scenario for a relatively long period of time (Wagner,

2016). Since we already counted the effect of other road users such cyclists and
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motorcyclists, the ‘traffic composition’ node only concerns with the constitution of traffic in
terms of AVs and HDVs. This node therefore consists of three states: only AVs, only HDVs
and hybrid.

Traffic culture: Ozkan and Lajunen (2011) defined an accident as “either an independent
or combined outcome of internal factors of the multilevel sociocultural and technical
environment of traffic’. Ye and Yamamoto (2018) also showed that similar to varied
accident rates, cities appear to have different cultures when it comes to traffic safety.
Regardless of the antecedent reasons of this cultural variations, evidence confirms that
establishing the highest level of traffic safety is incumbent upon the right cultural conditions
(Atchley, Shi and Yamamoto, 2014). Sociotechnical approach also supports the involvement
of culture in safety analysis of a system where (human) operators are having interactions
with technology (Ozkan and Lajunen, 2011). From these facts one can conclude that in
addition to visible factors such as roadway characteristics, weather and lighting conditions,
less tangible factors that contribute to forming a traffic environment (including traffic
culture) are responsible for traffic safety (Shinar, 2017). Conservative, moderate and
aggressive are the states of this node which were extracted from a study on driving style

recognition (Yan et al., 2019; Li et al., 2021).

Traffic density: in the field of aviation the relationship between traffic density and traffic
complexity under higher levels of automation was scrutinised by Kopardekar, Prevot and
Jastrzebski (2008). The results indicate that traffic density and complexity have a positive
relationship and increase the risk of conflict (Kopardekar, Prevot and Jastrzebski, 2008).
Even more so, higher traffic density can trigger more lane changing (Zurlinden, Baruah and
Gaffney, 2020) and subsequently increase the risk of collision for ground vehicles.
Ultimately, it can be concluded that the risk of traffic conflict heightens with an increase in

density and a reduction in velocity (Kuang, Qu and Yan, 2017). Research shows that traffic
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flow and traffic density are highly correlated with time of day (Wang et al., 2018b). Fig. 4.1
depicts traffic flow distribution against time in Shenyang, China. Data for other major cities
suggest similar traffic flow distributions (Verendel and Yeh, 2019). Accordingly, a node is
dedicated to accumulating the impacts of variations in traffic density on traffic complexity.

The states are defined as no traffic at all (free flow), light, heavy and jam (congested).
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Fig. 4.1: The variations of approximate traffic flow against time at a typical intersection (a) and a

road (b) in Shenyang, China (Wang ef al., 2018b)

Speed: besides traffic density, among the significant traffic variables are speed and speed
difference (Wang et al., 2019). Relative speed is also a determining variable in verifying the
kinematic state of a vehicle (Wang, Yang and Hurwitz, 2019). A critical cause for traffic
accidents (particularly under poor weather conditions) has been the improper speed choices
(Yang, Ahmed and Gaweesh, 2019). In 2018, WHO revealed that reduction in average speed
results in less road accidents (Calvi et al., 2020). The common technique for measuring
collision risk compares traffic measurements such as speed and flow on a certain segment of
the road just before the occurrence of a collision, with the measurements from the same
segment under normal circumstances (Katrakazas, Quddus and Chen, 2019). In other studies
which adopted BBN approach to assess the collision risks (e.g., Simoncic, 2004; Gregoriades
and Mouskos, 2013; Sheehan et al., 2017), speed has a strong presence. Two states (i.e., safe

and unsafe) were assigned to this node.

Kinematic state: a collision avoidance system for AVs should be responsible for
continuously assessing the collision and destabilisation risks by monitoring the kinematics
and dynamics of the vehicle (He ef al., 2019). Meanwhile, handling road dynamics and
vehicle kinematics at the same time can be troublesome for the planning module and

computing unit of the vehicle (Glaser et al., 2010). In studying collision risks, the kinematic
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state of a vehicle can be defined in terms of its speed combined with longitudinal and lateral
distance from the nearby vehicles (or obstacles) (Cheng et al., 2019). As far as the distance
between the centroids of vehicles is not less than the safe separation distance they are in
safe mode, but when this distance is shorter that SSD the risk of collision soars and the ego

vehicle will be in unsafe mode (Campos and Marques, 2018).

Traffic complexity RI: recent study conducted by Zurlinden, Baruah and Gaftney (2020)
shed light on the relationship between traffic complexity (due to unstable flow or congestion)
and conflict likelihoods. Katrakazas, Quddus and Chen (2019) asserted that AVs must be
seen as interacting agents with the environment and other agents rather than an independent
entity. In urban environments where other road users are pervasive, AVs face another
dilemma to understand their intention and predict their course of actions, namely trajectory
and speed (Rasouli, Kotseruba and Tsotsos, 2017). Such an interaction needs full and
accurate perception of the environment as well as competent and sufficient planning
capabilities to handle complex traffic scenarios. One of the challenges that technology
developers are facing is to increase the capabilities of AVs to precisely perceive and interpret
complex traffic situations (Winkle, Erbsmehl and Bengler, 2018). For instance, Wang et al.
(2018) proposed a classification technique for the obtained sensory data to quantify the
traffic scenario complexity on roads. Three classes (i.e. simple, medium and complex) were

suggested in that research and are used as the states in this study too (Wang ef al., 2018a).

Training & experience: as long as humans remain in the loop, building knowledge and trust
for users or those who are supposed to interact with the technology will act as a mitigator of
unintended safety risks (Pradhan et al., 2019). To achieve this goal in addition to
familiarising the users with capabilities and limitations of the technology, education and
training become momentous (Cunningham and Regan, 2015; Pradhan ef al., 2019). The
level of trust in technology increases/decreases the level of risk that users perceive (Choi
and Ji, 2015). Further, Akash et al. (2017) discussed the importance and yields of past
experiences on forming the trust in HMI. Brinkley et al. (2019) reported a 20.75% increase
in trust in the technology after the participants experienced interacting with a prototype self-
driving car. From that, one can conclude that training and experience are influential in how
individuals interact with, treat and perceive the AVs. Those constructs can, to a considerable
extent, contribute to the (collective) understanding of humans on how the technology works
and where it may fail to fulfil its tasks. This will lead to calibrated reliance on the technology
and can prevent safety incidents by timely and apposite interventions. Thereupon, three
levels of training and experience are defined for this node to act as the states of its NPT. No

training at all, basic trainings and extensive can reflect the level of trainings and experience
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that users and interactors are supposed to receive before engaging with automated driving

systems in the real-world situations.

Trust & reliance: having discussed above, experience is the fundamental issue in how much
drivers trust in AVs and to what magnitude they calibrate their trust and reliance after they
experience the technology (Ho ef al., 2017). ‘Learned trust’ is the accumulation of
experiences with a system and influences that form the initial mindset of the individuals
(Akash et al., 2017). The relationship between trust and HMI (especially in automated
systems) has been the focus of researchers for long time. Akash ez al. (2017) maintained that
“to attain synergistic interactions between humans and autonomous systems, it is necessary
for autonomous systems to sense human trust level and respond accordingly. This requires
autonomous systems to be designed using dynamic models of human trust that capture both
learned and dispositional trust factors”. This can explain the role of trust in the quality and
extent of HMI in autonomous systems. Overtrust and under-reliance are two symptoms of
uncalibrated trust in autonomous systems that can ultimately lead to a safety risks (Hoffman
et al., 2013). To exemplify, Miller et al. (2016) reported that overtrust in the capabilities of
an automated system such as AV can delay the take-over process in a hazardous situation or
where the vehicle is disengaged. Therefore, three states were defined for this node as follows:

overreliance, calibrated reliance and under-reliance.

Perceived risks: in Al-based (autonomous) systems perceived risk is a product of delegating
control to the machine and its control mechanisms (Hengstler, Enkel and Duelli, 2016).
Perceived risk(s) can further affect drivers in adapting their behaviour to the road conditions
(Oviedo-Trespalacios et al., 2018). Risk (or hazard) perception can be defined in terms of
reaction times (as an operational KPI) that drivers record in responding to a risky situation
(Sagberg and Bjernskau, 2006; Barnard and Chapman, 2016; Sun and Hua, 2019). Drivers
in order to avoid road traffic collisions need to detect an event, rate it in terms of risk, choose
appropriate action(s) (or not taking any action) and finally enforce the decision(s) (Hulse,
Xie and Galea, 2018). The time interval for this process may vary between drivers and must
be short enough to avoid a collision. This perceptual factor, therefore, can contribute
(mitigate) the collision risk in AVs under human supervision. Three states (i.e., high, medium
and /ow) were defined for this node to measure the impact of perceived (level of) risk on the

reaction times to the road dynamics (Arbabzadeh et al., 2019).

Human-Machine Interactions (HMI): the current landscape of autonomous vehicles
displays that passing through the semi-autonomous phase before reaching full autonomy is
unavoidable (Bellet et al., 2019). While the interactions between humans and AVs are

essential during this phase, analysing the quality and extent of the necessary interactions is
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mandatory to ensure the safety of AVs (Fan et al., 2018). In the recent standard (ISO 21448)
created by the automotive industry for ADAS, human-machine interaction issues are
highlighted to be addressed (Koopman et al., 2019). Although the automotive industry has
recognised the dire need to devise verification and validation approaches for HMI, detailed
standards are still missing (Burke, 2020). Other than human drivers, other road users (e.g.
pedestrians) need to have safe interactions with the AVs (Wang et al., 2020a), but the focus
of this thesis is upon the interactions between the AV driver and the vehicle. The transition
from ‘automation’ to ‘autonomy’ requires fundamentally new approaches to reinforcing
HMI in AVs. Then this can be concluded that improper or lack of HMI can be a source of
risk for AVs. This node comprises of four states: very effective, moderately effective, slightly

effective and no interactions at all.

Situation(al) awareness (SA): situation awareness is an ‘emergent property’ of a
sociotechnical system (Stanton et al., 2017) and closely related to the concept of risk
perception, and drivers need time to develop SA when they are required to tack back the
control of vehicle (Vlakveld ef al., 2018). Situation awareness and allowed time for taking
over the control of vehicle are reported to be correlated (Vlakveld et al., 2018; Vogelpohl et
al., 2019). For example, decreased SA is associated with delay in responding to hazardous
situations (e.g. braking when faced with a failure) both in simulated and real-world driving
(Jamson et al., 2013). There are some factors such as involvement in secondary tasks
(Jamson ef al., 2013; Endsley, 2018; Petersen et al., 2019; Zhou, Yang and Zhang, 2020),
drowsiness (De Winter et al., 2014; Vogelpohl et al., 2019; Kaduk, Roberts and Stanton,
2020b) and training (Schomig and Metz, 2013; Endsley, 2017) which affect the drivers’
situation awareness, and reaction time lastly. Petersen et al. (2019) conducted an
experimental study to assess the impact of SA on drivers’ trust level. They manipulated SA
in three levels: no S4, low SA4 and high SA (Petersen et al., 2019). These levels were adopted
for defining the states of this node in the BBN model.

Secondary task: non-driving related tasks also known as secondary tasks are supposed to be
allowed in highly AD (e.g., SAE Level 3 and above), but its influence on drivers’ takeover
performance especially with a limited time budget, has to be taken into account to avoid
collisions (Zhou, Yang and Zhang, 2020). Longer reaction times (Lu, Coster and De Winter,
2017; Mok et al., 2017; Minhas et al., 2020) and higher collision rates (Metz, Schomig and
Kriiger, 2011) are specified as the consequences of being engaged in secondary tasks while
driving semi-autonomous vehicles. Depending on the autonomy level, technology
capabilities and local law, the driver of an AV may or may not be allowed to divert his/her
attention to one or a combination of secondary tasks for safety reasons. For instance,

following the fatal crash of a Tesla car in 2016 which led to the death of its driver while the
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autopilot mode was active, Tesla imposed further restrictions on hands-off driving (BBC,
2017). Based on the above discussion, a Boolean node was inserted into the model to capture

the (conditional) effect of involvement in secondary tasks on SA and reaction time.

Drowsiness: drivers are generally more prone to drowsiness in AD and are expected to show
slower reactions comparing to manual driving (De Winter et al., 2014; Vogelpohl et al.,
2019). Moreover, sleepiness can have crucial impacts on the time that drivers need to
(re)gain SA to handle a takeover safely (Lu, Coster and De Winter, 2017). In semi-
autonomous driving where human supervision and control might be required at some point,
drowsiness can potentially affect drivers’ situation awareness (Lee et al., 2019). Kaduk,
Roberts and Stanton (2020b;a) observed that drowsiness, driving performance and time of
day are strongly related (figure 4.2). Karolinska Sleepiness Scale (KSS) has been widely
used to investigate drowsiness (sleepiness) in myriad contexts. This scale is adopted here as
well to shape the states for the drowsiness node. Extremely alert, alert, neither alert nor
sleepy, sleepy and extremely sleepy are the ordinal states for this node (Akerstedt and
Gillberg, 1990).

Changes in Driving performance over the Circadian Cycle

Driving Performance

6 8 10 12 14 16 18 20 22 24 2 4 6 8

Time of day

Fig. 4.2: Changes in driving performance over a 24-hour period (circadian cycle) (Kaduk, Roberts
and Stanton, 2020b;a)

H-M interfaces: in general, human-machine interfaces are platforms designed to facilitate
cognition and communication between human and machine (Gong, 2009). There is a strong
link between HMI and H-M interface in the technical literature. Designing and integrating
interfaces that promote calibrated trust in AVs is exceptionally vital for the safe operation of
semi-autonomous vehicles, and this will rely upon a valid understanding of whether those
interfaces are capable to build trust and improve SA (Dixit, Chand and Nair, 2016; Miller et

al., 2016; Wintersberger and Riener, 2016). Users have expressed their concerns about the
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competence of human-machine interfaces to maintain their SA and satisfy their location
verification needs (Brinkley et al., 2019). Minhas et al. (2020) also emphasised that
appropriate design of H-M interfaces is critical to ensure that takeover message is properly
and timely conveyed to human driver. Using right interface can have profound impact on the
reaction time in emergency scenarios (Petermeijer et al., 2017). Depending on the type,
design and ease of use this impact can vary. To assimilate the effectiveness of the H-M
interface(s) on the HMI and reaction time into the model a five-point Likert scale form

extremely effective to not effective at all was used to set up the states for this node.

Reaction time RI: one of the determining factors in collision likelihood and collision
avoidance in manual driving is the timing of driver reaction to traffic dynamics and
conditions on the road (Hugemann, 2002). Even with AVs, driving scenarios with short-time
headways and unstable vehicle dynamics might emerge and lead to unpredictable extreme
events (Roche, Thiiring and Trukenbrod, 2020). In AD, particularly where humans are kept
in the loop (i.e. SAV), this variable has yet decisive influence on collision risk. In a recent
study, Shangguan et al. (2020) quantified the auto-drive vehicle collision risk by the Time-
to-Collision frequency. Russo et al. (2016) in a BBN model which was developed to assess
the risk levels for AVs, included a separate module in the model to specifically measure
reaction time. Some other researchers similarly estimated collision risk based on TTC (Russo
etal.,2016). This variable can also act as a fitting KPI for human performance while required
to intervene and avoid a collision (Greenlee, DeLucia and Newton, 2018; Roche, Thiiring
and Trukenbrod, 2020). Several scholars such as Arbabzadeh et al. (2019) and Dixit, Chand
and Nair (2016) used a 0-8 second interval with a two-second step to analyse the driver

reaction times. These intervals (i.e., 0-2, 2-4, 4-6 and 6-8) formed the states for this node.

Perception accuracy: a combination of localisation systems (e.g., GPS), sensory systems,
mathematical and intelligent algorithms shape the skeleton of the perception module of fully
AVs (Marzbani et al., 2019). A wide range of the algorithms which have been developed for
autonomous control of AVs and searching in unknown, rely on vision systems and sensors
(Marzbani et al., 2019). However, deficiency of perception will occur when the artificial
perception components of the vehicle fail to accurately sense the immediate surroundings of
the vehicle and supply enough details to the processing and planning modules for deciding
on the most legitimate (re)action in a timely manner (Lipson and Kurman, 2016). Many of
these technical failures occur due to the uncertain environment in which AVs operate like
road and weather conditions, inaccuracy in perceiving the environment and generating
inadequate or imprecise sensory data (Khonji, Dias and Seneviratne, 2019). Sensor and
algorithm limitations, high dynamism of the environment and hardware defects are just a

few causes to name. Sensory system of AVs is yet unable to discern the subtle social aspects
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of driving and traffic volatility in the way that human drivers do (Vinkhuyzen and Cefkin,
2016). Inaccurate or inadequate perception of the environment dramatically increases the
likelihood of collision particularly in highly dynamic and cluttered urban environments. The
main sensory equipment installed in AVs consists of vision sensors (e.g. cameras), LIDAR
and radar (Koci¢, Jovici¢ and Drndarevi¢, 2018; Schwarting, Alonso-Mora and Rus, 2018;
Zhao, Liang and Chen, 2018; Novickis et al., 2020). Therefore, these sensors were set as the
parent nodes of ‘perception reliability’ in the model. The states for the technical nodes are
defined based on Automotive Safety Integrity Level (ASIL) (Koopman and Wagner, 2016)

except for ‘system integration’ and ‘cybersecurity’.

Safety requirements in automotive industries may vary depending on the criticality of
functions and local/regional standards. ISO 26262 defines detailed quantitative techniques
and risk classification methods for verification and validation of vehicle safety (da Silva
Azevedo et al., 2013; Sanguino, Dominguez and de Carvalho Baptista, 2020). Safety
Integrity Levels (SILs) were originally stemmed from the UK Health and Safety Executives
guidelines and serve as indicators of the level of safety of a function in safety-critical systems
(Papadopoulos et al., 2010). ASILs are an automotive industry adoption of SILs for the
functional safety of Electrical/Electronic/Programmable (E/E/PE) Safety-Related Systems
in road vehicles (e.g., AVs) (Gheraibia, Djafri and Krimou, 2018). They range from least
stringent (ASIL A) to most stringent (ASIL D) (Mader et al., 2012; Mariani, 2018). da Silva
Azevedo et al. (2013) adopted ASILs for software and systematic failures too. According to
ISO 26262, the acceptable probability (i.e., target values) for hardware or software failures
for each class of ASILs are as follows (Lu and Chen, 2019; Torok, Szalay and Saghi, 2020):

e ASILD:<1078p1
e ASILC:<1077h71
e ASILB:<1077hp71

e ASIL A: <107°h~! or hardware metric calculation not required

* h stands for hour (time)

Sensor fusion: in addition to the deployed sensors, ‘sensor fusion’ plays a critical role in
feeding accurate information to the processing and planning module to augment scene
recognition (Kato et al., 2015). Sensor fusion entails simultaneously fusing various data
coming from an array of sensors in order to reinforce the vehicle’s perception as well as the
reliability of the system (Campbell ef al., 2018). Sensor fusion is a basic method to overcome
challenges such as limited sensing range, diversity of dynamic obstacles and large number
of false positives and/or negatives (Zheng et al., 2018). The reliable function of sensor fusion

component is crucial for autonomous control, navigation and planning (Patel ef al., 2019),
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but any failure in this component can have similar consequences to sensor failures.
Disengaged or faulty sensor fusion unit will result in uncertain and noisy information and

the deficiencies associated with every single sensor will not be compensated (Lamkin-

Kennard and Popovic, 2019).

Software reliability: assuring safe operation of an autonomous system is conditional upon
the reliable and robust operation of its critical software components (Hutchison et al., 2018).
Reassuring that all software pieces are working safely requires formal verification of
important properties along with identification of defects which can hinder the safe operation
of the system and pose safety risks (Hutchison et al., 2018). Haynes and Thompson (1980)
defined software reliability “as the probability of the absence of any software-related system
malfunction for a given mission”. Such errors and defects in the software subsystems of the
AVs can result in inadequate control (Koopman and Wagner, 2016; Abdulkhaleq et al.,
2017) and cause an irregular behaviour or collision (Sheehan et al., 2017). Some of these
software malfunctions will happen during the operation of AVs and can have catastrophic

consequences (Koopman and Wagner, 2016).

There have been four major areas in the literature with a link to the software reliability of
AVs. Al performance which refers to the capability and maturity of machine learning and
deep learning algorithms of the perception and planning modules of the vehicle is
determining factor for a reliable software system (Khonji, Dias and Seneviratne, 2019). AVs
also must be capable of generating behaviour (like human performance) based on learning
potentials and this task becomes even more important in mixed urban traffic (Guo ef al.,
2017). Behaviour generation subsystem of AVs which is designed based on data-driven
rather than modelling approaches (Wolf ef al., 2018), has an immense role in software
reliability and collision avoidance (Bernhard, Pollok and Knoll, 2019). Behaviour generation
algorithms are in charge of analysing and examining the interactions between the nearby
road users (Bernhard, Pollok and Knoll, 2019) and decide on the next action to achieve
mission goals (Barbera et al., 2004). Planning module (consisting of path, trajectory and
motion planning algorithms) of the vehicle is responsible for generating a geometric path
between two spatial points and it influences both kinematic and dynamic properties of the
vehicle (Gasparetto ef al., 2015). Any abrupt motion can imperil the safety of the ego vehicle
and surrounding road users (Gasparetto et al., 2015). Intelligent control technologies
constitute a key component of AVs (Zhao, Liang and Chen, 2018). Control and following
the generated path by path and trajectory planning modules while maintaining coordination
between lateral and longitudinal stability is another significant problem associated with AVs
in crowded driving environments. Vehicle dynamics have strongly non-linear characteristics

and complex properties that make path-following a demanding job for the control
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algorithms/systems of AVs (Wang et al., 2020b). Figure 4.3 demonstrates the overall

structure of a control system designed for AVs.

Vehicle station

4 N

Vehicle control

Driving target algorithms: e.g., control
Traffic regulations local path planning, systems:
Environment perception artificial decision- direction,

Driving knowledge making, and speed,
Vehicle recognised map de/acceleration distance

Vehicle

\ /

Fig. 4.3: Control system in AVs (Zhao, Liang and Chen, 2018).

Hardware reliability: every AV is a combination of hardware components and software
architecture (Koopman and Wagner, 2017; Schlatow ef al., 2017). Collisions may occur due
to both software or hardware failures (Goodall, 2020). Therefore, reliability of hardware
components such as computing hardware and actuators is a risk factor in AD like
conventional vehicles. The National Motor Vehicle Crash Causation Survey (NMVCCS)
conducted by NHTSA between 2005 and 2007 highlighted the share of vehicle components’
failures (e.g. tyres, transition, and engine-related defects) in motor vehicle crashes in the US
(Singh, 2015). Similar to software reliability, hardware reliability can be “defined as the
probability of the absence of any hardware-related system malfunction for a given mission”
(Haynes and Thompson, 1980). Although any component or part in a vehicle can fail or
become faulty at some point, not all component failures pose a collision risk. Therefore, the

focus in this research will be the reliability and failure of critical components.

The concept of ‘health management’ stems from avionics and has been used in mission
tracking for unmanned aerial vehicles (UAVs) (Valenti et al., 2007). The idea is that an
autonomous vehicle should be capable of actively monitoring and managing vehicle
subsystems to increase mission and functional reliability through more accurate and timely
system self-awareness (Valenti et al., 2007). There are different definitions for self-
awareness and self-aware autonomous systems e.g. in Lipson and Kurman (2016, pp.283-
285), but in this research, self-awareness refers to the capacity and capability an AV to

recognise its own state and limitations, feasible actions, and predict the result of these actions
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on the vehicle’s state and the surrounding road users (Schlatow et al., 2017; Ravanbakhsh et
al., 2018). This includes the awareness of the states of vehicle’s components. Since the
human driver is not fully (or at all) involved in the driving tasks, the vehicle must bear the
responsibility of monitoring (or even rectifying) the state of its critical resources and
components. It is urgent for an AV to decide whether to continue or halt a journey when a
defect is detected. This requires the technology to be aware of the function of its components

and have sufficient decision-making capacity to make such a trade-off.

According to NHTSA levels of vehicle autonomy (please see table 2.2), the main principle
to distinguish the levels of autonomy in automotive industry is the share of control between
the vehicle and human driver on board (Goodall, 2020). In other words, the division of
control over the key controllers and actuators such as throttle, steering, brakes and
acceleration between the intelligent systems and human drivers determines the level of
autonomy of a vehicle. The contribution of control algorithms has been discussed above, but
any control systems in AVs comprises of software and hardware including actuators, gauges
and sensors. In consequence, hardware reliability in AVs depends on the reliability and

function of its control components.

Communication reliability: Wilken and Thomas (2019) argue that ‘data acquisition’ and
‘local processing’ are integral features for cars to become decision-making machines (i.e.
intelligent or autonomous cars). Along with the data which is gathered through the sensors
and detection devices of the vehicle, AVs are expected to obtain a large volume of data from
the communication channels known as V2V, V2I and V2X (Wilken and Thomas, 2019).
Meanwhile, due to the high vehicle mobility, vehicular communication anomalies such as
packet loss and transmission delay can negatively affect the performance of the cooperative
driving system (CDS) and subsequently impair the safe operation of AVs (Jia and Ngoduy,
2016). As a result, the performance of AVs can be significantly dependent on reliable and
secure communication with other road users and traffic infrastructure (Yao, Shet and

Friedrich, 2020).

Cybersecurity: among the major risk factors which cause a grave concern for potential users
about the safe and secure operation of AVs, cybersecurity is on the top of the list (Taeihagh
and Lim, 2019). Likewise, policy-makers, regulators and insurers have amplified the same
concern (Sheehan et al., 2019). The risk can arise from various sources including but not
limited to uncoordinated design of infrastructure and inter-vehicular systems which provide
room for hackers to take advantage of these security holes and take over the control of the
vehicle. AVs are cyber-physical systems that rely on imbedded data processing systems for

managing control systems of activities such as steering, acceleration/deceleration, braking
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and lane keeping (Axelrod, 2015). Any attack on or breach of cybersecurity integrity of AVs
(either infrastructure or the ego vehicle) is likely to cause disastrous collisions. Li et al.
(2018) extensively studied the potential cyber-attacks on the communicated positions and
speeds of AVs and their influence on longitudinal safety. Their results indicate that when an
AV is under slight cyber-attacks, it is more hazardous if communicated positions are
attacked than speeds (Li et al., 2018). Form that, it can be concluded that cybersecurity risks
add to the collision risks for AVs.

System integration: designing robust AVs entails coping with several integration challenges
(Campbell et al., 2010). Many complicated functionalities of AVs such as lane-changing
manoeuvres, adopting safe speed and emergency braking require full integration of the
system and sub-systems involving sensing, planning and control architecture (Lin, Juang and
Li, 2014). A fundamental challenge is to ensure that the integration of the hardware and
software is designed and implemented at a level that provides adequate robustness and
redundancy against component failures (Campbell ef al, 2010). It is not unlikely that
researchers and vehicle manufacturers may design and implement disparate control
structures, but they need to ensure that at least the following four layers are well integrated
to avoid any collision: environment perception, trajectory planning, trajectory execution and
driver interface (Szalay et al, 2018). The states for this node were extracted from the
Systems Integration Technical Risks (SITR) assessment framework and are as follows:

critical, significant, moderate and low (Loutchkina et al., 2013).

Collision RI: the objective of this research is to measure the collision risk in urban
environments, then the outcome of the model should be the collision risk index (classifier)
under the influence of the outcome of four blocks (environmental, human, traffic and
technical factors) which were defined based on sociotechnical theory. The importance of
collision avoidance in AVs was discussed in section 2.2.2. This node has therefore four
parents (i.e. road condition RI, reaction time RI, traffic complexity RI and technical
reliability RI). The states for this node were extracted from a research designed for
classifying traffic scenarios for AVs based on ANN risk estimation (David, Lancz and

Hunyady, 2019). These states are Minimal, low, medium, high and extreme.

4.2. The BBN Model

The final topology (structure) of the BBN model is presented and discussed in this section
(figures 4.4 and 4.5). The network is divided into four blocks with distinct colours. The
nodes in blue colour are dedicated to environmental factors that can affect road conditions.

White nodes capture and accumulate the influence of human factors which can affect
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reaction times of human drivers on board. The factors concerning with the traffic layout are
represented in amber. These variables and the risk index measure the complexity of traffic
conditions that AVs must be capable of handling them. Green was used for the technical
factors that are influential in avoiding collisions by AVs. Finally, the collision RI as the
outcome of the model and an indication of the collision risk is displayed in red. The outcome
of each block is an RI node which is also one of the four parents of the ultimate outcome of
the model (i.e., collision RI) and they act as intermediate nodes to aggregate the impacts of
the observable nodes (Brito and Griffiths, 2016). Collision RI node categorises (minimal to
extreme) the risk of colliding with an object or other road users for an AV based on the
evidence that can be inserted at any node(s) of the model. The links also denote conditional

relationships between the nodes.

Furthermore, in assessing the mission success for AUVs Thieme and Utne (2017)
asserted that any overall risk model for AUV operation should encompass aspects related to
the technical system, environmental conditions, and HOFs (human and organisational
factors), that is, human-autonomy collaboration (HAC) (Thieme and Utne, 2017).
Regulations imposed by authorities, stakeholder requirements, and societal expectations are
issues that can come along later and future work remains to integrate all these aspects into
one model. The HAC and inclusion of traffic conditions can be a major contribution of this
thesis, since several works have already focused on the technical system performance and

environmental conditions, as mentioned in 2.2.

In addition to Socio-technical Theory, SoTeRiA framework and the human-autonomy
collaboration conceptual framework also support the four-block structure for assessing risks.
The World Health Organisation (WHO) training manual for preventing road traffic injuries
(Mohan et al., 2006, p.23) clearly suggests that “road traffic crash results from a
combination of factors related to the components of the system comprising roads, the
environment, vehicles and road users, and the way they interact”. In this research, human
factors represent operators, technical factors concern with the competence and reliability of
AVs, and environmental factors are the variables that appraise the impact of the surrounding
environment on the collision risk. However, the environment surrounding AVs (or other road
users) consists of physical characteristics as well as dynamic traffic conditions that vehicles
face during their travel on roads. Along with that, Socio-technical Theory places a special
emphasis on the inclusion of organisational factors in the risk analysis for complex technical
equipment and assessing technological risks (Mohaghegh, Kazemi and Mosleh, 2009;
Mohaghegh and Mosleh, 2009; Ashrafi, Davoudpour and Khodakarami, 2015; Pence ef al.,
2019). The main reason for this emphasis is the relevance and significance of behavioural

aspects (e.g., safety culture) to the notion of risk (Pence et al., 2019). The extensive research
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(e.g., Wiegmann, von Thaden and Gibbons, 2007; Atchley, Shi and Yamamoto, 2014;
Edwards et al., 2014) on traffic safety culture and its effect on collective safety-related
behaviours in different cities and countries also can support this. For this purpose, the fourth
block in the model was dedicated to the ‘traffic condition’ factors and variables which have

influence on the collision risks.

Links between the identified variables and assigned weights can define the way that they
interact with each other. The links (arcs) in the BBN model are drawn based on the findings
of the ILR and thematic analysis and the logical relationships (Marcot and Penman, 2019)
between the identified factors. Those findings were merged, in order to construct the
network. Some variables have a reciprocal relationship with each other. This sometimes is a
hard task to define clearly these arcs. Since BBNs are acyclic, it is not possible to model
mutual influences (Thieme and Utne, 2017). In order to resolve mutual influences, the most

frequently mentioned/cited direction of influence were taken to determine them.

When considering links between the nodes, it can be truly argued that, for example,
‘weather conditions’ have usually influence on the speed that drivers/vehicles adopt, or poor
visibility adversely affects the performance of visual cameras of the CAVs. As discussed in
3.8.1.5 inter-block links were omitted to avoid overcomplicating the model and curbing the
exponential growth of NPTs. Lack of inter-block links will not significantly damage the
accuracy of the model, but represents conditional independence assumptions (Pearl, 1988;
Hénninen, 2014). Nonetheless, some inter-block links were still essential. For example, there
is a very strong relationship between ‘time of day’ and driver ‘drowsiness’ (please see figure
4.2) (Kaduk, Roberts and Stanton, 2020b). Similarly, in many cities around the world, traffic
density is highly correlated with time of day (please see figure 4.1). In areas except near
North and South poles, the lighting condition is also a function of time. Moreover, although
this node is in blue and placed under the category of environmental blocks, can be a universal
variable in this model. Therefore, the links between time of day and those aforementioned

variables cannot be neglected.

The NPTs were populated in a way to generate uniform distributions for JDPs (except for
a few nodes that their distributions cannot be uniform e.g., drowsiness and lighting
conditions). In this stage it is assumed that all parents of each child have equal influence on
it and all the prior probabilities except for drowsiness and lighting conditions were assumed
to be uniform. The NPTs with uniform distributions are exhibited in figure 4.4. From there
we can insert the weight of each variable on its child node through multiplying the elicited

weights by the corresponding values in the table.
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In section 3.5, it was explained that observations (evidence) can be entered at any node
when they become available. For example, the reliability of sensors in different types of
AVs, weather conditions across the world or even countries, and situation awareness among
drivers can vary significantly. Depending on the AV models, geographical and urban
locations, human factors and traffic environments the values for each input node (based on
the observations) can therefore vary significantly and result in substantially dissimilar
collision risks distributions. Figure 4.6 shows an instantiation based on inserted evidence at
only one node in every block (i.e. visibility, HMI, sensor fusion and other road users) and

the collision risk distributions for each instantiation.
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Chapter 4

It has been discussed that evidence and observations can be fed into the model at any
node in BBN models. A scenario is devised to show how inference works and JDPs change
in the model when new observations (or significant amount of hard data) become available.
It is assumed that the visibility is ‘good’ for a given location and time, HMI is ‘facilitated
and very effective’, the presence of other road users is ‘never-rarely’ and the reliability of
sensor fusion is at ‘ASIL D level’. These assumptions (imaginary observations) were
incorporated into the model and figure 18a shows how the JPDs update themselves based on
the new information. In the same manner, figure 18b demonstrates the instantiation on the
same nodes but with assuming the other extreme ends this time. For this instantiation, the
visibility is presumed to be ‘bad’, HMI is set on ‘no interaction’, presence of other road users
is set to be ‘often-always’ and the reliability for sensor fusion is set as ‘ASIL A level’. The

probability distribution for the collision RI was as follows:

Table 4.1: JDPs of risk indices after insertion of new evidence.

Visibility: good=1.00; bad=0.0 Visibility: good=0.0; bad=1.00
HMI: facilitated & effective=1.00; HMI: facilitated &effective=0.0;
moderately effective=0.0; weak=0.0; | moderately effective=0.0; weak=0.0;
no interaction=0.0 no interaction=1.00

Traffic condition

Moderate=0.2587

Traffic condition

§- Other road users: never/rarely=1.00; | Other road users: never/rarely=0.0;
- occasionally/sometimes=0.0; occasionally/sometimes=0.0;
often/always=0.0 often/always=1.00
Sensor fusion: ASIL D=1.00; ASIL Sensor fusion: ASIL A=0.0; ASIL
B=0.0; ASIL C=0.0; ASIL D=0.0 B=0.0; ASIL C=0.0; ASIL A=1.00
Green=0.6702 Green=0.0484
Road condition RI| Amber=0.2814 |Road condition RI| Amber=0.2815
Red=0.0484 Red=0.6701
0-2 sec=0.4518 0-2 sec=0.1222
. . 2-4 sec=0.2061 i . 2-4 sec=0.2221
Reaction time RI Reaction time Rl
4-6 sec=0.2208 4-6 sec=0.2065
é 6-8 sec=0.1212 6-8 sec=0.4492
= Simple=0.7322 Simple=0.0091

Moderate=0.2587

RI RI
Complex=0.0091 Complex=0.7322
ASIL A=0.2549 ASIL A=0.2451
. ASIL B=0.2500 . ASIL B=0.2500
Technical Rl Technical RI
ASIL C=0.2500 ASIL C=0.2500
ASIL D=0.2451 ASIL D=0.2549

Changes in the probability distributions of reaction time and traffic complexity Rls are
apparent. Although the judgement of expert(s) has not been incorporated into the model, still
we can witness the influence of selected nodes on the overall risk JPD for collision risk index
and other four risk indices. Backward propagation can also be seen in those figures. Having
discussed earlier, one benefit of BBN technique is the backward propagation when an
observation is entered at output or intermediate nodes and may change the state probabilities

in the parent nodes (Ghabayen, McKee and Kemblowski, 2006).
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Chapter 4
4.3. Results of the survey (expert judgements)

The table below show the average of the weights elicited for every parent node in the
model. The standard deviation (SD) for each weight is reported next to it. Lower SD values
(e.g., for the impact of traffic control infrastructure on the adoption of safe speed) indicate
convergence in opinions and larger SDs (e.g., for the impact of software reliability on
technical reliability) reflected controversy among the domain experts. The relatively low
SDs for the weights of road condition, reaction time, traffic complexity and technical
reliability RIs on the collision RI are mainly due to larger number of respondents as all the

participants were asked to provide their opinions on them.

Table 4.2: the average and SD of elicited weights for child nodes.

Child node Parent nodes Weight SD
Situation Drowsiness 0.1500 0.0500
Training & experience 0.4500 0.1500
awareness

Secondary task 0.4000 0.2000
Trust & reliance Perceived risks 0.6000 0.1000
Training & experience 0.4000 0.1000
HMI Trust & reliance 0.4500 0.0500
Human-machine interfaces 0.5500 0.0500
Perceived risks 0.2667 0.0665
Reaction time RI Situation awareness 0.3167 0.0165
HMI 0.4166 0.0835
Vision cameras 0.2000 0.0500
Perception accuracy LiDAR 0.2667 0.0288
RADAR 0.2833 0.0288
Sensor fusion 0.2500 0.0500
Al performance 0.4834 0.1040
A Behaviour generation 0.2000 0.0866
Software (reliability) Planning 0.2333 0.1607
Software control systems 0.0833 0.0577
GPS 0.1000 0.0707
Communication V2v 0.3750 0.0353
channels V2I 0.3250 0.0353
V2X 0.2000 0.0707
Communication Communication infrastructure 0.4667 0.1365
- Cybersecurity 0.3500 0.0500

reliability —
Communication channels 0.1833 0.1401
o Control equipment 0.3000 0.2291
Hardware reliability Self-awareness 0.7000 0.2291
Perception accuracy 0.2433 0.1913
Software reliability 0.4000 0.4358
Technical reliability R Communication reliability 0.1567 0.1209
System integration 0.1233 0.1167
Hardware reliability 0.0767 0.0404
Day of week 0.3500 0.3536
Other road users Traffic rule enforcement 0.2500 0.0707
Traffic control infrastructure 0.4000 0.2828
Day of week 0.5000 0.0000
Traffic density Time of day 0.3000 0.1414
Traffic control infrastructure 0.2000 0.1414
Speed Traffic rule enforcement 0.3000 0.0000
Traffic control infrastructure 0.7000 0.0000
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Kinematic state Traffic rule enforcement 0.3000 0.0000

Speed 0.7000 0.0000

Traffic density 0.1500 0.0707

Other road users 0.2000 0.0707

Traffic complexity RI Traffic composition 0.4000 0.0707

Traffic culture 0.1500 0.0707

Kinematic state 0.1000 0.1414

. . Road type 0.6333 0.1528

Road configuration No. of lanes 0.3667 0.1528

Lighting conditions 0.2780 0.1070

N Road configuration 0.2167 0.0289
visibility —

Weather conditions 0.2833 0.1041

Road infrastructure 0.2220 0.0381

Obstacles Work zones 0.4667 0.0577

Road configuration 0.5333 0.0577

Obstacles 0.1980 0.0035

Visibility 0.2557 0.1261

Road condition Rl Road configuration 0.1742 0.0652

Road infrastructure 0.1408 0.0707

Weather conditions 0.2313 0.0595

Road condition Rl 0.2500 0.0850

Collision R Reaction time RI 0.2100 0.1125

Traffic complexity Rl 0.3100 0.0699

Technical reliability RI 0.2300 0.0949

The ranked node technique proposed by Fenton, Neil and Caballero (2007) was used to
incorporate elicited weights into the model. In ranked node technique, experts are asked to
assign weights to nodes (Rohmer, 2020). For example, if there are n parent nodes and each
of them has m states, then there will be only n parameters to elicit, while in full elicitation
n X m parameters are required to fill up the whole table. Parent nodes are defined in an
interval from 0 to 1 and accumulated weights for all parents of a node must make up to 1.
This gives ground for representing unequal influence of multiple factors and the functional
representation of NPTs can be traced since uncertainties in the relationships become more
explicit (Rohmer, 2020). Figure 4.7 shows the BBN after the incorporation of weights and
the strengths of links between the nodes.
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4.4. Scenario-based risk analysis

Scenario analysis is an effective tool for (strategic) decision-making in the presence of
uncertainty (Postma and Liebl, 2005). Across different disciplines it is a common practice
to quantify uncertainty in model output based on a set of formulated scenarios. Ambiguities
over the behaviour of the model output can be reduced and trends can be detected by
comparing them under unlike circumstances. Scenario analysis is not intended for generating
forecasts; it projects conceivable images of the future development due to the changes in
input variables (Postma and Liebl, 2005). In this section, the aim is to nominate a number of

functional scenarios and study changes in the outcome.

A scenario describes a situation by determining the state of every input variable of the
model at a certain or over a period of time. Six (four extreme and two random) scenarios are
designed to provide a basis for comparison between risk distributions. First and fourth
scenarios represent the situations that all 29 input variables in the model are in their least
safe and safest states, respectively. Second and third scenarios represent the in-between
situations. For instance, the input variables for the technical block were in ASIL A in the
first scenario, ASIL B in the second scenario and so forth. For input nodes with three states,
it was set on the least safe state in the first scenario, on the middle in the second and third
scenarios, and on the safest state in the fourth scenario. For the input nodes with two states,
it was substantiated on the unsafe state in the first and second scenarios, and on the safe state
in the third and fourth scenarios. Finally, the risk distributions for these six scenarios were

observed and compared.

The risk distributions (please see figure 4.8) indicate a shift in collision risk from extreme
to minimal when we move from the worst-case scenario towards a scenario in which all
variables are in their most desirable (i.e., safest) conditions. The corresponding exponential
PDF drawn through the histogram of JPDs for collision RI in scenarios 1 and 4 are almost
symmetrical along the line x = a. The fitted trends in scenarios 2 and 3 are almost straight
lines with inverse slopes and symmetrical along the line x = b. Those trends in risk
reduction from scenario 1 to 4 in addition to the sensitivity analysis in the following section

can indicate the areas that have higher priorities in safety aspects of CAVs.
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Scenario 1 Scenario 2
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Fig. 4.8: Results of scenario analysis. Y axis represents probability.

4.5. Sensitivity analysis

Saltelli (2002) defines that “sensitivity analysis [...] is the study of how the uncertainty in
the output of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input”. In other words, sensitivity analysis enables us to observe
which nodes have greatest or weakest influence on any target node (Fenton and Neil, 2012,
p.264). The sensitivity analyses conducted by BBN tool can help to rank the uncertainties

and then prioritise data collection for further research (Kabir et al., 2015). Sensitivity
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analysis should be ideally run after uncertainty analysis (Saltelli et al., 2008, p.1).

Uncertainty analysis, in this thesis was carried out in the form of scenario analysis in section

44.

Nodes coloured in red in figure 4.9 are the variables that are important for the calculation
of the posterior probability distributions in collision risk since it was set the target in
sensitivity analysis. The intensity of red colour has a direct relationship with the sensitivity
of the target node to the coloured nodes. The nodes in grey colour do not contain any
parameters that are used in the calculation of the posterior probability distributions over the
collision risk. Sensitivity of any of these nodes is zero and are determined qualitatively based
on GeNle relevance computation layer before any computation is initiated. It is important to
caveat that the sensitivity analysis algorithm generates context-dependent results. The values
of calculated derivatives depend on the current target(s) and the set of observations made in
the network. Further observations or any changes in either CPTs, links between the nodes or
assigned weights to links will prompt the algorithm to recalculate the derivatives and

recolour the nodes.

A decision or in broader terms, a policy, may involve political, environmental,
commercial, technical, financial and other types of input variables. To plan for a range of
optimal outcomes, an essential task is to determine the most ‘contributing’ variables among
risk-model input variables (Koller, 1999, p.169). In a risk model, as a decision-making tool,
the quantity of risk can change by making any change to input variables. Hence, to determine
the influence of a single input variable on the outcome (i.e., risk) all variables are held
constant except one that is allowed to vary (Koller, 1999, p.171). The range of changes in
the output variable is recorded. The result of sensitivity analyses is commonly presented in
the format of a ‘tornado’ diagram (e.g., Fenton and Neil, 2012, p.265; Ashrafi, Davoudpour
and Khodakarami, 2015). Figure 4.10 illustrates the tornado diagrams for the target node in
BBN model in this study. It demonstrates the reachable ranges for the ten most influential
combination of node states on the collision RI’s Extreme state. This can be analysed for
other states such as Moderate or Minimal and any child nodes other than collision RI can be

set as the target.

114



Chapter 4

S3ULBYD
UOEIUNWILIO?)

Aunassiaghy
BININASEYU UOENUNLLOT

IS[OPOIAl SINOD Ul paur1ojaad sisA[eue AADISUSS 64 "SI

[AE] uswdinbs
|aguog

[AE] B]E}S JEWSULY

Aqngqeyas
alempley

e
AUIgeI2) UOEIUNLILIOT [ALE]
JUSLWSDI0pUS
SLWSIEAS [0J1U0D SIBMUOS [ALE] S3|NJ BIL
I Apesjdwos oyyel)
FE] 198N pROJ J34I0
Buuued AuIges) JEMY0S
JlIqEl FIE] [AE]

Aususp oel) et yaam 1o ABQ
uojesauab
InalAEyag

foeanaoe vondaasad
[ALE] 2] uarsny [ [ALE]
2auewloylad |y Josusg 4 8w uoesy 4 UopUOD pROY SHIEISA0
[#E] [#IE]
Hvawvd SEJBWED [ENSIA,
EIEY
SIUOZTHIOM
2B W-H
[#E]
o

SIUBYSL P ISNIL

¥SE} AlEpU0IaS

aUNjanseLy U peoy

YU paraasag

SSIULIBME LOGENYS
uoyesnfyuos peoy

Ak

[~IE]
add peoy

suoppuod Gugybin

[AE]

KB J0 2wl

[PE]
SUE| 40 ON

SSAUSMOI]

aduaadxa g Buuel )

115



Chapter 4

Figure 4.10 depicts the tornado sensitivity diagram for the four states (i.e., Minimal,
Moderate, High, and Extreme) of collision RI in GeNle software. Label represents observed
state, length of each bar corresponds to the magnitude of influence on model outcome
achieved by changing specified state. The green side of bars denotes the resulting probability
that P(collision_risk_index) = Minimal or Moderate or High or Extrem for the states
presented. The red bars represent the probability after reversing the observed states. The bars

are sorted from the most to least sensitive parameters for a selected state of the target node.

Sensitivity for collision_risk_index=Minimal
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Fig. 4.10 a: Tornado diagram for P(collision_risk_index) = Minimal

Sensitivity for collision_risk_index=Moderate
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Fig. 4.10 b: Tornado diagram for P(collision_risk_index) = Moderate
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Sensitiity for collision_risk_index=High
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Fig. 4.10 c: Tornado diagram for P(collision_risk_index) = High

Sensitivity for collision_risk_index=Extreme
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Fig. 4.10 d: Tornado diagram for P(collision_risk_index) = Extreme

Table 4.3 ranks 19 nodes of the model across the four blocks based on the highest
maximum sensitivity. The target node for the sensitivity analysis was set on the ‘collision
risk RI’ node. The average sensitivity and minimum sensitivity for the nodes in that table
are presented too. This table together with the scenario analysis in previous section form the

main foundation of policy implication in following section (i.e., section 5.3).
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Table 4.3: results of sensitivity analysis while collision RI was set as target

Node Max AVE. Min

sensitivity | sensitivity sensitivity
1 Traffic control infrastructure 0.306 0.074 0
2 Weather conditions 0.118 0.02 0
3 Traffic composition 0.114 0.021 0
4 Al performance 0.04 0.008 0
5 Day of week 0.035 0.013 0
6 Traffic rule enforcement 0.029 0.007 0
7 Traffic culture 0.014 0.003 0
8 H-M Interfaces 0.01 0.002 0
Road type 0.009 0.002 0
9 Planning (p:qt:éi(t-’f)]ectory and 0.009 0.002 0
10 RADAR 0.009 0.002 0
11 Time of day 0.008 0.002 0
1 Traffic complexity 0.008 0.001 0
Other road users 0.008 0.001 0
13 Road infrastructure 0.004 0.001 0
Training & experience 0.004 0.001 0
LiDAR 0.002 0 0
14 | Communication infrastructure 0.002 0 0
Behaviour generation 0.002 0 0

In the next step, the Rls (i.e., road conditions, reaction time, traffic complexity, and

technical reliability) were set as target and sensitivity analysis was iterated. The only node

that appeared among influential nodes but was not captured in the first round of sensitivity

analysis was HMI. The results are summarised in table 4.4.

Table 4.4: results of sensitivity analysis while the outcome node for each block was set as tar

Risk Index Rank Antecedent node Max sensitivity
1 Traffic control infrastructure 0.465
Traffic complexity 2 Traffic composition 0.174
3 Day of week 0.053
1 Weather conditions 0.595
Road conditions 2 Road types 0.042
3 Time of day 0.034
1 Al performance 0.500
Technical reliability 2 Radar 0.105
3 Planning 0.095
1 H-M interfaces 0.499
Reaction time 2 Training and experience 0.173
3 HMI 0.043

4.6. Summary of results and conclusions

et

This chapter reported the results of ILR which were used to form the structure of BBN

model. The results indicate that there are a relatively large number of variables that can pose

a risk to safe operation of CVAs. A socio-technical approach allows us to categorise those
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variables and construct a BBN model with four blocks (environment, human operators,
traffic conditions, and technical reliabilities). The outcome of expert elicitation phase was
also provided and incorporated into the model. The experts placed a heavy emphasis on the
role of traffic conditions in collision risk, and the least emphasis was attached to human

reaction capacity in highly autonomous driving.

The results of scenario analysis demonstrate an exponential relationship between the
states of input variables and collision risk distribution for the outcome node in a way that
deterioration of input variable states collision risk increases and while input variables are in
their safest states a probability for collision risk tends to be minimal. Furthermore, the
findings of sensitivity analysis suggest that only 17 nodes out of 53 appear to have a
considerable influence on CAV collision risk and impact of other variables are trivial. It can
be concluded that in large BBN models not every variable can have a meaningful influence
on the outcome of the model, although this depends, to a substantial extent, on the topology

of the model and how CPTs are composed.

The sensitivity analysis also revealed that the most decisive impact on collision risk
comes from traffic control infrastructure. This opens up further avenues for exploration with
regards to policy making endeavours to mitigate collision risk of autonomous driving.
Among the technical variables, Al algorithms maturity (performance) appeared on the top
of the list. This highlights the criticality of decision making in AVs. A sophisticated, mature
and agile software system will eliminate the risk factors from the human block. If an AV is
fully capable of handling every driving scenario (i.e., SAE level 5) no handover to (or
reaction form) human driver will be required. As a consequence, with the current pace of
advancements and technological progress some of the identified risk variables in 4.1 may

not remain relevant in long term.
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5. Discussions and policy implications

The following chapter is divided into three sections. Section 5.1 reviews the main
challenges in developing a BBN model for the purpose of assessing risks in complex
systems. Section 5.2 provides a critical review of the current autonomy classification
approaches and their impact on safety of CAVs. Policy implications are discussed in section

5.3. Lastly, the major research limitations are recognised in section 5.4.
5.1. Pitfalls in developing a BBN model for complex systems

Identifying the variables and causal linkages between them was among the primary
dilemmas (Korb and Nicholson, 2003, p.30; Pearl, 2009, pp.43-44; Groth and Mosleh,
2012). Some of the variables are dependent and this can result in double counting (Li ef al.,
2012; Landuyt ef al., 2014). Such dependencies also exacerbate the difficulty of finding
causal links and their directions. This challenge becomes even worse while developing a
modular BBN. For example, it is supported by literature (e.g., Yoneda et al., 2019; Vargas
et al.,2021) and there is ample evidence that perception accuracy of an AV depends on (or
is affected) by weather conditions. In other words, adverse weather conditions can obstruct
sensing of the environment through sensors and impair perception accuracy for an AV.
Another example can be the causal link between visibility and reaction time of a human
(supervisor) driver. These inter-block links, however, were omitted to avoid myriad links in

the model. Inclusion of such links can significantly change the results of sensitivity analysis.

Aside from the above challenges, there were a number of others that needed to be
overcome to ensure the quality of the research. Finding a balanced point between the
qualitative and quantitative methods, trade-off between the comprehensiveness and
simplicity of the BBN model and deciding on the knowledge elicitation methods and
techniques were among the major challenges experienced during the modelling process. It
is crucial for the model to consolidate major factors influencing the risk and avoid
oversimplification, but it is also necessary to avoid complicating the model with redundant
nodes (Fenton and Neil, 2012, p.162). Complicated structures with redundant nodes are

likely to cause confusion for experts and slow down the elicitation process.
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Eliciting expert judgements for CPTs is inherently a tiering and time-consuming task for
experts. Reducing the workload of experts in dealing with large CPT entries while ensuring
the quality of results is a challenge to address (Rohmer, 2020). Two solutions were adopted
to circumvent an exhausting elicitation. Firstly, the modular design which helped to divide
the burden between domain experts. Secondly, using a new method to only elicit experts’
opinions on the weight of parent nodes on their children. Ranked node method was also used
to incorporate the weights into the model. There are still some caveats to the combination of
these methods. There is a possibility that the generated values for the CPTs (using the method
developed in section 3.8.2) do not result in uniform distributions and therefore bring about
unequal weights for parent nodes. A scaling factor can be used to equalise the weight of

variables.

Absence of BBN validation due to lack of real-world data poses a real challenge to assess
the accuracy and validity of the model (Farmani et al., 2012; McDonald, Ryder and Tighe,
2015; Piitz, Murphy and Mullins, 2019). Growth and Mosleh (2012) also recognised this
problem and maintained that since BBNs are used when data are scarce, finding a benchmark
to validate human reliability assessment (i.e., expert elicitation) is impossible, although
diversifying the sources of data and verifying experts can add to the robustness of the model.
Lack of a benchmark or case study, prevents knowledge engineers to test the model against
real-world results and calibrate the parameters of the model. It is noteworthy that a risk
model is not supposed to completely capture the essence of a complex system and provide
accurate estimates (Haimes, 2018), particularly when the uncertainty is deep. Rather, it can
be seen as a supportive tool for decision making under uncertainty (Chen and Pollino, 2012;

Farmani et al., 2012).

5.2. Autonomy: discrete or fuzzy?

The Law Commission of England and Wales and the Scottish Law Commission
developed the concepts of ‘user-in-charge (UIC)’ and ‘no user-in-charge (NUIC)’ for laying
a foundation to define a legal accountability system for AVs (Law Commission of England
and Wales, 2022). Some automated driving systems (ADS) may be authorised NUIC mode
which are referred to as NUIC features. This implies that some other features will still need
a user to take charge of them. Therefore, H-M Interaction as one of the main sources of risk
is not entirely eliminated at least from the legal perspective. With the current state of the
technology, it may not be practical to draw a bright line between features that still need user’s
attention during driving and those that do not need it. A large body of academic literature

(e.g., Schomig and Metz, 2013; Mackenzie and Harris, 2015; Mok et al., 2017; Van Dam,
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Kass and VanWormer, 2020) is concerned with the problem of passivity in driving where

drivers have to shift from passively monitoring tasks to performing them actively.

A few widely adopted taxonomies for automation or autonomy levels in the context of
vehicle automation were provided in section 2.1.4. To avoid a sheer scope, the focus of this
research for collision risk analysis was set on SAE level 4 where the technology has more
capability to handle more driving scenarios (comparing to level 2 and 3) and the possibility
for human intervention is not completely ruled out yet. According to the definition provided
by SAE, all aspects of the dynamic driving tasks during driving mode-specific performance
are handled by an automated driving system, even though a human driver does not respond
appropriately to an intervention request (SAE International, 2016). This raises some practical
problems for implementation of autonomous driving and most importantly for regulators and
legislators. The Law Commission joint report declares that even their recommendations
heavily rely on SAE taxonomy (Law Commission of England and Wales, 2022). This
indicates the importance of investigating the implications of that taxonomy on the safety of

AVs.

Firstly, the ‘mode-specific’ attribute needs to be disclosed. One can envisage hundreds if
not thousands of combined driving functions and traffic scenarios for road vehicles. It is not
clear under what circumstances and in which driving scenarios the technology will reliably
and safely navigate a vehicle and perform all dynamic driving tasks. This definition may be
referring to vehicles similar to shuttles (without steering wheel and pedals) that traverse
predefined routes at low speed and have no or limited interaction with other vehicles. Then
the question will be who can intervene and how an intervention can be made in case the

vehicle requests one?

The second challenge in that definition arises from ambiguities around intervention
requests and ‘appropriate’ responses to them. It appears obscure if a level 4 AV can still
operate safely without an appropriate response from a human driver to a take-over request
issued by the vehicle, then why such a request is necessary to be made? That definition
assumes that the vehicle is fully capable to drive itself safely even without human
interventions. However, there can be situations that there is a failure in the system (either
software or hardware). For example, imagine that the sensor fusion module of an AV stops
working and at the same time the vehicle is receiving contradictory data from its sensors
regarding a surrounding vehicle’s trajectory. Is the vehicle still competent to decide on a
chain of appropriate (re)actions in a timely manner? What happens when the vehicle issues

a take-over request to the driver in this situation, but the driver decides not to respond to the
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request because his/her assumption is that the vehicle can still operate without any

intervention?

Answering the above questions will be critical to developing and enforcing regulations
as well as licensing users. If a level of human interventions is still required for level 4 AVs
it needs to be clarified what interventions, under what conditions, in what driving scenarios,
and through which interfaces are going to be requested from human drivers. Furthermore,
more delineation is still needed to distinguish level 4 from level 3 and 5. The ambiguities
and multiplicity of aspects of autonomous driving suggest that drawing a clear-cut border
between autonomy levels is not straightforward. Apart from theoretical frameworks and
general taxonomies for autonomy in AVs, it appears to be rather a fuzzy concept than
discrete. A fuzzy approach towards measuring autonomy in road vehicles not only allows
for more variability in the interval between non-automated and fully-automated, but also

facilitates measuring autonomy of processes instead of output (Godin, 2002).

5.3. Policy implications for safety of CAVs

Policies are prerequisite for promoting and regulating a disruptive technology on a wider
scale (e.g., societal level). Thus, ITS cannot be governed and become functional without
effective and coherent policies in action. Johnson (2017) maintains that the nature of policy
decisions (both nationally and internationally) will drive how CAVs will be accommodated
and what form of vehicle autonomy will be permitted. Among the primary aims of this
research was to use the results for elaborating on policy implications and providing further

insights for stakeholders.

Autonomous riding is now becoming more feasible than ever before, and policymakers
need to address potential concerns without overly burdening taxpayers and confining its
promised benefits. A legitimate and immediate concern that policymakers are facing is the
safety of CAVs, especially in complex environments (Anderson et al., 2014, p.6; Kalra and
Paddock, 2016; Koopman and Wagner, 2017; Khonji, Dias and Seneviratne, 2019; Koopman
et al., 2019). The scenario and sensitivity analyses in previous sections in addition to the
existing literature can shed light on the areas that have more decisive influence on collision
risk in urban environments. Six major areas are highlighted which need special attention

when it comes to the safety of CAVs. Those areas are discussed in the rest of this section.

The mass adoption of CAVs is predicted to introduce new requirements and standards for
the design of infrastructure to pave the way for their safe operation as well as ensuring the
safety of other road users (Gavanas, 2019). In fact, enabling infrastructure plays a critical

role in reaping the benefits of socio-technical autonomous systems (Gopalswamy and
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Rathinam, 2018; Manivasakan et al., 2021; Ramchurn et al., 2021). The BBN model in this
study includes three nodes that require infrastructural requisites. Traffic control and
management, road condition and communication reliability (e.g., V2I) majorly depend on
sophisticated infrastructure. These three types of infrastructure and their roles in autonomous

driving are also highlighted in the work of Maurer ef al. (2016).

5.3.1. Traffic management systems

The efficiency of road traffic systems hinges on the capacity of the traffic infrastructure
(Maurer et al., 2016). For instance, a pedestrian at the side or in the middle of a road may
present higher risk than one who is commuting on a separate and shielded pedestrian
pavement along the road. Advanced traffic control devices and technologies such as loop
detectors or magnetic sensors that spot the presence of vehicles at a stop bar in addition to
conventional devices that can estimate the velocity and turn movements of vehicles enhance
managing traffic flow at intersections (Guanetti, Kim and Borrelli, 2018). Traffic congestion
and presence of too many agents with no or low organisation can confuse the path planning
and object recognition algorithms of CAVs and increase the risk of collision. Therefore,
upgrading and adapting the traffic control and management infrastructure can mitigate that
risk. Effective traffic management systems reduce traffic complexity and improve traffic

efficiency which directly affect traffic rule enforcement.

Designated lane(s) for CAVs is among widely discussed solutions for safety and traffic
management considerations (e.g., Johnson, 2017; Ye and Yamamoto, 2018; Ivanchev et al.,
2019; Ma and Wang, 2019; Saeed, 2019; Manivasakan et al., 2021; Mirzaeian, Cho and
Scheller-Wolf, 2021). Dedicated CAV lanes are believed to significantly reduce the
probability of encountering unpredictable random behaviours triggered by human drivers
(Ivanchev et al., 2019). The negative impacts of mixed traffic state can be alleviated to a
large extent too. Although this seems to have safety benefits for CAVs and other traffic
participants, the feasibility of that solution needs to be assessed. Road type, geometric
constraints of existing roads, road capacity, merging segments, and proportion of CAVs to
the total number of vehicles are important factors that need to be taken into consideration.
While the capacity of motorways and highways can allow for those lanes, typical urban roads

with two lanes may need extension to accommodate a dedicated lane for CAVs.

The existing traffic signs and lights are designed for human drivers and are expected to
remain in place at least until conventional vehicles dominate the roads. Recognising traffic
signs and signals can turn into a challenging task for CAVs in real world. That might be due

to lighting and traffic conditions, cluttered background, occlusion, motion blur or deformity
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(Yang et al., 2015; Lengyel and Szalay, 2018). Improving the capabilities of the perception
and processing modules of CAVs can mitigate this challenge to some extent, but adjustments
at infrastructural levels are still requited to augment the safety of roads and reducing collision
risks. Uniform and well-maintained road signs is recommended by Liu et al. (2019) to
address this issue. In addition, one of the main applications of V2I communication is
proposed to be in traffic control and management by transmitting real-time traffic situations
to CAVs (Li and Liu, 2020). Installation of RSUs (Liu et al., 2019; Kim et al., 2021),
autonomous intersection management (AIM) (Manivasakan et al., 2021), and cellular
interfaces (Bouk et al., 2018) facilitate V2I and provides a supplementary means for

assessing traffic situations and following traffic rules.

5.3.2. Secure and reliable communication platforms

The role of communication channels (i.e., V2V, V2I, and V2X) in facilitating
autonomous driving was discussed in sections 2.1.7 and 4.1. Those channels, however, will
not have a palpable safety effect if the existing infrastructure is not upgraded (McAslan,
Gabriele and Miller, 2021). Gopalswamy and Rathinam (2018) label three levels of
communication that enable V2I. Level 1 consists of close rage wireless communication
between Multiple-Sensor Smart Packs (MSSPs) and nearby vehicles. Examples for this
category of communication can be dedicated short range communications (DSRC), Wi-Fi,
cellular, and 5G. Level 2 establishes communication between neighbouring MSSPs. Fibre
optics technology is suggested for this level. Lastly, level 3 connects MSSPs and cloud-

based computing.

While more cyber connectivity expands vehicle and traffic control capacities, real-time
data transfer, and diagnostic functions, it increases vehicles’ and transportation systems’
exposure to higher risks of cyberattacks (Zou, Choobchian and Rozenberg, 2021). Cyber
security has been identified as a dilemma and major source of risk not only for CAVs, but
also for other components of ITS such as Internet of Vehicles (IoV). Although cybersecurity
did not appear among the most influential nodes of the BBN model, there is ample literature
(e.g., Johnson, 2017; Parkinson et al., 2017; Bouk et al., 2018; Li et al., 2018; Lim and
Taeihagh, 2018; Gavanas, 2019; Sheehan et al., 2019; Katrakazas et al., 2020, p.73; Torok,
Szalay and Saghi, 2020; Kim et al., 2021) that emphasises the criticality of this factor when
it comes to safety considerations of CAVs. Connectivity attribute of cyber-physical systems
stipulates sophisticated and integrated cyber-attack deterrence. The findings in the work of

Kim et al. (2021) also confirms this.
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Classification of cyber threats, as Sheehan et al. (2019) suggest, is a fundamental step to
contemplate their likely consequences and adopt appropriate measures to prevent or tackle
them. Kim et al. (2021) extensively reviewed and classified the potential cyberattacks on
CAVs at vehicular level and recommended defence measures for vehicle on-board
architecture. Nevertheless, security measures at network and infrastructural levels must be
resilient, up-to-date and under perpetual revision. Strategies for enhancing cyber resilience
must be evolved to mitigate the impact of any future cyberattacks on transportation cyber-
physical systems (Zou, Choobchian and Rozenberg, 2021). Cyber resilience is responsible
to adapt and mobilise the system to resist cyberattacks and remain operational during the
disruption (Bouk et al., 2018). The systematic literature review conducted by Katrakazas et
al. (2020, p.95) suggests that certifications and audits in compliance with standards and

regulations developed for CAV cybersecurity is an active field of research.

5.3.3. Urban design and planning

Weather condition appeared in the second place in the sensitivity analysis. Furthermore,
the surveyed experts ranked road condition RI as the second influential among the four IRs
specified in the BBN model. Alongside augmenting technical and technological capabilities
of CAVs, interventions in urban design and planning are necessary to improve road
conditions and provide a more CAV-friendly environment. Thompson et al. (2020) found
that the risk ratio for road transport injury in the best performing city type is approximately
as half as the poorest performing city type. Determining and eliminating blind zones (e.g.,
the corner edge of intersections), severe curvatures and irregular patterns (Yoo, Jeong and
Yi, 2021), improving lane markings and illumination conditions at night (Johnson, 2017;
Ye, Hao and Chen, 2018; Liu et al., 2019; Saeed, 2019; Carrignon, 2020), reducing the
number of speed bumps (Liu et al., 2019), and repairing potholes (Johnson, 2017) are the
main remedies for mitigating the safety risks arising out of inappropriate road design and

conditions.

5.3.4. Regulation, standardisation and certification

It was explained in section 2.1.8 that perhaps the most significant distinction between
CAVs and HDVs is delegating the tasks that are performed by human drivers in HDVs to
Al algorithms. In sensitivity analysis, Al performance node of the BBN model was ranked
as the fourth factor affecting the collision risk. Along with that, there are many academic
papers (e.g., Scherer, 2015; Abduljabbar et al., 2019; Cunneen, Mullins and Murphy, 2019;
Khonji, Dias and Seneviratne, 2019; Cummings, 2021) that underline the risks and

limitations of Al in autonomous driving. Commensurate and sector-specific regulations, as
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emphasised in the UK’s National Al Strategy, allows the risks to be addressed effectively
(Office for Artificial Intelligence, 2021). In spite of that, technology developers and car
manufacturers seem to be way ahead of the regulatory bodies and legislators which might
be impacting them in a way that does not best serves public interests. This can be overcome
by active engagement with the relevant industry sectors, academic communities, and other
stakeholders to develop a more in-depth understanding of the risks and safety implications.
Recent research projects such as Societal Level Impacts of Connected and Automated
Vehicles (LEVITATE, 2019), Trustworthy Autonomous Systems (TAS Hub, 2020) and
HumanDrive (UK Government, 2020) are intended to shorten the gap and support policy-

making processes with evidence.

Standardisation of CAV systems and determining the degree to which CAVs must be
standardised are among the policy options for responding to safety concerns (Johnson,
2017). Uniform standards for vehicle design and operation will contribute to overall system
integration (Straub and Schaefer, 2019) and user experience as well. Incorporation of
steering wheel and pedals (Hanna and Kimmel, 2017), software safety (Koopman et al.,
2019), testing methodologies (Silva et al., 2021), H-M interfaces (Straub and Schaefer,
2019), and communication protocols (Johnson, 2017; Khonji, Dias and Seneviratne, 2019;
Straub and Schaefer, 2019) are just a few examples of the areas that standardisation can

ensure the safety of CAVs.

Vendor-specific hardware equipment and algorithms plus lack of recognised standards
hinder data sharing across different transport/non-transport systems and geographies (Nur
and Gammons, 2019). On the other side, Khonji, Dias and Seneviratne (2019) argue that
transparency and explainable algorithms are a public request and vital for explaining the
reasonings behind individual safety incidents. Still there are practical questions to be
answered. Fagnant and Kockelman (2015) raised five questions about the data sharing,
ownership and usage: who should own or control a CAV’s data? What types of data will be
collated and retained? Who will have access to these data? In what ways will such data be
made available? And, for what purposes will they be used? Data-sharing, along with privacy
and security policies, make data a core element of policy-oriented transportation planning

(Glassbrook, 2017, pp.77-80; McAslan, Gabriele and Miller, 2021).

The importance of certification for CAV cyber security was pointed out earlier. With
more open road trials, the absence of safety certifications becomes more evident and
increases risks to public safety. Rapid pace of developments and heterogeneous software and
hardware configurations pose a challenge to developing uniform verification standards and

so the consistent certification framework that encircles all variants of CAVs (Dia et al.,
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2021). A major safety certification concern arises from the self-adaptiveness (or real-time
learning) ability of CAVs (Koopman and Wagner, 2017). The self-adaptiveness feature
might engender a different behaviour pattern after interacting with other traffic agents than
what was observed during testing and certification. Currently, certification frameworks have
inadequacies to handle that uncertainty, because they require analysing almost all possible

system behaviours up-front in the design, validation, and verification processes.

In automotive industries, certification of vehicles depends on an ability to pass rigorous
testing of components for durability and reliability in case of an accident or failure (Martin
et al., 2015). Testing for certification of CAVs should further verify how the underlying
software and hardware components perform under various degrees of uncertainty that can
jeopardise safety of passengers and other traffic participants (Cummings, 2019). In this
sphere, policymakers and regulators should have an active role to ensure that stringent and
transparent certification tests for consistent evaluation of CAVs will secure the safety
benefits for public in first place (Dia ef al., 2021). Yun ef al. (2016) predicated that Google
has leveraged the establishment of a certification system for autonomous driving in the US
and that can sound the alarm for other countries. This is not to say that technology developers
must not be involved in testing, regulatory and certification processes, but those processes

must be governed by regulatory bodies and legislation.

The notion of licensing can be extended to users of CAVs. There are still ambiguities
about the nature and level of interventions required from human drivers at higher automation
tiers (i.e., SAE 3 to 5). According to the taxonomy developed by SAE, the driver in a level
4 CAV is not going to be called for intervention, but can still take over the control of vehicle
if wishes to. Since July 2014, state legislations in Florida, Michigan, California, Washington
DC, and Nevada demand that all drivers involved in AV testing on public roads must be
licensed and prepared to take over vehicle operation (Fagnant and Kockelman, 2015). This
raises urgent questions about the competence and driving skills required to safely respond to
a wide range of traffic situations and how those skills and competence are going to be
certified. The driver licensing issue is one of the major policy implications for CAVs that
needs careful deliberation (Lari, Douma and Onyiah, 2015; Johnson, 2017). Next question
relates to the licensing of elderly drivers and those with special needs whose cognitive and
physical abilities for using incorporated interfaces must be examined (Hancock et al., 2020).
This may discount the pledged benefits of CAVs for those groups unless fully autonomous

vehicles (i.e., level 4 & 5) become available.
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5.3.5. Enabled and facilitated interaction between CAVs and humans

Even after CAVs are commercialised and largely adopted, we will still have a mixture of
CAVs, HDVs, and pedestrians in urban traffic scenes. In addition to CAV riders, it is not
clear yet how other road users such as pedestrians are going to interact with CAVs. There
are several studies (e.g., Rasouli, Kotseruba and Tsotsos, 2017; Hulse, Xie and Galea, 2018;
Rasouli and Tsotsos, 2019) that acknowledge the complexity and essentiality of interactions
between CAVs and other road users. Whether through interfaces, communication channels
(i.e., V2X) and/or other innovative means, timely and facilitated interactions between other
traffic participants and CAVs will improve the traffic flow and safety (Rasouli and Tsotsos,
2019). To increase the effectiveness of the interactions, uniformity of interfaces and
familiarity of other road users with them must be promoted. Even though the influence of
that form of interaction on safety considerations is undeniable, we are not yet hearing a
consistent strategy about increasing public awareness, standardising interfaces, and

amending current traffic laws based on new safety requirements and standards.

As the control of vehicles are gradually transferred to autonomous technologies, the law
must be altered in both its code and implementation (Ilkova and Ilka, 2017). The responses
to the Consultation on the rules on use for Automated Lane Keeping Systems initiated an
amendment to Rule 150 of The Highway Code which relieves the requirement for the drivers
in AVs (in automated mode) of maintaining proper control of the vehicle at all times (UK
Government, 2021). More revisions of driving legislation are underway to expedite the safe
deployment of AVs on the UK roads (UK Government, 2021). Such revisions and
amendments seem to be unavoidable, but the key question here is how the new rules are
going to be enforced? According to the sensitivity analysis in this study, traffic rule
enforcement is the sixth influential factor affecting the collision risk. More embedded
technologies and capabilities of CAVs can certainly assist authorities in detecting any breach
of traffic rules. For example, Ilkovéd and Ilka (2017) put forward the idea of self-report

function for CAVs which automatically reports any traffic law breach to authorities.

The above policy discussions are aligned with the six key questions stated by Anderson
etal. (2014, p.6) and fall within the three major areas that are highlighted by Johnson (2017)
for policymaking: 1) connected and autonomous technology; 2) the provision of suitable
infrastructure; and 3) licensing of drivers. After pinpointing the areas that need further
evidence for policymakers, the main question is who should bear the likely costs? Taxpayers,
private sector, or both? There are on-going debates in academic and political forums about
which parties should bear the costs of enabling infrastructures. Many ethical dimensions of

CAVs also are open questions that need contemplation.
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One of the overarching decisions for policymakers is a conceptual choice with significant
implications that will touch almost every aspect of CAVs. The choice is between assigning
all driving tasks to the vehicle while a human driver is either not supposed to intervene at all
or taking over control in certain circumstances, and keeping the human driver in charge with

ADAS at his/her disposal to provide additional support (Johnson, 2017).

5.4. Research limitations

Similar to other research projects, this study has a number of limitations. The first and
main limitation here comes from the assumptions that we are making to be able to build the
BBN model. The most fundamental assumption in BBN modelling is conditional
independence which is seen as a crucial factor facilitating distributed computations (Pearl,
1982). It is assumed that each variable is independent from its non-descendent parents in the
graph given the state of the parents. This property sometimes cuts the number of parameters
that are required to characterise the JPD of the random variables (Ben-Gal, 2008). Depending
on the research questions, availability of data and in order to avoid unnecessary complexity
in the model it is inevitable for a researcher to make further assumptions which may limit

the scope of research. Other major assumptions are discussed in 3.9 in detail.

Next limitation of this research is the scope of the ILR for identifying the influential
variables (i.e. nodes). Due to the variety of terms used to refer to AVs, it is not technically
possible to include all those terms in the search criteria. Therefore, a few keywords were
used to search for papers in the databases: a) autonomous vehicles; b) automated vehicles;
¢) autonomous cars; d) automated cars; e) self-driving; and f) driverless. Exclusion of other
names that are used to refer to self-driving vehicles (e.g., robotic cars, intelligent vehicles,

smart vehicles, etc.) might have limited the scope of literature review.

Another factor that can be considered as a limitation is the number of databases accessed
to conduct the literature review and collect qualitative data for identifying risk factors.
Including more databases can possibly affect the replicability of the search. DelphiS database
may not be a well-known to many, but it is a richer pool of papers comparing to Web of
Science. Although searching “autonomous vehicle*” in Scopus generates slightly higher
results comparing to DelphiS (the results checked on 24/02/2022: 72,890 for Scopus and
67,276 for DelphiS), the accessibility of documents through DelphiS was more facilitated.
This is perhaps because this database is internal to the University of Southampton. In
identifying risk factors the top priority was set to be breadth of search and variety of

publications over type and quality of publications. This was the main reason for opting
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integrative literature review approach which in some papers is referred to as ‘scouping

review’(e.g., Munn et al., 2018a; Munn et al., 2018b).

It has been discussed in this thesis that when epistemic uncertainty is present, a way to
make reliable predictions on the performance of a complex system is eliciting experts’
judgments (please refer to section 3.8.3). Nonetheless, judgements of individuals, regardless
of the level of expertise, is subject to some degrees of bias. Although the literature on
minimising the bias and managing heuristics through applying methods and design
techniques is rich (e.g., Renooij, 2001; O'Hagan et al., 2006; Tredger et al., 2016; Werner et
al., 2017), it is plausible that different groups of experts may come up with contradictory
opinions. Hence, biases can be another limitation for this project. Diversifying surveyed
experts (e.g., Keeney and Von Winterfeldt, 1991; Verdolini et al., 2020) in terms of their
domain expertise was an effective way to control the biases to some extent. The application
of expert opinions in PRA is not free of challenge either. The reproducibility of the results
and divergence of expert beliefs are two main problems in applying expert elicitation in PRA
(Cooke, 1991, p.27). The large standard deviations for some of the elicited weights can be

an indication of bias.

The number of participants (i.e., nine experts) in the survey was relatively low for
rigorous quantitative analysis. Experts were predominantly from academic backgrounds,
although several of them have had extensive industrial experience. Given the difficulties in
finding and persuading domain experts to take part in the study, nine is a justifiable number
since some other studies have used lower number of experts to inform their models. The
external validity of expert judgements cannot be assessed yet because there is currently no
sufficient conclusive evidence on the influence of identified risk factors in this study on
collision risk. Nevertheless, higher number of experts could have strengthened the quality of

elicitation and validity of results.

5.5. Summary of discussions and conclusions

Especial care needs to be taken when constructing a BBN model to assess risks of
complex systems to avoid misleading or outlying results. The major challenges in that way
are identification and inclusion of risk variables, defining causal relationships, filling CPTs
and capturing expert knowledge in a model. Studying autonomous systems requires a deep
appreciation of autonomy as well as a non-mechanical classification system. Appropriate
and timely policy interventions are essential to safeguard public interest and ensure a safe
and viable transition towards CAVs. Among the research limitations noted in the previous

section, limited number of surveyed experts can hinder the generalisability of findings.
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6. Conclusions and future research

This chapter presents a summary of this thesis in four sections. Section 6.1 highlights the
motivations, research problems and employed research methods. The results, findings and
policy recommendations are summarised in section 6.2. The main contributions are

underscored in 6.3. Finally, the future research pathways are outlined in 6.4.
6.1. Research problem, design and methods

Connected and autonomous vehicles and their enabling technologies are facing an
unprecedented development especially in the last decade. The trial and road testing of these
vehicles have started in several countries and car manufacturers as well as IT and technology
corporations such as Apple have showcased their prototypes. Waymo, the Google brand for
self-driving cars, seems to be leading in this transdisciplinary field and its AV taxi fleet is
now operational in a few states in the US. The amount of investments and interest expressed
by academic communities, industries, and local authorities indicate that we should consider
autonomous driving as a reality. AV technology can offer enormous potentials to tackle
many challenges in several areas such as transportation safety, environment, and inequality
in transport. Realisation of the promised benefits, however, all depends on safe and reliable

operation of the technology.

CAVs, akin to other complex and disruptive technologies, will have their own limitations
and have to operate within technical and environmental constraints. The uncertainties over
the performance and constraints of these vehicles are even more grave. Several reasons were
mentioned for the intensity of the uncertainties. Complexity and novelty of the embedded
technologies, integration of sheer number of hardware and software pieces, enormity of
traffic situations that CAVs may encounter, socio-technical nature, insufficient real-world
data, and absence of adequate well-established regulations for verifying/validating the
reliability deepen the uncertainties over reliability of CAVs. When we take the human out

of the loop, we risk losing reasoning ability in obscure scenarios. The reported fatal
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accidents, collisions, and the disengagement history of AVs legitimise the functional safety

concerns.

Although the results of testing and simulation scale down the uncertainties to some extent,
modelling tools can aid further with uncertainty and risk analysis and shed light on obscure
aspects of a safety problem. The usefulness of risk modelling becomes even more each the
real-world data and testing are more limited. Developing risk models to measure (or at least
classify) safety risks before deployment of AVs in large scales is one of the pathways to
safety analysis and of paramount importance. Risk models can support decision making
under uncertainty and facilitate scenario-based analysis. This study adopted a socio-technical
perspective to evaluate safety of CAVs in various environmental and traffic conditions. To

measure the risk, collision probability was selected as the risk index.

Ample published literature on safety implications and the criticality of collision
avoidance systems in AVs give grounds for an extensive textual analysis to identify causes
of collision (i.e., risk factors) in autonomous driving. 594 documents including journal
article, conference papers, working papers, white papers, technical reports, policy
documents, accident reports, patents, and news articles were reviewed, and after applying
thematic analysis, 53 risk factors were discovered. The identified factors were used to
construct a BBN model. The choice of BBN for modelling risk has multiple reasons. Firstly,
it allows for PRA and is effective tool for informing decision making under deep
uncertainties regarding the behaviour of a system, phenomenon, or external conditions.
Secondly, it can be used for both diagnostic and prognostic reasoning. Thirdly, sensitivity
analysis can be run using a BBN model to quantify the influence of variables on a target
node. Fourthly, BBNs provide a platform for meta inference and synthesising qualitative and
quantitative data. Finally, BBN is capable to handle large multivariate and multi-dependable

models.

Hugin was used to construct the topology of the model. The CPTs were generated in
Microsoft Excel and then transferred into Hugin. Later, GeNle Modeler (another BBN tool)
was utilised to demonstrate the strength of links between nodes and sensitivity analysis

diagrams.

Besides the advantages, there are some challenges in building a BBN model. Populating
CPTs, especially when there are more than a few non-binary nodes in the network, is a
demanding and cumbersome task. A new technique was invented to overcome this difficulty.
The CPTs are populated in a manner allowing all the JPDs (except lighting conditions and
its children) to have uniform distributions before any of the nodes is instantiated. A

probability of 100 percent was assigned to the best (most desirable) state of a child node
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when all it parents were in their best states. Likewise, a probability of 100 percent was
assigned to the worst (most undesirable) state of a child node when all its parents were in
their worst states. An incremental transition of probabilities filled the blank cells in between,

thereby creating a symmetric matrix to the centre of the tables.

A survey was designed to elicit expert opinions on the influence of each parent node on
its child(ren). For that purpose, nine experts with expertise in at least one of the major
domains (i.e., environmental, technical, traffic and human) in the context of CAVs and/or
robotics took part in the survey. The average of the assigned percentages to each parent node
was taken as the weight of that node and was incorporated into the model. GeNle Modeler

facilitated incorporation of weights by the Noisy-Adder feature.

6.2. Findings and policy recommendations

The preliminary results of the integrative literature review revealed a new set of themes
(i.e., risk factors or causes of collisions) that necessitated a second round of search in
databases with the latter themes as keywords. At the end, 53 risk factors were identified and
categorised into 4 major groups. The overarching theme of each paper besides the peripheral
themes are summarised in a table (appendix A). The risk factors were allocated to the four
major modules (blocks in the model) that constitute a socio-technical system. Since defining
‘organisation’ and pinpointing ‘organisational factors’ in the context of autonomous driving
is not straightforward and given that traffic conditions (ranked as the highest influential by
the experts) exert direct effect on probability and severity of road collisions, organisational

factors were replaced with traffic factors.

The literature review and identified factors provided a foundation for building the BBN
model. Four overall themes (i.e., road condition, traffic condition, reaction time, and
technical reliability) were selected to represent the aggregated risk and impacts of each block
on collision risk for CAVs. Those overall themes acted as intermediate nodes in the model
to avoid exponential growth in the number of CPTs. After running the model, the probability
distributions for all the nodes (except the lighting condition’s children) were found to be
uniform before any instantiations and insertion of expert opinions on the degree of influence

for each parent node.

The results of the expert elicitation (i.e., the survey) suggested a considerable
convergence of expert opinions in weighting some nodes (e.g., traffic control infrastructure,
SD=0) and a wide divergence over the influence of other nodes (e.g., software reliability,
SD=0.43). The main reason behind these variations is the limited number of experts took

part in this study. The lower standard deviations for four RIs comparing to other nodes can
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prove this. Another reason presumably was that the experts did not have a chance to
exchange ideas and make a collective decision on the influence of each node on its children.
Perhaps organising an expert panel discussion or running a focus group could have mitigated
that problem to some extent. The average of the percentages assigned by the experts to each
node were taken as the weight for that node. Using the noisy-adder (based on noisy-max)

feature, the extracted weights were incorporated into the model.

Four extreme scenarios (1-4) were envisaged to demonstrate changes in collision risk
distributions while the states of input variables shift from the least risky to the highest (figure
4.8). Then, 29 input nodes were randomly instantiated (scenarios 5 and 6) to generate cases
for comparative analysis. The fitted trends to the distributions vary substantially based on
the changes in input variables. The risk distributions in the worst- and best-case scenarios (1
and 4) were exponential while in moderate scenarios (2 and 3) resembled more like a linear
trend. The random scenarios (5 and 6), however, had very unsimilar distributions. In scenario
5, we witnessed a normal distribution skewed towards the Extreme end and High collision

risk represented the peak.

Sensitivity analysis was conducted to measure the sensitivity of collision risk to every 53
risk factors, in isolation. The results suggest that ‘traffic control infrastructure’, ‘weather
conditions’, and ‘traffic composition’ are the most influential risk factors. Assigned weights
by the experts and topology of the model are two main determinants of the influence that a
node effects on the output (i.e., collision risk). The scenario and sensitivity analyses served

as a basis for the policy implications to promote safe operation of CAVs.

The policy recommendations were extracted from the literature and focused on five
overarching areas. Infrastructural upgrade and adaptations are among key requirements for
introducing AVs on a vast scale. Traffic control and management has a significant role in
traffic safety, particularly in mixed traffic scenarios. One of the main features of CAVs that
is believed to contribute to collision avoidance is connectedness and the ability to send and
receive real-time data. Exchanging real-time information of weather, traffic and road
conditions will assist the planning unit of CAVs to safely plan and navigate the vehicle.
Establishing secure and effective communication between vehicles (V2V) and connecting
AVs to infrastructure (V2I) will need designing tailored communication platforms or
expanding the existing infrastructures. While more connectivity helps to draw a clearer map
for traffic controllers and traffic participants including CAVs, higher cyber threats will be
the likely aftermath.

Environmental factors such as weather conditions are often beyond the control of policy

makers. Consolidating technical competence of AVs to sense their surroundings more

136



Chapter 6
accurately and react to hazards and risky situations timely is always an option for
overcoming the challenges that poor weather conditions pose to AVs. Along with technical
and technological enhancements, CAV-friendly design and planning of roads and highways
will mitigate the collision risk. Improving the quality of lane markings, visibility of traffic
signs (especially in absence of V2I), and lighting conditions will assist AVs in identifying

objects, other road users, road boundaries and traffic signs.

Public education will increase awareness about interacting with and driving AVs. Since
driver interventions might be still necessary to avoid a collision (particularly in SAE level 3
and 4), licensing procedures and processes must include assessment of driving and
interacting with CAVs. New interfaces, additional features and mixed traffic mandate a
revision in training and licensing criteria for both CAV and non-CAV drivers. The topic of
standardisation becomes the hard nut to break in this context. Disparities in interfaces and
their functions will be a major challenge to establishing unified training and licensing

schemes (at least at national level).

Similar to other safety-critical systems, regulatory requirements, certification and
standardisation must govern the development and deployment of CAVs. Safety standards
are compulsory in automotive sector to ensure functional safety. ISO 26262 shorts fall in
verifying and validating all functional safety aspects of CAVs especially because exhaustive
testing under all operational circumstances is impractical. Moreover, some functions such as
cyber-security are difficult to test. Therefore, designing comprehensive safety standards that
detail safety requirements at component, software, and system integration levels will be

required to validate and verify a sufficient level of safety throughout a vehicle lifecycle.

6.3. Contributions to literature and practice

The prime contribution of this research is the review of vast and diverse literature across
multiple disciplines which led to identification of 53 collision risk factors in highly
autonomous vehicles. The risk factors were categorised into four overarching groups. The
aim of this project was to prioritise the breadth of literature review over depth. The
identification of those risk factors can provide insight for designers, regulators, researchers
and policy makers and trigger further research to test the relationship between those variables
applying rigorous quantitative methods. The summary of reviewed literature (appendix A)
can also assist researchers for finding relevant papers/documents in a specific context (e.g.,
H-M interfaces, traffic culture/style, road geometry/configuration/layout, etc.) in relation to

functional safety of CAVs.

137



Chapter 6

Assessing the causal influences of the parent nodes in the BBN model on their children
from the perspective of experts provides an indication of their ranks and importance in safety
analysis. In addition to informing the BBN model in this research, the results of expert
elicitation can provoke further research questions and test hypothesis about the strength of
relationships between the identified risk factors. Expert knowledge can be relied on in the
absence of real data, but a more detailed quantitative analysis can provide more reliable

estimates.

The BBN model itself is a risk assessment tool that helps to classify Rls and collision
risks based on a given set of spatio-temporal conditions of urban roads. Such a tool will
support designers, insurers, policy makers, regulators and urban planners to rank roads
according to the state of input variables. In case any evidence on the state of a node becomes
available, uncertainty in other nodes can be reduced through inserting observations into the
model and backward/forward propagation. Observations can be either deterministic or
probability distributions. The model has the capability of running sensitivity analysis and
enable comparison between collision risk levels in different scenarios. The results of

scenario and sensitivity analyses formed the foundation for policy implications.

A new method was implemented to accelerate the process of populating CPTs. The values
in each node’s table (except lighting conditions) are symmetrical to the centre of the table
and a transition of risk is reflected in children’s JPDs by moving from the worst towards the
best states. This method can save a lot of time and energy in constructing a BBN model.
However, the pitfalls of this method (discussed in section 5.1) must be taken into account to

avoid ending up with unequal weights for the parents of a child node.

The overarching policy recommendations were compiled to mitigate the risks from major
sources (nodes with the highest sensitivity values). Sensitivity analysis provides an evidence
base for prioritising policy measures in dealing with the safety concerns associated with the
rollout of CAVs. Safety is currently one of the top priorities for the policy makers.
Thereupon, the focal point of policy recommendations in this research was safety only.
Nevertheless, coordination between safety and other policies that are designed to address
other aspects (e.g., liability and environmental) is vitally important. Further research

delineated in the next section can complement the contributions of this research.

6.4. Future research

Two strands of research can be built on the results of this project. Firstly, linking the BBN
model to big data (when become available) and developing learning algorithms to refine the

model (Lam and Bacchus, 1994). Learning Bayesian Networks is a established approach in
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constructing BBN by extracting the structure of the model from large data sets. The BBN in
this research is a multiply-connected network that makes reasoning a difficult task.
Refinement of the topology will therefore optimes the reasoning process. Some of the nodes
may even become redundant as the selection process was based on the literature review and
expert elicitation. When real data is accumulated, some of the variables may not prove to
have a significant correlation with the RIs including collision risk. Likewise, the input for
CPTs can be derived merely from data or in combination with prior expert knowledge

(Rohmer, 2020). This will improve the robustness of CPTs and JPDs.

Secondly, with realisation of real-world data during and after testing phase of CAVs it
will become possible to turn the current model into a Dynamic Bayesian Network (DBN) to
estimate the probability of a collision by receiving real-time traffic dynamics data
(Katrakazas, Quddus and Chen, 2019). Static BNs fail to capture dynamic nature. Traffic
conditions are dynamic in nature and a DBN model will better represent temporal
relationships. Indeed, DBN is an extension of Bayesian network. Three main steps need to
be undertaken for converting a static BN to a DBN (Amin, Khan and Imtiaz, 2019): 1)
reconfiguring the structure to accommodate process dynamics; 2) redesigning the states of
nodes to capture temporal relationships between time slices; and 3) repeating the static BN
with time if all the variables exert influence on the reasoning process and update the belief
of time intervals. Another possible extension to BBN is influence diagram (ID).
Incorporation of decision and utility nodes (in addition to the existing chance nodes) will
evolve it to a decision-making tool which adds on decision components and their

relationships (Sedki, Polet and Vanderhaegen, 2013; Landuyt ef al., 2014).
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Main Author(s) and
No. Other themes Summary (s)
theme source
Autonomy level, reaction
time, secondary task, This study looked into the behaviour of Zeeb, Buchner and
1 Situation driving style, longitudinal drivers and drivers’ take-over after highly Schrauf
awareness and lateral control, traffic automated driving and the links into the Accident Analysis and
density, HMI, trust, situation awareness. Prevention, 2015
roadwork, obstacle, speed
The aim of this research was to develop and
validate an assessment framework for driver-
Autonomy level, HMI, interaction concepts in semi-autonomous
Situation reaction time, roadwork, vehicles where the interaction between a Van den Beukel and van
2 awareness lateral and longitudinal human driver/supervisor and automation is den Voort
controls, H-M Interfaces, | still required. It also introduces an assessment | Applied Ergonomics, 2017
speed, technical factors framework to measure gained situation
awareness in partially automated driving
systems.
A thematic analysis of video data was carried
Autonomy level, secondary | out to assess the effects of partially automated
task, response times, HMI, | systems on drivers’ sustained monitoring task.
H-M Interface, driver The findings revealed that drivers are not
Situation experience, longltudma! and | being properly gupported in gdhermg to their Banks ef al.
3 lateral control, trust, fatigue, new monitoring tasks and instead show . .
awareness o LS, . Applied Ergonomics, 2018
cognitive workload, behaviour indicative of complacency (i.e.,
situation awareness, other over-trust in the reliability of the system).
road users, driving These attributes may encourage drivers to take
behaviour, trust more risks whilst engaged in semi-
autonomous driving.
Human factors must be considered to ensure
the safe and efficient operation of semi-
autonomous systems. This simulator study
Autonomy level, other road 1nvest1gat_ed the effects of automating vehicle N
. . steering and implement control and Bashiri and Mann
Situation users, complacency, path L . o . . .
. .. . monitoring task automation on the situation Biosystems Engineering,
4 awareness planning, driving behaviour . . S
T ’ | awareness of drivers. The findings are in line 2014
road infrastructure . . .
with the hypothesis that a highly automated
agricultural vehicle would reduce the
operator's SA when compared to the semi-
automation scenarios.
This paper examined the effects of vehicle
Autonomy level, time to automation and failures due to automation on
collision, overreliance, trust, driving performance and monitoring. The Strand e al
Situation road conditions, traffic results suggest that driving performance Transportation Résearch
5 awareness situations, HMI, traffic degrades in higher automation levels. In I;’a F. 2014
intensity, speed, NDRT, addition, it is indicated that car drivers are ’
perceived risk worse at handling complete than partial
deceleration failures.
This study investigated the effects of adaptive
. i 1 (A highl
Level of automation, cruise control (ACC) fmd ,1g y automate
driving (HAD) on drivers’ workload and
workload, lateral and o .
. . situation awareness through a meta-analysis
longitudinal motion, N . .
and narrative review of simulator and on-road .
R secondary task, other road . . . . de Winter ef al.
Situation T o studies. Drivers of a highly automated vehicle, .
6 users, visibility conditions, . ] Transportation Research
awareness P and to a lesser extent, ACC drivers are likely
traffic conditions, traffic . Part F, 2014
. . to engage in secondary tasks. Both ACC and
density, road infrastructure, L7 o
S . HAD can result in improved situation
reaction time, experience, R
speed, risk perception awareness compared to manual driving, if
peed, drivers are motivated or instructed to monitor
the environment and detect objects.
This paper evaluated the possibility of using a
Autonomy level, perceived real-time assessment system to monitor the
risk, HMI, Human-Machine | drivers’ attention to the roadway in automated Merat et al
Situation Interface, reaction time, driving (AD). Another aim of this study was Transportation Résearch
7 awareness secondary task, roadworks, | to investigate how quickly drivers were able to r;’a tF. 2014
traffic density, number of take over the control of vehicle after AD, >
lanes, when it was required, by analysing observable
driving performance and eye tracking metrics.
Autonomy level, NDRT, This paper proposes a framework and surveys
reaction time, HMI, H-M the literature on human factors (mental Lu et al
Situation Interface, drowsiness, traffic | underload/overload and situation awareness) Y
8 X .. . . Transportation Research
awareness density, training 9and of transitions in automated (autonomous) Part F. 2016
experience, traffic flow, driving. It also discusses two concepts: ’
workload, driver behaviour, | monitoring transition and control transition.
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Workload, secondary task,
situation awareness, HMI,
H-M Interface, reaction

An empirical study was conducted to
investigate the secondary task engagement and
disengagement in the context of highly
automated driving. The findings suggest that
participants demonstrated a clear preference

Wandtner, Schomig and

9 Situation time, traffic flow, driving | for task engagement during highly automated SCh.mldt
awareness .S Transportation Research
style, autonomy level, trust compared to manual driving. Furthermore,
. . 0 . X . ! Part F, 2018
in automation, longitudinal | drivers avoided more demanding tasks prior to
and lateral control the situations which may trigger take-over
request when they had the opportunity to
anticipate them (predictive HMI).
NDRT, longitudinal and This study investigates the impact of .
o . . : . L e Karjanto et al.
Situation lateral acceleration, traffic peripheral visual information in alleviating .
10 . . . . . .- Transportation Research
awareness laws, traffic density, time of | motion sickness when engaging in non-driving
. - Part F, 2018
day, day of week tasks in fully automated driving.
Trust, HML road conditions, The issue of trgst in AVs is p1n1?01nt§d 1n'thls
Lo article. The main factors (including situational
reaction time, secondary . -
. . . awareness) affecting collision risks in urban .
Situation task, control, experience, . . . . Olaverri-Monreal
11 . . environments are discussed. The interactions .
awareness perceived trustworthiness, . Nature Electronics, 2020
. between the technology and human driver that
drowsiness, other road X b . . .
" can impact the reactions times in responding
users, traffic composition
to a hazard are assessed as well.
The aim of this paper was to evaluate the
Secondary task, number of | impact of a group of distracting activities on
. . ) . A Farah et al.
. . lanes, traffic conditions, drivers’ performance. To this end, a driving .
Situation N - . . Advances in
12 traffic flow, reaction time, | simulator experiment was designed to collect . .
awareness o . Transportation Studies an
speed, weather conditions, | data on several driver performance measures international Journal. 2016
time of day, visibility while engaged in different non-driving ’
activities.
Auty level kl . .
utonomy level, wor oad, This study assesses the effects of automation
. . control, algorithms, HMI,
Situation levels on human-system performance, Endsley and Kaber
13 H-M Interfaces, speed, o . .
awareness L situation awareness and workload in a Ergonomics, 1999
reaction time, trust, .
dynamic control task.
complacency
This paper presents a novel approach to
Situation Other road users, artificial situation awareness for an McAree, Aitken and Veres
14 awareness computational power, traffic autonomous vehicle operating in complex IFAC-PapersOnLine,
behaviour, kinematic state dynamic environments populated by other 2017
agents.
HMLI, secondary tasks, H-M | This study investigated the impacts of auditory
Interfaces, weather alerts (i.e. speech alert) on situation awareness
conditions, sensors, self- of drives in autonomous vehicles. It further
. . . L . Nees et al.
Situation awareness, construction highlights the need for a cooperative effort
15 . . Human Factors and
awareness zones, pedestrians, traffic between humans and the automation Ergonomics Society, 2016
density, blind spots, control, | technology whereby human drivers will still & ’
training and experience, have to maintain situation awareness during
response time automated driving.
In order for a self-driving car to work at all,
Software, sensors, radar, the vehicle’s software needs to be provided
. . LiDAR, GPS, pedestrians, with situation awareness at all times. To Cerf
Situation . . . . L
16 machine learning, Al continuously sense its 360-degree Communications of the
awareness . . . .
maturity, hardware, surroundings, it uses multiple sensors: colour- ACM, 2018
computing power aware visible light cameras, radar
transceivers, LIDAR, GPS, etc.
Autonomy level, software,
HMLI, traffic congestion, This paper suggests an oversight model Endsle
N interface, trust, over- (HASO) which is believed to facilitate human- &y
Situation . X . . International
17 reliance, pedestrians, traffic autonomy design for semi-autonomous - L
awareness 2 . ; . S Ergonomics Association,
composition, hardware, road | vehicles thereby improving safety which is IEA 2018
conditions, secondary task, | dependent on maintaining situation awareness.
Al, traffic conditions
Autonomy level, HMI, road The research was des1gned4 to examine and
- reveal potential issues associated with the use .
conditions, traffic . . Llaneras, Salinger and
. . P of semi-autonomous systems, exploring
Situation conditions, trust, secondary | . 1 X Green
18 . impacts on willingness to engage in secondary .
awareness tasks, over-reliance, speed, .. . . Driving Assessment
. non-driving related tasks, and driver allocation
vehicle control, path . . ’ . Conference, 2013
. of visual attention while operating under
planning, LAADS
This paper investigates impacts of AVs forma | Tettamanti, Varga and
Situation Weather conditions, control, Traffic Engineering Perspective anfl enhghten o Szalay ‘
19 . trends and challenges surrounding this Periodica Polytechnica
awareness HMI, cybersecurity . .
technology and related infrastructure Transportation

developments.

Engineering, 2016
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Situational awareness is crucial in AVs. This
research went beyond the traditional functions
of situation awareness in robotic an
Sensors, LIDAR, cameras, autonomous driving, such as traffic signal
20 Situation algorithms, V2V, other road recognition, lane departure warning, lane Mathibela
awareness users, road infrastructure, detection, etc. and suggested a method to PhD thesis, 2014
work zones, road geometry model complexities of road surfaces and
dynamic environments. This further
contributed to stretching of semantic
understanding and situation awareness in AVs.
The present study suggests that situation(al)
awareness for latent hazards is not
Reaction time. hazard immediately present while drivers have to
ercention trl;st HM resume manual driving after a taking over the
In tz rfaczs ro’a d COl,’l ditions control of vehicle and when they were not
traffic cont’li tions. other roah previously engaged in driving activities since
Situation users. speed v’isibilit the vehicle was operating in autonomous Vlakveld et al.
21 awareness obs tacfesp sec;n da ta);’k mode. A simulator was deployed to determine | Transportation Research
svs tem’ failure tgfﬁc > | whether drivers could spot latent hazards in a Part F, 2018
de};lsit demo ’ra hics traffic scenario immediately after manual
conZt’ruc tio ngzolile ? driving had become obligatory (i.e., after a
autonomy level ’ take-over request). The findings indicate that
Y drivers need time to construct a mental
representation and activate picture that allow
them to recognise latent hazards.
The objective of the paper is to investigate the
coml;rlfll:lsitc’;triitfcsrile‘ids’ self: problem of safety assurance for autonomous
awarcness veh7ic112: co;l trol systems where external events and interaction Wardzinski
22 Situation sensors 7H—M Interface ’ | with the environment and other systems have 25th International
awareness erce tior; limitations ViV essential influence on safety. This also links | Conference SAFECOMP,
pVZ)? weather con di;ions > | the concept of situation awareness with trust 2006
? task plannin ? and risk perception in the context of
P & autonomous robots.
Sensors, perception
accuracy, localisation, V2V,
V2I, path planning, vehicle
control, road conditions, This article provides up-to-date information
fatigue, algorithms, vehicle | about the advantages, disadvantages, limits,
state, road infrastructure, and ideal applications of specific AV sensors. Van Brummelen ef al
2 Weather other road users, obstacle, It also highlights crucial areas which Transportation Research
3 conditions road layout, cameras, developers needed to focus on incl. poor P C.2018
lighting conditions, sensor weather conditions and complex urban ’
fusion, software, LIDAR, | scenarios. Perception accuracy is one the main
Radar, speed limit, H-M themes in this study.
interfaces, HMI, drowsiness,
traffic conditions, traffic
rules
Visibility, reaction time, The primary objective of this study was to
traffic condition, traffic develop a control strategy of variable speed
Weather control, visibility, speed, limits (VSL) to reduce the risks of secondary Lietal
24 conditions traffic flow, algorithms, collisions during inclement weathers. The Accident Analysis and
road conditions, road VSL strategy is proposed to dynamically Prevention, 2014
geometry, density, interface, | adjust the speed limits according to the current
traffic control traffic and weather conditions.
Traffic conditions, traffic
density/volume, speed. This paper investigated the impact of weather .
e § i i Theofil Y
> Weather visibility, road type, number and traffic conditions on the road safety. Acec? dleittolir?zrilld sisr;zlds
5 conditions of lanes, road conditions, Various variables/metrics were discussed and Prevention };01 4
temperature, geometrical analysed. ’
characteristics, sensors,
Lighting conditions, sensors, | The contribution of multimedia technologies
software, LIDAR, radar, to autonomous driving is recognised in this
Weather cameras, road conditions, article (EIC message). The multimedia Chen
26 conditions situation awareness, Al, technology is capable to overcome IEEE Computer Society,
SLAM, algorithms, traffic conventional computer vision limitations 2019
conditions, obstacles, road namely under adverse weather and lighting
infrastructure, GPS, Al circumstances.
Regulations, cybersecurity, This study proposes innovative methods to
control, other drivers’ calculate the number of miles of driving that Kalra and Paddock
> Weather behaviour, planning, would be needed to provide clear statistical Transportation Research
7 conditions perception accuracy, evidence of autonomous vehicle safety. It I])Ja A 2016
software and hardware concludes that AV’s regulations are adaptive ’
reliability, and evolutionary.
Visibility, reaction time,
ri(:)f&istiegsgri’lzﬂz?d This article evaluated the impacts of different
Weather communicati,on ro’a d longitudinal driver assistance systems (i.e. Lietal
28 oo > FCW, AEB, ACC, CACC) on reducing multi- | Accident Analysis and
conditions geometry, speed . .. . .
algorithms ;u toma’te d vehicle rear-end collisions during small-scale Prevention, 2017
perception, car-following adverse weather.
behaviour, control
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Speed, traffic conditions,

This paper surveys empirical literature on the

Weather road conditions, lighting effects of climate change and weather Koetse an.d Rictveld
29 . ... .. . Transportation Research
conditions conditions, traffic flow, conditions on the transport sector. It considers Part D. 2009
driver response factors such as temperature and precipitation. i
Light scattering due to bad weather conditions
affects outdoor images and results in poor
contrast and faded colours. These effects can
Visibility, lighting be 'crltlcal 1n'apphcat1'ons such as VldeO.
. . surveillance, driving assistance or perception
conditions, cameras, vehicle .. . Andrade
Weather . accuracy autonomous driving. This study . .
30 e navigation, hardware, road . IEEE Latin America
conditions . proposes a novel algorithm to restore the .
geometry, algorithms, . . Transactions, 2017
Sensors contrast of images under inclement weather
conditions (e.g., fog, mist or haze). The
proposed method blends several techniques to
provide an algorithm fast enough to detect
colour and process grey images.
V2V, V2L V2X, Handling adverse weather COndl.tIOIlS isa
" challenge for AVs. On average, inclement
communication, work zone, L .
sensors. roadside weather causes 5,300 fatalities alone in the
. > US. Although AVs can mitigate this figure,
infrastructure, . .
.. co-operation between the meteorological and
communication . - Walker et al.
Weather . L transportation sector needs to be established . .
31 o e infrastructure, situational . . . . American Meteorological
conditions P and aimed at generating solutions for this .
awareness, visibility, . Society, 2020
problem. For example, advancing sensory
cameras, radar, sensor : ) g .
. . systems and updating AVs’/drivers with
fusion, vehicle control, :
. accurate and timely weather
obstacles, perception, o .
. conditions/forecasts could address this
algorithms, Al
challenge to some extent.
Traffic conditions, road This article examines variations in road traffic
conditions, traffic volume, volume due to adverse weather in an arctic Bardal
Weather . . ..
32 conditions road capacity, road region as well as vulnerability of Journal of Transport
infrastructure, visibility, transportation systems to adverse weather Geography, 2017
speed affecting efficiency and reliability.
Sen§ors? L1DAR,_radar, The performance of different types of sensors .
navigation, algorithms, . . .. Yamauchi
. . (i.e. LIDAR, vision, sonar and UWB radar) .
Weather vision, perception . . IEEE International
33 o B under adverse weather is surveyed in this .
conditions capabilities, speed, . Conference on Robotics
AR . paper. These are prevalent sensors used in .
localisation, path planning, and Automation, 2010
autonomous systems/robots.
sonar, obstacles
This article identifies adverse weather
conditions as a degrading factor for the
Visibility, sensors, software, | performance of advanced driver assistance Cord and Gimonet
Weather cameras, algorithms, road systems (ADAS). To tackle this problem, it IEEE Robotics &
34 conditions geometry, image processing, presents two novel approaches that aim to Automation Magazine,
lane markings detect unfocused raindrops on a car 2014
windscreen using only images from an in-
vehicle camera.
This paper develops on a fast-multiresolution
scan matcher for vehicle localization in urban
Software, sensors, LiDAR, environments for self-driving vehicles. 3D .
. . . R . N Wolcott and Eustice
road conditions, localisation, | light detection and LiDAR can often fail when .
Weather . . o IEEE International
35 . road infrastructure, facing adverse weather conditions. Then a .
conditions . . . Conference on Robotics
algorithms, GPS, obstacles, | novel scan matching algorithm that leverages .
N . . . . and Automation, 2015
system integration Gaussian mixture maps to exploit the structure
in the environment. This is important for
detecting lane markings, traffic signs, etc.
.. . This paper proposes a survey of the
Localisation, mapping, . Paper proposes a survey .
software. GPS Simultaneous Localization and Mapping
. i (SLAM) field when considering the recent
communication, road . o . .
evolution of AD. Building maps in various
geometry, speed, lateral and . ; . Bresson et al.
Weather L7 . conditions (e.g., weather) is the focus of this .
36 .. longitudinal localisation, IEEE Transactions on
conditions . . study. It concludes that the safety of . .
algorithms, trajectory/path 7 . S . Intelligent Vehicles, 2017
. i localization algorithms is critical factor in
planning, traffic conditions, : .
. safety analysis. Multiple sources of data
other road users, perception . .
. . . should be envisaged and strategies to safely
accuracy, information fusion . .
switch among them must be devised.
This study investigated radar-based
technologies that collects information about
Sensors, radar, visibility, road curves under undesired conditions (i.e.
road conditions, software, | adverse weather) in which optical sensors can
Weather road geometry, algorithms, | be impaired or their performance is degraded. Lee et al.
37 .. sensors, LiDAR, cameras, This paper asserts that the road curvature IEEE Sensors Journal,
conditions . .
sensor fusion, road measurement results would be more realistic 2018

infrastructure, road
structure, speed, CAN

and reliable if the corresponding road
infrastructure, car velocity reference signal,
and intelligent pre-processing as well as
postprocessing algorithms are available.
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HML TOT. traffic rules This study investigates the effect of age and Lietal
Weather P I ’ weather on takeover control performance . .
38 o visibility, reaction time, age, . . IET Intelligent Transport
conditions road type. time of da among drivers from Highly Automated Systems. 2018
ype y Vehicles (HAV). ystems,
Traffic conditions, traffic Th1§ paper conducted literature review and Maze, Agarwal and
.. considered the recent research (carried out by
flow, speed, road conditions, . Burchett
Weather . the Center for Transportation Research and
39 o time of day, day of week, . . Journal of the
conditions P Education) on the impacts of weather .
roadway type, visibility, o, Transportation Research
conditions on traffic demand, traffic safety,
control . . Board, 2006
and traffic flow relationships.
Work zone, reaction time,
traffic conditions, speed,
driver distraction, driving
b:gsg;ggﬁsri?:;vﬁiy Three simulation studies were conducted to
coneestion SCI,ISOI‘S VoV evaluate the safety benefits of driver speed
gV2I t;afﬁc ﬂo;v ’ selection. Findings of these simulations
Weather en;/ironmental ’ provide early insights into the effectiveness of Yang et al.
40 conditions characteristics. traffic connected vehicles Traveler Information Accident Analysis and
manaeement in fre;S tructure Messages (TIMs), which can facilitate Prevention, 2020
tim% of dav. other road ’ developing more efficient transportation
users algority};ms visibility management strategies under inclement
conditions, situation weather.
awareness, human factors,
road geometry, kinematic
state, H-M Interface
Visibility, software, This paper proposes an extended algorithm for Tarel et al
1 Weather cameras, algorithms, camera-based ADAS which better handles IEEE Intelligent Vehicles
4 conditions sensors, pedestrians, road images and enhances visibility under Svm osi%x m. 2010
obstacles, speed heterogeneous fog. ymp i
This study addressed the effects of adverse
weather and traffic weather forecasts on driver Kilpela“inen and Summala
> Weather Driver behaviour, speed, behaviour in Finland. The results suggest that Trzns ortation Rescarch
4 conditions road conditions the on-road driving behaviour is P 2007 ?
predominantly affected by the prevailing
observable conditions.
In this paper, a solution is proposed thanks to
Weather Software, road conditions, a contrast restoration approach to tackle the Hautiére et al.
43 conditions sensors, visibility, cameras, impact of adverse weather on Free space Machine Vision and
hardware, obstacles detection is a primary task in autonomous Applications, 2014
navigation.
Visibility, software, AT This news article discusses the struggles
Weather lichtin 0(7)n ditions ,roaél autonomous cars encounter in spotting traffic Brewster
A " _lghting L7 signs in rain and surveys a computer News article on
conditions infrastructure, time of day. . . . .
tra fﬁc, rules ’ programme (machine-learning algorithm) to sciencemag.org, 2017
overcome this obstacle.
In this paper, it is suggested to equip
Ji P > . g
visseigisl?tr;’ :(())atdwca(::di(t}ioi’s autonomous cars with sensor fusion
LiD Af{ time of da > | algorithms able to operate in various weather
Lo P Y conditions (e.g., rain). The proposed algorithm
lighting conditions, sensor - . . Lee et al.
- . was used in testing the self-driving car .
Weather fusion, algorithms, . Lo International Journal of
45 " ; EureCar (KAIST) to assess its applicability for .
conditions obstacles, path planning, . . - Automotive Technology,
. real-time use. The vehicle accomplished self-
road infrastructure, speed, . . 2018
V2X. hardware. road driving task by using GPS, cameras, and
eon;e " erce; tion LiDARs in addition to vehicle information.
& accu?a/::p C AIT)\I Path information improved the lane estimation
¥ performance.
Speed, road 'condltlons, This paper assessed trends in motor vehicle
driver behaviour, traffic L . . Saha et al.
Weather L o, fatalities associated with adverse weather and .
46 " volume, lighting conditions, : N . Environmental Health,
conditions . presents spatial variation in fatality rates by
time of day, speed, . 2016
visibility state in the US.
Autonomy level, visibility,
software, traffic conditions, | This article proposes a using a fuzzy system
lighting conditions, sensors, and line segment algorithms to overcome
Weather cameras, algorithms, radar, | various illumination problems which can be Hoang et al.
47 conditions sensor fusion, road caused by internal and external factors such as Sensors, 2017
configuration, traffic road quality, occlusion, weather conditions,
density, road condition, and illumination.
perception accuracy
Infrastructure, time of day,
visibility, sensors, software, The authors investigated the changes and
other road users, uncertainties about timing, scale, and nature of
Weather cybersecurity, LIDAR, AVs which can present substantial challenges Guerra and Morris
48 conditions obstacles, time of day, for the city planners, traffic engineers, and Planning Theory &
communication, road other public officials. This paper suggests Practice, 2018
configuration, focusing efforts around policy making when it
communication comes to AVs.
infrastructure
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49

Weather
conditions

Sensor, autonomy level,
situation awareness, self-
awareness, velocity,
distance from other vehicles,
control, actuators, V2I,
drivers’ state, traffic
conditions, road
infrastructure, traffic
regulations, algorithms,
software architecture,
obstacles, kinematic state,
communication, lighting
conditions, road
configuration, road type,
time of day, HMI,
drowsiness, localisation

This study proposes an ontology-based model
to determine the automation level of an
automated vehicle for co-driving. It discusses
main challenges in achieving fully automation
in all situations (adverse weather or traffic
conditions, etc.). several factors including
human, environmental and traffic variables are
discussed and evaluated in terms of their
influence on the performance of AVs in
different automation levels.

Pollard, Morignot and
Nashashibi
16th International
Conference on
Information Fusion, 2013

50

Weather
conditions

Fatigue, velocity, traffic
density, VANET, road
infrastructure, time of day,
day of week, speed, lighting
conditions, road conditions,
road type, communication
channels, sensors and
cameras, pedestrians, traffic
control, traffic composition

To ensure the safety of road commuters in a
mixed traffic environment, it is crucial to
advance the performance of ADAS. This

paper proposes an accident prediction system
for Vehicular ad hoc networks (VANETS) in
urban environments, in which the crash risk is
seen as a latent variable that can be observed
using multi-observation such as velocity,
weather condition, risk location, nearby
vehicles density and driver fatigue.

Aung et al.
Information, 2018

51

Weather
conditions

LiDAR, sensor, control,
speed, software, V2X, data
fusion, planning layer,
hardware, radar, road-side
units, road conditions,
environment perception,
algorithms, traffic density

This article concentrated on developing a
baseline for novel LIDAR which can be
deployed in future autonomous cars. Such
detector requires perception not only in clear
weather, but also under adverse weather
conditions such as fog, rain and snow.
Development of automotive laser scanners is
bound to the following requirements:
maximise sensor performance, assess the
performance level and keep the scanner
component costs reasonable (i.e., less than
1000 €) even if more expensive optical and
electronic components are still required.

Kutila et al.
IEEE 19th International
Conference on Intelligent
Transportation Systems,
2016

52

Weather
conditions

Sensors, pedestrians,
malicious activity by other
road users, traffic control,

pedestrians, technical

failures, traffic composition,
perception, traffic density,
HMI, speed, traffic rules,
visibility, roadwork, type of
road, time to collision,
traffic participants
experience, actuator control,
longitudinal and lateral
safety distances, autonomy
level

This article provides a definition for safe state
in the automated (autonomous) driving
context. Several events are identified which
can influence the risk and the capabilities of
the vehicle guidance system. Change in
environmental conditions (e.g. rain and/or fog)
are among these events.

Reschka and Maurer
IT: Information
Technology, 2015

53

Weather
conditions

Sensors, radar, GPS,
cameras, sonar, pedestrians,
traffic infrastructure, time of

day, visibility, perception
accuracy, obstacles,
algorithms,

A systematic literature review was conducted
to characterise and evaluate the effect of
adverse weather conditions on different types
of sensors such as radar, visual cameras and
LiDAR which typically compose the
perception hardware in AVs. The results
suggest that adverse weather can reduce the
detection range of radars up to 45%.

Zang et al.
IEEE Vehicular
Technology Magazine,
2019

54

‘Weather
conditions

Lighting conditions,
LiDAR, cameras, sensors,
radar, traffic conditions,
control, static/dynamic
obstacles, visibility, road
type, road structure, road
conditions, other road users,
traffic rules, traffic density,
speed, V2X, surrounding
perception, algorithms

The ability to assess various traffic
conditions/scenarios and navigate safely is a
serious challenge for AVs. Another important
challenge is the development of a robust
recognition system that can account for
adverse weather conditions. Sun glare, rain,
fog, and snow are the weather conditions that
can occur in the driving environment and
affect the performance of AVs. This paper
summarised research focused on AD
technologies and discussed challenges to
recognition of adverse weather by vehicle and
other situations that increase the risk, thus
complicating the introduction of automated
vehicles to the market.

Yoneda et al.
TATSS Research, 2019
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This paper demonstrates the applicability of a
reconfigurable vehicle controller agent for
AVs that adapts the parameters of a used car-
Software, road conditions, | following model at runtime, so as to maintain
traffic conditions, traffic a high degree of traffic quality (efficiency and
compositions, road type, safety) under different weather conditions. Horcas et al.
Weather vehicle controller, speed, The results suggest that as the intensity of the Journal of Software:
55 conditions reaction time, driving style, rain builds up, vehicle acceleration was Evolution and Process,
traffic density, traffic reduced up to 25.96% and time headway rose 2017
infrastructure, algorithms, |up to 78.95% under heavy rain, which are very
kinematic state close to the expected variations for human
drivers with decrements in acceleration up to
20.86% and increments in time headway up to
77.50%.
. This news article considers different obstacles,
traffic conditions, traffic . .
. challenges and impacts in respect to test, Waddell
56 Urban design culture, software, road . .
o launch and prevalent use of self-driving cars www.wired.com, 2017
conditions, . N ..
in developing cities.
In this paper, authors propose a real time
genetic algorithm with Bezier curves for
Sensors. software. traffic trajectory planning. The main contribution is Kala and Warwick
57 Urban design o ’ the integration of vehicle following and Applied Soft Computing,
conditions, traffic culture . .
overtaking behaviour for general traffic as 2014
heuristics for the coordination between
vehicles in the absence of speed lanes.
Communication, sensors, | This paper briefly summarises the approaches Campbell ef al
software, traffic that different teams used in the DUC, with the Philoso hi?:al Transaic tions
58 | Urban design conditions/culture, trust, | goal of describing some of the challenges that P .
. L . I of the Royal Society A,
inter-vehicle interactions, the teams faced in driving in urban 5010
traffic rules environments.
This article examines how large metropolitan
. planning organizations (MPOs) are preparing Guerra
Urban desien Sensorgs;(;rggf;gi(t:ﬁ)riltlons, for autonomous vehicles. Uncertainties about Journal of Planning
59 g L the new technology have kept mention of self- | Education and Research,
communication S
driving cars out of nearly all long-range 2016
transportation plans.
This paper studies “Caroline”, an autonomous
- car Whl?h p_artlclpated in Urban Challenge Wille, Saust and Maurer
. Traffic conditions/rules, competition in 2007 and later was adopted to . .
60 | Urban design L IEEE Intelligent Vehicles
speed master the challenge of realising autonomous :
R > -, Symposium, 2010
driving in the domain of Braunschweig’s inner
ring road.
This paper presents an autonomous driving
test held in Parma on urban roads and Broggi et al.
. freeways open to regular traffic. It also IEEE Transactions on
61 | Urban design Software reviews other Intelligent Vehicles Tests Intelligent Transportation
including their scenarios, sensors used in the Systems, 2015
vehicle and adopted approaches.
Sensors. communication This study surveys the mutual impacts of AVs Durate and Ratti
62 | Urban design au t,onom level ’ and different aspects of urban design, urban Journal of Urban
Y infrastructure and vehicle form. Technology, 2018
The author considers an extension of Multi-
.. . lane Spatial Logic (MLSL) for autonomous Schwammberger
6 . Collision avoidance, car ;i . .
3 Urban design d . cars to deal with urban traffic scenarios, Theoretical Computer
ynamics, software . . .
thereby focusing on crossing manoeuvres at Science, 2018
intersections.
This paper reflects on how the relationship
between traffic, people, and places might be
otherwise. It tries to define the relationship of
6 Urban desion Traffic conditions/culture, traffic engineering and urban design which Hamilton-Baillie
4 8 integration might offer possibilities for reconciling the Urban Technology, 2004
competing and conflicting demands for safe,
efficient movement with the quality and
legibility of the built environment.
65 | Urban design | CommtY desien, e | e arban plannig | Dumbaueh and Rae
5 g conditions ty design planning JAPA, 2009
and traffic safety.
Starting from Alker Tripp's seminal ideas
about city design, street morphology, and Sarkar, Webster and
. accident risk, this article summarises results Kumari
. Traffic conditions/culture, . . . . .
66 | Urban design speed. road fvpes from an increasingly sophisticated line of International Journal of
peed, P enquiry at the boundaries between transport Sustainable
geography, network modelling, urban Transportation, 2018
geography, and planning.
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This paper addresses the problem of motion
planning of an autonomous vehicle amidst
other vehicles on a straight road is considered.

6 Urban design Traffic rules/culture, speed, Challenges include assessing a possible Kala and Warwick
7 g software overtaking opportunity, cooperating with other Electronics, 2015
vehicles, partial driving on the “wrong” side
of the road and safely going to and returning
from the “wrong” side.
The paper describes the current status of and
Software, sensor, traffic main trends in automated vehicles, a Alessandrini et al.
68 | Urban design conditions/culture, speed, preliminary vision of the future city with Transportation Research
communication mobility supported mainly by automated Procedia, 2015
vehicles, and freight distribution.
Sprawl has been studied in relation to many
topics from residential energy use to social . -
69 Urban design Speed, traffic conditions, capital. This work studies direct and indirect Ewing, Hamld.l and Grace
. . Urban Studies, 2016
relationship between sprawl and fatal/non-
fatal crash rates
This paper considers the rise of traffic
accidents in the creation of the modern city.
o Urban design Speed, traffic conditions, The notion of accidents is deconstructed. It Short & Pinet-Peralta
7 g pedestrians, sprawl also reviews a range of recent papers that Mobilities, 2010
explore the causal connections between urban
design and traffic accidents.
This paper deals with accidents between
reversing vehicles and pedestrians occurring
N, .. on public roads and other places open to the Brenac and Fournier
. Visibility, collision o . .
71 Urban design . P public in France. It also analyses the accident | The Open Transportation
avoidance, visibility - . .
cases to contribute to reflections on possible Journal, 2018
preventive measures, notably in the field of
urban planning and design.
This work describes two phases of a project
designed to adapt an existing commercial Waterson, Cherrett and
2 | Urban desien conl(lnifirsrsltsrug;lrfr’lflzgfion traffic simulation package and use the McDonald
7 g s,o frware ’ | simulation model to develop and demonstrate | Journal of the Operational
the operation of a new automatic incident Research Society, 2005
detection algorithm based on these messages.
This article indicates in which ways
Autonomous Vehicles can be disruptive and Cox
73 Urban design Infrastructure A . . D/SRUPTION
further highlights the major barriers to . .
. . (disruptionhub.com), 2017
adopting AVs in urban area.
The purpose of this paper is to present the
numerous extensions made to the standard Kuwata et al.
Motion plannine. aleorithm RRT IEEE/RS]J International
. pranning, a's ' | algorithm that enable the on-line use of RRT | Conference on Intelligent
74 | Urban design | traffic conditions, speed and botic vehicl ith 1 bl Rob qs
road type on robotic vehicles with complex, unstable obots and Systems
dynamics and significant drift, while Intelligent Robots and
preserving safety in the face of uncertainty Systems, 2008
and limited sensing.
To analyse various factors influencing the
accident severity of urban river-crossing He et al
Speed, time of day, car type, | tunnels, twelve influence factors were chosen S
. 1 . Journal of Engineering
75 Urban design weather conditions, road according to the three traffic elements of Science and Technolo
design, traffic conditions | vehicle, road, and environment. These factors Review. 2018 gy
were based on the historical data of 14 urban ’
river-crossing tunnels in Shanghai.
R"odel et al.
6th International
Trust. UA. UX. HMI This study surveys the relationship between Conference on
76 Autonomy level inter;c tio;ls cc;ntrol the degree of autonomy in cars, User Automotive User
? Acceptance (UA) and User Experience (UX). | Interfaces and Interactive
Vehicular Applications,
2014
Section 6 of this paper describes a low-level Kelly et al.
Autonomy level Sensors, software, urban reactive subsystem empowered to respond to | The International Journal
77 Y design, control exceptions often due to failures in higher level of Robotics Research,
autonomy layers. 2006
This paper reviews a framework for Huan'g etal.
Proceedings of the
. Autonomy Levels for Unmanned Systems R
78 Autonomy level Software, perception . AUVSI’s Unmanned
(ALFUS) which has been developed by a .
- Systems North America,
group at NIST to address the autonomy issues. 2005
This research explores the notion of adjustable Goodrich et al.
Autonomy level Control, software, H-M autonomy. It also discusses a porotype system | American Association for
79 y interactions which allows human users to interface with a

remote robot at various levels of autonomy.

Artificial Intelligence,
2001
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Autonomy level

Control, communication,
liability, software

This paper addresses some of the early policy
concerns about “connected cars” and
driverless vehicles and challenges the concept
of full autonomy in such vehicles. It also
categorises car automation into 5 levels and
addresses risk factors.

Mercatus working paper,

Thierer and Hagemann

2014

81

Work zones

Road geometry, road
conditions, weather
conditions, traffic rule
enforcement, speed, road
infrastructure, control,
sensors, algorithms, weather
conditions, visual cameras

To be deployed in real-world driving
environments, AVs must be able to detect,
recognise and handle exceptional road
conditions, such as highway work zones as
such peculiar events can alter previously
known traffic rules and road geometry. These
events can be challenging for AVs and pose
safety risks. For example, the line of sight
between a sign and a camera perceptually and
computationally changes the colour of a work
zone sign from that of the sign template. This
can make it difficult for the vehicle to
recognise the signs.

Intelligent Transportation

Seo et al.
IEEE Transactions on

Systems, 2015

82

Work zones

Road geometries, traffic
conditions, speed, reaction
time, road conditions, traffic
flow, longitudinal and

lateral

Transition taper length has crucial effect on
work zone safety since too short a transition
taper length can result in higher collision risks
and if the transition taper length is too long
can lead to longer traffic delays. This paper
evaluated the effect of taper length on the
longitudinal lane changing distance and
emergency stopping distance which are
determinants of collision in work zones.
Various traffic conditions and road geometries
are taken into account for that purpose.

Weng
Transportation Planning
and Technology, 2011

83

Work zones

V2V, V2I, communication
infrastructure, GPS, traffic
network, algorithms,
velocity, weather conditions,
traffic conditions, roadside
unites, path planning, time
of day, day of week, driving
behaviour, traffic control,
traffic volume, situation
awareness, obstacles

The primary objective of this research was to
evaluate the potential safety benefits of
deploying connected vehicles on a traffic
network in the presence of a work zone. A
relationship was observed between the safety
benefits of rerouting around work zones and
the detriments of longer average trip distances,

which increased safety risks.

Genders and Razavi
Journal of Computing in
Civil Engineering, 2015

84

Work zones

Velocity, traffic flow, lane
changing, longitudinal and
lateral distance, other road
users, traffic conditions,
traffic congestion, traffic
capacity, reaction time, time
to collision, trajectory
planning

Presence of work zones can affect the
freeways’ traffic metrics in a negative way
(e.g., traffic delays, emission and speed
variations). This research proposed a
cooperative cellular automata model (CCAM)
to be incorporated into CAVs as a
collaborative component.

Zou and Qu
Joumnal of Intelligent and
Connected Vehicles, 2018

85

Work zones

Motion control, lane-
changing control, traffic
flow, traffic composition,

speed limits, traffic
conditions, V2I, algorithms,

traffic density, traffic

control infrastructure,
number of lanes, weather
conditions, road section,
road conditions, motion

planning

This paper aimed to simulate and assess the
traffic performance around work zone under
the CAV-based coordinated control of
variable speed limits (VSL) and lane-changing
(LC) strategies in mixed traffic flow. The
simulation consisted of: a) a multi-layer
control structure is applied in work zone
traffic control; b) the work zone traffic
simulation model is constructed based on
cellular automata; and c) the six CAVs-based
control strategies composed of NC, VSL, LC
and their coordinated control strategies are
simulated.

Wu et al.
International Journal of
Modern Physics B, 2020

86

Work zones

Speed variation, traffic
conditions, traffic volume,
other road users, actuators,

V2V, GPS, software,
hardware, traffic control,
obstacle, environmental
conditions, lateral and
longitudinal positions,
control, driving behaviour

Road maintenance operations such as bridge
flushing and pothole patching are essential for
safety of roads and highways. Nevertheless, it

is vital to consider the hazards for the
maintenance workers and public. This
research can help transportation agencies that
may consider deploying autonomous vehicles
and to apply knowledge gained in
transportation modelling and simulation
practices. This paper developed a
methodology for evaluation of an autonomous
truck-mounted attenuator (ATMA) system and
the results of field tests performed in April

2019 in Sedalia, Missouri.

Tang et al.
Transportation Research
Record, 2021
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Environmental conditions,
traffic conditions,
perception accuracy,
planning algorithms, system
integration, vehicle control,
infrastructure, weather

It is held that to ensure the robustness of an
AV architecture, dimensioning the parameters
related to functional scenarios is of high
importance. In this paper, a risk analysis

De Galizia, Bracquemond
and Arbaretier

87 Work zones conditions, lighting approach is developed which intends to Safety and Re.hab.lhty -
.. o . . Safe Societies in a
conditions, component qualitatively identify hazardous patterns and Chaneing World. 2018
failure, other traffic by this way the underlying critical situations ging ?
participants, visibility, type including work zones.
of road, number of lanes,
road geometry
Due to increase in construction and
maintenance activities, work zones are
Road geometry, traffic . .
. becoming common areas on highways. Work
control infrastructure, traffic .
e zones can expose both conventional and
flow, communication, .
o autonomous vehicles to a sudden and complex
weather conditions, speed, R . R
geometric change in the roadway environment
V2V, V2I, V2X, traffic i
. and subsequently speed change which may Dehman and Farooq
88 Work zones composition, GPS, sensor, o .
S ; challenge many of CAV navigation and Working paper, 2021
reaction time, LiDAR, e . -
L . . control capabilities. To avoid collision, CAVs
lighting conditions, driver -
: . should be able to reliably traverse work zone
behaviour, path planning, . ; .
. geometry. This paper investigates the key
algorithms, RSU, cameras, .
D concepts of deploying CAV systems at work
road conditions, obstacles . .
zones focusing on mobility, safety, and
infrastructure considerations.
When it comes to CAVs lane changing is seen
as a risky activity as it can cause lateral
Number of lanes, V2X, V2I, collisions when coordination is not
mixed traffic, traffic control, appropriately performed. Nevertheless, in
driving state, traffic flow, many traffic scenarios such as work zones, Xu et al.
ork zones road infrastructure, roa changing the lane is inevitable for the vehicle. ransportation Researc
8 Work d inft d hanging the lane is inevitable for the vehicl T ion Rq h
geometry, obstacles, traffic This study developed a risk function to Part C, 2020
congestion, trajectory estimate the risk of a collision between a pair
planning of vehicles, and then a predictive control
model was used to solve the resulting
constrained nonlinear optimisation problem.
The recent advent of CAVs is believed to pose
V2V, V2I, traffic flow, level | an additional risk to traffic flow performance L
; . ; Mintsis et al.
of autonomy, mixed traffic, | and safety around highway work zones. This .
. o L. IEEE 23rd International
traffic conditions, paper developed a novel and utilised existing .
90 Work zones L . X X Conference on Intelligent
communication, speed, vehicle-driver models to simulate manual X
. . .. . . Transportation Systems
algorithm, data fusion, driving, mixed traffic and infrastructure- (ITSC), 2020
tome-to-collision assisted highly automated traffic around ?
highway work zones.
This study centred the “Automated Unmanned
HMLI, sensors, actuators, Protective Vehicle for Highway Hard
communication buses, radar, | Shoulder Road Workers” (aFAS). It aimed at .
. . . Bagschil, Stolte and
control structure, obstacles, designing unmanned protective vehicles to Maurer
91 Work zones vehicle environment, other | address the risk of injuries due to accidents for h
- . . . 4" European STAMP
traffic participants, weather road maintenance staff in Germany. This
o\ . . Workshop, 2016
conditions, vehicle paper applies a new method based on system
dynamics theory and System-Theoretic Process Analysis
(STPA).
Motion control,
environment perception, H-
M Interfaces, HMI, This paper conducted hazard analysis for an
obstacles, traffic rule unmanned protective vehicle operating Stolt.e et al. .
92 Work zones § . . IEEE Intelligent Vehicles
enforcement, other traffic | without human supervision for motorway hard .
e Symposium (IV), 2017
participants, road geometry, shoulder roadworks.
speed, longitudinal control,
communication, sensors
This paper 1pvest'1gates 1mpagts of AVs form 3| Tettaman ti, Varga and
. Traffic Engineering Perspective and enlighten
Weather conditions, control, . < Szalay
. - - trends and challenges surrounding this S .
93 | Cybersecurity H-M interaction, and . Periodica Polytechnica
R technology and related infrastructure .
situation awareness S Transportation
developments. It further highlights the cyber Enoineering. 2016
vulnerabilities of Autonomous Vehicles. g &
The Federal Automated Vehicles Policy
includes vehicle cybersecurity in a framework
V2V & V21, H-M for evaluating performance guidance of US Department of
94 | Cybersecurity interactions, traffic laws, Highly Automated Vehicles (HAVs). It Transportation
weather, road type, speed | provides guidance on minimising safety risks NHTSA, 2016
due to Cyber-security threats and
vulnerabilities.
. Liability, cthics, This study prov1de§ a review f’f the strategies Tacihagh and Lim
95 | Cybersecurity L formulated by multiple countries to govern the
communication

development of AVs.

Transport Reviews, 2018
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It is emphasised that VANETS (a network of
wireless links which are used to connect Alheeti, Gruebler and
mobile vehicles) are exposed to security McDonald-Maier
6 | Cybersecurit Communication, VANET, | threats in communication systems. This paper IEEE 12" Consumer
9 ¥ y IDS, V2V & V21 focuses on two types of attacks (i.e. “control Communication and
of a vehicle’s resources” and “jamming the Networking Conference,
communication channels”) and adopts a new 2015
approach to secure external communication.
Some major concerns over the adoption of Elbanhawi, Simic and
Situation awareness, H-M | autonomous cars are highlighted in this article. Jazar
97 | Cybersecurity | interactions, reaction time, | It considers cybersecurity as one of the safety IEEE Intelligent
speed, communication components of AVs and relates this to the Transportation Systems
vulnerability of on-board computers. Magazine, 2015
RSU. AL sensors. VANET This paper proposes a four-layer IDS for Straub et al.
. P . > | VANETS used in self-driving cars to detect 12th System of Systems
98 | Cybersecurity | infrastructure, RSU, other X o L DT
road users, V2V, algorithms potential threats and secure communication Engineering Conference,
i ’ networks. 2017
It is discussed that uncoordinated evolution of
complex systems-of-systems while they are Axelrod
10T, software, infrastructure, | interconnected and integrated can expose a IEEE Lone Island
Cybersecurity V2V & V2L, multitude of vulnerabilities and pose Svsterna. A ligcaﬁons and
99 ¥ communication, traffic cyberattack threats. Main reasons are seen to %/echnoio ppCon ference
rules, be lack of standards and inadequate design. gy ’
. . 2017
Then, cybersecurity requirements are
proactively introduced to mitigate such risks.
Security of driverless cars and the catastrophic . .
fallouts which may be imposed on the society Ydi%t]);égégirniiil(hn
VANET, software, due to security issues are centred in this paper. Computine and
100 | Cybersecurity communication, sensors, Current communication technologies Comgluni fation
speed, (VANET & ANN) which are used for
. . o . Workshop and Conference
driverless cars in addition to possible attacks
(CCWCQ), 2018
on these systems are explored as well.
Yagdereli, Gemci and
Software, hardware In this study, autonomous and unmanned Aktas
reliability, CAN, bus, vehicles are examined in terms of their Journal of Defense
101 | Cybersecurity | communication, V2V, V2I, cybersecurity vulnerabilities. Threats and Modeling and Simulation:
V2X, infrastructure, attacks which may exploit these Application,
regulation, sensors susceptibilities are identified and categorised. Methodology,
Technology, 2015
This journal article finds the privacy and
L cybersecurity risks of AVs as crucial and
102 | Cybersecurity Conll{nlcll? licr?gzgt’rlﬁ;VZI’ examines the measures taken by several Lim and Taeihagh
y re ;Jlations trust ? governments around the world to mitigate Energies, 2018
g ? these risks. The implications of AVs’
cybersecurity for safety are highlighted too.
This report was presented to the congressional
requesters to investigate the vulnerabilities of
Communication. software modern vehicles (including autonomous GAO
10 Cvbersecurit intecration re7 ulation > | vehicles and self-driving cars) to cyberattacks | United States Government
3 ¥ y ot agn dar di;ati(gm bus ’ and the impacts they can have on passengers’ Accountability Office,
? safety. Key vehicle interfaces can be exploited 2016
through direct access, short-range wireless
and long-range wireless.
The security issues arising from external Larson and Nilsson
Communication. V2V. V21 wireless communication in connected vehicles | 4th Annual Cyber Security
104 | Cybersecurity bus reco,ve ’ > | (V2V & V2I) are investigated. A defence-in- and Information
? vy depth strategy is adopted to address these Intelligence Research
issues. Workshop, 2008
This journal article underlines the wireless
Communication, V2V, V2I, gate\yay (a? an entry point to the autqmoblle Nilsson and Larson
. RSU, situation awareness. 1n-veh1_c le network) t O compromise International Journal of
105 | Cybersecurity self-awareness, CAN, LIM, "l?}?:fész?:rrtl}ér?tfst:r? dve?elfiei?s??e:?g(;;kisﬁ. Digital Crime and
MOST > S and prereq Forensics (IJDCF), 2009
vehicle forensic investigation system are
proposed and discussed.
Prominent and established communication
systems in vehicles besides potential attacks | Wolf, Weimerskirch and
. . and exposures are investigated in this study. Paar
106 | Cybersecurity | Communication, bus, CAN, Cryptographic mechanisms are proposed to | Workshop on Embedded
provide secrecy, prevent manipulation and IT-Security in Cars, 2004
mitigate the bus security issues of vehicles.
The authors analyse the potential security risks Lang et al
10 Cvbersecuri Communication, CAN, bus, and their repercussions on safety measures 26" International
7 y ty V2v when vehicles are equipped with and IP based | Conference, SAFECOMP
protocol. 2007
Software, hardware. ECU, . . .
communication, V2V, V2I, T.hls study recognises IT security as one N f the Wolf, Weimerskirch and
oreanisational structure pivotal technologies for the next generation of Wollineer
108 | Cybersecurity & ’ vehicles. It further reflects on an interrelation &
DES, autonomy level, . R . L EURASIP Journal on
. . . technical failure (safety issue) and malicious
infrastructure, integration, I Embedded Systems, 2007
HMI attack (security issue).
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This paper raises concerns over the reliability
and robustness of computer codes embedded
in the highly automated and computerised
vehicles. Any failure or deficiency can

. ECU, communication, provide the possibility for attackers to obtain Val'asek and.Mlller.
109 | Cybersecurity . . IOActive technical white
software, BUS, remote code execution on the electronic aner. 2014
control units (ECU) and take control over papet,
steering, braking, acceleration and display.
These attacks are deemed to potentially
endanger the physical safety.
The author critiques the current developed
self-driving cars (e.g. Oxford University’s
Autonomy level, regulation, | RobatCar) to be fully and truly autonomous
H-M interface, and defines an autonomous car as self- .
L. , L. 7. McBride
110 | Cybersecurity communication, V2I, V2V, | contained, self-determining, self-correcting, Computers & Society
machine learning, HMI, self-healing, and ultimately self-aware. 2015 ’
traffic culture, traffic control | Therefore, any engagement in communities
infrastructure, GPS, control | can give rise to the cybersecurity risks due to
security breaches, hacking and privacy
violations.
This document is an overview of the SAE
Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems (SAE J3061). The
. Communication, design, motivations ar}d r}ecessmes (e.g. lack of Boran, Czerny and Ward
111 | Cybersecurity common principals, processes, and :
software, hardware . . . SAE International, 2016
terminologies between OEMs and Tier 1
suppliers) for developing such a practice as
well as the link between System Safety and
System Cybersecurity are defined.
The author maintains that cyber threats are
Communication, sensors, among main concerns of AV developers and Raiyn
112 | Cybersecurity | GPS, radar. LIDAR, ECU, | draws a positive (direct) relationship between Transport and
CAN, V2V, V21 the level of autonomy and the possibility of | Telecommunication, 2018
cyber-attacks.
The advent of connected vehicles (including
V2V, V2L, V2X, software, AVs) has of necessity called for p_rotectlon Takahash_l
. methods against cyber-attacks to circumvent IEICE Transactions on
113 | Cybersecurity | CAN, ECU, LIN, sensors, . .
. such attacks and secure connected services. | Information and Systems,
LiDAR . .
This paper surveys recent trends in cyber- 2018
attacks and cybersecurity countermeasures.
The rise in inter-vehicle connections as well as
L . . . . S Macher et al
Communication, V2V, V2I, | networking with non-vehicle entities (which is
. . : . 24th European
114 | Cybersecurity | hardware, software, design, a prominent feature of AVs) impose new
. . L o Conference, EuroSPI,
integration, standardisation | challenges to the assurance of dependability 2017
for Cyber-Physical Systems (CPS).
Due to the exponential increase in deployment
of Cyber-PhysmaI Systems and machine Khalid et al
. . learning (ML) techniques (e.g. AVs), new .
Al machine learning, deep . g . International Conference
. . cybersecurity vulnerabilities are introduced )
115 | Cybersecurity | learning, neural networks, | . . . . on Frontiers of
into these systems. This work provides a brief .
hardware . . . Information Technology,
overview of security threats in ML-based
. L7 . 2018
systems (during training and inference) and
their threat models.
This paper scrutinises the V2V Wan et al
. IoT, communication, V2V, 1S pap Computer Science &
116 | Cybersecurity . . communication in CPSs and acknowledges the .
integration, - . . Information Systems,
issue of network security in V2V connections. 2013
The link between cyber-attacks and safety Bezemskij et al
physical repercussions in CPSs and AVs due 15th International
to their mobility is indicated. To facilitate the | Conference on Ubiquitous
. - automatic detection of cyber-attacks on those Computing and
117 | Cybersecurity CAN, bus, WiFi systems, the authors have developed a Communications and 2016
detection mechanism to oversee large amount | International Symposium
of real-time data form various sources such as on Cyberspace and
sensors and networks. Security
This paper investigates the reaction of traffic
flaw to false-accident attacks (a form of
cyber-attack) in connected vehicles. The
experimental results show that this class of Jin et al
118 | Cybersecurity Traffic, communication, cyber-attack may or may not significantly International Conference

VANET,

affect the traffic congestion and traffic
perturbation. The extent of impact varies
depending on the initial conditions,
behavioural assumptions, and attacking
parameters.

on Connected Vehicles
and Expo (ICCVE), 2013
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119

Cybersecurity

Physical safety, collision

The mounting integration of autonomous
systems (e.g. parcel delivery and driverless
cars) with publicly available networks, ad-hoc
wireless and satellite networks and other
remote operators can potentially expose them
to cybersecurity threats. Therefore, designing
security mechanisms is integral CPSs.

Xu and Zhu
IEEE 54th Annual
Conference on Decision
and Control (CDC), 2015

120

Cybersecurity

Trust, V2X, infrastructure,
hardware, ECU, cloud,
software, traffic
infrastructure

With the advancement of V2X technologies
and assimilation of AVs into the intelligent
traffic infrastructure, remote interaction
between safety-critical components becomes
investable. Although the realisation of such an

integrated system is appraised to have
benefits, the main challenge with AVs and
their interconnectivity is their vulnerability to
cyber-physical attacks. In this study, a remote
testimony architecture is proposed to
receive/send testimony of correctly executed
programmes without “integrity violation”.

Alesiani and Gajek
IEEE 83rd Vehicular
Technology Conference
(VTC Spring), 2016

121

Cybersecurity

ECU, software, hardware,
integration, CAN, firmware,

This paper takes security implications of on-
board network of ECUs into account and
develops an automated, quantitative,
probabilistic method and metric for attack
surface and vulnerability assessment
automation. The focus is mainly on injecting
malicious code which can exploit the
vulnerabilities of the actual implementation.

Salfer and Eckert
12th International Joint
Conference on e-Business
and Telecommunications
(ICETE), 2015

122

Cybersecurity

Communication, V2X,
CAN, VLAN

With V2X communication and distributed
connected nature of AVs, security becomes a
focal issue of future automotive systems. The

security, safety and their interactions in
Ethernet-based automotive networks are
discussed in this study.

Lin and Yu
53rd ACM/EDAC/IEEE
Design Automation
Conference (DAC), 2016

123

Cybersecurity

10T, CAN, integration,
VIMP

Considerable increased attack surface,
complexity, heterogeneity and number of
interconnected resources are major challenges
in securing and protecting advanced
information services in interconnected smart
vehicles as a result of ToT realisation. A
framework (ISDF) is therefore developed by
the authors to build secure and trustworthy
AV networks.

Pacheco et al
IEEE Conference on
Intelligence and Security
Informatics (IST), 2016

124

Cybersecurity

Communication, hardware,
software, infrastructure,
V2I, V2V, V2X, CAN, bus,

FlexRay, sensors,
integration, GPS, autonomy
level, infrastructure, cloud

In this paper, interconnectivity is seen as a
factor which can heighten the risk of a
cybersecurity breach. Higher automation
(autonomy level) can exacerbate the

consequences of any breach or attack. This
paper presents a review of publicly accessible
literature and categorises the vulnerabilities in
CVs and AVs.

Parkinson et al
IEEE Transactions on
Intelligent Transportation
Systems, 2017

125

Cybersecurity

Software, hardware,
communication, V2V, V2I,
V2X, situation awareness,
sensors, CAN, ECU, GPS

This study develops a proactive cybersecurity
risk classification model (Bayesian Network)
and by incorporating known software
susceptibilities into the model tries to
overcome this issue in CAVs.

Sheehan et al
Transportation Research
Part A: Policy and
Practice, 2019

126

Cybersecurity

Pedestrian, software, Al

It is shown that if the decision-making
processes and functions of an autonomous
vehicle are transparent and perfectly known,
then the risk of manipulation caused by
malicious, opportunistic, terrorist, criminal
and non-civic individuals increases. This
manipulation can be either physical or cyber.

Osorio and Pinto
International Journal of
Human-Computer Studies,
2019

127

Cybersecurity

10T, systemic collapse,

Extreme automation until ‘‘everything is
connected to everything else’” can pose
vulnerabilities that have not raised too much
concerns until now. For example, highly
integrated systems are susceptible to systemic
risks such as total network collapse in the
event of failure of (or glitch in) one of its
parts, for instance, by hacking or computer
viruses or malwares that can put integrated
systems at serious risks.

Ozdemir and Hekim
Journal of Integrative
Biology, 2018

128

Cybersecurity

Human factors, trust,
communication,
infrastructure,
standardisation, training and
experience

Human factors are seen to be the most
common contributor to successful
cyberattacks. In this paper, the role of human
factors in AVs’ cybersecurity is studied and
recommendations are made to strengthen the

Linkov et al.
Frontiers in Psychology,
2019

security of this technology.

152



Appendix A

Although ample amount of generated and
transferred data play a pivotal role in data-
driven economies of scale as far as AVs are
concerned, privacy and integrity-dependent
scenarios can pose a challenge. The concept of

Karnouskos and

. Communication, V2X, V2I, | 7 S, . Kerschbaum
129 | Cybersecurity V2V, hyperc_onnected vehicle as wel_l as security Proceedings of EEE,
techniques are developed in this paper to 2017
tackle these challenges. There are some safety
risks identified in this paper such as wrong
information fed into the navigation module of
the car or security and safety issues due V2I.
Several factors that can affect the adoption of
AVs and users’ trust are discussed in this
Communication article. Among them, there are some risks and
infrastructure, V2V, other concerns about the performance of the Kaur and Rampersad
. road users, hardware and technology. Security, hardware/software Journal of Engineering
130 | Cybersecurity software reliability, traffic reliability, sensor reliability and network and Technology
composition, sensor security are identified to have impact on the Management, 2018
reliability safe performance of the vehicle. For example,
it is asserted that any failure of the sensors can
cause a fatal accident.
AVs are inherently cyber-physical systems.
This means such vehicles will have novel
- security vulnerabilities that entail both the Mascarenas, Stull and
Traffic conditions, sensors, A .
. . . cyber aspects of the vehicle including the on- Farrar
131 | Cybersecurity actuators, kinematic state, . .
speed board computing software and any Mechanical Systems and
P communication channel, with the physical Signal Processing, 2017
nature and hardware of the vehicle including
its sensors, electronics and actuators.
The impacts of cyber-attacks on CAVs based
L on the proportion of attacked vehicles, cyber-
Communication, .
L. attack severity and attack range are evaluated
connectivity, V21, V2V, . . 1 . X
in this research. Four indicators including
RSU, traffic flow, traffic .
132 | Cybersecurity conditions, position and safety were singled out to analyse the Dong et al.
3 - . performance of transportation system in case IEEE Access, 2020
speed, congestion, reaction . .
. . any cyber-attack occurs. The findings of this
time, road capacity, control, . - .
number of lanes study prov1de useful insights for the prediction
and mitigation of cyber-attacked traffic system
in future.
This study evaluate; Carcel ona stat;—of—the— Kumar, Gollakota and
art autonomous driving system which can .
.. - . Katabi
o Infrastructure, collision facilitate communication between AVs and i
133 | Communication . L Association for
avoidance roadside infrastructure to reduce the average . .
. . Computing Machinery,
time vehicles need to detect obstacles such as 2012
pedestrians.
This research tries to answer whether V2V
and V2I communication platforms in self- ..
- . . . Gora and Riib
N Infrastructure, traffic, and | driving vehicles can efficiently improve travel .
134 Communication . . . . . Transportation Research
speed quality while reducing the risk of collisions. Procedia. 2016
To this end, the researchers developed a ?
simulation software to visualise traffic flow.
This study provides a summary on the Internet
Sensors, control, processing, of Vehicles (similar to IOT) as well as Gerla et al
135 | Communication | situation awareness, traffic, | vehicular cloud and explains implications of IEEE World Forum on
security, infrastructure V2I and V2V in autonomous driving Internet of Things, 2014
scenarios.
This study presents a first look at the effects of
Security, traffic, speed, security attacks on the communication channel Amoozadeh et al
136 Communication | autonomy level, control, as well as sensor tampering of a connected IEEE Communications
sensors vehicle stream equipped to achieve Magazine, 2015
CACC.
. . . Alheeti 1
To increase the security of VANET which are eeti and Grueb or and
. Lo, McDonald-Maier
Sensors, GPS, deployed in self-driving cars, the authors th
N . . . . . IEEE 12" Consumer
137 | Communication infrastructure, traffic, propose an intrusion detection mechanism L
.. . o Communication and
vulnerability, software using Artificial Neural Networks to detect -
. . Networking Conference,
Denial of Service.
2015
This paper reviews traditional comfort Elbanhawi, Simic and
L measures and proposes autonomous passenger Jazar
138 Communication Infrastructure, situation awareness factors. It also highlights some IEEE Intelligent
awareness, speed . .
concerns with autonomous cars (e.g. road Transportation Systems
safety, software reliability and cybersecurity). Magazine, 2015
Wardzinski
N This paper develops a conceptual model to 1st International
L Situation awareness, speed, AT
139 | Communication sensor assess the situation risks for autonomous Conference

motion planning in urban environments.

on Information
Technology, 2008
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Cybersecurity, VANET,

Vehicular Ad hoc Network (VANET) enables
inter-vehicular communication as well as
communication between vehicles and various
road side units (RSU). This work proposes a

Abueh and Liu
Symposium on

RSU, traffic flow, traffic
condition, vehicle velocity,
traffic complexity

assist with collision avoidance.

140 | Communication | RSU, DSRC, type of road, novel messaee authentication scheme that Technologies for
infrastructure, sensors, V21 & Homeland Security (HST),
protects cars from bogus messages and makes 2016
VANET resilient to Denial-of-Service (DoS)
attacks.
This study presents a car-following strategy
for mixed traffic stream which involves
. . latoon development in a connected Lo .
Platooning, car-following P . . Seraj, Li and Qiu
141 | Communication | strategies, control, mixed automated vehicle (CAV) e_nv1ronment. The Journal of Advanced
traffic study also explores various platoon Transportation, 2018
configurations to determine platoon ?
parameters at different traffic states to obtain
utmost benefits.
V2V, evbersecurity. path This paper investigates the security risks of Straub et al
142 | Communication lanni;l ysensors \;/ApNET vehicle to vehicle communications. Further it | 12th System of Systems
4 P & RSU ’ > | proposes an intrusion detection system for the | Engineering Conference
self-driving car network system-of-systems. (SoSE), 2017
This study applies Artificial Neural Networks Ydenbere. Heir and Gill
(ANN) to tackle the security problems with IEEEgé th Annual
VANET, Cybersecurity, Vehicle Ad Hoc Networks (VANET). It Computine and
143 | Communication RSU, software, control, divides the attacks into two groups with Comr};unicgation
security protocols, integrity different purposes: 1) take the control of a Workshon and Conference
vehicle’s resources and 2) jam the (CCpWC) 2018
communication channels. i
This paper provides an overview and short
Software, sensor, history of self-driving vehicles. It also reviews Lutin. Kornhauser and
1 Communication regulations, pedestrians, different levels of autonomy and divides the iemer-Lam
44 self-awareness, V2V, V2I, technology into four basic components: ITE Journal. 2013
traffic congestion sensor, mapping, perception and ?
communication.
This article mainly focuses on liability and
5 | Communcaon| ISt eners, | rmeessofammmon can || i
45 cameras, road conditions ghiig . . Aon Risk Solutions, 2017
between vehicles and infrastructure as a
potential risk factor.
This study adopts a broader perspective (than
just complexities arising from a single vehicle) Borenstein. Herkert and
. . and analyses the impacts and interactions that .
146 | Communication Ethics, Cybersecurity, AVs can have on each other and the socio- Miller
4 regulations, standardisation . . . Science and Engineering
technical systems. The discussion includes the Ethics. 2017
apprehensions that need to be addressed to ’
implement V2V communication successfully.
This paper reviews the evolution of
Situation awareness technologies which facilitate the
- . § communication between vehicles and between
.. collision avoidance, control, . X . Narla
147 | Communication edestrian. V2V. V21 and vehicles and infrastructure. It also emphasises ITE Journal. 2013
p ’VZX ’ the benefits of such technologies in collision ’
avoidance, increasing situational awareness
and detecting threats.
Self-awareness. take over This paper addresses some of the early policy Thierer and Hagemann
148 Communication > . concerns about “connected cars” and MERCATUS Working
control and cybersecurity - -
driverless vehicles. Paper, 2014
V2v, V2l VZ).(’ HMI, The role of V2X and V21 in design and OlaVem-Monreal and
1 Communication VANETs, H-M interface, improvement of HMI and reduction in Jizba
49 situation awareness, traffic accidents is hichlighted in this stud IEEE Transactions on
environment, gnlig Y- Intelligent Vehicles, 2016
Control, sensors, LIDAR,
cameras, weather This paper sees communication as an
conditions, other road users, additional sensor feeding traffic/road Uhlemann
1£0 | Communication algorithms, V2X, V2V, V2I, | information to the vehicle. For example, under IEEE Vehicular
5 road infrastructure, speed, adverse weather conditions that the sensors Technology Magazine,
visibility, work zones, road | and LiDAR can be impaired, communication 2018
conditions, communication channels (e.g., V2I) can relay information.
infrastructure
Big data, infrastructure This article investigates the challenges and Bagloee et al
151 | Communication | cybersecurity, regulations, qpportumtles pertaining to transportatlol? Journal of Modern
software, sensors policies that may anseas a result of emerging Transportation, 2016
i Autonomous Vehicle (AV) technologies. ’
V2X, algorithm, traffic
C?nnf%::ttiggt’l;r:ff\i/%cﬁg{fﬂ A vehicle-to-everything V2X is combined
communicatic;n Vehiclé with AT algorithms to enhance traffic Xu et al.
152 | Communication control. traffic re; ulation, management efficiency. This proposed IEEE Internet of Things
§ g ’ concept can be applied to intersections and Journal, 2021
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The evolution of smart automobiles and
vehicles within the Internet of Things (IoT) -
particularly as that evolution leads toward a
proliferation of completely autonomous
vehicles - has sparked considerable interest in

Brewer and Dimitoglou

o Communication, . . . . International Conference
" Communication cvberseeurity. V21 V2V the subject of vehicle/automotive security. on Computational Science
53| infrastructure Y ty, Vl, ’ While the attack surface is wide, there are P .
IoT . e and Computational
patterns of exploitable vulnerabilities. As Intelligence (CSCI), 2019
vehicles become more connected, road g >
infrastructure components become an intrinsic
part of these growing transportation
computing networks.
L In this paper, the authors developed a
Communication, communication model for autonomous
" Communication | cybersecurity, V21, V2V, vehicles and identified threats to the securi Oham, Jurdak and Jha
54 infrastructure V2X, RSI, RSU, H-M R ty arXiv preprint, 2019
. of the fully autonomous vehicle
interface MU
communication infrastructure.
This article explores and investigates possible
interventions and their impacts which can be
Communication Traffic flow, made by governments to manage congestion Cohen and Cavoli
155 infrastructure communication, regulations, | or protect accessibility in the AV scenarios. Transport Reviews. 2019
V2L, V2V, AV is seen as an emerging technology which P ’
offers both benefits and poses risks which
must be governed.
The results of this research could provide
Communication. V2L V2V valuable insights to policy makers regarding
Communication V2X. con troi s e,e d ’ | the reconfiguration of existing infrastructure Papadoulis
1 56 . 2 » Speed, to accommodate CAVs, the trustworthiness P .
infrastructure | regulation, road geometry, . . Doctoral thesis, 2019
traffic flow, time of day of e{xlstlng connegted AV equipment and the
’ ’ optimal platoon size that should be enforced
according to the market penetration rate.
This study identifies cybersecurity risks as a
result of ‘uncoordinated design and Axelrod
Road infrastructure, development’, particularly of supporting .
. . . . . 13th International
Communication integrity, cybersecurity, infrastructure systems. It is also concluded Conference and Expo on
157 | . V21, V2V, V2X, control, that if infrastructure systems, both physical . po.
infrastructure . f Emerging Technologies
human factors, other road and cyber, do not receive the attention
. . . for a Smarter World
users, required to achieve sufficient levels of (CEWIT), 2017
cybersecurity and safety, AV developers will ’
hit a roadblock.
Changing lanes can be risky in some traffic HOdg;tisi’ d];)-Jil(l)?lll and
Communication, V2V, road | scenarios. This paper proposes two protocols ) 6Jth I]EEE
1c8 Communication infrastructure, traffic to reduce this risk for CAVs when performing Consumer
5 infrastructure | density, traffic conditions, | lane change. These protocols are designed to Lo
. . . Communications &
sensors, LIDAR increase the safety of lane changing to the Networking Conference
highest level. & ’
2019
The concept of ‘infrastructure enabled
Self-awareness, situation autonomy’ is developed in this study. A
L . . Gopalswamy and
Communication | &ATENEss; communication, | Bayesian Network Model-based framework is Rathinam
159 infrastructure | SSMSOTS: LiDAR, RADAR, proposed for assessing the risk benefits of IEEE Intelligent Vehicles
V2I, V2V, GPS, vehicle such a distributed intelligence architecture. It Sym osi%l m. 2018
dynamics, road design, RSU is believed that in the context of AVs, ymp ?
infrastructure plays a critical role.
Communication Traffic composition, V2V, This study highlights the role of V2V Lietal
160 infrastructure traffic flow, RSU, road communication in collision avoidance and Transportation Research
infrastructure, reaction time reaction time to hazardous situations. Part C, 2020
A system dynamic (SD) model is simulated to
N . assess the risks and opportunities of adopting | Liu, Rouse and Belanger
161 Cizlf::;?:.:?:r? Cylf)aei{ierzugg;’t s;flt\\/;zlare AVs from the insurance perspective. Several IEEE Systems Journal
’ ’ factors are identified to have impact on the Systems Journal, 2020
‘crash rate’, ‘loss rate’ and ‘loss ratio’.
System integration besides perception,
Path planning, control, p!annmg and control is seen to have a key role
. in development of AVs. The robustness and
software, algorithms, s . . .
. . reliability of an AV depends on the integration | Chu, Kim and Sunwoo
System LiDAR, Visual cameras, X . .
162 . . of all sub-systems. This report provides an SAE technical paper
integration actuators, sensors, sensor . . .
. . . overview of the system architecture of AVs series, 2012
fusion, motion planning, . .
. . and develops a real-time path planning and
GPS, speed, kinematic state .
speed control algorithm for autonomous
vehicles to avoid obstacles.
‘System integration’ can be a challenge with
serious consequences in diverse disciplines.
Other road users, traffic Improper system integration can lead to risks
culture, traffic regulation, and loss of lives and/or assets. Further, Rajabalinejad, van
16 System road infrastructure, ‘integration’ can be a key performance Dongen and Ramtahalsing
3 integration regulation, visibility, time of | indicator of cost, quality and time. This study Safety and Reliability,

day, weather conditions,
HMI

suggests consideration of both technical and
non-technical factors in system integration and
develops a theoretical foundation for properly
integrating (engineering) systems.

2020
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System integration technical risk assessment is
a challenging task particularly in large
system complexit complex engineering systems with both
System ha); dware & Eo ftw;/;e software and hardware components. A BBN Loutchkina ef al.
164 in tey ration components. human and model is proposed to tackle this challenge. Journal of Intelligent &
g en\zronmer,ltal factors Several risk exposure variables are Fuzzy Systems, 2013
determined, and states are qualitatively
defined: critical, significant, moderate, and
low.
Trajectory generation, V21,
V2V, other road users, work
zone, Al, sensors,
localisation, radar, cameras, The Carnegie Mellon University (CMU)
H-M Interfaces, control, autonomous vehicle research platform has
Svstem actuators, motion planning, been tested extensively on public roads to Wei et al.
16 5 in tey ration path tracking, software evaluate its safety and reliability. Various AD | IEEE Intelligent Vehicles
8 infrastructure, algorithms, capabilities of this platform e.g. lane Symposium (IV), 2013
hardware, velocity, vehicle | changing, intersection handling and trajectory
kinematic models, planning are discussed in this paper.
communication, perception,
GPS, LiDAR, sensor fusion,
work zone, obstacles
Weather conditions, sensors,
Lt?];g:;{piz&trllonélciﬁf}rlﬁ’s This study discusses the increasing risk of
? & ake > | using single sensor for detecting obstacles by .
control systems, radar, other AVs and advocates the installation of an arra Vi, Zhang and Peng
166 | Sensor fusion | road users, relative velocity, . . y Journal of Automobile
L . of sensors. To achieve an integrated . .
vehicle intelligence, . . . Engineering, 2019
roadside infrastructure perception system, a multi-sensor fusion and
obstacles, perception ? tracking algorithm are proposed in this paper.
accuracy
Other road users, traffic
density, dynamic object
tion, traffi . .
con diFt) fgg:pslo:é dretlraic to A risk assessment method based on multi-
Hons, speed, trajeclory | ¢onsor fusion is developed to integrate 4 states
tracking, time-to-collision, of track life into a generic fusion framework Zheng et al.
167 Sensor fusion kinematical state, sensors, . oag . Journal of Intelligent and
. thereby improving the performance of multi- .
LiDAR, radar, traffic rules, . . Connected Vehicles, 2018
road conditions. traffic object perception by AVs. The results of the
control human-\,/ehicle- testing reflect low false and missing tracking.
environment interactions,
object type, AD algorithms
. Relying merely on LiDAR sensors even in
Traffic 1 LiDAR A
sensc:;is 1:; dz‘r,vslilljl came;ras low-speed AVs (LSAV) carries risk and can
> > > lead to collision. Therefore, sensor fusion
GPS, control system, . . . . Raouf et al.
. system is requited to verify the authenticity of .
. obstacles, perception, path . . . w . IEEE 91st Vehicular
168 | Sensor fusion . the information provided by sensors. “In this
planning, redundancy of : Technology Conference,
paper, an observer system is present for fault
software/hardware . £ . 2020
components, number of detection of automated sensor fusion system
senéors for a LSAV, which functions based on octree
fusion”.
Obstacles. sensors In order for AVs to avoid collisions, it is
environmenta’l condi ti:)ns essential to detect small-size obstacles Khesbak
16 Sensor fusion | speed. laser scanner. de tfl accurately and in a timely manner. This study | 18th International Multi-
9 P calineras lausib{li t P investigates the distance detection fusion of a | Conference on Systems,
aleori t};rlr)l latenc ¥ target away from two uncorrelated, different | Signals & Devices, 2021
g i y sensors (i.e., depth camera and laser).
Environment perception,
sensors, wireless
S(S):Smgzl.(;ii?n’ Ort?g:ci?:r? This study presented a configuration for
sz’ 10;11 ; tu(ri}i,nI;l and the’ environment perception based on the fusion of
latc;ral rﬁo tion control vehicular wireless communications and
weather conditions. ra dz;rs remote sensors. A track-to-track fusion of
170 | Sensor fusion cameras. lidars li’ htin * | high-level sensor data and vehicular wireless Baek et al.
7 condi tions’ VoI \’/21%1 VZgV communication data were collected and Sensors, 2021
matchin z;l ori’ thims ’ C AN, analysed to locate the remote target in the
RSUg reli tive spée d ? vehicle radios and predict their future
locali’sation post tiOI; trajectory. The proposed approach was
accuracy time-’to—collision implemented and tested in vehicle on vehicles.
road configuration, traffic
signals
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Wireless communication,

radar, risk assessment
algorithm, other traffic

velocity, acceleration, V2V,

To avoid collisions and increase ride comfort
it is vital for AVs to monitor and predict the
behaviour of other traffic agents in nearby.

This paper derives desired steering angle and

Shin et al.
IEEE 18th International

road boundaries, speed,
lighting conditions, deep
learning

171 | Sensor fusion ) longitudinal acceleration to pinpoint a safe Conference on Intelligent
participants, road geometry, . . . .
. . kinematic state for the ego vehicle based on Transportation Systems,
kinematic state, traffic flow, e .2
. . the probabilistic prediction of other traffic 2015
vehicle trajectory, traffic e -
. participants using radar or radar/V2V
behaviour models . . .
information fusion.
Perception, traffic
conditions, camera, LIDAR,
sensor tolgrances, radar, This paper developed a novel method for
dynamic sensors, . s P
. evaluating collision risk in the precrash phase Lugner et al.
plausibility sensors, : . . h
172 | Sensor fusion software algorithms based on information fusion using camera and | IEEE 3rd Connected and
7 traiectory predic tion’ LiDAR for bullet vehicle detection together Automated Vehicles
yectory p 2 with physical motion model-based collision Symposium, 2020
geometry of the vehicle, .
I, L detection.
weather conditions, lighting
conditions, V2X, obstacles,
speed, driver behaviour
5@, radar, LiDAR, sensors, Lee, Yang and Moessner
V2X, V2V, V21, IoT, A collision avoidance system is proposed International Conference
" Sensor fusion cameras, RSU, which uses data fusion to predict potential on Information and
73 communication collision events. The performance of this Communication
infrastructure, ML system was evaluated within a testbed. Technology Convergence
algorithms (ICTC), 2020
Parked cars, traffic
participants behaviour,
trajectory planning, other | This paper focuses on the challenge of parked
traffic participants, machine vehicles for AVs and introduces a list of
learning, perception, features as candidate predictors to classify
mapping, localisation, object | parked cars on urban roads. To detect objects
. . . . Behrendt et al.
. tracking, weather sensor fusion becomes crucial to achieve a . .
174 | Sensor fusion e . o . . IEEE Intelligent Vehicles
conditions, time of day, more realistic perception of the environment :
. . . . . Symposium, 2019
cameras, sensors, vehicle including parked vehicles. For this purpose,
specification, radar, lane the information from every individual sensor
characteristics, construction | are combined to generate a more accurate map
sites, obstacles, traffic of the surrounding for AVs.
density, visibility, road
topology
Connectedness of AVs exposes them to
cybersecurity risks including compromised
Data integrity, V2X, sensors and/or manipulating sensory data. One
Sensors, C}.fber—attaf:ks, of the possible ways to constmct an array .of Changalvala and Malik
control algorithms, LiDAR, | sensors for AVs is the centralised data fusion . .
. . IEEE Symposium Series
175 | Sensor fusion | cameras, radar, perception,

architecture. In this structure, multiple sensors
are linked to the decision-making (perceiving
and planning) module through different
interfaces. In this paper, a 3D QIM based
data-hiding techniques to safeguard data from
LiDAR sensors.

on Computational
Intelligence (SSCI), 2019

176

Sensor fusion

Path planning, monocular
cameras, LIDAR, obstacles,
localisation, radar, vision
sensors, algorithms, sensor
modalities, objection
detection

This study develops a framework for detecting
and tracking objects for AVs using LIDAR
sensors, cameras, and a fusion of range and
vision sensors.

Rangesh and Trivedi
IEEE Transactions on
Intelligent Vehicles, 2019

177

Sensor fusion

Sensors, data alignment,
path planning, obstacles,
other roadway users,
communication
infrastructure, LED radar,
ultrasonic sensors, LIDAR,
stereovision, relative
velocity

Autotaxi is a safety critical sensory system
which is proposed in this paper to perceive
surrounding environment for an AV. To
address the multiple-sensor multiple-target
tracking data fusion problem, a decentralised
structure known as sequential pair-wise track-
to-track fusion is proposed.

Escamilla-Ambrosio and
Lieven
7th International
Conference on
Information Fusion
(FUSION), 2005

178

Sensor fusion

Control, laser range finder,
GPS, trajectory planning,
obstacles, radar, velocity,
kinematic model, curvature

Two major research areas in the field of AD
are road-following and collision avoidance. A
sensor fusion system is proposed for electric
AVs’ navigation and control. It is designed to
integrate signals of laser range finders,
magnetometers and inertial measurement
units (IMUs).

lee, chen and Li
IEEE International
Conference on Systems,
Man, and Cybernetics,
2011

179

Sensor fusion

Localisation integrity, gyro,
smart cameras, HD maps,
GNSS, GPS, LiDAR,
trajectory planning, road
curvature

probability risk for AVs, the classical Kalman

To bound the estimation errors with low

filter is substituted with a Student’s t filter.
Besides, a novel real-time adaptive
computation of the degree of freedom is
suggested to utilise the heavy tailored

property of t distribution.

Al Hage, Xu and
Bonnifait
22th International
Conference on
Information Fusion
(FUSION), 2019
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Other road users, object
tracking, trajectory
estimation, sensory systems,
algorithms, localisation,
environmental perception,
LiDAR, GNSS, cameras,
system integration,

The emphasis is placed on the objection
detection criticality for AVs especially when
dynamic elements such as pedestrians and
cyclists are present in the scene. Different

Khatab et al.

controller, cameras, LiDAR,
radar, control algorithms,
actuators, hardware
reliability, weather
conditions

coherent and integrated to avoid conflicting
decisions and subsequent catastrophic
consequences.

180 | Sensor fusion hardware limitations, sensory systems were tested and scrutinised to .
. ; . S Integration, 2021
software, motion planning, evaluate their advantages, limitations and
cybersecurity, vehicle applications in AVs. Sensor fusion and its role
control, weather and lighting in overcoming limitations of individual
conditions, obstacles, radar, | sensors are broadly discussed in this paper.
ultrasonic, exteroceptive
sensors, relative velocity,
visibility
Sensors, obstacles,
algorithms, perception,
vision cameras, LIDAR,
radar, software, vehicle
control, weather conditions, . . . .
This paper reviews recent multi-sensor fusion
other road users, system . . S
. . : algorithms for detecting on-road object in AD.
. integration, planning, V2X, . Yeong et al.
181 | Sensor fusion > The challenges that can hurdle fusing
actuators, IoT, localisation, . . . Sensors, 2021
. . information from different sensors are
path planning, ultrasonic o
. highlighted.
sensors, environment
mapping, road
infrastructure, traffic
conditions, lighting
conditions, visibility
One of the fundamental challenges in the field
of robotics is how to systematically integrate
Cameras, GPS, sensors, self-awareness (SA) capabilities into artificial
machine learning, agents. This paper presented “a bio-inspired Regazzoni et al.
182 | Self-awareness algorithms, actuators, framework for generative and descriptive Proceedings of the IEEE,
planning, control, dynamic models that supports SA 2020
perception, obstacle, radar computationally and efficiently”. This is
expected to contribute to the evolution of
autonomous systems.
Trajectory planning,
pedestrian, obstacles, Self-awareness is necessary for autonomous
velocity, algorithms, animal vehicles as an element of Intelligent
crossing, weather Transportation Systems. This study introduced Kanapram et al.
183 Self-awareness | conditions, driving style, an original method to achieve self-awareness | Robotics and Autonomous
perception, machine in AVs. A data-driven Dynamic Bayesian Systems, 2020
learning, communication Network was developed to use multi-sensory
capabilities, environmental data to detect anomalies.
conditions, sensors, HMI
Machine learning, control,
sensors, planners risk This paper offers an overview of building self-
analysis modules, HMI, aware autonomous systems and how self-
reinforcement learning, aware behaviour can be verified. This . .
. . Dennis and Fisher
hardware components, framework is based on a modular architecture .
184 Self-awareness o . Proceedings of the IEEE,
actuators, system where key autonomous decision making takes 3020
integration, control place. It is deemed that self-awareness is
algorithms, environmental | crucial for safety, reliability, and verifiability
perception, system of autonomous systems.
architecture
This paper offers a solution for incorporating
self-awareness principles in electronic design L
war princip g Sadighi et al.
. . automation (EDA) for autonomous systems . ;
Machine learning, system - Design, Automation &
. such as autonomous cars. The Information .
185 Self-awareness | configuration, control cycle, . Test in Europe Conference
. Processing Factory (IPF) metaphor was used o
algorithms & Exhibition (DATE),
as an exemplar to demonstrate how self- 2018
awareness can be realised across multiple
abstraction levels.
This stur_:ly proposed a novel approach for Ravanbakhsh ef al.
. . learning self-awareness models and .
Visual perception, system . ST . 21st International
. . integrating it into A'Vs. This proposed
186 | Self-awareness integration, sensors, . . N Conference on
. technique relies on the availability of . .
cameras, algorithms ) . Information Fusion
synchronised multi-sensor (FUSION), 2018
dynamic data. i
System integration, machine
leaming, communication, The notion of self-awareness has been
sensors, hardware/software . N . ;
intertwined with autonomy of computing Schlatow et al.
platform, other traffic . . .
.. systems. In automotive systems, self- Design, Automation &
participants, CAN . .
187 Self-awareness awareness mechanisms of all layers need to be | Test in Europe Conference

& Exhibition (DATE),
2017
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Maintenance, sensors,
software, processing,
communication, mission

This study investigates the costs and benefits
of integrated system health management and
autonomous control in autonomous and
robotic exploration. Intelligent Self-situational

Reichard et al.

188 | Self-awareness - . awareness refers to the ability of a system to 1** Space Exploration
planning, component failure, . o
autonomously assess its health and condition Conference, 2005
control, HMI, sensors, . . .
erception and to interpret the impact of its current and
pereeption, future health and condition on current mission
objectives.
This paper analyses numerical results to
explore insights from the introduced
Traffic density, traffic flow, mode_lhr_lg framc?w_ork for AV net\_)vork Zhang, L1u_ and Wa_ller
18 Road speed. aleorithms. traffic equilibrium. This is because a reliable Computer-Aided Civil and
9 infrastructure peed, a'g ’ estimation of network traffic pattern serves as Infrastructure
control infrastructure . . .
the foundation of system assessment and Engineering, 2019
governmental policymaking for infrastructure
development.
A question is raised about how the current
L . Maurer et al.
190 Road Communication, hardware, road infrastructure must be changed to Autonomous Drivin
9 infrastructure | software, system integrity accommodate AVs and achieve the desired 2016 &
performance.
The main goal of this study is to design a
microscopic traffic simulation model for AVs,
including a robust protocol for exchanging
information. The question arises as to whether
Road configuration, .such communication syst; m may ;fﬁcwnt}y Gora and Riib
Road L. improve travel quality while reducing the risk .
101 | . communication, V2V, V2I, .. . . Transportation Research
infrastructure of collisions. The transport infrastructure in .
traffic flow, V2X . . X . . Procedia 14, 2016
this work includes multiple junctions,
optionally equipped with traffic lights, and
roads with varying number of travel lanes.
Each vehicle is assigned a fixed route leading
to a randomly chosen destination point.
Traffic control . . Hyytinen, .Mgﬁtganen and
. This report emphasises the need for Vihriéla
Road infrastructure, traffic . e . .
192 . . investment in Finnish road infrastructure to The Research Institute of
infrastructure | congestion, other road users, .. . o
L host self-driving and electric cars. the Finnish Economy,
positioning, 2018
Other road users, vehicle
dynamics, static and Several risk factors to the trajectory planning .
. . . Lo . Wei et al.
dynamic obstacles, road | for AVs are identified in this study. Static road .
Road . . Transportation Research
193 | . geometry, road type, infrastructure (e.g. roadside trees) are ) .
infrastructure . . . Part C: Emerging
environmental factors, mentioned among factors which can affect the Technologics. 2019
traffic conditions, motion path planning systems of AVs. £1es,
control
This report discusses the benefits and costs of
AVs and predicts their likely development and .
. . . . . Litman
Road Cybersecurity, other road implementation based on experience with L .
194 | . . - . . Victoria Transport Policy
infrastructure users, GPS, regulation, previous vehicle technologies. It also Institute. 2014
highlights the need for additional roadway ’
infrastructure for AVs.
This paper investigates the impacts of road
Road Road conditions, traffic infrastructure on drivers’ behaviour and Li and Chen
195 infrastructure density, speed, human collision risks. A new method based on field Journal of Advanced
factors, road geometry strength is developed to assess the risks of Transportation, 2018
road infrastructure.
Historical data are used to develop a BN
model to quantify the risks of accidents. The
BN model was mainly developed using
machine learning thfough combination of Gregoriades and Mouskos
106 Road Speed, traffic flow, traffic accident Transportation Rescarch
9 infrastructure | control, road configuration | data from the Cyprus Police and traffic data Part C. 2013
generated with VISTA. The enriched dataset, ’
enabled the specification of the BN variables’
causal relationships and the corresponding
CPTs.
Communication, visual
cameras, lighting conditions, | This article identifies main challenges ahead
work zones, HMI, H-M of mass adoption of self-driving cars and . .
. N . . . . Oliver, Poto¢nik, and
Road interface, reaction time, requirements to increase their safety while Calvard
197 . other road users, Al operating in complex environments such as . .
infrastructure . . . Harvard Business Review,
maturity, objects, weather urban areas. It is seen to be necessary to 2018

conditions, regulatory
requirements, V2V, V21,
RSU, speed, traffic rules

standardise the driving environment and invest
in road infrastructure.
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The author argues that several changes other
Road Road configuration, than techn?cal aspt?cts, for example in road Sclar
198 infrastructure regulatory requirements configuration and infrastructure, must take Financial Times, 2018
gt yreq ’ place to facilitate the introduction of AVs to ’
public roads.
Road type, road surface, This paper provides a taxonomy of
weather conditions, lighting infrastructure related factors which have .
o, . . - Papadimitriou et al.
1 Road conditions, work zones, impact on accident risks in urban areas. Then, Accident Analvsis and
99 infrastructure traffic control, traffic it ranks those risk factors based on a colour naly
. . L Prevention, 2019
composition, traffic flow, | coding system to assess their influence on the
other road users, safety of roads (accidents risk, frequency, etc.)
Commyr.ncatlon, traffic After the introduction of AVs, the risk
composition, V2X, V2V, . .
ecosystem is expecting to change and pose
autonomy level, traffic o -
. Jo new challenges and opportunities for primary
congestion, navigational . .
. insurers. Although the economic benefits are
software, time of day, .. : X
. anticipated to arise, they will be offset by the
sensors, LIDAR, radar, . . . f Shannon et al.
Road - . economic detriment incurred by emerging .
200 | . cameras, fatigue, driving : . . Risk Management and
infrastructure . . risks and the increased scrutiny attached to X
behaviour, distracted . . . Insurance Review, 2021
s Lo current risks. In this study, four plausible
driving, reaction time, . .
scenarios are designed to analyse the rate of
adverse weather, . . . .
regulations, public injury claims after the introduction of CAVs.
£ ? . Risk factors associated with CAVs and traffic
perception, cybersecurity, dynamics are discussed
blind spots, speed, control Y )
Human factors, lateral and
longitudinal motion This paper reviewed advances in collision
controls, LiDAR, radar, mitigation technologies for ADAS as a
other road users, motion prelude platform for fully autonomous
planning, sensors, vehicle | vehicles. AVs can facilitate vehicle platooning .
201 Road dynamics constraints strategy thereby reducing congestion on public Zamazuri et al.
infrastructure yn 2 gy y ng cong . pub PERINTIS eJournal, 2016
drowsiness, path planning, roads. Nevertheless, implementation of this
trajectory system, actuator, | strategy is still a challenging concept due to
obstacles, traffic rule the needs to modify/strengthen existing road
enforcement, V2V, V2X, infrastructures.
road infrastructure
traiec to’ eneration roa d’ A novel method is introduced for AVs to plan 24th International
202 | Path planning jectory g g a safe path and follow the front vehicle safely | Symposium on Dynamics
geometry, number of lanes, R . .
. in highway environment. of Vehicles on Roads and
other road users, velocity,
L . Tracks, 2015
driving behaviour
Obstacles, speed, road type,
perceptlon, cont; ol, The aim of this paper is to develop a local path
algorithms, vehicle . . . Hu et al.
. . planning approach for AVs. This methods id .
203 | Path planning dynamics, traffic rules, . . Mechanical Systems and
. real-time and dynamic that allows AVs to . .
localisation, sensors, . g . Signal Processing, 2018
avoid both static and dynamic obstacles.
cameras, radars, number of
lanes, road topology
Time-to-collision,
perception, algorithms, . . . Iberraken, Adouane and
obstacles, sensors, This paper develops a multi-level Bayesian .
L ; . o . L Denis
localisation, kinematic state, decision-making for AD in highway .
. . . f IEEE/RSJ International
204 | Path planning | control architecture, traffic | environments. In the proposed multi-controller -
. . . Conference on Intelligent
regulations, traffic architecture, path planning is one of the
> o, .. Robots and Systems
conditions, other traffic critical and determining modules. (IROS), 2018
participants, velocity, ’
reaction time
Sensors, mixed traffic, other
road users, algorithms,
computer vision, LiDAR, To avoid collision in AD, it is critical for an
radar, infrared sensors, AV to monitor the behaviour of surrounding
ultrasonic sensors, sensor traffic participants and detect any potential Wang et al.
20 Path plannin fusion, localisation, control, | unusual maneuverers. This paper proposes two 22nd International
5 p € | kinematic state, pedestrian indices (i.e., lane-index and lane-change- Conference on
density, road geometry, index) in addition to position and velocity to | Information Fusion, 2019
weather conditions, detect lane-changing maneuverers of nearby
obstacles, reaction time, agents (including human-driven vehicles).
cameras, behaviour
prediction
Weather conditions, road | In this work, a system architecture is proposed
conditions, obstacles, for risk-aware AVs to enable them to Khonji, Dias and
communication, V2V, V2I, | deliberately bound the risk of collision below Seneviratne
206 | Pathplanning | V2X, algorithms, sensors, | a given threshold, defined by the policymaker. | Working paper, Cornell
LiDAR, other road users, Several key components and factors that can University Library,
visibility, regulation, vehicle | be a source of risk to the performance of AVs preprint, 2019
dynamics are discussed.
Path planning, traffic Zhang et al.
conditions, speed, road . . . . . IEEE 31st International
. . A This paper investigates the relationship .
207 | Path planning | configuration, localisation, . Symposium on Software
between AD system configuration and safety. P . .
road map, traffic Reliability Engineering
regulations, other road users (ISSRE), 2020
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Algorithms, visibility,
mapping, environment,

This research intended to evaluate algorithms
that enable semi-autonomous vehicles to

Marinheiro and Bianchini
Proc. of the 2nd
International Conference

208 | Path planning | perception, motlc_»n c_ontrol, search an object in a known environment and on Elgctrl_cal,
sensors, localisation, avoid colliding with them Communication and
obstacles, Al g ’ Computer Engineering
(ICECCE), 2020
This paper presented a vehicle lane change
Path planning, obstacles, system applying model predictive path Linetal
vehicle dynamics, planning (MPPP) built on the artificial .
Igorith tion tential field (APF) for speeding vehicl 20th International
209 | Path planning agorthims, moto poten N Or speeding vehic es. Conference on Control
planning, road geometry, The simulation results suggest that the MPPP . §
. . . L S Automation and Systems
kinematic states, road algorithm is highly effective in high-speed (ICCAS), 2020
condition, other road users | lane change scenarios while avoiding dynamic ’
obstacle vehicles.
2?521?3}?;?5:{02?5 Lrl(s):ds’ A risk estimation model is proposed to
‘?n fras tru:: ture mot’ion evaluate potential risks by considering nearby Shen et al.
210 | Path plannin lannine. traffic ’con ditions vehicles’ relative positions, velocities, and 0 IEEE Intelligent
P s q(inemagti’c state. number o f’ accelerations. This model uses a predictive | Vehicles Symposium (IV),
lanes. road cor; fieuration occupancy map (POM) to choose the safest 2020
roa d’con ditions gsensors’ path with the minimum risk values.
Control, system integration.
i . ’ Ko et al.
Obiii‘:e;;ﬂgsxﬁzﬁs’ This work utilises Model Predictive Control to 20th International
211 | Path planning d n;)micsprelat’ive velocity develop an integrated Path Planning for AVs | Conference on Control,
ymo tior; planning, road ’ to select a collision-free path. Automation and Systems
boundaries, (ICCAS), 2020
Ttrﬁigtl nftﬁgrdrz);ge:;?ze’ The possibility of teaching AVs by drivers to Nagahama ef al.
212 Trajectory con trZ)l velocity. tra fﬁ,c choose their preferred trajectories (and IEEE Transactions on
planning L 'y, b manoeuvres) in real traffic is put forward in | Intelligent Transportation
conditions, longitudinal and .
lateral distance this study. Systems, 2020
Control algorithms, other
Z?)?l((ililtlisgrrlz, g:ff:gz This paper is concerned with the overtaking
R > scenario in highways under mixed traffic
complexity, traffic rules, o . Coskun
. . conditions. the proposed solution is developed . . .
Trajectory road geometry, road limits, . . S Engineering Science and
213 1 . hicle limi B s based on quadratic programming optimization
planning vehicle limits, kinematic L . Technology, an
and assesses traffic situation online and ;
state, cameras, sensors, . International Journal, 2021
driver’s psychology, driving performs an ovgrtakmg manoeuvre safely by
style, obstacles V2)’( VoV selecting a safe trajectory.
V21, mixed traffic, GPS
Roaq geometry, surroupdmg AVs need to adjust their performance to road Song., Kim and Huh
vehicles, motion predictor, N . . International Symposium
. . . geometry and other vehicles’ behaviour. This . ;
Trajectory velocity, mixed traffic, . on Intelligent Signal
214 lanni dar. aleori paper suggests a trajectory planner that can .
planning cameras, radar, algorithms, . . . ) Processing and
- . predict motions of surrounding vehicles .
vehicle dynamic, actuator exploiting artificial potential field method Communication Systems
limit, vehicle control plothing artyjicial potential ji : (ISPACS), 2019
Algorithms, traffic
comple{uty, road geometry, This work presents a trajectory planning
perception, control, driving . h AN Zheng et al.
. . algorithm using the quartic Bézier curve and .
. behaviour, velocity, . IET Intelligent Transport
Trajectory dangerous potential field for AVs. To generate .
215 . obstacles, GPS, radar, .. . . R Systems (the Institute of
planning . collision-free trajectories, potential field .
cameras, path generation, . . .. Engineering Technology),
. . . functions are developed to weigh the collision
vehicle kinematic . . 2020
constraints. actuator risk of available paths.
limitations, road conditions
Algorithms, traffic rules,
kinematic state, H-M This study presents the development and
Interface, path planning, initial test in a simulator of a trajectory-
obstacles, perception, planning algorithm for highly automated
vehicle control, actuators, vehicles and discusses hoe it enables AVs to Glaser et al.
216 Trajectory weather conditions, sensors, adapt to traffic on a structured road IEEE Transactions on
planning traffic conditions, traffic | environment such as highways. That algorithm | Intelligent Transportation

density, speed, sensor
fusion, road geometry,
reaction time, system
integration, number of lanes,
HMI

is designed to run on a fail-safe embedded
environment with low computational power
e.g. an engine control unit, to be feasible for
mass produced AVs.

Systems, 2010
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217

Trajectory
planning

Obstacles, visibility,
perception, motion planning,
environmental complexity,
algorithms, motion
planning, driving style,
vehicle state, behaviour
planning, velocity error,
blind spots, vehicle control,
kinematic models, sensor
coverage, LiDAR, other
traffic participants, road
type, traffic rule
enforcement, traffic
conditions, road boundaries,
time-to-collision

This paper presents a trajectory generation
method for AVs to overtake unexpected
obstacles in a dynamic urban environment.
The possibility and implications of perception
impairment dur to occlusion is also taken into
account.

Andersen et al.
IEEE Transactions on
Intelligent Vehicles, 2020

218

Trajectory
planning

Sensor malfunction,
environment perception,
weather conditions, vehicle
control, other traffic
participants, behaviour
planning, V2X, algorithms,
trajectory planning, velocity,
vehicular dynamic, driving
behaviour, LIDAR, sensors,
radar, stereo cameras,
obstacle

Collision probability and accident severity
assessment are incorporated into an approach
that considers environment uncertainties in
planning a safe trajectory for AVs.

Hruschka ef al.
IEEE International
Conference on Vehicular
Electronics and Safety
(ICVES), 2019

219

Motion
planning

Visibility, weather
conditions, occlusion,
perception, sensors, sensor
fusion, localisation, other
road users, behaviour
planning, road
infrastructure, velocity,
reaction time

Inclement weather and occlusions in urban
environments can impair perception. The
uncertainties are handled in different modules
of an AV, ranging from sensor level over
situation prediction until motion planning.

Sahin Tas and Stiller
IEEE Intelligent Vehicles
Symposium (IV), 2018

220

Motion
planning

Traffic control
infrastructure, perception,
vehicle control, other road

users, LIDAR, front camera,

localisation, algorithms,
V2V, machine learning,
GPS, V2X, velocities,

sensors, number of lanes,

road geometry, perception
reaction time, time-to-

collision

This paper proposes a motion planning
framework for AVs operating in urban
environments with uncontrolled intersections.
Computer simulation a well as vehicles tests
were conducted to evaluate the effectiveness
of the presented framework. The results
suggest that it is reliable at uncontrolled
intersections generating a human like driving
pattern.

Jeong and Yi
IEEE Transactions on
Intelligent Transportation
Systems, 2021

221

Motion
planning

Control, localisation,
perception, obstacles,
velocity, algorithms, traffic
conditions

One of the major problems in AD is collision-
free motion and trajectory planning.

Banzhaf et al.

21% International
Conference on Intelligent
Transportation Systems
(ITSC), 2018

222

Motion
planning

Other road users, sensor
noise, blind zones, trajectory
planning, mixed flow,
dynamic obstacles, vehicle
dynamics, control
mechanisms, road
boundaries, behaviour
generation, speed, path
planning, kinematic
constraints, road geometry,
drivers’ behaviour, traffic
complexity, radar, LIDAR,
weather conditions, traffic
rules

Handling a mixed-flow intersection while
interacting with other traffic participants (e.g.,
pedestrian and other motorised vehicles) is a
challenging task for AVs. Sensor noise and
blind spots can add to the complexity of that
scenario too. This paper presents a
hierarchical framework that splits the driving
function into a decision, planning and action
layers. This segregation makes motion
planning feasible for that scenario.

Zhou, Ma and Sun
IEEE Transactions on
Intelligent Vehicles, 2020

223

Motion
planning

Control, road conditions,
sensory system, trajectory
planning, algorithms,
obstacles, vehicle model,
Vehicle Kinematics, driver’s
risk perception, speed, road
edges

This paper proposes an advanced driver
assistance system (ADAS) for AVs with a
focus on motion planning and control. The

motion planning algorithm for collision
avoidance is formulated utilising artificial
potential field approach based on perceived

risk by human drivers.

Wabhid et al.
IEEE International
Conference on
Mechatronics (ICM), 2017

224

Behaviour
generation

Traffic composition, other
road users, traffic
environment, algorithms,

This study focuses on the importance of
behaviour generation in AVs (beyond SAE 3)
in dealing with risks arising from uncertain
traffic environment.

Bernhard, Pollok and
Knoll
IEEE Intelligent Vehicles
Symposium, 2019
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225

Behaviour
generation

Traffic composition, stereo
cameras, path planning,
speed, kinematic state,
pedestrian, reaction time,
environmental perception,
sensors, traffic conditions,
perception accuracy

In order for AVs to safely operate in mixed
urban traffic, it is crucial for them to perceive
the surrounding traffic participants and
interact with them harmoniously. To achieve
harmony in the mixed traffic, this paper
proposes a vision-based approach to
implement the humanlike autonomous driving
function along a predefined lane level route in
the complex urban environment with daily
traffic.

Guo et al.
IEEE Transactions on
Intelligent Vehicles, 2018

226

Behaviour
generation

Software reliability, path
planning, speed, situation
awareness, traffic rules,
vehicle control, algorithms,
road layout, Al maturity,
trajectory planning, traffic
conditions, number of lanes,
vehicle characteristics,
longitudinal control, types
of road

This paper developed a risk-aware multi-
objective decision-making algorithm to choose
between the optimal behaviour to execute a
successful navigation mission. In that manner
it is necessary for the autonomous vehicle to
be able to perceive its surrounding and
understand scenario context.

Rodrigues et al.
IEEE 20th International
Conference on Intelligent
Transportation Systems
(ITSC), 2017

227

Behaviour
generation

Perceived risk, mixed
traffic, control algorithms,
time to collision, safe
distance, reaction time,
speed, weather conditions,
road type, number of lanes,
trust, driver’s experience,
GPS

Lane changing is inevitable in driving and can
increase the risk of collisions. This paper
developed a lane-change decision model for
AVs that conforms to a driver’s risk
perception and safely change lane.

Wang et al.
Sensors, 2020

228

Behaviour
generation

Traffic density, learning
algorithms, traffic
complexity, trajectory
planning

The behaviour generation methods must be
capable of handling complex real-world
traffic. To this end, data-driven approaches
can be used to train the algorithms. In this
paper, reinforcement learning is combined
with local optimisation to generate safe and
reliable behaviour for AVs.

Hart, Rychly and Knoll
IEEE Intelligent
Transportation Systems
Conference (ITSC), 2019

229

Behaviour
generation

Algorithm, neural network,
traffic density, other road
users, trajectory planning,
GPS, V2X, radar, LiDAR,

sensor fusion, velocity,
traffic conditions,
perception, kinematic state

Analysing an AV’s decision-making algorithm
that plan a series of manoeuvres is the aim of
this paper. The focus is on machine-learning

algorithms (e.g., neural networks) for risk
estimation. A BBN is also developed for
behaviour planning.

David, Lancz and
Hunyady
Design, 2019

230

Behaviour
generation

Traffic density, other traffic
participants, kinematic state,
sensors, actuator control,
visibility, reaction time,
weather conditions,
predictive risk, obstacles,
number of lanes, risk
awareness

This study proposes a risk-aware
Responsibility Sensitive Safety (RSS) layer
for AVs to increase vehicle’s situation
awareness, reduce safety margins and achieve
a desired balance between safety and
usefulness.

Oboril and Scholl
IEEE Intelligent Vehicles
Symposium (IV), 2020

231

H-M Interfaces

Situation awareness, urban
areas, trust, human-machine
communication, road
surface, other road users,
road infrastructure,
experience, traffic rule
enforcement, obstacles,
weather conditions, road
conditions, road type, speed,
traffic conditions, V2I,
pedestrian density, road
layout

Urban areas are challenging AVs, since even
highly reliable systems may face traffic
situations that need agile driving manoeuvres
in hard-to-predict. This can adversely surprise
the driver and cause discomfort, anxiety or
loss of trust. To tackle that challenge, this
paper proposed an interface benefiting from
augmented reality (AR) to maintain situation
awareness of drivers during a ride.

Lindemann, Lee and
Rigoll
Multimodal Technologies
and Interaction, 2018

232

H-M Interfaces

Time to collision,
localisation, environmental
conditions, secondary tasks,

situation awareness,
algorithms, longitudinal
control, sensors, road
infrastructure, radar,
LiDAR, cameras, weather
conditions, visibility, road
configuration, traffic
conditions, control, sensor
fusion, perception, traffic
law, other road users

This paper investigates appropriateness of
human-machine interfaces for each phase of
autonomous driving. The objective here is to

establish accurate situation awareness.

Debernard et al.
IFAC Papers Online, 2016
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233

H-M Interfaces

Vehicle control, HMI,
trajectory planning, sensors,
traffic regulations, traffic
flow, speed limit, V21, V2V,
traffic control infrastructure,
human-machine cooperation
(HMC), weather conditions,
road conditions, reaction
time, trust, obstacle, traffic
complexity

This paper proposes a cooperative approach to
the control issue of AVs which may require
human interventions to avoid collisions in
real-world traffic. A cooperative interface is
supposed to eliminate the need for full
handover when human input is necessary. 32
participants took part in a simulation study
and were tasked to choose how the system
should handle traffic situations.

Walch et al.
Proceedings of the 8th
International Conference
on Automotive User
Interfaces and Interactive
Vehicular Applications,
2016

234

H-M Interfaces

Vehicle control, takeover,
sensors, traffic law
enforcement, situation
awareness, HMI,
demographics, reaction
time, weather conditions,
trust, road conditions, road
type, other road users, traffic
conditions, traffic flow,
driving experience, obstacle

The topic of adjusting Human-Machine
Interfaces to older users of highly autonomous
vehicles has been around for a while. This
paper developed three Human-Machine
Interface concepts based on older drivers’
needs and conducted a driving simulator
investigation with 76 drivers (39 old and 37
younger drivers) to investigate the
effectiveness and relative merits of these
interfaces on drivers’ takeover performance,
workload and attitudes.

Liet al.
Transportation Research
Part F, 2019

235

H-M Interfaces

other traffic participants,
control, weather conditions,
construction sites, static and
dynamic objects, road
infrastructure, driving
behaviour, sensors, reaction
time, road type

This paper examined the possibility of using
augmented reality (AR) in designing
interfaces for semi-autonomous vehicles (i.e.,
level 3). The participants took part in
simulation experiment and faced unplanned
short-notice take-over request (TOR). The
results show that VR can be effective in
reducing driver workload and improving take-
over performance in a subset of possible of
TOR.

Lindemann, Muller and
Rigoll
IEEE Intelligent Vehicles
Symposium (IV), 2019

236

H-M Interfaces

Driver distraction, road
conditions, demographics,
NDRT, HMI, traffic
conditions, reaction time,
traffic density, visibility,
road geometry, weather
conditions, algorithms,
cameras, sensors, drivers’
experience, construction
sites, speed, actuators,
kinematic state, obstacles,
trust, mental workload,
driving style, road type

Machine learning techniques and a simulation
experiment were used to assess the
predictability of driver’s reaction to major
hazards during take-over of vehicle control in
HAVs.

Alrefaie
PhD Thesis, 2019

237

HMI (Human-
Machine
Interaction)

Communication, trust

This study investigates the interactions
between pedestrians/bicyclists and driverless
cars. A vehicle was designed to appear to have
no driver and a driver was trained to emulate
an autonomous system. Then, observations
were made to learn about the interactions of
pedestrians and cyclists with the vehicle at a
crosswalk.

Rothenbiicher et al.
25th IEEE International
Symposium on Robot and
Human Interactive
Communication, 2016

238

HMI (Human-
Machine
Interaction)

Software

The AV-AV, human-human and AV-human
interaction on the roads in terms of decision
making is the focus of this study. Game theory
and Nash equilibrium are used to analyse
these interactions.

Harris
Annual Conference
Towards Autonomous
Robotic Systems, 2017

239

HMI (Human-
Machine
Interaction)

Communication, V2V,
sensors, algorithms

AVs and human drivers are expected to
coexist for a long time. Thus, it is important to
consider their interactions. the implicit and
complex states and behaviours of human
drivers like distractions and fatigue, which are
hard to detect by the AVs, may result in
sudden brakes and subsequent accidents
because of the late alert to the following AVs.

Yan et al.
IEEE-INST Electrical
Electronics Engineering
INC., 2019

240

HMI (Human-
Machine
Interaction)

Weather conditions,
visibility, road conditions,
road user behaviour, lighting
conditions, time of day,
Sensors

This study proposes the concept of
“driveability” for AVs to identify and handle
driving risks. To this end, road datasets are
reviewed and driveability factors are identified
and categorised into majors groups: 1)
environmental factors; and 2) road users’
interactions.

Guo, Kurup and Shah
IEEE Transactions on
Intelligent Transportation
Systems, 2019

241

HMI (Human-
Machine
Interaction)

Situation awareness,
weather conditions, road
conditions, perception and
trust

This papers centres on the interactions
between pedestrians and AVs. It developed a
situation awareness model and included
environmental as well as individual factors to
describe the interaction between a pedestrian

and an AV.

Rodriguez Palmeiro et al.
Transportation Research
Part F: Traffic Psychology
and Behaviour, 2018
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H-M Interface, Autonomy
level, reaction time,
situation awareness, training
and experience, traffic
density, trust, perceived risk,
secondary task, vehicle

There are concerns about the performance of
human drivers when it comes to partially
(semi) automated vehicles. This paper

Zhang, Angell and Bao

242 HMNII;E:;:I?H_ conggﬁ’(ﬁggiﬂ’ :(&;zzzither explores the role of human drivers and Transportation Research
4 Interaction) characteristics (irowsiness challenges that they may face in semi- Interdisciplinary
driving s ’les road > | autonomous driving and provides inspiration Perspectives, 2021
infras tru(%tutr}f; Visibili ty for conceptualising the driving task more
other road users, driver completely.
state, driver skills, sensors,
obstacles, construction
zone
The results of this experiment revealed that
. there is significant value in evaluating human Brown et al.
2 HMNII;E:;::?H- Altgr(:lrsltthg;sf’ﬁio:éféi tisgsed’ factors in a highly technological system such | Systems and Information
43 Interaction) tr; ffic congestion ’ as an AV. Human behaviours and sentiments Engineering Design
g may complicate the development of safe Symposium, 2018
algorithms for AVs.
The primary aim of this study is to model the
Other road users risk of collision at junctions and intersections
aloorithms. tra fﬁ’c and evaluate the impact of full and shared
con di%ions s ée 4. traffic autonomous systems on safety. With respect
HMI (Human- conees ti,orF sen,sors to human drivers, collisions at intersections McGill et al
244 Machine visibil? roa(,i eomet’ often occur due to inattention or misjudgement IEEE Robotics and
Interaction) obstaclesty;/ehicl eg d amr?c’s of the other cars’ dynamics. This remains an | Automation Letters, 2019
eomet’ traffic cynul ture > | open problem for autonomous vehicles, which
g uil}),;n desien ? can struggle to navigate intersections without
g incident or to interact naturally with cars
driven by humans.
In this study, with accurately predicted motion
of a remote vehicle, a collision risk and the
HMI (Human- Speed, algorithms, automated drive mode are determined by Shin. Park and Park
245 Machine communication, V2V, V2X, | incorporating human factors. Effects of the A lie,d Sciences. 2018
Interaction) traffic conditions, V2V communication on a human-cantered pp ’
risk assessment algorithm have been
investigated through a safe triangle analysis.
This paper studied the attributed values and
perceived safety as predictors of the intention
HMI (Human- . . to use autonomous vehicles. The human factor
. Trust, rules, risk perception, . . . Montoro et al.
246 Machine familiarity is seen central in traffic. Therefore, it is Safety Science. 2019
Interaction) important to focus on the need of formulating y ’
strategies that might prepare the public for a
live interaction with autonomous vehicles.
Harbar st~ | 1 180 sy camines e e o 05| gty i
HMI (Human- | communication, V2X, V2V, . - Systems and Information
. . software development. It also investigates the . . .
247 Machine traffic congestion, . . Engineering Design
. . . role of humans in the car accidents and the .
Interaction) cybersecurity, drowsiness, L . ; Symposium (SIEDS),
. significance of that in the scaled vehicle
speed, algorithms . 2018
construction process.
The risks and risky encountering cases of
HMI (Human- Pedestrians, traffic pedestrian-(autonomous) vehicle interactions Gandhi, Luo and Tian
248 Machine conditions, human-driven | are classified. A list of descriptive variables is | International Conference
4 Interaction) cars, algorithms, road provided and the ability of ML algorithms in on Human-Computer
design, classification of pedestrian-car conflicts is Interaction, 2019
evaluated.
A motivational driver model is developed to
Aleorithms. vehicle design a rear-end crash avoidance system.
HMI (Human- d %1 amics c’ollision These motivations simplify both autonomous Mozaffari and Nahvi
249 Machine gvoi danc,e traffic driving algorithms and human-machine Journal of System and
Interaction) conditions é destrians interactions. Moreover, the motivations are | Control Engineering, 2020
+P ’ used as risk assessment factors for driver—
machine interaction in dangerous situations.
Examples for uncertainty from the
environment are hidden RWM (road world Naghshvar, Sadek and
" model) states due to occlusions from large Wiggers
HMI (H - h
250 M;chl:::lan S:glsstzzslé:vii;l;rrf:;zd;z:rzs’ obstacles or sharp turns, or parameters that NeurIPS Workshop on
5 Interaction) al’ orithms ’ | cannot be physically sensed such as intentions Machine Learning for
& ? of humans participating in the environment, | Intelligent Transportation
including other drivers, cyclists, and Systems (MLITS), 2018
pedestrians.
Pedestrians, environmental The pedestrian behaviour, as the most
HMI (Human- conditions, demographics, vulnerable road user, id discussed and Rasouli and Tsotsos
a1 Machine traffic conditions, HMI, influential factors as well as their IEEE Transactions on
5 Interaction) traffic culture, interrelations are studied. This necessitate the | Intelligent Transactions,

communication, V2V, V21,
V2P, V2X, time of day

communication between the AVs and other
road users.

2019
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Autonomous systems in logistics provide a
new level of challenge for the analysis and Klum
HMI (Human- Trust, other road users, design of human—machine interaction . pp
R o . International Journal of
252 Machine traffic conditions, sensor, concepts. A comprehensive case study .
. . M. 2. Logistics Research and
Interaction) Al regarding automated lorry driving in logistics L
. . Applications, 2018
is provided in order to test the concept
concerning practical implications.
H-M interface, situation The central focus of this paper is about the
awareness, drowsiness, Human Machine Interactions (HMI) which are
HMI (Human- reaction time, traffic progressively moving as Human Machine Bellet et al.
253 Machine conditions, driver state, Transitions (HMT), according to the recent Transportation Research
Interaction) traffic rule enforcement, advances in AVs. Emerging risks due to Part F, 2019
algorithms, technical takeover/handover of the control are also
failures, trust, perceived risk investigated.
This article investigates the ethical and
technical concerns surrounding algorithmic
decision-making in AVs by exploring how
Algorithms, regulation, bias, driving decisions can perpetuate
HMI (Human- . R . . .
. cybersecurity, hardware, discrimination and create new safety risks for Lim and Taeihagh
254 Machine . . R . . o
. component, path planning, the public. Modelling and understanding Sustainability, 2019
Interaction) L . . .
sensors, obstacles, control, | human-vehicle interactions is essential for safe
navigation in mixed traffic to build consumer
trust in AVs, although this remains a challenge
for decision-making algorithms.
Road geometry. visibilit This study focuses on the environmental,
HMI (Human- li hti%l con:i.iyt,ions roazll, human and road factors influencing the car Verster and Fourie
255 Machine _ 1ehting Lo crashes in South Africa and discusses how the | South African Journal of
. infrastructure, animals, road | . . L. .. .
Interaction) o . introduction of self-driving cars can mitigate Science, 2018
conditions, pedestrians . .
the accident risks.
With the ever-expanding capabilities of
technical systems, user-appropriate design
HMI (Human- | Algorithms, perceived risk, 1ssucs are becoming increasingly important. Hu et al.
. That importance comes from two aspects. One
2 56 Machine sensor, control, s ab bility of sinele vehicle: The oth Journal of Advanced
Interaction) 1sa out capa ! l.t y of single vehicle; The other Transportation, 2017
is about capability of the whole traffic system ?
before all the on-road vehicles become
capable of fully autonomous driving.
Speed, reaction time, This article sees this essential to consider .
O A . . Kim and Yang
HMI (Human- reliability, trust, human-vehicle interactions in order to study .
) X . . IEEE Transactions on
257 Machine takeover/handover, sensors, the reaction times in takeover/handover X
. . o . .. . Human-Machine Systems,
Interaction) weather conditions, road situations in automated driving which 2017
configuration inherently involve the collision risks.
This study investigates the challenges that
Other road users, H-M integration of AVs into _mlxed traffics can
- pose to the safe operation of them. Four
Interface, training & . . .
. categories of information were emerged from .
HMI (Human- experience, traffic . SR . Schieben et al.
. .. the literature review in this paper: 1) vehicle o
258 Machine composition, road features, . s . | Cognition, Technology &
. driving mode, 2) AVs’ manoeuvres, 3) AVs
Interaction) traffic rules, road . . R Work, 2019
. . perceptions of the environment; and 4) AVs
infrastructure, vehicle shape, . e
. ; cooperation capabilities. The
environment perception . .
recommendations place a strong emphasis on
HMI and H-M Interfaces.
This work eva_luat_ed the future of mobility and Hancock, Nourbakhsh and
transportation in the age of autonomous
S . Stewart
HMI (Human- . driving. Several impacts and challenges that .
. Sensor fusion, trust, traffic Proceedings of the
259 Machine . AVs can have for the developers and users are .
. control infrastructure, . National Academy of
Interaction) discussed. The authors adopted a human- . .
. . Sciences of the United
centric approach to analyse this technology .
. X X States of America, 2019
will be experienced by human drivers.
This paper studies the factors that influence
Road infrastructure, people's views of the interactions between
HMI (Human- neighbourhood AVs and other road users based on a large
260 Machine environment, other cars, sample from the 2015 and 2017 Puget Sound Wang and Akar
. bicyclists, pedestrians Travel Surveys. The neighbourhood Transportation, 2019
Interaction) . h . .
perceived risk, weather environment and road infrastructure are
conditions specifically underlined in this work. Results
reveal that
This article concentrates on the role of human
behaviour in the safety of intelligent vehicles
(i.e. AVs). In this study the importance of
providing appropriate training for the drivers
Training & Situation awareness, HMI, ass(e):ft?(;stlszr;);\ilghlicslzslselgtg ?}iggsg{ cl:;iiial Fisher et al.
261 ng H-M Interface, V2V, V2I, 8 18 . IEEE Transactions on
Experience overtrust. sensors factors to the acquisition and maintenance of Intelligent Vehicles. 2016
? safety critical hazard mitigation skills that g ?
perhaps will never be acquired if Level 3
autonomous vehicles become a reality for the
a large number of drivers from the moment
they try this technology for the first time.
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Reliability, trust, HMI,

This project was aimed to study the ‘handover
problem’ in HAD. In this way, it takes the

Morgan, Alford and
Parkhurst

262 E;al:rlirg’lfé situation awareness, effects of training and experience into account | Project Report, Venture
p handover and underlines their role in handling handover | Project, University of the
situations. West of England, 2016
This study focuses on the importance of ‘trust
repair’ in human-machine interactions
especially in autonomous systems. The ‘level
26 Training & Trust, HMI, system of experience’ is believed to have a de Visser, Pak and Shaw
3 Experience reliability, H-M interface considerable impact on the human-machine ERGONOMICS, 2018
relationships. The experience can affect the
level of trust in the capabilities of an
autonomous systems.
drisxi(;long:ll;}; \E?gl::’ g};ﬁ;al This paper highlighted the benefit of research
envi%onmen t sit’uation on the role of driver ‘experience’ in safety of
Training & awareness lglteral and AVs. This becomes particularly important Demeulenaere
264 ng Lo because training and experience not only Technological Forecasting
Experience longitudinal control, other . . .
road users. hardware and contributes to apprehending system & Social Change, 2020
software r;liabili tv. road limitations, but also in reacting to complex
infrastruc turt):,; and hazardous situations.
The issue of drivers’ skills and enough Trosterer et al.
experience to handle critical safety situations, Proceedings of the 8th
Training & Overreliance. road users handovers and long-term trips was studied in | International Conference
26 5 . g i ’ this work. It is argued that initial and on Automotive User
Experience MHI, . . . . . .
sufficient training are crucial for drivers in Interfaces and Interactive
taking over the control of the vehicle when Vehicular Applications,
facing hazards or uncertainty. 2016
Trainine & This study emphasises the need for modified Kyriakidis et al.
266 Ex erie%lce Trust, HMI, H-M Interface, | trainings for drivers to be able to engage with Theoretical Issues in
p AVs and benefit from their capabilities. Ergonomics Science, 2019
This book deals with the human factors
affecting the interactions between ADSs and
humans. The significance of training and .
experience is highlighted here: “Many, if not Fisher ez al.
.. Road users, age, pedestrians, X . L Handbook of Human
Training & o most, will have no specific training in how the
267 . obstacles, communication, . . Factors for Automated,
Experience technology works, but will have experience .
handover/takeover, control . . X . . Connected, and Intelligent
interacting with human-driven vehicles. The .
. L . . . Vehicles, 2020
risks are significant—getting an interaction
wrong can result in injury or death. Major
design problems could result in many death”.
125 participants take part in this survey and
Training & Trust, safety perception, experl'enced a ride on an AV in a large clinic Zoellick et al.
268 . L. . area in Berlin, Germany. Results show that
Experience HM]I, training & experience, . . L . PLoS ONE, 2019
this experience had significant impact on the
trust and safety perceptions of the participants.
Concerns about interactions between humans
and AVs are studied in this paper. A quasi-
S naturalistic study was conducted on public
HML, trust, situation roads to examine to test a self-driving vehicle .
awareness, perceived S Brinkley et al.
. R . human-machine interface, ATLAS. The .
Training & reliability, Human-Machine L . . International Journal of
269 . o results show that following interaction with
Experience Interface, speed limit, . . Human—Computer
. . this prototyped system, participants expressed .
training and experience, . . i . Interaction, 2019
trust. other road users an improved trust in self-driving vehicle
? technology, an increased belief in its likely
usability, and a decreased fear of probable
operational failures.
An expert panel was designed to discuss the
implications of human factors in automated
Training & driving. The impact of trust and education on Pradhan et al.
270 Ex eriegnce Trust, HMI the control and usability of AVs are Road Vehicle Automation
P accentuated. This becomes crucial when we 5,2019
expect humans (e.g. other road users) to
interact with the technology.
Human errors are often reported as the ‘root Swallom, Lindberg and
Training & cause’ of accidents in socio-technical systems. Smith-Jackson
271 Ex erie%lce System integration, culture However, these errors can be due to other Handbook of Human
p factors such as training machine design, or Systems Integration,
culture. Chapter 14, 2003
The results of this study show that providing
Weather conditions, speed, ‘explanations’ on the autonomous driving
trust, road conditions, road process for the occupants of the vehicle can
Training & type, road configuration, improve their level of trust in the technology. Haet al.
272 Ex erie%lce road infrastructure, The participants reported a significant increase | Transportation Research
P perceived risk, number of | in their trust when provided with ‘attributional Part F, 2020

lanes, speed, perceived
reliability,

explanations’ in diverse driving situations
including adverse weather conditions, poor
road conditions and high speeds.
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273

Training &
Experience

Perceived risk, experience,
HMI, H-M interface,
reaction time, control,

drowsiness and fatigue,
situation awareness, over-
trust, weather conditions,
other road users, traffic
conditions, speed and
distance, sensor, over-
reliance, road conditions

The current study reports an improvement in
technology acceptance, trust levels and
perceived risks by participants in automated
driving. Use of a partially automated vehicle
on a public highway increased drivers’ trust
and perceptions of safety around AVs,
consistent with greater acceptance of and
intention to use AV technology.

Wilson et al.
Safety Science, 2020

274

Drowsiness

Time of day, circadian
factors, secondary task

This work analyses some potential aftermaths
of ‘sleep-related’ issues in the context of
autonomous driving and suggests new
multidisciplinary areas for future research
between social and drowsy scientists. The
authors categorise the current state-of-
technology as semi-autonomous vehicles
(level 4) and see the issue of drowsiness still
to be relevant. Therefore, sleepiness or
drowsiness is believed to increase the risk of
accident.

Grunstein and Grunstein
International Conference
on Intelligent Human
Systems Integration, 2020

275

Drowsiness

Situation awareness,
weather conditions, road
characteristics, time of day,
reaction time,

While there might be situations that the
control transition between an AV and a driver
can be initiated due to some environmental
conditions or road characteristics, the states of
drivers play a role in safe take-over of control.

Vogelpohl et al.
Accident Analysis and
Prevention, 2019

276

Drowsiness

HMI, situational awareness,
non-driving tasks, control,
reaction time

This research suggests that non-driving tasks
can manage driver drowsiness in automated
driving. 71 employees of the AUDI AG
participated in this experiment. The results
show that different activities such as texting,
listening to music and using body exercisers
can have different impacts on driver
drowsiness.

Weinbeer, Muhr and
Bengler
Proceeding of the 20"
Congress of the
International Ergonomics
Association, 2018

277

Drowsiness

Reaction times, situation
awareness, secondary tasks,
time of day, weather
conditions, lighting
conditions, work zones, road
conditions, physiological
factors

Evidence suggests that drivers will be more
prone to falling asleep during automated
driving. In higher levels of vehicle
automation, the need for monitoring the state
of the human driver will become vital. This
study aimed to find potential physiological
measures as a basis for developing systems
that can detect driver drowsiness in automated
driving.

Worle et al.
IET Intelligent Transport
Systems, 2019

278

Drowsiness

Non-driving tasks, reaction
time, system failure,
situation awareness, speed,
pedestrians,

Drowsiness and distraction are known as risk
factors in AD. This research suggests that
secondary or non-driving tasks (as major

cause of distraction) can be used to prevent
drivers from sleeping during automated
driving. This can reduce the time requited for
the driver to gain situation awareness and
react to a hazardous situation.

Miller et al.
Proceedings of the Human
Factors and Ergonomics
Society 59th Annual
Meeting, 2015

279

Drowsiness

H-M Interface, reaction
time, HMI, traffic situation,
weather condition, driver
state, other road users, take-
over, speed

In the lower levels of driving automation
where intervention of human driver is still
required, drowsiness as a risk factor can play a
crucial role and lead to dangerous situations.
The findings reveal that driving time, driving
mode as well as age have a significant impact
on driver drowsiness. Furthermore, this study
reports that the participants got drowsier in
AD comparing to manual driving, with the
younger participants experiencing higher
levels of drowsiness.

Kundinger et al.
Proceeding of the 25™
International Conference
on Intelligent User
Interfaces, 2020

280

Drowsiness

Reaction time, secondary
task, Human-Machine
Interface, autonomy level,
sensors, work zone,

Drowsiness and secondary tasks are reported
to impair drivers’ ability to safely and timely
handle take-over performance. The results of
this research suggest a relationship between
the driver’s drowsiness and non-driving
related tasks (NDRT) engagement in semi-
autonomous vehicles, but not in highly AD.

Naujoks et al.
Accident Analysis and
Prevention, 2018

281

Drowsiness

Reaction time, HMI,
secondary task, work zone,
driver state, speed

Due to the operational limitations of AVs, it is
critical to ensure that human intervention is
made in a timely manner to avoid a collision.
Drowsy driving can increase the reaction time
of human drivers. This driving simulator study
evaluates the impact of scheduled manual
driving on driver drowsiness and performance,
as well as age differences therein. The
findings reveal that driver drowsiness
meaningfully declines when scheduled manual
driving begins.

Wu et al.
Accident Analysis and
Prevention, 2019
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Reaction time, NDRT, trust,

This paper investigated the impact of
drowsiness on different aspects of take-over
performance. 31 participants took part in an

Weinbeer et al.

282 Drowsiness traffic density, trainin experiment which was conducted on the 8. Tagung Fahrerassistenz
’ g motorway A9 in Germany. No significant Conference, 2017
influence of the drowsiness level was reported
on take-over-time aspects.
This paper discusses the concept of ‘shared
HMI, driver state, Al autonomy’ and the idea of ‘Human-Cantered
algorithms, perception, Autonomous Vehicle Systems’. The author
navigation planning, vehicle | argues that it is achievable for Al systems and Fridman
283 Drowsiness control, H-M Interfaces, humans to collaborate effectively. This can arXiv preprint
sensor robustness, V2V, contribute to the design, development and arXiv:1810.01835, 2018
V2I, behaviour planning, testing of AVs. Several challenges and risk
motion planning factors including driver drowsiness are
discussed as well.
This study investigates the reliance of drivers
Trust and reliance, driver on AD and discusses the human factors. The
. . Arakawa
state, sensor malfunction, results show that prior knowledge about the .
. . e . X International Journal of
. response time, pedestrians, | possibility of AV failures leads to calibrated . .
284 Drowsiness L . . Innovative Computing,
communication, V21, V2V, | reliance on AVs and increases the awareness .
L . . N Information and Control,
V2X, training and of drivers. Conversely, over-reliance on AV’s 2018
experience performance can inhibit drivers to
appropriately respond to system failures.
Reaction time, NDRT, This paper investigated the impact of
sensors, actuators, durations of automated driving on the take-
perception accuracy, speed, | over performance. The findings suggest that 1 Bourrelly et al.
285 Drowsiness control, traffic conditions, | hour of automated driving affects the driver's | IET Intelligent Transport
situation awareness, driving behaviour, leading to deterioration of take- Systems, 2019
duration, driver state, traffic over quality, increased reaction time and
density increased drowsiness.
This study defines a collaborative driving
Weather and lighting framework consisting of two elements: an
conditions, reaction time, automated co-pilot and a human driver. This
speed, vehicle control framework is based on internal and external Tran et al.
286 Drowsiness system, sensors, cameras, risk assessmer.lt‘ The inte_mal risk i_s deﬁped in IEE_E Transactions on
driver state, path planning, terms of driver drowsiness and intention Intelligent Transportation
pedestrians, V2V, intention | recognition, and the external risk comprises of Systems, 2019
recognition, vehicle state, a collision avoidance system to estimate the
LiDAR, H-M Interface collision probability between the ego vehicle
and surrounding vehicles.
The influence of HAD on driver’s drowsiness
Driver’s state, secondary development was studied. The findings Schomig et al.
task, traffic density, road demonstrate that the drivers experienced 6th International
287 Drowsiness curvature, H-M Interface, highest level of drowsiness when drivers Conference on Applied
lighting conditions, situation | proceeded driving manually as well as when Human Factors and
awareness in HAD mode but without being engaged in Ergonomics, 2015
NDRT inside the vehicle.
Driving in the night is notably more hazardous
and it is not merely attributed to poorer
Circadian phase, time of visibility or sleep deprivation. Circadian
Qay, sﬁuatlo@ awareness, changes in humfin cognitive performance also Kaduk, Roberts and
driver state, visibility, HMI, | play a role. This study suggests an extended,
. . . . ) . Stanton
288 Drowsiness perceived risk, trust, mental | multi-period, Consensus Model of the driver X .
. . . o . Theoretical Issues in
workload, control that includes circadian rhythmicity during Ereonomics Science. 2020
perception, driver state, semi-automated driving. The results of the g ?
fatigue literature also support the idea that circadian
rhythmicity must be taken into account when
researching semi-automated driving.
This study investigated the effect of NDRTs
on drivers’ fatigue on highly automated
driving. Three factors were monitored to
measure the participants’ fatigue: percentage
Reaction time, fatigue, of eye-lid closure, blink related eye-tracking
- . Jarosch et al.
28 9 Drowsiness NDRT, weather conditions, pa?ameters and self-report Karolinska Driving Assessment
Sleepiness Scale (KSS). The results suggest

traffic density, visibility,
control

that “the monotonous monitoring task induced
task related fatigue after a time-on task of 25
min, which could be demonstrated by a rise of
subjective KSS ratings, PERCLOS and blink
related parameters”.

Conference, 2017
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290

Drowsiness

Visibility conditions, traffic
density, driving duration,
fatigue, vigilance, circadian
rhythm, time of day,
reaction time,
longitudinal/lateral control

The impact of semi-automated driving on
drivers’ vigilance and passive fatigue was
investigated in this research. An automated
vehicle was used by the participants and a
vigilance task became the primary active task
besides passive monitoring. The remaining
eye tracking indicators for fatigue (pupil
diameter, blink frequency, blink duration)
except
PERCLOS showed a significant increase in
fatigue in course of the experimental drive.
This directly affects the vigilance performance
and subsequently drivers’ reaction time.

Korber et al.
6th International
Conference on Applied
Human Factors and
Ergonomics, 2015

291

Reaction time

Mixed traffic, traffic flow,
demographics, road
geometry, traffic
complexity, road capacity,
traffic rules, weather
conditions, driving
behaviour, traffic
conditions, reaction time,
speed, sensory system,
traffic control

This study suggests a novel cellular automata

model to address the issue of drivers’

characteristics in mixed traffic where different

AVs (e.g., cars and buses) and HDVs are

compared in terms of fundamental traffic
parameters.

Tanveer et al.
Sustainability, 2020

292

Reaction time

Velocity, cybersecurity,
machine learning
algorithms, road conditions,
vehicle dynamics, control,
lane configuration

A data-driven tool is developed to evaluate the
safety of AVs involving sensitivity analysis
and Automotive Safety Integrity Levels
(ASILs).

Fan, Qi and Mitra
arXiv:1704.06406, 2017

293

Reaction time

Traffic flow, other traffic
participants, traffic density,
mixed traffic, control,
velocity, road conditions,
weather conditions, number
of lanes

To test the capability of AVs in harmonising
with HDVs in real traffic, thousands of
vehicle-recorded data in the US was used and
reaction time was chosen to be a performance
indicator.

Althoff and Losch
IEEE 19th International
Conference on Intelligent
Transportation Systems
(ITSC), 2016

294

Reaction time

Sensors, communication,
speed, road infrastructure,
obstacles, traffic density,
VANET, V2V, V21, other
road users, trajectory
planning, radar, LIiDAR,
GPS, H-M Interface, road
conditions, driving style,
driver’s state, weather
conditions, road type,
fatigue, situation awareness,
driver’s age, kinematic state,
temperature, road geometry,
traffic conditions

This paper proposes a tool for assessing
collision risk for AVs. This tool includes
environmental, vehicle, and driver factors and
exploits a Bayesian Network to model
collision risks.

Russo et al.
IFAC Conference Paper
Archive, 2016

295

Reaction time

Fatigue, secondary task,

HMLI, speed, vehicle control,

driver state, training, human

factors, visibility, other road

users, weather conditions,
traffic density

This study tested the hypothesis that
monitoring roadway during AD affects driver
vigilance. A 40-minute simulated drive was
designed and on-board drivers were tasked to
watch out the roadway for hazards. The results
suggest that hazard detection rate dwindles
and reaction times slows as AD carries on.

Greenlee, DeLucia and
Newton
Human Factors, 2018

296

Reaction time

Algorithms, road conditions,
velocity, vehicle dynamics,
software

The application of hierarchical control in AVs
and ADAS is highlighted in this paper. It is
upheld that conventional design and test
methodologies are insufficient for ensuring
safety of AVs. One of the variables which is
used to characterise safety is reaction time.

Fan, Qi and Mitra
IEEE Design and Test,
2018

297

Reaction time

Secondary task, perceived
risk, training and experience

In case of any failure in the automation
system, drivers’ ability and readiness to take
over the manual control play a vital role in
safe performance of AVs. This article shows
the results of an experimental study to test the

impact of ‘risk attitude’ on acceptability,
productivity and safety (reaction times) under
failure of autonomous driving systems.

Dixit et al.
Accident Analysis &
Prevention, 2019

298

Reaction time

Secondary task, drowsiness,

training and experience,
trust, perceived risk,
situation awareness

A driving simulator study was conducted to
test the impact of ‘time budget’ and secondary
(non-driving-related) tasks on take-over of
control in low crash risks (LCR) against high
crash risk (HCR) drivers. The results found
that HCR drivers had lower risk perception in
comparison with LCR participants. In
addition, engagement in reading news and
watching video had similar impact on the

reaction time of drivers in both groups.

Lin et al.
Accident Analysis &
Prevention, 2020
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H-M Interfaces, vehicle
control, weather conditions,
hardware reliability, non-

Takeover modality in highly automated
vehicles is the focus of this research. 60
participants were required to handle a stalled
park vehicle after being awoken from a light

Tang et al.

299 | Reaction time driving related task, sleep. Half of participants were exposed to a
drowsiness, fatigue, time of | peppermint odour stimulation, while the other Human Factors, 2020
day, obstacles, situational half received a placebo (air). The results
awareness indicate that the presence of peppermint did
not affect the participants’ reaction time.
V2V, algorithms,
communication, radar,
sensors, HMI, other traffic . .. Shin et al.
articipants, driving style Reaction time was used to measure collision IEEE Transactions on
300 | Reaction time | POUCCIPANS SHVINE SV gy in AD while V2V wireless is fused with ; :
GPS, obstacle, kinematic L . . Intelligent Transportation
. radar to anticipate motion of a remote vehicle.
models, velocity, road Systems, 2019
geometry, sensor fusion,
driver’s sensitivity
H-M Interfaces, weather
conditions, road conditions, Driver’s distraction is still an issue even in .
. . . . Geitner
traffic conditions, control, semi- and highly automated vehicles. Two University of Warwick
301 | Reaction time | situation awareness, driving streams of research were conducted Y SO
. . . . e . WMG Experiential
behaviour, driver investigate the capabilities of Human-Machine Enincering. 2018
distraction, training, Interfaces to address driver distraction. g e
secondary task, trust
This work investigated the effect of V2X
L L . Demmel et al.
Situation awareness, communication channel on the allowed time .
e Proceedings of the 2nd
secondary task, hardware for control transition from the autonomous IFAC Conference on
302 | Reaction time failures, sensor failures, system to the driver. The findings show that .
. . Cyber-Physical and
obstacles, traffic density, benefiting from V2X can add 6-7 seconds to
. . . Human Systems CPHS,
V2X, overreliance, the time allowed by local perception thereby
. - - 2019
reducing the risk of collision.
The effect of a specific type of ADAS (i.e.
lane change driver support system) is Isaksson-Hellman and
. evaluated in this study. ‘Road type’ is among Lindman
303 Road type Traffic conditions, speed studied variables and is categorised into five | Journal of Traffic Injury
groups: European highways, highways, city Prevention, 2017
roads, roundabouts, and unspecified.
The results suggest that “the adjusted Odds-
Ratio of run-off crash was five times higher in
double direction roads with median strip than
Road confieuration in one-way urban roads”. Then the authors )
o Road type obstacle. roa dgali nmén ¢ identify urban road configurations that may Alvarez et al.
304 P ’ speed g ? need to be redesigned to reduce the odds of a PLoS ONE, 2020
P run-off crash. A series of risk factors including
road geometry, road layout, road width, road
type and road alignment are highlighted in this
study.
L This research explores the contributing factors
Reaction time, road . . . .
. and mechanisms of the accidents involving
characteristics, secondary .
autonomous vehicles. The paper concludes
tasks, other road users, « . S . . .
. . that “the highway is identified as the location Wang and Li
305 Road type environmental variables, e ;
. L where sever injuries are likely to happen due PloS ONE, 2019
weather conditions, lighting ; »
.. to high travel speed”. Other factors and causes
conditions, human factors, . o . .
o also mentioned in this paper including
situation awareness, speed .
environmental and human factors.
Weather conditions, traffic This paper investigated the effect of multiple Malin, Norros and
density, number of lanes, . o Innamaa
306 Road type s variables such road type, weather conditions . .
visibility, time of day, road " . . Accident Analysis and
and road conditions on the accident risk. .
geometry Prevention, 2019
This study used a set of models to evaluate the
Road geometry, trust, .
.. . effect of road environments and road elements
driving style, vehicle -
control, speed, traffic such as road segment and road type on the Paschalidis et al.
307 Road type con. d’i tions ’roa d speed behaviour of drivers. The results Analytic Methods in
. > indicate the need for the design of AV Accident Research, 2020
infrastructure, traffic P
. controllers that can adapt their driving
infrastructure, control . .
behaviour to the road environment.
Driving style, traffic
density, weather conditions, | This paper examines the relationships between
lighting conditions, relative the road situational risk and angry driving
seconmtarytak, drtver visuat | the slocaton of visualattnton ofangry. | - 1120 Ma and Chang
308 Road type Ty tass, Ery Transportation Research

attention, training and
experience, number of lane
changes, kinematic state,
other road users, road
situation

driving-style drivers based on video clips of
driving. The findings of this research are
applicable in the field of AD and development
of ADAS.

Part F, 2020
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Situational awareness, GPS, In this thesis, a novel video-based framework
cameras, sensors, road . S
. for the automatic assessment of collision risk
environment, traffic flow, . .
in a road scene is proposed. The proposed
traffic rules, weather . X Muhammad
309 Road type o . framework classifies road type to achieve .
conditions, road quality, X PhD Thesis, 2016
. higher accuracy than the state-of-the-art
obstacles, LiDAR, other
e methods, for each
road users, lighting road type separatel
conditions, self-awareness P ¥
This paper discusses the framework for a risk
predictive driver assistance system that Saito and
Road o . dynamically shares control authority between .
. Visibility, speed, collision . . Raksincharoensak
310 | configuration . . the elderly driver and the ADAS depending on .
. avoidance, pedestrian, HMI L. . . H IEEE Transactions on
(layout/design) the potential risk of the situations, in order to . .
. . oo Intelligent Vehicles, 2016
cope with uncertainty and complexity in urban
areas.
The aim of this research project was to analyse
how precisely the drivers perceive hazardous
Road degrees of the four common mountainous Xue and Wen
. highway traffic risk factors by drawing an Journal of Cognition
311 | configuration Human factors . .o
(layout/design) analogy between subjective and objective Technology & Work,
Y g risks. Those four risk factors are sharp turns, 2020
continuous long downhills, multi-tunnel
sections and dangerous roadside environment.
E::ﬁ? :?;Slt{?;f' ’ tsrgff:gg This study investigates the road design Colonna et al.
Road con esiion s:enso;s trust & requirements required to accommodate AVs | International Conference
312 | configuration g i > on roads. It is maintained that “the problem of on Applied Human
. acceptance, obstacles, . ) R .
(layout/design) weather conditions. road road design compatible with AVs could Factors and Ergonomics,
infrastructure, GPS become the assessment of that quantity DE”. 2017
This paper explores the effects of roadside
vegetation and/or cover on the probability of
vehicular collisions with deer by identifying Font and Brown
Road and simulating dangerous animal-vehicle Advances in
1 configuration Speed, other road users, interaction scenarios for autonomous driving. . .
p
. s Transportation Studies;
(layout/design) The methodology used in this study produces .
. X Special Issue, 2020
recommended safe driving speeds for vehicles
employing each driver assist system given a
particular road configuration.
Weather conditions, time of | Darmstadt Risk Analysis Method (DRAM) is
day, lighting conditions, developed in this work to deal with Bald et al
Road road design, road uncertainties and get access to the cause-and- Proceedings o.f the
314 | configuration conditions, vehicle effect chains of the road systems. Several g
. ’ . . o .| Transport Research Arena
layout/design parameters, width of road, | factors influencing the probability and severity
y g . ; i (TRA) Europe, 2008
traffic flow, traffic density, of traffic accidents are identified and >
speed, obstacles, incorporated into the chain.
The complications due to the vehicle status, Koopman. Osvk and
environmental factors and road geometry are P Wéas + Y
Road Road surface friction, road | taken into account to study potential collisions International Conference
1 configuration eometry, weather involving AVs. The risk here is defined as
5 g g ry g
. . « . . on Computer Safety,
(layout/design) conditions faster-than-expected lead vehicle braking Reliability. and Securi
maneuver combined with a slower-than- 1y v,
. . - 2019
expected ego vehicle braking maneuver”.
This paper stresses the necessity for
‘appropriate street design’ to mitigate the risk
of collision and conflict between motorised
and non-motorised travels after launch of AVs
Road Other road users, road in mass number on public roads. It is believed Riggs et al.
316 configuration infrastructure, traffic that technological advancements are outpacing Automated Vehicles
(layout/design) composition urban planning and policy. In this study a Symposium, 2019
workshop was designed to gather the opinions
of experts on the role of urban and road design
on how AVs can be integrated into public
roads.
C_ybersecurlty, ph_y§10al This study introduces the idea of “automation
Road infrastructure, digital . e . van Arem et al.
1 configuration infrastructure, Al maturity. readiness™ in the context of urban design and Automated Vehicles
317 g . L ’ | mobility. It further underscores the challenges .
(layout/design) | traffic composition, other Sl . Symposium, 2019
arising in the field of street redesign.
road users
. Traffic control This paper looks into the safety of freeway on-
infrastructure, human . .
Road factors, geometric design ramp merging areas and the factors affecting Zhu and Tasic
. & 20| the performance of AVs in handling the risks . .
318 configuration | speed, trajectory planning, . . Accident Analysis and
. L . in those areas. Several critical factors .
(layout/design) | communication, algorithms, | . . . Prevention, 2021
including environmental and human ones are
traffic flow, number of highlighted in this stud
lanes, driving style ghiig Y-
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Speed, time-to-collision,
road type, other road users,

An intelligent Speed Adaptation (ISA) was
developed to reduce the number of lane
changes and short time-to-collision events.

Piao et al.
IEEE Intelligent

319 No. of lanes interface, road conditions, Two of the m.am fgctors mn thls study was the Transportation Systems
o road type (i.e., single-carriageway, dual-
traffic conditions . Conference, 2004
carriageway, and motorway) and the number
of lanes.
Trafﬁc density, driver Chang1ng lanes during drlvmg (both Isaksson-Hellman and
behaviour, speed, radar, conventional and automated vehicles) can Lindman
320 No. of lanes road type, traffic conditions, contribute to the criticality of the traffic . .
. Lo . Traffic Injury Prevention,
other road users, reaction | situation and subsequently causing slow traffic
- . e 2018
time flow and higher collision risks.
Predictive occupancy map (POM), is proposed
Other road users, kinematic to assess potenthl risks associated V\'llth
. surrounding vehicles based on relative
state, algorithms, secondary .. . .
. position, velocity, and acceleration. In
tasks, drossiness, path R . . .
21 No. of lanes planning, obstacles generating a risk map, env1r_0nmenta¥ risks are Lee and Kum
3 . > . grouped into two categories: 1) driveable IEEE Access, 2019
trajectory planning, motion L o
. . .. regions; and 2) traffic lanes. switching to
planning, time-to-collision, . . ..
- another lane in order to avoid a collision can
road conditions . . .
be relatively riskier than accelerating or
decelerating the vehicle in the same lane.
Al velocity, surrounding
traffic participants, traffic | A deep reinforcement learning (RL) algorithm Mirchevska et al.
rules, motion planning, is developed to learn drive as close as possible 21st International
322 No. of lanes camera, LIDAR, dynamic to a desired velocity by performing safe Conference on Intelligent
obstacles, control, sensors, | manoeuvres (i.e., lane changes) on simulated | Transportation Systems,
kinematic state, algorithms, | highways with an arbitrary number of lanes. 2018
traffic density
Among various vehicular manoeuvres, lane
Algorithms, traffic flow, changing is considered as the most
V2V, V2I, reaction times, challenging one. This paper presents an Desiraju and Chantem
2 No. of lanes road conditions, path algorithm to minimise the disruption of traffic IEEE Transactions on
323 . prediction, communication | flow by optimising for the number of safe lane | Intelligent Transportation
infrastructure, speed, other changes, which is expected to result in Systems, 2015
road users increasing throughput and reduction in traffic
congestion.
It is held that the number of collisions between
vehicles due to lane departure is slightly more
than collisions with objects/obstacles (other
Tire friction, situation than vehicles). However, in some traffic
awareness, approach ar}gle, scenarios it may not practically be possible to Olofsson and Niclsen
road geometry, velocity, avoid changing lane. Therefore, a safe speed .
. . . IEEE Transactions on
324 No. of lanes vehicle dynamic, control, needs to be adopted to reduce the risk of . .
: L . Intelligent Transportation
obstacles, velocity, road collision. This study developed a framework
LT . . Systems, 2020
curvature, sensors, based on current historic data using numerical
computing power optimisation to predict the potential value of
future autonomous vehicle manoeuvres at-the-
limit of tire friction in safety-critical
situations.
Other traffic participants . .
; | A scene- -
traffic complexity, sensors, scene: graph augmented data drlven .rzsk
. . assessment is developed to classify various Yuetal.
actuators, vehicle dynamics, . X
2 No. of lanes driving behaviour. weather driving manoeuvres for AVs. Lane change IEEE Transactions on
325 ' & ; was chosen as a use case. One of the main Intelligent Transportation
conditions, traffic flow, L.
. . s elements to define the characteristic of a road Systems, 2021
perceived risk, lighting .
.. scene is traffic lane.
conditions, control
Adaptation to human driving style is a
Sensors, machine learning, prf)blem in the field of autonomous driving. Li, Ota and Dong
. This paper proposes a human-like AD system -
Road vehicle control, other road . . : IEEE Transactions on
326 a . which considers road scene perception .
conditions users, LiDAR, obstacles, L L . Vehicular Technology,
GPS method and empirical decision-making 2018
network. 1t also analyses factors that can have
influence in decision-making process.
The role of ACC in collision avoidance for Ren et al
Road Speed, algorithms, collision | semi-autonomous electric vehicles is studied Lo
327 A K X . . . Journal of Automobile
conditions avoidance in this paper. Low friction is considered to . .
. - . Engineering, 2019
complicate the road conditions for a vehicle.
. . Vismari et al.
. This study suggests a risk-based control .
Road Speed, Fiy_namlcal framework for AVs. Direction of the road and IEEE Intematmn_al
328 . characteristics, traffic . o . Conference on Vehicular
conditions .. physical characteristics are categorised as the .
conditions, obstacles kev risk atiributes for these vehicles Electronics and Safety
Y : (ICVES), 2018
This paper is objected towards developing a
risk-assessment algorithm that could control a Fahmy et al.
V2V, V2X, obstacle, vehicle to keep the presented lane and avoid a 29th International
Road X .. .
329 conditions algorithms, road geometry, | collision that may be caused by a road object. Conference on

control

In this manner, the vehicular dynamics and
road geometries are modelled to test different
scenarios.

Microelectronics (ICM),
2017
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Conventional autonomous emergency braking
(AEB) systems consider a fixed friction
coefficient without regards to different road
conditions. This study proposes a control
method that adjusts the automatic brake
application time to road conditions. Jeon, Kim and Kim
o Road V2V, speed, collision Additionally, collision risks at an intersection | International Journal of
33 conditions avoidance, were calculated using various road friction | Software Engineering and
coefficients and the V2V-based speed inputs Its Applications, 2015
from adjacent vehicles. The efficacy of the
proposed AEB system was validated through
tests under various scenarios, applying the
road friction coefficient and vehicle speed as
variables.
A DBN model is developed to assess the
Traffic rules, traffic density, .COHI.SIOH risks for. AVs. .The contextual.gnd Katrakazas, Quddus and
.o situational factors including traffic conditions
Road speed, weather conditions, . . . Chen
331 " L are incorporated into the model. It is endorsed . .
conditions communication, . Accident Analysis &
infrastructure that the influence of the geometry of the road Prevention. 2019
on the actions and the knowledge of the road ?
geometry and traffic rules are crucial factors.
This work proposes a simulation-based
framework to assess the safety performance of
vehicles under hazardous driving conditions.
This study has potential applications to not Hou, Chen and Chen
> Road Weather conditions, road | only regular vehicles, but also advanced traffic | Transportation Research
33 conditions surface, vehicle dynamics, management and control algorithms for Part C: Emerging
connected and autonomous vehicles. Complex Technologies, 2019
geometric (e.g. road curvature) and
environmental conditions are simultaneously
considered.
This study proposes the concept of
_ W_ez}ther conditions, dr.wgabll.lty for AYs to identify and handle Guo, Kurup and Shah
visibility, HMI, road user driving risks. To this end, road datasets are .
Road . AN . . o . X IEEE Transactions on
333 o behaviour, lighting reviewed and driveability factors are identified . .
conditions . : Lo . Intelligent Transportation
conditions, time of day, and categorised into majors groups: 1) Systems. 2019
sensors, traffic conditions environmental factors; and 2) road users’ Y ’
interactions.
Vehicular networks (cloud) play a key role in | Olariu, Eltoweissy, and
Road Situation awareness, enabling the realisation of AVs. Such a Younis
334 conditions communication, VANET, | network can facilitate the transfer of vital data ICST Transactions on
V2V, V2I, infrastructure like road conditions between nearby vehicles | Mobile Communications
and allow them to signal potential risks. and Applications, 2011
The impact of lane departure warning (LDW)
and lane keeping aid (LKA) on passenger car
Road Weather conditions, sensors, | injury accidents is studied based on Swedish Sternlund et al.
335 " GPS, infrastructure, accident data. These systems can be used in | Traffic Injury Prevention,
conditions U . X ..
visibility autonomous vehicles in addition to other 2017
technologies to ensure the lateral control of
the vehicle.
LiDAR, radar, camera, A fallback approach is presented in case
ultrasound, perception, senser failure occurs in AD. This approach is
surrounding vehicles, expected to navigate the impaired vehicle to a Xue et al.
336 Sensors localisation, reaction time, safe stop on the designated parking zone. A | IEEE Intelligent Vehicles
speed, time-to-collision, simulation was run in Simulink environment Symposium (IV), 2018
actuators, hazardous driving | to evaluate the proposed approach in two test
behaviours scenarios.
Weather conditions, road
conditions, mixed traffic,
other road users, vehicle
control, LiDAR, radar,
ultrasonic sensors, 3D Challenges in the way of testing and Koné et al.
cameras, road curvature, S . . . :
. validating AVs are reviewed. A simulation International Conference
obstacles, sensor fusion . .
337 Sensors . Lo based on scenario-assessment was run for this on Complex Systems
algorithms, localisation, . .
e purpose. Future questions around safe Design & Management,
communication, Al . .
. . operation of AVs are further discussed. 2019
algorithms, environment
configurations, V2X,
cybersecurity, velocity,
trajectory prediction,
behaviour of road users

174




Appendix A

Perception accuracy, motion
planning, control, LiDAR,
trajectory planning,
algorithms, localisation,

Detecting and analysing the dynamics of
surrounding environment is a key component

Ginerica et al.

338 Sensors other traffic participants, of AVs. ObserveNet Control is a vision- IEEE Robotics and
dynamic traffic conditions, | dynamics approach to address the predictive | Automation Letters, 2021
obstacles, GPS, vehicle control dilemma of AVs.
dynamics, velocity, visual
cameras, vehicle control
Weather conditions,
visibility, perception
accuracy, speed, control, | This paper studies the development baseline of Kutila et al.
software, V2X, data fusion, | a new LiDAR sensor for AVs, which require IEEE 19th International
339 LiDAR behavioural planning, accurate perception both under clear and Conference on Intelligent
trajectory planning, vehicle adverse weather conditions such as Transportation Systems,
integration, H-M Interfaces, precipitation and fog. 2016
radar, obstacle, cameras,
RSU, road conditions
Accuracy and integrity of the object detection Feng, Rosenbaum and
Deep neural networks, module in AVs is crucial to ensure that AVs Dietmayer
o LiDAR detection accuracy, cameras, | can safely handle traffic scenarios on public 21st International
34 obstacles, sensors, roads. This paper proposes a practical method | Conference on Intelligent
localisation to address uncertainties in a 3D vehicle Transportation Systems
detector for LIDAR point cloud. (ITSC), 2018
Sensors, computer vision,
GPS, other road users, road Duran et al.
signs, sensor fusion, control | A Bayesian Network is developed to estimate | Proceedings of the 2013
" LiDAR algorithms, velocity, quantitative probabilistic of system safety for | Federated Conference on
34 software, cameras, the AVs using computer vision and LiDAR Computer Science and
obstacles, lighting SEnsors. Information Systems,
conditions, appropriate 2013
hardware
Stereo vision, sensor fusion,
sensors, algorithms, other
road users, obstacle, This paper presents a solution for detection
environment perception, and tracking of moving objects within the £
e . Cesi¢ et al.
weather conditions, context of ADAS. A multisensory setup .
342 Radar o . . g Robotics and Autonomous
visibility, motion planning, consisting of a radar and a stereo camera Systems. 2016
system integration, traffic mounted on top of a vehicle are used in that y ’
density, relative speed, system.
number of lanes, space
geometry
This paper suggests an intelligent Real-time
Dual-functional Radar-Communication
(iRDRC) system for AVs. This system equips
Communication, weather an AV with both radar and data
conditions, deep communication functions to maximise Hieu et al.
Radar reinforcement learning bandwidth utilisation thereby significantly IEEE Wireless
343 algorithms, visibility, V21, | enhancing safety. The data communications | Communications Letters,
velocity, cameras, road function enables an AV to transmit data such 2020
conditions as traffic information to edge computing
systems and the radar function is applied to
improve the reliability and reduce the collision
risks of AVs.
Tracking algorithms, other This paper is concerned w1t.h objec.tlve vehlcle
. . . detection in AD. A data-driven object vehicle .
vehicles, relative velocity, L. . Choi, Yang and Chung
344 Radar . estimation approach is developed to address
LiDAR, cameras, sensor . Sensors, 2021
fusion, path planning the measurement uncertainty and latency
’ problems in radars incorporated into AVs.
An uncertainty-aware end-to-end trajectory
generation network developed in this paper
. . can obtain spatiotemporal features from the
Trajectory planning, - .
. . front camera images for scene perception, and
perception, control, motion s . .
. then plan collision-free trajectories several .
planning, sensors, weather . . Caietal.
Cameras 7. O seconds into the future. The experimental :
345 - conditions, lighting o . IEEE Transactions on
(vision) .\ g results in this work suggest that under varying . .
conditions, path planning, . . Intelligent Vehicles, 2021
. weather and light conditions, that network can
dynamic obstacles, GPS, . . .
. reliably generate trajectories in dissimilar
sensor fusion . .
urban environments, such as turning at
intersections and slowing down for avoiding
collision.
Reinf 1 i - .
cinforcement leaming, Vision-based robust controllers for keeping an
control systems, weather . . .
L . AV in the centre of a lane coping with
conditions, velocity, L . .
algorithms, human errors uncertainties and disturbances, is a
Cameras GPS, deep l’earning visi01;- challenging toping in the field of DA. This Morais et al.
346 (vision) based algorithms, work proposes a hybrid control architecture Control Engineering

perception, sensors,
actuators, vehicle dynamics,
number of lanes, traffic
rules

that couples Deep Reinforcement Learning
(DRL) with Robust Linear Quadratic
Regulator (RLOR) to develop a vision-based
lateral controller for AVs.

Practice, 2020
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347

Cameras
(vision)

Situational awareness,
onboard sensors, dynamic
objects, localisation,
pedestrians, radars, GPS,
other road users,
infrastructure, radar,
LiDAR, software, path
planning, angular velocities,
prediction algorithms,
visibility

This paper presents a system that integrates a
vision-based offboard pedestrian tracking
subsystem with an onboard localization and
navigation subsystem to enable warnings to be
communicated and effectively extends the
vehicle controller’s field of view to include
areas that would otherwise be blind spots. This
is applicable in autonomous vehicles and can
improve pedestrian detection.

Borges, Zlot and Tews

IEEE Transactions on

Intelligent Transaction
Systems, 2013

348

Hardware
reliability

Traffic composition,
transportation infrastructure,
LiDAR, radar, GPS, camera
vision, communication,
infrared sensor, ultrasonic
sensor, backup sensor,
system integration, software,
algorithms, database, HMI,
H-M Interfaces, driving
style, other road users,
weather conditions,
construction zones, road
conditions

A fault tree is developed to analyse AVs’ risk
from the vehicular component and
infrastructure component perspectives. This
analysis produced failure a probability of
around 14% resulting from a sequential failure
of the AV components solely in the vehicle’s
lifetime, with a focus on the components
responsible for automation.

Bhavsar et al.
Transportation Research
Record: Journal of the
Transportation Research
Board, 2017

349

Hardware
reliability

Trajectory tracking,
software algorithms,
perception, global route
planning, behaviour
reasoning, trajectory
planning, sensors, vehicle
kinematic, dynamic
constraints, path planning,
localisation, weather
conditions, road geometry,
road surface, static/dynamic
obstacle, road
infrastructures, cameras,
speed

To avoid high costs and risks of real-world
testing, this paper proposes a Hardware-in-
the-Loop Scaled Platform which comprises of
scaled AV, roadway, monitoring centre,
transmission device, positioning device, and
computing device. The results of experiments
show a satisfactory effectiveness of the HiL
scaled platform.

Xu et al.
Journal of Advanced
Transportation, 2017

350

Hardware
reliability

Control algorithms, sensors,
actuators, speed,
localisation, sensor fusion,
cameras, LiIDAR,
ultrasound, path planning,
planning algorithms, V2V,
V21, angular velocity, radar,
GPS, Inertial Measurement
Unit (IMU), monocular
camera, other road users,
obstacle, communication,
vehicle state, road structure,
kinematic car model, traffic
complexity, traffic rule
compliance, traffic
management

This work proposed a novel simulation
platform with hardware-in-the-loop (HiL).
This platform consists of four layers: vehicle
simulation, virtual sensors, virtual
environment and the Electronic Control Unit
(ECU) which enable hardware control. This
platform offers threefold capabilities: (1) it
builds and simulates kinematic car models,
various sensors and virtual testing fields; (2) it
implements a closed-loop evaluation of
surrounding perception, path planning and
vehicular control algorithms, whilst running
multi-agent interaction system; (3) it further
allows for a rapid transition of control and
decision-making algorithms from the virtual
environment to real self-driving cars.

Chen et al.
IEEE Intelligent Vehicles
Symposium (IV), 2018

351

Hardware
reliability

Sensors, obstacles, velocity,
LiDAR, radar, reaction
time, motion planning,
software, sensor fusion,

algorithms, system
integration

This paper introduces criteria for intervention
on braking and steering in AD evaluating the
occupants’ injury risk. To develop such
criteria software-in-the-loop and hardware-in-
the-loop are introduced.

Vangi
Journal of Automobile
Engineering, 2020

352

Hardware
reliability

Software, system
integration, perceptual
positioning, control
execution, planning, weather
conditions, illumination
conditions, vehicle
kinematics, algorithms,
control interfaces, road
conditions, road gradient,
sensors

A hardware-in-the-loop simulation is
performed to avoid high risks and costs of real
road testing. This simulation aimed to evaluate

autonomous emergency braking (AEB)
control algorithms. Physical hardware and
software components were included in the
simulation platform.

Gao et al.
IEEE 23rd International
Conference on Intelligent
Transportation Systems
(ITSC) Intelligent
Transportation Systems
(ITSC), 2020

353

Hardware
reliability

Cybersecurity, vehicle
controllers, sensors, LIDAR,
actuators, algorithms, road
geometry, control
reconfiguration, obstacles,
communication, speed

Cybersecurity of AVs in the focus of this
paper. A security architecture is introduced
and a HiL platform is developed to test that

architecture. In this simulation, both hardware
and software architectures are taken into
account.

sensors, system integrity,

Potteiger, Zhang and
Koutsoukos
Microprocessors and
Microsystems, 2020
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354

(Vehicle)
control

Obstacles, LiDAR, sensor
fusion, algorithms, road
structure, trajectory
planning, sensors, security
standards, GPS, pedestrians,
road type, kinematic state,
hardware

A system is proposed to avoid obstacles based
on the lateral and longitudinal velocity of
AVs. It was tested and validated on a three-
wheel vehicle.

Hasmitha ef al.
IEEE International
Conference for Innovation
in Technology
(INOCON), 2020

355

(Vehicle)
control

V2I, communication,
number of lanes, LIiDAR,
radar, cameras, system
integration, obstacles,
algorithms, other road users,
traffic flow, velocity,
vehicle trajectory,
reinforcement learning,
machine learning, fusion
algorithms, traffic control
infrastructure, sensors

A fusion-based Q-learning method is
developed in this paper to achieve an optimal
bird-view control for CAVs in multi-lane road

scenarios. This system can assist CAVs to
tackle complex traffic scenarios and crossing
traffic.

Wang, Hou and Wang
Computer-Aided Civil and
Infrastructure
Engineering, 2020

356

(Vehicle)
control

Mixed traffic, velocity, V21,
traffic density

Model Predictive Control is applied to control
AVs in intersection scenarios under mixed
traffic circumstances.

Mihaly et al.
IFAC PapaersOnline
(Conference Paper
Archive), 2021

357

(Vehicle)
control

Driving style, traffic
environment, trajectory
planning, trust, algorithms,
traffic environment,
obstacles, Al, speed, vehicle
kinematic, other road users,
number of lanes, driving
behaviour, reaction time

It is discussed that AVs must adapt to human
driving styles and characteristics of human
driver to develop trust in automation and
encourage user acceptance. This work
suggested an algorithm for trajectory
planning/tracking and ultimately optimised
control of AVs.

Lietal
IEEE Access, 2021

358

(Vehicle)
control

Stabilisation, path tracking,
obstacles, trajectory
following algorithms,
vehicle dynamics, system
integration, road conditions,
road geometry, velocity,
vehicle state, sensors, radar,
cameras

Vehicle stabilisation plays a crucial role for
AVs in emergency scenarios. This study
proposes a novel control structure that
integrates path tracking, vehicle stabilisation,
and collision avoidance to mediate among
them in case of conflicting objectives by
assigning the highest priority to collision
avoidance.

Funke et al.
IEEE Transactions on
Control System
Technology, 2017

359

(Vehicle)
control

Algorithms, V2I,
cybersecurity, road type,
obstacles, other road users,
weather conditions, road
infrastructure, cameras,
velocity, time of day, GPS,
lighting conditions, sensor
characteristics, radar, time
to collision

This paper reports the current state of AVs in

Russia. It scrutinises possible road situations

that AVs may encounter and must respond to
them while avoiding collisions.

Ivanov et al.
IOP Conf. Series:
Materials Science and
Engineering, 2019

360

(Vehicle)
control

Sensing/perceiving,
planning, traffic law, other
road users, road conditions,
weather conditions, unsafe

speed, driving style, LIDAR,
V2I, V2V, reaction time,
lighting conditions,
visibility, road design,
roadway geometry,
hardware reliability, road
infrastructure

This study pinpoints the causal chain of
vehicle accidents and discusses what
humanlike errors AVs must avoid for safety.
Those factors are categorised into four groups:
1) sensing and perceiving surrounding
environment; 2) predicting; 3) planning; and
4) executing plans.

Mueller, Cicchino and
Zuby
Journal of Safety
Research, 2020

361

(Vehicle)
control

Reinforcement learning,
algorithms, control policy,
trajectory planning, number
of lanes, velocity

Reinforcement learning can be used to
improve efficiency and reduce failures in AD.
The outcome is control policy that can
increase efficiency and safety for AVs.

Ma, Driggs-Campbell and
Kochenderfer
IEEE Intelligent Vehicles
Symposium (IV), 2018

362

(Vehicle)
control

Motion planning,
perception, obstacles, rout
planning, radar, LiDAR,
GPS, sensors, vehicle
dynamics, kinematic
constraints, path planning,
obstacles, algorithms,
trajectory planning, other
road users

Robust execution of safety-critical tasks such
as motion planning are key to the safe
performance of AVs in dynamic environments
shared with other traffic participants. This
work surveys the state of planning and control
algorithms by the time it was prepared (i.e.,
2016).

Paden et al.
IEEE Transactions on
Intelligent Vehicles, 2016

363

(Vehicle)
control

Sensors, obstacles,
actuators, mission planning,
path planning, localisation,

reaction time, lighting
conditions, kinematic state,
perception, motion planning,
speed, hardware, system
integration, trajectory
generation, behaviour
generation

This paper adopted neural models and
biologically inspired approach to develop a
control architecture for autonomous vehicles

(both ground and aerial).

Vaidyanathan et al.
Journal of Systems and
Control Engineering, 2011
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364

(Unsafe) speed

, time of day, lighting
condition, road conditions,
weather conditions,
algorithms, traffic
environment, other traffic
participants, control,
sensors, kinetic energy,
traffic control infrastructure,
road configuration, lane
type, V2X, risk perception,
traffic complexity, time of
day, information fusion,
compliance with traffic rules

This paper tires to develop a ‘crash injury
severity prediction’ model for autonomous
decision-making under emergency situation.
14 variables including lighting conditions are
selected as the impact indicators.

Liao et al.
Electronics, 2018

365

(Unsafe) speed

Road geometry, motion
planning, vehicle kinematic
state, motion control,
actuators, vehicle dynamics,
weather conditions, road
conditions, sensors, path
planning, algorithmic
failures, hardware reliability

This paper presents the theory and algorithms
to formulate and test a concept for a future
Automated Emergency Comering (AEC)
system. The simulation for this concept was
performed in CarMaker software package. The
developed Automated Emergency Cornering
(AEC) system utilises a digital map and
vehicle kinematic data to trigger and update
the motion reference. It further receives
friction estimation to operate in a near-optimal
way.

Gao and Gordon
IEEE Transactions on
Vehicular Technology,
2019

366

(Unsafe) speed

Risk perception, road type,
road design, traffic density,
road layout, weather
conditions, traffic
composition, road
infrastructure, other road
users, road geometry,
visibility, traffic conditions,
compliance with traffic law

This study tested three hypotheses to evaluate
the relationship between driver risk
perception, compliance with speed limits and
speed limit credibility. An automated driving
car simulator was used to rate risk perception.

Yao et al.
Transportation Research
Part F, 2019

367

(Unsafe) speed

Obstacles, traffic conditions,
motion planning, trajectory
planning, path planning,
road geometry, kinematic
constraints, other road users

This paper aimed to address the optimisation
problem for dynamic obstacles avoidance with
smoothness, risk and efficiency variables.
That problem was transformed into a path
searching problem to avoid collision and build
an efficient speed portfolio.

Duetal.
International Journal of
Systems Science, 2020

368

(Unsafe) speed

Other road users, time of the
day, weather conditions,
traffic load, driving
behaviour, road traffic law
enforcement

This article argues that setting ‘mandatory
speed alerts” has moral justification. ‘techno-
regulation’ is also discussed. “Techno-
regulation exploits technology and technical
capabilities of a system to regulate and
challenge an agent’s conducts.

Smids
Journal of Applied
Philosophy, 2018

369

(Unsafe) speed

Control, sensor, cameras,
other road users

“The article focuses on a preliminary National
Transportation Safety Board (NTSB) report
regarding the fatal crash involving Tesla in

self-driving mode in July 2016, which says the
car was traveling 9mph over the posted 65

mph speed limit”.

Jaillet
Commercial Carrier
Journal, 2016

370

(Unsafe) speed

Algorithm, control, traffic
flow, weather conditions,
traffic and road conditions,
obstacles, V2V, V2I, traffic
control infrastructure,
reaction time

A Variable Speed Limit (VSL) control
algorithm is developed for AVs. This
framework focuses on individual driver
behaviour and uses a multi-objective
optimisation function to find an optimum
between mobility, safety and sustainability.

Khondaker and Kattan
Transportation Research
Part C, 2015

371

(Unsafe) speed

Traffic flow/density,
algorithms, time of day,
kinematic state, traffic
conditions, reaction time,
road conditions, weather
conditions

This study is concerned with the relationship
between traffic density, speed and likelihood
of crash on freeways.

Kononov et al.
Transportation Research
Record: Journal of the
Transportation Research
Board, 2012

372

(Unsafe) speed

Fatigue, poor visibility, time
to collision, weather
conditions, traffic
composition, algorithms,
traffic conditions, dilemma
zone, traffic volume, road
geometry, time of day,
number of lanes, secondary
tasks, human factors, road
conditions, reaction time

A simulation study was run to evaluate the
impact of AVs on unsignalized crossroads.
Two crossroads in Tehran were chosen for this
purpose. Vissim software package was used to
simulate the probability of collision against
AV penetration rate.

Khashayarfard and Nassiri
Journal of Advanced
Transportation, 2021
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373

(Unsafe) speed

Number of lanes,
transportation infrastructure,
lateral and longitudinal
control, roadway
infrastructure, traffic
density, visibility, road
conditions, traffic
composition, environmental
perception, cameras, radar,
LiDAR, GPS, image
processing, algorithms, road
configuration, actuators,
obstacles, path planning,
vehicle dynamics, traffic
conditions, human factors,
road geometry, weather
conditions

Designating an exclusive lane to AVs has
been the topic of several studies. This paper
scrutinised implications of including a narrow
and reversible AV-exclusive lane to
expressways. For this purpose, the I-15
expressway in San Diego was chosen. Among
the primary collision factors used in this study,
unsafe speed had the highest frequency.
Besides, improper turning and unsafe lane
change were the main causes of collisions.

Ghanipoor Machiani et al.
Journal of Advanced
Transportation, 2021

374

(Unsafe) speed

Driving infrastructure,
control, other traffic
participants, machine
learning algorithms, V2V,
sensor, lighting conditions,
weather conditions,
obstacles, road conditions,
traffic law enforcement,
traffic density, driving
behaviour

Unwillingness of auto makers to share
automation data can lead to unsafe decisions
and ultimately accidents. This article is
concerned with data sharing (including
disengagements and failures) of self-driving
vehicles. NHTSA has made event data records
mandatory for conventional vehicles. Black
boxes can capture fifteen data elements
including speed.

Krompier
Journal of Law,
Technology & Policy,
2017

375

(Unsafe) speed

Other road users, obstacles,
reaction time, software,
situation awareness, Sensors,
traffic congestion, roadway
type, traffic rules, road
conditions, visibility,
roadway infrastructure, V2I,
mapping system, traffic
control infrastructure,
lighting conditions,
construction zones, roadway
design

One of the major variables affecting the
likelihood and severity of accidents is vehicle
velocity, which directly determines the
amount of kinetic energy asserted during a
collision. This article highlights the necessity
for regulating speed in highly autonomous
driving.

Leshner, Boyd and
Grossman
Institute of Transportation
and Engineers (ITE
Journal), 2020

376

Time of day

Algorithms, deep learning,
lighting conditions,
visibility, cameras, weather
conditions, other traffic
participants, perception,
visual perception

Darkness considerable affects the quality and
images of roads obtained by visual cameras
mounted on CAVs. This can undermine safety
of CAVs. To mitigate this risk, a light
enhancement net (LE-net) is developed which
utilises convolutional neural network.

Lietal
Knowledge-Based
Systems, 2021

377

Time of day

Human factors, Al, route
planning, roadway
conditions, other road users,
weather and light
conditions, road type,
reaction time, LiDAR,
machine learning
algorithms, visibility, traffic
density

This paper examines the influencing factors of
injury outcomes involving AVs based on field
test data. The data were obtained from the
reports of traffic accidents involving AVs in
California.

Yeetal.
Injury Prevention (BMJ
Joumals), 2021

378

Time of day

Road conditions, weather
conditions, speed, lighting
conditions, sensors, road
type, software, cyber-
attacks, fatigue, driving
style, V2I, V2V, GPS,
construction zones, reaction
time, other road users, road
geometry, traffic rule
enforcement, traffic
conditions

The causes and factors which can contribute to
the accident of semi-autonomous vehicles are
identified and used to develop a BBN model

to assess pertinent risks.

Sheehan et al.
Transportation Research
Part C: Emerging
Technologies, 2017

379

Time of day

Sensors, software, traffic
control infrastructure,
weather conditions,
algorithms, traffic
participants, LiIDAR, traffic
conditions, road conditions,
cameras, driving behaviour,
reaction time, lighting
conditions, traffic density,
traffic rules, path planning,
vehicle dynamics, kinematic
state, vehicle control,
driving culture, perception,
hardware, sensor fusion,

speed, number of lanes

AutonoVi-Sim is a simulation platform and is
suggested for testing the performance of
autonomous driving under varying weather
conditions and time of day to generate robust
data in complex traffic scenarios. There are
two variables used to define the environment:
time of day and weather conditions.

Best et al.
Proceedings of the IEEE
Conference on Computer

Vision and Pattern
Recognition, 2018
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Niemirepo et al.
Weather conditions, traffic | This paper presents an open-source simulation IEEE International
conditions, other road users, | environment for 360-degree traffic imaging. | Conference on Connected
380 Time of day sensors, road infrastructure, | The implemented features include self-driving Vehicles and Expo &
V2X, lighting conditions, | vehicles, pedestrians, various weather effects, IEEE Vehicular
traffic rules, and different time of day lightings. Networking Conference
(VNQC), 2019
This work analyses the accident reports
involving AVs in California which were filed
by five manufacturers from September 2014 to
March 2017. Various factors and causes of
Road type, other road users, . . . .
. accidents in addition to the severity of these R
81 Time of day road configuration, road accidents are examined. The analyses revealed Favard et al.
3 infrastructure, reaction time, R X . . PLoS ONE, 2017
. important information on AV accidents
trust, Al algorithms . .
dynamics including the most recurrent type of
accidents, the break-down of damages
locations and impact forces, and calculated
accident frequencies.
work zone safety is a critical aspect for state
agencies and traffic engineers. To evaluate the
impacts of various variables on the injury
Static obstacles, road severity of crashes in different time periods of
configuration, road a day, this study a total of 10,218 crashes that .
. S . Al-Bdairi
. infrastructure, weather occurred in highway work zones in the state of
382 | Time of day b ; . Journal of Safety
conditions, speed, human | Washington for the period between 2007 and Research. 2020
factors, road type, other road | 2013 were used. Time of day is disaggregated ?
users, road conditions into four subgroups: 6-11 am, 12-5 pm, 6-11
pm and 12-5 am. The results show variations
in the indicators of injury severity and some of
variables.
This embodiment is related to autonomous and
Weather conditions, road seml—autonompus vehicles functlonahty and
. can enable risk assessment and premium
type, V2V, V21, pedestrian, ination f hicle i lici
8 Time of day raffic congestion determmatlon or vehicle insurance policies Konrardy et al.
393 L L for vehicles which benefit from autonomous Google Patents, 2017
communication, lighting . .
conditions, day of week _ operatlon features. A series of factors
? including time of day are deemed to be related
to insurance risks.
In this patent, a method is disclosed for
mitigating the risks associated with operating
. an autonomous or semi-autonomous vehicle
Speed limit, weather .
- L by evaluating computed route traversal values
8 Time of da conditions, lighting to select less risky travel routes and/or modify Slusar
304 y conditions, road . Y . Google Patents, 2017
. vehicle operation. Various approaches to
configuration, day of week L . L
achieving this risk mitigation are presented.
Among influential factors, time of day is
counted.
Path planning, algorithms,
handover, road type, road
configuration, weather This study devised a risk-aware path planning
conditions, speed limit, methodology for AVs based on telematics
. . . . Ryan, Murphy and
spatial frequency, hardware, behavioural data. Multiple risk factors Mullins
38 5| Time of day software, other road users, including time of day and day of week are .
. . . . . Transportation Research
road infrastructure, HMI, identified. A correlation between spatial Part A. 2020
cybersecurity, GPS, Al, frequency of events and accident frequency is ?
sensors, traffic congestion, demonstrated too.
day of week, public
perception
A Bayesian network is developed to assess the
Weather conditions, lighting severity of accidents for AVs and semi-
conditions, road conditions, autonomous vehicles using the naturalistic van Wyk, Khojandi and
road configuration, driving data gathering approach. 16 variables Masoud
386 Time of day visibility, communication, | contributing to the severity of car crashes are Proceedings of SAI
V2V, V2I, day of week, | identified and incorporated into the BN model. Intelligent Systems
speed, road type, GPS, road The data was extracted from the Michigan Conference, 2019
infrastructure, sensors Traffic Crash Facts (MTCF) website
for the year 2016.
This article discusses the ‘emerging risks’
associated with new technology in the domain
of insurance. UAVs and self-driving cars are
. examples of these technologies. This paper
387 Time of day Speed, type (.)f road, reaction refers to ‘telematics’ to monitor the behaviour . Barlovy
time, . . . Claims Magazine, 2016
of drivers and other characteristics including
‘time of day’ and combine them with
traditional rating factors to rate drivers and
vehicles.
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388

Traffic
conditions
(complexity)

Autonomy level, situation
awareness, secondary tasks,
vehicle design, driving style,
other road users, training &

experience, traffic density,

longitudinal and lateral
acceleration, control, take-
over, number of lanes,
fatigue

This study focuses on the behaviour of drivers
experiencing high vehicle automation in
different traffic conditions (e.g., light/heavy
traffic). The aim of this paper was to provide
insight for vehicle designers in balancing the
control and supervisory tasks between the
vehicle and human drivers. The results suggest
that in light traffic, higher grades of
automation increase safety margins associated
with car following. In heavy traffic those
margins were reduced to those measured in
manual driving mode.

Jamson et al.
Transportation Research
Part C, 2013

389

Traffic
conditions
(complexity)

Speed, road geometry,
traffic congestion, route
planning, algorithms

This paper aimed to address the problem of
optimising the routes and the speeds of
autonomous lorries making deliveries under
uncertain traffic conditions. several factors
including speed and traffic conditions are
identified to have impact on the collision risks.

Nasri, Bektas and Laporte
Computers and Operations
Research, 2018

390

Traffic
conditions
(complexity)

V2V, V2I, V2X, traffic
control infrastructure, other
traffic participants, traffic
culture, LiDAR, sensors,
radar, visual cameras, sonar,
sensor fusion, VANET,
algorithms, ML, HD maps,
control systems

This paper investigates the necessary
technologies required to facilitate and realise
AD in cities. It is believed that communication
between vehicles (V2V) can prevent collisions
and provide warnings of problematic traffic
conditions.

Seif and Hu
Engineering, 2016

391

Traffic
conditions
(complexity)

Time-to-collision, vehicle
configuration, vehicle
control, traffic congestion,
GPS, radar, sensors, type of
road, weather conditions,
lighting conditions, velocity,
other road users, kinematic
state, traffic violation

The capability of AVs to handle complex
traffic environments and avoid collision is the
focus of considerable public concern. This
paper focuses on cut-in scenarios with time-
to-collision less than three seconds. 200 cut-in
events were extracted from Shanghai
Naturalistic Driving Study data, and the
corresponding scenario characteristics for each
event was transferred into a simulation
platform. The Responsibility-Sensitive Safety
(RSS) model demonstrated promising
performance.

Liu et al.
Transportation Research
Part C, 2021

392

Traffic
conditions
(complexity)

Environmental factors, road
conditions, technological
factors, other traffic
participants, HMI, control,
experience

This paper argues that driving/using a self-
driving car involves risks and one can
question the behaviour, intelligence, autonomy
and ‘thinking” of the car when facing various
traffic scenarios. The focus here is on ethics
and responsibility dilemmas of replacing
human drivers with machines.

Coeckelbergh
Applied Artificial
Intelligence, 2016

393

Traffic
conditions
(complexity)

Traffic composition, traffic
density, reaction time,
weather conditions,
kinematic state, road type,
road conditions, road
topology, sensors, behaviour
generating, control,
algorithms

AVs need to generate behaviours adapting
themselves to the traffic conditions, as well as
the weather conditions and road type, in a
safely way and efficient and mixed traffic
scenarios. This work demonstrates the
applicability of a reconfigurable vehicle
controller agent for AVs that adapts the
parameters of a used car-following model at
runtime, to maintain a high degree of traffic
quality (efficiency and safety) under dissimilar
weather conditions.

Horcas et al.
Journal of Software:
Evolution and Process,
2017

394

Traffic
conditions

(complexity)

Speed, road type, obstacles,
perception, sensors,
manoeuvre planning, traffic
density, other road users,
road geometry, traffic rules,
V2V, V2I, weather and
visibility conditions,
LiDAR, cameras, time of
the day, lighting conditions,
day of the week, traffic
composition, path/trajectory
planning, behaviour
generating, vehicle
kinematics, number of lanes,
road infrastructure,
algorithms, cybersecurity,
time to collision

In the traffic engineering, a collision can be
predicted in real-time based on current data on
traffic dynamics such as the average speed and

flow of vehicles on a road segment. This
thesis aimed to integrate vehicle-level
collision prediction approaches for AVs with
network-level collision prediction in the
context of traffic engineering.

Katrakazas
PhD thesis, 2017
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One of the solutions for improving safety in
. mixed traffic scenarios is designating a
Traffic dens'1 ty, speed, separate lane to AVs. In this research, AVs’ .
traffic behaviour, traffic . . . Vander Laan and Farokhi
o . behaviour is modelled at the macroscopic .
Traffic composition, vehicle level by modifying the fundamental diagram Sadabadi
395 conditions density, traffic flow, number Yy e ag International Journal of
. . relating hourly traffic flow and vehicle . .
(complexity) of lanes, V2V, collision . P s Transportation Science
. L density, a step that is justified by adjusting a
avoidance, reaction time, f T foliowi 1 and Technology, 2017
traffic control infrastructure parameter from Ngwe S car-loTlowing mode
at the microscopic level and reversing to a
macroscopic analysis.
Sensors;ac(?;?eithLlDAR’ This chapter (Probabilistic Vehicle Motion
comet /’ tonolo Modeling and Risk Estimation) develops a
Traffic obs é cles tirr}llle 5) coﬁ}i/éion layered approach to model behaviours of Tay, Mekhnacha and
6 conditions number 0’ £ lanes. visibilit | wvehicles under normal traffic conditions and Laugier
39 (complexity) communic,a tion Y, estimate the risk of collision. The estimated Handbook of intelligent
P infrastructure. speed risk of collision can be further used to assist vehicles, 2012
Kinematic s tate’ cZn tr(;l an AV in planning a suitable trajectory to
raffic composition minimise its risks.
There have been several real-time safety
Road geometry, speed, studies investigating the idea that the segment
weather conditions, conditions, including traffic, geometric, and
Traffic vehicle’s trajectory, time to | weather affect the occurrence of an accident. Wang et al.
397 conditions collision, traffic control The occurrence of a collision can be due to the | Transportation Research
(complexity) infrastructure, traffic upstream traffic conditions where and when Part C, 2019
density, control, road type, the vehicle travels from. On that basis, a
communication quasi-vehicle-trajectory-based real-time crash
analysis was conducted in this study.
Traffic scenes have their own unique
complexity and dynamics. Therefore, if a self-
driving vehicle is expected to achieve fully
. autonomous driving in a complex traffic
rS;;;rorrs(;;:;Di%ectamigﬁi scene, it must have the ability to learn and
ir; frast rugc ture rz;h make predictions. Autonomous vehicles face
Traffic lannine. motion ? ll)annin many different scenes and road conditions, Chen et al.
8 conditions p beha\%i’our enel:a tion & such as high-speed scenes, low-speed urban SCIENCE CHINA
39 (complexity) longitu dina%an d laterzil roads, and unstructured roads. this study Information Sciences,
P cont%ol road conditions deeply discusses some basic scientific issues 2019
obs tacle; other road use;s of the self-driving approach based on
weathe; conditions. Al > | cognitive construction, as well as the methods,
? computing models and technical routes to
solve adaptability to complex situations of
self-driving
system.
The dynamic of the traffic flow contributes to
the complexity of traffic scenes. This further
Traffic density, traffic gives rise to the number of crashes. This paper
control, road infrastructure, | examined the link between traffic complexity
road geometry, weather and collision risk (number of crashes) under .
Traffic conditions, traffic control urban motorway conditions. It was expected Zurhnd(e}r;,fgle;ruah and
399 conditions infrastructure, reaction time, | that linking the number of events (exposure) Journal of Roaﬁ Safety
(complexity) speed, driving behaviour, such as ‘harsh lane change to crash numbers 2020 ’
static obstacles, other road | can provide more insights into the relationship
users, number of lanes, road | between causation and effect. The concepts
conditions developed for urban motorways but can also
be applicable to other high-volume multi
carriageway roads.
Comprehensive traffic data scenario is often
Road type, algorithms, other necessary to evaluate the performance of
road users, road geometry, unmanned ground vehicles (UGVs) and
Traffic weather conditions, measure the scene complexity. This study Wang et al.
00 conditions obstacles, Li , roa eveloped a traffic sensory data classification ntelligent Vehicles
diti bstacles, LIDAR, road developed ffi ry data classificat: IEEE Intelligent Vehicl
(complexity) conditions, lighting paradigm based on quantifying the scenario Symposium, 2018
conditions, sensors, complexity for every segment of roads. This
cameras, speed quantification is based on road semantic
complexity and traffic element complexity.
Control. kinematic state This paper proposed a ‘cooperative control’
i L approach for AVs to safely perform Lo
traffic rules, path planning, . S Mohseni, Frisk and
Traffic obstacles. actuators manoeuvres in complex traffic situations such Niclsen
401 conditions ? i as lane changing or crossing road .
. cameras, LiIDAR, radar, . . . . IEEE Transactions on
(complexity) intersections. This model is based on a cost . .
speed, other traffic . .. . N Intelligent Vehicles, 2021
articinants function and collision avoidance objective for
P P various traffic scenarios.
Road type, other road users, | This study adopted scenario-based testing for
algorithms, number of lanes, the validation and verification of CAVs.
Traffic speed limits, time-to- 189,752 scenarios including various collision Yue et al
02 conditions collision, static an namic | scenarios were simulated for this purpose. To '
4 diti 1l t d dy lated for this purp T IEEE Open Access, 2020
(complexity) objects, traffic volume, evaluate the risks faced by CAVs in different P ’
mixed traffic, path planning, traffic situations, a new criticality metric
environment perception (Scenario Risk Index) was defined.
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Algorithms, machine
learning, cybersecurity,
other traffic participants,
motion planning, perception,

In this work, a “fully model-based multi-
modal parallelizable” is developed to analyse
and evaluate the criticality of the complex

o3 comtons | i e | s shendof ¥ Ths i o |1 ion Vot
(complexity) ’ al g gorithm €an Nelude road INIrastruclure | =g 0 06iim (1vy, 2019
traffic composition, road and mobile objects. This algorithm is capable
infrastructure, time-to- of handling a traffic scenario with 11 objects
collision, hardware, sensors, | (over 86 million pose combinations) in 21 ms.
velocity
Crossroads are a complex traffic situation for
Situation awareness, autonomous vehicles. This paper proposed a Annell, Gratner and
Traffic velocity, perception system with two functionalities. First, it is Svensson
. algorithms, V2I, V2V, capable of predicting the motion of a IEEE 19th International
404 conditions kinematic state, road surrounding vehicle in general traffic Conference on Intelligent
(complexity) e I g .© 10 gene . . 8
geometry, sensors, trajectory | situation, and second, is its ability to estimate | Transportation Systems
planning the probability of a collision given the current (ITSC), 2016
ego trajectory.
Other traffic participants, | AVs should inevitably interact with other road
algorithms, dynamic users such as pedestrians while traveling in
Traffic obstacles, control, trajectory | complex traffic environments. All potential Zhang et al.
405 conditions planning, radar, cameras, collisions must be avoided during the Journal of Intelligent &
(complexity) lighting conditions, speed, | interactive process to ensure the safety. This Fuzzy Systems, 2018
sensors, LIDAR, motion paper analysed the active obstacle collision
state avoidance algorithm.
Time-to-collision, vehicle An anti-collision strategy based on hazard
dynamics, algorithms, cognition is proposed to enable AVs safely
Traffic sensors, road type, sensor pas'sing through. intersections while interact'ing Jia et al.
o fusion, V2V, V21, control, with other vehicles. The algorithm was built . .
406 conditions obstacles, kinematic state and simulation was performed in Chines Automation
(complexity) § i Lo pe . Congress (CAC), 2019
GPS, other road users, road | MATLAB/Simulink. The simulation results
parameters, trajectory have shown that the algorithm is reliable
planning, speed enough to prevent collisions.
This study maintains that without a deeper
Perceived risk, training understanding of the nature and structure of
g ? traffic safety culture, discussions regarding Edwards et al.
Traffic (safety) traffic law enforcement, . .
407 culture speed, population density changes to traffic safety culFur@ are restricted. | Transportation Research
’sa fety culture ’ The authors attach a high significance to the Part F, 2014
‘traffic safety culture’ and its impact on traffic
safety.
It is asserted that traffic safety culture stems
from a country’s cultural norms and values.
This work investigates how culture influences
traffic safety standards in three countries (i.e.,
Japan, China and US) with very different
Traffic rules enforcement, | traffic safety outcomes. The results show that .
speed, other road users, due to a large population and intense Atchley, Shi and
8 Tratfic (safety) erceived risk, training and | competition the risk acceptance is higher. In Yamamoto
40 culture P . i s P P gher. Transportation Research
experience, road and traffic the US, the personal freedom culture Part F. 2014
control infrastructure adversely affects the safety culture and law ’
enforcement, whereas Japan which leans
towards limiting drivers’ freedom for the sake
of safety. These may explain the significant
difference between fatality rates in these
countries.
The purpose of the study was to examine the
country cluster differences, based on the
Culture’s Consequences framework, in road
L traffic risk perception, attitudes towards traffic | Nordfjeern, Simsekoglu
Speed, rule violation, . .
o Traffic (safety) erceived risk. traffic rulcs safety'and driver 'behav1our among §ampl§s 'and Rundm(?
409 culture p f i " from eight countries: Norway, Russia, India, Accident Analysis and
entorcement Ghana, Tanzania, Uganda, Turkey and Iran. Prevention, 2014
This paper concluded that cultural factors are
strong predictors of driver behaviour which
can affect accident risks.
This study draws attention to driving style as a
very important indicator and a crucial
measurement of a driver’s performance and
ability to drive in a safe and protective
manner. It also suggests that a driving style
recognition module can be incorporated into
Traffic (safety) Speed, traffic c_omplexity, AYS, which i_nt_egrates diffc_arent modules to ' Ya_n etal.
410 culture traffic density, road improve driving automation, safety and Frontiers in Psychology,
characteristics comfort, and then the driving safety can be 2019

increased by pre-warning the drivers or
adjusting the vehicle’s controlling parameters
when the dangerous driving style is
recognised. Driving styles are categorised into
three types: Aggressive type, Moderate type,
and Conservative type.
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411

Traffic(safety)
culture

Risk perception, speed,
demographics

The aim of this paper is to enhance the
understanding of how attitudes, beliefs, and
values toward driving behaviour affect
different subgroups of a population in
adopting driving styles. This was used as a
base to assess the ‘traffic safety culture’
among different class of drivers (e.g., low risk
or high risk).

Coogan et al.
Transportation Research
Part F, 2014

412

Traffic (safety)
culture

Traffic rules, public
perception,

This study is focused on ethical dilemmas of
AVs to set the foundations of an ethics test
for them. The authors suggest that daily
driving scenarios can inspire “edge-case”
common sense testing of AVs, both in
simulation and real road tests that can assess
how the software behaves in a series of
expected and unexpected driving situations
that are not typically encountered during a
standard test, but that may eventually arise on
real roads. Besides traffic rules, the authors
recommend incorporating idiosyncrasies of
the local driving culture to improve the setup
of driverless dilemmas to increase their
realism and relevance to actual AVs.

De Freitas et al.
Proceedings of the
National Academy of
Sciences, 2021

413

Traffic (safety)
culture

Risk perception, experience
and training, secondary
tasks, drowsiness, road

design, traffic rules
enforcement, demographics,
speed

It is important and practical to understand
risky behavioural habits among sub-cultures
and thereby focussing on groups of drivers
instead of individuals, because groups are
easier to approach and drivers within sub-
cultures are found to influence each other.
This paper investigated the driving behaviours
based on drivers’ sub-cultural backgrounds in
Qatar. Results suggest that acceptance of
speeding is highest among the young Arabic
students and acceptance of distraction and
drivers’ negligence such as using phone and
not wearing a seatbelt is highest among male
Arab drivers. Acceptance of extreme risk-
taking like intoxicated driving and red-light
running is highest among South-Asian
business drivers.

Timmermans et al.
Journal of Safety
Research, 2020

414

Traffic (safety)
culture

Perceived risk,
demographics, situation
awareness, other road users,
traffic rule enforcement,
secondary task, driving style

This paper validates traffic safety climate
attitudes based on a representative sample of
road users of all travel modes. Traffic safety

climate is defined as “the road users’ (e.g.

drivers’) attitudes and perceptions of the
traffic in a context (e.g., country) at a given

point in time”. Further, traffic safety culture is
defined as “‘the sum of all factors that affect
skills, attitudes, and behaviours of drivers as
well as vehicles and infrastructure”’.

Gehlert, Hagemeister and
Ozkan
Transportation Research
Part F, 2014

415

Traffic (safety)
culture

Speed, secondary task,
demographics, perceived
risk, road design, training

and experiment, traffic rules
enforcement, other road
users, drowsiness, impaired
driving

This study analysed the results of a survey to
test the correlations between
sociodemographic factors which risk
perception and other constructs shaping the
traffic safety culture of road users. It was
found that country-specific culture might not
have a strong association with risk perception;
however, culture is associated with risk
behaviour and therefore a valid predictor of
traffic safety.

Tazul Islam, Thue and
Grekul
Transportation Research
Record: Journal of the
Transportation Research
Board, 2017

416

Traffic (safety)
culture

Traffic composition, time-
to-collision, speed, reaction
time, control, algorithms,
vehicles’ kinematics,
headway distance, hardware,
traffic conditions, weather
conditions, roadway type,
acceleration, driving
volatility

This paper aimed to quantify uncertainties in
the interaction of HDVs and AVs in mixed

traffic and measure main impacts of AVs on

conventional vehicles as well as their drivers’

behaviours. On average, a driver that follows
an AV recorded lower driving volatility in
terms of speed and acceleration. This can

result in a more stable traffic flow behaviour

and lower collision risk.

Mahdinia ef al.
Accident Analysis and
Prevention, 2021

417

Traffic (safety)
culture

Weather/road conditions,
other traffic participants,
traffic conditions,
kinematics, reaction time,
perception, motion planning,
path planning, speed,
behaviour generation,
algorithms, controllers,
number of lanes, obstacles,

V2v

A decision-making algorithm is suggested to
assess the risks of colliding with surrounding
traffic participants for AVs. The findings
advocate that the proposed method is
sufficiently reliable for AVs to avoid
collisions in multi-scenarios with different
driving style preferences (i.e., aggressive,
moderate, and conservative).

Lietal
Transportation Research
Part C, 2021
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Traffic laws, traffic
conditions, traffic density,
obstacles, reaction time,

For AVs to obey the traffic laws, objective
measurements of safe and cautious behaviour
in normal driving conditions are essential.
This study put forward the conception,
implementation and primary testing of an

Schonera et al.

418 Trafic (safety) Oth?r trafﬁc participants, objective scoring algorithm that matches Traffic Injury Prevention,
culture kinematic state, path L L.
. ; safety indices to observed driving style, and 2021
planning, algorithms, .
o accumulates them to provide an overall safety
weather conditions, road . L . R
conditions, perceived risk score for a given driving session. This method
? can be applied to AVs’ behaviour in real
traffic.
lateral and longitudinal
control, algorithms, This paper developed a ‘deep deterministic
reinforcement learning, policy gradient (DDPG) algorithm’ to
velocity, traffic flow, traffic | coordinate the lateral and longitudinal control
conditions, traffic density, of AVs in complex traffic scenes. For
1 Traffic (safety) environmental factors, avoiding collisions and allowing different Hu et al.
419 culture sensors, GPS, cameras, expected lane-changing distances that Sensors, 2020
LiDAR, radar, perception represent different driving styles are
accuracy, kinematic state, considered for security, and the angular
road geometry, weather velocity of the steering wheel and jerk are
conditions, number of lane, considered for comfort.
other traffic participants
This study focuses on the effects of trust (as a
fundamental factor in human-automation .
interaction) in AV technology. Three Liuetal
Trust & £y International Journal of
420 . HMI acceptance measures (general acceptance,
Reliance . . . Human—-Computer
behavioural intention, and WTP) and two Interaction. 2019
vehicle automation levels (HAV and FAV) ’
were considered.
Thlg paper emphasme; the' 1mp0rtfince of trust Hengstler, Enkel and
. in human-automation interactions and .
Trust & H-M Interface, experience . . . . Duelli
421 . . . relations especially in applied AL Trust : .
Reliance & tech literacy, algorithms, A - . L Technological Forecasting
provides a valid foundation for describing the .
. . . and Social Change, 2016
relationship between humans and automation.
The attitude structure of public towards the
Trust & AVs is measured in three dimensions (i.e. Liu and Xu
422 Reliance experience & tech literacy cognitive, affective, and behavioural Technological Forecasting
components) before and after direct and Social Change, 2020
experience.
This paper argues that successful achievement
of fully/highly automated driving hinges upon
Trust & Training, pedestrians, other demonst‘ra‘tlng and resolv1qg the trust issues. Wintersberger and Riener
423 . road users, HMI, H-M Training of the potential users (and .
Reliance . . . i-com, 2016
Interface, interactors) to acquaint them with system
boundaries and limitation plays a crucial role
in safe operation of safety-critical systems.
This artlcl'e argues t.hat tmst is essential to Hengstler, Enkel and
decreasing perceived risk. In Al-based .
Trust & L . . . Duelli
424 . Control, communication, technologies, perceived risk further stems . .
Reliance . . Technological Forecasting
from the delegation of control to a machine .
. . and Social Change, 2016
and its control mechanisms.
The authors see trust as a core concept in
Trust & human machine interaction as well as human- | Liu, Wang and Vincent
425 Reliance HMLI, public attitude automation interaction in advanced Journal of Experimental
technologies. The results show that trust and Psychology: Applied
risk acceptance are correlated.
This study maintains that trust in autonomous Rodel et ?l'
. . . . 6th International
vehicles is especially important, because f
Trust & driving is a risky task and may result in fatal Conference on
426 N HMI, control . Automotive User
Reliance consequences. Therefore, in order to ensure a .
. . . Interfaces and Interactive
desirable interaction between the technology . Ll
Vehicular Applications,
and human.
2014
The results of this study demonstrate that the
Experience, HMI, real-life driving experience improves trust Walker et al.
Trust & . . .
427 . component failure, hardware | calibration in automated cars. This paper also Journal of Advanced
Reliance PR ; k
reliability suggests a strong relation between user Transportation, 2018
(human agent) and system performance.
Situation awareness, This study maintains that Fmst affec_ts the use Sonoda and Wada
28 Trust & dynamic objects, traffic of automated systems. With overreliance (or IEEE Transactions on
4 Reliance ’ over-trust), an interactor’s trust level exceeds

culture

the system capabilities, resulting in risk.

Intelligent Vehicles, 2017
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The concept of “human-autonomy teaming” is
developed in this paper and is linked to the
study of human factors to address the
challenges of interacting with complex and Ho et al
. . i ingl; t 1 Lt e
Trust & HNI, situation awareness, nereasingly autonomous systems. f1s IEEE/AIAA 36th Digital
429 R . maintained that if implemented properly, HAT il
Reliance H-M interfaces . . Avionics Systems
can foster desired teamwork and result in
. . Conference (DASC), 2017
increased trust and reliance on the system,
which in turn will reduce workload, increase
situation awareness, and improve
performance.
A survey was conducted_ to investigate _the Dikmen and Burns
relation between experience and trust in .
L IEEE International
Trust & . . . automated driving systems. Trust was related
430 . Experience, perceived risk oo . Conference on Systems,
Reliance to several attitudinal and behavioural factors, .
. . Man, and Cybernetics
and experience shaped the level of trust in
. (SMCQ), 2017
these technologies.
This study provide evidence that trust is
Trust & Shared goals, information important for the acceptablh‘ty of smart . Verbemg, Ham and
431 R . o systems. Further it shows that ‘shared goal Midden
Reliance sharing, acceptability, L L .
and ‘giving information’ can increase the Human Factors, 2012
trustworthiness of smart systems.
Reaction time, HIMI, .The cpncept of _trust fall” is introduced tq Miller et al.
. . investigate trust in automated systems. This .
training and experience, . ) Proceedings of the Human
Trust & . . o paper concludes that ‘overtrust’ in systems .
432 . perceived risk, situation . . Factors and Ergonomics
Reliance . that are perceived to be safe but still prone to . .
awareness, H-M interface, | . . Society Annual Meeting,
. infrequent and hazardous failures can present
road infrastructure L . 2016
a significant risk.
Reliance, perceived risk, This study shows a strong correlation Ch01 and Ji
Trust & . o . . . . . International Journal of
433 R predictability, functionality, | between, perceived risk, trust and behavioural
Reliance . . . . MO Human-Computer
behavioural intention intention in the context of AVs. .
Interaction, 2015
This study cites the Nissan IDS concept which Zlmmermzfmn and Wettach
- Proceedings of the 9th
shows that human-cantered issues such as .
. . . ACM International
Trust & Urban settings, other road social acceptance, trust in the AV, and the Conference on
434 R users, pedestrians, human- | evocation of emotions are of great importance ;
Reliance . . - . Automotive User
driven cars, communication when people get faced with this new .
: . . Interfaces and Interactive
technology. This further investigates the .
impact of Vehicular
Applications, 2017
The correlation between trust and fully
automated driving (FAD) performance was
tested. The results show that a correlation
exists between trust and reaction time in the
Trust & Training, practice, simple practice group (i.e., higher trust meant Payre, Cestac and
435 Reliance experience, reaction time, a longer reaction time), but not in the Delhomme
over trust, distrust elaborate practice group. This finding Human Factors, 2016
indicated that to mitigate the adverse impact
of overtrust on reaction time, more appropriate
practice and training may be needed for
drivers.
In this article, the role of ‘automation trust’ in
monitoring behaviour of drivers and human-
machine interactions during highly automated
driving is investigated. A consistent
relationship between drivers’ automation trust
and gaze behaviour was reported. Participants
Trust & Environmental conditions, reporting higher automation trust were more Hergeth et al.
436 Reliance experience. HMI likely to monitor the automation less Human Factors and
P ’ frequently. Further analyses showed that Ergonomic Society, 2016
higher automation trust was associated with
lower monitoring frequency of the automation
during (non-driving-related task) NDRTs, and
an increase in trust over the experimental
session was connected with a decrease in
monitoring frequency.
This study emphasises the importance of
‘operator’s trust’ in fielded unmanned systems
and sees this factor as a critical factor Jackson et al.
Trust & HMLI, system design, affecting the success of these systems. It Proceedings of the Human
437 Reliance experience, suggests a framework for assessing operator’s | Factors and Ergonomics
p g8 g op 2
trust based on heuristics such as ‘Visibility of Society, 2016
system capabilities & limitations” and
‘Visibility of current system behaviour’.
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Situation awareness,

This article investigates the importance of
situation awareness (SA) of the driver in
autonomous driving and highlights three

crucial factors affecting SA. These factors are
Attention and Trust, Engagement and

Endsley

438 ;:;::tnf; overreliance, reliability, Workload and Mental Model. It is maintained Engi)rlll?el?iln(;fa(r:l(()igggcl:\i,:ion
training and experience that “... [SA] is affected by the level of trust Makine. 2017
in the automation and the presence of &
competing secondary tasks and which is
mediated by the effectiveness of the vehicle
displays”.
This study focuses on the role of human
Road type, reaction time fac.tors.in disengagements, accidents gnd
weather ct,)n ditions. roa d’ reaction times. It is assert(?d that f‘the ultimate
infrastructure. o the; road success of automated vehicles will depend on o _
Trust & b’ tacl drivers' trust in them [AVs] and on how Dixit, Chand and Nair
439 Reliance con;s;'ircst’i(())n isfleesfigh " people choose to use and interact with them, PLoS ONE, 2016
o o and the ensuing safety risk”. Results show a
conditions, human driven ... . .
vehicles. H-M interface posm.ve corr.elatlon between the cpmul.atlve
? vehicles mile travelled and reaction time
which contributes to drivers’ trust.
The role of anthropomorphism in building and
enhancing trust in autonomous vehicles is Niu, Terken and Eggen
Trust & Technical competence investi_g.ated. Trust is seen as an ‘e_ssential Human Fact_ors_ and
440 Reliance HMI ’ condition’ for accepting and relying on Ergonomics in
? autonomous vehicles and successful use of the | Manufacturing & Service
technology depends on whether people trust it Industries, 2018
or not.
This paper briefly summarises the approaches
Communication, sensors, | that different teams used in the DUC, with the Campbell et al
Trust & s'o'ftware, trafﬁ(; goal of describing some of the challenges that Philosophical Transeic tions
441 Reliance cor'1d1t1<')ns/cult‘ure, inter- ) the teams facefi in drlylng in url?an of the Royal Society A
vehicle interactions, urban | environments. The issue of inter-vehicle trust 2010 >
design, traffic rules in case the traffic rules are breached is
suggested as an avenue for further research.
This study investigates the influence of “Trust
Metrics’ on the employments of Autonomous
Systems in high risk environments and Anderson and Mun
Trust & HMI, experience, tech applications. To test their hypothesis of trust Sixteenth Annual
442 Reliance literacy, reliability in technology, the authors identified constructs |  Acquisition Research
that facilitate measurement of human Symposium, 2019
interaction with the technology. Experience
and knowledge are among these constructs.
The issue of trust in driverless cars is studied
in this work. It is beli that until trust i
establi:heg the Vzlljiileezz(si th;i l(l)te:nti;lllsto ls)e Schacfer ar}d Straub .
Traffic rules, traffic culture, d t'l" d mi d P a1 IEEE International Multi-
Trust & regulations, control, traffic ;lm erutt Lzle ,hr_msl}llse i (;lr even unuseh. n Disciplinary Conference
443 Reliance environment, HMI, situation order to tackle this, the authors suggest the use on Cognitive Methods in
of knowledge about human behaviour and Lo
awareness, H-M Interface . . . Situation Awareness and
the social sciences to design safer systems and Decision Sunnort. 2016
interfaces between these vehicles and the pport,
people using them.
This paper centres on the influential factors
that can affect trust in automated cars. It is
believed that if users have too little trust, they Carlson et al
are less likely to rely on and take full . :
. advantage of the capabilities of the The lnFersectlon OfROb}lSt
Trust & Overtrust, distrust, HMI, technology. On the ofher hand. if users frust Intelligence and Trust in
bbb Reliance situation awareness, gy ¢ other hand, It users trus Autonomous Systems:
the technology too much, they are again less Paners from the AAAI
likely to monitor the system in challenging S P S . 2014
environmental conditions which cause the Pring Sympostum,
systems to operate at the edge of their
capabilities.
This research focuses on the importance of
public opinion on design of H-M Interface. Langdon et al.
Trust & HML. Human-Machine Semi-structured interviews begid;s focps Intemationgl Conference
445 Reliance Inter fac’e conirol. handover | &rOUPs were cqnducted tov gain insights into on Applied Humaq
’ ’ the perception of public on AVs and Factors and Ergonomics,
requirements which needed to be considered 2017
in the design of this technology.
. An acceptance model for semi-autonomous
Trust & HML, over-trust, mistrust, vehiclesrzlevel 3) is developed in this paper. Zhang etal.
446 Reliance perceived risk, reaction “Trust” is specified as a major factor Transportation Research
time, cybersecurity, Part C, 2019

determining HMI.
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447

Trust &
Reliance

HMLI, perceived risk,
training and experience,

This paper hypothesises that “there is a
significant correlation in users’
psychophysiological response when exhibiting
varying levels of trust towards AVs ™. Then it
shows a significant correlation between users’
psychophysiological responses when
exhibiting varying levels of trust towards
AVs’ during interactions.

Ajenaghughrure, da Costa
Sousa and Lamas
13th International

Conference on Human

System Interaction (HSI),

2020

448

Trust &
Reliance

H-M Interface, overtrust,
undertrust, situation
awareness,

This paper outlines the results of a driving
simulator study conducted for the European
CityMobil project. The aim was to investigate
the impacts of FAD and HAD on the drivers’
behaviour. Situation awareness, too much trust
and too little trust are among the expressed
concerns about the interactions between
drivers and highly automated vehicles.

Merat and Jamson
Proceedings of the Fifth
International Driving
Symposium on Human
Factors in Driver
Assessment, Training and
Vehicle Design, 2009

449

Perceived risk

Trust, reliance,
predictability, functionality,
behavioural intention

This paper investigated the importance of trust
in adopting AVs. The authors argue that
‘perceived risk’ is an essential component of a
trust model. Perceived risk is a key
determinant linked to trust, particularly with
regards to the decision to use an automated
device, or not to use it.

Choi and Ji
International Journal of
Human-Computer
Interaction, 2015

450

Perceived risk

Overreliance, situation
awareness, training &
experience, trust, HMI, H-M
interface,

The aim of this study is to discuss human-
factors issues associated with AVs, with a
concentration on car following. There is more
emphasis placed on human factors issues of
safety, usability, and acceptance rather than
technical challenges ahead of this technology.
A negative relationship is demonstrated to
exist between experience and perceived risk.

Saffarian, de Winter and
Happee
Proceedings of the Human
Factors and Ergonomics
Society 56th Annual
Meeting, 2012

451

Perceived risk

Training and experience,
trust,

A survey was conducted to investigate the
relation between experience and trust in
automated driving systems. Trust was related
to several attitudinal and behavioural factors,
and experience shaped the level of trust in
these technologies. A strong and negative
correlation was reported to exist between
‘initial trust’ and the level of ‘perceive risk’.

Dikmen and Burns
IEEE International
Conference on Systems,
Man, and Cybernetics
(SMC), 2017

452

Perceived risk

Experience, cybersecurity,
hardware failure, trust, V2X,
traffic environment

This study explores the risk perceptions
toward connected and autonomous driving
technology in comparison to conventional
driving vehicles. Findings of this research

show that with increased experience, the risk
perception decreases. Statistically, a
significant omnibus interaction effect between
experience, risk area, and driving technology
was found. It is also maintained that gaining
understanding on ‘risk perception’ in
autonomous driving can foster a successful
implementation of AVs.

Brell, Philipsen and Ziefle
Risk Analysis, 2019

453

Perceived risk

Other road users, public
perception, vehicular
parameters, weather

conditions, road conditions,
lighting conditions, traffic
conditions, speed, law
enforcement, HMI, culture,
cybersecurity, training and
experience, reaction time

This study surveyed almost 1000 participants
on their risk perceptions, particularly with
regards to safety and acceptance of AVs. The
interactions between AVs and humans, other
vehicles and road users are discussed in this

paper.

Hulse, Xie and Galea
Safety Science, 2018

454

Perceived risk

V2X, sensors, LIDAR,
cameras, obstacles, other
road users, traffic
infrastructure, reaction time,
trust, kinematic state, H-M
Interfaces, vehicle
dynamics, traffic density,
number of lanes, perception
accuracy, vehicle control,
situation awareness,
communication channels,
sensor fusion

This paper analyses the role of V2X and
‘collective perception’ in object update rate,
redundancy, and awareness. Collective
perception was measured in terms of three
types of performance metrics: 1) effect on the
communication channel; 2) environmental;
perception; and 3) safety metrics. The
findings agree with other studies and suggest
that collective perception affects the load of
the communication channel. This highlights
the need for appropriate congestion control
mechanisms.

Schiegg et al.
Sensors, 2021
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455

Perceived risk

Communication, time-to-
collision, kinematic state,
traffic flow, vehicle
performance, road
conditions, traffic
infrastructure, algorithms,
traffic composition

This study proposed a new methodology for
risk perception and warning strategy based on
safety potential field model to minimise
collision risk in AD. A novel driving risk
indicator (potential field indicator) was
defined to evaluate the level of driving risk.
Based on that, an early warning strategy was
developed to prevent collisions and its
performance was tested by a series of
simulations carried out in SUMO simulator.

Lietal
Accident Analysis and
Prevention, 2020

456

Perceived risk

Trust and reliance, reaction

time, secondary task, HMI,

visibility, other road users,
H-M Interface, obstacle,
experience in autonomy

Lack of trust in automation is a reason for the
failure of drivers to fully exploit a vehicle’s
autonomy. It is also stipulated that “the form
of trusting belief is based on the perceived
level of risk, and a lower perceived level of
risk leads to higher levels of trust”.

Petersen et al.
Ground Vehicle Systems
Engineering and
Technology Symposium,
2018

457

Secondary task
(non-driving
tasks)

driver fatigue, control of
vehicle, speed, reaction
time, perceived risk,
weather conditions, traffic
complexity, driving
experience, road layout, H-
M Interface, situational
awareness, other vehicles,
kinematic state

A challenging topic for researchers in the field
AD involves an understanding of whether a
period of automated driving is likely to lessen
driver fatigue rather than increase the risk of
distraction, specifically when drivers are
involved in a secondary task (e.g., watching a
video) while behind the wheel. It is
maintained that from a human factor
perspective, the exclusion of drivers from the
control loop caused by their engagement in
non-driving-related tasks (NDRTSs) can make
it harder for them to take over control of the
vehicle. This can further affect the reaction
time to hazardous situations.

Calvi et al.
Transportation Research
Part F, 2020

458

Secondary task
(non-driving
tasks)

Longitudinal and lateral
control, speed, sensors,
cameras, software
reliability, obstacles, other
road users, road
configuration, reaction time,
trust, H-M Interfaces, traffic
rule enforcement, traffic
density, automations
capacities awareness, mental
control

Human interventions deem to be necessary in
AD at least until the technology functions
perfectly and permanently. This study
conducted two simulator experiments to
examine the impact of vehicle’s autonomy
level on the performance of onboard drivers in
performing secondary tasks (reading a book or
watching video).

de Winter et al.
International Journal of
Vehicle Design, 2016

459

Secondary task
(non-driving
tasks)

Perceived risk, take-over
time, driver behaviour,
situational awareness,
experience, trust and
reliance

AVs are still unequipped to safely handle
many unexpected hazards and conditions in
real-world traffic. This paper quantified
changes in driver attention allocation before
and during exposure, and after the lane
keeping system was disabled. To this end, the
number of secondary tasks completed by the
participants, accuracy of those tasks, and eyes-
off-road glance durations were measured. An
important finding in this research is that
drivers become more willing to take risks each
they feel more comfortable with the AVs.

Miller and Boyle
Transportation Research
Part F, 2019

460

Secondary task
(non-driving
tasks)

Drivers’ mental mode, trust,
longitudinal and
lateral control, trust,
overreliance, situation
awareness, reaction time,
control loop, HMI, H-M
Interface, traffic density,
traffic regulation, traffic
conditions, velocity, other
road users, obstacles,
weather conditions,
technical failures

A group of 20 Tesla drivers who had relatively
high experience (one to five months) with
Autopilot were interviewed to pinpoint their
behavioural adaptation, mental models, and
trust during the period of AD. The results
suggested that those who had experienced
semi-autonomous driving had a very positive
attitude towards the technology and drivers
universally engaged in non-driving related
tasks (NDRTSs) during AD. They also learnt
from their experiences to figure out relatively
safe usage conditions and considered a safety
margin to avoid exposure to excessively risky
situations.

Lin, Ma and Zhang
Applied Ergonomics, 2018

461

Secondary task
(non-driving
tasks)

Sensors, V2X,
communication
infrastructure, H-M
Interface, trust, vehicular
control, other road users,
obstacles, road design, road
conditions, user experience

A survey of 29 in-vehicle information items
was conducted among 156 participants, who
drove a virtual indoor simulator in both
manual- and autonomous-driving modes. The
findings show that in the AD mode, the
drivers’ preference for information about the
secondary tasks of driving diminished,
whereas the tertiary-task information,
particularly communication-related
information that was reported higher. This
work is useful as it can provide a basic
guideline for designers of user experiences
and user interfaces.

Lee, Park and Ju
International Journal of
Automotive Technology,
2020
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462

Secondary task
(non-driving
tasks)

HMI, reaction time,
perceived risk, H-M
Interfaces, velocity, weather
conditions, obstacles,
fatigue, situational
awareness, trust, road
geometry, other road users

In highly automated driving, where most of
the research is focusing on SAE Level 4, take-
over performance is also a key factor to ensure

collision avoidance. This study aimed to
examine how the immersion in NDRTs affects
the take-over performance of drivers in given
traffic scenarios.

Minhas et al.

IEEE Transactions on
Intelligent Transportation

Systems, 2020

463

Secondary task
(non-driving
tasks)

Reaction time, situation
awareness, drowsiness,
speed, road infrastructure,
traffic density, human
factors, lateral and
longitudinal vehicle control

SAE Level 3 automation allows the on-bord
driver to engage in NDRTSs, although the
driver is still required to take over the control
if the technology cannot handle a risky
situation. This paper examined the impact of
the type of NDRTs and the complexity of the
situation on driver performance.

Dogan et al.

Transportation Research

Part F, 2019

464

Secondary task
(non-driving
tasks)

time to react, situation
complexity, traffic densities,
road geometry, motion
awareness, obstacle

AVs with higher levels of autonomy (i.e., 3
and 4) allow the drivers to divert their
attention to NDRTSs (e.g., texting, reading, or
watching videos) during a ride. Nevertheless,
these systems can still be prone to failure.
Based on that, human intervention may
become inevitable in critical situations. This
paper proposes a new mean of communicating
take-over requests (TOR) using human
actuation through proprioception.

Faltaous et al.

18th International
Conference on Mobile and
Ubiquitous Multimedia

(MUM), 2019

465

Secondary task
(non-driving
tasks)

Trust, driver behaviour, H-
M Interface, visibility, HMI,
weather conditions,
obstacle, perceived risk,
experience, other traffic
participants, reaction time,
control, situational
awareness, environmental
conditions

This study investigated the relationship
between AD reliability, user trust and external
risk (low visibility). 37 licensed drivers
participated to use a simulator as part of the
experiment. Internal risk was manipulated by
AD reliability and external risk by visibility,
producing a 2 (ADS reliability) x 2 (visibility)
design.

Azevedo-Sa et al.
Transportation Research

Part C, 2021

4,66

Secondary task
(non-driving
tasks)

HMI, trust, H-M Interface,
situation awareness, sensors,
weather conditions,
construction site, time to
collision, control

Each automated system makes errors. The aim
of this study was to evaluate whether
communicating automation uncertainty
improves the driver—automation interaction. A
driving simulator was conducted to allow
participant interacting with a highly automated
driving system under varying automation
reliability levels.

Beller, Heesen and

Vollrath

Human Factors, 2013

467

Secondary task
(non-driving
tasks)

Trust and reliance, obstacle,
perception of an
automation's reliability,
experience and training,
time-to-collision, situation
awareness, speed, Human-
Machine Interface, HMI

The impact of trust promoting and trust
lowering on the reported trust was measured
in this study. 40 participants took part in an

experiment and faced three situations ina 17-
min highway drive with a SAE Level 3
vehicle. Situation 1 and Situation 3 were non-
critical situations where a take-over was not
necessary. Situation 2 included a risky
situation where an intervention was essential
to avoid a collision. Drivers were required to
engage in a non-driving-related task (NDRT)
between the situations to track their allocation
of visual attention. Participants recording a
higher trust level spent less time looking at the
road or instrument cluster and more time
focusing on the NDRT. The manipulation of
introductory information resulted in medium
differences in reported trust and influenced
participants' reliance behaviour.

Korber, Baseler and

Bengler

Applied Ergonomics, 2018

468

Secondary task
(non-driving
tasks)

Fatigue, traffic flow/density,
lighting conditions, weather
conditions, road conditions,
number of lanes, day of
week, speed, driver age,
road design

This paper focuses on the risk of driver
distraction in partially automated vehicles. It
is proposed to apply technological
countermeasures in partially automated
vehicles to prevent drivers from engaging in
secondary tasks such as using mobile phones
while driving.

Flannagan, Bargman,

Balint

Transportation Research

Part F, 2019

469

Secondary task
(non-driving
tasks)

Lateral and longitudinal
control, driver workload,
situation awareness, road
conditions, adverse weather,
road infrastructure, H-M
Interface, HMI, trust and
reliance, reaction time,
automation capability
awareness

One of the main concerns in AD is that with
higher levels of automation, drivers will be
gradually out of the control loop. In this study,
the comments of YouTube users were
categorised into four main groups: 1) NDRTs;
2) automation capability awareness; 3)
situation awareness; and 4) warning
effectiveness. It is reported that reviewers
have extreme positive and negative opinions
about NDRTSs than other topics

Zhou, Yang and Zhang
International Journal of
Human—Computer
Interaction, 2020
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Secondary task

Longitudinal &lateral
control, time-to-collision,
perceived physical danger,
trust and reliance, situation
awareness, velocity, H-M

Research has shown that one implication of an
increase in the degree of vehicle autonomy is
the tendency of drivers to engage in secondary
tasks during a ride.

Naujoks, Purucker and

470 | (non-driving Interfaces, pr.i(_)r exper_ie_nce, This paper attempted to .exa.mine the e_ffeq of Neu_kum
tasks) traffic conditions, driving autonomy level on subjective and objective Transportation Research
styles, velocity, other road | driving during an on-road experiment in real- Part F, 2016
users, traffic density, world traffic. 32 participants took part in this
number of lanes, road study which was conducted in rush-hour
geometry, visibility, traffic on a highway.
automation level, age
Secondary task | Vehicle control, reaction This paper 1nvest1gat§q the effe{c ts O,f takeover Yoon, Kim and Ji
D . request (TOR) modalities on drivers’ takeover . .
471 | (non-driving time, road type, weather . . Accident Analysis and
tasks) conditions, road geometry performance after they engaged in NDRTs in Prevention, 2019
’ highly automated driving (HAD). ?
A dynamic obstacle avoidance Model
Predictive Control (MPC) method is
introduced for autonomous driving that uses
deep learning technique for velocity-
dependent collision avoidance in unknown
Obstacles Algorith.m's, LiDAR, environments. The u?time'lte goal is to control Mohseni, Vpronov and
472 (static and Sensors, coll%smn avmdgnce, an autonomous vehicle in qrder to perfom Frisk
dynamic) speed, vehicle dynamics, | different traffic manoeuvres in a safe way with | IFAC Conference Paper
traffic rules maximum comfort of passengers, and in Archive, 2018
minimum possible time, accounting for
manoeuvring capabilities, vehicle dynamics,
and in the presence of traffic rules, road
boundaries and static and dynamic unknown
obstacles
The presence of stationfiry.(static) and mgving Chen, Peng and Grizzle
Obstacles (dynamic) obstacles is diagnosed as a risk .
. . . . IEEE Transactions on
473 (static and Speed, algorithms, sensors, | factor for AVs. A polar algorithm is proposed Control Systems
dynamic) which automatically computes the avoidable
. . Technology, 2018
set given the dynamics.
The problem of this paper is to estimate states
of unobservable free spaces and obstacles
Obstacles ) N occ_luded by other obstacles. Know_ledge about | Sugiura and Watanabe
474 (static and Sensors, L1DAR, collision | blind spots helps autonomoqs yehlcles make IEEE InFelhgent
dynamic) avoidance, better decisions, such as avoiding a probable Transportation Systems
collision risk. The proposed method can also | Conference (ITSC), 2019
detect blind spots ahead of vehicle as driving
risks in real outdoor dataset.
Obstacles are deemed to block the mounted
Obstacles Path planning, speed, road detegtl'og SCNSOrS on ego Vehl.de by 11m1't1'r1 & Lee, Sunwoo and Jo
. the visibility. Estimating the risk of collision .
475 (static and geometry, road type, . . . . . Robotics and Autonomous
dynamic) visibility, traffic rules with moving vehicles in an occluded area is Systems, 2018
’ ? difficult because their locations and speeds ?
cannot be detected.
In this paper, the authors discuss the obstacle
Obstacles Lighting conditions, speed, gVr?;(ririlillczn(iioE;i(r:of\?vila:risﬁz?riiit\;e};lrf(lietilen Miranda Neto et al.
476 (static and sensors, algorithms, LiDAR, Y develon a new method for Collisic;n Risk Y| IEEE Workshop on Robot
dynamic) radar, cameras, Esti P ) . Vision (WORV), 2013
stimation based on Pearson’s Correlation
Coefticient (PCC).
Conventional intelligent vehicles have
performance limitations owing to the short
road and obstacle detection range of the
installed sensors. In this study, to overcome
this limitation, the authors tested the usability
Obstacles Communication, V2V, V2L, | of a new conceptual autonomous emergency Cho, Kim and Kim
477 (static and sensors, LiDAR, radar, braking (AEB) system that employs vehicle- Journal of Applied
dynamic) weather conditions, control | to-vehicle (V2V) communication technology Mathematics, 2014
in the existing AEB system. This method is
proposed to lower the collision risk of the
existing AEB system, which uses only a
sensor cluster installed on the vehicle, is
realised.
An optimisation model is presented to assess
the vehicle risk and control for lane-keeping | Fahmy, Abd El Ghany and
Obstacles Algorithms, control, sensor and collision avoidance at low-speed and Baumann
478 (static and q > " i q ’ high-speed scenarios. The optimisation IEEE Transactions on
dynamic) road geomelry, spee approach is also able to deal with a variety of | Vehicular Technology,
different obstacles and the corresponding 2018
optimal smooth obstacle path.
A risk index is constructed and introduced into
Obstacles Path planning, algorithms, | the cost function to realise collision avoidance Lietal
479 (static and speed, road conditions, by combining the relative position relationship IEEE 20‘19
dynamic) vehicle dynamics between vehicle and obstacles in the ’

predictive horizon.
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480

Obstacles
(static and
dynamic)

Traffic conditions,
pedestrians, HMI, speed,

This paper presents a pedestrian crossing
model in congested traffic conditions, taken
from mobile robotics motion planning that
constructs a trajectory according to the
probabilistic collision risks. The idea of
finding the “best motion” for autonomous
vehicles in a dynamic environment is
considered in robotics by the Velocity
Obstacle Space (VOS), which is a set of all
relative velocities characterized by the
Collision Cone (CC).

Hacohen, Shvalb and
Shoval
Transportation Research
Part C: Emerging
Technologies, 2018

481

Obstacles
(static and
dynamic)

Path planning, algorithms,
cameras, LIDAR,

As mobile robots and autonomous vehicles
become increasingly prevalent in human-
centred environments, there is a need to
control the risk of collision. A novel method is
developed to compute the risk of collision for
mobile robots and autonomous vehicles.

Blake et al.
IEEE Robotics and
Automation Letters, 2020

482

Obstacles
(static and
dynamic)

Algorithms, sensor, path
planning, road geometry,
vehicle geometry, GPS

A novel probability navigation function (NF)
is defined to reduce the risks of collision
during the AV’s motion. It is assumed that the
obstacles and the workspace geometries are
known, while their positions are stochastic
variables.

Hacohen, Shoval and
Shvalb
International Journal of
Control, Automation and
Systems, 2019

483

Obstacles
(static and
dynamic)

Traffic conditions, vehicle
dynamics, traffic rules, other
road users, environment,
speed, sensors, cameras,

A system view of the environment is
generated by data fusion and data
interpretation based on data stored in the
dynamic data base that represents the current
scene. This system view is transformed into a
riskmap representation which integrates
information about the street, the relative
position and speed of obstacles and traffic
signs.

Reichardt and Schick
Proceedings of the 94
Symposium of Intelligent
Vehicles, 1994

484

Obstacles
(static and
dynamic)

Path planning, traffic rules,
traffic congestion,
algorithms,

This study suggests static and dynamic path
planning for AVs to avoid collision.
Obstacles, therefore, are divided into static or
dynamic categories simulations have been run
to test the effectiveness the algorithms.

Lim, Shim and Takahashi
Proceedings 6th IEEE
International Workshop on
Robot and Human
Communication, 1997

485

Obstacles
(static and
dynamic)

Algorithms, sensors, road
conditions, speed, vehicle
dynamics, traffic condition

Planning safe trajectories for AVs under such
conditions requires both accurate prediction
and proper integration of future obstacle
behaviour within the planner. An autonomous
vehicle can safely navigate a complex
environment in real-time while significantly
reducing the risk of collisions with dynamic
obstacles. This paper presents a real-time path
planning algorithm that guarantees
probabilistic feasibility for autonomous robots
with uncertain dynamics operating amidst one
or more dynamic obstacles with uncertain
motion patterns.

Aoude et al.
Autonomous Robots, 2013

486

Obstacles
(static and
dynamic)

Situational awareness,
visibility, sensors, traffic
conditions, traffic density,
traffic rule enforcement,
algorithms, road
configuration, speed

This paper explores a moving vehicle
detection and tracking module that was
developed and used for the autonomous

driving robot Junior. The robot won second
place in the DARPA Urban Grand Challenge,
an autonomous driving race organised by the
US Department of Defense in 2007. The
module provides reliable detection and
tracking of moving vehicles from a high-speed
moving platform using laser range finders.

Petrovskaya and Thrun
Autonomous Robots, 2009

487

Obstacles
(static and
dynamic)

Speed, algorithms, path
planning,

This letter addresses the time-optimal risk-
aware motion planning problem for curvature-
constrained variable-speed vehicles in the
presence of obstacles. Due to complexities of
the environment, it is also critical that the
time-optimal path is safe for the vehicle.

Song, Gupta and
Wettergren
IEEE Robotics and
Automation Letters, 2019

488

Traffic density

Speed, obstacles, time of
day, other road users, HMI,
road type, training and
experience, situation
awareness, V2I, regulations

This paper presents a high-level safety case
that identifies key factors for credibly arguing
the safety of an on-road AV test program. A
similar approach could be used to analyse
potential safety issues for high capability
semiautonomous production vehicles.

Koopman and Osyk
SAE International Journal
of Advances and Current

Practices in Mobility,
2019

489

Traffic density

LiDAR, traffic composition,
sensors, optical cameras,
V2V, V21, visibility,
weather conditions, road
conditions, GPS, speed,
obstacles, road
infrastructure, actuators,
algorithms, pedestrians

This study a simulation approach to test AVs
in urban traffic scenarios. Simulations allow
testing more scenarios than those that would
be possible with real world testing, in addition
to testing hazardous situations involving
humans. The performance of AVs under
varying circumstances are analysed.

Figueiredo et al.
Proceedings of the 12th
International IEEE
Conference, 2009
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This paper investigated the impact of traffic
flow optimisation on the traffic safety problem
in hybrid and only-AV traffic scenarios. It is
reported that the optimal control for the CAV
mixed traffic flow can mitigate vehicle rear-

Traffic composition, speed, | end collision risks. For the case of traffic flow Qin and Wang
490 | Traffic density | target, COlTll‘l’lul’}lS)athl’l, time | with only. CAVs, the rear-end collision risks of China Journal of Highway
to collision conventional vehicles flow can be decreased and Transport. 2018
by more than 85.81% when the time-to- port,
collision threshold is less than 2 seconds. This
can be reduced by 48.22% to 78.80% if the
time-to-collision threshold is more than 2
seconds.
Crash surrogate metrics were used in this
Traffic conditions, speed, stud_y.to examine the relationship between Kuang, Qu and Yan
. . i collision risks and traffic flow. It has been PLoS ONE, Traffic safety
491 Traffic density time-to-collision, road . . .
cometry, time of day widely recognised that one traffic flow fundamental diagram,
g ’ corresponds to two distinct traffic states with 2017
different speeds and densities.
It is recognised that accident risk can vary as
traffic conditions change due to special events
or within-day variations in traffic.
Furthermore, current predictive tools are
mainly statistical, and this may not well fit to
.. the environments which host automated
Speed, traffic conditions, R . . R .
X s . vehicles. This study discusses how both issues Davis et al.
drivers’ behaviour, can be addressed by supplementing standard | Journal of Transportation
492 | Traffic density | following distance, day of L Y Supp ng . ransp B
statistical modelling together with models Engineering, Part A:
week, road geometry, road . .. . s
type, pedestrians describing collision mechanisms. Brill’s Systems, 2021
ype, random walk model of how traffic
shockwaves lead to rear-end accidents is
merged with a traffic flow model based on a
fundamental diagram to evaluate the relation
between traffic density and rear-end collision
risk.
- T.hls paper examines traffic complexlt}/ Kopardekar, Prevot and
Traffic conditions, speed, variables under higher levels of automation -
o . Jastrzebski
rules, weather conditions, | where the human controller is still in the loop, .
. . . . . . AIAA Guidance,
493 | Traffic density trajectory planning, but is being supported by advanced conflict Lo
0 . - . Navigation and Control
communication, traffic detection and resolution automation. A set of o
. . . X Conference and Exhibit,
control, human factors variables affecting the complexity for higher 2008
traffic densities were found in this article.
This article intended to assess the effect of
traffic density and verbal tasks on takeover
Control, HMI, H-M performance in highly automated driving. 72
Interfaces, traffic participants were faced takeover situations
complexity, speed, situation | needing an evasive manoeuvre on a three-lane
. awareness, reaction time highway with different traffic density levels Gold et al.
Traffi ’ . N .
494 | Trafic density takeover, demographics, | (zero, ten, and twenty vehicles per kilometre). Human Factors, 2016
other road users, number of | The results suggest that the presence of traffic
lanes, obstacles, non-driving affects the reaction time and quality of
related tasks takeover. The traffic state appears to be a
major factor in the study of HMI in AVs and
takeover situations.
traffic condition, traffic
control infrastructure, V2V,
V21, communication, traffic
composition, speed, vehicle
control, driving behaviour, | This paper develops a framework to simulate
Lo . . . o Talebpour and
reaction time, perception, various types of vehicles with different Mahmassani
495 | Traffic density road conditions, weather communication capabilities. The analyses in .
.. . . . . Transportation Research
condition, road conditions, this study took traffic composition (mixed
. Part C, 2016
work zone, number of lanes, traffic) into account.
sensor limitations, radar,
control algorithms, mixed
traffic, road geometry,
situation awareness
A hybrid approach is adopted in this study to
. determine the factors which have influence on
Time of day, weather . L e
conditions. other road users driver reaction time in traffic safety incidents.
reaction ’time erceived ? A causal model is presented to depict the Arbabzadeh et al.
496 Kinematic state risk. traffic C(;nt: osition influential factors in traffic safety incidents. Transportation Research
’ P y Based on this model, it is asserted that “the Part C, 2019

traffic density, speed, road
conditions

driver reaction time is one of the parameters
of the kinematic and space-state models for

trajectory reconstruction”.
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497

Kinematic state

Sensors, traffic density,
speed, path planning,
LiDAR, perception accuracy

The aim of this study was to accurately
calculate the risks which are caused by each
road user (including AVs) in time. Four states
of track life are integrated into a generic
fusion framework to improve the performance
of multi-object perception in dense traffic
environments in highways and urban roads.

Zheng and Huang
Joumnal of Intelligent and
Connected Vehicles, 2018

498

Kinematic state

Road topology, traffic flow,
vehicle density, road
conditions, number of lanes,
perception accuracy, human
factors, LIDAR, Al, path
planning

The congestion problems of traffic networks
after the introduction of self-driving cars at
both micro and macro levels is studied here. In
the developed model, the collision avoidance
equation consists of two factors: velocity and
the distance from the following car/vehicle.

Ji
AIP Conference
Proceedings, 2018

499

Kinematic state

Visibility, cameras, sensors,
algorithms, LiDAR, radar,
obstacles, weather
conditions, road geometry

Safe operation under poor visibility conditions
is a requirement for AVs. In this study an
algorithm is developed to exploit the vehicle
dynamics from proprioceptive sensors and
include it in sensitivity study.

Boussard, Hautiere and
d'Andrea-Novel
IEEE/RSJ International
Conference on Intelligent
Robots and Systems, 2008

500

Kinematic state

Road conditions, trajectory
tracking, vehicle control,
speed, perception,
algorithms, actuator,
LiDAR, cameras, sensors

This work presented a novel method for an
optimisation problem which combines vehicle
kinematics and trajectory tracking control of a

vehicle with high speed and under complex

off-road conditions.

Zhao et al.
Mechanical Systems and
Signal Processing, 2019

501

Other road
users

Road type, planning,
perception, hardware and
software, control, reaction

time, road conditions,

weather conditions, LIDAR,
radar, lighting conditions,
time of day, driving culture,
traffic control,
environmental conditions,
algorithms, road geometry

This paper considers and studies the sequence
of events that can lead to a collision. ‘4 crash
sequence of events describes the AV'’s
interactions with other road users before a
collision in a temporal manner’. Analysing
the subsequences revealed that the most
prevalent pattern in AV crashes is “collision
following AV stop”.

Song, Chitturi and Noyce
Accident Analysis and
Prevention, 2021

502

Other road
users

Environmental conditions,
demographics, traffic
conditions, HMI, road
structure, weather and

lighting conditions, V2V,
V2X

This study investigates the (major and minor)
factors influencing the behaviour of
pedestrians in interacting with AVs. A wide
range of factors including human,
environmental and social factors are studied to
analyse and predict the behaviour (intention)
of pedestrians in dealing with autonomous
vehicles.

Rasouli and Tsotsos
IEEE Transactions on
Intelligent Transactions,
2019

503

Other road
users

Traffic composition, driving
behaviour, control, H-M
Interfaces, reaction time,

road type, traffic flow,
communication channels,

LiDAR, vehicle kinematics

This paper claims that HDVs hitting AV
from behind account for the most of accidents
involving AVs. To address this problem, a
study was designed to evaluate the detection
of AVs’ behaviours in front of human drivers.

Stanton et al.
Human Factors and
Ergonomics in
Manufacturing & Service
Industries, 2020

504

Other road
users

Environment perception,
dynamic obstacles, control
architecture, traffic
condition, traffic rules,
trajectory planning, time to
collision, sensors, reaction
time, number of lanes

A probabilistic overall strategy for risk
assessment is proposed for AVs in highways.
This system can assess the risks of
manoeuvres and generate appropriate evasive
actions to avoid colliding with dynamic
obstacles.

Iberraken, Adouane and
Denis
IEEE Intelligent Vehicles
Symposium (IV), 2019

505

Other road
users

Road geometry, reaction
time, traffic conditions,
trajectory planning, sensors,
static/dynamic obstacles,
path planning, velocity,
algorithms, traffic regulation

It is crucial for the safe path planning in AD to
predict stochastic occupancy of the road by
other vehicles. The prediction must consider
uncertainties stemming from the
measurements and the possible behaviours of
other road users. Furthermore, the interaction
of traffic participants, as well as the limitation
of driving manoeuvres due to the road
configuration needs to be considered. The
result of the proposed approach in this study is
the likelihood of a collision for a specific
trajectory of an AV.

Althoff, Stursberg and
Buss
IEEE Transaction on
Intelligent Transactions
Systems, 2009

506

Other road
users

Human factors, pedestrians,
bicycles

This paper discusses the human preferences
for moral judgments in risky and uncertain
situations that AVs are subject to face when
operating in urban environments. It also
highlights that due to the dynamic driving
environments in the real world and presence
of AVs, human-operated vehicles, bicyclists,
and pedestrians some collisions will be
unavoidable.

Meder et al.
Society for Risk Analysis,
2018
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Perception, algorithms,
control, path planning,
camera, LiDAR, ultrasonic,

A risk assessment method (decision making
algorithm) is developed for AVs to 1) be

Mechernene ef al.
International Conference

507 Other road tlmg to collision, sensors, predictable by other road users (drivers) and on Control, Automation
users road infrastructure, weather L. . . .
o 2) to maintain a desirable level of comfort for | and Diagnosis (ICCAD),
conditions, obstacles, global
L . passengers. 2020
navigation satellite system
(GNSS), velocity
Kamal ef al.
Trajectory planning, traffic | A coordination scheme is presented for AVs Proceedings of the 16th
08 Traffic control | flow, V2V, V2I, velocity, | which can eradicate the need for traffic lights | International IEEE Annual
5 infrastructure other road users, traffic at intersections. The optimal collision risk is | Conference on Intelligent
rules, road capacity worked out to choose the optimal trajectory. Transportation Systems
(ITSC), 2013
Traffic composition, driving
behaviour, reaction time, This paper investigates the performance of
autonomy level, traffic flow, | . N : . Pan et al.
L. signalised intersections under the mixed flow .
Traffic control traffic conditions, V2I, - o Arabian Journal for
5o9 | . L conditions and analyses the probability of . . -
infrastructure | V2V, V2X, communication, X e e Science & Engineering,
conflict as well as the mitigation impacts of
other road users, road L 2020
. . communication channels e.g. V2IL.
capacity, speed, geometric
characteristics,
Communication, traffic This paper proposes a new traffic control
. o - . . . Park and Lee
density, weather conditions, | system excluding traffic lights at intersections. .
Traffic control . . . 2011 IEEE Vehicular
510 | . work zones, algorithms, It is assumed that vehicles are fully
infrastructure . . Technology Conference
number of lanes, V2I, V2V, autonomous and infrastructure is there to
. L. L (VTC Fall), 2011
traffic congestion eliminate collision risks completely.
Weather conditions, road The authors suggest that to increase the
conditions, visibility, effectiveness the AVs it is necessary to
Traffic control sensors, communication, transform the current human-based safety Sahawnch et al
511 | . V2V, V21, traffic infrastructure. In this paper, they focus on '
infrastructure .. . . . IEEE, 2019
conditions, road type, time accident report infrastructure and the
of day, day of week, speed, escalation procedures required to avoid
control systemic risks.
RSUs, V2I, communication,
number of lanes, traffic A visible light communication (VLC)-based
conditions, speed, traffic collision avoidance system is developed to Fakirah et al.
12 Traffic control flow, lighting condition, effectively coordinate AVs in roundabouts. EURASIP Journal on
5 infrastructure | V2V, traffic density, road Heavy emphasis is placed on the traffic Wireless Communications
geometry, kinematic state, | infrastructure and readiness for managing AV and Networking, 2020
other road users’ behaviour, traffics.
reaction time
Traffic scenes have their own unique
complexity and dynamics. Therefore, if a self-
driving vehicle is expected to achieve fully
Sensors, LIDAR, cameras, autongmous driving in a pf)mplex traffic
scene, it must have the ability to learn and
radar, road geometry, road . .
. make predictions. Autonomous vehicles face
infrastructure, path . ..
Traffic planning, motion planning many dlf_ferent scenes and road conditions, Chen et al.
o ? . > | such as high-speed scenes, low-speed urban SCIENCE CHINA
513 conditions behaviour generation, : . .
. R roads, and unstructured roads. this study Information Sciences,
(complexity) longitudinal and lateral . e
0. deeply discusses some basic scientific issues 2019
control, road conditions, .
of the self-driving approach based on
obstacles, other road users, o .
.. cognitive construction, as well as the methods,
weather conditions, Al . .
computing models and technical routes to
solve adaptability to complex situations of
self-driving
system.
The dynamic of the traffic flow contributes to
the complexity of traffic scenes. This further
Traffic density, traffic gives rise to the number of crashes. This paper
control, road infrastructure, | examined the link between traffic complexity
road geometry, weather and collision risk (number of crashes) under .
.S .\ Zurlinden, Baruah and
Traffic conditions, traffic control urban motorway conditions. It was expected Gaffne
514 conditions infrastructure, reaction time, | that linking the number of events (exposure) Y
. - . . Journal of Road Safety,
(complexity) speed, driving behaviour, such as ‘harsh lane change to crash numbers 2020
static obstacles, other road | can provide more insights into the relationship
users, number of lanes, road | between causation and effect. The concepts
conditions developed for urban motorways but can also
be applicable to other high-volume multi
carriageway roads.
Comprehensive traffic data scenario is often
Road type, algorithms, other necessary to evaluate the performance of
road users, road geometry, unmanned ground vehicles (UGVs) and
Traffic weather conditions, measure the scene complexity. This study Wang et al.
515 conditions obstacles, LIDAR, road developed a traffic sensory data classification | IEEE Intelligent Vehicles
(complexity) conditions, lighting paradigm based on quantifying the scenario Symposium, 2018

conditions, sensors,
cameras, speed

complexity for every segment of roads. This
quantification is based on road semantic
complexity and traffic element complexity.
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Control, kinematic state, This paper proposed a ‘cooperative control
. approach for AVs to safely perform Lo
traffic rules, path planning, . e Mohseni, Frisk and
Traffic manoeuvres in complex traffic situations such .
16 conditions obstacles, actuators, as lane changing or crossing road Niclsen
5 . cameras, LiIDAR, radar, . . . . IEEE Transactions on
(complexity) intersections. This model is based on a cost . .
speed, other traffic . .. . Lo Intelligent Vehicles, 2021
. function and collision avoidance objective for
participants . .
various traffic scenarios.
Road type, other road users, | This study adopted scenario-based testing for
algorithms, number of lanes, the validation and verification of CAVs.
Traffic speed limits, time-to- 189,752 scenarios including various collision
. . . . . . . Yue et al.
517 conditions collision, static and dynamic | scenarios were simulated for this purpose. To IEEE Open Access. 2020
(complexity) objects, traffic volume, evaluate the risks faced by CAVs in different P ?
mixed traffic, path planning, traffic situations, a new criticality metric
environment perception (Scenario Risk Index) was defined.
Algorithms, machine
learning, cybersecurity, In this work, a “fully model-based multi-
other traffic participants, modal parallelizable” is developed to analyse
Traffic motloq planning, per(_:eptlon, and evaluate the criticality of the com_plex Morales et al.
o trajectory generation, traffic scene ahead of AVs. The extension of . .
518 conditions : . . . . . IEEE Intelligent Vehicles
(complexity) control, kinematic state, this algorithm can include road infrastructure Symposium (IV), 2019
P traffic composition, road | and mobile objects. This algorithm is capable ymp ’
infrastructure, time-to- of handling a traffic scenario with 11 objects
collision, hardware, sensors, | (over 86 million pose combinations) in 21 ms.
velocity
Crossroads are a complex traffic situation for
Situation awareness, autonomous vehicles. This paper proposed a Annell, Gratner and
Traffic velocity, perception system with two functionalities. First, it is Svensson
" algorithms, V2I, V2V, capable of predicting the motion of a IEEE 19th International
519 conditions ~ . . L .
(complexity) kinematic state, road surrounding vehicle in general traffic Conference on Intelligent
P geometry, sensors, trajectory | situation, and second, is its ability to estimate | Transportation Systems
planning the probability of a collision given the current (ITSC), 2016
ego trajectory.
Other traffic participants, | AVs should inevitably interact with other road
algorithms, dynamic users such as pedestrians while traveling in
Traffic obstacles, control, trajectory | complex traffic environments. All potential Zhang et al.
520 conditions planning, radar, cameras, collisions must be avoided during the Journal of Intelligent &
(complexity) lighting conditions, speed, interactive process to ensure the safety. This Fuzzy Systems, 2018
sensors, LIDAR, motion paper analysed the active obstacle collision
state avoidance algorithm.
Time-to-collision, vehicle An anti-collision strategy based on hazard
dynamics, algorithms, cognition is proposed to enable AVs safely
Traffic sensors, road type, sensor passing through_ intersections w_h116 mteract_mg Jia et al.
. fusion, V2V, V2I, control, with other vehicles. The algorithm was built . .
521 conditions . . . . . Chines Automation
(complexity) obstacles, kinematic state, and simulation was performed in Congress (CAC), 2019
GPS, other road users, road | MATLAB/Simulink. The simulation results ’
parameters, trajectory have shown that the algorithm is reliable
planning, speed enough to prevent collisions.
Human factors, other road | This paper analysed traffic accidents with AVs
users, kinematic state, HMI, | that occurred in California between 2015 and
traffic flow, LIiDAR, 2017. Drivers’ manoeuvres of conventional Petrovi¢, Mijailovi¢ and
22 Traffic sensors, cameras, traffic vehicles do not differ in mixed or Pesic
5 composition conditions, road type, homogeneous traffic. Drivers’ errors of Transportation Research
number of traffic lanes, conventional vehicles that are more often in Procedia 45, 2020
weather conditions, accidents with AVs are “unsafe speed” and
visibility “following too closely”.
Tl?jﬁggg{g‘s;og’ :;a:jfﬁc We will experience periods that both CAVs
o » speed, and HDVs share public roads as it needs time
position, cameras, sensors, il h d q
radar. communication for all vel_nc es on the road to upgrade to
? CAVs. This study analysed the stability of
channels, control . . .
Traffic aleorithms. svstem mixed traffic flow under different penetration Yao et al.
523 o | asort Sy rates of CAVs. This paper suggests that if Journal of Safety
composition integration, V2V, road L . .
. communication failure occurs the Cooperative Research, 2020
environment, human factors, . . .
. . Adaptive Cruise Control (CACC) vehicles
road capacity, acceleration, . . .
. will degenerate into ACC vehicles and
number of lanes, vehicle . .
- subsequently the safety risk of mixed traffic
characteristics, road . .
.. flow increases considerably.
conditions
This work focuses on thg challenge of Orki and Arogeti
controlling AVs in mixed traffic h
K . IEEE International
Traffic Traffic flow, control, speed, environments. The control algorithm
524 .o . . Lo . Conference on Connected
composition algorithms introduced in this paper is based on the same Vehicles and Expo
components of standard platoon control, but P
. . . (ICCVE), 2019
adjust them to mixed environment.
This paper looked into the impact of vehicle
connectivity on the collision risk in mixed
Reaction time, traffic traffic (AVs and HDVs) streams. An
2 Traffic conditions, control, optimisation problem was defined to minimise Lietal
525 composition communication, driving the collision risk while AVs and HDVs are Working paper, 2020
behaviour, V2V expected to interact with each other. This
paper suggests that mixed traffics can increase
the probability of traffic conflicts.
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Kinematic state,
communication, control,

This study presents a car-following strategy
for mixed traffic stream which involves
platoon development in a connected

Seraj, Li and Qiu

526 Traff.'lc. traffic conditions, road automated vehicle (CAV) epvlronment. The Journal of Advanced
composition . . study also explores various platoon .
design, traffic flow, reaction . R Transportation, 2018
time configurations to determine platoon
parameters at different traffic states to obtain
utmost benefits.
Collision avoidance, Thl? paper considers the prioblem of
. controlling an autonomous vehicle that must .
software, communication, . . Osipychev et al.
Traffic . share the road with human-driven cars and ’
527 ore weather conditions, HMI, . .. . American Control
composition presents proactive collision avoidance
sensor, speed, actuators, . . . Conference (ACC), 2017
algorithms which can adapted to various
V2V, V2I o .
driving manners and road/weather conditions.
Constrained the one-step model predictive
control (MPC) are applied to control the
movement of the connected AV platoon
upstream or downstream of the HDV platoon
so that both transient traffic smoothness and
Traffic conditions, traffic | asymptotic stability of this sample mixed flow
flow, algorithms, platoon can be ensured, leveraging the
L0 S . . Gong and Du
Traffic communications, V2V, V2I, | communication and computation technologies .
528 . . . Transportation Research
composition speed, traffic control, equipped on connected AVs. Considering the Part B. 2018
reaction time, control absence of the centralised computation ’
strategies, kinematic state facilities and severe changes of the platoon
topology, this study develops a distributed
algorithm to solve the MPCs according to the
properties of the optimisers, such as solution
uniqueness, sequentially feasibility, and
nonempty interior point of the solution space.
Drowsiness, fatigue, traffic
flow/density, perception,
sensors, algorithms, lighting
conditions, time of day, A scoping literature review on CAVs was
weather conditions, road conducted to analyse current trends in .
.. S Sohrabi et al.
Traffic conditions, speed, road academic literature, evaluate models and . .
529 o R ) .. L. . Accident Analysis and
composition infrastructure, time to anticipate future research directions. The main .
.. . . Prevention, 2021
collision, other road users, | focus of this paper in on safety performance of
HMI, obstacles, CAVs.
lateral/longitudinal control,
secondary task, cameras,
cybersecurity
Speed, traffic rule In early stages of erloyment, AVs are
expected to coexist with HDVs on motorways.
enforcement, V2I, traffic . .
. This study explored methods to implement .
control infrastructure, . .. . Lietal
Traffic .. variable speed limits (VSL) under a mixed .
530 o weather conditions, traffic ", IET Intelligent Transport
composition . . traffic condition where connected AVs and
congestion/flow, driver . . Systems, 2017
; S HDVs share public roads. VSLs can improve
behaviour, communication, Lo
L . safety of motorway through harmonisation of
reaction time, algorithms
traffic flow.
Behaviour planning, path
planning, algorithms,
vehicle control, V2V, .
Kim et al.
number of lanes, other road .
. . . IFAC Intelligent
users, road layout, traffic | This study proposes a behaviour/path planning .
Software . . . . Autonomous Vehicles
531 - rules, GPS, sensors, algorithm that is responsible for safe AD in .
reliability . . Symposium, the
actuators, sensor fusion, structured environments such as urban roads. . .
. International Federation of
cameras, LiDAR, .
. Automatic Control, 2013
construction zone, obstacles,
localisation, kinematic state,
trajectory planning
Software control,
environment perception,
localisation, planning,
LiDAR, obstacles, other
road users, algorithms,
weather condltlon's, This work looks into the integration of .
hardware, GPS, object . Levinson et al.
> Software recoenition. fraiecto systems, subsystems, algorithms and hardware IEEE Intellicent Vehicles
53 reliability S 14 Y that enable AD in challenging urban traffic g

tracking, velocity, lighting
conditions, sensors,
cameras, traffic conditions,
takeover, construction
zones, software
infrastructure, system
integration

scenarios.

Symposium (IV), 2011
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Weather conditions, sensors,
other road users, control

Robustness testing for autonomous systems is
still immature. On the other hand, AVs need
novel approaches when it comes to testing.

day, obstacles

Pedestrian detection, traffic sign and traffic
light recognition under various lighting
conditions are three main issues this study
covers.

Software loob. environmental This paper presents Autonomous Stress Hutchison et al.
533 | reliability condi Senmena | Testing for Autonomy Architecture (ASTAA) | ICSE-SEIP '18,2018
ac tuat(;rs ercep tion e and compares it with similar traditional
» pereep robustness testing methods for software used
in autonomous systems.
Algorithms, actuators,
control, perception, road
geometry, other road users, This study highlights five major challenge
machine learning, visibility, | areas in testing AVs based on the V model: 1) Koopman and Waneer
Software weather conditions, time of driver out of the loop, 2) complex S AEpWOrl d Con regs s
534 reliability day, speed, LiDAR, traffic | requirements, 3) non-deterministic algorithms, 2016 BesS,
rules, mixed traffic, road 4) inductive learning algorithms; 5) and fail
infrastructure, road type, operational systems.
hardware, system
integration
An efficient and robust motion planner is
essential for safe operation of AVs in real .
. . Liu and Ang Jr.
. . urban traffic. This paper presents a risk-aware .
Software Motion planning, lannine aleorithm that benefits from chance- IEEE International
535 reliability algorithms, obstacles p g a8 S Conference on Robotics &
constraint approximation to leverages the Automation (ICRA), 2014
asymptotically optimal property of RRT* ’
framework.
To tackle the dynamic and complex traffic
al (};ﬁ?j:ff nri(;rcsl,line scenarios that can result in collision, this study
1% armin 7acce’lera tion proposes a Reinforced Cooperative
Software SenSOrS g]:iD AR. radar Autonomous Vehicle Collision AvoidancE Yuan et al.
6 s ? . ’ (RACE) framework. Co-DDPG algorithms are IEEE Transactions on
53 reliability traffic density, road . . .
conditions comml’mica tion also developed to train AVs. The VANET is Vehicular Technology,
ul trasonié sensors. speed > | used to protect location privacy of vehicles.
ther nt, peed, These systems are supposed to reduce the
otheragents collision risks for AVs.
Software, sensors,
perception, motion planning,
beﬁgﬁu?;i;ilcg;ﬁr}:riz’a d This article provides a summary on Urban
blockage. number o fl’anes Challenge competitions and studies Boss Urmson et al.
Software roa(gi ’eome trv. road > | which was announced as the winner and Association for the
537 reliability infras trfc ure (r)}tll’ler road analyses different aspects of that autonomous | Advancement of Artificial
users. obs taclés velocit car such as software architecture and Intelligence, 2009
P > s performance.
sensor fusion, construction
zones, traffic density, radar,
LiDAR, traffic rules
The focus of this study is on perceiving the
environment by AVs and in particular
Visibility, road recognising the road signs and markings. The
Lichtin infrastruc tu7re road situations which can cause difficulty for the Lengyel and Szalay
8 8 . 8 .. > sensors and increase the risk are identified and | International Conference
53 conditions conditions, traffic . .
conees tion’ speed classified based on the quality, status, on Manufacturing, 2018
& » 5P quantity, visibility, perception, recognisability,
clarity, and interpretability of the boards at
the permitted speed.
This paper, proposes and evaluates DeepTest,
a systematic testing tool for automatically .
. . Tian et al.
detecting erroneous behaviours of DNN- ACM/IEEE 40th
ightin ameras, sensors, weather riven vehicles that can potentially lead to .
Lighting C h dri hicles th P fally lead International Conference
539 conditions conditions, algorithms, fatal crashes. In this paper, the cause of a fatal on Software Engineerin
accident involved the Tesla autopilot mode, is g e
. . \ e 2018
diagnosed as ‘image contrast’ and failing to
detect the white truck against a bright sky.
This paper offers an algorithm to tackle the
challenges and risks arising from the direct
Lo . . dazzling sun light. This problem can blind the Paul and Chung
540 cI(;Illgdl:::::rgls :églseossf 32:1’1:11 gczig:z:’ machine vision in AVs as well as human Computers in Industry,
? ’ drivers. The fatal accident between a Tesla 2018
Model S and a white tractor trailer serves as a
notable example to signify the risk.
Road environmental recognition is seen as a
key ability for AVs. This paper presents the
test results of various object detection Jeon et al.
Lichtin Road infrastructure, algorithms using single monocular camera for 13th International
541 congdi ﬁOlng pedestrian, sensors, time of | autonomous vehicle in real driving conditions. | Conference on Ubiquitous

Robots and Ambient
Intelligence (URAL), 2016
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ForeSight is developed to integrate the

observations coming from an array of devices Lietal
Lighting Integration, communication, . & . y ot dev: IEEE Conference on
542 e (sensors) in AVs. Bad light conditions is
conditions sensors, GPS, . . i R Computer
diagnosed as an influential factor in the L
Communications, 2014
performance of on-board cameras.
In railway scenarios a camera in front of the
train can aid drivers with the identification of Uribe, Fonseca and
Cameras. Sensors obstacles or strange objects that can pose Vargas
Lighting . K ’ danger to the route. Image processing in these 46th Annual [IEEE
543 o algorithms, obstacle, .. . ; .
conditions o applications is not easy of performing. The International Carnahan
weather conditions . .o .
changing conditions create scenes where Conference on Security
background is hard to detect, lighting varies, Technology, 2012
and process speed must be fast.
Obstacles, cameras, This paper developed a method based on the Naser et a].
e hardware, algorithms, time . . . 21st International
Lighting . shadow of objects to detect static and dynamic .
544 .. of day, infrastructure, . . L X Conference on Intelligent
conditions I . objects and avoid collision for mobile robots .
visibility, perception, and AVs Transportation Systems
planning, control ) (ITSC), 2018
Sensors, cameras, traffic This US patent considers risks in active
Lighting conditions, obstacles, sensing for autonomous vehicles. Light Teller et al.
545 conditions pedestrians, road design, detection by on-board cameras is one of the | United States Patent, 2014
algorithms, GPS main discussions of this document.
This work classifies the types of collisions
6 Lighting Weather conditions rese/:r\é; n:;}l/if ?(f;)(]il\r;lv':ré 2§§(§§¢relrgs20“t/}euasther Parkin et al.
54 conditions ; Ui ys and VENTURE, 2016
conditions increase the risk of rear end
collision.
This study investigates the (major and minor)
Environmental conditions, factors influencing the behaviour of
demographics, traffic pedestrians in interacting with AVs. A wide Rasouli and Tsotsos
Lighting conditions, HMI, road range of factors including human, IEEE Transactions on
547 conditions structure, weather and environmental and social factors are studied to | Intelligent Transactions,
lighting conditions, V2V, analyse and predict the behaviour (intention) 2019
V2X, lighting conditions of pedestrians in dealing with autonomous
vehicles.
This paper surveys the challenges of testing
autonomous vehicles. Five different categories
Sensors, weather, visibility, of reasons for exposure to accidents were .
s - . e . . Schoner
Lighting component failure, human | identified: component failure, environmental .
548 . . L . . International Stuttgart
conditions factors, algorithms, traffic conditions and failing to perceive the .
o . . Symposium, 2018
conditions environment accurately, algorithms,
behavioural factors and rule compliance, and
HML
This US patent develops a method for
assessing risks of automated vehicles. This
Visibility, weather method has been implemented in an electronic
Lighting conditions, sensors, speed, | processing system that includes a memory and Binion et al.
549 conditions CAN, V2I, V2V, pedestrian, | one or more processors, includes receiving, at | United States Patent, 2015
infrastructure the electronic processing system, operational
data indicative of when a vehicle is driven
according to an automated control mode.
This experimental work evaluated the
performance of an autonomous grand vehicle . .
g . R . Foresti and Regazzoni
N in bad environmental situations (e.g. rain and -
Lighting Sensors, cameras, S . IEEE Transactions on
550 i . low lighting). The negative impact of low .
conditions algorithms N, . . Vehicular Technology,
visibility conditions on the system is among
S R 2002
limitations of the proposed system in this
study.
AVs operating in urban environments need to
Weather conditions, GPS, detect traffic lights and recognise their states ..
Lighting sonar, radar, LIDAR. (i.e., red, amber or green). This work proposes Sa“?‘ et al. .
551 e P L7 N . . IEEE Intelligent Vehicles
conditions information fusion, a vision-based traffic light structure detection .
. . . o Symposium (IV), 2017
algorithms, cameras which can work under various lighting and
weather conditions.
This study proposes the concept of
Weather conditions, dr}v.eabll.l ty” for A\./S to identify and handle Guo, Kurup and Shah
sy PP driving risks. To this end, road datasets are .
Lighting visibility, HMI, road user . . o . . IEEE Transactions on
552 A : . reviewed and driveability factors are identified . .
conditions behaviour, time of day, L . Intelligent Transportation
.. and categorised into majors groups: 1)
sensors, traffic conditions . N Systems, 2019
environmental factors; and 2) road users
interactions.
Weather conditions, speed, This paper identifies significant factors
Lichtin road configuration, time of contributing to rear-end accidents and Chen et al.
553 congdi tiorgns day, other road users, traffic | incorporates them into a BBN model to assess Accident Analysis and

composition, traffic control,
road conditions

the collision risk under varying weather and
lighting conditions.

Prevention, 2015
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554

Lighting
conditions

Weather conditions, radar,
camera, dynamic/static
obstacle, reaction time,

hardware reliability,
algorithms, time of day,

Whether in manual or automated driving,

urban traffics. The experiments in this

various sequence on roads under various
weather and lighting conditions. the result
showed that the proposed mobile decision-
making system warning against traffic risks i
highly effective.

detection and recognition of brake lights are
essential to avoid collisions and accidents in

research were conducted on real video road in

Matecki and Watrobski
Procedia Computer
Science, 2017

N

555

Visibility

Dynamic obstacles, weather
conditions, traffic flow,
communication, lighting

conditions, road conditions,

takeover, HMI

developing and operationalising AVs. 374
accidents mainly due to bad weather
conditions were analysed. Adverse weather
conditions are believed that impacted the
perception and caused ‘visual obstruction’.

Poor visibility is identified as a risk factor in

Winkle, Erbsmehl and
Bengler
European Transport
Research Review, 2018

556

Visibility

Weather conditions,
obstacles, other road users,
communication
infrastructure, time of day,
traffic density, road type

This patent offers methods for determining
fault for collisions/accidents involving a
vehicle encompassing one or more
autonomous or semi-autonomous features.
Several influencing factors are identified to
contribute (or cause) theses faults. Namely,

and wind), road conditions and road
infrastructure (e.g. road signs, lane marking
and traffic signals) are mentioned to have
impact on the sensor functionality.

pedestrians, weather conditions (e.g. rain, fog

Konrardy et al.
United States Patent (US
9,805, 423 B1), 2017

557

Visibility

Weather conditions, lighting
conditions, time of day

One of the crucial and challenging tasks for

paper adopts an approach to address this

AVs is to detect the road boundaries and lanes
using vision systems (i.e. visual camera). This

problem despite lighting change and shadows.

Assidiq et al.
Proceedings of the
International Conference
on Computer and
Communication
Engineering, 2008

558

Visibility

Obstacles, sensors, visible
and infrared spectrum
camera), radar, laser-

scanner, sonar, lighting
conditions, weather
conditions, algorithms,
speed, GPS, other road
users, time of day, sensor
fusion, lateral and
longitudinal distance

Obstacle detection is critical to mobile
autonomous systems and too many obstacle
detection systems have been developed so far.

This study classified the main types of
sensors. For a reliable solution, such a system
must operate under varying range of
visibilities, lighting and weather conditions.

Discant et al.
30™ International Spring
Seminar on Electronics
Technology (ISSE), 2007

559

Visibility

Communication, obstacle,
algorithms, motion
planning, velocity,

kinematic state, sensors,
control, cameras

An algorithm is proposed to tackle the
challenge of cooperative motion coordination
of nonholonomic mobile robots facing
visibility and communication constraints in

obstacle environments.

Panagou and Kumar
IEEE Transactions on
Robotics, 2014

560

Visibility

Optical sensors, road
geometry, cameras,
algorithms, CAN, weather
conditions, object detection,
radar, LIDAR, sensor
fusion, machine learning,
vehicle dynamics,
algorithms, kinematic state,
control software, time of
day, road infrastructure,
hardware

This study focuses radar-based technologies
that can gather and transfer road geometry

information (i.e., curvature) to the driver while

the optical sensors are impaired. Optical
sensors are widely used in AVs, but they are
sensitive to weather conditions such as fog
poor visibility conditions (e.g., nigh
illumination).

Lee et al.
IEEE Sensors Journal,
2018

561

Visibility

Sensors, cyber-attacks,
V2V, communication, time-
to-collision, speed control,
human errors, lateral and
longitudinal control, other
road users, traffic
conditions, vehicle dynamic,
traffic flow, weather
conditions

Under the low-visibility conditions (due to
inclement or fog), the sensing distance of
adaptive cruise control (ACC) will be shorter,
which may be from 25 to 250 meter. If the
visibility drops to 25m the collision risk will
slightly increase.

Tuet al.
Journal of Safety
Research, 2019

562

Visibility

Path planning, motion
planning, perception, path
geometry, kinematic
constraint, obstacles,
algorithms, speed

Motion planning is one of the main drivers of
the moving efficiency for an autonomous
agent. It defines how the agent (i.e., vehicle)
moves and interacts with other surrounding
agents. This paper offered a new approach to
exploit Visibility Diagrams and plan the

optimum holonomic paths.

Sedighi et al.
IEEE Intelligent
Transportation Systems
Conference (ITSC), 2019
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563

Visibility

Behaviour generation,
occlusion, obstacles,
sensors, other traffic

participants, road curvature,
reaction time, velocity, trust,

This paper presents an approach that assists
AVs to drive efficiently in scenarios with
occlusions, ensuring safety and comfort. The
visibility risk (VR) represents the collision
risk with possible hidden obstacles in
occlusions and anticipate the predictive VR.
This metric is quantified by forecasting the
scene in the short-term.

Wang, Lopez and Stiller
IEEE 23rd International
Conference on Intelligent
Transportation Systems
(ITSC), 2020

564

Visibility

Perception accuracy,
weather conditions, sensors,
obstacle, radar, LIDAR,
ultrasonic, cameras, far-
infrared, sensor fusion,
localisation, planning,
control, GPS, V2V, V2I,
road infrastructure, speed,
machine learning, other road
users, road geometry, road
conditions, road type, traftic
volume, traffic lanes,
lighting conditions,
hardware and software
architecture, integration,
actuators

This paper investigates the impact of weather
conditions on visibility and subsequently on
the perception accuracy of Intelligent Ground
Vehicles. A fusion perspective is proposed to
augment the reliability and robustness of the
perception module of such vehicles.

Mohammed et al.
Sensors, 2020

565

Visibility

Weather conditions, time
headway, speed, situation
awareness, other road users,
driver experience

Reduced visibility (due to bad weather
conditions e.g. fog) generally led to a shift in
comfortable following distances towards
larger headways. These results have
implications for the introduction of highly
automated vehicles and their time headway
adjustments, which will need to be adaptive to
speed and visibility in the road environment. It
was reported that while there was no
significant difference of comfort ratings
between the fog and the truck condition, there
was a significant interaction of visibility and
speed.

Siebert and Wallis
Transportation Research
Part F, 2019

566

Al performance

Software reliability, time of
day, algorithms, HMI,
control, speed, type of road,
traffic density, computing
hardware reliability

The reliability of Al-based systems is
comprehensively analysed in this paper. It is
asserted that reliability of such systems needs
to be appraised. However, the availability of

reliability data for Al systems is currently
sparse posing challenge to rigorously
evaluating system reliability.

Hong et al.
Working paper, 2021

567

Al performance

Other road users, obstacles,
vision algorithms, machine
learning, perception,
sensors, weather conditions,
hardware reliability,
LiDAR, radar, cameras,
consumer expectation

Applications of Al in safety-critical systems
are most concerning due to any failure can
result in deadly consequences. Transportation
is one of those fields that requires high safety
standards. An example cited in this work is the
fatal collision between a pedestrian and an
Uber self-driving car in Arizona, in 2018.

Cummings
Al Magazine, 2021

568

Al performance

Machine learning, deep
learning, algorithms,
hardware reliability,

maintenance, other traffic
participants, obstacles, road
boundaries, sensor fusion,
temperature, lighting
conditions, weather
conditions

Soft Error Rate (SER) is a critical element of
safety-critical autonomous systems. With Al
algorithms in charge of decision making in
these systems, an essential requirement is to
test and model vulnerabilities of these system
and assess their reliability. This paper is
concerned with soft errors affecting the
reliability of ground/air autonomous systems.

Athavale et al.
50th Annual IEEE/IFIP
International Conference
on Dependable Systems
and Networks Workshops
(DSN-W), 2020

569

Al performance

Weather conditions, speed,
traffic, Human-machine
interactions, public
perception

The Al decisionality in AVs and its
differences with human driving decision-
making is the focus in this article. The authors
maintain that pure statistics are inadequate and
impotent to justify the superiority of Al
decisionality over humans.

Cunneen, Mullins &
Murphy
Applied Artificial
Intelligence, 2019

570

Al performance

Trust, reliance, algorithms,
compliance with traffic rules

This paper centres on the issue of Al
trustworthiness. It is discussed that Al cannot
be trusted with common dominant definitions

of trust.

Ryan
Science and Engineering
Ethics, 2020
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This study centres on the problem of using
operational testing to demonstrate high
reliability for AVs. One of the main
Hardware failure, traffic | challenges to the reliability of AVs is that they
conditions, control, Al, rely on machine learning (ML). “There is an Zhao et al.
1 | AI performance software reliability, road | expectation that AV safety improves as the AV | Journal of Information and
57 P type, road conditions, evolves (i.e. its ML-based core systems Software Technology
roadworks, traffic density, “learn”) with driving experience, or that the (IST), 2020
algorithms AV is deployed in different environments with
different road/traffic conditions, and both
kinds of change will affect the frequency of
failures™.
Software, sensors, control,
HMI, localisation, deep
learning, perception, trust, | It is maintained that AVs must be capable of
interfaces, V2V, V21, V2X, considering the failures or errors of each McAllister et al.
road geometry, sensor component as well as their ultimate impact on Proceedings of the
> | AI performance fusion, LiDAR, radar, visual | the performance of the whole system. This Twenty-Sixth
57 P sensors, infrared, obstacles, | paper discussed open challenges for research International Joint
route planning, motion within the safety, compliance and trust themes | Conference on Artificial
planning, algorithms, in the context of AV safety. Intelligence, 2017
reaction time, weather
conditions, visibility,
perceived risk
Decision-making for AVs can be challenging
under complex urban environments. This
Driving behaviour, dynamic | study developed a rough-set artificial neural
. . R Chen et al.
traffic environment, other network to be trained and learn from highly
573 | Al performance . . . . Journal of Central South
road users, path planning, competent human drivers. Findings of this University. 2017
velocity work can be adopted to address the problem of &y
car-flowing under complex traffic
circumstances.
One of the major obstacles for systems which
benefit from deep learning techniques is Kim et al.
. . acquiring data to train those systems. International Conference
Weather conditions, objects, L. . e .
. i However, for self-driving cars, it takes a lot of | on Atrtificial Intelligence
574 | Al performance | control, lighting conditions, - L. . .
time of da time and cost to get real world driving data. in Information and
Y Lack of enough training data can expose the | Communication (ICAIIC),
vehicle to unforeseen situations and impact its 2019
perception and planning power.
This issue of traffic laws and regulations is
raised by the author as a challenge for the
Traffic rules & performance and adoption of AVs. Besides Kilpatrick
regulations eed, road type, takeover iability and insurance dilemmas, .
575 lati Speed, road type, tak liability and i dil P
.. N . Car magazine, 2020
(enforcement) contradictions in the Highway Code and Road
Traffic Act/Motorway Traffic Regulations
when comes to AD are highlighted.
This study focuses on automatic synthesis of
provably correct controllers for AVs
Traffic composition, static operating in urban environments with .
.. . ‘Wongpiromsarn, Karaman
obstacles, traffic conditions, presence of static obstacles and real-world and Frazzoli
Traffic rules & road conditions, control traffic. The traffic rules are taken into account. .
. . . . . . 14th International IEEE
576 regulations software, kinematic state, For example, collision avoidance, vehicle X
. .. . Conference on Intelligent
(enforcement) number of lanes, speed, separation, speed limit, lane following, .
. X . . X Transportation Systems,
sensors, algorithms, other | passing, merging and intersection precedence
. 2011
road users requirements are the rules that traffic
participants including AVs are supposed to
comply with.
RSU, traffic density, One the main requirements for AVs that is
weather conditions, traffic | specified in this report is compliance of AVs
Traffic rules & | conditions, road conditions, | with the road traffic law. One of the actions
577 regulations technical standards, road for the Government (No. 14) is to “consider DFT. 2015
(enforcement) infrastructure, sensors, appropriate measures to ensure that automated ’
control, speed, other road vehicles are designed to respect road traffic
users law”.
Algorithms, traffic A prOl?ablllSth collision th'reat asse.ssme_nt
conditions. traffic algorithm for AD at road 1pter§ect10ns is Noh )
Traffic rules & composi tion’ time-to- proposed to assess a traffic situation for AVs IEEE/RSJ International
578 regulations collisiotrl) sensor’s other road | €VED if the traffic rules are violated by other | Conference on Intelligent
(enforcement) ? ’ vehicles. Human drivers may not obey traffic Robots and Systems
users, hardware platform, . . )
speed rules and this can be prob!ematlc particularly (IROS), 2018
P at intersections.
It is maintained that the law needs to keep up
with the technology when it comes to self-
Traffic rules & Pedestrian, infrastructure, driving vehicles.it is deemed possible to
resulations LiDAR, radar, ultrasonic change the law as well as infrastructure to Greenblatt
579 (en f%) rcement) sensors, mixed traffic, treat the driverless cars as a benchmark rather IEEE Spectrum, 2016
velocity, weather conditions | than exceptions. Current legal system leaves a
lot of room for uncertainty and this can cause
confusion for developers and users.
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Traffic rules &

Traffic control
infrastructure, driving style,
time of day, socio-
demographic characteristics,

This PhD thesis investigated the effectiveness
of police enforcement on Road Traffic
Accidents. Results indicate that the trend
linking increased police enforcement with

Scott

580 regulations road type, road conditions, | declining ‘Killed and Seriously Injured’ (KSI) PhD Thesis. 2010
(enforcement) | lighting conditions, speed, accident rates. This can be applied to the ?
other road users, weather mixed traffic environment that hosts AVs as
conditions, traffic volume, | both human drivers and AVs will be required
road infrastructure to obey with the traffic rules.
This study investigated the effect of speed
enforcement cameras on the quantity of road
Speed es of road. traffic accidents in the UK. A significant decrease in
Traffic rules & | P& typ i the number of accidents (at all severity levels) | Li, Graham and Majumdar
. flow, traffic control . . .
581 regulations . was recorded in the areas covered by speed Accident Analysis and
infrastructure, road .
(enforcement) L cameras. Speed cameras were reported to be Prevention, 2013
characteristics A . L.
most effective in reducing collisions up to 200
meters from camera sites and no evidence of
accident migration was found.
This article discusses the need for changes in
Traffic rules & - . traffic law enforcement after the AVs hit Cowper and Levi
. Traffic composition, vehicle . . . e
582 regulations control. software control public roads in mass. It is maintained that FBI Law Enforcement
(enforcement) ’ adoption of AVs entails significant Bulletin, 2018
implications for law enforcement.
There are serious worries around the law
Sensors, HD mapping, enforcement in the era of autonomous
network connectivity, speed, | vehicles. Still policymakers and scholars can
human factors, other road | work on this and consider how AVs will affect
Traffic rules & . . Wood
. users, cybersecurity, GPS, police work so that the technology can . .
583 regulations . Northwestern University
(enforcement) obstacles, control, weather | develop in ways that mutually benefit officers Law Review. 2019
conditions, road conditions, | and civilians during police encounters. Several ’
time of day, traffic volume, | risk factors together with consequences of lack
driving style an adapted law enforcement system are further
discussed in this work.
L A io-technical ts, AVs will h Lyaki .
Traffic rules & Communication, ~ As socio-technical agents, AVs will have yakina et al o
. . . important consequences for law enforcement | Contemporary Readings in
584 regulations | infrastructure, cybersecurity, L . . .
(enforcement) other road users. trust and significant upsides for traffic safety. One Law and Social Justice,
i is the compliance of AVs with traffic rules. 2019
One challenge for AVs to plan their motion
without colliding with other road users is that
Other traffic participants, the behaviour of other traffic participants
motion planning, traffic cannot be predicted since traffic participants
behaviour, trajectory are often hidden due to occlusions. A legal
planning, traffic complexity, specification is therefore necessary for
Traffic rules & klnematlc variables, defining which behav1(?u_rs are considered to Koschi and Althoff
. velocity, lateral and be acceptable. It explicitly represents our .
58 5 regulations L . - > IEEE Transactions on
(enforcement) longitudinal dynamics, assumptions based on traffic rules, while the Intelligent Vehicles. 2021
vehicle control, obstacles, degree of conformity to traffic rules can be g ?
environmental constraints, parameterised by the road user. Based on
road configuration, formalized traffic rules and nondeterministic
perception accuracy, motion models, the authors performed
occlusion, traffic behaviour reachability analysis to predict the set of
possible occupancies and velocities of
vehicles, pedestrians, and cyclists.
The need for further research and
improvements on current perception systems
Sensors, V21, V2V, radar, for AVs is highlighted. The possibility of
laser scanner, obstacles, transmitting the collected data from the sensor
algorithms, other road users, | arrays through the wireless communication . .
. . - Jiménez, Naranjo and
86 Perception GPS, actuators, sensor channels is put forward. The criticality of Gomez
5 accuracy fusion, traffic conditions, accurate perception system is even more for Sensors. 2012
kinematic state, road detecting obstacles and assess the risks that ’
geometry, road type, they may pose to the ego vehicle. For this
visibility, purpose, it is discussed how AVs can generate
digital maps to locate obstacles, estimate their
velocity and indicate their directions.
Visibility, software, weather | This paper provides an overview on reliability
conditions, sensors, lighting | and robustness implications of sensors data
conditions, radar, LIDAR, | processing and perception. To ensure a desired
cameras, sensor fusion, road | level of safety for autonomous driving, it is
infrastructure, GPS, path | vital to guarantee a reliable level of quality for
planning, obstacles, road the perception mechanisms. To this end, this
Percention type, road, drowsiness, road | paper detailed critical perception stages and Gruyer et al.
587 accull') acy attributes, traffic density, | provided a presentation of applicable sensors. Annual Reviews in

algorithms, hardware,
software, system integration,
speed regulation,
communication, autonomy
level, control, HMI, H-M
Interface, situation
awareness

To process the information gathered and/or
generated by an array of sensors, the multi-
sensors data fusion algorithms constitute a
mandatory step. Furthermore, the human
factors must be taken into account in the
design of automated driving systems, as it is
suggested in the SAE classification.

Control, 2017
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588

Perception
accuracy

Localisation, planning,
control, software, LIDAR,
sensor, V2V, actuator,
behaviour planning, motion
planning, path planning,
trajectory planning, road
conditions, other road users,
algorithms, GPS, road rules
enforcement, road geometry,
speed, traffic conditions,
radar, ultrasonic sensors,
sensor fusion, system
integration, obstacles, time
to collision, computing
power, lighting conditions

The notion of ‘time integration’ is discussed
in this study which focuses on perception,
planning, control and coordination for AVs. It
is contended that perceiving the surrounding is
a fundamental function which is essential to
enable AD.

Pendleton et al.
Machines, 2017

589

Perception
accuracy

Sensors, perception
accuracy, weather
conditions, algorithms,
LiDAR, Al, static/dynamic
obstacles, pedestrians,
vehicle control, cameras,
time of day, road geometry,
radar, ultrasonic, hardware
architecture, concurrency,

This paper briefly summarises the recent
progress on visual perception algorithms and
their corresponding hardware implementations
for the emerging application of AD.
Algorithm design, hardware design, and
system validation are the main areas discussed
in this study.

Shi et al.
INTEGRATION, the
VLSI journal, 2017

590

Perception
accuracy

Integration, actuators, path
planning, obstacles, sensors,
control, Al, computer
vision, GPS, algorithms,
map matching, localisation,
road infrastructure, traffic
control, road layout, lane
type, road conditions,
communication
infrastructure, LiDAR,
radar, vision sensors,
velocity, vehicle conditions,
weather conditions, urban
environment, hardware and
software, data fusion, mixed
traffic

This paper identifies and discusses the key
technologies which pave the path for AVs to
operate in public traffic. Especial emphasis is
placed on the criticality of perception module

to detect and recognise objects, signs, road

users, etc.

Zhao, Liang and Chen
International of Intelligent
Unmanned Systems, 2018

591

Perception
accuracy

Machine learning, sensory
data, path planning, road
agents, lighting conditions,
weather conditions,
localisation and mapping,
LiDAR, cameras, radar,
sonar, algorithms, occlusion,
obstacles, time of day,
sensor configuration, sensor
fusion, V2X, road
infrastructure, GPS, road
geometry, visibility, vehicle
control,

Accurate perception is vital for AVs to
function reliably. Object detection is central to
the perception module in AVs and it is crucial

to avoid collisions. This paper surveys a 3D
object detection method which is fed by
sensors and datasets. Fusion methods are
discussed too.

Arnold et al.
IEEE Transactions on
Intelligent Transportation
Systems, 2019

592

Perception
accuracy

Sensors, radar, LIDAR
cameras, ultrasonic,
actuators, planning, control,
localisation, motion
planning, behavioural
planning, motion planning,
path trajectory, trajectory
tracking, V2V, GPS, road
type, weather conditions,
road conditions, other road
users, traffic law, traffic
conditions, kinematic states,
integrity of system, system
integration

A systematic review of the perception systems
for AVs is presented in this paper. It discusses
the physical fundamentals, principle
functioning, and electromagnetic spectrum
applied in the most common sensors
embedded in AVs’ perception systems
(ultrasonic, RADAR, LiDAR, cameras, IMU,
GNSS, RTK, etc.).

Rosique et al.
Sensors, 2019

593

Perception
accuracy

Sensors, radar, LIDAR,
weather conditions, GNNS,
GPS, infrared, prebuilt
maps, ultrasonic, camera,
sensor fusion, software,
algorithms, obstacles,
lighting conditions, speed,
visibility, road
infrastructures, traffic

control, V21

This paper examined the effects of diverse
weather conditions on an array of sensors
(e.g., radar, LIDAR, and cameras) used in
AVs. It concluded that despite breakthroughs
in the field of sensory, severe weather
circumstances can obstruct on-board visibility
and adversely affect the performance of
sensors, thereby increasing the probability of
accident.

Vargas et al.
Sensors, 2021
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594

Perception
accuracy

Control, weather conditions,
road infrastructure,
construction zone, other
road users, obstacles,
hardware reliability,
communication, software
reliability, sensors, cameras,
motion planning,
localisation, operator
takeover, reaction time,
HM]I, traffic flow, road
geometry, traffic control
infrastructure, training of
operators, speed limit,
situational awareness, time
of day, trust

This article analysed the around 160,000
disengagement and accident reports involving
AVs in the California Department of Motor
Vehicle’s repository. The disengagements are
classified into six categories. The contributing
factors for each category are highlighted and
discussed.

Boggs, Arvin and Khattak
Accident Analysis and
Prevention, 2020
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Questionnaire:

First of all, | would like to sincerely thank you for agreeing to take part in this short survey and |
appreciate your valuable time. Before starting the survey there are some definitions provided for
the terms used in the survey. Some of those terms are used interchangeably with other terms and
some of them may encompass more than one concept or variable. Therefore, the following
definitions can provide a better insight and clarify the variables used in this questionnaire. In the
meantime, if you feel unsure about what exactly is tried to convey by the terms and words used in
the survey, you are more than welcome to contact the researcher (s.toliyat@soton.ac.uk) and
discuss your concerns.

Please note that all the questions are designed with respect to SAE Level 4 of automation in urban
environments, so please adjust your answers to that level when answering the questions. The
sum of assigned weights in each question must add up to 100%. There are also a set of
assumptions:

e Autonomous vehicles (AVs) must comply with the traffic rules.

e AVs are sharing the roads with other road users (e.g. pedestrians, cyclists, etc.) and can
encounter any obstacles (e.g. temporary road signs like cones) that human drivers may do
while driving.

e We are assessing the risks based on the current level and maturity of available
technologies deployed in AVs.

e |tis also assumed that main communication channels for AVs (i.e., V2V, V2l and V2X) are
enabled.

Definitions:

Road configuration: this refers to the geometric characteristics (e.g. length of curves, slop or
gradient and ramp type) as well as the layout of road infrastructure such traffic signs and lights,
curbs, humps and roadside vegetation.

Visibility: this variable concerns with the quality of visibility for both human drivers and vision
cameras mounted on AVs and quantity (length and splay) which can be affected by several factors
such as adverse weather conditions, time of day, geometric characteristics of a road and road
infrastructure (lights).

Lighting conditions: the lighting conditions of any given road can vary depending on the time of
day. This variable is designed to convert time of day to quality of light (e.g. daylight, dark and
dawn) for any roads.

Weather condition: comprises of 6 different states: clear (sunny), windy, rainy, snowy, foggy,
dusty.
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Road infrastructure: the equipment and facilities which are essential for safe driving in urban
areas including road signs, traffic lights, lane markings, lighting equipment, appropriate surface
etc.

Obstacles: dynamic and static obstacles can appear on the way of both conventional and
autonomous cars and pose a risk to the operation of the vehicle. A moving trolly, flying plastic bag
or big waste bin can be examples.

Work zones: areas designated to road maintenance or construction sites which encroach and
occupy some areas of roads,

Road condition Risk Index (RI): this variable is aimed to capture the risk that may arise from the
environment (public urban roads) that AVs are supposed to travel.

Reaction time RI: time is a critical factor for human drivers to (re)act and avoid a collision when
facing a hazardous situation. There are number of factors which can affect this variable as the
outcome of human factors affecting the safety of AVs.

Traffic complexity RI: the more complex traffic scenarios can increase the probability of collision
and affect the safe operation of AVs. This variable was therefore designed to aggregate the effect
of the human factors which can influence the risk of collision for SAE Level 4 AVs.

Technical reliability RI: this variable refers to both software and hardware competence and
reliability of AVs to operate in urban environments. Reliability of components such as sensors,
algorithms, data processors, control systems and equipment, actuators and communication
channels, etc. is called into question here.

Situation(al) awareness: the situation awareness of human drivers is of concern here. Although in
SAE level 4 the majority of driving tasks are performed by the AV, drivers may be required to take
over the control while the AV is disengaged.

Trust and reliance: the level of trust that a user (i.e., human driver) has in the safety of AVs and
subsequently adjusts his/her reliance on the vehicle.

Perceived risk: the level of safety risk perceived by the users (human drivers on board).

Human-machine interaction (HMI): lack of appropriate and timely HMI can lead to accidents. This
variable was incorporated into the model to measure the quality and ease of interactions
between the human drivers and AVs through embedded interfaces.

Other road users: includes pedestrians, human driven vehicles (HDVs), cyclists, motorcycles,
animals, etc.

Day of week: weekdays or weekends

Kinematic state: the kinematic state of vehicles in this research is defined in terms of their speed,
longitudinal and lateral distance from the nearby vehicles (or obstacles).

Traffic composition: the mixture of AVs and HDVs (hybrid), only AVs, or only HDVs

Traffic culture (style): this varies from country to country and city to city. In different areas
(according to research) drivers mostly adopt conservative, moderate or aggressive driving styles.

Al performance: refers to the capability and maturity of machine learning, deep learning
algorithms, artificial neural networks and other Al-based algorithms used in the perception and
planning modules of the vehicle.

System integration: since the components, parts and pieces of software may come from different
OEMs or software developers, integration of these elements plays a substantial role in preventing
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failures and minimising errors. As a result, this variable was inserted in the model to assess the
level of integration between those components and measure their influence on the technical
reliability of AVs.

Environmental factors:

1. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the ‘road configuration’ suitability for the AVs. The sum of weights must add up to
100%.

Road type (single carriageway, dual carriageway and motorway) ........cceeeeveevervnnne.

Number of lanes (one, two, and multiple) .......cccccoeverenenieee.

2. Assign a respective weight (out of 100%) to the following factors regarding their impact
on the ‘visibility’ index (sight quality) of AVs.
Lighting conditions ........ccececeeevevenene.

Road configuration .........cccceveverenee..
Weather conditions .......cccccceevevvveennen.
Road infrastructure .......ccccocvevvenvennen.

3. Assign a respective weight (out of 100%) to the following factors regarding their impact
on the probability of presence of an (disruptive) ‘obstacle’ on the way of AVs in urban
environments.

Work zones (e.g., construction or road maintenance) .........cccceceeueevevnnne

Road configuration .........cccceevevevveeenen.

4. Assign a respective weight (out of 100%) to the following factors regarding their impact
on the ‘road condition RI’ for AVs.
Presence of obstacles .......ccccoeeeerrennne.

Visibility .ooooeeeeeeeeiereene,

Road configuration .........ccccevevereneen.
Road infrastructure ......cc.ccceeeeereennen.
Weather conditions ........ccccevvreeunneen

5. Assign a respective weight (out of 100%) to the following factors regarding their impact
on the ‘collision RI’. Reaction time refers to the average time that takes for a human
driver to react to a potential hazard.

Road condition Rl ......ccceevvevrnircnnns

Traffic complexity Rl .....ccocueuevereerennnnee.
Reaction time Rl ....ccccovvvevvveveriennnee

Technical reliability Rl .....ccoeveevereeeens

208



Appendix B

Human factors:

1. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the drivers’ ‘situation awareness’ in SAE 4 automated driving. The sum of weights must
add up to 100%.

Drowsiness .......cccceveeereeucenen.

Training & exXperience ......cvevveeveeveenee
Engagement in secondary (non-driving) task .........ccccecevveeennee.

2. Assign a respective weight (out of 100%) to the following factors regarding their impact on
the ‘trust & reliance’ level of AV users.
Perceived risks .....ccocoveveenecernnnns

Training & eXperience ......cvevvevceeveenne

3. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘human-machine interaction (HMI)’ in the context of AVs.
Trust & reliance ......ccceveevevervnene.

Human-machine interfaces ......ccoceeevvvvvvenee..

4. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘reaction time RI'.
Perceived risks ......cc.cccvvvevvrvernnne

5. Assign a respective weight (out of 100%) to the following factors regarding their impact on
the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to
react to a potential hazard.

Road condition Rl ......ccccccuvveerirneninee.

Traffic complexity Rl ......ccceveverrenennnen.
Reaction time Rl ....ccccccvvevvveeieenns

Technical reliability Rl .....cccovvvvvveeeenne.
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Traffic factors:

1. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the probability of encountering ‘other road users’ (e.g., pedestrians, HDVs, cyclists and
buses) for an AV. The sum of weights must add up to 100%.

Day of week ....cccevveeievieinns

Traffic rule enforcement .......ccccovvvveenennene
Traffic control infrastructure .........coceeeevveeneenee.

2. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘traffic density’.
Day of week ....ccccevveeeerienes

Traffic control infrastructure ........occvvevvevnnenne.

3. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘speed’ adopted by drivers.
Traffic rule enforcement .......ccccvveeeevenenne..

Traffic control infrastructure ......c.cceecevvevvvenne..

4. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘kinematic state’ of AVs.
Traffic rule enforcement .......ccccvveveeeenenne..

5. Assign a respective weight (out of 100%) to the following factors regarding their influence
on ‘Traffic complexity RI’ for AVs.
Traffic density ....coceveeeieverinnnen.

(Presence of) other road users .........cccoeeveeeuennees
Traffic composition .........ccceveveeeeneee..

Traffic culture ..o

Kinematic state ...c.cccevevevrvrcnnns

6. Assign a respective weight (out of 100%) to the following factors regarding their impact on
the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to
react to a potential hazard.

Road condition Rl ......ccoeceviveercnnennns

Traffic complexity Rl ......c.cccvevereenenne.
Reaction time Rl ....cccecevvvevveinennens

Technical reliability Rl .....cccccoveveeeens
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Technical factors:

1. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the probability of failure in the ‘perception’ module (e.g., detecting/recognising an
object, estimating the distance/velocity/direction, detecting road signs, etc.) for SAE level 4
AVs. The sum of weights must add up to 100%.

ViSion CamMeras ....cccoeceveveeeeveens

Sensor fuSion ....ceeveeeeeevercnnen..

2. Assign a respective weight (out of 100%) to the following factors regarding their share in the
‘software’ module failures for SAE level 4 AVs.
Al (e.g. machine learning) performance ........cccccoeveveeeee.

Behaviour generation .......cccccceeveverennenen.
Planning ....cccceoevevevverecnnns
Software control systems ........ccceeeeeeevernennnn.

3. To what extent each of the following communication and data transferring channels feed
data to the AVs. Assign a respective weight (out of 100%) to each of the following channels.

4. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the ‘reliability of communication’ in SAE level 4 AVs.
Communication infrastructure ..........cccecevvveerennene.

Cybersecurity ......ccoeeveveveeneennns
Communication channels .......cocoeeeivveiinenns

5. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the ‘hardware reliability’ in SAE level 4 AVs.
Control equipment .......ccevvveiviennnnn.

Self-awareness .......cooceeevveveeseennns

6. Assign a respective weight (out of 100%) to the following factors regarding their influence
on the ‘technical reliability’ of AVs at SAE level 4.
Perception accuracy (and reliability) .......cccccoceeeeeeennenens

Software reliability ........cccoeevvvveeeenennn..

Communication reliability .......ccoceeeeveevennnnnen.
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System integration .......ccecveecevvenn.
Hardware reliability .......cccoceevvevennnnnen.

7. Assign a respective weight (out of 100%) to the following factors regarding their impact on
the ‘collision RI’. Reaction time refers to the average time that takes for a human driver to

react to a potential hazard.
Road condition Rl .......ccccvvvververvennene.

Traffic complexity Rl .....ccooveveivereeenen.
Reaction time Rl .......cccecvvcvervnnennen.

Technical reliability Rl .....cccvevvvveveerneee.
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Appendix € Southampton
Consent form

I, the undersigned, confirm that (please tick box as appropriate):

| have read and understood the information about the project, as provided in
the Information Sheet dated ().

| have been given the opportunity to ask questions about the project and my

participation ().

| voluntarily agree to participate in the project ().

| understand that | can withdraw at any time without giving reasons and that |
will not be penalised for withdrawing nor will | be questioned on why | have

withdrawn ().

The procedures regarding confidentiality have been clearly explained (e.g.

use of names, pseudonyms, data, etc.)tome ().

If applicable, separate terms of consent for interviews/surveyees, audio,
video or other forms of data collection have been explained and provided to

me( ).

The use of the data in research, publications, sharing and archiving has

been explainedtome ().

| understand that other researchers will have access to this data only if they
agree to preserve the confidentiality of the data and if they agree to the

terms | have specified in this form ().

Select only one of the following:

| would like my name used and understand what | have said or written as
part of this study will be used in reports, publications and other research
outputs so that anything | have contributed to this project can be

recognized ().

* | do not want my name used in this project ().

I, along with the Researcher, agree to sign and date this informed consent

form ().
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Participant:

Name of Participant: ........................ Signature ...l Date
Researcher:

Name of Researcher: ........................ Signature ...l Date

Participant Information Sheet

Study Title: Assessing safety risks for autonomous vehicles in urban environments

Researcher: Seyed Mohammad Hossein Toliyat

ERGO number: 63032

You are being invited to take part in the above research study. To help you decide
whether you would like to take part or not, it is important that you understand why the
research is being done and what it will involve. Please read the information below
carefully and ask questions if anything is not clear or you would like more information
before you decide to take part in this research. You may like to discuss it with others, but
it is up to you to decide whether to take part or not. If you are happy to participate you
will be asked to sign a consent form.

What is the research about?

This research is undertaken by Seyed Toliyat, a PhD candidate at the University of
Southampton as a PhD thesis.

This research is about developing a risk assessment model to estimate associated safety
(collision) risks that autonomous vehicles (AVs) may encounter while operating in urban
environments. The objectives are:
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» |dentify variables that can influence the collision risks of AVs in urban environments.
* Integrate the identified variables into a risk (uncertainty) quantification model.

» Extract expert knowledge and judgements to inform the model in terms of the
strengths of links between the variables.

» Evaluate the sensitivity of the outcome (collision risk) to the identified variables.

All participants will receive an electronic copy of the questionnaire via email.

Why have | been asked to participate?

As data for the performance of autonomous vehicles in urban environments are scarce,
incomplete, and unavailable due to the commercial nature, knowledge of experts is
required to inform some aspects of the model developed in this study. All participants
should be domain experts in the relevant contexts e.g. human-machine interactions,
artificial intelligence, urban traffic, etc. Participants are required to assign respective
weights to the relationship between influential variables in the model.

What will happen to me if | take part?

All participants will receive an electronic copy of the questionnaire via email. All
communications will be via email. There are four questionnaires designed for each area of
expertise. Every expert will be required to answer only questionnaire which will not take
more than 10 minutes. Each questionnaire includes 5-7 questions (depending on the
expertise domain).

This survey will last at least two months. However, there will be a one-week allowance for
the participants to return completed questionnaires since they receive them. There will be
no harmful, stressful or private questions and information being collected. There will be
no negative consequences in any forms.

Are there any benefits in my taking part?

This research is expected to contribute to the safety of autonomous vehicles (AKA
driverless and self-driving cars) and provide insights for policymakers, insurers, urban
designers and planners, technology developers and traffic planners. You will also be
provided with the findings of the research upon your request.

Are there any risks involved?

This research contains no risk in any forms.

Will my participation be confidential?
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The experts will remain anonymous and their identities will be kept strictly confidential.

Only members of the research team and responsible members of the University of
Southampton may be given access to data about you for monitoring purposes and/or to
carry out an audit of the study to ensure that the research is complying with applicable
regulations. Individuals from regulatory authorities (people who check that we are
carrying out the study correctly) may require access to your data. All of these people have
a duty to keep your information, as a research participant, strictly confidential.

Do | have to take part?

No, it is entirely up to you to decide whether or not to take part. If you decide you want to
take part, you will need to sign a consent form to show you have agreed to take part.

What happens if | change my mind?

You have the right to change your mind and withdraw at any time without giving a reason
and without your participant rights being affected.

If you withdraw from the study, we will keep the information about you that we have
already obtained for the purposes of achieving the objectives of the study only.

What will happen to the results of the research?

Your personal details will remain strictly confidential. Research findings made available in
any reports or publications will not include information that can directly identify you
without your specific consent.

Where can | get more information?

If there is any questions, doubts and further information you would like to acquire about
this research, you can contact via Email: s.toliyat@soton.ac.uk or via MS Teams.

What happens if there is a problem?

If you have a concern about any aspect of this study, you should speak to the researchers
who will do their best to answer your questions. You can contact via Email:
s.tolivat@soton.ac.uk or via MS Teams.

216


mailto:s.toliyat@soton.ac.uk
mailto:s.toliyat@soton.ac.uk

Appendix C

If you remain unhappy or have a complaint about any aspect of this study, please contact
the University of Southampton Research Integrity and Governance Manager (023 8059
5058, rgoinfo@soton.ac.uk).

Data Protection Privacy Notice

The University of Southampton conducts research to the highest standards of research
integrity. As a publicly-funded organisation, the University has to ensure that it is in the
public interest when we use personally-identifiable information about people who have
agreed to take part in research. This means that when you agree to take part in a
research study, we will use information about you in the ways needed, and for the
purposes specified, to conduct and complete the research project. Under data protection
law, ‘Personal data’ means any information that relates to and is capable of identifying a
living individual. The University’s data protection policy governing the use of personal
data by the University can be found on its website
(https://www.southampton.ac.uk/legalservices/what-we-do/data-protection-and-foi.page).

This Participant Information Sheet tells you what data will be collected for this project and
whether this includes any personal data. Please ask the research team if you have any
questions or are unclear what data is being collected about you.

Our privacy notice for research participants provides more information on how the
University of Southampton collects and uses your personal data when you take part in one
of our research projects and can be found at
http://www.southampton.ac.uk/assets/sharepoint/intranet/ls/Public/Research%20and%?2
Olntegrity%20Privacy%20Notice/Privacy%20Notice%20for%20Research%20Participants.pdf

Any personal data we collect in this study will be used only for the purposes of carrying
out our research and will be handled according to the University’s policies in line with
data protection law. If any personal data is used from which you can be identified directly,
it will not be disclosed to anyone else without your consent unless the University of
Southampton is required by law to disclose it.

Data protection law requires us to have a valid legal reason (‘lawful basis’) to process and
use your Personal data. The lawful basis for processing personal information in this
research study is for the performance of a task carried out in the public interest. Personal
data collected for research will not be used for any other purpose.

For the purposes of data protection law, the University of Southampton is the ‘Data
Controller’ for this study, which means that we are responsible for looking after your
information and using it properly. The University of Southampton will keep identifiable
information about you for 1 year after the study has finished after which time any link
between you and your information will be removed.

To safeguard your rights, we will use the minimum personal data necessary to achieve our
research study objectives. Your data protection rights - such as to access, change, or
transfer such information - may be limited, however, in order for the research output to
be reliable and accurate. The University will not do anything with your personal data that
you would not reasonably expect.
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If you have any questions about how your personal data is used, or wish to exercise any
of your rights, please consult the University’s data protection webpage
(https://www.southampton.ac.uk/legalservices/what-we-do/data-protection-and-foi.page)
where you can make a request using our online form. If you need further assistance,
please contact the University’s Data Protection Officer (data.protection@soton.ac.uk).

Thank you.
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