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ABSTRACT
In this paper, we perform the exact diagonalization of a light–matter strongly coupled system taking into account arbitrary losses via both
energy dissipation in the optically active material and photon escape out of the resonator. This allows us to naturally treat the cases of couplings
with structured reservoirs, which can strongly impact the polaritonic response via frequency-dependent losses or discrete-to-continuum
strong coupling. We discuss the emergent gauge freedom of the resulting theory and provide analytical expressions for all the gauge-invariant
observables in both the Power–Zienau–Woolley and the Coulomb representations. In order to exemplify the results, the theory is finally
specialized to two specific cases. In the first one, both light and matter resonances are characterized by Lorentzian linewidths, and in the
second one, a fixed absorption band is also present. The analytical expressions derived in this paper can be used to predict, fit, and interpret
results from polaritonic experiments with arbitrary values of the light–matter coupling and with losses of arbitrary intensity and spectral
shape in both the light and matter channels. A Matlab code implementing our results is provided.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077950

I. INTRODUCTION

The interaction between discrete energy levels and degrees of
freedom with continuum spectra is crucial to the description of any
real-world quantum system in which the coupling with the envi-
ronment eventually leads to energy and information leakage. While
many powerful perturbative open quantum system approaches have
been developed,1 non-perturbative diagonalization is possible using
a procedure developed by Fano.2 In his landmark paper, Fano con-
sidered the problem of one discrete level coupled to one continuum.
In the same paper, he then moves to consider the cases of multi-
ple discrete levels coupled to one continuum and of one discrete
level coupled to multiple continua, showing that both cases can be
reduced to the initial one. A short summary of Fano’s approach and
its generalizations is given in Appendix A.

One important application of Fano’s theory in the many dis-
crete levels-one continuum case is light interacting with a dissipative
dielectric, originally developed by Huttner and Barnett (HB).3 In

such a formalism, light with a well-defined momentum and polar-
ization propagating in a bulk dielectric is represented in second
quantization as a harmonic oscillator. The light is coupled with a dis-
crete optical resonance of the material, itself modeled as a harmonic
degree of freedom and coupled to a harmonic reservoir leading
to dissipation. By diagonalizing the light–matter Hamiltonian, one
finds two hybrid polaritonic branches, which in the following we
will call lower (−) and upper (+) polaritons, coupled to a reservoir
through their matter component. As expected, the more matter-like
the polariton, the larger losses it will incur, with pure photons very
detuned from the material resonance propagating unimpeded in the
dielectric.

Complications arise in systems with boundaries, as traditional
cavity quantum electrodynamics (CQED) setups or surface modes.
An HB-like diagonalization can still be performed in real space
if the photons are supposed to be perfectly trapped in a finite
volume,4 but in the general case a novel dissipation pathway opens,
this time linked with the photonic component of the polaritons:
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Photons can escape out of the system coupling with the free-space
photonic continuum.

Such a setup is thus described by two discrete resonances
(the photons and the optically active resonance) coupled to two
different continua (the material reservoir and the continuum of
free-space photons). This case was not explicitly treated in Fano’s
original paper, and as we will see, it is not possible to trivially
apply the method adopted in the other cases. Still, various approx-
imate approaches have been developed to deal with open CQED.
Input–output approaches integrate out the system in order to
describe relations between the incoming and outgoing fields.5–7

Master equations integrate out the environment,8,9 or at least most
of it,10 to describe the internal system dynamics. Some approaches
exactly solve the coupling with the propagative electromagnetic field
(radiative broadening) while describing phenomenologically matter
losses.11,12 It is also possible to use quasinormal mode quantization
in order to quantize directly the lossy electromagnetic field.12–14

This large interest is motivated by the increasing experimental
relevance of a rigorous treatment of lossy CQED systems, includ-
ing the impact of frequency-dependent structured environments.
Ever larger values of the light–matter interaction energy15 have in
fact allowed us to access non-perturbative coupling regimes as the
ultrastrong16–19 or the very strong ones.20,21 In these regimes, the
polaritonic modal shifts are comparable to other energy scales, and
frequency-independent approximation can dramatically fail. In par-
ticular, polaritonic discrete resonances can interact with continua,
with multiple theoretical22–26 and experimental27–30 efforts having
studied the possibility of strong coupling taking the continuum into
account.

An analytical solution extending Fano’s approach would be
useful in this context, in order to be able to study the quantum prop-
erties of systems in the presence of generic couplings, environments,
and loss channels. It would allow for quantitative modeling of the
line shape of plasmonic systems once the loss channels in the metals
are known.31 Such an approach was derived in Ref. 32 to calculate
the quantum properties of the ground state at arbitrary values of
the system–reservoir coupling. In this work, it was shown how an
unphysical degree of freedom appears in the theory due to the pres-
ence of two coupling continua, and how a solution can be obtained
through an arbitrary gauge fixing. The method has also been more
recently used in Ref. 30 to reproduce experimental data in which
polaritonic nonlocality created a broad absorption band above the
bare photonic frequency.

Our aim in this paper is to improve such a contribution
and develop a full, general, and useable analytic theory for polari-
tonic systems with arbitrary couplings to the environment. Such
an improvement will take four different forms. The first and non-
negligible one is that the theory will be clearly laid down in the paper,
while in Refs. 30 and 32 the derivation is at most sketched. The sec-
ond, more important reason is that the pure gauge nature of the extra
degree of freedom was not proven but only assumed. The third is
that the theory was developed in the Coulomb representation, which
has since been shown to be not always correct at arbitrarily large
coupling strengths33–35 for systems in which only a few material res-
onances are considered. Finally, the theory previously used, although
applicable to model reservoirs of arbitrary spectral shapes, requires a
renormalization procedure. It is thus not directly applicable to cases
beyond the presence of a simple Lorentzian broadening.

In this paper, we will implement these improvements by
developing explicitly the theory for the diagonalization of the
light–matter system in the Power–Zienau–Woolley (PZW) repre-
sentation, describing the interaction between the polarization field P
and the electric displacement D. We will demonstrate that an exact
diagonalization of the problem for arbitrary couplings and environ-
ments is possible, and we will provide analytical expressions for the
physical observables. Most importantly, these expressions will be
gauge-invariant, not depending upon the extra degrees of freedom.
Our results will thus provide proof of the approach from Ref. 32,
while demonstrating gauge fixing is not necessary. Finally, we will
provide a recipe to add arbitrary frequency-dependent reservoirs.
Given this work’s technical nature, we describe the calculations in
detail. The equivalent results for the Coulomb representation are
reported for completeness in Appendix C. All the mathematical
symbols used are listed in Table I.

The paper is organized as follows: In Sec. II, we introduce and
diagonalize the dissipationless polaritonic Hamiltonian. This will be
useful in introducing the problem and extracting the discrete polari-
tonic dispersion, which we will then use to interpret the results of
the dissipative theory. Note that in this paper we will always start
from Hamiltonians. Their derivation from Lagrangians can be found
in Ref. 4 for the PZW case and in Ref. 3 for the Coulomb case.
In Sec. III, we introduce the light and matter reservoirs and we
independently diagonalize the light and matter sectors of the full
Hamiltonian into a broadened matter resonance interacting with a
broadened photonic one. In Sec. IV, we solve the full Hamiltonian,
describing the problem with gauge ambiguities, and derive expres-
sions for the gauge-invariant observables. In Sec. V, we specialize the
model to the case of Lorentzian resonances. In Sec. VI, we provide
the recipe to add arbitrary reservoirs to the Lorentzian broadening
and present the results in the case of a fixed absorption band.

II. DIAGONALIZATION IN THE LOSSLESS CASE
We start here by introducing and diagonalizing the lossless

Hamiltonian for a photon field of dispersion ωk indexed by the
composite wavevector index k, which also incorporates polarization
and all other relevant conserved quantum numbers. Such a field
is described by the bosonic annihilation operator ak coupled to a
matter excitation, of fixed frequency ωx, described by the bosonic
annihilation operator bk. We neglect here nonlocality due to the
dispersion of the material resonance.30,36,37

The PZW light–matter Hamiltonian for the system described
above is

HLM =∑
k
(ωka†

kak + ωx b†
kbk) +∑

k

g2

ωx
[b†

k + bk]
2

+ i∑
k

g
√

ωk

ωx
[a†

k − ak][b
†
k + bk], (1)

with g being the resonant light–matter coupling strength and the
operators obeying bosonic commutator relations,

[ak, ak′] = [bk, bk′] = δk,k′ , (2)

where δk,k′ is the Kronecker delta, and here and in the following, we
will consider h = 1. The second term in Eq. (1) is the square P2 term,
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TABLE I. The table lists all the variables and constants used throughout the article, specifying their dependence on wavevectors and frequencies, and the equations in which
they are first used.

Symbol Description Depending on
First appearance in
(equation number)

k Composite wavevector index (1)
ωk Bare photon frequency k (1)
ak Photon annihilation operator k (1)
ãk Rotated photon operator k (C3)
ωx Bare matter frequency (1)
bk Matter annihilation operator k (1)
b̃k Rotated matter annihilation operator k (3)
g Light–matter coupling strength (1)
ω̃x Matter frequency renormalized by the diamagnetic term (1)
ω±,k Polariton frequencies k (8)
αk Photonic reservoir annihilation operators k and ω (9)
βk Matter reservoir annihilation operators k and ω (9)
Vk Photonic reservoir interaction function k and ω (11)
Q Matter reservoir interaction function ω (12)
ω̄k Photon frequency renormalized by the reservoir k (14)
ω̄x Matter frequency renormalized by the reservoir k (14)
Ak Broadened photon operator k and ω (15)
xk, zk Photonic mode Hopfield coefficients k and ω (15)
yk,wk Photonic reservoir Hopfield coefficients k, ω and ω′ (15)
γk Unknown function k and ω (21)
χk Self-energy term for the photonic reservoir k and ω (24)
Bk Broadened matter operator k and ω (25)
x, z Matter mode Hopfield coefficients ω (25)
y,w Matter reservoir Hopfield coefficients ω, ω′ (25)
t Self-energy term for the matter reservoir ω (27)
ζk Expansion coefficient of the photonic field k and ω (29)
η Expansion coefficient of the matter field ω (29)
Pk,j Polariton operator k, branch j = ± and ω (32)
x̄k,j, ȳk,j, w̄k,j, z̄k,j Polariton Hopfield coefficients k, branch j = ± and ω, ω′ (32)
Kk,j Integral function of the photonic coefficient k, branch j = ± and ω (35)
Jk,j Integral function of the matter coefficient k, branch j = ± and ω (35)
Z Integral function of ∣η(ω)∣ k and ω (36)
Wk Integral function of ∣ζk(ω)∣ k and ω (36)
Xj,k, Yj,k, Zj,k, Wj,k Hopfield coefficients of broadened polaritons k, branch j = ± and ω (41)
γP Photonic reservoir loss rate (50)
ωP Photonic reservoir cut-off frequency (50)
γM Matter reservoir loss rate (50)
ωM Matter reservoir cut-off frequency (50)
V1

k Interaction function between the light and absorption band k and ω (54)
κ Interaction strength to the reservoir (55)
ω̄k Photonic frequency renormalized by the reservoir and continuum k (55)
ω̃k Photonic frequency renormalized by the continuum k (57)
F Normalized coupling density to the reservoir ω (55)
Ωk Effective central frequency for the added reservoir k and ω (61)
Γ Effective loss rate ω (61)

which can be removed by performing a Bogoliubov rotation of the
matter component of the Hamiltonian,

b̃k =
ω̃x + ωx

2
√

ω̃xωx
bk +

ω̃x − ωx

2
√

ω̃xωx
b†

k , (3)

with renormalized matter frequency

ω̃2
x = ω2

x + 4g2, (4)

where the rotated operators still obey bosonic commutation
relations,

[b̃k, b̃†
k′] = δk,k′ . (5)
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The Hamiltonian in Eq. (1) then takes the simpler form

HLM =∑
k
(ωka†

ka + ω̃x b̃†
k b̃k) + i∑

k
g
√

ωk

ω̃x
[a†

k − ak][b̃
†
k + b̃k]. (6)

The secular equation of such a Hamiltonian reads

ω2
− ω2

k =
4g2ω2

k
ω2 − ω̃2

x
, (7)

leading to the frequencies of the two polariton branches (±) for each
value of the wavevector k,

ω±,k =
1
√

2

√

ω2
k + ω̃2

x ±
√

(ω2
k − ω̃2

x)
2 + 16g2ω2

k. (8)

III. DIAGONALIZATION OF PHOTONIC AND MATTER
RESERVOIRS

We now pass to introduce the dissipation in the picture by
defining two reservoirs in which photons and matter excitations
can be lost. Those reservoirs, which model, respectively, the con-
tinuum of free-space photons and the continuum of phononic and
electronic degrees of freedom in the material, are modeled as ensem-
bles of harmonic oscillators indexed by the continuum frequency ω.
Their annihilation operators are αk(ω) and βk(ω) respectively, with
bosonic commutator relations,

[αk(ω), α†
k′(ω

′
)] = [βk(ω), β†

k′(ω
′
)] = δk,k′δ(ω − ω′). (9)

The total Hamiltonian now takes the form

HT = Hg +HPB +HMB (10)

with the Hamiltonians for the photonic and matter sectors and their
interaction in the form

HPB =∑
k
[ω̄ka†

kak + ∫ dωωα†
k(ω)αk(ω) +

1
2∑k
∫ dω(a†

k + ak)

× (Vk(ω)α
†
k(ω) + V∗k (ω)αk(ω))], (11)

HMB =∑
k
[ω̄xb̃†

k b̃k + ∫ dωωβ†
k(ω)βk(ω) +

1
2 ∫

dω(b̃†
k + b̃k)

× (Q(ω′)β†
k(ω

′
) +Q∗(ω′)β(ω′))], (12)

Hg = i∑
k

g
√

ω̄k

ω̄x
[a†

k − ak][b̃
†
k + b̃k], (13)

where Vk(ω) and Q(ω) are the interaction functions modeling the
interaction of, respectively, the photonic mode and the matter exci-
tation with their respective reservoirs, and the bare light and matter
resonances are dressed by the coupling as

ω̄2
k = ω2

k + ∫

∞

0
dω
∣Vk(ω)∣2ω̄k

ω
,

ω̄2
x = ω̃2

x + ∫

∞

0
dω
∣Q(ω)∣2ω̄x

ω
.

(14)

The frequency shifts in Eq. (14), usually referred to as Lamb shifts
due to their similarity with the well-known atomic physics effect,
can be derived from the Lagrangian of a discrete resonance linearly
coupled with a continuum, as done in Ref. 3.

We can diagonalize the photonic Hamiltonian HPB in Eq. (11)
introducing the bosonic operators describing broadened photons
Ak(ω), written as linear superposition of the uncoupled operators,

Ak(ω) = xk(ω)ak + zk(ω)a
†
k + ∫ dω′[yk(ω, ω′)αk(ω

′
)

+wk(ω, ω′)α†
k(ω

′
)], (15)

whose coefficients can be found via HB diagonalization, illustrated
in more detail in Appendix B. We will generally refer to the coeffi-
cients of the linear decompositions of bosonic operators as Hopfield
coefficients.38 From the eigenequation

ωAk(ω) = [Ak(ω), HPB], (16)

the resulting system reads

xk(ω)(ω − ω̄k) =
1
2∫

∞

0
dω′[yk(ω, ω′)Vk(ω

′
) −wk(ω, ω′)V∗k (ω

′
)],

(17)

zk(ω)(ω + ω̄k) =
1
2∫

∞

0
dω′[yk(ω, ω′)Vk(ω

′
) −wk(ω, ω′)V∗k (ω

′
)],

(18)

yk(ω, ω′)(ω − ω′) =
1
2
[xk(ω) − zk(ω)]V

∗
k (ω

′
), (19)

wk(ω, ω′)(ω + ω′) =
1
2
[xk(ω) − zk(ω)]Vk(ω

′
). (20)

Such a system cannot be trivially solved eliminating one-by-one its
unknowns because under the hypothesis that the eigenfrequency ω
falls into the photonic reservoir continuum, there will always be a
value of ω′ = ω, which makes the left-hand-side of Eq. (19) van-
ish. This is in stark contrast with the discrete case in which coupled
modes are never degenerate with bare resonances.39,40 The system
can, nevertheless, be solved in the distribution sense as

yk(ω, ω′) = [P(
1

ω − ω′
) + γk(ω)δ(ω − ω′)]

×
1
2
[xk(ω) − zk(ω)]V

∗
k (ω

′
), (21)

where P is the principal value and γk(ω) is an unknown function,
which can be fixed by imposing the bosonic commutation relation

[Ak(ω), A†
k′(ω

′
)] = δk,k′δ(ω − ω′). (22)
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The need to introduce the unknown function γk(ω) stems from the
fact that yk(ω, ω), function of ω and k, is not determined by Eq. (19)
as its left-hand-side identically vanishes.

After some manipulations, we can solve the system in
Eqs. (17)–(20) arriving at the following expressions for the coeffi-
cients

xk(ω) =
ω + ω̄k

2
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

zk(ω) =
ω − ω̄k

2
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

yk(ω, ω′) = δ(ω − ω′) +
ω̄k

2
Vk(ω′)

ω − ω′ − i0+
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

wk(ω, ω′) =
ω̄k

2
Vk(ω′)
ω + ω′

Vk(ω)
ω2 − ω̄2

kχk(ω)

(23)

with

χk(ω) = 1 −
1

2ω̄k
∫

∞

−∞
dω′

Vk(ω′)
ω′ − ω + i0+

, (24)

and we defined Vk(ω) the odd analytic extension of ∣Vk(ω)∣2 in the
negative frequency range.

Exactly, the same procedure can be applied to the Hamiltonian
in Eq. (12) describing the matter sector HMB, by introducing the
bosonic operator for the broadened optically active resonance,

Bk(ω) = x̄(ω)b̃k + z̄(ω)b̃†
k + ∫ dω′[ȳ(ω, ω′)βk(ω

′
)

+ w̄(ω, ω′)β†
k(ω

′
)]. (25)

The solution is in the analogous form

x̄(ω) =
ω + ω̄x

2
Q(ω)

ω2 − ω̄2
xt(ω)

,

z̄(ω) =
ω − ω̄x

2
Q(ω)

ω2 − ω̄2
xt(ω)

,

ȳ(ω, ω′) = δ(ω − ω′) +
ω̄x

2
Q(ω′)

ω − ω′ − i0+
Q(ω)

ω2 − ω̄2
xt(ω)

,

w̄(ω, ω′) =
ω̄x

2
Q(ω′)
ω + ω′

Q(ω)
ω2 − ω̄2

xt(ω)

(26)

with

t(ω) = 1 −
1

2ω̄x
∫

∞

−∞
dω′

Q(ω′)
ω′ − ω + i0+

. (27)

As for its photon counterpart, we defined Q(ω) the odd analytic
extension of ∣Q(ω)∣2 in the negative frequency range.

We can now recover the inverse transformations for the bare
operators in terms of the broadened ones,

ak = ∫

∞

0
dω′[x∗k (ω

′
)Ak(ω

′
) − zk(ω

′
)A†

k(ω
′
)],

a†
k = ∫

∞

0
dω′[xk(ω

′
)A†

k(ω
′
) − z∗k (ω

′
)Ak(ω

′
)],

b̃k = ∫

∞

0
dω′[x̄∗(ω)Bk(ω

′
) − z̄(ω)B†

k(ω
′
)],

b̃†
k = ∫

∞

0
dω′[x̄(ω)B†

k(ω
′
) − z̄∗(ω)Bk(ω

′
)],

(28)

and write the bare field operators as superpositions of the broadened
fields

i(ak − a†
k) =

1
√

ω̄k
∫

∞

0
dω[ζk(ω)A

†
k(ω) + ζ∗k (ω)Ak(ω)],

(b̃†
k + b̃k) =

√
ω̄x∫

∞

0
dω[η(ω)B†

k(ω) + η∗(ω)Bk(ω)],
(29)

where the expansion coefficients of the bare fields upon the
broadened operators are given by the expressions

ζk(ω) = −i
√

ω̄k[xk(ω) + zk(ω)] = −i
Vk(ω)ω

√
ω̄k

ω2 − ω̄2
kχk(ω)

,

η(ω) =
1
√

ω̄x
[x̄(ω) − z̄(ω)] =

Q(ω)
√

ω̄x

ω2 − ω̄2
xt(ω)

.
(30)

IV. DIAGONALIZATION OF THE FULL LIGHT–MATTER
HAMILTONIAN

After substituting the field operators in Eq. (29) into the cou-
pling Hamiltonian from Eq. (13), the full light–matter Hamiltonian
can be written in the form

HT =∑
k
∫

∞

0
dωωA†

k(ω)Ak(ω) + ∫
∞

0
dωωB†

k(ω)Bk(ω)

+∑
k

g∫
∞

0
dω∫

∞

0
dω′[ζk(ω)A

†
k(ω) + ζ∗k (ω)Ak(ω)]

× [η(ω′)B†
k(ω

′
) + η∗(ω′)Bk(ω

′
)], (31)

which describes the broadened photonic mode coupled to the broad-
ened material resonance. Similarly to what done previously, the
Hamiltonian can be diagonalized by introducing the operators for
two polariton branches Pj(ω) with j = ±,

Pk,j(ω) = ∫
∞

0
dω′[x̃k,j(ω, ω′)Ak(ω

′
) + z̃k,j(ω, ω′)A†

k(ω
′
)

+ ỹk,j(ω, ω′)Bk(ω
′
) + w̃k,j(ω, ω′)B†

k(ω
′
)], (32)

defined as arbitrary linear superpositions of the bare modes at all
frequencies. By exploiting the eigenequation

ωPk,j(ω) = [Pk,j(ω), HT], (33)
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we arrive at a system of equations analogous to Eqs. (17)–(20),

x̃k,j(ω, ω′)(ω − ω′) = g ζ∗k (ω
′
)∫ dω′′

2ω′′η(ω′′)
ω + ω′′

ỹk,j(ω, ω′′),

ỹk,j(ω, ω′)(ω − ω′) = g η∗(ω′)∫ dω′′
2ω′′ζk(ω′′)

ω + ω′′
x̃k,j(ω, ω′′),

x̃k,j(ω, ω′)(ω − ω′)ζk(ω
′
) = z̃k,j(ω, ω′)(ω + ω′)ζ∗k (ω

′
),

ỹk,j(ω, ω′)(ω − ω′)η(ω′) = w̃k,j(ω, ω′)(ω + ω′)η∗(ω′).

(34)

In order to put the system in Eq. (34) in a form apt to be manipu-
lated and solved, we introduce two unknown integral functions of
the diagonalization coefficients, which as we will see play the role of
photonic and material amplitudes of the polaritonic field,

Kk,j(ω) = ∫ dω′
2ω′

ω + ω′
ζk(ω

′
)x̃k,j(ω, ω′),

Jk,j(ω) = ∫ dω′
2ω′

ω + ω′
η(ω′)ỹk,j(ω, ω′),

(35)

and two known integral functions of the coupling coefficients,

Wk(ω) = P∫ dω′
2ω′

ω2 − ω′2
∣ζk(ω

′
)∣

2, (36)

Z(ω) = P∫ dω′
2ω′

ω2 − ω′2
∣η(ω′)∣2. (37)

Note that, notwithstanding the apparent symmetry, the func-
tions related to the photonic component ∣Kk,j(ω)∣2 and Wk(ω) have
different units from those of the matter part ∣Jk,j(ω)∣

2 and Z(ω). The
former are pure numbers, while the latter are times squared. This is
due to the specific dependence of the light and matter fields upon
their frequency in the PZW representation, clearly visible in Eq. (29).

We then solve Eq. (34) for the unknown coefficients,

ỹk,j(ω, ω′) = [P(
1

ω − ω′
) + sy,k,j(ω)δ(ω − ω′)]g η∗(ω′)Kk,j(ω),

x̃k,j(ω, ω′) = [P(
1

ω − ω′
) + sx,k,j(ω)δ(ω − ω′)]g ζ∗k (ω

′
)Jk,j(ω),

z̃k,j(ω, ω′) =
1

ω + ω′
g ζk(ω

′
)Jk,j(ω),

w̃k,j(ω, ω′) =
1

ω + ω′
g η(ω′)Kk,j(ω).

(38)

The crucial difference between this system of equations and the one
obtained in the single-continuum case in Eqs. (17)–(20) is that here
both bare modes have continuum spectra and thus both the first
and the second equations in Eq. (34) diverge. Therefore, we have
to introduce two unknown functions sx,k,j(ω) and sy,k,j(ω), analo-
gous to γk(ω) introduced in Eq. (21), for each value of frequency,
wavevector, and each polaritonic branch. From Eq. (38), we can see
that those functions allow us to arbitrarily fix the equal-frequency
mixing between coupled and uncoupled modes. We are thus led to
add four different functions at fixed wavevector and frequency, but
the commutator relations

[Pk,j(ω), P†
k′ ,j ′(ω

′
)] = δk,k′δj,j ′δ(ω − ω′) (39)

represent only three new equations for j, j′ = − and j, j′ = + (normal-
ization) and j = −, j′ = + (orthogonality). This leaves a free function
corresponding to a k- and ω-dependent rotation in the space of the
two degenerate polaritonic modes. More generally, in the presence
of L continua, we would add L2 unknown functions and obtain
L normalization conditions and L(L−1)

2 orthogonality conditions,
leaving L(L−1)

2 quantities to be determined, which is the dimension
of the O(L) group. An element of such a group corresponds to a
rigid rotation in the space of the L Pk,j(ω) modes at fixed k and ω,
which would leave Eq. (39) unchanged.

We can also express the polariton operators as superpositions
of the bare ones inserting Eqs. (15) and (25) into Eq. (32),

Pj,k(ω) = Xj,k(ω)ak + Zj,k(ω)a
†
k + Yj,k(ω)b̃k +Wj,k(ω)b̃

†
k

+ ∫

∞

0
dω′[Xj,k(ω, ω′)αk(ω

′
) +Zj,k(ω, ω′)α†

k(ω
′
)]

+ ∫

∞

0
dω′[Yj,k(ω, ω′)βk(ω

′
) +Wj,k(ω, ω′)β†

k(ω
′
)]

(40)

with the most relevant Hopfield coefficients having the form

Xk,j(ω) = ∫
∞

0
dω′[x̃k,j(ω, ω′)xk(ω

′
) + z̃k,j(ω, ω′)z∗k (ω

′
)],

Zk,j(ω) = ∫
∞

0
dω′[x̃k,j(ω, ω′)zk(ω

′
) + z̃k,j(ω, ω′)x∗k (ω

′
)],

Yk,j(ω) = ∫
∞

0
dω′[ỹk,j(ω, ω′)x̄(ω′) + w̃k,j(ω, ω′)z̄∗(ω′)],

Wk,j(ω) = ∫
∞

0
dω′[ỹk,j(ω, ω′)z̄(ω′) + w̃k,j(ω, ω′)x̄∗(ω′)],

(41)

representing the single resonant and anti-resonant matter and
photon components of the polariton modes.

Writing explicitly the coefficients as in Eq. (41), we can at this
point find the relations linking the light and matter weight of the
polaritons to the Hopfield coefficients,

Kk,j(ω) = −i
√

ω̄k[Xk,j(ω) + Zk,j(ω)],

Jk,j(ω) =
1
√

ω̄x
[Yk,j(ω) −Wk,j(ω)].

(42)

The bare photonic and matter field operators can then be expressed
in terms of the broadened polaritons,

i(ak − a†
k) =

1
√

ω̄k
∫

∞

0
dω∑

j=±
[K∗k,j(ω)Pk,j(ω) + Kk,j(ω)P

†
k,j(ω)],

(43)

(b̃k + b̃†
k) =
√

ω̄x∫

∞

0
dω∑

j=±
[J∗k,j(ω)Pk,j(ω) + Jk,j(ω)P

†
k,j(ω)], (44)

recognizing in the expressions in Eq. (35) the photonic and mat-
ter components of the broadened polaritonic modes. By expressing
the coefficient ỹk,j(ω, ω′) as in Eq. (38), we also arrive at a relation
between the three quantities defined in Eq. (35),

Jk,j(ω) = Kk,j(ω)g[Z(ω) + sy,k,j(ω)∣η(ω)∣
2
]. (45)
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Inserting the second of Eq. (38) into the first of Eq. (35), we derive
the two relations ( j = ±),

g2
[Z(ω) + sy,k,j(ω)∣η(ω)∣

2
][Wk(ω) + sx,k,j(ω)∣ζk(ω)∣

2
] = 1, (46)

while from Eq. (39), we derive the three equations

g2
{∣η(ω)∣2[π2

+ sy,k,j(ω)s
∗
y,k,j ′(ω)]Jk,j(ω)J

∗
k,j ′(ω) + ∣ζk(ω)∣

2

× [π2
+ sx,k,j(ω)s

∗
x,k,j ′(ω)]Kk,j(ω)K

∗
k,j ′(ω)} = δj,j ′ (47)

for j, j′ = −, j, j′ = +, and j = −, j′ = +, respectively. We are thus
left, as anticipated, with an underdetermined set of five equations
[two from Eq. (46) and three from Eq. (47)] in six unknowns: the
Kk,j(ω) and the two functions sx,k,j(ω), sy,k,j(ω) for each of the two
values of j.

In Ref. 32, this problem was solved arbitrarily fixing sx,k,−(ω)
= 0 and then solving the remaining equations. Here, instead, we
adopt a different approach, solving directly Eqs. (46) and (47) for
the gauge-invariant quantities. Due to the arbitrariness of the gauge
choice, it is in fact meaningless to distinguish between lower and
upper polariton operators as only the gauge-invariant quantities are
the total photonic and material polaritonic components,

∣Kk(ω)∣
2
= ∑j=±∣Kk,j(ω)∣

2,

∣Jk(ω)∣
2
= ∑j=±∣Jk,j(ω)∣

2.
(48)

Although the solution is algebraically cumbersome, it is pos-
sible to find the analytic expressions for the total light and matter
polaritonic components, which are the central result of this paper,

∣Kk(ω)∣
2
=

g2
[W2

k(ω) + π2
∣ζk(ω)∣4]∣η(ω)∣2 + ∣ζk(ω)∣2

[g2Wk(ω)Z(ω) − 1]2 + g4π2[∣η(ω)∣4W2
k(ω) + ∣ζk(ω)∣4Z2(ω)] + g2π2∣ζk(ω)∣2∣η(ω)∣2[2 + g2π2∣ζk(ω)∣2∣η(ω)∣2]

,

∣Jk(ω)∣
2
=

g2
[Z2
(ω) + π2

∣η(ω)∣4]∣ζk(ω)∣2 + ∣η(ω)∣2

[g2Wk(ω)Z(ω) − 1]2 + g4π2[∣η(ω)∣4W2
k(ω) + ∣ζk(ω)∣4Z2(ω)] + g2π2∣ζk(ω)∣2∣η(ω)∣2[2 + g2π2∣ζk(ω)∣2∣η(ω)∣2]

.

(49)

Note that the gauge extra variable disappears as expected
from Eq. (49), thus proving its pure gauge nature and as a
consequence the correctness of the results from Ref. 32, where
those same quantities had been calculated by an arbitrary gauge
fixing.

V. LORENTZIAN RESONANCES
In order to analytically evaluate the functions introduced

above, we need to specify a model for the coupling between the bare
modes and the photonic and matter reservoirs. We start by writing
a model for homogeneously broadened resonances, thus reproduc-
ing the optical response of a Lorentz dielectric model. There have
been claims that such a dielectric model cannot be modeled in HB
theory.41 This is, nevertheless, false as we will now demonstrate
constructively. The problem in Ref. 41 is that the authors do not rec-
ognize the need to introduce a divergent renormalized frequency.
We will consider couplings of the form

∣Vk(ω)∣
2
=

ωω̄k

qP + ωP
Θ(ωP − ω),

∣Q(ω)∣2 =
ωω̄x

qM + ωM
Θ(ωM − ω)

(50)

with qP = πω2
k/2γP and qM = πω̃2

x/2γM , where we have introduced
cut-off frequencies ωP and ωM , and the photonic and matter loss
rates γP and γM , and Θ is the Heaviside function. In Eq. (50) also
appear the renormalized frequencies as from Eq. (14)

ω̄2
k = ω2

k + ∫

ωP

0
dω
∣Vk(ω)∣2ω̄k

ω
= ω2

k
qP + ωP

qP
,

ω̄2
x = ω̃2

x + ∫

ωM

0
dω
∣Q(ω)∣2ω̄x

ω
= ω̃2

x
qM + ωM

qM
.

(51)

The form of the couplings in Eq. (50) has been chosen to
recover, in the limit of diverging cutoff frequencies, Lorentzian res-
onances centered at the bare excitation frequencies. This is shown in
more detail in Appendix D, but by inserting Eq. (50) into Eq. (30),
we obtain

lim
ωP→∞

ζk(ω) = i

√
2γPω3

π
1

ω2 − ω2
k − iγPω

,

lim
ωM→∞

η(ω) =
√

2γMω
π

1
ω2 − ω̃2

x − iγMω
,

(52)

from which we recognize the two Lorentzian lineforms that would
be obtained from a classical Lorentz dielectric model with center fre-
quency ωk or ω̃x and width γP or γM . Hence, according to Eq. (36),
we can calculate the other two required functions,

Z(ω) = 2
ω2
− ω̃2

x

(ω2 − ω̃2
x)

2
+ γ2

Mω2
,

Wk(ω) = 2
ω2

k(ω
2
− ω2

k) − γ2
Pω2

(ω2 − ω2
k)

2
+ γ2

Pω2
.

(53)

Note that, as made clear from Eq. (51), the frequencies ω̄k and ω̄x
appearing in the Hamiltonians in Eqs. (11)–(13) diverge with the
cutoffs. Following the basic idea behind renormalization, we can rec-
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ognize this not to be an issue because they are not observables of our
system, while the proper physical observables, Z(ω) and Wk(ω) in
Eq. (53), feature only the finite frequencies ωk and ω̃x.

Using these explicit forms for the couplings in Fig. 1, we plot
the photonic and material component of each polaritonic branch
obtained with the gauge fixing sx,k,−(ω) = 0 used in Ref. 32. As we
can see, the distinction between the operators of the two polari-
tonic branches, represented in the first two columns, is arbitrary and
we cannot identify them with specific resonances. Only their sum,
the total intensity of the photonic or matter components, shown

in the third column, has physical meaning. In Figs. 1–5, the black
dotted line represents the resonant frequency of the material res-
onance ω̃x, the red dashed line represents the photonic frequency
ωk, and the blue dashed-dotted lines represent the polaritonic res-
onances in the lossless case from Eq. (8). In Figs. 2 and 3, we plot
the gauge-independent results from Eq. (49) for different values of,
respectively, the losses and the coupling strength, showing that the
theory behaves as predicted from input–output theories,5–7 with two
polaritonic Lorentzian resonances with linewidths proportional to
the weighted average of the light and matter respective linewidths.

FIG. 1. This figure displays the light
∣K±,k ∣

2 [(a) and (b)] and matter ∣J±,k ∣
2

[(d) and (e)] components of the two
polaritonic branches, as wells as their
sums ∣Kk ∣

2 (c) and ∣Jk ∣
2 (f), when

the gauge is fixed by sx,k,− = 0. The
field spectra are plotted as functions
of the bare cavity frequency ωk (red
dashed line), while the resonant mat-
ter frequency ω̃x is fixed and used as
a unit of frequency (black dotted line).
Other parameters are g = 0.3ωx and
γP = γM = 0.05ωx . The field spectra are
here normalized to the maximum value
for all the plots in the same row. The
calculated polariton modes in the loss-
less case ω−,k and ω+,k are marked by
a dotted-dashed blue lines. Although we
maintain the notation K±,k and J±,k , it is
clear that it is no longer possible to iso-
late the contributions of the two polariton
branches.

FIG. 2. The panels display the effects
of the interplay between light and mat-
ter losses on the analytically derived
dressed photonic ∣Kk(ω)∣2 [(a)–(c)] and
matter ∣Jk(ω)∣2 [(b)–(d)] fields. In all
the plot, g = 0.3ωx , while the losses
rates are γM = γP = 0.4ωx in (a) and (d),
γP = 0.05ωx and γM = 0.2ωx in (b) and
(e), and γP = 0.2 and γM = 0.05ωx in (c)
and (f). The field spectra are normalized
to the maximum value for all the plots in
the same row. All the other parameters
remain as in Fig. 1.
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FIG. 3. The panels display the analyti-
cal dressed photonic ∣Kk(ω)∣2 [(a)–(c)]
and matter ∣Jk(ω)∣2 [(b)–(d)] fields vary-
ing the light–matter coupling strength g.
In all the plot, γM = γP = 0.05ωx , while
the coupling is g = 0.01ωx in (a) and (d),
g = 0.1ωx in (b) and (e), and g = 0.3ωx

in (c) and (f). The field spectra are here
normalized to the maximum value for all
the plots in the same row. All the other
parameters remain as in Fig. 1.

VI. DIAGONALIZATION WITH COLORED RESERVOIRS

The theory we developed allows us to model polaritonic sys-
tems with arbitrary colored reservoirs, including the scientifically
and technologically relevant case of a continuum absorption band,
a case object of multiple theoretical22–26 and experimental27–30

studies. Focusing for the sake of definiteness on a compactly sup-
ported reservoir interacting with the photonic component of the
excitation (an absorption band), we can include it in the theory

by choosing frequency-dependent coupling functions Vk(ω) with
support in the chosen frequency range. Exactly the same pro-
cedure would couple to the matter component by using Q(ω)
instead.

The presence of an absorption band will generally not sub-
stitute other loss channels influencing the excitations lifetime and
the necessity of keeping both can cause some formal problem given
that, as we saw before, the modeling of a Lorentzian resonance
requires us to renormalize an otherwise infinite resonant frequency.

FIG. 4. The panels display the field
functions ∣Kk(ω)∣2 [(a)–(c)] and
∣Jk(ω)∣2 [(b)–(d)], with the presence of
a rectangular absorption band centered
at frequency ωc = 2 and of width
Δ. The green dotted lines mark the
band boundaries. In all the plots, κ
= 0.05ωx ; the reservoir losses rates
are γM = γP = 0.05ωx , and Δ = ωx [(a)
and (d)], Δ = 0.6ωx [(b) and (e)], and
Δ = 0.2ωx [(c) and (f)]. The field spectra
are normalized to the maximum value
for all the plots in the same row. All the
other features remain as in Fig. 1.
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In this section, we will provide the recipe to add an arbitrary col-
ored reservoir on the top of the Lorentzian one. The microscopic
reservoir modes leading to the Lorentzian line shape of the uncou-
pled photonic resonance are a priori completely uncorrelated from
those leading to an absorption band. They will in many cases have
even different physical origins, e.g., phonon interaction for the for-
mer and interaction with electronic bands for the latter. As better
explained in Appendix A, this means their effects sum incoherently
and we can thus write the full interaction of the photonic component
with its environment using the coupling function,

∣Vk(ω)∣
2
= ∣V0

k(ω)∣
2
+ ∣V1

k(ω)∣
2, (54)

where V0
k(ω) and V1

k(ω) model, respectively, the interaction with
the photonic reservoir and the absorption band, defined by a nor-
malized density F(ω) with F(ω < 0) = 0, ∫

∞

0 dωF(ω) = 1, and a
dimensionless coupling intensity κ. The two coupling functions take
the form

∣V0
k(ω)∣

2
=

ωω̄k

qP + ωP
Θ(ωP − ω),

∣V1
k(ω)∣

2
=

ωω̄kqP

qP + ωP

κ
1 + κ

F(ω),
(55)

where ∣V0
k(ω)∣

2, which will lead to the Lorentzian broadening as in
the previous case, has the same form as in Eq. (50), and the other
term is chosen in order to provide the required absorption band after
the renormalization.

The dressed frequency of the photonic mode is now renor-
malized by both terms. It is practical to write the impact of the
Lorentzian broadening as a renormalization over the frequency of
the photonic resonance ω̃k dressed only by the absorption band,

ω̄2
k = ω̃2

k + ∫

∞

0
dω
∣V0

k(ω)∣
2ω̄k

ω
= ω̃2

k
qP + ωP

qP
, (56)

and define the latter as

ω̃2
k = ω2

k + ∫

∞

0
dω
∣V1

k(ω)∣
2ω̄k

ω
= ω2

k(1 + κ). (57)

We then follow the same diagonalization procedure as in
Sec. III, with function χk(ω) now taking the form

χk(ω) = 1 −
1

2ω̄k
∫

∞

−∞
dω′

V0
k(ω

′
)

ω′ − ω + i0+
−

1
2ω̄k
∫

∞

−∞
dω′

V1
k(ω

′
)

ω′ − ω + i0+
,

(58)
where V0

k(ω) and V1
k(ω) are the odd analytical extensions in the neg-

ative frequency range of ∣V0
k(ω)∣

2 and ∣V1
k(ω)∣

2, respectively. The
squared function ∣ζk(ω)∣

2 can be written as in Eq. (30),

∣ζk(ω)∣
2
=
∣V0

k(ω)∣
2ω2ω̄k

∣ω2 − ω̄k
2χk(ω)∣2

+
∣V1

k(ω)∣
2ω2ω̄k

∣ω2 − ω̄k
2χk(ω)∣2

, (59)

leading to, after some algebra, and after letting ωP →∞,

FIG. 5. Coupled photonic K2
k (a) and matter J2

k (b) fields as a function of the bare
cavity frequency ωk , calculated starting from a Coulomb representation Hamilto-
nian. The light–matter coupling is g = 0.3ωx , while the loss rates are γP = γM
= 0.05ωx . All the other parameters remain as in Fig. 1.

∣ζk(ω)∣
2
=

ω3

[ω2 −Ω2
k(ω)]

2
+ ω2Γ(ω)2

[
2γP

π
+ κω2

kF(ω)] (60)

with effective central frequency and effective losses

Ω2
k(ω) = ω2

k[1 + κ(1 −
1
2

P∫
∞

−∞

ω′F(∣ω′∣)
ω′ − ω

dω′)],

Γ(ω) = γP +
πκω2

kF(ω)
2

,

(61)

where the linewidth of the Lorentzian losses is now defined as a
function of the frequency dressed by the absorption band γP =

πω̃2
k

2qP
.

Note that in the low-frequency regime ω→ 0 from Eq. (61), we have
Ωk ≈ ωk, showing that the presence of the absorption band does not
change the background permittivity.

From Eq. (60), we see that the photonic losses increase in the
frequency region in which F(ω) ≠ 0, an effect already observed in
Ref. 30, and it also leads to a resonance effect in the central fre-
quency. This can be understood in light of recent studies on strong
coupling with the continuum,24,26 and we expect it to model the pos-
sibility of the photonic resonance becoming strongly coupled with
the absorption band. From the renormalized expressions in Eq. (61),
the integral function Wk(ω) in Eq. (36) can be simply evaluated
numerically.

In Fig. 4, we plot the example results obtained using a sharp
absorption band of center frequency ωc and width Δ,

F(ω) =
1
Δ

Θ(
Δ
2
− ∣ω − ωc∣). (62)

The boundaries of the band are marked by the horizontal green
dashed lines. We recognize the effects expected from our analytical
results: The band acts as a localized absorber for the photonic com-
ponent of the polariton, and eventually, the polaritonic mode gets
strongly coupled to the band, an effect better visible when the band
width becomes comparable with the intrinsic photonic linewidth.

VII. CONCLUSIONS
In this article, we exactly solved the polaritonic problem with

a quantum formalism in the case of arbitrary dissipative couplings
for both the bare photonic and matter excitations. In order to do
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this, we discussed the extension of Fano and HB theories to the
case of multiple discrete levels coupled to multiple continua, show-
ing how a gauge indeterminacy emerges. While a previous approach
to this problem had been to perform an arbitrary gauge choice,
here we analytically calculated the gauge-invariant observables. We
thus demonstrated both the self-consistency of our theory and pro-
vided an analytical, albeit cumbersome formula allowing to exactly
calculate the resonance line shape for strongly coupled resonances
interacting with reservoirs of arbitrary spectral shapes. We then
showed how colored features can be practically added to a homo-
geneous resonance linewidth. Note that while our approach is based
on a purely bosonic spectrum of the material resonance, generally
correct for plasmonic and phononic systems, saturation finite size
effects can a priori be included in the theory as higher order terms.42

The same is true for generic terms present in the PZW Hamiltonian
nonlinear in the light and matter fields, which can be written using
Eq. (43) as nonlinear polaritonic interactions.

We hope these results will be of use in the subfields of polari-
tonic in which losses have an important impact. This is true, for
example, in plasmonic systems, characterized by important Ohmic
losses, nonlocal systems where photonic excitations couple to a con-
tinuum of propagative modes, and in systems in which the extremely
large coupling between light and matter pushes the polaritonic res-
onances into other spectral features.26,28 In order to facilitate the use
of our results by the community, we uploaded on GitHub a Matlab
code implementing them.43
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APPENDIX A: THE FANO DIAGONALIZATION AND ITS
EXTENSION

In this appendix, we briefly discuss the basic idea behind the
Fano diagonalization and its extensions to the case of many con-
tinua or many discrete levels. Following Ref. 2, we consider the
Hamiltonian

H = ωa†a + ∫ dω′ ω′b†
(ω′)b(ω′) + ∫ dω′ g(ω′)

× [b†
(ω′)a + a†b(ω′)], (A1)

where in the original paper a and b(ω) in Eq. (A1) are normalized
Hilbert space vectors, but in the present context, they can as well
be interpreted as second-quantized annihilation operators. Under

the assumption that all the coupled eigenvalues fall inside the ini-
tial continuum range, Fano showed how the system can be exactly
diagonalized in terms of a hybridized continuum,

P(ω) = x(ω)a + ∫ dω′y(ω, ω′)b(ω′). (A2)

The discrete mode thus gets dressed by a cloud of continuum exci-
tations, translating into a spectral broadening of the resonance.
Notice that this set of solution is not necessarily complete, as known
from the study of the Friederichs–Lee model.44 In the bound-to-
continuum strong coupling regime, discrete modes can emerge from
the continuum, as theoretically and experimentally demonstrated in
the case of two-dimensional electron gases.24,29

After having completed the diagonalization procedure, Fano
passes to consider the case in which there are N discrete levels and
one continuum. Such a problem can be reduced to the one treated
above by initially performing a partial diagonalization of one dis-
crete level coupled to the continuum, leading to a novel Hamiltonian
in the same form as the initial one, but this time with N − 1 discrete
levels. Proceeding by iteration, the system can be solved in terms of
a single hybridized continuum of the form

P(ω) =
N

∑
n=1

xn(ω)an + ∫ dω′y(ω, ω′)b(ω′). (A3)

Finally, the case of a single discrete state coupled to N continua
is treated, described by the Hamiltonian

H = ωa†a +
N

∑
n=1
∫ dω′ ω′b†

n(ω
′
)bn(ω′)

+
N

∑
n=1
∫ dω′ gn(ω′)[b†

n(ω
′
)a + a†bn(ω′)]. (A4)

Such a system can be solved by performing the transformation

b̃m(ω) =
N

∑
n=1

Umn(ω)bn(ω), (A5)

where Umn(ω) is a unitary matrix whose first row is given by

U1n(ω) =
gn(ω)
g̃1(ω)

(A6)

with

g̃1(ω) =

¿
Á
ÁÀ

N

∑
n=1

gn(ω)2, (A7)

transforming Eq. (A4) into the Hamiltonian of one discrete
level coupled to a single continuum, plus other N − 1 uncoupled
continua,

H = ωa†a +
N

∑
n=1
∫ dω′ ω′b̃†

n(ω
′
)b̃n(ω′)

+ ∫ dω′ g̃1(ω′)[b̃†
1(ω

′
)a + a†b̃1(ω′)]. (A8)
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APPENDIX B: HUTTNER–BARNETT DIAGONALIZATION

In this appendix, we perform the HB diagonalization of the
Hamiltonian HPB in Eq. (11), describing the interaction between
the discrete photon mode and the photonic reservoir, modeled as
an ensemble of harmonic oscillators indexed by the continuum
frequency ω.

We introduce the bosonic operators describing broadened
photons Ak(ω),

Ak(ω) = xk(ω)ak + zk(ω)a
†
k + ∫ dω′[yk(ω, ω′)αk(ω

′
)

+wk(ω, ω′)α†
k(ω

′
)], (B1)

whose coefficients are chosen so that the operators satisfy the
eigenequation

ωAk(ω) = [Ak(ω), HPB]. (B2)

This equation leads to the system between the coefficients

xk(ω)(ω − ω̄k) =
1
2∫

∞

0
dω′[yk(ω, ω′)Vk(ω

′
) −wk(ω, ω′)V∗k (ω

′
)],

(B3)

zk(ω)(ω + ω̄k) =
1
2∫

∞

0
dω′[yk(ω, ω′)Vk(ω

′
) −wk(ω, ω′)V∗k (ω

′
)],

(B4)

yk(ω, ω′)(ω − ω′) =
1
2
[xk(ω) − zk(ω)]V

∗
k (ω

′
), (B5)

wk(ω, ω′)(ω + ω′) =
1
2
[xk(ω) − zk(ω)]Vk(ω

′
). (B6)

This set of equations can be solved to obtain zk(ω), yk(ω, ω′), and
zk(ω, ω′) in terms of xk(ω). By subtracting Eq. (B4) from Eq. (B3),
we obtain

zk(ω) =
ω − ω̄k

ω + ω̄k
xk(ω), (B7)

which can be substituted in Eqs. (B5) and (B6) to obtain

yk(ω, ω′) = [P(
1

ω − ω′
) + γk(ω)δ(ω − ω′)]V∗k (ω

′
)

ω̄k

ω + ω̄k
xk(ω),

wk(ω, ω′) = [
1

ω + ω′
]Vk(ω

′
)

ω̄k

ω + ω̄k
xk(ω).

(B8)

The function γk(ω) can be found, after some algebra, replacing
both the equations in Eq. (B8) with Eq. (B3),

γk(ω) =
2(ω2

− ω̄2
k)

ω̄k∣Vk(ω)∣2
+

1
∣Vk(ω)∣2

P∫
∞

−∞
dω′

Vk(ω′)
ω′ − ω

, (B9)

where we assume that the analytic extension in the negative
frequency range Vk(ω) of ∣Vk(ω)∣2 is an odd function. In order to
calculate xk(ω), we impose the commutation relation

[Ak(ω), A†
k′(ω

′
)] = δk,k′δ(ω − ω′). (B10)

By using the expression for Ak(ω) in Eq. (B1) and for the coeffi-
cients in Eqs. (B4) and (B8), in terms of xk(ω), Eq. (B10) leads to the
definition of xk(ω) up to a phase factor,

xk(ω) =
ω + ω̄k

ω̄V∗k (ω)
1

γk(ω) − iπ
. (B11)

Exploiting the expression for γk(ω) in Eq. (B9), Eq. (B11) can be
written as

xk(ω) =
ω + ω̄k

2
Vk(ω)

ω2 − ω̄2
kχk(ω)

(B12)

with

χk(ω) = 1 −
1

2ω̄k
∫

∞

−∞
dω′

Vk(ω′)
ω′ − ω + i0+

. (B13)

The final expressions for the coefficients are thus obtained as

xk(ω) =
ω + ω̄k

2
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

zk(ω) =
ω − ω̄k

2
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

yk(ω, ω′) = δ(ω − ω′) +
ω̄k

2
Vk(ω′)

ω − ω′ − i0+
Vk(ω)

ω2 − ω̄2
kχk(ω)

,

wk(ω, ω′) =
ω̄k

2
Vk(ω′)
ω + ω′

Vk(ω)
ω2 − ω̄2

kχk(ω)
.

(B14)

We have thus demonstrated that the operators Ak(ω) are eigenso-
lutions of HPB. The proof these operators form a complete set of
solutions in the case of an unbounded continuum can be found
in the original HB paper3 in which the linear transformation in
Eq. (B1) is inverted, expressing the discrete ak operator as a linear
superposition of Ak(ω).

APPENDIX C: DIAGONALIZATION IN THE COULOMB
REPRESENTATION

In this appendix, we show how our approach gets modified if
one wants to work in the Coulomb representation. Given that only
relatively few quantities are affected by the change, we just pro-
vide the expressions for the affected ones. The Hamiltonian in the
Coulomb representation can be written as

H =∑
k
(ωka†

ka + ωx b†
kbk) + i∑

k
g
√

ωx

ωk
[a†

k + ak][b
†
k − bk]

+∑
k

∣g∣2

ωk
[a†

k + ak]
2
, (C1)

in which we can see the appearance of a diamagnetic A2 term. After
reabsorbing such a diamagnetic term by performing a Bogoliubov
transformation, the Hamiltonian takes the form

H =∑
k
(ω̃kã†

k ã + ωx b†
kbk) + i∑

k

√
ωx

ω̄k
[ã†

k + ãk][g b†
k − g∗ bk]

(C2)
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with rotated photon operators

ãk =
ω̃k + ωk

2
√

ω̃kωk
ak +

ω̃k − ωk

2
√

ω̃kωk
a†

k (C3)

and renormalized cavity frequency

ω̃2
k = ω2

k + 4∣gk∣
2. (C4)

The dispersion relation obtained diagonalizing the Hamiltonian in
Eq. (C2) is

ω2
±,k − ω̃2

k =
4∣g∣2ω2

x

ω2
±,k − ω2

x
(C5)

with solutions

ω±,k =
1
√

2

√

ω̃2
k + ω2

x ±
√

(ω̃2
k − ω2

x)
2 + 16∣g∣2ω2

x. (C6)

In the Coulomb representation, the expressions of the field operators
in Eq. (29) are modified as

(ãk + ã†
k) =
√

ω̄k∫

∞

0
dω[ζk(ω)A

†
k(ω) + ζ∗k (ω)Ak(ω)],

i(b†
k − bk) =

1
√

ω̄x
∫

∞

0
dω′[η(ω)B†

k(ω) + η∗(ω)Bk(ω)],
(C7)

where

ζk(ω) =
1
√

ω̄k
[xk(ω) − zk(ω)] =

Vk(ω)
√

ω̄k

ω2 − ω̄2
kχk(ω)

,

η(ω) = i
√

ω̄x[x̄(ω) + z̄(ω)] = i
Q(ω)ω

√
ω̄x

ω2 − ω̄2
xt(ω)

.
(C8)

By substituting the bare operators with the dressed ones, we arrive
at the Hamiltonian as in Eq. (31), which can be diagonalized by the
same procedure described in the main text. The dressed photonic
and matter field operator can be finally written as superpositions of
polaritonic broadened modes as

(ãk + ã†
k) =
√

ω̄k∫

∞

0
dω∑

j=±
[K∗k,j(ω)Pj(ω) + Kk,j(ω)P

†
j (ω)],

i(bk − b†
k) =

1
√

ω̄x
∫

∞

0
dω∑

j=±
[J∗k,j(ω)Pj(ω) + Jk,j(ω)P

†
j (ω)],

(C9)

where

Kk,j(ω) =
1
√

ω̄k
[Xk,j(ω) − Zk,j(ω)],

Jj(ω) = −i
√

ω̄x[Yj(ω) +Wj(ω)].
(C10)

Note that in the Coulomb representation, the functions related to
the photonic component and those related to the matter part have
exchanged units from those in the PZW representation. This is due
to the inverted dependence of the light and matter fields upon their
frequency.

APPENDIX D: DERIVATION OF ANALYTICAL RESULTS
FOR A LORENTZIAN BROADENING

In this appendix, we will derive the analytical expression of
the functions ζk(ω) and η(ω) in the case of a Lorentzian broaden-
ing. This is not completely trivial, as testified by the existence of a
published paper claiming it is impossible.41 The key issue is that in
order to recover a frequency-independent broadening, the shift in
the mode due to the coupling with the reservoir has to diverge. As
such, the result can only be found by a renormalization procedure
allowing to cancel such a divergence.

Assuming that the coupling potentials to the photonic and mat-
ter reservoirs take the form in Eq. (50), we can calculate the dressed
resonance frequencies

ω̄2
k = ω2

k + ∫

∞

0
dω
∣Vk(ω)∣2ω̄k

ω
= ω2

k
qP + ωP

qP
,

ω̄2
x = ω̃2

x + ∫

∞

0
dω
∣Q(ω)∣2ω̄x

ω
= ω̃2

x
qM + ωM

qM
,

(D1)

and the real and imaginary parts of functions χk(ω) and t(ω) as

Re[χk(ω)] = lim
ωP→∞

[1 −
1
2

1
qP + ωP

× (2ωP + 2ω log(1 −
2ω

ω + ωP
))],

Im[χk(ω)] = lim
ωP→∞

πω
2(qP + ωP)

,

Re[t(ω)] = lim
ωM→∞

[1 −
1
2

1
qM + ωM

× (2ωM + 2ω log(1 −
2ω

ω + ωM
))],

Im[t(ω)] = lim
ωM→∞

πω
2(qM + ωM)

.

(D2)

In the limit of infinite cut-off frequency ωP →∞ and ωM →∞,
the resonant frequencies diverge, but the intensity of the coupling
vanishes, and we arrive at the finite results,

lim
ωP→∞

ω̄2
kRe[χk(ω)] = ω̄2

k(
qP

qP + ωP
) = ω2

k,

lim
ωP→∞

ω̄2
kIm[χk(ω)] = ω2

k
πω
2qP

.

lim
ωM→∞

ω̄2
xRe[t(ω)] = ω̃2

0(
qM

qM + ωM
) = ω̃2

x,

lim
ωM→∞

ω̄2
xIm[t(ω)] = ω̃2

x
πω

2qM
.

(D3)

By inserting Eq. (D3) into Eq. (30), we finally obtain the Lorentzian
form for the functions ζk(ω) and η(ω) as

ζk(ω) = i

√
2γPω3

π
1

ω2 − ω2
k − iγPω

, (D4)

η(ω) = g

√
2γMω

π
1

ω2 − ω̃2
x − iγMω

. (D5)
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