The University of Southampton
University of Southampton Institutional Repository

SALT3-NIR: Taking the open-source type Ia supernova model to longer wavelengths for next-generation cosmological measurements

SALT3-NIR: Taking the open-source type Ia supernova model to longer wavelengths for next-generation cosmological measurements
SALT3-NIR: Taking the open-source type Ia supernova model to longer wavelengths for next-generation cosmological measurements

A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 (∼2800-8700 Å central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2 μm with the open-source model-training software SALTshaker, which can easily accommodate future observations. Using simulated data, we show that the training process constrains the NIR model to ∼2%-3% across the phase range (−20 to 50 days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to ∼30% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to ∼20%. For SN Ia observations expected from the Roman Space Telescope, SALT3-NIR increases the amount of usable data in the SALT framework by ∼20% at redshift z ≲ 0.4 and by ∼50% at z ≲ 0.15. The SALT3-NIR model is part of the open-source SNCosmo and SNANA SN Ia cosmology packages.

1538-4357
Pierel, J. D. R.
c7b7771b-af3d-4025-92e4-a5d5a1016b0a
Jones, D. O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Kenworthy, W. D.
457b2d43-3ca9-4abc-abac-539c0915979f
Dai, M.
8bde6151-8e3b-41fe-a448-a33698d9a34b
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Ashall, C.
01b8c4e1-a4d5-4509-a0b7-e77a1b9d721b
Do, A.
a2a76c77-7295-4776-990a-f1d493ba9558
Peterson, E. R.
6064a293-08ba-4cf7-aaa0-f6375e5945a5
Shappee, B. J.
6fa9de8a-4b1c-496c-a3a9-a04c7a0bbd7d
Siebert, M. R.
ae30f0da-05a0-4395-85bb-20509593c742
Barna, T.
7caf8a12-3a9e-402a-9c00-eb549c860860
Brink, T. G.
ed17fb10-8fab-4b19-9b73-3126d624d43a
Burke, J.
fa64b23c-c20c-421b-a91f-2c1342eb5177
Calamida, A.
20d4f36d-4243-4fa5-acb7-7d286462a7c3
Camacho-Neves, Y.
36dfcd4f-f25c-4ba0-b5be-bed8895c5e92
Jaeger, T. de
e45519a3-dfd2-4cbc-8a82-afd29f84d357
Filippenko, A. V.
76d14187-e168-44cf-9db7-c5c2102c268b
Foley, R. J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Galbany, L.
76c0f594-2419-43d1-8c38-6429ecad4a03
Fox, O. D.
e589661d-cf7e-48a3-bb57-87eb065eee64
Gomez, S.
b2c8160f-8b26-4db9-ba90-60bc6a03e0ef
Hiramatsu, D.
e3b6954e-7657-435f-8c70-97bac1f4867c
Hounsell, R.
d63ffc6a-6aaf-4e3a-bb8f-0fb4f214de31
Howell, D. A.
2a218cf6-e95c-4a96-9bd5-3c1ee6d0f5eb
Jha, S. W.
c3b609d1-0383-4d70-b0c2-f4a813a77211
Kwok, L. A.
681c4349-1d91-40f7-863b-5c45dbcf59df
Pérez-Fournon, I.
a7d96d1e-5797-4f81-8df6-15f7b47b55fc
Poidevin, F.
79951b19-bdfb-4754-82f6-26c16258d06b
Rest, A.
46703e55-0c80-41d1-aeff-27269f39ddc3
Rubin, D.
5ec35843-083a-48fd-a117-b28d775e25c7
Scolnic, D. M.
a0447ef4-b623-4912-875c-9d2d94f24fe6
Shirley, R.
fb6bc6f3-f593-4cf5-9f68-a63587ab8135
Strolger, L. G.
d22c7852-090f-4997-8fb7-58599d3f04c7
Tinyanont, S.
4c04178f-4cb7-416c-8e56-ca00a9ffc8a2
Wang, Q.
7a4ff54e-4e47-4693-aaf0-0746397206c1
Pierel, J. D. R.
c7b7771b-af3d-4025-92e4-a5d5a1016b0a
Jones, D. O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Kenworthy, W. D.
457b2d43-3ca9-4abc-abac-539c0915979f
Dai, M.
8bde6151-8e3b-41fe-a448-a33698d9a34b
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Ashall, C.
01b8c4e1-a4d5-4509-a0b7-e77a1b9d721b
Do, A.
a2a76c77-7295-4776-990a-f1d493ba9558
Peterson, E. R.
6064a293-08ba-4cf7-aaa0-f6375e5945a5
Shappee, B. J.
6fa9de8a-4b1c-496c-a3a9-a04c7a0bbd7d
Siebert, M. R.
ae30f0da-05a0-4395-85bb-20509593c742
Barna, T.
7caf8a12-3a9e-402a-9c00-eb549c860860
Brink, T. G.
ed17fb10-8fab-4b19-9b73-3126d624d43a
Burke, J.
fa64b23c-c20c-421b-a91f-2c1342eb5177
Calamida, A.
20d4f36d-4243-4fa5-acb7-7d286462a7c3
Camacho-Neves, Y.
36dfcd4f-f25c-4ba0-b5be-bed8895c5e92
Jaeger, T. de
e45519a3-dfd2-4cbc-8a82-afd29f84d357
Filippenko, A. V.
76d14187-e168-44cf-9db7-c5c2102c268b
Foley, R. J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Galbany, L.
76c0f594-2419-43d1-8c38-6429ecad4a03
Fox, O. D.
e589661d-cf7e-48a3-bb57-87eb065eee64
Gomez, S.
b2c8160f-8b26-4db9-ba90-60bc6a03e0ef
Hiramatsu, D.
e3b6954e-7657-435f-8c70-97bac1f4867c
Hounsell, R.
d63ffc6a-6aaf-4e3a-bb8f-0fb4f214de31
Howell, D. A.
2a218cf6-e95c-4a96-9bd5-3c1ee6d0f5eb
Jha, S. W.
c3b609d1-0383-4d70-b0c2-f4a813a77211
Kwok, L. A.
681c4349-1d91-40f7-863b-5c45dbcf59df
Pérez-Fournon, I.
a7d96d1e-5797-4f81-8df6-15f7b47b55fc
Poidevin, F.
79951b19-bdfb-4754-82f6-26c16258d06b
Rest, A.
46703e55-0c80-41d1-aeff-27269f39ddc3
Rubin, D.
5ec35843-083a-48fd-a117-b28d775e25c7
Scolnic, D. M.
a0447ef4-b623-4912-875c-9d2d94f24fe6
Shirley, R.
fb6bc6f3-f593-4cf5-9f68-a63587ab8135
Strolger, L. G.
d22c7852-090f-4997-8fb7-58599d3f04c7
Tinyanont, S.
4c04178f-4cb7-416c-8e56-ca00a9ffc8a2
Wang, Q.
7a4ff54e-4e47-4693-aaf0-0746397206c1

Pierel, J. D. R., Jones, D. O., Kenworthy, W. D., Dai, M., Kessler, R., Ashall, C., Do, A., Peterson, E. R., Shappee, B. J., Siebert, M. R., Barna, T., Brink, T. G., Burke, J., Calamida, A., Camacho-Neves, Y., Jaeger, T. de, Filippenko, A. V., Foley, R. J., Galbany, L., Fox, O. D., Gomez, S., Hiramatsu, D., Hounsell, R., Howell, D. A., Jha, S. W., Kwok, L. A., Pérez-Fournon, I., Poidevin, F., Rest, A., Rubin, D., Scolnic, D. M., Shirley, R., Strolger, L. G., Tinyanont, S. and Wang, Q. (2022) SALT3-NIR: Taking the open-source type Ia supernova model to longer wavelengths for next-generation cosmological measurements. The Astrophysical Journal, 939 (11), [11]. (doi:10.3847/1538-4357/ac93f9).

Record type: Article

Abstract

A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 (∼2800-8700 Å central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2 μm with the open-source model-training software SALTshaker, which can easily accommodate future observations. Using simulated data, we show that the training process constrains the NIR model to ∼2%-3% across the phase range (−20 to 50 days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to ∼30% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to ∼20%. For SN Ia observations expected from the Roman Space Telescope, SALT3-NIR increases the amount of usable data in the SALT framework by ∼20% at redshift z ≲ 0.4 and by ∼50% at z ≲ 0.15. The SALT3-NIR model is part of the open-source SNCosmo and SNANA SN Ia cosmology packages.

Text
2209.05594v2 - Accepted Manuscript
Restricted to Repository staff only
Request a copy
Text
Pierel_2022_ApJ_939_11 - Version of Record
Available under License Creative Commons Attribution.
Download (3MB)

More information

Accepted/In Press date: September 2022
Published date: 1 November 2022
Additional Information: Funding Information: This work was completed in part with resources provided by the University of Chicago’s Research Computing Center. M.D. is supported by the Horizon Fellowship at the Johns Hopkins University. D.S. is supported by DOE grant DE-SC0021962 and the David and Lucile Packard Foundation (grant 2019-69659). L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, and the European Social Fund (ESF) “Investing in your future” under the 2019 Ramón y Cajal program RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. Support for D.O.J. was provided through NASA Hubble Fellowship grant HF2-51462.001, awarded by the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. A.V.F.'s team at UC Berkeley received financial assistance from the Miller Institute for Basic Research in Science (where A.V.F. was a Miller Senior Fellow), the Christopher R. Redlich Fund, and numerous individual donors. The UC Santa Cruz team is supported in part by NASA grants 14-WPS14-0048, NNG16PJ34C, and NNG17PX03C; NSF grants AST-1518052 and AST-1815935; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; and a fellowship from the David and Lucile Packard Foundation to R.J.F. This paper is based in part on observations with the NASA/ESA Hubble Space Telescope obtained from the Mikulski Archive for Space Telescopes at STScI; support was provided through programs HST-GO-15889 and GO-16234 (PI S. Jha), HST-GO-16706 (PI S. Gezari), and HST-AR-15808. This work was supported in part by NASA Keck Data Awards 2020B_N141 and 2021A_N147 (PI S. Jha), administered by the NASA Exoplanet Science Institute. The NIRES data used herein were obtained at the W. M. Keck Observatory from telescope time allocated to NASA through the agency’s scientific partnership with the California Institute of Technology and the University of California; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. D.A.H. is supported by NSF grant 1911225. J.B. is supported by NSF grants AST-1911151 and AST-1911225, as well as by NASA grant 80NSSC19kf1639. I.P.-F. acknowledges support from the Spanish State Research Agency (AEI) under grant No. ESP2017-86582-C4-2-R. F.P. acknowledges support from the Spanish State Research Agency (AEI) under grant No. PID2019-105552RB-C43. Publisher Copyright: © 2022. The Author(s). Published by the American Astronomical Society.

Identifiers

Local EPrints ID: 472499
URI: http://eprints.soton.ac.uk/id/eprint/472499
ISSN: 1538-4357
PURE UUID: 8e761b09-382e-4d9c-a534-9e325d35d0cd

Catalogue record

Date deposited: 07 Dec 2022 17:31
Last modified: 11 Nov 2024 19:10

Export record

Altmetrics

Contributors

Author: J. D. R. Pierel
Author: D. O. Jones
Author: W. D. Kenworthy
Author: M. Dai
Author: R. Kessler
Author: C. Ashall
Author: A. Do
Author: E. R. Peterson
Author: B. J. Shappee
Author: M. R. Siebert
Author: T. Barna
Author: T. G. Brink
Author: J. Burke
Author: A. Calamida
Author: Y. Camacho-Neves
Author: T. de Jaeger
Author: A. V. Filippenko
Author: R. J. Foley
Author: L. Galbany
Author: O. D. Fox
Author: S. Gomez
Author: D. Hiramatsu
Author: R. Hounsell
Author: D. A. Howell
Author: S. W. Jha
Author: L. A. Kwok
Author: I. Pérez-Fournon
Author: F. Poidevin
Author: A. Rest
Author: D. Rubin
Author: D. M. Scolnic
Author: R. Shirley
Author: L. G. Strolger
Author: S. Tinyanont
Author: Q. Wang

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×