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Abstract: We compute a large collection of string worldsheet correlators describing light
probes interacting with heavy black hole microstates. The heavy states consist of NS5
branes carrying momentum and/or fundamental string charge. In the fivebrane decoupling
limit, worldsheet string theory on a family of such backgrounds is given by exactly solvable
null-gauged WZWmodels. We construct physical vertex operators in these cosets, including
all massless fluctuations. We first compute a large class of novel heavy-light-light-heavy
correlators in the AdS3 limit, where the light operators include those dual to chiral primaries
of the holographically dual CFT.We compare a subset of these correlators to the holographic
CFT at the symmetric product orbifold point, and find precise agreement in all cases,
including for light operators in twisted sectors of the orbifold CFT. The agreement is highly
non-trivial, and includes amplitudes that describe the analogue of Hawking radiation for
these microstates. We further derive a formula for worldsheet correlators consisting of n
light insertions on these backgrounds, and discuss which subset of these correlators are
likely to be protected. As a test, we compute a heavy-light five-point function, obtaining
precisely the same result both from the worldsheet and the symmetric orbifold CFT. This
paper is a companion to and extension of [1].
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1 Introduction

String Theory provides a microscopic description of black holes as being bound states of
strings and branes with an exponentially large number of internal microstates [2]. Amongst
these microstates, there are coherent pure states, large families of which have been shown
to be well-described by smooth and horizonless supergravity solutions, see e.g. [3–9]. Upon
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taking an appropriate AdS decoupling limit, these solutions are proposed to correspond to
specific families of pure states in the holographically dual CFT (HCFT); precision hologra-
phy has provided sharp evidence supporting this correspondence [10–14].

While supergravity constructions provide valuable insight into the structure of black
hole microstates, it is natural to expect that string-theoretic physics beyond supergravity
will be necessary to obtain a complete description of black hole microstructure. A fruitful
arena in which to investigate such stringy physics is provided by bound states of NS5 branes
carrying fundamental string (F1) and/or momentum charge (P). More specifically, we work
in Type IIB compactified on S1 ×T4, with n5 NS5 branes wrapped on S1 ×T4, n1 units of
F1 winding on S1, and nP units of momentum charge along S1.

Upon taking the fivebrane decoupling limit, one obtains asymptotically linear dilaton
configurations, which are holographically dual to (doubly scaled) Little String Theory [15,
16]. In an appropriate region of the parameter space, there is an AdS3 regime in the IR,
and one can take a further AdS3 decoupling limit [17]. Upon doing so, one obtains the
well-studied NS5-F1 instance of AdS3/CFT2 holography [18, 19].

The NSNS vacuum of the holographic CFT corresponds to the global AdS3 × S3 × T4

background, whose worldsheet theory involves an SL(2,R)×SU(2) Wess-Zumino-Witten
(WZW) model [20–24]. In recent work, a family of gauged WZW models has been con-
structed and studied involving the same Lie groups, providing an exact worldsheet descrip-
tion of a set of NS5-F1-P black hole microstates [25–29].

Processes in which light probes interact with a heavy background such as a black hole
or a black hole microstate give rise to interesting and computable dynamical observables.
Mixed heavy-light (HL) correlators have been previously studied in holography, see e.g. [30–
34]. In the NS5-F1 system, there is a locus in moduli space at which the holographic
CFT is conjectured to be the N = (4, 4) symmetric product orbifold CFT with target
space

(
T4
)N

/SN , where N = n1n5. There is now a substantial body of evidence for this
conjecture, see e.g. [10–14, 35–38]. For recent discussions of holography in related systems,
see [39–41].

For instance, heavy-light-light-heavy (HLLH) four-point functions have been computed
in the supergravity approximation and/or in the symmetric product orbifold CFT, for par-
ticular sets of heavy and light operators [30, 33, 34]. Having solvable worldsheet models
associated to black hole microstates means we can go much further by taking into account
α′ corrections [25]. Given a worldsheet model describing string dynamics on a heavy back-
ground, the relevant quantities correspond to (a particular limit of) integrated correlators
of light operators in the worldsheet vacuum.

Worldsheet correlators in global AdS3 were first studied in [24], building in part on [21,
42], and the role of the vertex operators associated with spectrally flowed representations
was highlighted. Further studies include [43–47]. The spectrum of chiral primaries and
their three-point functions in global AdS3 × S3 × T4 were computed in [35–38], and shown
to match those of the symmetric product orbifold CFT, as studied in [48, 49].

The supergravity backgrounds we consider are known as NS5-F1 circular supertubes
and spectral flows thereof [50–55]. This includes non-BPS spectrally flowed supertubes,
known as the JMaRT solutions, after the authors of [53]. The associated worldsheet models
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are null-gauged WZW models, where before gauging one considers a (10+2)-dimensional
target space AdS3 × S3 × Rt × S1

y × T4. Roughly speaking, in the IR AdS3 regime, the
gauging is concentrated mostly along the t and y directions, while in the linear dilaton
regime the gauging is concentrated mostly in the time and angular directions of SL(2,R).

These coset models can also be thought of as marginal current-current deformations
of the worldsheet theory for strings in AdS3. These are instances of a larger class of
deformations that undo the decoupling limit with respect to the F1 harmonic function,
i.e. they “add back the 1+” in that function, leading to linear dilaton asymptotics; see
e.g. [28]. At the level of the dual field theory, a closely related procedure has been argued to
correspond to the so-called single-trace T T̄ irrelevant deformation of the original holographic
CFT [56, 57], flowing towards a non-local Little String Theory.

In this paper we study string correlators in these highly excited backgrounds. To do
so, we first compute a large set of physical vertex operators, in both NSNS and RR sectors,
building on [26, 28]. These describe linearized perturbations of the background configu-
rations. We focus primarily on coset states in discrete series representations, including
worldsheet spectral flow, that are dual to chiral primary operator excitations in the HCFT.
When the background is BPS, a subset of these are BPS fluctuations.

The currents being gauged in these cosets are linear combinations of the Cartan gener-
ators of the symmetry algebra. Therefore the “m-basis” for vertex operators, in which the
actions of these currents are diagonalized, is the natural framework to use. In the IR AdS3

limit, we describe how these operators are related to their global AdS3 × S3 counterparts.
We then compute a large set of correlators in the AdS3 limit. It is well known that in

worldsheet models of global AdS3, one can define an “x” variable that corresponds to the
local coordinate of the holographic CFT [19]. One of the main novelties of our approach is
the identification of the analogous x variable in the coset models we study. This identifica-
tion requires some care due to the gauging. Indeed, the construction of [19] breaks down,
because the SL(2,R) raising and lowering operators do not commute with the BRST charge.
A considerable amount of interesting physics follows from this step. It leads, for instance,
to the combination of seemingly simple m-basis two-point functions into spacetime-local
x-basis correlators with highly non-trivial x-dependence.

Our first main result is of a family of HLLH correlators, for which we obtain fully
explicit expressions. In doing so, we show that these correlators assume a remarkably
simple structure when written in terms of a covering space related only to the heavy states.
From this observation, we obtain our second main result: a closed-form expression for a set
of HL worldsheet correlators with an arbitrary number n of massless insertions, in terms
of a correlator consisting of n light insertions in global AdS3 × S3. For n = 3 this result
can be made completely explicit, and we present a particular example in full detail. This
constitutes the first correlator in the literature involving three light worldsheet vertices
on a black hole microstate background, dual to a heavy-light five-point function of the
holographic CFT.

A priori, our worldsheet correlators give predictions for correlators of the dual holo-
graphic CFT at strong coupling. Generically, four-point correlators are not protected across
moduli space, however, a specific set of HLLH correlators have been shown to precisely agree
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between supergravity and the symmetric product orbifold CFT [30]. Similarly, the emission
spectrum and rate for the unitary analog of Hawking radiation from the JMaRT solutions
agrees between supergravity and symmetric product orbifold CFT [55, 58–60]. Thus it
is natural to investigate more generally which HL correlators are protected (at large N)
between worldsheet and symmetric product orbifold CFT, and which are not.

We carry out this comparison for three sub-families of our worldsheet correlators.
Firstly, we compare various sets of HLLH correlators to the symmetric product orbifold
CFT, finding exact agreement in all cases for which the orbifold CFT correlator is available
in the literature. Importantly, this matching holds at leading order in large N , but exactly
in α′. This comparison includes a substantial generalization of the supergravity and holo-
graphic CFT correlators computed in [30]. Our comparisons notably include an example in
which the light operators in the symmetric orbifold CFT are twist-two. In this case, and as
shown recently in [61, 62], the Lunin-Mathur covering map used in the symmetric orbifold
computation is different to the one appearing in the worldsheet computation, making the
comparison highly non-trivial. Remarkably, both results agree exactly in the large N limit.

Secondly, we compute the five-point HLLLH symmetric orbifold CFT correlator cor-
responding to the three-point worldsheet correlator mentioned above, and also find exact
agreement. While most of our main results were announced in the short paper [1], this
five-point correlator is completely new.

Finally, we compute the analogue of the Hawking radiation rate for the JMaRT so-
lutions. Once again, we find perfect agreement with the dual symmetric product orbifold
CFT, extending the supergravity and holographic CFT results of [55, 58–60].

A likely explanation for this remarkable agreement is that the heavy states we consider
are quite special. Specifically, the heavy backgrounds are related to the global AdS3 × S3

vacuum via orbifolding and fractional spectral flow [54, 55]. This fact also underlies our
general formula for the HL correlators with n light insertions. When n > 3, we do not expect
these HL correlators to be generically protected across moduli space; we shall discuss this
in detail in due course.

The structure of the paper is as follows. In Section 2 we review the null-gauged WZW
models we study. We present the supergravity fields in the fivebrane decoupling limit, take
the AdS3 limit, and describe the dual heavy states of the holographic CFT. In Section
3 we present the light operators we are interested in. We review the chiral primaries of
the symmetric product orbifold CFT. We then describe how the corresponding operators
are constructed in the worldsheet theory for strings in AdS3 × S3 in the RNS formalism,
including spectrally flowed states. In Section 4 we construct a large set of vertex operators
of the worldsheet cosets we study, both in the NS and in the R sectors. We then examine
their AdS3 limit and relate these vertices to those constructed in Sec. 3.

In Sections 5 and 6, we present our main results. We identify the “x” variable dual to
the local coordinate of the holographic CFT, and obtain an extensive set of novel HLLH
correlators, including massless insertions with arbitrary spacetime weights and charges. The
final results are presented in Eqs. (6.16) and (6.28). We then compare a subset of these
results to the symmetric product orbifold CFT, finding exact agreement for all correlators
available in the literature. We present a closed formula for a large class of worldsheet
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correlators with an arbitrary number of massless insertions, Eq. (6.29). We compute a
five-point correlator in the symmetric orbifold CFT and find agreement with our general
worldsheet formula. Finally, we compute the amplitude describing the unitary analogue of
Hawking radiation for the JMaRT microstates. We discuss our results in Section 7.

2 The heavy background states

In this section we introduce the heavy backgrounds known as NS5-F1 circular supertubes
and spectral flows thereof [50–55], including the general NS5-F1-P JMaRT solutions and
their BPS limits. We work in the fivebrane decoupling limit, and review the worldsheet
description of tree-level string theory on these backgrounds in terms of null-gauged WZW
models [25, 26, 29]. In the IR, the backgrounds become asymptotically AdS3 × S3, and we
review the corresponding heavy states of the holographically dual CFT at the symmetric
orbifold point [55].

2.1 JMaRT backgrounds from the worldsheet

We begin by reviewing the family of coset CFT models that describe strings probing the
JMaRT backgrounds (and their BPS limits), introduced in [25] and analyzed in [26, 29].
We will mostly use the notation and conventions from [29], to which we refer the reader
who is interested in more details. We work in units in which α′ = 1.

The null-gauged WZW model relevant for the present work has the following coset as
a target space:

G/H × T4 =
SL(2,R)× SU(2)× Rt ×U(1)y

U(1)L ×U(1)R
× T4 . (2.1)

To be precise, globally we work with the universal cover of SL(2,R), and we gauge R×U(1).
The line element and NSNS three-form flux of the 10+2-dimensional “upstairs” model before
gauging are given in local coordinates by

ds2 = n5

(
− cosh2ρ dτ2 + dρ2 + sinh2ρ dσ2 + dθ2 + cos2 θdψ2 + sin2 θdφ2

)
− dt2 + dy2,

H = n5

(
sinh 2ρ dρ ∧ dτ ∧ dσ + sin 2θ dθ ∧ dψ ∧ dφ

)
. (2.2)

The Killing vectors associated to the group action being gauged are1

ξL = (∂τ − ∂σ)− l2(∂ψ − ∂φ) + l3∂t − l4∂y ,
ξR = (∂τ + ∂σ) + r2(∂ψ + ∂φ) + r3∂t − r4∂y .

(2.3)

We could be slightly more general and include similar parameters l1, r1 in (2.3), however
we have assumed these to be non-vanishing and have set l1 = r1 = 1 by a choice of
normalization. The corresponding currents are

J = j3sl + l2 j
3
su + l3P

t
L + l4P

y
L , J̄ = j̄3sl + r2 j̄

3
su + r3P

t
R + r4P

y
R , (2.4)

1Note that some conventions differ from our letter [1]. In the latter, the following changes must be
performed to make contact with our current notation: s+ 7→ l2, s− 7→ −r2, µ 7→ l3, k+ 7→ l4, k− 7→ r4.
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where2

j3sl = n5

(
cosh2ρ ∂τ + sinh2ρ ∂σ

)
, j̄3sl = n5

(
cosh2ρ ∂̄τ − sinh2ρ ∂̄σ

)
,

j3su = n5

(
cos2 θ ∂ψ − sin2 θ ∂φ

)
, j̄3su = −n5

(
cos2 θ ∂̄ψ + sin2 θ ∂̄φ

)
,

(2.5)

and

PtL = ∂t , PtR = ∂̄t , PyL = ∂y , PyR = ∂̄y . (2.6)

For the currents in Eq. (2.4) to be null, we impose the constraints

n5(1− l22) + l23 − l24 = 0 , n5(1− r2
2) + r2

3 − r2
4 = 0 . (2.7)

Upon integrating out the gauge fields, the gauging procedure effectively adds a term
quadratic in the currents, resulting in an action of the schematic form

SWZW +
2

π

∫
J J̄
Σ

d2z , (2.8)

with
Σ ≡ −1

2
ξi1Gijξ

j
2 , (2.9)

where Gij is the metric in Eq. (2.2). One can then read off the resulting line element and
B-field of the gauged model. The change in the measure also generates a non-trivial dilaton,
which can be obtained by solving for the vanishing of the appropriate worldsheet one-loop
beta function, see [29].

The geometry obtained from the WZW model is free of horizons and closed timelike
curves (CTCs) if and only if [29]

l3 = r3 . (2.10)

To obtain smooth geometries up to orbifold singularities or NS5 sources, we further impose3

l2 = m + n ∈ 2Z + 1 , r2 = m− n ∈ 2Z + 1 , m, n ∈ Z , (2.11)

and
l4 = −

(
kRy −

p

Ry

)
, r4 = kRy +

p

Ry
, k, p ∈ Z . (2.12)

Combining these expression with the null constraints Eq. (2.7) leads to

l3 = r3 = −

√
k2R2

y +
p2

R2
y

+ n5 (m2 + n2 − 1) , (2.13)

and
k p = n5 mn , (2.14)

hence that only three of the four integers k,m, n, p are independent. The very same condi-
tions are necessary and sufficient for the consistency of the spectrum of the worldsheet CFT

2Compared to [29] we have implemented the change θ 7→ π
2
− θ, φ↔ −ψ. This effectively exchanges the

sign of r2.
3There are also consistent models with l2 = r2 = 0, which we do not consider in this work.
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[29]. For the AdS3 limit of these backgrounds to be dual to pure states of the holographic
CFT, there is an additional requirement from momentum quantization in the k-twisted
sectors that we shall review in Section 2.3 (see e.g. [55]),

mn

k
∈ Z . (2.15)

Without loss of generality, we work in the range of parameters k ≥ 0, m > n ≥ 0.

2.2 Supergravity configurations and AdS3 limit

The family of coset CFTs we have just defined corresponds precisely to the NS5-decoupled
JMaRT configurations and their limits [29]. Using the integer parametrization introduced
above, the supergravity fields are given by

ds2 = n5(dθ2 + dρ2) +
1

Σ0

[
−
(

sinh2ρ + (m2 − n2) cos2 θ + 1−m2 − p2

n5R2
y

)
dt2

+

(
sinh2ρ + (m2 − n2) cos2 θ + n2 +

p2

n5R2
y

)
dy2 − 2

p

n5Ry
∆dtdy

+
(
n5 sinh2ρ + n5m

2 + k2R2
y

)
sin2 θdφ2 +

(
n5 sinh2ρ + n5n

2 + k2R2
y

)
cos2 θdψ2

+ 2

(
m∆dt−

(
m

p

Ry
+ nkRy

)
dy

)
sin2 θdφ− 2

(
n∆dt−

(
n
p

Ry
+ mkRy

)
dy

)
cos2 θdψ

]
,

B =
1

Σ0

[
− kRy

n5
∆dt ∧ dy +

(
n5 sinh2ρ + n5 m

2 + k2R2
y

)
cos2θ dφ ∧ dψ

+

(
m∆dt−

(
m

p

Ry
+ nkRy

)
dy

)
∧ cos2 θdψ −

(
n∆dt−

(
n
p

Ry
+ mkRy

)
dy

)
∧ sin2 θdφ

]
,

(2.16)

where Ry is the asymptotic proper radius of the S1
y circle, and where

Σ0 = sinh2 ρ+ (m2 − n2) cos2 θ + n2 +
k2R2

y

n5
, (2.17)

∆ =

√
n5(m2 + n2 − 1) + k2R2

y +
p2

R2
y

. (2.18)

We also note the relations between the supergravity charges and integer charge quanta,

Q1 = n1
g2
s

V4
, Qp =

np
R2
y

g2
s

V4
, (2.19)

where (2π)4V4 is the coordinate volume of the T4. Note that the three-charge NS5-decoupled
JMaRT solutions are specified by the integers n5, k,m, n, the modulus Ry, and the charge
Q1 appearing in the dilaton.

– 7 –



One can take a further IR AdS3 decoupling limit by taking Ry to be large, keeping
fixed the charge Q1 and the rescaled energy ERy and momentum PyRy. We define rescaled
coordinates

t̃ =
t

Ry
, ỹ =

y

Ry
. (2.20)

and perform the large-Ry expansion at the level of the coefficients in Eqs. (2.11)–(2.14),
such that the leading terms in l3, r3, l4 and r4 become independent of p. However, the
product kp is kept fixed and the relation Eq. (2.14) still holds, defining the momentum per
strand for the holographic CFT [55]. Order-by-order in 1/Ry, the coefficients still satisfy
the null conditions Eq. (2.7). The six-dimensional fields in (2.16) then become

ds2 = n5

[
− 1

k2
cosh2 ρ dt̃2 +

1

k2
sinh2 ρ dỹ2 + dρ2 (2.21)

+ dθ2 + sin2 θ
(
dφ− n

k
dt̃+

m

k
dỹ
)2

+ cos2 θ
(
dψ +

m

k
dt̃− n

k
dỹ
)2
]
,

B = n5

[
sinh2ρ + (m2 − n2) cos2 θ

k2
dt̃ ∧ dỹ + cos2 θ dφ ∧ dψ (2.22)

+ sin2 θ
(
−n

k
dt̃+

m

k
dỹ
)
∧ dφ+ cos2 θ

(m
k
dt̃− n

k
dỹ
)
∧ dψ

]
,

e2Φ =
n5

Q1
=
Q5

Q1
, (2.23)

where a trivial gauge transformation has been performed on the B-field.
These solutions are related by a large coordinate transformation to Zk orbifolds of

global AdS3 × S3, which are the decoupling limits of the supertube solutions of [63, 64].
This large coordinate transformation is known as spacetime spectral flow, and takes the
form

ψ̃ = ψ +
m

k
t̃− n

k
ỹ , φ̃ = φ− n

k
t̃+

m

k
ỹ . (2.24)

For the special case m = n = 0, spectral flow is not relevant and the solutions are already
Zk orbifolds of global AdS3 × S3. When m, n are not both zero, one typically works in the
range m > n ≥ 0 without loss of generality. For m = 1, n = 0, the solutions (2.21)–(2.23),
are the AdS decoupling limits of the two-charge circular supertube solutions of [63, 64].
For m = n + 1 with n > 0, the solutions the AdS limit of the supersymmetric spectral
flowed solutions of [50–52, 54], and for other values of m, n one obtains the AdS limit of
the non-supersymmetric JMaRT solutions [53]. For k = 1 the solutions are smooth; for
k > 1 the solutions have orbifold singularities near ỹ = 0, the details of which depend on
the common divisors of m, n, k [26, 53, 55].

2.3 Holographic description and boundary spectral flow

As mentioned in the Introduction, the holographic CFT that corresponds to the AdS3 limit
of the system in which we work is an N = (4, 4) symmetric product orbifold CFT with
target space

(
T4
)N

/SN , where N = n1n5. To make the presentation self-contained, we
now review some aspects of this theory.
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Recall that we work in Type IIB compactified on S1×T4, with n5 NS5 branes wrapped
on S1 × T4, n1 units of F1 winding on S1, and nP units of momentum charge along S1.
The moduli space is 20-dimensional and the symmetric product orbifold CFT lies at a
particular locus of this moduli space [65], see also [6]. The configuration breaks the SO(1, 9)

Lorentz group to SO(1, 1) × SO(4)E × U(1)4, where the external R-symmetry SO(4)E '
SU(2)L × SU(2)R corresponds to rotations in the spatial R4 transverse to the branes (in
the IR limit, rotations of the S3). It is customary to introduce an approximate internal
SO(4)I ' SU(2)1 × SU(2)2, which is broken to U(1)4 by the compactification, but which is
useful for classifying states and organizing fields [66, 67].

In the symmetric product orbifold theory, for each copy of T4 there are four free bosons,
together with their left and right-moving fermionic superpartners. Indices α, α̇, A, Ȧ corre-
spond respectively to SU(2)L , SU(2)R , SU(2)1 , SU(2)2. The free fields are denoted as (we
use the conventions of [59])

XAȦ (r)(z, z̄) , ψαȦ(r) (z) , ψ̄α̇Ȧ(r) (z̄) , (2.25)

where the subscript (r) denotes the r-th copy of the seed T4 theory. Omitting this copy
subscript and focusing on the holomorphic sector, the energy-momentum tensor T(z), the
supercurrents GαA(z) and the SU(2)L currents Ja generate the small (4,4) supersymmetric
algebra. We denote holographic CFT conformal weights by h and R-symmetry quantum
numbers by (j,m′) and (j̄, m̄′), respectively.

The heavy states we are interested in are obtained by fractional spectral flow [55], see
also [54, 68]. We start from the NSNS vacuum in the k-twisted sector, |0k〉NS. In order to
have a gauge invariant state we consider n1n5/k identical strands of length k. Its dimension
is

h = h̄ =
c

24

[
1− 1

k2

]
, (2.26)

where the central charge c = 6N . The R-charges of this state are zero. Because all strands
are of length k there is an enhancement of the usual spectral flow, such that one can perform
spectral flow with fractional parameters,

α =
m + n

k
=

2s+ 1

k
, ᾱ =

m− n

k
=

2s̄+ 1

k
, (2.27)

where s, s̄ ∈ Z and the range m > n ≥ 0 is the range s ≥ s̄ ≥ 0. This generates a new state
with quantum numbers

h =
c

24

[
1− 1

k2
+ α2

]
, m′ =

αc

12
,

h̄ =
c

24

[
1− 1

k2
+ ᾱ2

]
, m̄′ =

ᾱc

12
. (2.28)

These states are “heavy” in the sense that their conformal dimensions and charges scale
linearly with the large central charge c = 6N . In the dual theory they correspond to the
classical configurations presented in Eqs. (2.21)–(2.23). By constrast, the “light” pertur-
bative string states probing these backgrounds will correspond to holographic CFT states
with conformal dimensions that are independent of c.
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We conclude this section by summarizing how the bulk, the worldsheet, and the dual
CFT encode in different ways the same information about the heavy state.

• In the worldsheet model, the heavy state defines the theory itself by means of the
gauging parameters li, ri appearing in Eq. (2.4) and the radius Ry.

• In supergravity, the information about the heavy state is contained in the integers
m, n, k parameterizing the fields in Eq. (2.16), together with Ry, which gets scaled out
in the AdS limit.

• In the symmetric orbifold CFT, the information about the heavy states is contained
in the spectral flow parameters α and ᾱ, and the twist index k.

The map between the three descriptions, in the AdS limit, is then

−Ry
l2
l4

Ry→∞−−−−→ m + n

k
= α , Ry

r2

r4

Ry→∞−−−−→ m− n

k
= ᾱ . (2.29)

3 The light probe states

We now introduce the light states that we will study. These correspond to chiral pri-
mary operators of the boundary theory. We focus first on fluctuations around the global
AdS3×S3 vacuum. We review the dictionary between holographic CFT operators and their
counterparts in the worldsheet theory, following [37, 38].

3.1 Chiral primaries in the D1D5 CFT

We first briefly review the construction of chiral primary operators in the symmetric orbifold
CFT [49]. We focus primarily on the holomorphic sector in the following; the antiholomor-
phic sector is entirely analogous. In the untwisted sector, on each copy of the seed T4 theory,
the chiral primary operators correspond to the states (suppressing the copy (r) label)

|0NS〉 , ψ+Ȧ
− 1

2

|0NS〉 , J+
−1|0NS〉 = ψ+1̇

− 1
2

ψ+2̇
− 1

2

|0NS〉 , (3.1)

where |0NS〉 is the NS vacuum. The corresponding weights and R-charges are h = m′ =

0, 1
2 , 1, respectively. Physical configurations in the orbifold theory are obtained by sym-

metrizing the states in (3.1) over the different copies of the seed theory.
By including the antiholomorphic sector we can obtain, for instance, the dimension

(1
2 ,

1
2) operator (see e.g. [69])

O++ =

N∑
r=1

O++
(r) =

−i√
2

N∑
r=1

ψ+Ȧ
(r) εȦḂψ̄

+Ḃ
(r) , (O++)† = O−− . (3.2)

We will use this operator in an explicit example later in the paper.
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In order to construct more general chiral primaries one needs to consider the twisted
sectors of the theory. Consider the ‘bare’ twist operators σn, defined on the cylinder, that
impose the following boundary conditions corresponding to a single-cycle permutation,

X(1) → X(2) → · · · → X(n) → X(1) ,

ψ(1) → ψ(2) → · · · → ψ(n) → −ψ(1) ,
(3.3)

and likewise for the antiholomorphic fermions. The bare twist operators are defined to be
the lowest-dimension twist operators that impose the above boundary conditions; they have
dimension h = h̄ = 1

4

(
n− 1

n

)
and zero R-charge. Chiral operators are obtained by exciting

the bare twist operators operators to add R-charge. The lowest-dimension chiral operators
have h = m′ = n−1

2 . For n odd, these operators are obtained by acting with modes of the
SU(2) currents, which are bilinears in the free fermions. Due to the twist operator, the
SU(2) currents are fractional-moded in units of 1/n. The relation between these modes and
those of free fermions on the n copies of the seed theory can be found in [49]. To construct
the chiral operators, one acts with the currents J+

−l/n for which l is odd and l < n,

n odd : σ−n =

(n−1)/2∏
p=1

J+

− 2p−1
n

σn = J+
−n−2

n

· · · J+
− 3
n

J+
− 1
n

σn . (3.4)

For n even, one first acts with a spin field S+
n , which has weight 1

4n and charge 1
2 , putting

the fermions into the Ramond sector (i.e. their boundary conditions are similar to Eq. (3.3)
but with the final sign being +ψ(1)). One then acts with the currents J+

−l/n for which l is
even and l < n,

n even : σ−n =

(n−2)/2∏
p=1

J+

− 2p
n

S+
n σn = J+

−n−2
n

· · · J+
− 4
n

J+
− 2
n

S+
n σn . (3.5)

As in the untwisted case, for both odd and even n we can act with ψ+Ȧ
− 1

2

≡
n∑
r=1

ψ+Ȧ
− 1

2
(r)

to

obtain a chiral operator ψ+Ȧ
− 1

2

σ−n which has h = m′ = n
2 . Similarly we can act with J+

−1 to

obtain a chiral operator J+
−1σ

−
n which has h = m′ = n+1

2 . Together with the analogous an-
tiholomorphic operators, this exhausts the single-cycle chiral operators. Indeed, by making
use of anti-commutators of the supercurrent modes G±A−m/n in the corresponding twisted
sectors, one can show that chiral weights are bounded by [67]

n− 1

2
≤ h ≤ n+ 1

2
. (3.6)

In the twisted sectors, it is often convenient to work in a basis that diagonalizes the
twisted boundary conditions. We shall make use of this basis in Section 6.4. One defines

ψ̃αȦρ =
1√
n

n∑
r=1

eα
2πirρ
n ψαȦ(r) , ρ = 0, . . . , n− 1 , (3.7)
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where α = ± should not be confused with the spectral flow parameter in Eq. (2.27). These
are mutually orthogonal, and diagonalize the twisted boundary conditions as

ψ̃αȦρ (e2πiz) = e−α
2πiρ
n ψ̃αȦρ (z) . (3.8)

These fermions can be bosonized to construct an explicit expression for the spin fields
mentioned above. Note that the fields ψ̃αȦρ=0 are invariant under the twisting. For further
discussion, see [37].

We now combine the above holomorphic construction with its antiholomorphic coun-
terpart and define the complete list of scalar left-right chiral primaries we will be interested
in:

O−−n = σ−−n , OȦḂn = ψ̃+Ȧ
ρ=0

¯̃
ψ+Ḃ
ρ=0σ

−−
n , O++

n = ψ̃+1̇
ρ=0 ψ̃

+2̇
ρ=0

¯̃
ψ+1̇
ρ=0

¯̃
ψ+2̇
ρ=0σ

−−
n ,

(3.9)
where σ−−n is defined similarly to Eqs. (3.4), (3.5) but now also with the same construction
in the antiholomorphic sector. The operators in (3.9) are normalized such that they have
unit two-point functions.

For later reference, we note that in each case the respective weights and twist numbers
can be written in terms of j = n+1

2 as

h
[
O−−n

]
= j − 1 , h

[
OȦḂn

]
= j − 1

2
, h

[
O++
n

]
= j . (3.10)

An analogous list of anti-chiral primaries (which have h = −m′) is obtained by acting on
the bare twist fields with current and fermion modes with opposite charge, i.e. J−−l/n and

ψ−Ȧ. As we will shortly review, and up to a shift related to spectral flow, this j will be
identified with the principal quantum number of the bosonic (global) SL(2,R) algebra of
the worldsheet theory, to which we now turn.

3.2 Superstring theory on AdS3 × S3 × T4

We now review the basics of superstring theory on AdS3×S3×T4 using the RNS formalism
with BRST quantization. We first discuss the bosonic SL(2,R) and SU(2) WZW models
and then present their supersymmetric counterparts. We present the current algebra and
review the spectrum, including states arising from worldsheet spectral flow.

3.2.1 Bosonic WZW model for SL(2,R)

The SL(2,R) WZW model was studied in detail in [22–24]. In what follows we will mostly
follow the notation of [37, 38, 46], and normal ordering will be implicitly assumed. The
holomorphic SL(2,R) currents will be denoted ja(z). They satisfy the OPEs

ja(z)jb(w) ∼ k

2

ηab

(z − w)2
+
fabc j

c(w)

z − w
, (3.11)

where k is the level of the affine algebra, and where

− 2η33 = η+− = 2 , f+−
3 = −2 , f3+

+ = −f3−
− = 1 . (3.12)
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The holomorphic stress tensor and the central charge follow from the Sugawara construction,
and are given by (likewise for the antiholomorphic sector)

Tsl(z) =
1

k − 2

[
−j3(z)j3(z) +

1

2
j+(z)j−(z) +

1

2
j−(z)j+(z)

]
, csl =

3k

k − 2
. (3.13)

We denote bosonic SL(2,R) primary vertex operators by Vj,m,m̄(z, z̄). Their zero-mode
wavefunctions do not factorize between holomorphic and antiholomorphic sectors, however
as is often done we shall work primarily with the holomorphic sector, and suppress the
m̄ and z̄ dependence. The relevant representations of the holomorphic zero-mode algebra
are as follows. The principal series discrete representations of lowest (highest) weight are
spanned by

D±j = {|j,m〉 , m = ±j,±j ± 1,±j ± 2, · · · } , (3.14)

respectively, where j3
0 |j,m〉 = m|j,m〉. These are unitary representations for any posi-

tive real j, and one is the charge conjugate of the other (we will restrict the range of j
momentarily). There are also the principal continuous series representations, spanned by

Cα̂j = {|j, α̂,m〉 , 0 ≤ α̂ < 1 , j =
1

2
+ is , s ∈ R , m = α̂, α̂± 1, α̂± 2, · · · } . (3.15)

The particular case α̂ = 1/2 = j is actually reducible. It was shown in [22] that the
spectrum of the model is built out of continuous and lowest weight representations with

1

2
< j <

k − 1

2
, (3.16)

together with their spectrally flowed images, to be introduced below. The allowed range
(3.16) follows from L2 normalization conditions, no-ghost theorems and spectral flow con-
siderations.

Before considering worldsheet spectral flow (we refer to this as the “unflowed” sector),
the action of the currents on the primary states is given by

j3
0 |j,m〉 = m|j,m〉 , (3.17a)

j±0 |j,m〉 =

{
(m∓ (j − 1))|j,m± 1〉 if m 6= ∓j
0 if m = ∓j ,

(3.17b)

jan|j,m〉 = 0 ∀n > 0 . (3.17c)

These vertex operators can be obtained from those of the Euclidean counterpart of the
model, namely the H+

3 WZW model [21, 70, 71] (see also [72]), as follows. One introduces
a set of operators depending on a complex label x, written as Vj(x|z), and having conformal
weight

∆ = −j(j − 1)

k − 2
. (3.18)

The action of the currents on Vj(x, z) is given by

ja(z)Vj(x,w) ∼
Da
jVj(x,w)

(z − w)
, (3.19)
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where
D+
j = ∂x , D3

j = x∂x + j , D−j = x2∂x + 2jx . (3.20)

The two-point function is given by [21]

〈Vj1(x1, z1)Vj2(x2, z2)〉 =
1

|z12|4∆1

[
δ2(x1 − x2)δ(j1 + j2 − 1) +

B(j1)

|x12|4j1
δ(j1 − j2)

]
,

(3.21)
with

B(j) =
2j − 1

π

Γ[1− b2(2j − 1)]

Γ[1 + b2(2j − 1)]
ν1−2j , ν =

Γ[1− b2]

Γ[1 + b2]
, b2 = (k − 2)−1 . (3.22)

The operators Vj,m(z) are related to Vj(x|z) by means of the following Mellin-like transform:

Vj,m(z) =

∫
C
d2xxj−m−1x̄j−m̄−1Vj(x, z) . (3.23)

In the Euclidean H+
3 model, j takes values j = 1/2 + is. To obtain the unflowed Vj,m for

Lorentzian AdS3, one assumes a well-defined analytically continuation to real values of j.
This procedure was discussed in [24], which identified the physical origin of the different
divergences arising in correlation functions. For related work, see [73]. The two-point
functions in the m-basis then follow from (3.21), (3.23). Using the shorthand Vi ≡ Vji,mi ,
one finds

〈V1V2〉 =
δ2(m1 +m2)

|z12|4∆1

[
δ(j1 + j2 − 1) + δ(j1 − j2)

πB(j1)

γ(2j1)

γ(j1 +m1)

γ(1− j1 +m1)

]
, (3.24)

where γ(x) = Γ(x)/Γ(1− x̄), and where δ2(m) is a Dirac delta in m+m̄ times a Kroenecker
delta in m− m̄.

At first sight, the complex variable x may appear simply as an SL(2,R) version of the
isospin variables defined for SU(2) in [20]. However, given that the integrated zero modes
of the currents realize the spacetime Virasoro modes L0 and L±1, and by examining the
expressions of the associated differential operators (3.20), one is led to interpret x as the
local coordinate on the boundary theory [18]. According to (3.21), in the bosonic theory
a z-integrated vertex operator Vj(x) is identified with a local operator on the boundary
theory with weight j. Conversely, the corresponding boundary modes are given by the
m-basis operators. Indeed, for states in the discrete sector, the transform in Eq. (3.23) can
be inverted, giving

Vj(x, z) =
∑

m=j+n, n∈N0

xm−j x̄m̄−j Vj,mm̄(z) . (3.25)

The vertex Vj(x, z) is realized via Eq. (3.25) as Vj,j(z) translated from the origin to x. Poles
in the integrand of (3.23) coming from the expansion around x = 0 (x =∞) are associated
to states in the D+

j (D−j ) representations [46, 74].
Spectral flow automorphisms of the current algebra (3.11) are defined as

j±(z)→ j̃±(z) = z±wj±(z) , j3(z)→ j̃3(z) = j3(z)− k ω

2

1

z
, (3.26)
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where the so-called spectral flow charge ω is an integer. Analogous formulas hold for the
antiholomorphic sector. We work with the universal cover of SL(2,R), which imposes that
the holomorphic and antiholomorphic spectral flow parameters must be equal, ω̄ = ω. The
action of (3.26) on the above representations defines in general inequivalent representations
that must be considered in order to generate a consistent spectrum. This holds up to the
so-called series identifications due to the fact that the affine modules D̂+,w

j and D̂−,w+1
k/2−j are

isomorphic. Thus, as mentioned above, the discrete series spectrum is constructed solely
upon lowest weight representations with j restricted to the range (3.16).

At the level of vertex operators and for w > 0, the spectral flow operation introduced in
(3.26) defines the so-called flowed primaries, whose OPEs with the currents take the form

j+(z)V ω
j,m(w) =

(m+ 1− j)V ω
j,m+1(w)

(z − w)ω+1
+

ω∑
n=1

(j+
n−1V

ω
j,m)(w)

(z − w)n
+ . . . , (3.27a)

j3(z)V ω
j,m(w) =

(
m+ k

2ω
)
V ω
j,m(w)

(z − w)
+ . . . , (3.27b)

j−(z)V ω
j,m(w) = (z − w)ω−1(m− 1 + j)V ω

j,m−1(w) + . . . , (3.27c)

where the ellipses indicate higher-order terms. Similar expressions hold for ω < 0, with
the roles of j+ and j− inverted. The operators V ω

j,m(z) are not affine primaries. They are,
however, Virasoro primaries, with worldsheet conformal weight

∆̂ = −j(j − 1)

k − 2
−mω − k

4
ω2 . (3.28)

Note that for ω > 0 (ω < 0), independently of the characteristics of the original state, these
correspond to lowest (highest) weight states, with SL(2,R) spin

h = m+
k

2
ω , (3.29)

(h = −m − kω/2, respectively). The notation h anticipates that the SL(2,R) spin is
identified with the holographic CFT conformal weight [19] (see also e.g. [37]), as we shall
see in Eq. (3.31).

The flowed affine modules alluded above are built by acting freely with the currents on
flowed primary states. In particular, the remaining states in the zero-mode algebra, which
are obtained by acting with j−0 , are not flowed primaries. Nevertheless, one can proceed as
done for the unflowed states, and combine them into a local operator, defined initially for
ω > 0 as

V w
j,h(x, z) =

∑
n∈N0

xnx̄n̄ V w
j,h+n,h+n̄(z) . (3.30)

Moreover, by inverting x→ 1/x in the expansion, one also obtains the states in the highest-
weight representation with the same spin and opposite ω and m. This shows that the
resulting x-basis states are actually defined in terms of the absolute value of ω, its sign
being irrelevant. A direct x-basis definition for spectrally flowed vertex operators was
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recently derived in [75], extending the original proposal of [24] valid only for the singly
flowed case.

The classical analog of the spectral flow operation (3.26) maps space-like geodesics
of point-like strings into solutions in which a long string wound around the AdS3 angular
direction at large radius comes in to the centre of global AdS3, collapses to a point, and then
re-expands to large radial distance [22]. The spectral flow parameter ω is thus sometimes
referred to in the literature as a “winding” number. Note that since the AdS3 angular
direction is contractible in the interior of global AdS3, the parameter ω is not a conserved
quantity. However, the m-basis two-point functions are diagonal in ω: it was shown in [24]
that the m-basis two-point function of flowed primaries is as in (3.24) with an extra factor
of δω1,−ω2 and the worldsheet conformal weight ∆1 replaced by ∆̂1 given in Eq. (3.28). On
the other hand, in the x-basis one finds

〈V ω1
j1,h1

(x1, z1)V ω2
j2,h2

(x2, z2)〉 =
1

|x12|4h1

〈V ω1
j1,m1

V ω2
j2,m2

〉
Vconf

. (3.31)

Thus, as mentioned above, the SL(2,R) spin h is identified with the holographic CFT
conformal weight [19], even though in the flowed sectors the spin is independent of the
value of j of the corresponding unflowed operator. The factor Vconf stands for the divergent
volume of the conformal group; it reflects the fact we are picking up the contribution from
a pole, and it will cancel in the relevant computations that follow.

3.2.2 Bosonic WZW model for SU(2)

The bosonic WZW model based on the SU(2) group manifold was studied in [20, 76]. We
denote the generators of the current algebra by ka, and for most quantities we use primes
to distinguish them from their SL(2,R) counterparts. The currents satisfy the OPEs

ka(z)kb(w) ∼ k′

2

δab

(z − w)2
+
f ′abc k

c(w)

z − w
, (3.32)

where k′ is the level of the affine Lie algebra, δab is the Killing form, and f ′abc are the
corresponding structure constants,

2δ33 = δ+− = 2 , f ′+−3 = 2 , f ′3+
+ = −f ′3−− = 1 . (3.33)

The energy-momentum tensor and central charge are

Tsu(z) =
1

k′ + 2

[
k3(z)k3(z) +

1

2
k+(z)k−(z) +

1

2
k−(z)k+(z)

]
, csu =

3k′

k′ + 2
. (3.34)

We denote SU(2) vertex operators by V ′j′,m′,m̄′(z, z̄). Again, their zero-mode wavefunctions
do not factorize into holomorphic and antiholomorphic parts, however we shall mostly work
holomorphically and suppress antiholomorphic quantities (m̄′, z̄).

For SU(2), the unitary representations of the zero-mode algebra are labeled by

0 ≤ j′ ≤ k′

2
, j′ ∈ Z/2 , (3.35)
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and their states are |j′,m′〉 with m′ = −j′,−j′ + 1, . . . , j′ − 1, j′. Using conventions that
mimic those used above for SL(2,R), we have

k3
0|j′,m′〉 = m′|j′,m′〉 , (3.36a)

k±0 |j
′,m′〉 =

{
(j′ + 1±m′)|j′,m′ ± 1〉 if m 6= ±j
0 if m = ±j ,

(3.36b)

kan|j′,m′〉 = 0 ∀n > 0 , (3.36c)

and
∆′ =

j′(j′ + 1)

k′ + 2
. (3.37)

Unlike SL(2,R), in the SU(2) WZW model spectral flow is not necessary for construct-
ing a consistent spectrum due to the compactness of the group manifold. Indeed, the
spectral flow automorphisms merely reshuffle primary and descendant fields, and they do
not introduce new inequivalent representations. Nevertheless, for superstring theory appli-
cations it is of practical use to include it in the discussion [26, 29, 38]. We will discuss this
in more detail shortly.

For SU(2), spectral flow is defined as

k±(z)→ k̃±(z) = z∓w
′
k±(z) , k3(z)→ k̃3(z) = k3(z)− k′ω′

2

1

z
. (3.38)

In this case, however, it is possible to have ω̄′ 6= ω′. As before, spectrally flowed primaries
V ω′
j′,m′(z) are Virasoro primaries, with weight

∆̂′ =
j′(j′ + 1)

k′ − 2
+m′ω′ +

k′

4
ω′2 , (3.39)

but they are not affine primaries, and for ω′ > 0 they are defined in terms of the OPEs

k+(z)V ω′
j′,m′(w) = (z − w)ω

′−1(j′ −m′)V ω′
j′,m′+1(w) + . . . , (3.40a)

k3(z)V ω′
j′,m′(w) =

(
m′ + k

2ω
′)V ω′

j′,m′(w)

(z − w)
+ . . . , (3.40b)

k−(z)V ω′
j′,m′(w) =

(j′ +m′)V ω′
j′,m′−1(w)

(z − w)ω′+1
+

ω′∑
n=0

(k−n−1V
ω′
j′,m′)(w)

(z − w)n
+ . . . . (3.40c)

The corresponding two-point functions are, again, the unflowed ones times δω1,−ω2 , with
the appropriate powers of z12.

3.2.3 Superstrings in AdS3 × S3 × T4

We now review supersymmetric generalizations of the bosonic WZW models discussed
above. We introduce fermions ψa and χa which are superpartners of the SL(2,R) and
SU(2) currents Ja and Ka respectively. The appropriate N = 1 supersymmetric extensions
of the affine sl(2,R)k and su(2)k′ algebras are generated by the supercurrents ψa + θJa and
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χa+θKa, where θ is a Grassmann variable. The currents Ja andKa satisfy the OPEs (3.11)
and (3.32) respectively, with level n5 in both cases, and the OPEs involving the fermions
ψa and χa are

Ja(z)ψb(w) ∼
fabcψ

c(w)

(z − w)
, Ka(z)χb(w) ∼

f ′abcχ
c(w)

(z − w)
, (3.41a)

ψa(z)ψb(w) ∼ n5

2

ηab

(z − w)
, χa(z)χb(w) ∼ n5

2

δab

(z − w)
. (3.41b)

One can split the currents into two independent contributions via

Ja = ja − 1

n5
fabcψ

bψc , Ka = ka − 1

n5
f ′abcχ

bχc . (3.42)

The “bosonic” currents ja and ka commute with the free fermions, and are currents of
bosonic WZW models as described in Section 3.2, with levels k = n5 + 2 and k′ = n5 − 2

respectively. In the fermionic sector, the spectral flow automorphisms act as

ψ̃±(z) = z∓ψ±(z) , ψ̃3(z) = ψ3(z) , χ̃±(z) = z∓χ±(z) , χ̃3(z) = χ3(z) . (3.43)

The remaining flat compact directions are treated as usual. For the T4, we simply have
four (canonically normalized) free bosons Y i and their fermionic partners λi (i = 6, . . . , 9),
with OPEs

Y i(z)Y j(w) ∼ −δij log(z − w) , λi(z)λj(w) ∼ δij

(z − w)
. (3.44)

We can now write down the energy-momentum tensor T and the supercurrent G of the
worldsheet theory for type II superstrings in AdS3 × S3 × T4. The matter contributions
read

T =
1

n5

(
jaja − ψa∂ψa + kaka − χa∂χa

)
+

1

2

(
∂Y i∂Yi − λi∂λi

)
, (3.45)

G =
2

n5

(
ψaja −

1

3n5
fabcψ

aψbψc + χaka −
1

3n5
f ′abcχ

aχbχc
)

+ i λj∂Yj , (3.46)

and the resulting central charge is compensated by the usual bc and βγ ghost systems,
leading to the BRST charge

Q =

∮
dz

(
c (T + Tβγ)− γ G+ c(∂c)b− 1

4
bγ2

)
. (3.47)

Here Tβγ is the energy-momentum tensor of the βγ system, which is bosonized as

β = e−ϕ∂ξ , γ = ηeϕ , (3.48)

where ϕ(z)ϕ(w) ' − ln(z − w) has background charge 2, and ξ(z)η(w) ∼ (z − w)−1. For
computational purposes it is useful to also bosonize the rest of the fermions [18, 37]. We
thus define (canonically normalized) bosonic fields HI with I = 1, . . . 5, and write

ĤI = HI + π
∑
J<I

NJ , NJ ≡
∮
i∂HJ , (3.49)
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where the number operators NI are introduced in order to keep track of the cocycle factors,
namely

eiaĤIeibĤJ = eibĤJ eiaĤI eiπab , if I > J . (3.50)

We bosonize as

ψ± =
√
n5 e

±iĤ1 , χ± =
√
n5 e

±iĤ2 , λ6 ± iλ7 = e±iĤ4 , λ8 ± iλ9 = e±iĤ5 , (3.51a)

ψ3 =

√
n5

2

(
eiĤ3 − e−iĤ3

)
, χ3 =

√
n5

2

(
eiĤ3 + e−iĤ3

)
, (3.51b)

where Ĥ†I = ĤI for I 6= 3 and Ĥ†3 = −Ĥ3. Then we have

i∂Ĥ1 =
1

n5
ψ+ψ− , i∂Ĥ2 =

1

n5
χ+χ− , i∂Ĥ3 =

2

n5
ψ3χ3 , (3.52a)

i∂Ĥ4 = iλ6λ7 , i∂Ĥ5 = iλ8λ9 . (3.52b)

The phases in (3.50) ensure that bosonized fermions anticommute, and will be important
when working with states in the Ramond sector. From now on we will simply omit the
hats, and explicitly include the phase factors when they are needed.

The spacetime supercharges can be written as:

Qε =

∮
dz e−ϕ/2Sε , Sε = exp

(
i

2

5∑
I=1

εIHI

)
, (3.53)

where Sε are spin fields and εI = ±1. Imposing BRST invariance – where the relevant
contributions come from the fabcψaψbψc and f ′abcχ

aχbχc pieces of G in (3.46) – and mutual
locality (chiral GSO) leads to the conditions

3∏
I=1

εI =

5∏
I=1

εI = 1 . (3.54)

In the holomorphic sector this gives the expected four ‘ordinary’ supercharges and four
‘superconformal’ supercharges. The same applies in the antiholomorphic sector, giving the
total 16 real supercharges of global AdS3 × S3 [18].

For later use, let us also recall that the R-symmetry of the boundary theory is generated
on the worldsheet by the SU(2) currents. More precisely, the zero modes of the spacetime
R-currents are given by the integrated worldsheet currents [18], i.e.

Ja0 =

∮
dz Ka(z) . (3.55)

Consequently, the holomorphic R-charge in the holographic CFT is identified with m′, the
eigenvalue of K3. It is for this reason that we used the notation m′ in Sections 2.3 and 3.1.

3.3 Vertex operators and two-point functions

We now discuss physical vertex operators and their two-point functions, both in NS and R
sectors. This section is largely review, though we also give explicit expressions for some R
sector operators that to our knowledge have not appeared before in the literature.
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Our main interest is in worldsheet operators that correspond to chiral primaries of
the holographic CFT. We thus focus on states belonging to the discrete representations
of SL(2,R). We also discuss the role of SL(2,R) and SU(2) spectral flows in the string
theoretical construction. These vertex operators and their two-point functions will be used
as building blocks for constructing the vertex operators and two-point functions of the
null-gauged models in Section 4.

3.3.1 NS sector

The unflowed NS-NS sector was considered in [77], see also [37]. We continue to suppress
antiholomorphic parts of the SL(2,R) and SU(2) vertex operators Vj,m,m̄ and V ′j′,m′,m̄′ . The
complete NSNS vertex is obtained by including the antiholomorphic fermions and ghosts.

We work in the canonical “−1” ghost picture, and consider only states with vanishing
momentum in the T4 directions. Then the (holomorphic part of the) BRST invariant states
with up to a single fermionic excitation include the tachyon (which is projected out by
GSO),

Tj,m,j′,m′ = e−ϕVj,mV
′
j′,m′ , (3.56)

and the spacetime vectors (ε = ±1, and recall i = 6, . . . , 9)

V ij,m,j′,m′ = e−ϕλiVj,mV
′
j′,m′ , (3.57a)

Wε
j,m,j′,m′ = e−ϕ (ψVj)j+ε,m V

′
j′,m′ , (3.57b)

X εj,m,j′,m′ = e−ϕVj,m(χV ′j′)j′+ε,m′ , (3.57c)

where we have introduced the linear combinations

(ψVj)j+ε,m = crεψ
rVj,m−r , (χV ′j′)j′+ε,m′ = drεχ

rV ′j′,m′−r , (3.58)

where a summation over r = +1,−1, 0 is implicit, “0” corresponding to the “3” direction of
the respective algebras. These combine the products of bosonic primaries and free fermions
into fields of total spins J = j + ε and J ′ = j′ + ε under the action of the supersymmetric
currents Ja and Ka [77]. The Clebsh-Gordan coefficients are given in our conventions by

cr− =

(
1

2
,
1

2
,−1

)
, dr+ =

(
−1

2
,
1

2
, 1

)
,

cr+ =

(
1

2
(j +m)(j +m− 1),

1

2
(j −m)(j −m− 1), (j +m)(j −m)

)
, (3.59)

dr− =

(
1

2
(j′ −m′)(j′ −m′ + 1), −1

2
(j′ +m′)(j′ +m′ + 1), (j′ −m′)(j′ +m′)

)
.

The Virasoro condition associated to all vertex operators in Eq. (3.57) reads

1

2
+

1

2
− j(j − 1)

n5
+
j′(j′ + 1)

n5
= 1 , (3.60)

and is solved by j = j′ + 1 (or its reflection under j → 1 − j), thus implying that we are
dealing with bosonic primaries in the discrete representations of SL(2,R)k.
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Let us briefly discuss the worldsheet two-point functions involving these operators. The
different bosonic sectors factorize and the fermions are free, so we can express the results
directly in terms of the non-trivial contributions coming from the bosonic SL(2,R) WZW
model, namely Eq. (3.24). By construction, the only non-vanishing two-point functions are
the diagonal ones. For the 6D scalars coming from the NS-NS sector polarizations on the
T4, (3.57a), we have

〈V īi1 V
jj̄
2 〉 = 〈V1V2〉〈V ′1V ′2〉

[
〈e−ϕ1e−ϕ2〉〈λi1λ

j
2〉 × c.c.

]
= 〈V1V2〉〈V ′1V ′2〉 ×

δijδīj̄

|z12|4
. (3.61)

Since we are dealing with discrete representations, the contact term in (3.24) vanishes,
thus imposing j1 = j2 ≡ j. As discussed above Eq. (3.25), the conformal weight in the
holographic CFT is to be identified with the SL(2,R) spin, i.e. h = j. On the other hand,
the R-charge is given by m′, with |m′| ≤ j′ = j−1. Thus h 6= |m′|, so V i cannot correspond
to a chiral primary of the HCFT.

We now turn to the operators introduced in the second and third line of (3.57). When
computing correlators of two W states, we must deal with expressions of the form

〈(ψ1Vj1)j1+ε1,m1
(ψ2Vj2)j2+ε2,m2

〉 =
∑
r1,2

cr1ε1c
r2
ε2 〈ψ

r1ψr2〉 〈Vj1,m1−r1Vj2,m2−r2〉 . (3.62)

We use the action of the bosonic currents (3.17) to express 〈Vj1,m1−r1Vj2,m2−r2〉 in terms of
〈Vj1,m1Vj2,m2〉, insert the coefficients (3.59), and perform the sum. Recalling the shorthand
Vi ≡ Vji,mi , V ′i ≡ V ′j′i,m′i , we obtain

〈Wε1Wε2〉 =
n2

5

4|z12|4
〈V1V2〉〈V ′1V ′2〉×


j1(1− 2j1)(j2

1 −m2
1)× c.c. ε1 = ε2 = 1

(j1 − 1)(1− 2j1)

(j1 − 1)2 −m2
1

× c.c. ε1 = ε2 = −1

0 ε1 = −ε2 .

(3.63)

From Eq. (3.24) we find that the coefficients are exactly those needed to produce the shift
j → j + ε in the two-point function. Hence, Eq. (3.23) shows that the weight of the
corresponding holographic dual is h = j + ε [36]. In particular, the operator W− with
maximal SU(2) charge has h = j − 1 = m′, and thus corresponds to a chiral primary
operator of the holographic CFT.

The computation of the 〈XX〉 correlators is analogous; we obtain

〈X ε1X ε2〉 =
n2

5

4|z12|4
〈V1V2〉〈V ′1V ′2〉 ×


(j′1 + 1)(1 + 2j′1)

(j′1 + 1)2 −m′1
2 × c.c. ε1 = ε2 = 1

j′1(1 + 2j′1)(j′1
2 −m′1

2)× c.c. ε1 = ε2 = −1

0 ε1 = −ε2 = ±1

(3.64)

For X+ at highest SU(2) weight we have h = j = j′ + 1 = m′, leading to a second family
of spacetime chiral states. We will discuss the corresponding operators in the holographic
CFT theory and fix their normalization below.
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So far, we have constructed chiral operators whose boundary weights h = j − 1 and
h = j are bounded from above by h < n5+1

2 , see Eq. (3.16). However, in the D1D5 CFT
one can have chiral primaries in n-twisted sectors with n up to n1n5, and where h grows
linearly with n, as discussed around Eq. (3.6). Thus, it seems that so far we are missing
most of the heavier chiral operators. However, as discussed in [38], such states lie in the
sectors of the worldsheet theory with non-trivial spectral flow charges, as we now review.

In the supersymmetric theory, spectrally flowed primary operators are built by com-
bining the bosonic flowed primaries introduced in Eqs. (3.27) and (3.40) with fermionic
excitations. The bosons HI allow us to express the spectral flow operation in the fermionic
sectors of SL(2,R) and SU(2), Eq. (3.43), in the following form,

ψ±ω = ψ±e−iωH1 , χ±ω′ = χ±eiω
′H2 , (3.65)

while the other fermions remain unchanged. Indeed, the OPEs between the operators in
(3.65) and the fermionic currents are analogous to those in (3.27) and (3.40). Once factors
of e−iωH1 and eiω′H2 are included, the corresponding weights take the form in (3.28) and
(3.39), with k − 2 = n5 = k′ + 2.

In principle, one could simply ignore the possibility of including spectral flow in SU(2)
since it does not give any new representations. However, for discrete series states it is useful
to do so in order to solve the modified Virasoro condition, as discussed in [26, 29]. We use
the spectral flow operator with equal amount of spectral flow in SL(2,R) and SU(2),

exp

(
−iωH1 + ω

√
n5 + 2

2
φ+ iωH2 + iω

√
n5 − 2

2
φ′

)
, (3.66)

which is mutually local with the supercharges, thus producing flowed singly-excited states
which will also survive the GSO projection. The corresponding Virasoro condition for the
flowed vertex operators is

1

2
+

1

2
− j(j − 1)

n5
−mω − n5

4
ω2 +

j′(j′ + 1)

n5
+m′ω +

n5

4
ω2 = 1 . (3.67)

We seek to solve this for general n5. We thus impose j = j′ + 1 as well as m = m′. The
latter constraint is quite restrictive, since by definition we have

V-type operators: |m| ≥ j , |m′| ≤ j′ = j − 1 ,

W-type operators: |m| ≥ j − 1 , |m′| ≤ j′ = j − 1 ,

X -type operators: |m| ≥ j , |m′| ≤ j′ + 1 = j .

Consequently, our only candidates are highest/lowest-weight W−-type operators with m =

m′ = j′ = j−1 and X+-type operators withm = m′ = j′+1 = j. Their explicit expressions
are given by

Wω
j = e−ϕψ−e−iωH1eiωH2V ω

j,jV
′ω
j−1,j−1 , (3.68a)

X ωj = e−ϕe−iωH1χ+eiωH2V ω
j,jV

′ω
j−1,j−1 . (3.68b)
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These flowed states are also BRST-invariant [38] since the supercurrent G can be written
in the flowed frame as

G(z) = G̃(z) +
ω

z

(
χ3 − ψ3

)
, (3.69)

such that the extra terms on the RHS of this equation act trivially on highest/lowest weight
states.

The two-point functions of these spectrally flowed operators can be determined straight-
forwardly from the corresponding bosonic ones. This is because the latter impose ω2 = −ω1,
such that the charge conservation rules for the HI exponentials are automatically satisfied.
We define the conjugate operators Ŵω, X̂ ω, and obtain

〈Wω1
1 Ŵ

ω2
2 〉 = 〈X ω1

1 X̂
ω2
2 〉 = 〈V ω1

j1,j1
V ω2
j1,−j1〉〈V

′ω1
j1−1,j1−1V

′ω2
j1−1,1−j1〉

n2
5

|z12|4(1+ω1+ω2
1)
. (3.70)

Spectral flowed primaries are always annihilated by J−0 , and are thus lowest-weight with
respect to the SL(2,R) zero mode algebra. After the supersymmetric spectral flow (3.66),
similarly to the bosonic transformations (3.29), (3.40b), the spectral flowed primaries have
quantum numbers h and m′ that have increased by n5

2 ω from their values for the unflowed
vertex operators. We thus conclude that these vertex operators correspond exactly to the
additional chiral operators we were looking for, with

Wω
j : h = m′ = j − 1 +

n5

2
ω , X ωj : h = m′ = j +

n5

2
ω . (3.71)

These quantum numbers extend to large values, by raising ω. In the holographic CFT there
are states with conformal weight of order n1n5, however in our worldsheet models n1 is of
order g−2

s (c.f. (2.19)) and we work in perturbation theory in gs, so finite n1 physics is not
accessible. Moreover, when considering holographic CFT operators with conformal weight
of order n1n5, the dual bulk configuration is not a light probe on the original background,
but rather a different background. The rest of the modes associated to such boundary
operators are obtained by acting with the global current J+

0 as in Eq. (3.30), and do not
have simple expressions in the m-basis since they are not flowed primaries.

3.3.2 Ramond sector

We now review the Ramond sector physical operators of the worldsheet theory, in the
m-basis. To our knowledge, this construction has only been carried out explicitly in the
literature for the case of highest/lowest-weight states [37, 38]; we shall present explicit
expressions for more general Ramond sector operators.

We will make use of the spin fields introduced in (3.53), and distinguish the slightly
more involved AdS3 × S3 sector, for which we write the relevant factors as

Sε1ε2ε3 = e
i
2

(ε1H1+ε2H2+ε3H3) . (3.72)

We denote the AdS3×S3 chirality by ε ≡ ε1ε2ε3. We shall implement this by considering ε3

to be fixed to be ε3 = εε1ε2. We impose the chiral GSO projection via the mutual locality
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condition
∏5
I=1 εI = 1, and we implement this by fixing ε5 = εε4. We introduce a generic

linear combination of bosonic primaries and spin fields of AdS3 × S3 of fixed chirality,(
SV V ′

)ε
J,m,J ′,m′

=
∑

ε1,ε2=±1

f εε1 ε2Sε1ε2ε3Vj,m− ε12
V ′
j′,m′− ε2

2
, ε3 = εε1ε2 , (3.73)

where the total spins (J, J ′) will be related to (j, j′) in various ways momentarily. Note
that for highest/lowest weight states, there may be only one allowed choice of ε1 and/or
ε2, as we shall see in an example below. In the canonical “−1

2 ” picture, the Ramond sector
vertex operators then take the form

Yε,ε4J,m,J ′,m′ = e−
ϕ
2
(
SV V ′

)ε
J,m,J ′,m′

e
iε4
2

(H4+εH5) . (3.74)

The Clebsch–Gordan coefficients f εε1 ε2 are computed by requiring that the Y operators
transform appropriately under the action of the currents J±, K±. In our conventions, this
gives four linear combinations. In the equations below, the first bracket specifies how (J, J ′)

are related to j and j′; for instance, for case A, (J = j − 1/2, J ′ = j′ + 1/2). For each case
we write the coefficients as a list, f εε1 ε2 =

(
f ε++, f

ε
+−, f

ε
−+, f

ε
−−
)
. We obtain

A : (j − 1
2 , j
′ + 1

2) , fε,Aε1 ε2 =
(
1, i, ε, εi

)
, (3.75a)

B : (j + 1
2 , j
′ + 1

2) , fε,Bε1 ε2 =
(
fB1 , ifB1 , εfB2 , ε ifB2

)
, (3.75b)

C : (j − 1
2 , j
′ − 1

2) , fε,Cε1 ε2 =
(
fC1 , −ifC2 , εfC1 , ε(−i)fC2

)
, (3.75c)

D : (j + 1
2 , j
′ − 1

2) , fε,Dε1 ε2 =
(
fB1fC1 , (−i)fB1fC2 , εfB2fC1 , ε(−i)fB2fC2

)
, (3.75d)

where

fB1 = m+ j − 1

2
, fB2 = m− j +

1

2
, fC1 = j′ −m′ + 1

2
, fC2 = j′ +m′ +

1

2
. (3.76)

We note that in all cases we have f+
ε1ε2 = ε1 f

−
ε1ε2 . In addition, and using j = j′ + 1,

BRST-invariance gives four equations for each chirality, out of which only two are linearly
independent, namely

f ε−+ =
1(

j +m− 1
2

) [f ε++

(
εm+m′

)
− i fε+−

(
j′ −m′ + 1

2

)]
, (3.77a)

f ε−− =
1(

j +m− 1
2

) [i fε++

(
j′ +m′ +

1

2

)
+ f ε+−

(
εm−m′

)]
. (3.77b)

These are satisfied by only half of the states in Eq. (3.75). The physical states in the “−1
2 ”

picture are given by the A and D states with ε = 1 (and either choice of ε4 = ±1), plus
the B and C states with ε = −1 (and again either sign of ε4), making the correct eight
physical polarizations.

The full list of expressions in (3.75) is useful in order to construct the representatives
of such operators in the “−3

2 ” ghost picture, necessary for computing two-point functions.
To obtain the “−3

2 ” picture operators, we make an educated guess for their expressions, and
then apply the picture raising operator, i.e.

Φ(− 1
2

)(w) = lim
z→w

(eϕG) (z) Φ(− 3
2

)(w) . (3.78)
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In order to get a non-trivial propagator, and up to an overall constant, the appropriate guess
is that they are given by the states with the same spins but opposite chirality. Explicitly,
we have

Yε,ε4 (− 3
2

)

J,m,J ′,m′ = ±
√
n5

2j − 1
e−

3ϕ
2
(
SV V ′

)−ε
J,m,J ′,m′

e
iε4
2

(H4+εH5) , (3.79)

where the negative (positive) sign holds for the cases A and B (C and D).
We can now compute the two-point functions in the unflowed Ramond sector. Only

diagonal pairings are non-zero, by construction. Denoting the antiholomorphic sector con-
tributions by “c.c.”, we obtain

〈Yε4,(−
1
2

)

[A] Y−ε4,(−
3
2

)

[A] 〉 =
n5

|z12|4
〈V1V2〉 〈V ′1V ′2〉

(
(2j − 1)

(j −m− 1
2)(j′ +m′ + 1

2)
× c.c.

)
, (3.80a)

〈Yε4,(−
1
2

)

[B] Y−ε4,(−
3
2

)

[B] 〉 =
n5

|z12|4
〈V1V2〉 〈V ′1V ′2〉

(
(2j − 1)(j +m− 1

2)

(j′ +m′ + 1
2)

× c.c.

)
, (3.80b)

〈Yε4,(−
1
2

)

[C] Y−ε4,(−
3
2

)

[C] 〉 =
n5

|z12|4
〈V1V2〉 〈V ′1V ′2〉

(
(2j − 1)(j′ −m′ + 1

2)

(m− j + 1
2)

× c.c.

)
, (3.80c)

〈Yε4,(−
1
2

)

[D] Y−ε4,(−
3
2

)

[D] 〉 =
n5

|z12|4
〈V1V2〉 〈V ′1V ′2〉

(
(2j − 1)(m+ j − 1

2
)(j′ −m′ + 1

2
)× c.c.

)
,

(3.80d)

where here 〈V1V2〉 = 〈Vm1−1/2V−m1+1/2〉 and 〈V ′1V ′2〉 = 〈V ′m′1−1/2V
′
−m′1+1/2〉. As expected,

the coefficients resulting from the linear combinations effectively shift the spins j → J and
j′ → J ′ in the gamma functions coming from the bosonic correlators.

Among the states described above, the only chiral one corresponds to the SU(2) highest-
weight operator of type A. To simplify notation and for later convenience, we suppress the
SU(2) labels and use the label j rather than J (here J = j − 1/2). This operator has
quantum numbers

Y+,ε4
j,m[A] : h = J = j − 1

2
= j′ +

1

2
= J ′ = m′ . (3.81)

The explicit form of this operator is simpler than the generic Ramond sector operator, and
is given by

Y+,ε4
j,m[A] = e−

ϕ
2

(
S+++Vj,m− 1

2
+ S−+−Vj,m+ 1

2

)
j− 1

2
,m
V ′j−1,j−1e

iε4
2

(H4+H5) . (3.82)

As in the NS sector, the rest of the chiral operators belong to the spectrally flowed sectors.
These are obtained by acting with the spectral flow operator (3.66). From the flowed Vira-
soro condition, similar to Eq. (3.67), the resulting operators must have m = m′ (together
with the relations in (3.81)), and so only the second term in (3.82) is non-vanishing, giving
rise to the flowed Ramond operators (we now suppress also the label m = J = j − 1/2)

Y+,ε4,ω
j [A] = e−

ϕ
2 Sω−+−V

ω
j,j V

′ω
j−1,j−1e

iε4
2

(H4+H5) , (3.83)

where
Sω−+− ≡ e

i
2

[(1+2ω)(−H1+H2)−H3] . (3.84)
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The corresponding two-point function is equivalent to the highest-weight case of (3.80a),
up to the usual additional δω1,−ω2 factor.

3.3.3 Holographic dictionary for light chiral primaries

We have reviewed three sets of m-basis vertex operators corresponding to chiral primaries
of the holographic CFT. Two sets are in the NS sector: W−j,m and X+

j,m, together with
the corresponding spectral flowed operators Wω

j and X ωj . The third set is in the Ramond
sector, Y+,ε4

j,m[A] and its spectral flow, Y+,ε4,ω
j [A] . From now on we shall omit the label A and

the AdS3 × S3 chirality ε = +, denoting this operator by Yω,ε4j . Recall that in the spectral
flowed sectors, the remaining states in the zero-mode algebra are obtained by acting with
J+

0 , as discussed around Eqs. (3.30) and (3.71).
In order to reconstruct the corresponding local operators of the spacetime CFT, we

need to combine such modes by going to the x-basis, as done in Eqs. (3.25) and (3.30) in
the bosonic SL(2,R) model.4 For the operators at hand, the sum over m in the analog of
Eqs. (3.25) and (3.30) factorizes between fermionic and bosonic contributions, leading to
expressions of the following form:

Wω
j (x) = e−ϕψω(x)eiωH2V ω

j (x)V ω
j−1,j−1 , (3.85a)

X ωj (x) = e−ϕψω−1(x)ei(ω+1)H2V ω
j (x)V ω

j−1,j−1 , (3.85b)

Yω,ε4j (x) = e−
ϕ
2 Sω(x)V ω

j (x)V ω
j−1,j−1e

iε4
2

(H4+H5) . (3.85c)

Here ψω(x) and Sω(x) are defined as follows. First, note that the fermions ψa introduced
in (3.41), which generate an affine ̂sl(2,R)−2 algebra with level kψ = −2, constitute affine
primaries with spin Jψ = −1, on which, however, the zero-mode currents act as in (3.17)
but with5 J → 1 − J , i.e. J±0 |J,m ± 1〉 = (m ± J)|J,m ± 1〉. As a consequence, and in
contrast with what happens with bosonic primaries, the action J+

0 on ψ−, the lowest-weight
state, is truncated. Identifying ψω=0(0) = ψ−, the resulting x-basis operator has only three
terms:

ψω=0(x) ≡ ψ−(x) = exJ
+
0 ψ−e−xJ

+
0 = ψ− − 2xψ3 + x2ψ+ . (3.86)

Of course, we already knew the action of the currents on ψa from (3.41), but the advan-
tage of the above discussion is that it extends to the spectrally flowed sectors. Indeed,
ψω(0) =

√
n5e
−i(1+ω)H1 is the lowest-weight component of a spin Jωψ = −1 − ω field. The

corresponding x-basis operator is of the form

ψω(x) ≡
√
n5 e

xJ+
0 e−i(1+ω)H1e−xJ

+
0 , (3.87)

and contains 1− 2Jωψ = 2ω + 3 terms.

4In this paper we are interested in operators of fixed R-charge. Hence, and in contrast to [37, 38], we do
not introduce isospin variables in the SU(2) sector.

5This convention is perhaps more natural from the SL(2,R) point of view, but we have decided to employ
the conventions used in the most relevant literature for us, i.e. [22, 24, 37, 38].
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Similarly, the spin field (3.84) is the lowest-weight component of a representation with
SL(2,R) and SU(2) spins (JωS , J

′ω
S ) = (−1

2 − ω,
1
2 + ω), such that the x-basis operator is

Sω(x) ≡ exJ
+
0 Sω−+−e

−xJ+
0 , (3.88)

and contains 2(1 + ω) terms.
We thus have three types of vertices, Wω

j (x, z), X ωj (x, z) and Yω,±j (x, z), which corre-
spond to local chiral primary operators of the boundary theory. As mentioned before, these
should be completed with analogous antiholomorphic excitations, which have been omitted
in the presentation. As discussed around Eqs. (3.71) and (3.81), their boundary weights
are given by

h
[
Wω
j

]
= jω − 1 , h

[
Yω,±j

]
= jω −

1

2
, h

[
X ωj
]

= jω , (3.89)

where j = j′ + 1 and so

jω = j +
n5

2
ω, j = 1,

3

2
, . . . ,

n5

2
, ω = 0, 1, . . . . (3.90)

Up to normalization, which will be fixed shortly, these operators are identified with the
chiral primaries of the holographic CFT listed in Eq. (3.10). In the Yω,ε4j tower, ε4 = ±
is identified with the boundary quantum number Ȧ in (3.9). Note also that the Wω

j tower
starts with the identity operator of the boundary theory.6 The dictionary is summarized in
Table 1.

Worldsheet Weight h Twist n Dual Operator

Wω
j jω − 1 2jω − 1 O−n

Yω,ε4j jω − 1
2 2jω − 1 OȦn

X ωj jω 2jω − 1 O+
n

Table 1. Dictionary between worldsheet vertex operators and chiral primaries of the holographically
dual CFT. Here jω = j + n5

2 ω, j = 1, 32 , . . . ,
n5

2 , and ω = 0, 1, . . .

Although most of the chiral primaries of the holographic CFT are accounted for by
considering the ranges given in (3.90), it is known that those belonging to the the n-twisted
sectors with n = pn5 with p ∈ N are still missing [37, 38]. These would correspond to
operators sitting at the boundary of the allowed range of j in Eq. (3.16), at which the
spectrum becomes degenerate and the continuous representations appear [16, 70]. The
absence of these states in the worldsheet spectrum has been related to the fact that the
NS5-F1 model sits at a singular point in the moduli space where all RR modes are turned
off [79].

6As discussed in [19], this is subtle, since the operator is actually a spectral-flow-sector dependent
constant. This subtlety is related to the fact that spectral flow charge is not conserved in n-point functions
with n ≥ 3, and was resolved in [78] by performing a Legendre transform to the microcanonical ensemble,
in which the total number of fundamental strings is fixed.
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The twist n of the holographic CFT operators is identified as [37, 38]

n = 2j − 1 + n5ω . (3.91)

Let us make a side comment regarding the limit in which there is only a single NS5 brane
sourcing the background, n5 = 1. This model is special in that it corresponds to the
tensionless limit of the theory. It has to be treated with care since the usual RNS formalism
outlined above breaks down due to the fact that the bosonic SU(2) level would become
negative. It was shown in [80, 81] that for n5 = 1 the worldsheet theory is exactly dual
to the supersymmetric symmetric orbifold (T4)n1/Sn1 . In this model, the discrete series is
absent, the spectrum truncates to j = 1/2, physical states have ω > 0, and the spectral
flow charge is identified with n, i.e. n = ω. Eq. (3.91) is the known generalization of this
relation for n5 > 1.

In order to fix the normalization of the operators, we compute their two-point functions.
Making use of

〈ψω1(x1)ψω2(x2)〉 × c.c. = x
2(ω1+1)
12 〈e−i(1+ω1)H1 ei(1−ω2)H1〉 × c.c. = δω1,−ω2

|x12|4(ω1+1)

|z12|2(ω1+1)2 ,

〈Sω1,+(x1)Sω2,−(x2)〉 × c.c. =
x2ω1+2

12

z12
〈Sω1
−+−S

ω2
+−+〉 × c.c. = δω1,−ω2

|x12|4ω1+2

|z12|4ω1(ω1+1)+ 5
2

,

we obtain

〈Wω1
j1

(x1, z1)Wω2
j2

(x2, z2)〉 =
n2

5B(j1)

16

δ(j1 − j2)δω1,−ω2

|x12|4(j1−1)+2n5ω1 |z12|4
, (3.92)

〈X ω1
j1

(x1, z1)X ω2
j2

(x2, z2)〉 =
n2

5B(j1)

16

δ(j1 − j2)δω1,−ω2

|x12|4j1+2n5ω1 |z12|4
, (3.93)

〈Yω1,±
j1

(x1, z1)Yω2,∓
j2

(x2, z2)〉 =
n5B(j1)

(2j1 − 1 + n5ω1)2

δ(j1 − j2)δω1,−ω2

|x12|4j1+2(n5ω1−1)|z12|4
. (3.94)

Here we have used that in the spectrally flowed R sectors the denominator in the extra factor
of the corresponding vertex operator in the “−3

2 ” picture is shifted as 2j−1→ 2j−1+n5ω

as compared to (3.79). Moreover, the Vconf factor in Eq. (3.31) is cancelled by the pole
appearing in (3.24) upon setting m1 = j1.

The string two-point function is then obtained by including an extra factor g−2
s ∼ n1/n5

as usual in string perturbation theory, fixing z1 = 0 and z2 = 1, and dividing by a volume
of the conformal group that leaves such worldsheet insertions fixed. As discussed in [19, 24],
this cancels the divergence coming from δ(j1 − j2), leaving a constant j-dependent factor
of the form (2j − 1 + n5ω). As a consequence, the holographic dictionary reads

O−−n (x, x̄)↔ ANS(j, ω)Wω
j (x, x̄), O++

n (x)↔ ANS(j, ω)X ωj (x, x̄), (3.95)

OȦḂn ↔ AR(j, ω)Yω,ȦḂj (x, x̄), (3.96)

with n related to the worldsheet quantum numbers as in (3.91) and where [36, 37]

ANS(j, ω) =
4gs√

n2
5B(j)(2j − 1 + n5ω)

, AR(j, ω) = gs

√
(2j − 1 + n5ω)

n5B(j)
. (3.97)
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Of course, this identification is only expected to hold at small string coupling, i.e. for
n1 � n5. Analysis and comparison of boundary and worldsheet three-point functions was
carried out in [36, 37, 82].

4 Null-gauged description and worldsheet spectrum

We now proceed to describe massless excitations in the worldsheet theories associated with
the heavy backgrounds we study. We describe in detail how to obtain the low-lying physical
states via BRST quantization in these null-gauged models, both in the NSNS and RR
sectors. In the subset of the backgrounds that preserve some supersymmetry, we discuss
the BPS light excitations.

In the full null-gauged models, these massless vertex operators describe linearized fluc-
tuations around the full asymptotically linear dilaton solutions describing the heavy states,
and so can be thought of as worldsheet representatives of light states belonging to the Little
String Theory living on the NS5 branes.

Our main interest in this work will be computing correlators in the IR AdS3 limit, in
which we have reviewed the fact that the backgrounds are related to orbifolded AdS3 ×
S3 × T4 via a spacetime spectral flow large coordinate transformation. We describe how
the AdS3 limit can be taken on the worldsheet vertex operators. This leads to states that
can be understood holographically, in the spacetime (fractionally) spectrally flowed frame
defining the heavy background, as discussed around Eq. (2.27).

4.1 BRST quantization

We start by reviewing the quantization of the class of worldsheet coset models introduced
in Section 2, which describe the propagation of superstrings in the JMaRT backgrounds
and their (BPS and/or two-charge) limits [25, 26, 28, 29].

Before gauging, we have the WZW model associated to the (10+2)-dimensional group
manifold SL(2,R)× SU(2)×Rt×U(1)y ×U(1)4 as introduced in (2.1). This is described
simply by adding the extra time direction t and spatial circle y to the matter content
employed in the previous section, together with the corresponding fermionic partners λt

and λy. The latter are bosonized using a canonically normalised scalar H6 as

λt =
1

2

(
eiH6 − e−iH6

)
, λy =

1

2

(
eiH6 + e−iH6

)
, (4.1)

i∂H6 = 2λtλy , H†6 = −H6 . (4.2)

The holomorphic parts of their OPEs are

−t(z)t(w) ∼ y(z)y(w) ∼ −1

2
log(z−w) , −λt(z)λt(w) ∼ λy(z)λy(w) ∼ 1

2

1

(z − w)
, (4.3)

and they give additional free field contributions to the matter T and G in (3.45) and (3.46),
namely

T(ty) = ∂t∂t− ∂y∂y , G(ty) = 2i
(
−λt∂t+ λy∂y

)
. (4.4)
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Introducing Pt,L = i∂t , Pt,R = i∂̄t , Py,L = i∂y , and Py,R = i∂̄y, we gauge the chiral null
currents7

J = iJ = J3 + l2K
3 + l3Pt,L+ l4Py,L , J̄ = iJ̄ = J̄3 + r2K̄

3 + r3Pt,R + r4Py,R , (4.5)

which are the quantum operator versions of the classical currents in Eq. (2.4). The super-
symmetric partners of the currents J and J̄ are

λ = ψ3 + l2χ
3 + l3λ

t + l4λ
y , λ̄ = ψ̄3 + r2χ̄

3 + r3λ̄
t + r4λ̄

y . (4.6)

To perform the null gauging, one introduces additional fermionic and bosonic first-order
ghosts, denoted by (b̃, c̃) and (β̃, γ̃), with conformal weights ∆[c̃] = 0 and ∆[γ̃] = 1/2 [28].
The central charges cb̃c̃ = −2 and cβ̃γ̃ = −1 cancel the additional matter contribution
cty = 3. The (β̃, γ̃) system has no background charge and is bosonized via

β̃ = e−ϕ̃∂ξ̃ , γ̃ = η̃ eϕ̃ . (4.7)

We shall momentarily introduce a modified BRST charge that imposes invariance under
the action of the null currents (4.5) and their supersymmetric partners (4.6). Physical
operators in 9+1 dimensions will be given by states of the ungauged (10+2)-dimensional
WZW model that survive the gauging procedure [28]. Of course, and as we shall see shortly,
the Virasoro conditions and the expressions of the BRST-exact states will be modified
accordingly. We consider a set of mutually local operators before the gaugings, i.e. we
perform the analog of the GSO projection in the (10+2)-dimensional model. We thereby
obtain get a tachyon-free spectrum in the gauged models.

Underlying this procedure is the fact that for the case of chiral null gaugings, the
Polyakov-Wiegmann identity allows one to rewrite the gauged action of the downstairs
model into a form identical to that of the upstairs model in terms of a new gauge-invariant
variables [83, 84], see also [29]. This is achieved at the level of the path integral by means
of a field redefinition with a Jacobian that is almost trivial except for a factor which, when
exponentiated, gives rise to the additional ghost fields described above.

Explicitly, physical operators in the coset model are defined by the cohomology classes
of the BRST charge [28]

Q =

∮
dz
[
c
(
T + Tβγβ̄γ̄

)
+ γG+ c̃J + γ̃λ + ghosts

]
, (4.8)

where the last two terms implement the null-gauging procedure. Whether the resulting
spectrum is supersymmetric or not depends on whether some linear combination(s) of the
following supercharges are BRST-invariant [28],

Qε =

∮
dz e−(ϕ−ϕ̃)/2Sε , Sε = exp

(
i

2

6∑
I=1

εIHI

)
. (4.9)

7The symbol J for the current operators should not be confused with the total SL(2,R) spin that has
appeared in Section 3.3. The meaning should be clear from the context.
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For these to be mutually local, we impose the analog of the GSO projection in (10+2)
dimensions,

6∏
I=1

εI = 1 . (4.10)

We shall discuss the conditions for spacetime supersymmetry after we have analyzed more
general Ramond sector vertex operators, around Eq. (4.30). For now, we emphasize that
only a subset of the backgrounds we consider preserve some spacetime supersymmetry.

4.2 The unflowed NS sector

We now analyze physical NS sector states of the gauged models, focusing on states with no
spectral flow charges in SL(2,R) or SU(2), and no winding charge around the y-circle. As
usual, the lightest physical operators come with a single fermionic excitation on top of the
tachyon state

Tj,m,j′,m′ = e−ϕVj,mV
′
j′,m′e

i(−E t+Pyy) . (4.11)

Note that since t is a non-compact direction and ωy = 0, both E and Py are identical on
the left and on the right sectors. For massless states, the L0 and L̄0 Virasoro constraints
both read

0 = −j(j − 1)

n5
+
j′(j′ + 1)

n5
− 1

4
E2 +

1

4
P 2
y . (4.12)

Moreover, operators are uncharged with respect to the null-currents J, J̄ in (4.5) if and only
if their quantum numbers are related by

0 = m+ l2m
′ +

l3
2
E +

l4
2
Py , 0 = m̄+ r2 m̄

′ +
r3

2
E +

r4

2
Py . (4.13)

We will work in the canonical “−1” picture for the ϕ ghost. On the other hand, the fact
that ϕ̃ has background charge Qϕ̃ = 0 allows us to build NS states directly at ϕ̃-picture
zero. BRST-closed operators must then have a vanishing second-order pole in their OPE
with the supercurrent G, and vanishing first-order pole in their OPE with the fermionic
current λ given in (4.6).

As can be expected from the fact that the T4 is untouched by the gaugings, the simplest
solutions are the 6D scalars

V ij,m,j′,m′ = e−ϕλiVj,mV
′
j′,m′ e

i(−Et+Pyy) , i = 6, . . . , 9. (4.14)

These are direct analogs of the global AdS3 states defined in Eq. (3.57a). They were
considered in detail in [26], and their energies were matched with those of the minimally
coupled scalar perturbations on top of the JMaRT background as computed in supergravity.

The remaining massless vertex operators will constitute the beginning of the main new
results of this work. They are slightly more involved to construct, due to the fact that their
polarization lies in a direction in which the null currents act non-trivially. An important
consequence is that the raising/lowering operators J±0 and K±0 do not commute with the
BRST charge Q anymore. So, unlike in global AdS3 × S3 × T4 as reviewed in Section 3.2,
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physical states need not have definite SL(2,R) and SU(2) spins. They will, however, have
definite projections m, m̄,m′ and m̄′, and also well-defined energy E and momentum Py.

This situation is a consequence of the fact that the AdS3 × S3 isometries are absent
in the asymptotically linear dilaton geometry. Nevertheless, these isometries are restored
in the IR, by taking Ry large while keeping ERy and PyRy fixed, see Eqs. (2.20)–(2.23).
In this regime, the vertex operators of the gauged models will reduce to the AdS3 × S3

expressions in Eqs. (3.57b) and (3.57c).
Let us consider a generic linear combination of NS sector vertex operators,

e−ϕ
[(
crψrVj,m−rV

′
j′,m′ + drψrVj,mV

′
j′,m′−r

)
+
(
ctλt + cyλy

)
Vj,mV

′
j′,m′

]
ei(−Et+Pyy), (4.15)

where the notation mirrors that of the AdS3 × S3 expressions in Eq. (3.58), in particular
summation over r = +1,−1, 0 is implicit, with “0” corresponding to the “3” direction of the
respective algebras. Of these eight degrees of freedom, two are removed by the conditions
arising from the G and λ terms in the BRST charge, which respectively read

0 = mc3 +(m− j)c+ +(m+ j)c−+m′d3 +(j′+m′)d+ +(j′−m′)d−+ ct
E

2
+ cy

Py
2
, (4.16)

and
0 = n5

(
−c3 + l2d

3
)
− l3ct + l4c

y. (4.17)

This leaves six states, out of which two turn out to be BRST-exact. The first exact state
comes, as usual, from the action of G on the tachyon operator (4.11), while the second
one has no global AdS3 counterpart and appears due to the action of λ on the same state.
Their explicit expressions are

ΦG = e−ϕ
[

2

n5

1

2
V ′j′,m′

(
(m− j + 1)ψ−Vj,m+1 + (m+ j − 1)ψ+Vj,m−1 − 2mψ3Vj,m

)
+

2

n5

1

2
Vj,m

(
(j′ +m′ + 1)χ−V ′j′,m′+1 + (j′ −m′ + 1)χ+V ′j′,m′−1 + 2m′χ3V ′j′,m′

)
+

1

2

(
−Eλt + Pyλ

y
)
Vj,mV

′
j′,m′

]
ei(−E t+Pyy), (4.18)

and
Φλ = e−ϕ

[
ψ3 + l2χ

3 + l3λ
t + l4λ

y
]
Vj,mV

′
j′,m′ e

i(−E t+Pyy), (4.19)

respectively. Such states are trivially BRST invariant since G and λ square to the Virasoro
constraint (4.12) and the null condition (2.7), and the relevant term in their product is
G(z)λ(0) ∼ λ(z)G(0) ∼ J(0)/z, whose action vanishes by means of the condition (4.13).
In the end, we are left with four physical vertex operators to add to the four from the T4

directions to give the correct eight polarizations in the holomorphic sector in 9+1 dimen-
sions.

We choose a basis for these four physical vertex operators such that, in the AdS3 limit,
they reduce to the basis of global AdS3 vertex operators described around Eq. (3.58). We
thus obtain

Wε = e−ϕ
[
(ψVj)j+ε,mV

′
j′,m′ +

(
ctε λ

t + cyε λ
y
)
Vj,mV

′
j′,m′

]
ei(−E t+Pyy), (4.20a)

X ε = e−ϕ
[
Vj,m(χV ′j′)j′+ε,m′ +

(
dtε λ

t + dyε λ
y
)
Vj,mV

′
j′,m′

]
ei(−E t+Pyy), (4.20b)
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where the SL(2,R) and SU(2) coefficients are those given in (3.58)–(3.59), while the novel
ones are8

ctε = −c3
ε

n5Py
l4E + l3Py

, cyε = c3
ε

n5E

l4E + l3Py
, (4.21)

dtε = d3
ε

n5l2Py
l4E + l3Py

, dyε = −d3
ε

n5l2E

l4E + l3Py
. (4.22)

By construction, the resulting states are polarized transverse to the gauge directions. As
anticipated, they are built out of a linear combination of terms of spin j and j + ε (j′ and
j′ + ε). Moreover, at leading order in the large Ry expansion, the coefficients in the t, y
directions go to zero, since E,Py ∼ O(1/Ry), l3,4 ∼ O(Ry), and l2 ∼ O(1).

4.3 The unflowed R sector

We now describe the physical states in the R sector of the null-gauged model. The compu-
tation turns out to be more involved than in the NS sector, since the spin fields necessarily
involve all ε-chiralities. As a consequence, we will not find a situation akin to (4.20) in
which a subset of coefficients are exactly those of the global AdS3×S3 operators. However,
we will again show that in the AdS3 limit the vertex operators will reduce to their global
AdS3 × S3 counterparts.

We introduce AdS3 × S3 and Rt × S1
y × T4 spin fields,9

Sε1ε2ε3 = e
i
2

(ε1H1+ε2H2+ε3H3) , Sε6ε4ε5 = e
i
2

(ε6H6+ε4H4+ε5H5) . (4.23)

Recalling the definition of the AdS3 chirality ε and the mutual locality / chiral GSO pro-
jection in (10+2) dimensions, (4.10), we substitute away ε3 and ε6 via

ε3 = εε1ε2 , ε6 = εε4ε5 . (4.24)

The H4,5 exponentials are spectators under the action of Q, so the parameters ε4, ε5 will
label the vertex operators. For fixed ε4, ε5, we consider ε6 to be controlled by ε through
the second equation in (4.24), and we will form linear combinations of different values over
ε1, ε2, ε.

We work with vertex operators in ghost pictures (qϕ, qϕ̃) = (−1
2 ,+

1
2), for which the

λ-constraint is non-trival, while there is no need to worry about BRST-exact states. We
thus make an ansatz for R sector vertices of the following form:

Yε4,ε5 = e−(ϕ−ϕ̃)/2
∑
ε1,ε2,ε

F εε1ε2ε4ε5Sε1ε2ε3Sε6ε4ε5Vj,m− ε12 V
′
j′,m′− ε2

2
ei(−Et+Pyy) , (4.25)

Note that the coefficients F εε1ε2ε4ε5 are not determined by the representation theory of
SL(2,R)×SU(2), since the states will not in general have definite spin.

8The coefficients ct,y and dt,y were reported in the Letter [1] with a slightly different notation, related
by ct,ythere = ct,yε,here/c

3
ε, and likewise for dt,y.

9The order of the spin fields in Sε6ε4ε5 has been chosen for convenience in order to reduce clutter in
computations involving cocycle factors.
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The cT and c̃J terms of the BRST operator Q (4.8) act as in the NS sector. Hence
the unflowed, non-winding states of the R sector also satisfy both the Virasoro condition
(4.12) and the bosonic null-gauge constraint (4.13).

Next, the eϕ̃λ term in Q leaves ε1,2,4,5 unchanged, so for this term we can treat ε1,2,4,5

as fixed, and focus on the sum over ε = ±. The resulting constraints on F±ε1ε2ε4ε5 form a
two-dimensional homogeneous linear system, which is degenerate due to the null condition
on the gauge parameters, Eq. (2.7). For each choice of ε1,2,4,5, we have

(l3 + ε4ε5l4)F−ε1ε2ε4ε5 − i
√
n5 (1− ε1ε2l2)F+

ε1ε2ε4ε5 = 0 ,

i
√
n5(1 + ε1ε2l2)F−ε1ε2ε4ε5 − (l3 − ε4ε5l4)F+

ε1ε2ε4ε5 = 0 .
(4.26)

These constraints halve the degrees of freedom. When |l2| = 1 (and so |l3| = |l4|), some
of the F εε1ε2ε4ε5 get set to zero. For a given ε1,2,4,5, when neither of F±ε1ε2ε4ε5 get set to
zero, their ratio F−ε1ε2ε4ε5/F

+
ε1ε2ε4ε5 becomes determined. So the 32 d.o.f. remaining after

imposing GSO in (10+2) dimensions have now become 16, corresponding to ε1,2,4,5 in our
parameterization.

Let us pause to discuss how Eq. (4.26) behaves in the large Ry limit. We have l2 ∼ O(1)

while l3 + l4 ∼ O(Ry) and l3 − l4 ∼ O(1/Ry), from (2.11)–(2.13). When ε4ε5 = +1, we
obtain F+ ∼ O(1) and F− ∼ O(1/Ry), so at leading order in large Ry we obtain a purely
positive chirality operator. Similarly, when ε4ε5 = −1, at leading order in large Ry we
obtain a purely negative chirality operator. So we obtain operators of definite AdS3 × S3

chirality ε, with ε4ε5 = ε, exactly as in Section 3.2, see Eq. (3.74). As before, one of ε4 or
ε5 remains unfixed, say ε4.

We now examine the action of eϕG on the R vertex operator ansatz (4.25). This
will reduce the remaining 16 degrees of freedom to the correct 8 physical polarizations in
the holomorphic sector. It leads to the following set of equations (we suppress the ε4, ε5

subscripts on the RHS for ease of notation):

Bεε1ε2ε4ε5 ≡
(
m+ ε1j −

ε1

2

)
F ε(−ε1)ε2

+ i ε1ε2

(
j′ − ε2m

′ +
1

2

)
F εε1(−ε2)

− (εm+ ε1ε2m
′)F εε1ε2 +

i
√
n5

2
(ε4ε5P − εE)F (−ε)

ε1ε2 = 0 . (4.27)

Comparing to the AdS3×S3 BRST condition, the only new term is the fourth and final one,
proportional to F (−ε)

ε1ε2 , which has the effect of mixing the ε chiralities. The first three terms
are unchanged from the AdS3×S3 BRST condition, so the AdS3×S3 limit of this condition
is simply to drop the fourth term. Note that Eq. (4.26) implies that half of these equations
are redundant, and allows us to decouple the F+ from the F− coefficients. Moreover, by
using the Virasoro constraint (4.12), the bosonic null-gauge condition (4.13), and the null
constraint on the gauge parameters (2.7), one can show that for fixed ε4 and ε5, actually
only two equations are linearly independent. For generic values of quantum numbers, such
that all denominators appearing below are nonzero, the linearly independent equations can
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be taken to be

F+
−+ = −i

j′ −m′ + 1
2

j +m− 1
2

F+
+− +

−j(j − 1) + j′(j′ + 1) +m2 −m′2

(j +m− 1
2)
[
m−m′ + l4−ε4ε5l3

2(l2−1) (ε4ε5E − Py)
]F+

++ ,

F+
−− =

m−m′ + l4−ε4ε5l3
2(l2−1) (ε4ε5E − Py)
j +m− 1

2

F+
+− + i

j′ +m′ + 1
2

j +m− 1
2

F+
++ .

(4.28)

Alternatively, the two linearly independent equations can generically be taken to be

F−−+ = −i
j′ −m′ + 1

2

j +m− 1
2

F−+− +
−j(j − 1) + j′(j′ + 1) +m2 −m′2

(j +m− 1
2)
[
−m−m′ + n5(l2−1)

2(l4−ε4ε5l3) (ε4ε5E + Py)
]F−++ ,

F−−− =
−m−m′ + n5(l2−1)

2(l4−ε4ε5l3) (ε4ε5E + Py)

j +m− 1
2

F−+− + i
j′ +m′ + 1

2

j +m− 1
2

F−++ . (4.29)

Let us pause again to check consistency with the AdS3×S3 limit. Setting ε4ε5 = ε and
taking the large Ry limit of Eqs. (4.28), we indeed find that a solution is given by setting
(the AdS3×S3 limit of) F εε1ε2 to be equal to the values f εε1ε2 specified in Eqs. (3.75)–(3.77).

Similarly to AdS3×S3, Eqs. (4.28) are two equations for four unknowns, so for each ε4,
ε5 there is a two-parameter family of solutions, which we take to be parameterized by the
values of F+

+±. If working with Eqs. (4.29), we take the two-parameter family of solutions
to be parameterized by the values of F−+±. Together with ε4, ε5, this gives 8 physical
polarizations.

In Section 3.2, for AdS3×S3 these unfixed coefficients were chosen such that the vertex
operators transform appropriately under the action of the currents J± and K±. However,
in the null-gauged worldsheet theory associated to the full asymptotically linear dilaton
geometry this need not necessarily be the case.

In the cosets we fix these coefficients by requiring a reasonable IR limit. We treat the
different ε chiralities separately. For ε = 1 we set the particular components F+

+± equal to
their values in the AdS limit, F+

+± = f+
+±. The rest of the coefficients are then obtained

using Eqs. (4.28) and (4.26). Alternatively, for ε = −1 we set F−+± = f−+± and again solve
for the remaining coefficients using Eqs. (4.29) and (4.26).

We now turn to the analysis of the spacetime supercharges preserved by the null gaug-
ing, following on from the initial discussion around Eq. (4.9) (see also [28]). The supercharge
analysis corresponds to the limit of the Ramond vertex operator analysis in which we take
j = j′ = E = Py = 0, m = ε1

2 , m
′ = ε2

2 , as can be seen by comparing Eqs. (4.9) and (4.25).
In this limit, the center-of-mass wavefunction trivializes and we are left with integrated
vertex operators involving only the spin fields. As before, we parameterize the εi according
to (4.24); ε4 and ε5 are spectators that will label the supercharges; and we will sum over
ε, ε1, ε2 as in (4.25). The J constraint (4.13) reduces to

ε1 + ε2 l2 = 0 ⇒ ε1ε2 = −l2 , (4.30)

so supersymmetry is preserved in the holomorphic sector if and only if |l2| = 1, and thus
|l3| = |l4|. The γG constraint (4.27) reduces directly to

ε = −1 , (4.31)
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so all supercharges have negative AdS3×S3 chirality. Then the λ constraint in the first line
of (4.26), with F+ = 0, reduces to

l3 + ε4ε5 l4 = 0 . (4.32)

So when |l2| = 1 and |l3| = |l4| 6= 0, there are four holomorphic supercharges, labelled by
say ε2 and ε4.

Combining this analysis with the corresponding one in the antiholomorphic sector,
we observe consistency with the passage below Eq. (2.24) describing which subset of the
backgrounds are supersymmetric. In terms of the spacetime spectral flow parameters s, s̄
introduced in Eq. (2.27), we have l2 = 2s + 1, r2 = 2s̄ + 1. The circular supertube back-
grounds of [63, 64] have s = s̄ = 0 and preserve supersymmetry in both holomorphic and
antiholomorphic sectors; the backgrounds of [50–52, 54] have s̄ = 0, s 6= 0 and so preserve
supersymmetry only in the antiholomorphic sector; the general JMaRT backgrounds [53]
have s and s̄ both nonzero, and preserve no supersymmetry.

Picture changing in the R sector

In order to compute two-point functions of operators Y in the Ramond sector of the gauged
model, we need to define their picture-changed versions. Propagators will be non-vanishing
only if the total ghost charges add up to −Qϕ = −2 and −Qϕ̃ = 0. The picture-changing
operators are given by P+1 ∼ eϕG and P̃+1 ∼ eϕ̃λ. One possible natural choice would be
to compute the two-point function (superscripts denote (qϕ, qϕ̃) charges)

〈Y(− 3
2
,− 1

2)(z)Y(− 1
2
,+ 1

2)(w)〉 . (4.33)

However, it turns out that looking for an explicit expression for the state Y(− 3
2
,− 1

2) is not the
simplest way to go. This is due to the fact that such a state is automatically BRST closed,
so that it must be determined by the somewhat cumbersome procedure of removing all the
BRST-exact contributions. To avoid this issue, one can distribute the ghost charges in a
different way inside the correlator, and consider instead the equivalent two-point function

〈Y(− 3
2
,+ 1

2)(z)Y(− 1
2
,− 1

2)(w)〉 . (4.34)

Here Y(− 3
2
,+ 1

2) is in the canonical ϕ̃-picture, while Y(− 1
2
,− 1

2) is in the canonical ϕ-picture.
Thus, although this forces us to compute two additional R-sector operators instead of only
one, these are constrained by the γ̃λ and γGBRST constraints, respectively. The procedure
is then similar to that employed above to construct Y(− 1

2
,+ 1

2). We thus make the Ansätze

Y(− 3
2
,+ 1

2),ε4ε5 = e−( 3
2
ϕ− 1

2
ϕ̃)
∑
ε,ε1,ε2

Lεε1ε2ε4ε5Sε1ε2ε3Sε6ε4ε5Vj,m− ε12 V
′
j′,m′− ε2

2
ei(−Et+Pyy) ,

Y(− 1
2
,− 1

2),ε4ε5 = e−( 1
2
ϕ+ 1

2
ϕ̃)
∑
ε,ε1,ε2

Gεε1ε2ε4ε5Sε1ε2ε3Sε6ε4ε5Vj,m− ε12 V
′
j′,m′− ε2

2
ei(−Et+Pyy) .

where again ε3, ε6 are substituted away using (4.24). These must satisfy∮
dz : eϕ̃λ : (z) Y(− 3

2
,+ 1

2),ε4ε5(w) = 0 ,∮
dz : eϕGtot : (z) Y(− 1

2
,− 1

2),ε4ε5(w) = 0 ,

(4.35)
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and

: eϕGtot : (z) Y(− 3
2
,+ 1

2),ε4ε5(w) = Y(− 1
2
,+ 1

2),ε4ε5(w) ,

: eϕ̃λ : (z) Y(− 1
2
,− 1

2),ε4ε5(w) = Y(− 1
2
,+ 1

2),ε4ε5(w) .

(4.36)

By solving the above constraints, all the coefficients Lε and Gε can be expressed explicitly
in terms of the F ε coefficients in Eq. (4.28).

In addition, one can explicitly check that in the AdS limit they correctly reproduce the
expected behaviour. From the definition of the corresponding coset states Y(− 3

2
,+ 1

2) and
Y(− 1

2
,− 1

2), one might reasonably expect that they would reduce to the states Y(− 3
2) and

Y(− 1
2) of Section 3.3.2 respectively. However, care is needed when comparing both chiralities

and normalisations in the UV and IR. To explain this, let us consider for instance Y(− 1
2)

A ,
whose ε-chirality is ε = +1. (Analogous comments hold for other operators.) First of all,
recall that already in the case of AdS3 × S3 × T4, the picture-changing operator induces a
change in chirality of the state. Indeed, in case “A” of the analysis in (3.75), the physical
states in the “−3

2 ” picture have negative ε-chirality.
In the full coset models, an analogous pattern occurs with the two picture-changing

operators P+1, P̃+1. The coset state Y(− 3
2
,+ 1

2) that correctly reduces to Y(− 3
2),ε=−1

A in the
AdS limit indeed has positive ε-chirality. This means that, in our case under study, the
coefficients L+

ε1ε2 reduce to −
√
n5

j+j′ f
−
ε1ε2 . Similarly, the coset state Y(− 1

2
,− 1

2) with negative

ε-chirality reduces to the Y(− 1
2)

A state. However, in the latter case there is a normalisation
factor (i kRy)

−1 to account for. This is removed by taking into account the normalisation
of the picture-changing operator, which indeed contains a term which is dominant in the
AdS limit, l3λt + l4λy ∼ (kRy)(λt + λy).

We illustrate the example of the G−++ coefficient, appearing in the coset state Y(− 1
2
,− 1

2).
The argument holds analogously for all the other coefficients. The explicit expression of
G−++ in terms of positive coefficients F+

ε1ε2 is obtained by solving the constraints Eq. (4.35)
and Eq. (4.36), without using Eq. (4.12) and Eq. (4.13). For generic quantum numbers
such that the denominators below are non-zero, one finds

(l3 + l4)2

i(E − Py)n5(1 + l2)
G−++ (4.37)

=
(m+ j − 1

2)F+
−+ + i(j′ −m′ + 1

2)F+
+− −

(
2(j−j′+1)(j+j′)(l3+l4)

(E−Py)n5(1+l2) + (−1+l2)
(1+l2) (m−m′)

)
F+

++(
−j(j − 1) + j′(j′ + 1) + n5

(m+l2m′)(E−Py)
l3+l4

+ n5
n5(−1+l22)(E−Py)2

4(l3+l4)2

) ,

and thus for Ry � 1 one has G−++ ' (ikRy)
−1f+

++ +O(R−2
y ), as claimed above.

The expressions for the coefficients G,L are quite lengthy, and we leave the computation
of correlators in the full coset model for future work. Nevertheless, it is easy to check that in
all cases the coefficients reduce to the expected expressions when going into the IR regime.
Consequently, we find that, to leading order in Ry, the coset two-point functions in the
RR sector reproduce the m-basis expressions in Eq. (3.80), as they should. As will become
clear in Section 5 below, this does not mean that the physics in the IR regime of the coset
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model is that of global AdS3× S3×T4; the bosonic null gauge condition (4.13) will lead to
substantially different correlators in the appropriately defined x-basis.

4.4 Flowed/winding sectors

We now briefly discuss the states with non-trivial spectral flow we will be interested in, that
is, those corresponding to the description of the higher-weight chiral primaries described in
Section 3.2.

A generic state with excitation numbers (1
2 ,

1
2) in the null-gauged worldsheet theory

must satisfy the the L0 and L̄0 Virasoro constraints

0 =
j′(j′ + 1)− j(j − 1)

n5
−mω +m′ω′ +

n5

4

(
ω
′2 − ω2

)
− 1

4

(
E2 − P 2

y,L

)
, (4.38a)

0 =
j′(j′ + 1)− j(j − 1)

n5
− m̄ω + m̄′ω̄′ +

n5

4

(
ω̄
′2 − ω2

)
− 1

4

(
E2 − P 2

y,R

)
, (4.38b)

where (we reuse the notation Py,L, Py,R for the eigenvalues of the corresponding operators)

Py,L/R =
ny
Ry
± ωyRy , (4.39)

with ωy ∈ Z the winding on the y-circle. The level-matching L0 − L̄0 constraint thus reads

0 = ω(m̄−m) +m′ω′ − m̄′ω̄′ + n5

4
(ω
′2 − ω̄′2) + nyωy . (4.40)

Let us try to follow the global AdS3 procedure as close as possible, and consider states with
ω = ω′ = ω̄′ and m = m′ = m̄ = m̄′. Then, (4.40) forces us to set ωy = 0. Moreover,
for states constructed by spectrally flowing highest/lowest weight primaries, the discussion
around Eq. (3.69) shows that the eϕG part of the BRST charge acts as in the unflowed case.
Moreover, the action of eϕ̃λ is left unchanged. The derivation of the coefficients involved in
the definition of the vertex operators constructed above then goes through without changes,
and we only need to restrict to the highest (lowest) possible values of m (m′) in each case.

Regarding the gauge constraints, recall that, both in SL(2,R) and in SU(2), the different
modes of the spectrally flowed operators are obtained by acting with the raising/lowering
operators J±0 and K±0 on the flowed primary. Although this does not lead to operators
that can be expressed in a simple way in the m-basis, the presence of these different modes
is crucial in order to obtain the set of physical modes that satisfy the gauge constraints.
Focusing on (lowest-weight) discrete states corresponding to operators of spacetime weight h
in the chiral multiplets, this gives modes described by worldsheet operators with projections
mω = J + n5

2 ω + n = h+ n and m′ω = J ′ + n5
2 ω − n

′, with n, n′ ∈ N0, and similarly in the
antiholomorphic sector. The bosonic gauge constraints now read

0 = mω + l2m
′
ω +

l3
2
E +

l4
2
Py , 0 = m̄ω + r2 m̄

′
ω +

r3

2
E +

r4

2
Py . (4.41)

As discussed below Eq. (4.14), this implies that J±0 andK±0 do not commute with the BRST
charge. Consequently and importantly, only the subset of modes satisfying Eqs. (4.41) will
be physical. The implications will be discussed at length in the following section.
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Before concluding this section, let us review the fact that there is a residual discrete
gauge symmetry in these models, which implies that operators related by shifts of the
following form describe the same physical state [26], see also [29]. Parameterizing (l4, r4)

through p and k as in (2.12), the symmetry is

δ
(
ω, ω′, ω̄′, E, ny, ωy

)
= (1,−l2,−r2, l3,−p, k) . (4.42)

In particular, one can trade a unit of SL(2,R) spectral flow for −k units of winding ωy,
together with corresponding shifts in ω′ and ω̄′. The energy also acquires a term linear in
Ry, namely δE = −kRy + O(1/Ry). The interpretation of the factor k relating ω and ωy
can be traced back, for instance, to the Zk orbifold appearing in the IR, see Eq. (2.21). It
reflects the fact that the CFT state associated with the background lives in the k-twisted
sector of the D1D5 CFT.

The operators discussed in this section do not exhaust the spectrum of the worldsheet
model; for instance we have not discussed operators that do not not satisfy ωy ≡ 0 mod k,
which were analyzed in [26]. However, the operators described above comprise a large set
of light operators in spectral flowed sectors, in parallel to the analysis of global AdS3 × S3,
which will be general enough for our purposes in the present work.

5 Novel heavy-light correlators from the worldsheet

In this section we describe the computation of two-point correlators in the null gauged
models, corresponding to HLLH correlators of the holographic CFT. To do so, we take a
set of physical coset operators derived in the previous section and flow them to the IR, in
which the geometry is locally an orbifold of AdS3 × S3. We develop a proposal to define
coset operators in an appropriate x-basis corresponding to local operators of the holographic
CFT. We then use this definition to compute a large set of HLLH correlators. We observe
precise agreement between a subset of these and known results computed in supergravity
and holographic CFT, and significantly extend these results.

5.1 Light states in the AdS3 regime

We begin by describing in more detail the vertex operators of the null-gauged model in
the AdS3 limit. As discussed around Eq. (2.20), we send Ry → ∞, keeping t̃ = t/Ry and
ỹ = y/Ry fixed. After choosing the gauge τ = σ = 0, this leads to a geometry described by
the six-dimensional metric (2.21), which is related to Zk-orbifolded AdS3 × S3 × T4 by the
large coordinate transformation Eq. (2.24).

We focus initially on light states with no winding or worldsheet spectral flow. As we
have argued in the previous section, the different polarizations and the associated coefficients
simply reduce to those described in Section 3.2 in the AdS3 limit. Here we further describe
what happens to their quantum numbers in the regime of interest. In general, the Virasoro
condition (4.12) determines j via the solution

j =
1

2
+

√(
j′ +

1

2

)2

+
n5

4

(
P 2
y − E2

)
, (5.1)
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where we have fixed the sign in order to have j in the range (3.16). As Ry → ∞, we hold
fixed the rescaled energy and momentum

E = ERy , ny = PyRy . (5.2)

Hence, the second term inside the square root in (5.1) is O
(
1/R2

y

)
, and at large Ry the

solution becomes j = j′ + 1 + O
(
1/R2

y

)
, which to leading order is the usual AdS3 × S3

relation. The O
(
1/R2

y

)
corrections to j are non-zero when |E| 6= |ny|, which is generically

the case. To see this, note that at large Ry the gauging parameters associated to the t and
y directions become

l3 = r3 = l4 = −r4 = −kRy +O (1/Ry) . (5.3)

On the other hand, those associated to the S3 angular directions do not scale with Ry, and
remain l2 = 2s + 1 and r2 = 2s̄ + 1. Hence, at leading order at large Ry, Eqs. (4.13) take
the form

0 = m+ (2s+ 1)m′ − k

2
(E + ny) , 0 = m̄+ (2s̄+ 1) m̄′ − k

2
(E − ny) , (5.4)

which fix E and ny in terms of m, m′, m̄, m̄′, such that indeed generically E 6= ±ny.
Although for simplicity we restricted to light states with no winding or worldsheet

spectral flow in Eqs. (5.1) and (5.4), the present discussion and the computations in the
rest of this section are analogous for winding states after replacing the projectionsm→ mω,
etc, where mω was defined above Eq. (4.41). Our results will be valid for the full set of
chiral primaries that can be described within the usual AdS3×S3×T4 worldsheet theory, as
well as their descendants under the global part of the chiral algebra, that fill out the short
multiplet. We shall comment further on states with non-trivial winding and/or worldsheet
spectral flow in due course.

5.2 Identifying the spacetime modes

Let us discuss the identification of the spacetime modes. We shall work in a gauge in which
the upstairs SL(2,R) time τ and angular direction σ are fixed. Then, importantly, the
asymptotic boundary of the physical downstairs AdS3 is parameterized by t/Ry and y/Ry,
at a fixed point on the S3. We therefore define

my =
1

2
(E + ny) , m̄y =

1

2
(E − ny) , (5.5)

and we interpret these as the asymptotic mode labels. We will see that this gives rise to a
rich set of correlators that agree with and extend previous results.

Let us first consider k = 1, and continue to focus mainly on the holomorphic sec-
tor. Given a holographic CFT chiral primary with spacetime weight h and definite (left)
R-charge m′, we wish to construct the dual worldsheet operator by summing over the cor-
responding modes. As reviewed in Section (3.2), in global AdS3 × S3 this leads to x-basis
operators of the form Oh,m′(x) =

∑
m x

m−hOh,m,m′ , where the modes Oh,m,m′ are identi-
fied as either Wj,m,j′,m′ , Xj,m,j′,m′ or Yj,m,j′,m′ , where j and h are related by Eq. (3.89).
For simplicity, we collect all of these modes under the notation Vj,m,m̄V ′j′,m′,m̄′ . In the
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null-gauged models, we replace m → my in the exponent of x in the sum, defining the
worldsheet operator

Oh,m′(x, x̄) ≡ 1

kh+h̄

∑
my ,m̄y

xmy−hx̄m̄y−h̄Vj,m,m̄V ′j′,m′,m̄′e−imy(t̃−ỹ)e−im̄y(t̃+ỹ) , (5.6)

where we have temporarily included the antiholomorphic dependence to emphasize the
coupling between the left- and right-moving sectors due to the null gauge constraints, Eq.
(4.13). The normalization factors of k have been introduced for later convenience and will
be discussed below Eq. (6.16). We emphasize that, from the point of view of the worldsheet
theory, x is an auxiliary complex variable, while t̃ and ỹ are scalar fields.

Note that combining the bosonic null constraint (5.4) and the definition of the modes
(5.5), we obtain my = m+(2s+1)m′. This relation parallels the supergravity spectral flow
large gauge transformation (2.24), and we will make use of this observation when discussing
the relation to the holographic CFT in due course.

For k > 1 we follow the same logic, and make the same definition (5.6). This time
however, combining Eqs. (5.4) and (5.5) we obtain

my =
1

k

(
m+ (2s+ 1)m′

)
, m̄y =

1

k

(
m̄+ (2s̄+ 1)m̄′

)
. (5.7)

We shall shortly see that this gives rise to an important technical complication relating the
holomorphic and antiholomorphic sectors.

Before computing our first example of a HLLH correlator, let us briefly return to
operators with non-zero spectral flow and/or winding charge. In Section 4.4 we analyzed a
set of coset vertex operators in sectors with non-zero worldsheet spectral flow, corresponding
to chiral primaries of higher twists, similar to those in global AdS3×S3. In that section we
worked with ωy = 0, and reviewed that the large gauge spectral flow transformation (4.42)
relates these to operators with ωy ∈ kZ.

When ωy 6= 0, in general one should be careful both when examining whether the states
survive the AdS3 limit, and also when defining the AdS3 energy E and angular momentum
ny, since fundamental string y-winding charge can be exchanged for background flux [26].
However, for operators which have ωy ∈ kZ, the situation is straightforward: we shall
simply use gauge spectral flow to always work in a frame in which ωy = 0, and then use
the definitions of E and ny in (5.2) and the modes my, m̄y in (5.5).

The discussion becomes more complicated when considering global SL(2,R)×SU(2) de-
scendants of the spectrally flowed primaries. The isomorphism between the affine modules
gives a simple identification for the highest/lowest weight states, but this structure be-
comes more complicated for rest of the of the multiplet. Indeed, global descendants of the
spectrally flowed affine primary state are identified with affine/Virasoro descendants of the
corresponding unflowed equivalent state with non-trivial y-winding, such that one needs
to include string oscillator excitations. The situation is similar to what happens for the
usual series identification V ω=0

j,j ∼ V ω=1
k
2
−j,j− k

2

in bosonic SL(2,R), where, for instance, one has

V ω=0
j,m ∼ (j+

0 )m−jV ω=0
j,j ∼ (j+

−1)m−jV ω=1
k
2
−j,j− k

2

, see [28]. We leave a more detailed exploration
of these features in the coset models for future work. In the reminder of this paper we will
work with operators that have ωy = 0.
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5.3 HLLH correlators: first example

We now compute a first explicit example of a worldsheet two-point function in the cosets
corresponding to the heavy backgrounds under consideration. For this purpose, we focus on
a particular light operator probing the backgrounds with s̄ = 0 (hence r2 = 1), but general
s. These describe supersymmetric spectral flowed supertubes [50–54]. We shall demonstrate
that this worldsheet correlator agrees with both the supergravity and symmetric product
orbifold CFT HLLH four-point functions computed in [30]. We will also significantly extend
beyond the set of correlators computed in [30].

The light operator in this first example is a massless RR operator of Y[A] type with h =

m′ = 1/2 and hence j = 1, see Eq. (3.81). We shall denote this operator by Y 1
2
. Together

with the analogous antiholomorphic part, this vertex operator is dual to a particular (h, h̄) =

(1
2 ,

1
2) chiral primary of the HCFT denoted by O++, which we introduced in Eq. (3.2). In the

six-dimensional supergravity arising from reduction on T4, this corresponds to a particular
combination of fluctuations of a scalar and anti-self-dual two-form potential, in a tensor
multiplet that is not turned on in the backgrounds we consider. In type IIB supergravity,
in the present NS5-F1-P duality frame, these fields correspond to a particular combination
of supergravity fluctuations of the RR axion and certain components of the RR two-form
and four-form potentials. (In the D1-D5-P frame, the fluctuations are of the RR axion
and certain components of the RR four-form and NS-NS two-form potentials). The light
operator corresponds to a particular scalar spherical harmonic of these fields [13, 14, 30].

In the large Ry limit, we have shown that the Y operators simply reduce to their
AdS3 × S3 cousins of Section 3.2, times the additional exponentials in t and y. These
exponentials give trivial contributions to the two-point functions 〈Y 1

2
Y 1

2
〉 once the charge

conservation conditions my,1 = −my,2 and m̄y,1 = −m̄y,2 are imposed. So do the SU(2)
parts of the vertex operators for m′1 = −m′2, upon using the appropriate normalization.
Hence, at the level of the two-point function of m-basis operators, i.e. the mode correlators
from the spacetime point of view, the only non-trivial contribution comes from the SL(2,R)
part of the upstairs theory.

To illustrate this more explicitly and also more generally, we introduce the following
notation: Oh,m′ will denote a generic massless worldsheet vertex operator in the AdS limit of
the null-gauged model with spacetime weight h and spacetime R-charge m′. When m′ = h,
we shall suppress the label m′ and write Oh. The corresponding holographic CFT chiral
primaries will be denoted by Oh. Let us then consider the following worldsheet correlator,

〈s, s̄, k|Oh1,m′1
(x1, z1)Oh2,m′2

(x2, z2) |s, s̄, k〉

≡ 1

k2h1+2h2

∑
my,i,m̄y,i

∏
i=1,2

x
my,i−hi
i x̄

m̄y,i−hi
i lim

Ry→∞
〈V1(z1)V2(z2)〉 , (5.8)

where V denotes a generic m-basis massless vertex operator of the full coset model. The
spacetime correlator corresponds to the worldsheet-integrated version of (5.8).

As discussed below (3.94), the normalization of the vertex operators is chosen so that
the overall factors coming from the worldsheet integration procedure cancel out. After
setting h1 = h2 = h, x1 = 1 and x2 = x, computing the free-field correlators, and imposing
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the various charge conservations, the integrated correlator becomes

〈s, s̄, k| Oh,m′(1)O†h,m′(x) |s, s̄, k〉 =
1

k4h

∑
my ,m̄y

xmy−hx̄m̄y−h lim
Ry→∞

〈V1V2〉 , (5.9)

where 〈V1 V2〉 stands for the m-basis two-point function with the z-dependence stripped
out, c.f. Eqs. (3.63), (3.80). Note that on the right-hand side, the sum over my involves the
R-charge and other quantum numbers of the operator located at x.

In turn, the remaining correlator is particularly simple in our context. As argued
around Eq. (3.80a), the m-basis two-point functions of worldsheet chiral primary operators
reduce to the Gamma functions expression in the bulk term of (3.24) with the replacement
j 7→ J = h. These are simply the coefficients obtained by Mellin-transforming the usual
propagator |1− x|−4h, which further all become equal to one when h = 1

2 . Thus, for Y 1
2
in

the s̄ = 0 backgrounds, we obtain

〈s, k| Y 1
2
(1)Y†1

2

(x) |s, k〉 =
1

k2

∑
my ,m̄y

xmy−
1
2 x̄m̄y−

1
2 . (5.10)

To be fully explicit, we take the operator at x2 = x to be a discrete series state D+
j

corresponding to an anti-chiral primary which, having set J = h = h̄, has m = h + n,
m̄ = h+n̄ andm′ = m̄′ = −h, where n, n̄ are non-negative integers. For the supersymmetric
backgrounds with s̄ = 0 and setting h = 1

2 , the relation (5.7) becomes

my =
n− s
k

, m̄y =
n̄

k
. (5.11)

Hence, the correlator takes the form

〈s, k| Y 1
2
(1)Y†1

2

(x) |s, k〉 =
1

k2

∑
n,n̄

′
x
n−s
k
− 1

2 x̄
n̄
k
− 1

2 , (5.12)

where we have denoted the sum with a prime because the range of summation over n, n̄ is
constrained. We now determine this constraint. Subtracting the two equations in (5.11)
and comparing with (5.5), we obtain

my − m̄y =
1

k
(n− n̄− s) = ny

⇒ n− n̄ = kny + s .
(5.13)

Thus the allowed values of n − n̄ are constrained by ny ∈ Z. To see this in detail, let us
first write s = kp+ ŝ with 0 ≤ ŝ < k and p ∈ N. For convenience here and later, we define
a ≡ k − ŝ, so that s = kp − a, and 1 ≤ a ≤ k. Then the sum in (5.12) is restricted to be
over non-negative integers n, n̄ satisfying

n̄− n ≡ a mod k. (5.14)

We now demonstrate that the correlator (5.12), (5.14) agrees precisely with the super-
gravity and orbifold CFT expressions derived in [30]. In the holographic CFT, we have a
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HLLH four-point function 〈OH(x3)OL(x1)O†L(x2)O†H(x4)〉. Using Möbius symmetry we set
x3 = 0 and x4 → ∞, in which case the heavy operators are interpreted as in/out states
which we similarly denote as |s, k〉, such that the four-point function becomes a two-point
function in the heavy background. We further set x1 = 1, while x2 = x parametrizes the
usual cross-ratio. Then the supergravity result of [30, Eq. (4.25)] is

〈s, k|O 1
2
(1)O†1

2

(x)|s, k〉 =
x(ŝ−s)/k

|x||1− x|2
1− |x|2(1−ŝ/k) + x̄

(
|x|−2ŝ/k − 1

)
1− |x|2/k

, (5.15)

where the overall normalization of the supergravity amplitude was not fixed in [30]. Eq (5.15)
was further shown to coincide with the corresponding symmetric orbifold CFT calculation
for the particular cases ŝ = 0 and ŝ = k− 1.

To demonstrate agreement between (5.12) and (5.15), it is easier to work from (5.15)
towards our expression (5.12). We start by rewriting (5.15) in terms of sums akin to
those involved in the definition of the x-basis, i.e. the mode expansion of local operators
in spacetime as seen from the worldsheet theory. Recalling that ŝ = k − a, the correlator
becomes

〈s, k|O 1
2
(1)O†1

2

(x)|s, k〉 =
x1−p

|x||1− x|2
1− |x|2a/k + x̄

(
|x|2a/k−2 − 1

)
1− |x|2/k

=
x−p

|x|

[
1

|1− x|2
1− |x|2

1− |x|2/k
− 1

1− x̄
1− |x|2a/k

1− |x|2/k

]
. (5.16)

Assuming |x| < 1, the RHS can then be expressed as

∞∑
ˆ̄n=0

[ ∞∑
n̂=0

k−1∑
δ=0

− δn̂,0
a−1∑
δ=0

]
xn̂+ δ

k
−p− 1

2 x̄
ˆ̄n+ δ

k
− 1

2 . (5.17)

The second term in (5.17) is understood as subtracting the n̂ = 0 and δ = 0, . . . , a − 1

coming from the first term. As a consequence, we can further rewrite the sum over n̂, ˆ̄n and
δ in Eq. (5.17) as a restricted double sum,∑

n,n̄

′
x
n−s
k
− 1

2 x̄
n̄
k
− 1

2 , (5.18)

over pairs of non-negative integers (n, n̄) satisfying the following restrictions

n̄− n ≡ amod k , n, n̄ ∈ N0 . (5.19)

Indeed, for a = k we simply parametrize n = kn̂ + δ and n̄ = kˆ̄n + δ, which enforces
the mod k condition (5.19), so that the sum gives the first term in (5.17). On the other
hand, for a < k we can take n = kn̂ + δ − a and n̄ = kˆ̄n + δ, so that the factors of a
coming from s and n cancel each other out in the exponent. However, in this case we need
to explicitly subtract the contribution of all pairs (n̂, δ) which lead to n < 0, thus again
giving (5.17). Therefore we observe agreement between (5.12), (5.14) and (5.15), up to the
overall normalization that was not fixed in the supergravity calculation of [30]. Here and
throughout the paper, we shall not keep track of overall normalization factors.
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For ŝ = 0 and ŝ = k−1, since Eq. (5.15) matches the corresponding symmetric orbifold
CFT correlator, we have demonstrated an explicit match between the worldsheet and sym-
metric orbifold CFT correlators. This is striking, as it is an agreement across moduli space
for a correlator that a priori is not covered by an existing non-renormalization theorem.

This agreement is almost certainly due to the special nature of the heavy states we
consider. Indeed, let us compare the worldsheet x-basis operator Eq. (5.6) with the dis-
cussion of holographic CFT spectral flow in [59, App. A]. Spectral flow in the holographic
CFT is an automorphism of the small (4, 4) superconformal algebra, that is a useful tool to
relate different states and operators. For instance, the heavy backgrounds we consider are
related by fractional spectral flow to the k-orbifolded NSNS vacuum, as discussed around
Eq. (2.27).

Given a symmetric orbifold CFT correlator, one can perform spectral flow on both
the operators and the background states. The value of the correlator is invariant under
this operation. One can use this to map the correlator in one of our heavy backgrounds
to a correlator in the k-orbifolded NSNS vacuum. Of course, for k = 1, after undoing the
spectral flows one obtains a vacuum correlator.

Taking for simplicity k = 1 and s̄ = 0, the transformation of a chiral primary operator
under this operation is [59, App. A]

Õh(x) = x(2s+1)m′Oh(x) . (5.20)

The exponent of x directly parallels the x factors appearing in Eq. (5.6). This observation
generalizes straightforwardly to s̄ 6= 0 and to k > 1, whereupon operators have fractional
modes taking values in Z/k. We will comment further on the relation between worldsheet
and symmetric product orbifold CFT correlators in due course.

5.4 Non-BPS HLLH correlators for h = 1
2

The correlator presented in the previous subsection can be readily generalized to compute
a set of novel HLLH correlators involving the same light operators, but probing the more
general class of non-supersymmetric backgrounds given by the JMaRT solutions, in which
both spacetime (fractional) spectral flow parameters s and s̄ are non-trivial. Note that
the parameters s, s̄, k defining the background must satisfy s(s+ 1)− s̄(s̄+ 1) ∈ kZ, from
combining Eqs. (2.15) and (2.27).

The same steps as described in the previous subsection lead directly to the following
generalization of Eq. (5.12):

〈s, s̄, k| Y 1
2
(1)Y†1

2

(x) |s, s̄, k〉 =
1

k2

∑
n,n̄

′
x
n−s
k
− 1

2 x̄
n̄−s̄
k
− 1

2 . (5.21)

To make precise the restricted summation, analogously to s = kp− a we write s̄ = kp̄− ā,
with 1 ≤ ā ≤ k. We parametrize n = kn̂+ δ − a and n̄ = kˆ̄n+ δ − ā in order to satisfy the
condition coming from the subtracted gauge constraint generalizing Eq. (5.14), namely

n̄− n ≡ (a− ā) mod k . (5.22)
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Then, by summing over all possible values of n̂, ˆ̄n and δ such that n and n̄ are non-negative
and satisfy (5.22), defining b ≡ min(a, ā) we obtain

〈s, s̄, k|Y 1
2
(1)Y†1

2

(x, x̄)|s, s̄, k〉 =
1

k2

x−px̄−p̄

|x|
× (5.23)[

1

|1− x|2
1− |x|2

1− |x|2/k
− 1

1− x̄
1− |x|2a/k

1− |x|2/k
− 1

1− x
1− |x|2ā/k

1− |x|2/k
+

1− |x|2b/k

1− |x|2/k

]
.

As before, the second and third terms remove contributions for which either n or n̄ become
negative, while the fourth one compensates for the over-counting of cases in which both n
and n̄ are negative.

At first sight, Eq. (5.23) may seem to depend on the values of a and ā separately,
in apparent contradiction with the fact that, as is implied by (5.22), only their difference
matters. However, the RHS of Eq. (5.23) can be rewritten as

1

k2

x−s/kx̄−s̄/k

|x||1− x|2
1(

1− |x|2/k
) (x

x̄

)(ā−a)/2k
× (5.24)[

(1− x)|x|(a−ā)/k + (1− x̄)|x|−(a−ā)/k − |1− x|2|x|−|a−ā|/k
]
,

which explicitly depends only the orbifold parameter k, the spectral flow parameters s and
s̄, and the difference a− ā ≡ s̄− smod k, as expected. Note that (5.24) is symmetric under
the simultaneous replacements x↔ x̄ and s↔ s̄.

The worldsheet correlators (5.23)–(5.24) are one of the main results of this paper. Un-
like the s̄ = 0 supersymmetric example of the previous subsection, generically the cor-
responding supergravity or holographic CFT correlators have not been computed in the
literature.

Since the backgrounds are non-supersymmetric when s and s̄ are both non-zero, again
a priori there is no obvious reason to expect the correlators to be protected across moduli
space.

However, better-than-expected agreement between supergravity and holographic CFT
has already been observed for a closely related observable describing the analog of the
Hawking radiation process [55, 58, 60]; we shall comment further on this in due course.

Moreover, for the particular cases where s and s̄ are congruent to either 0 or k−1 mod
k, the holographic CFT correlator follows straightforwardly from the techniques in App. A
of [30], providing another exact match even for the non-supersymmetric backgrounds. We
shall generalize this further in the next section.

6 More general heavy-light correlators

In this section we present HLLH correlators for generic chiral primaries of conformal weights
h > 1/2. We then progress to describe higher-point heavy-light correlators. As an appli-
cation, we compute the analogue of the Hawking radiation process from the backgrounds
under consideration. We also compute a five-point HLLLH correlator of the symmetric
product orbifold CFT, and demonstrate precise agreement with the corresponding world-
sheet correlator.
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6.1 HLLH correlators for general h

We now consider HLLH correlators where the light operators are chiral primaries with
h ≥ 1. For these correlators the m-basis SL(2,R) two-point functions do not trivialize, and
the resulting sums become more complicated.

By following the method outlined in the previous sections, the worldsheet computation
leads to restricted sums of the form

1

k4h

∑
n,n̄

′
x
n−2hs

k
−hx̄

n̄−2hs̄
k
−h Γ(2h+ n)Γ(2h+ n̄)

Γ(2h)2Γ(n+ 1)Γ(n̄+ 1)
. (6.1)

For k = 1, there are no restrictions on the allowed values of the mode numbers n and n̄,
and so the sum can be performed straightforwardly to obtain

〈s, s̄, k = 1|Oh(1)O†h(x, x̄)|s, s̄, k = 1〉 =
x−2hsx̄−2hs̄

|1− x|4h
. (6.2)

This expression agrees with the corresponding HLLH correlator of the symmetric product
orbifold CFT, as a direct consequence of the discussion around Eq. (5.20).

On the other hand, for k > 1 the sum becomes more difficult to carry out explicitly
since n and n̄, which appear in the arguments of the Gamma functions, must satisfy the
constraint

n̄− n ≡ 2h (s̄− s) mod k , (6.3)

which is the direct generalization of Eq. (5.22). We shall first briefly describe a method to
construct these correlators iteratively, starting from the h = 1

2 case obtained above, then
present an improved method.

Our iterative construction operates by expressing the additional coefficients in the sum
in Eq. (6.1) in terms of differential operators acting on results for lower values of h. Let
us illustrate how this works for the simplest non-trivial case h = 1. From the general
expression (6.1), we have

〈s, s̄, k|Oh=1(1)O†h=1(x, x̄)|s, s̄, k〉 =
1

k4

∑
n,n̄

′
x
n−2s

k
−1x̄

n̄−2s̄
k
−1(n+ 1)(n̄+ 1) (6.4)

=
1

k4

x−
2s
k x̄−

2s̄
k

|x|2
(kx∂x + 1)(kx̄∂x̄ + 1)

∑
n,n̄

′
x
n
k x̄

n̄
k .

Hence, the differential operators act on a sum similar to the one analyzed in the previous
section. For the general case, the procedure iterates. We redefine a and ā to be general-
izations of the a and ā used in the h = 1/2 correlators (see above Eqs. (5.14) and (5.22)),
where we replace s 7→ 2hs, s̄ 7→ 2hs̄, such that a− ā ≡ 2h(s̄− s) mod k. Then we obtain

〈s, s̄, k|Oh(1)O†h(x, x̄)|s, s̄, k〉 =
1

k4h

x−
2hs
k x̄−

2hs̄
k

|x|2h
Dh,kD̄h,k

Γ(2h)2

∑
n,n̄

′
x
n
k x̄

n̄
k , (6.5)

where we have introduced differential operators of order 2h− 1 defined as

Dh,k ≡ (kx∂x + 2h− 1) · · · (kx∂x + 1) , (6.6)
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and where∑
n,n̄

′
x
n
k x̄

n̄
k =

(1− x)|x|(a−ā)/k + (1− x̄)|x|−(a−ā)/k − |1− x|2|x|−|a−ā|/k

|1− x|2
(
1− |x|2/k

) (x
x̄

)(ā−a)/2k
.

(6.7)
Although it leads to correct results, the procedure outlined above quickly becomes

cumbersome, and leads to seemingly complicated expressions for higher values of h. In
addition, it does not appear to give any insight into whether the results are likely to match
with computations in the symmetric product orbifold CFT. However, we can improve on
both these points with a different method. We now describe this method by first rederiving
the h = 1/2 correlators of the previous section, and then generalizing the improved method
to arbitrary values of h, and also to higher-point heavy-light correlators.

Let us thus re-examine the general expression Eq. (6.1), and consider the case in which
a− ā = 0 for simplicity. We can take into account the restriction on the allowed values of
n and n̄ by considering an unrestricted sum over arbitrary positive integers by making use
of a “Kronecker comb”. In other words, we impose that n− n̄ = 0 mod k by including extra
coefficients of the form ∑

q∈Z
δn−n̄,kq =

1

k

k−1∑
r=0

e2πir n−n̄
k , (6.8)

where the final equality is obtained by Fourier transformation, and represents a simple form
of the discrete Poisson summation formula. The RHS in Eq. (6.8) is interesting, because
the exponentials can be absorbed into terms involving powers of x and x̄. Explicitly, we
can rewrite the expression (6.1) with a− ā = 0 as

1

k4h+1

x−
2hs
k x̄−

2hs̄
k

|x|2h
∑
n,n̄≥0

k−1∑
r=0

unr ū
n̄
r

Γ(2h+ n)Γ(2h+ n̄)

Γ(2h)2Γ(n+ 1)Γ(n̄+ 1)
, (6.9)

where ur, ūr are the kth roots of x and x̄, respectively; writing x
1
k ≡ |x|

1
k e2πi

Arg(x)
k ,

ur ≡ x
1
k e2πi r

k , ūr ≡ x̄
1
k e−2πi r

k . (6.10)

Thus, inside the convergence region |x| < 1 we can exchange the order of the sums, such
that the unrestricted sum over integers n and n̄ leads to the usual expression for the CFT
two-point function. However, it is evaluated at the different values of ur, instead of the
insertion point itself. Thus, the expression (6.9) becomes

1

k4h+1

x−
2hs
k x̄−

2hs̄
k

|x|2h
k−1∑
r=0

1

|1− ur|4h
. (6.11)

In fact, we can rewrite this in a slightly more general form. Indeed, it is easy to “unfix”
the first insertion point and write the full expression of the HLLH correlator in terms of x1

and x2. To do so, we introduce kth roots of x1, x2, and x2/x1 via uk1,r1 = x1, uk1,r2 = x2,
and uk21,r = x2/x1, and then make use of the identity

1

|x1|
4h
k

k−1∑
r=0

1

|1− u21,r|4h
=

1

k

k−1∑
r1,r2=0

1

|u1,r1 − u2,r2 |4h
. (6.12)

– 48 –



This gives

〈s, s̄, k|Oh(x1, x̄1)O†h(x2, x̄2)|s, s̄, k〉
∣∣∣

2h(s−s̄) = 0 mod k

=
1

k4h+2

(
x2

x1

)−h (2s+1)
k
(
x̄2

x̄1

)−h (2s̄+1)
k

|x1x2|2h(
1
k
−1)

k−1∑
r1,r2=0

1

|u1,r1 − u2,r2 |4h
.

(6.13)

The general case is computed entirely analogously. We must simply replace n − n̄ 7→
n−n̄+(a−ā) in Eq. (6.8), which induces some extra phases. The appropriate generalization
of Eq. (6.12) is given by

1

|x1|
4h
k

k−1∑
r=0

e2πir(a−ā)/k

|1− u21,r|4h
=

1

k

k−1∑
r1,r2=0

e2πi(r2−r1)(a−ā)/k

|u1,r1 − u2,r2 |4h
. (6.14)

Then the HLLH correlator with generic values of the orbifold parameter k, the spectral flow
parameters s and s̄, and the weight of the light chiral primary operator h, takes the form

〈s, s̄, k|Oh(x1, x̄1)O†h(x2, x̄2)|s, s̄, k〉

=
1

k4h+2

(
x2

x1

)−h (2s+1)
k
(
x̄2

x̄1

)−h (2s̄+1)
k

|x1x2|2h(
1
k
−1)

k−1∑
r1,r2=0

e2πi(r2−r1)(a−ā)/k

|u1,r1 − u2,r2 |4h
,

(6.15)

where the sum is over the k-th roots of the insertion points x1 and x2, as defined above
(6.12), and where 2h(s̄− s) ≡ a− ā mod k.

Note that we can relax the chiral primary condition and consider operators in which
m′ 6= ±h. We shall continue to focus on massless vertex operators, however this could be
generalized further. In addition, by making use of the phases and the x1,2 powers on the
RHS of (6.15), we can rewrite the result in a cleaner form,

〈s, s̄, k|Oh,m′(x1, x̄1)O†h,m′(x2, x̄2)|s, s̄, k〉

=
1

k2

k−1∑
r1,r2=0

(
u2,r2

u1,r1

)−m′(2s+1)( ū2,r2

ū1,r1

)−m̄′(2s̄+1) |u1,r1u2,r2 |2h(1−k)

k4h|u1,r1 − u2,r2 |4h
.

(6.16)

6.2 Matching between worldsheet and symmetric product orbifold

The appearance of the kth roots of the physical insertions x1,2 in Eq. (6.16) is related to
the fact that the holographic description of the heavy backgrounds involves heavy states in
k-twisted sectors of the boundary CFT. The same feature appears in certain computations
performed using the Lunin-Mathur covering space technique [49], specifically when there
are operators of twist k inserted at the origin and infinity of the CFT plane, and when there
are other untwisted operators in the correlator. Then the coordinate transformation to the
k-fold covering space is precisely x = uk.

Thus, when the light worldsheet operators correspond to untwisted operators of the
symmetric product orbifold CFT, it is natural to identify u with the coordinate on the
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k-fold covering space that trivializes the twist operators involved in the definition of the
heavy states.

The sum over the different roots generates the usual phases included in the definition
of fractional modes by summing over the different copies of the theory [49],

Om
k

=

∮
dx

2πi

k∑
r=1

O(r)(x)e
2πim

k
(r−1)xh+m

k
−1 . (6.17)

Moreover, the fractional spectral flow defining the background, when mapped to a k-fold
covering space, becomes integer spectral flow with parameters 2s + 1 and 2s̄ + 1 [54, 55].
Hence, one can generalize the discussion around Eq. (5.20) and simply consider the appro-
priate powers of ui,ri to arise from performing spacetime spectral flow on the operators,
in the k-fold covering space. Finally, the last factor on the RHS of (6.16) corresponds to
the usual two-point function evaluated at the roots, including the necessary Jacobian fac-
tors arising from mapping to the k-fold covering space, |∂u/∂x|2h. Obtaining precisely this
Jacobian is the justification for the factors of k introduced in the definition of the x-basis
operators in Eq. (5.6). Thus, we see that symmetric orbifold CFT HLLH correlators for
which the covering space is x = uk agree in both structure and value with the worldsheet
correlator (6.16).

By contrast, for twisted operators, the interpretation of our worldsheet result (6.16)
is more involved: the Lunin-Mathur covering map for such correlators is not x = uk. To
understand the precise relation, we focus on light operators of twist two, and show that
Eq. (6.16) nevertheless matches with the symmetric orbifold CFT also in this case. The
relevant four-point function was studied recently in [61, 62, 85] in the SymN (T4) CFT.
At leading order in large N , the correlator is dominated by a contribution from a covering
space with genus zero, where the copy indices of the light twist-two operator act on different
k-strands corresponding to the heavy state. One of the light insertions effectively joins
together two k-strands into a 2k-strand, and the other light insertion effectively cuts the
2k-strand back to two strands of length k. For this process, and setting for simplicity
s = s̄ = 0 as done in [61], the relation between the physical-space cross-ratio x and the
covering-space cross ratio v is10

x(v) =

(
v + 1

v − 1

)2k

. (6.18)

The correlator of interest involves the function

(v + 1)2+2k(v − 1)2−2k

v2
, (6.19)

where v(x) is defined through Eq. (6.18). The correlator itself is obtained by summing over
the 2k pre-images of x and including an N - and k-dependent overall factor. However, due
to the v → 1/v symmetry of the map (6.18), there are actually only k distinct contributions

10Note that in [61, 62], the base (physical) space coordinates are denoted by z or u rather than our x,
while the covering space coordinates are denoted by t or x rather than our v.
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[62], corresponding to distinct ramified coverings of the base space. When normalisation
factors are taken into account, this corresponds to what in [62] is called a ‘Hurwitz block
function’. Upon inserting the explicit solutions

vr(x) =
x

1
2k e

iπr
k + 1

x
1
2k e

iπr
k − 1

, r = 0, . . . , k− 1 , (6.20)

where as before x
1
2k stands for a particular (2k)th root of x, the final expression remarkably

coincides with the s = s̄ = 0 case of Eq. (6.16). The analysis for the JMaRT states and for
more general light insertions can be carried out analogously.

Recall that, as reviewed in Section 3.1, at a generic spacetime dimension h there is
a degeneracy in the twist n of light states in the symmetric product orbifold CFT. An
interesting feature of the worldsheet correlator (6.16) is that it is independent of this twist
n. Recall also that, for untwisted light operators, the worldsheet correlator has the same
structure as the covering space method of the symmetric product orbifold CFT. The fact
that the agreement of HLLH correlators extends to (at least some) twisted light operators
is thus remarkable from the point of view of the holographic CFT. Despite the more com-
plicated covering map, the above discussion demonstrates how, for these correlators, the
end result agrees with an expression whose structure is that of the simple map x = uk.

6.3 Higher-point heavy-light correlators

Our general expression for HLLH correlators, Eq. (6.16), together with the matching to
the symmetric product orbifold CFT that we have observed so far, motivate a deeper
exploration. Thus, we now describe how local x-basis operators are seen from the spectrally
flowed frame as indicated by our null-gauged worldsheet models. This will allow us to
extract consequences for worldsheet three-point and higher-point functions, corresponding
to holographic CFT correlators with two heavy states and three or more light operators.

The AdS3 limit of the holomorphic gauge condition, (5.4), upon using the definition of
my in Eq. (5.5), reads

0 = m+ (2s+ 1)m′ − kmy . (6.21)

We wish to re-interpret this constraint in the local coordinate basis of the holographic CFT.
A priori, it is perhaps not obvious that this is a useful thing to do, since the usual x-basis
operators are constructed by resumming the action of J±0 , which does not commute with
the BRST charge in the coset theory. However we shall see that it will be very useful.

Let us observe that there are two notions of x-type local coordinates in the worldsheet
model. The one used so far in Section 5 and the present section is the physical x coordinate
of the gauged models. However, before gauging, there is an analogous coordinate for the
upstairs SL(2,R) algebra. We will denote the associated coordinate by the complex variable
u; we will see momentarily that uk = x, so that there will be no clash with the u used above.

The differential operator x∂x + h corresponds to the quantity my, as can be seen by
comparing Eqs. (3.20), (3.25), (5.6). On the other hand, the upstairs SL(2,R) projection
m corresponds to an analogous operator in the u variable: we write this as u∂u + h − β,
where we have allowed for a shift β, whose precise form will become clear shortly, as will
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the reason for its existence. Then Eq. (6.21) can be expressed in terms of these differential
operators as

kx∂x = u∂u + (2s+ 1)m′ + h(1− k)− β . (6.22)

In order that this condition is solved by uk = x, we choose

β = h(1− k) + (2s+ 1)m′ . (6.23)

Thus the role of β is two-fold. On the one hand, the first term in (6.23) effectively re-
places the weight by h → hu ≡ kh, which further supports the discussion above about u
corresponding to a covering space coordinate in the holographic CFT. It also generates the
Jacobian factor obtained in Eq. (6.16). On the other hand, the second term in (6.23) takes
into account the shift arising from spacetime spectral flow.

We now use this to obtain an improved construction of gauge-invariant operators di-
rectly in the x-basis, built upon u-basis operators of the upstairs SL(2,R), i.e. without
relying on their spacetime Virasoro mode expansion as in (5.6). Although such a con-
struction gives equivalent results at the level of worldsheet two-point functions (6.16), its
importance for higher-point functions was highlighted recently in [46]. The construction
proceeds as follows:

1. We consider an operator whose upstairs SL(2,R) part is expressed in the usual local
SL(2,R) basis, Vh(u, ū), where for simplicity we set h = h̄. We multiply this by an
SU(2) vertex operator V ′j′,m′,m̄′ . We suppress the exponentials of t and y, since they
have weight zero in the AdS3 limit, and their only effect is taken into account through
(6.21) and its antiholomorphic counterpart. We introduce the notation

Ôh,m′,m̄′(u, ū) ≡ Vh(u, ū)V ′j′,m′,m̄′ . (6.24)

2. We introduce the above β-shift by multiplying by an extra factor uβūβ̄ .

3. We sum the resulting operator over all insertion points u such that uk = x.

Explicitly, we define

Oh,m′,m̄′(x, x̄) ≡ 1

k2h+1

∑
uk=x

uβūβ̄Ôh,m′,m̄′(u, ū) . (6.25)

Comparing with Eq. (5.6), using the Kronecker comb (6.8) to impose the constraints as
above, we indeed have

Oh,m′,m̄′(x, x̄) ≡ 1

kh+h̄

∑
my ,m̄y

xmy−hx̄m̄y−hVj,m,m̄V ′j′,m′,m̄′

=
1

k2h

∑
m,m̄

′
x

1
k
[m+(2s+1)m′]−hx̄

1
k
[m̄+(2s̄+1)m̄′]−hVj,m,m̄V ′j′,m′,m̄′

=
1

k2h+1

∑
uk =x

∑
m,m̄

um−h+(2s+1)m′+h(1−k)ūm̄−h+(2s̄+1)m̄′+h(1−k)Vj,m,m̄V ′j′,m′,m̄′

=
1

k2h+1

∑
uk =x

uβūβ̄ Ôh,m′,m̄′(u, ū) . (6.26)
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We note that in the symmetric product orbifold CFT, when mapping the Sk-invariant
untwisted operators O(x) =

∑k
r=1O(r)(x) to the k-fold covering space, using the inverse

relation to (6.17),

O(r)(x) =
1

k

∑
m

Om
k
x−

m
k
−he−

2πim
k

(r−1), (6.27)

one obtains an expression closely analogous to Eq. (6.25).
We now exploit the expression (6.26) to study higher-point functions. We first rewrite

the HLLH correlator (6.16) in the simple form

〈s, s̄, k|Oh,m′(x1, x̄1)O†h,m′(x2, x̄2)|s, s̄, k〉 =
1

k4h+2

∑
uki=xi

uβ1
1 ū

β̄1
1 u

β2
2 ū

β̄2
2

|u1 − u2|4h
, (6.28)

with βi = hi(1−k)+(2s+1)m′i, β̄i = hi(1−k)+(2s̄+1)m̄′i, and where the charge conservation
m′1 + m′2 = 0 is understood. We then observe that the worldsheet correlator with n light
insertions with weights hi and charges m′i, m̄

′
i is given by the following straightforward

generalization of (6.28) (in which we partially suppress antiholomorphic quantities):

〈s, s̄, k|Oh1,m′1
(x1) . . .Ohn,m′n(xn)|s, s̄, k〉

=
1

kH+H̄+n

∑
uki=xi

(
n∏
`=1

uβ`` ū
β̄`
`

)
〈Ôh1,m′1

(u1) . . . Ôhn,m′n(un)〉 , (6.29)

where H = h1 + · · ·+ hn, and 〈Ôh1,m′1
(u1) . . . Ôhn,m′n(un)〉 stands for the global AdS3 × S3

vacuum n-point function evaluated at the roots of the original insertion points.
The expression (6.29), which holds for generic values of s, s̄, k and generic light weights

and charges hi,m′i, m̄i, constitutes one of the main results of this paper. In Eq. (6.29), the
n = 3 case can be made quite explicit, as we shall do so in the next subsection.

The above result can straightforwardly seen to include spectrally-flowed vertex oper-
ators, as follows. Setting ω′ = ω̄′ = ω for simplicity, the bosonic null-gauge condition
Eq. (4.41) in the AdS limit becomes

0 = mω + (2s+ 1)m′ω − kmy , 0 = m̄ω + (2s̄+ 1)m̄′ω − km̄y , (6.30)

where, for discrete states in the lowest weight representation, mω = hω+n, hω = J+n5 ω/2

and m′ω = h′ω + n5 ω/2 − n′. As a consequence, the exponent β of the covering space
coordinate u gets replaced by β 7→ βω = hω(1− k) + (2s+ 1)m′ω, and the power of k in the
normalisation factor is modified accordingly. Thus, for the vertex operators in the coset
models, the net effects of the spectral flow procedure are the replacements h 7→ hω,m 7→ m′ω.
This is understood by the fact that when a boundary light operator has the spacetime
dimension h = J that renders the SL(2,R) spin above the unitary bound Eq. (3.16), it
corresponds holographically to a spectrally-flowed worldsheet vertex operator [22]. This
implies that the structure of the correlator in Eq. (6.29) is not drastically modified when
ω 6= 0.

It is important to note, however, that the entire computational complication due to
worldsheet spectral flow remains present in the resulting vacuum correlator. Indeed, we see
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that the n-point function on the heavy state is now written in terms of a vacuum n-point
function of spectrally-flowed states. It is thus natural to expect that the AdS3 selection
rules carry over to n-point functions in the JMaRT microstates. We conclude that the
generalisation of Eq. (6.29) to the case of worldsheet spectrally-flowed states reads

〈s, s̄, k|Oω1

h1,m′1
(x1) . . .Oωnhn,m′n(xn)|s, s̄, k〉 = (6.31)

1

kHω+H̄ω+n

∑
uki=xi

(
n∏
`=1

u
βω,`
` ū

β̄ω,`
`

)
〈Ôω1

h1,m′1
(u1) . . . Ôωnhn,m′n(un)〉 ,

where Hω =
∑

i hω,i and the light operators Oωi
hi,m′i

are x-basis spectrally-flowed worldsheet
vertex operators.

We emphasize that the construction we have outlined in this section only holds in the
IR AdS3 × S3 limit. In the full asymptotically linear dilaton geometry, the identification of
the modes my and m̄y as defined in (5.5) breaks down, and the t and y exponentials can
no longer be ignored. This is consistent with the fact that in the UV the dual holographic
theory is not a CFT, but is instead a little string theory. Since little string theories are
non-local, it is correct that the above definition of local operators does not apply. Note,
however, that the mode correlators computed in the m-basis still make perfect sense, and
carry information about string perturbation theory in the full geometry.

Let us speculate on which subset of the above correlators can be expected to agree
with those of the symmetric product orbifold theory. Since our expressions for the general
correlators (6.29), (6.31) involve vacuum correlators, it is natural to conjecture that for these
particular heavy backgrounds, the heavy-light correlator is protected whenever the global
AdS3 × S3 vacuum correlator appearing in (6.29), (6.31) is protected. Recall that, in the
global AdS3×S3 vacuum, two-point and three-point correlation functions of chiral primaries
are protected [86], while four-point and higher-point functions are generically renormalized.
So heavy-light correlators with two or three light insertions on these backgrounds may
be protected between worldsheet and symmetric product orbifold CFT. It may even be
possible to prove a non-renormalization theorem generalizing [86]; work in this direction is
in progress. For now however, we next compute a heavy-light correlator with three light
insertions in both worldsheet and holographic CFT.

6.4 An HLLLH correlator in worldsheet and holographic CFT

We now investigate the general expression for our worldsheet correlator (6.29), in a partic-
ular example with three light insertions, and compare it to the symmetric product orbifold
CFT. We shall observe another highly non-trivial agreement.

We consider three light insertions living in the untwisted sector of the holographic CFT,
with weights (h1, h2, h3) = (1

2 ,
1
2 , 1). In the dual CFT notation, we are then interested in

computing the correlator 〈O 1
2
(x1)O 1

2
(x2)O†1(x3)〉H . We further focus on heavy backgrounds

with s = kp with p ∈ Z and s̄ = 0.
We start by evaluating the general expression (6.29) for this particular worldsheet

correlator. In the worldsheet theory associated to the global AdS3×S3, the O 1
2
correspond
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to two RR states, while O1 is an NSNS state polarized on the S3 directions. The (integrated)
vacuum three-point functions for these chiral primaries were studied in [37]. In our notation,
they take the form

〈ORR
h1

(x1)ORR
h2

(x2)O†NSNS
h3

(x3)〉 =
1

N1/2

√
(2j1 − 1)(2j2 − 1)(2j3 − 1)−1

|x12|2(h1+h2−h3)|x13|2(h1+h3−h2)|x23|2(h2+h3−h1)
,

(6.32)
where j1 = h1 + 1

2 , j2 = h2 + 1
2 , and j3 = h3. The relevant values for us are simply ji = 1,

and upon a global SL(2,C) transformation to set x3 = 1, we have

〈O 1
2
(x1)O 1

2
(x2)O†1(x3)〉 =

1

N1/2

1

|1− x1|2|1− x2|2
. (6.33)

In order to compute the HLLLH correlator in the worldsheet coset models corresponding
to the JMaRT backgrounds, we must sum (6.33) evaluated at all kth-roots of the insertion
points. An explicit expression can be obtained following the arguments of Sec. 5.3, using
the following generalisation of Eq. (6.12) and Eq. (6.14) for the case of three insertions,

k

|x3|
2(α+β)

k

k−1∑
r1,2=0

1

|1− u13,r|2α|1− u23,r|2β
=

k−1∑
r1,2,3=0

1

|u3,r3 − u1,r1 |2α|u3,r3 − u2,r2 |2β
,

(6.34)
where ui,ri = x

1/k
i e2πi ri/k and uj`,r = (xj/x`)

1/ke2πi r/k with α = β = 1, one obtains

〈O 1
2
(x1)O 1

2
(x2)O†1(x3)〉H =

1

k7

(x1x2)p |x1x2|
2
k
−1

|1− x1|2|1− x2|2
1− |x1|2

1− |x1|
2
k

1− |x2|2

1− |x2|
2
k

. (6.35)

The result (6.35) constitutes the first computation of a heavy-light worldsheet correlator
with three light insertions probing a black hole microstate.

We now show that the same result can be obtained from the HCFT at the symmetric
orbifold point. We follow the method used in [30, App. A] for the HLLH correlator reviewed
in Section 5.3. The heavy states we use indicate that we should work in the k-twisted sector
of the theory. The operators can be written in terms of the fermions introduced in Eq. (3.7).
For the h = 1

2 chiral primaries, and for each strand of k copies of the theory, this simply
reads

O 1
2

=

k∑
r=1

O 1
2
,(r) = − i√

2

k∑
r=1

ψ+Ȧ
(r) ψ̃

+Ḃ
(r) εȦḂ = − i√

2

k−1∑
ρ=0

ψ+Ȧ
ρ ψ̃+Ḃ

ρ εȦḂ , (6.36)

while for the h = 1 operator we find

O†1 =

k∑
r=1

O1,(r) =
1

4

k∑
r=1

ψ−Ȧ(r) ψ
−Ḃ
(r) ψ̃

−Ċ
(r) ψ̃

−Ḋ
(r) εȦḂεĊḊ

=
1

4k

k−1∑
ρi=0

δρ1+ρ2,ρ3+ρ4 ψ
−Ȧ
ρ1
ψ−Ḃρ2

ψ̃−Ċρ3
ψ̃−Ḋρ4

εȦḂεĊḊ. (6.37)
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We will work in the bosonized language, in which

ψ+1̇
ρ = ieiHρ , ψ−2̇

ρ = ie−iHρ , ψ+2̇
ρ = eiKρ , ψ−1̇

ρ = e−iKρ , (6.38)

Here Hρ and Kρ are canonically normalized bosonic fields, in terms of which the (unit
normalized) heavy states take the form [30]

|H〉 = |s = kp, k〉 =

ΣkΣ̃k

k−1∏
ρ=0

ei(p+
1
2
− ρ

k )(Hρ+Kρ)ei(
1
2
− ρ

k )(H̃ρ+K̃ρ)

N
k

|0〉 , (6.39)

where Σk and Σ̃k are the twist operators. Note that the contribution of Σk and Σ̃k to
the correlators will simply factorize, since the ψρ fermions diagonalize the twisted bound-
ary conditions. Choosing the labelling of the insertion points for later convenience, the
correlator to be computed is then

〈O 1
2
(x1)O 1

2
(x2)O†1(x3)OH(x4)O†H(x5)〉 =

1

k

k−1∏
ρ,ρ′=0

k−1∑
ρi=0

δρ3+ρ4,ρ5+ρ6 (6.40)

〈 [
ψ+Ȧ1
ρ1

ψ̃+Ḃ1
ρ1

εȦ1Ḃ1

]
(x1)

[
ψ+Ȧ2
ρ2

ψ̃+Ḃ2
ρ2

εȦ2Ḃ2

]
(x2)

[
ψ−Ȧ3
ρ3

ψ−Ḃ3
ρ4

ψ̃−Ċ3
ρ5

ψ̃−Ḋ3
ρ6

εȦ3Ḃ3
εĊ3Ḋ3

]
(x3)

ei(p+
1
2
− ρ

k )(Hρ+Kρ)(x4)e
−i

(
p+ 1

2
− ρ
′
k

)
(Hρ′+Kρ′ )(x5)ei(

1
2
− ρ

k )(H̃ρ+K̃ρ)(x4)e
−i

(
1
2
− ρ
′
k

)
(H̃ρ′+K̃ρ′ )(x5)

〉
.

Clearly, charge conservation implies ρ = ρ′. For the same reason, the correlator vanishes
unless ρ1 = ρ3 and ρ2 = ρ4, or ρ1 = ρ4 and ρ2 = ρ3, or both. An analogous statement holds
with ρ3, ρ4 replaced by ρ5, ρ6, hence all contributions trivially satisfy the ρ3 + ρ4 = ρ5 + ρ6

constraint. Consequently, we only really need to sum over all possible values of, say, ρ1 and
ρ2, and also compute the product over ρ. In this way, up to an irrelevant numerical factor,
the holomorphic free field contractions give

k−1∑
ρ1,ρ2=0

1

|x2hH
45 x13x23|2

(
x41x35

x51x34

)p+ 1
2
− ρ1

k
(
x42x35

x52x34

)p+ 1
2
− ρ2

k
(
x̄41x̄35

x̄51x̄34

) 1
2
− ρ1

k
(
x̄42x̄35

x̄52x̄34

) 1
2
− ρ2

k

(6.41)
where hH is the weight of the heavy state.

We can now take x3 → 1, x4 → 0 and x5 → ∞, and perform the sums over ρ1 and
ρ2 explicitly. Upon doing so, we find that the structure of this orbifold CFT correlator
Eq. (6.41) precisely matches the worldsheet correlator (6.35).

6.5 Hawking radiation from the worldsheet

As a final application of our results, we now use the HLLH correlator (6.16) to compute
the amplitude that describes the analogue of the Hawking radiation process for the JMaRT
backgrounds [55, 58–60]. In the bulk, this process is ergoregion radiation, which is a feature
of the full asymptotically flat JMaRT solutions [87]. The ergoregion does not survive the
fivebrane decoupling limit [26] or AdS3 decoupling limit, however aspects of the process
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can still be studied quantitatively in those limits. This process has been interpreted as an
enhanced analogue of Hawking radiation, since both are described by the same microscopic
process in the holographic CFT [58]. Indeed, acting on a thermal state, this vertex operator
gives precisely the spectrum and rate of Hawking radiation of the corresponding black hole,
while acting on the states dual to the JMaRT solutions yields their characteristic spectrum
and rate of emission [55, 58–60].

The emission spectrum and rate for general k, s, s̄ was computed in supergravity and
symmetric product orbifold CFT in [55], building on the results of [58–60]. We will repro-
duce these results from the worldsheet CFT.

We start with a specific HLLH correlator in which the light operators are given by
minimally coupled scalars in six dimensions, after reducing on the T4. The corresponding
vertex operators were defined in Eq. (4.14). These are not chiral primaries of the bound-
ary theory, but are their superdescendants within the short multiplet, so the holographic
correlator arising in the AdS3 limit is easily computed by using the techniques outlined
in the previous sections. The amplitude of interest involves an initial state consisting of
a probe excitation on top of the JMaRT background, a vertex operator V associated to a
light insertion, and a final state given by the black hole microstate. Schematically we have

〈s, s̄, k| O(x) |s, s̄, k + probe〉 = 〈s, s̄, k| O(x)O†(0) |s, s̄, k〉 . (6.42)

To begin with, we work with k = 1. Up to an overall sign, and considering the
lowest energy state, the holomorphic part of the amplitude for the Hawking emission of
a single quanta of dimension h = l

2 +1 and whose corresponding vertex operator has charge
m′ = k − l

2 reads [59]

AL(x) =
1

x(1+α) l
2
−αk+1

=
1

x
l
2

+1−α(k− l
2

)
. (6.43)

Here l
2 denotes the total angular momentum of the probe on the S3 part of the geometry,

while k is the number of J+
0 operators acting on the state with the lowest projection,

appearing in the definition of the vertex operator. To compare their computation with our
worldsheet result, one uses the following (notation) map:

k − l

2
7→ m′ ,

l

2
+ 1 7→ h , α 7→ l2 = m + n = 2s+ 1 . (6.44)

Taking care of the cylinder-to-plane conversion factor x−
l
2
−1, one obtains

AL(x) =
1

x2h−m′(2s+1)
. (6.45)

We now perform the analogous computation in the worldsheet cosets. From Eq. (6.42),
in the worldsheet formalism all we need to do is to insert the second operator at the
boundary origin, i.e. to take the x2 → 0 limit in Eq. (6.16) (with k = 1 for now). This
gives

lim
x2→0

x
m′(2s+1)
2 x̄

m̄′(2s̄+1)
2 〈s, s̄, 1|O(m′,m̄′)

h (x1)O(m′,m̄′)†
h (x2)|s, s̄, 1〉

=
1

x2h−m′(2s+1)

1

x̄2h−m̄′(2s̄+1)
, (6.46)
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in agreement with (6.45) upon including the antiholomorphic contribution.
The procedure is analogous for general k, s, s̄. We again evaluate the amplitude for

x2 → 0 by including the appropriate Jacobian factor for the light state, and obtain

lim
x2→0

k2hx
m′2

(2s+1)
k

+h(1− 1
k
)

2 x̄
m̄′2

(2s̄+1)
k

+h(1− 1
k
)

2 〈s, s̄, k|O(m′,m̄′)
h (x1)O(m′,m̄′)†

h (x2)|s, s̄, k〉

=
1

k2h+2

k−1∑
r1=0

e2πi
r1
k

(m′(2s+1)−m̄′(2s̄+1))

x
h(1+ 1

k
)−m′ (2s+1)

k
1 x̄

h(1+ 1
k
)−m̄′ (2s̄+1)

k
1

k−1∑
r2=0

e2πi
r2
k

(−m′(2s+1)+m̄′(2s̄+1))

=
1

k2h

1

xh(1+ 1
k
)−m′ (2s+1)

k x̄h(1+ 1
k
)−m̄′ (2s̄+1)

k

∑
`∈Z

δm′(2s+1)−m̄′(2s̄+1), k` , (6.47)

where in the first equality we have exchanged the finite sum with the limit, and x = x1, m =

m1 = −m2. When k = 1, this reduces to Eq. (6.46). The Kronecker comb enforces the
constraint (2s + 1)m′ − (2s̄ + 1)m̄′ ∈ kZ, which is a direct consequence of the difference
beween left and right null-gauge constraints (5.4) in the regime of interest. Moreover, by
first multiplying the correlator in Eq. (6.16) by xn x̄n̄ we can also consider descendant
insertions. This condition is in agreement with the results present in [55, 60] (see also [26]),
where our ny has to be identified with their λ from the supergravity analysis.

When considering the case of multi-particle emission, the above amplitude must be
multiplied by a combinatorial factor, as explained in [58–60]. To obtain the emission rate,
one needs to consider the unit amplitude evaluated at (x, x̄) = (1, 1), implying that the
spatial dependence trivialises. Nevertheless, the crucial feature related to the presence of
the prefactor k−2h, which enters the final expression of the emission rate11, is reproduced
by (6.47).

Even though the spatial dependence of the two-point function Eq. (6.47) plays a trivial
role in the emission rate, the power of x has a precise meaning in terms of the energy
spectrum of the nearly unstable Hawking quanta [55, 59]. Indeed, consider the holomorphic
part of the energy of these modes. In the conventions of [55], the corresponding spectrum
reads

ω kRy =
1

2
αk(mφ −mψ)− 1

2
ᾱk(mφ +mψ)− 2

(
l

2
+ 1

)
. (6.48)

In our notation, (mφ −mψ) = 2m′, (mφ +mψ) = −2m̄′ , and l
2 + 1 = h, so this becomes

− ωRy =
2h

k
− αm′ − ᾱ m̄′ , (6.49)

where α, ᾱ are the same as in Eq. (2.27). Finally, taking care of the cylinder-to-plane
conversion factor for a field of spacetime conformal dimension h, we obtain

− ωRy = 2h

(
1 +

1

k

)
− αm′ − ᾱ m̄′ . (6.50)

The RHS is exactly the sum of the exponents of x and x̄ in Eq. (6.47). Furthermore, we note
that this relation is precisely the sum of the left and right bosonic null gauge constraints
Eq. (5.4) for discrete states with n = n̄ = 0.

11To compare to the final results of [55, 60] one must include the additional factor
√
kν, where ν is related

to the Bose enhancement, which is not visible for a single-particle process.
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The emission takes place when the energy is positive, ω > 0, and corresponds to
quanta leaving the AdS region; in a near-decoupling limit, these quanta escape into the
asymptotically flat region. Indeed, the exponent of x in Eq. (6.47) becomes positive and
the amplitude diverges at large x, such that the energy indeed turns from negative to
positive. This is consistent with the description of the ergoregion radiation process as pair
creation [88].

7 Discussion and outlook

In this paper we have computed a large set of worldsheet correlators describing the dynam-
ics of light modes probing a class of highly-excited supergravity backgrounds, the JMaRT
solutions, in the fivebrane decoupling limit. The results are exact in α′ and were obtained
by exploiting the solvability of the null-gauged WZW models corresponding to these back-
grounds.

These coset models provide a powerful method to calculate HLLH correlators, since the
heavy states are already taken into account in the worldsheet CFT itself. Thus spacetime
HLLH correlators are two-point functions on the worldsheet, which can be computed once
the vertex operators have been constructed.

We constructed physical vertex operators in both NS and R sectors, and then computed
several families of correlators in the full coset models. We primarily focused on short strings
belonging to discrete representations of the affine SL(2,R) algebra, as well as a tower of
modes generated by worldsheet spectral flow. Our main techniques can also be employed
in more general sectors of the theory.

In the IR AdS3 limit, due to the non-trivial gauging, the identification of the x variable
dual to the local coordinate of the holographic CFT requires some care. Once we made this
identification, we computed several non-trivial HLLH correlators explicitly, and analyzed
them in the context of AdS3/CFT2.

Vertex operators that are local on the AdS3 boundary are constructed by summing over
all allowed values of the spacetime modes. An important step in our analysis consists of
identifying these modes. We chose a gauge in which the IR AdS3 boundary coordinates are
(t, y) of the timelike R and spacelike S1 directions of the (10+2)-dimensional model before
gauging. We therefore identified the spacetime mode indices with the quantum numbersmy

and m̄y defined in (5.5). Then the gauge constraints (4.13) satisfied by the physical states
imply that the my mode numbers take values in Z/k. This is how the worldsheet coset
models capture the fact that when k > 1, the heavy background states of the symmetric
product orbifold CFT are in the k-twisted sector [54, 55].

We observed that, at large N , several correlators agree exactly between worldsheet
and symmetric product orbifold CFT. The fact that our correlators are exact in α′ signifi-
cantly strengthens previous results that compared HLLH correlators between the separate
supergravity and symmetric product orbifold CFT regimes.

To demonstrate our method, we presented a detailed example with an (h, h̄) = (1
2 ,

1
2)

chiral primary. The worldsheet correlator involves a non-trivial structure in terms of the
boundary coordinate x, Eq. (5.15). When the background is BPS, the correlator agrees
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precisely with the supergravity and symmetric product orbifold CFT correlators computed
in [30]. The non-BPS JMaRT backgrounds were not considered in [30], however we demon-
strated that the agreement extends also to those backgrounds.

Similarly to correlators on the background of the global AdS3 vacuum, the holomorphic
and antiholomorphic sectors are related through the constraint my − m̄y = ny, where ny
is the quantized momentum on the y circle. Thus, while the spacetime modes my, m̄y are
fractional, their difference must be an integer. This mirrors the m − m̄ ∈ Z condition in
the SL(2,R)/U(1) cigar coset and in global AdS3, which ensures that the wavefunctions are
single-valued. In our models, the difference of the left and right gauge constraints leads to
the mod k condition in Eq. (6.3), constraining which of the SL(2,R) modes can contribute.
The HLLH correlator is then obtained by summing over a specific linear combination of
m-basis worldsheet two-point functions.

Our analysis of these correlators involving the h = 1/2 light operator indicated a way
to obtain similar expressions for more general correlators. We considered general massless
vertex operators, which correspond to symmetric product orbifold CFT operators in short
multiplets whose top component is a chiral primary of arbitrary weight h, including those
that live in twisted sectors. We computed all HLLH correlators where the light operators are
massless, and where the heavy states correspond to any of the general family of orbifolded
JMaRT configurations, including their BPS limits. The result assumes a remarkably simple
form, presented in Eq. (6.16). It is built from three distinct factors: (1) the global AdS3×S3

vacuum two-point function of the light operators inserted at the k-th roots of the original
insertion points xi, (2) the Jacobian factor associated with the corresponding change of
coordinates, and (3) an additional factor coming from the way in which operators of definite
R-charge transform under spectral flow. The product of these factors is then summed over
all such roots. This structure reflects that one can formulate the computation in a k-fold
covering space of the target space.

We then obtained a similar expression for all higher-point functions of the schematic
form 〈H|O1(x1, x̄1) . . .On(xn, x̄n)|H〉, with heavy JMaRT states, and n massless insertions.
This is presented in Eq. (6.29). We expect this to be valid for an arbitrary number of
massless insertions of weights hi and charges m′i and m̄′i, and also arbitrary parameters
(k, s, s̄) for which a consistent background exists. In this way, we have provided a recipe for
computing such (n+ 2)-point heavy-light correlators in terms of n-point global AdS3 × S3

vacuum correlation functions of the corresponding light insertions.
It is known that vacuum two- and three-point functions of chiral primary operators are

protected [86]. We therefore conjectured that heavy-light correlators in JMaRT heavy states
are protected whenever the corresponding vacuum correlator in our general formula (6.29)
is protected. We have investigated a particular HLLLH five-point function—the first of its
kind in the literature—finding that worldsheet and symmetric product results agree. We
leave a more general investigation of this proposal to future work.

As an application, we have shown that our results describe the analog of the Hawk-
ing radiation process for the general family of non-BPS JMaRT black hole microstates,
generalizing the analysis in [55, 59, 67].

In addition to these main results, our work has clarified some important technical
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details. For instance, the full asymptotically linear dilaton JMaRT backgrounds do not
have AdS3 × S3 isometries. Correspondingly, in the worldsheet cosets, the SL(2,R) and
SU(2) raising and lowering operators J±, K± of the (10+2)-dimensional ungauged model
do not commute with the gauging. Thus the NS sector vertex operators of the cosets do
not have well-defined SL(2,R) or SU(2) spins, see for instance Eq. (4.20). The same holds
for the chirality quantum number ε in the R sector, as discussed around Eq. (4.25).

The absence of the SL(2,R) spin has important implications also from the holographic
point of view. It underlines the fact that the construction of x-basis operators is only appro-
priate in the AdS3 limit, and breaks down otherwise. The breakdown of the x coordinate
is a signal of the non-locality of the non-gravitational little string theory that lives on the
worldvolume of the NS5 branes, dual to the full asymptotically linear-dilaton models. Thus
the states we have constructed contain valuable information about the dual LST and, more
generally, about non-AdS holography [56, 57, 89]. We have nevertheless demonstrated how,
in the AdS3 limit, our vertex operators acquire definite spins and reduce to the appropriate
expressions.

Our results suggest several directions for future investigations. First, it would be in-
teresting to compute more general worldsheet correlators, both in the AdS3 limit and in
the full models. Our correlators are likely to generalize to a larger set of worldsheet vertex
operators that correspond to operators in the symmetric product orbifold CFT that trans-
form nicely under spacetime spectral flow [90]. In global AdS3, correlators are known to
involve a highly non-trivial structure related to the non-conservation of the spectral flow
number [24]. More generally, one would like to describe the physics of long/winding strings
and their correlators in these backgrounds. A number of interesting techniques recently
developed in [46, 47] (for the bosonic case) are likely to have interesting implications for
computations in the coset theories, for which SL(2,R) constitutes a crucial building block.

It would also be interesting to study such correlators by using conformal perturbation
theory on top of a putative dual CFT explicitly associated to the NSNS singular point
[79] of the moduli space, defined along the lines of [39, 41]. Doing so would require an
understanding of how to define the JMaRT heavy states in such a theory. Separately, it
would be interesting to investigate the case n5 = 1, which would require going beyond the
RNS formalism, as done in related recent developments [80, 91, 92]. Here one should go
though the coset construction starting with the supergroup PSU(1,1|2).

In the full asymptotically linear dilaton models, more general correlators can be com-
puted by using the vertex operators constructed in Section 4. However, a shift in perspective
will be needed, since the x coordinate seems unlikely to be of any use in this regime. Al-
though a priori in our case it is more natural to work in the m-basis, it seems plausible
to relate our results to the momentum-space correlators studied in [56, 57], see also [93].
In those papers, the authors work with a related null-gauged model, and further interpret
their holographic LST correlators in terms of an irrelevant (single-trace) T T̄ -deformation
of the IR CFT2.

Separately, it will be interesting to investigate our proposal for the subset of heavy-
light correlators that we expect to be protected by considering the dual computations in
the symmetric product orbifold CFT.
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Last, but not least, one would like to explore further how these correlation functions
encode more detailed information about the physics of the microstate backgrounds we are
working with. For instance, two-point functions are expected to probe the multipole ratios
of the geometry [94, 95], while certain worldsheet three-point functions should be related
to the Penrose process in the JMaRT backgrounds [96].

Although the JMaRT backgrounds are atypical microstates, the HLLH correlators we
have computed approach black-hole-like behaviour at large k, reflecting the properties of
the backgrounds in this limit. We expect that the techniques developed in this work will
help further the study of more typical black hole microstates in string theory.
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