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The achievement of large values of the light-matter coupling in nanoengineered photonic structures can
lead to multiple photonic resonances contributing to the final properties of the same hybrid polariton
mode. We develop a general theory describing multi-mode light-matter coupling in systems of reduced
dimensionality and we explore their novel phenomenology, validating our theory’s predictions against
numerical electromagnetic simulations. On the one hand, we characterise the spectral features linked
with the multi-mode nature of the polaritons. On the other hand, we show how the interference between
different photonic resonances can modify the real-space shape of the electromagnetic field associated with
each polariton mode. We argue that the possibility of engineering nanophotonic resonators to maximise
the multi-mode mixing, and to alter the polariton modes via applied external fields, could allow for the
dynamical real-space tailoring of subwavelength electromagnetic fields. © 2022 Optica Publishing Group
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1. INTRODUCTION1

Confining light below the Abbe diffraction limit [1] by storing a2

part of the electromagnetic energy in the kinetic energy of elec-3

tric charges [2] opened the door to a number of groundbreaking4

real-world applications which has contributed to the great suc-5

cess of the field of nanophotonics. In a nanophotonic device, the6

high energy density of the electromagnetic field makes it rela-7

tively easy to couple with different kinds of localised material8

excitations and reach the strong light-matter coupling regime,9

originally achieved in cavity quantum electrodynamics (CQED)10

atomic systems [3]. In such a regime, light and matter degrees11

of freedom hybridise, leading to novel, polaritonic excitations of12

mixed light-matter character [4, 5].13

Standard theoretical models used to describe strong coupling14

consider a single optically active matter transition coupled to15

a single photonic mode. Although some care has to be used16

when performing calculations on such a reduced Hilbert space17

[6–9], this single-mode approximation has enabled modelling18

of a wide range of CQED systems with remarkable easiness19

and generality. However, the requirement is that the energy20

spacing between the considered resonances and the neglected21

ones is much larger than the strength of light-matter coupling,22

thus permitting to integrate out excited modes with negligible23

populations.24

However, the ongoing race for record coupling strengths25

[10, 11] has led to situations in which higher-energy electronic26

states cannot be neglected, requiring a model which considers27

the coupling of multiple matter excitations to the same photonic28

mode. We refer to this regime as the very-strong coupling (VSC)29

regime, first predicted by Khurgin in 2001 [12]. The hybridiza-30

tion of multiple excited matter states has an important conse-31

quence: the matter component of the polariton, represented itself32

by a linear superposition of different bare matter wavefunctions,33

has a wavefunction different from each of the bare states [13].34

Following a 2013 proposal [14], such an effect was observed for35

the first time in 2017 [15], as a modification of approximately36

30% of the Wannier exciton Bohr radius in GaAs microcavities,37

and it has been then the object of further theoretical investiga-38

tions which confirmed the findings [16, 17]. Larger numbers of39

matter states which can be hybridised by the coupling with the40

photonic field could correspond to a broader design space for41

the resulting electronic wavefunction. This idea led to the study42

of systems with a continuum of ionised excitations [18, 19] and43

eventually to the discovery of novel bound excitons stabilised44

by the photonic interaction [20], and to novel polaritonic loss45

channels [21].46

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. Sketch of how orthogonal resonator modes can become
non-orthogonal when coupled over an active region occupy-
ing only part of the resonator volume. Shown are the case of a
planar microcavity (a,b) and a split-ring resonator (c,d). Two
electromagnetic modes are shown by red and blue arrows, and
the active region, corresponding to the full three-dimensional
volume (a,c) or a thin, quasi-two-dimensional surface (b,d) is
shaded in light red.

In this Article we theoretically investigate the possibility of47

both multi-mode electronic as well as multi-mode photonic hy-48

bridization, leading to a modification of the spatial electromag-49

netic profiles of the resulting polariton modes. Given the possi-50

bility of fast [22, 23] in-situ tuning of the light-matter interaction51

by optical and electrical means, subcycle multiwave mixing52

nonlinearities between different polariton states [24] or even53

all-optical subcycle switching [25, 26], such an approach could54

open the door to dynamical manipulation of subwavelength55

fields, with potential disruptive applications for, e.g., on-chip56

optical tweezers [27].57

Although to the best of our knowledge it was never explicitly58

discussed in these terms, the regime of photonic VSC has been59

already described for cold atoms trapped in an optical lattice [28]60

and reached in various systems, as superconducting qubits cou-61

pled to microwave photons in a long transmission-line resonator62

[29, 30]. Moreover, it has been theoretically [31] and experimen-63

tally [32] demonstrated in microcavities, where the coupling64

strength becomes larger than the bare excitation frequencies. In65

such a regime, the diamagnetic term of the Hamiltonian creates a66

dominant real-space repulsive interaction localised at the dipole67

position, which expels the electromagnetic field and may even68

lead to light-matter decoupling [31, 32]. It has also been experi-69

mentally observed that, in plasmonic nanocavities, the greatly70

enhanced coupling between molecular excitons and gap plas-71

mons causes a significant modification of the plasmonic modes72

profile [33].73

Here we focus on Landau polaritons, where the giant elec-74

tronic dipoles of cyclotron resonances (CRs) of two-dimensional75

electron gases (2DEGs) are coupled to strongly enhanced light76

fields of subwavelength THz resonators. After inital predictions77

in Ref. [34], multiple experimental realizations followed, some78

of which established world-records for the largest light-matter79

coupling ever achieved in any CQED system [32, 35–37].80

In the first part of the paper we will develop a theory de-81

scribing multi-mode light-matter strong coupling in CQED. Al-82

though the theory is completely general and can be applied to83

arbitrary polaritonic platforms, for the sake of concreteness we84

specialise it to the case of Landau polaritons on which we will85

test it. Our approach highlights the main electronic and optical86

features observable for this multi-mode coupling. In the sec-87

ond part, we apply our formalism to structures based on planar88

plasmonic metasurfaces. To this end, we perform numerical89

simulations using a commercial finite element method (FEM)90

software. These simulations verify the predictions of our theory91

and demonstrate how multi-mode photonic hybridization can92

lead to a modification of the electromagnetic spatial profile of93

the polariton modes.94

2. THEORY OF MULTI-MODE LIGHT-MATTER COUPLING95

In this section we develop a theory for the light-matter coupling96

between M photonic resonator modes and the CRs of a 2DEG97

with a charge carrier density N2DEG and an effective mass m∗.98

Following Kohn’s theorem [38], we neglect Coulomb interac-99

tions between the electrons, which manifest in the nonlinear100

susceptibility of strongly driven Landau electron systems [39],101

but have no role in the determination of the optical resonances.102

Moreover, while our theory technically describes a single quan-103

tum well (QW) hosting the entire electron distribution, it is104

equally valid in densely packed multi-QW structures as usually105

employed in experiments, where the intensity of the electromag-106

netic field doesn’t vary significantly within the thickness of the107

multi-QW stack. Following the elegant theory from Ref. [37] we108

can write the Hamiltonian of our system as109

Ĥ = Ĥcav +
N

∑
j=1

h̄ωc ĉ†
j ĉj +

e2

m∗

N

∑
j=1

Â−(rj)Â+(rj)

+ i

√
h̄ωce2

m∗

N

∑
j=1

[
ĉ†

j Â+(rj)− ĉj Â−(rj)
]

, (1)

where ĉj is the bosonic lowering operator for the electrons, lead-110

ing to a transition from the jth to the (j − 1)th Landau level with111

a transition energy h̄ωc, and Ĥcav is the Hamiltonian describing112

the bare electromagnetic field in the resonator. In case of high113

electron density and strong in-plane confinement of both the114

2DEG and the electromagnetic field, plasmonic modes hosted115

by the system can be non-negligible and lead to the formation116

of magneto-plasmon modes with a renormalized frequency of117

ω̃c =
√

ω2
c + ω2

P, where ωP is the 2D plasmon frequency for118

the 2DEG [21]. However, a correct estimation of ωP not only119

takes into account the in-plane confinement of the 2DEG, but120

also includes the screening of the metallic resonator in proximity121

of the electrons, leading to a reduction of the plasmon energy122

[40–42]. For our structures, this effect strongly limits the extent123

of renormalization such that we disregard plasmon effects.124

In Eq. (1) we introduced the non-Hermitian vector poten-125

tials written in terms of the in-plane component of the vector126

potential Â(r) as127

Â±(r) =
Âx(r)∓ iÂy(r)√

2
. (2)

The full vector potential can be expressed as a sum of pho-128

tonic modes with dimensionless spatial field profiles fν(r), fre-129
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Fig. 2. Polaritonic eigenmodes arising from the diagonaliza-
tion of Eq. 13 with M = 2 photonic resonances of frequencies
ω1 and ω2 = 2ω1 (green dashed lines) coupled to the 2DEG
hosting the cyclotron resonance, ωc (red dashed line). The
three rows correspond to the case of zero overlap between
the two photonic modes (η2,1 = 0; a,b), medium overlap
(η2,1 = 0.5; c,d), or perfect overlap (η2,1 = 1; e,f). Panels on
the left column (a,c,e) are shown as a function of the cyclotron
frequency ωc with resonant couplings in the zero overlap case
(η2,1 = 0) g1,1 = 0.5 h̄ω1 at ωc = ω1 and g2,2 = 0.25 h̄ω2
at ωc = ω2. Panels on the right column (b,d,f) are shown
for a fixed value of the cyclotron frequency ωc = 0.5ω1 as a
function of the electron density N2DEG. The reference density
N0

2DEG corresponds to resonant couplings on the left column.
Panel (e) displays a S-shaped polariton curve (blue solid line)
due to a perfect overlap.

quencies ων, and second-quantized bosonic annihilation opera-130

tors âν as131

Â(r) = ∑
ν

√
h̄

2ϵ0ϵr(r)ωνVν
fν(r)

(
â†

ν + âν

)
. (3)

Here, the vector fields fν(r) are eigensolutions of the Maxwell’s132

equations for the bare cavity, and they are thus orthogonal over133

the full domain V [43]134 ∫
V

f∗ν(r)fµ(r)dr = Vνδν,µ, (4)

with Vν the mode volume of the νth photon mode and ϵr(r) the135

background, non-resonant dielectric constant. The amplitudes136

of the non-Hermitian vector potentials then take the form137

Â−(r) = ∑
ν

√
h̄

2ϵ0ϵr(r)ωνVν
fν(r)

(
â†

ν + âν

)
,

Â+(r) = ∑
ν

√
h̄

2ϵ0ϵr(r)ωνVν
f ∗ν (r)

(
â†

ν + âν

)
, (5)

with138

fν(r) =
fν,x(r) + i fν,y(r)√

2
. (6)

Crucially, the orthogonality condition in Eq. (4) holds only if139

the integral is performed over the entire three-dimensional space,140

while the integral of two orthogonal modes over any sub-domain141

does not vanish in general. This concept is illustrated in Fig. 1 for142

the model case of a planar microcavity (a,b) and for a split-ring143

resonator (c,d), integrated over either the full three-dimensional144

volume (a,c) or a thin, quasi-two-dimensional surface (b,d). In145

both cases, two orthogonal modes (red and blue arrows) become146

non-orthogonal when the integral is performed over a quasi-two-147

dimensional slice of the overall volume. In order to understand148

how this finding is relevant for our systems, we can consider as149

an example the third term of Eq. (1), the so-called diamagnetic150

term of the light-matter interaction Hamiltonian, which contains151

generally non-vanishing expressions of the form152

N

∑
j=1

f ∗ν (rj) fµ(rj) = N2DEG

∫
S

f ∗ν (z, r∥) fµ(z, r∥)dr∥, (7)

where S is the sample surface, z is the out-of-plane position153

of the 2DEG and r∥ is the in-plane position. Placing a 2DEG154

at the center of the planar microcavity, or below the split-ring155

resonator, will thus result in an interaction of different photon156

modes which is mediated and modulated by the coupling to157

the electrons. We now elucidate this insight further, showing158

how it is relevant also for the dipolar light-matter interaction159

described by the fourth term of Eq. (1). To this aim, let us call160

M the number of photonic modes in the frequency region of161

interest. Their wavefunctions, restricted over the sample surface162

S, span a space of dimension at most M. We can thus always163

introduce M orthonormal basis functions over S,164 ∫
S

ϕ∗
ν(r∥)ϕµ(r∥)dr∥ = δν,µ, (8)

such that,165

fν(z, r∥) = ∑
µ≤ν

αν,µϕµ(r∥). (9)
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It is always possible to choose the basis such that α1,1 is real and166

αν,µ = 0 if ν < µ. Using Eq. (9) the degree of non-orthogonality167

between the resonator modes with respect to the QW plane can168

be captured by defining the overlap matrix169

Fν,µ =
∫

S
f ∗ν (z, r∥) fµ(z, r∥)dr∥ = ∑

γ≤min(ν,µ)
α∗ν,γαµ,γ, (10)

and its normalized version170

ην,µ =
Fν,µ√
Fµ,µFν,ν

, (11)

both of which may assume values from 0 to 1. These matrices171

quantify the spatial overlap of any pair (µ, ν) of photon modes172

over the QW plane. A diagonal matrix ην,µ ∝ δν,µ implies vanish-173

ing overlap between the photon modes, while a fully populated174

matrix corresponds to a strong overlap.175

By introducing a set of collective bosonic matter operators176

b̂µ =
1√

N2DEG

N

∑
j=1

ϕµ(rj,∥)ĉj, (12)

with the in-plane position rj,∥ of the jth electron, we can finally177

write the Hamiltonian in Coulomb Gauge as178

Ĥ = ∑
ν

h̄ων â†
ν âν + ∑

ν
h̄ωc b̂†

ν b̂ν

+ ∑
ν,µ

hν,µ

(
â†

ν + âν

) (
â†

µ + âµ

)
+ ∑

ν
∑

µ≤ν

[(
gν,µ b̂µ + g∗ν,µ b̂†

µ

) (
â†

ν + âν

)]
. (13)

Here,179

gν,µ = αν,µ

√
h̄2ωc N2DEGe2

2m∗ϵ0ϵ̄rωνVν
,

hν,µ = ∑
γ≤ν,µ

gν,γgµ,γ

h̄ωc
, (14)

represent coupling parameters, gν,µ is the vacuum Rabi energy180

quantifying the coupling between the photonic mode ν and the181

matter mode µ, while hν,µ quantifies the diamagnetic coupling182

between two photonic modes mediated by the matter. In Eq. 14183

we also introduced the background dielectric constant of the QW184

material ϵ̄r. This Hamiltonian is bosonic and quadratic, which185

allows us to determine its eigenmodes by Hopfield diagonaliza-186

tion [44]. Moreover it presents some important features. First,187

the light-matter interaction term displays cross-interactions be-188

tween different spatial modes, both in the diamagnetic term (sec-189

ond line of Eq. 13) and in the light-matter coupling term (third190

line of Eq. 13). Second, it presents so-called antiresonant terms,191

products of two creation or two annihilation operators. Those192

terms, which cannot be intuitively interpreted as describing ex-193

citation exchanges between different fields, become important194

in the ultrastrong coupling regime [10, 11]. They cannot be ne-195

glected when the vacuum Rabi energy becomes comparable to196

the energies of the bare light and matter modes, with a ratio of 0.1197

being usually considered the threshold to enter the ultrastrong198

coupling regime. Starting from such a value, the antiresonant199

terms have in fact led to measurable shifts in the polaritonic200

frequencies [45] as well as to more exotic phenomenology, as the201

presence of a non-negligible population of virtual excitations in202

the ground state [46].203

d)

e) f)

η2,1=0.95

η2,1=0.32

Fig. 3. Sketch of the structure including the hexagonal neg-
ative THz resonator (violet shape) fabricated on top of the
GaAs substrate (white region), and the QW hosting the 2DEG
(light red region), whose area occupies either the whole unit
cell (a) or a limited area enclosing the central gap (d). In the
other panels we show the numerical calculations of the trans-
mission as a function of the cyclotron frequency ωc at a fixed
electron density N0

2DEG = 3 × 1012 cm−2 (b,f) and as a function
of the electron density at a fixed cyclotron frequency ωc = 0.8
THz (c,g). Panels (b,c) illustrate the results for the structure in
panel (a), while panels (f,g) for the structure in panel (e). The
calculated values of η2,1 are shown in panels (a,d). Blue solid
lines highlight the fitted polaritonic resonances.
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Following the Hopfield approach, we diagonalise the Hamil-204

tonian by introducing the hybrid multi-mode polariton opera-205

tors,206

p̂µ = ∑
ν

(
xν,µ âν + wν,µ b̂ν + yν,µ â†

ν + zν,µ b̂†
ν

)
, (15)

whereby
(

xν,µ, wν,µ, yν,µ, zν,µ
)

are real-valued Hopfield coeffi-207

cients. The dressed polariton frequencies ω
p
µ are the eigenvalues208

of the polariton eigenequation209

h̄ω
p
µ p̂µ =

[
p̂µ, Ĥ

]
. (16)

The Hopfield transformation can subsequently be inverted as210 (
âν + â†

ν

)
= ∑

µ

(
xν,µ − yν,µ

) (
p̂µ + p̂†

µ

)
, (17)

allowing us to find the coupled electric field components corre-211

sponding to the non-Hermitian vector potential212

Ê−(r) = ∑
ν,µ

√
h̄ων

2ϵ0ϵ̄rVν
fν(r)

(
xν,µ − yν,µ

) (
p̂†

µ + p̂µ

)
,

Ê+(r) = ∑
ν,µ

√
h̄ων

2ϵ0ϵ̄rVν
f ∗ν (r)

(
xν,µ − yν,µ

) (
p̂†

µ + p̂µ

)
. (18)

From Eq. (18) we can clearly see that, as expected from our initial213

discussion, the electric field corresponding to the polaritonic214

mode p̂µ is a linear combination of all bare electromagnetic215

mode profiles fν(r), each weighted by the Hopfield coefficients.216

When the vacuum Rabi energies in Eq. 14 become comparable to217

the energy spacing between different resonator modes, multiple218

terms of such a linear combination can become non-negligible.219

In this case the interference of different bare electromagnetic220

modes weighed by the relative Hopfield coefficients can strongly221

modify the spatial profile of the polariton electromagnetic mode,222

the hallmark of photonic VSC described in the introduction.223

We stress that we have developed an inherently lossless the-224

ory based on a system Hamiltonian. This model is justified225

because we deal with systems in which we can identify discrete,226

albeit broadened, independently addressable electromagnetic227

modes. The VSC physics is due to the interaction between the228

optically active material and these intra-cavity modes. Losses229

then only cause a Lorentzian broadening, which can be taken230

into account a posteriori using one of the perturbative schemes231

which have been devised for systems in the ultrastrong coupling232

regime [47, 48], without affecting the VSC phenomenology ob-233

ject of this paper. This is proven by the fact our lossless theory234

fits well the numerical FEM results, even if the highest pho-235

tonic mode is substantially broadened. A finite linewidth can236

be understood as a frequency uncertainty, which translates in237

an uncertainty of the same order on the value of the cyclotron238

frequency corresponding to a specific interference figure. For239

such a reason, when comparing snapshots of field profiles be-240

tween the lossless Hamiltonian theory and lossy FEM results,241

we will fit the cyclotron frequency within half of the resonance242

linewdith.243

The opposite case, VSC with a continuum, has been achieved,244

both the standard electronic version [20] and the photonic one245

[30], and multiple approaches have been developed to study the246

coupling with a photonic continuum in the ultrastrong coupling247

regime [19, 46]. These are nevertheless not relevant for the sys-248

tem considered here but rather a topic for future investigations.249

Note moreover that systems with structured photonic con-250

tinua can be described as multiple interacting resonances [49, 50].251

However, this is unrelated to the VSC effect we study here, as252

in such a case the interaction is a weak coupling effect between253

spectrally overlapping modes, independent from the coupling254

with the optically active material.255

3. SEMI-ANALYTICAL RESULTS256

In order to highlight the role of the normalised overlap factors for257

the coupling strength, we now assume a single pair of photonic258

modes (M = 2) with frequencies ω1 and ω2 and mode volumes259

V1 and V2. Their non-orthogonality is quantified by a single260

overlap parameter η2,1. By expliciting Eq. (10), we arrive at261

F1,1 = α2
1,1,

F2,2 = |α2,1|2 + |α2,2|2,

F2,1 = α∗2,1α1,1, (19)

which leads to262

α1,1 =
√
F1,1,

α2,1 =
F ∗

2,1√
F1,1

=
√
F2,2η∗

2,1,

α2,2 =

√
F2,2 −

|F2,1|2
F1,1

=
√
F2,2

√
1 − |η2,1|2. (20)

Defining the renormalised mode volume as Ṽν = Vν
Fν,ν

, Eq.263

(14) leads to expressions for the coupling strengths264

g1,1 =

√
h̄2ωc N2DEGe2

2m∗ϵ0ϵ̄rω1Ṽ1
,

g2,1 =

√
h̄2ωc N2DEGe2

2m∗ϵ0ϵ̄rω2Ṽ2
η2,1,

g2,2 =

√
h̄2ωc N2DEGe2

2m∗ϵ0ϵ̄rω2Ṽ2

√
1 − |η2,1|2. (21)

For the given basis, the interpretation of these coefficients is that265

the photonic mode ν = 1 is coupled to only a single matter mode,266

µ = 1. In contrast, the coupling strength for the photonic mode267

ν = 2 originates from simultaneous coupling to both matter268

modes owing to the non-vanishing overlap parameter η2,1.269

In order to show the peculiar spectroscopic features expected270

in systems with non-negligible overlap between the photonic271

modes, we plot in Fig. 2 the spectra obtained by diagonalising272

the Hamiltonian in Eq. (13) for two resonator modes. The three273

cases concern settings of vanishing overlap (η2,1 = 0, panels a,b),274

medium overlap (η2,1 = 0.5, panels c,d), and maximum overlap275

(η2,1 = 1, panels e,f), whereby in each case the left and right276

panel show spectra as a function of the cyclotron frequency, and277

electron density N2DEG, respectively.278

We can point out two characteristic signatures for the overlap.279

First, we consider varying the cyclotron frequency (panels a,c,e).280

For vanishing mode overlap η2,1 = 0 (panel a), we observe the281

opening of separate polariton gaps for each pair of photonic282

mode and matter excitation. On the contrary, maximum overlap283

of η2,1 = 1 (panel e) leads to the emergence of a S-shaped reso-284

nance (blue curve). In this case, the mode structure originates285

from the coupling of a single matter excitation µ = 1 to both286
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photonic modes ν = 1, 2, simultaneously, leading to three po-287

lariton branches in total. The S-shaped center mode is confined288

between the cavity frequencies ω1 and ω2, thus manifesting a289

double-mode nature. Second, we analyze the mode structure290

as a function of electron density (panels b,d,f). Here, we see291

that at larger densities and thus larger couplings, two modes292

blue-shift in the case of vanishing overlap, while a single mode293

blue-shifts in the presence of substantial overlap. We attribute294

this behavior to the contribution of the diamagnetic term which,295

being of higher order in N2DEG, becomes dominant at very large296

densities and tends to blue-shift the upper polariton of each297

set of polaritonic solutions, taking into account that polaritonic298

modes never cross their bare components [31, 51]. Nevertheless,299

in the case of maximum overlap, the diamagnetic term between300

the two photonic modes leads to a repulsion of the upper po-301

laritons, leading to an anti-crossing behaviour above a certain302

critical value of the electronic density.303

4. NUMERICAL RESULTS304

20

20
-20
-20

f=0.78 THz 20

20-20
-20

f=3.55 THz

Fig. 4. Transmission spectra for the resonator (a). The reso-
nances with frequencies up to 5THz are identified by black
arrows and the corresponding in plane field distribution along
the gap direction is plotted for each of the M = 2 resonance
in panel (a) with bare frequencies ω1 = 0.78 THz (b) and
ω2 = 3.55 THz (c).

In order to explore the relevance of our theory for experi-305

ments with Landau polaritons, we used a commercial FEM soft-306

ware to compute the complex field distribution and transmission307

spectra without any fitting parameter.308

Our structure is a negative resonator (cut from a gold surface,309

Fig. 3) [52] of hexagonal shape, fabricated on top of a gallium310

arsenide (GaAs) substrate (white area in panels a,d), with the311

cyclotron resonances hosted in 3 GaAs QWs, each doped at a312

density N2DEG/3 (light red region in panels a,d), so that the313

total surface carrier density is N2DEG. The approach we used314

to simulate the metamaterial coupled to the doped multiple315

QWs stack was reported by Bayer et al. [32] and we will briefly316

resume the main steps below.317

To reduce the numerical complexity of modelling the dielec-318

tric environment composed of several QWs and corresponding319

barriers, we employ an effective medium approach describing320

the full QW stack as a layer of a total thickness of dQW = 210 nm321

and a total surface density N2DEG [53]. The cyclotron resonance322

of the 2DEG is implemented as a gyrotropic medium, where323

the dielectric tensor of a plasma of charge carriers magnetically324

biased along the z-direction describes the two-dimensional po-325

larization response of the cyclotron resonance in the plane per-326

pendicular to the magnetic field327

ϵCR =


ϵxx(ω) iϵxy(ω) 0

−iϵxy(ω) ϵxx(ω) 0

0 0 ϵ̄r

 , (22)

with328

ϵxx(ω) = ϵ̄r −
ω2

P 3D (ω + iΓ)

ω
[
(ω + iΓ)2 − ω2

c

] ,

ϵxy(ω) =
ω2

P 3Dωc

ω
[
(ω + iΓ)2 − ω2

c

] . (23)

Here, ωP 3D is the characteristic plasma frequency describing329

the oscillation of the electrons with a homogeneous 3D den-330

sity N2DEG/dQW, and Γ is the phenomenological scattering rate.331

In the z direction we only employ the background dielectric332

constant, as the confinement inhibits a plasma response. For333

the gold metamaterial we use the dielectric constant ϵAu =334

105 + 105i [32] in order to approximate the response of a perfect335

metal. In the x-y-direction, we employ periodic boundary condi-336

tions to reflect the array character of our structure. Maxwell’s337

equations are subsequently solved numerically. The transmis-338

sion is derived from the electric field amplitude calculated in339

the far field and is expected to predict the experimental results340

across the entire spectral range with high accuracy.341

In order to explore the direct impact of the overlap over the342

optical spectrum, we consider two types of QW designs. In343

the first layout the 2DEG covers the whole unit cell area (panel344

a). We refer to this design as unstructured. A second layout is345

instead realised by in-plane confinement of the 2DEG within a346

small rectangular patch at the center of the resonator (panel d).347

We refer to this layout as structured.348

The numerical transmissions for the four samples are shown349

in panels (b,e) as a function of the cyclotron frequency, and in350

panels (c,f) as a function of the electron density N2DEG. The351

simulation is performed considering an exciting electromagnetic352

wave which is linearly polarized along the gap (x) direction, and353

incident perpendicularly to the metamaterial plane. From the354

transmission spectrum at low electronic density, shown in Fig. 4355

(a), we recognize M = 2 active photon resonances within the356

given frequency range, whose in-plane field profiles along the357

gap direction are plotted in Fig. 4 (b,c).358

In the structured case the patch acts as a Fabry-Pérot res-
onator for the quasi-2D plasmonic excitations of the electron
gas in the QWs [54]. This leads to a non-vanishing frequency
for the fundamental plasmonic mode to which the lower po-
lariton in panel (e) of Fig. 3 would converge for a vanishing
cyclotron frequency. We estimated the fundamental plasmon
mode frequency using the formula [40]

ωP
0 =

√
N2DEGe2π

2m∗ϵ0ϵeffW
, (24)

with W the patch width and ϵeff the effective permittivity taking359

into account the screening of the gold resonator by averaging the360

screened and unscreened portions of the QW area. The resulting361

value is ωP
0 ≈ 0.2 THz. Although for the sake of completeness362

we did use such a value in our simulations for the structured363
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QWs, we notice that for such low frequencies the polaritons have364

vanishing photonic components and the transmission spectra365

are not noticeably affected by the exact value of ω0
P.366

Once we calculated the overlap parameter as in Eq. (11) for367

the two configurations, we employed our multimode theory to368

fit simultaneously the resonances for both the spectra of the ωc-369

sweep and the N2DEG-sweep, considering the matter resonance370

as the magnetoplasmon mode ω̃c and treating the normalised371

mode volumes Ṽν as fitting parameters.372

From the discussion in the previous section we expect that373

passing from the unstructured to the structured sample, as the374

integration surface is reduced, not only the normalised mode375

volumes Ṽν will vary, but also the modes will become less orthog-376

onal, thus increasing the overlap parameter η2,1. This is indeed377

the case as can be seen by the calculated values of η2,1 = 0.32 for378

the unstructured sample in Fig. 3 (a) and of η2,1 = 0.95 for the379

structured sample in Fig. 3 (d) derived by Eq. (11).380

Comparing the transmission spectra for the different config-381

urations allows us to recognize, albeit in attenuated form, the382

main differences in the spectral features predicted by the theory383

(marked on the plots by blue solid lines). At a first glance, we384

notice that the single polariton anticrossings are well resolved385

in the unstructured case, as they mainly arise from one-to-one386

coupling of photonic modes to orthogonal matter excitations. In387

the structured platform instead, we observe a reduction of the388

polariton splitting, and the appearance of a S-shaped resonance.389

The reduction of the polariton splitting is mainly due to the fact390

that reducing the integration area for the single mode leads to391

a larger normalised mode volume Ṽν, and as such to a smaller392

coupling strength. On the other hand, the confinement of the393

2DEG around the central gap of the resonator increases the over-394

lap between the modes, which becomes close to 1, leading to the395

appearance of the characteristic S-shaped polariton.396

We report in Figs. 5 the in-plane electric field distributions397

along the gap direction for the coupled modes of the hexagonal398
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resonator platform in the structured configuration. The reported399

data sets are extracted from the FEM simulation and calculated400

by our multimode theory, respectively, and plotted at the right401

and left sides of panels (a-e). The simulation field maps for402

a given coupled mode are obtained by simulating the far-field403

excitation of the system at the specific value of ωc, marked by the404

green arrows in the ωc-sweep transmission plot, with excitation405

frequency corresponding to that of the polariton mode.406

The corresponding theoretical electric field profiles are in-407

stead obtained by Eq. (18) as linear combinations of the numer-408

ically extracted fields of the uncoupled resonances, shown in409

Fig. 4, weighed by the photonic coefficients displayed by panels410

in 5 (f-i). Note that, as explained at the end of Sec. 2, the linear411

superposition is calculated at a cyclotron frequency fitted within412

half of the resonance linewidth from the nominal one. By observ-413

ing the field maps we can notice that these refer to three different414

cases: panels (a,c,e) display field distributions similar to the un-415

coupled ones, as the weight of one of the two modes is greatly416

dominant over the other. Panel (d) displays a case in which the417

two photonic weights are comparable, and the electric field map418

is noticeably different from either of the bare ones. Finally, in419

panel (b) our theory predicts the field of the bare photonic mode420

mainly localised in the central gap, while the simulation shows421

the electric field diffracting in the far-field of the plasma waves,422

although remaining confined on the area of the QW patch. This423

effect is related to the one recently investigated in Ref. [21]. Here,424

the authors point out how the electromagnetic field, confined425

in the resonator gap, can excite a continuum of propagative426

high-wavevector plasmonic waves leaking away energy from427

the polaritonic resonances. In our case the main difference is that428

the patch acts as a Fabry-Pérot resonator. Even if higher-order429

discrete modes are quasi-resonant with one more polaritonic430

branches, the energy of the excited modes remains confined in431

the patch and has thus only a limited effect on the polaritonic432

resonances [55]. Our two-mode Hopfield model misses this ef-433

fect, which could nevertheless be correctly described expanding434

the basis to include many discrete plasmonic modes of the patch435

[18] or alternatively using a theory able to deal with continuum436

spectra [19].437

Finally, Fig. 6 highlights the modification of the in-plane elec-438

tric field driven by the multi-mode hybridization for the specific439

case of the second polariton mode across the anticrossing point440

with the higher photonic frequency ω2 = 3.55 THz. The calcu-441

lated electric field maps in (c) refer to the cyclotron frequency442

values marked by the vertical black dashed lines in panels (a)443

and (b) (same as Fig. 5 (g)). We can clearly see how changing444

the cyclotron frequency varies the electric field map, displacing445

the minimum of the field across the sub-wavelength central gap,446

a feature suggestive of potential applications in sub-wavelength447

sensing and optical tweezers.448

Our results thus demonstrate that, by optimizing the449

resonator-2DEG structure, we are able to dynamically modify450

the sub-wavelength electromagnetic field profile, moving its451

maxima by varying the applied magnetic field.452

5. CONCLUSIONS453

In conclusion, we theoretically investigated the multi-mode cou-454

pling between the cyclotron resonances of a 2DEG and highly-455

confined THz-resonator modes. We developed a general theory456

describing multi-mode coupling taking into account the non-457

orthogonality of the electromagnetic modes. We highlighted458

specific spectral features due to the presence of multiple pho-459

tonic modes and demonstrated the possibility to tune the level of460

inter-mode coupling by lateral confinement of the 2DEG. Finally461

using these effects opens up the possibility to dynamically tailor462

the spatial profile of sub-wavelength electromagnetic modes by463

varying the applied static magnetic field. This approach can464

potentially be used to realize sub-wavelength optical tweezers465

to trap and move nanoparticles over sub-micron distances.466

The theoretical results encourage us to explore novel experi-467

mental methods and setups allowing to observe the predicted468

modification of the electric field profiles, driven by the coupling.469

Moreover, we aim to investigate further different resonator con-470

figurations, in order to maximise the effects of the multi-mode471

hybridization, heading towards novel quantum technological472

applications, based on a controllable and potentially dynamical473

tuning of high confined electromagnetic fields.474
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