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Abstract

The decays and mixing of K mesons are remarkably sensitive to the weak
interactions of quarks and leptons at high energies. They provide important tests
of the standard model at both first and second order in the Fermi constant GF

and offer a window into possible new phenomena at energies as high as 1,000 TeV.
These possibilities become even more compelling as the growing capabilities of
lattice QCD make high-precision standard model predictions possible. Here we
discuss and attempt to forecast some of these capabilities.

The increasing precision and expanding reach of lattice QCD calculations create new
opportunities to search for phenomena that lie outside of the standard model. With
more accurate standard model predictions, previous experimental results acquire greater
sensitivity to beyond-the-standard-model phenomena at higher energies and with weaker
couplings. These new theoretical capabilities may also motivate future experiments if the
results from these experiments can be predicted with greater accuracy from the standard
model. In this white paper we focus on low-energy phenomena involving kaon mixing
and decay including both first- and second-order weak processes. This is the region in
which current lattice calculations are most accurate with well-understood systematic
errors and where the barriers to obtaining predictions with substantially smaller errors
appear surmountable. In the sections below we describe the current state-of-the-art for
the lattice QCD predictions of a number of such processes and discuss the opportunities
for significant improvement over the next decade.

1 Direct CP violation and ε′

The standard model predicts CP violation in KL → ππ decay, both through explicit
decay matrix elements, 〈ππ|HW |KL〉, with complex CP -violating phases (direct CP
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violation described by the parameter ε′) and though CP -violating mixing between the
CP eigenstates (K0±K̄0)/

√
2 (indirect CP violation described by the parameter ε). The

Kobayashi-Maskawa theory of CP violation in the standard model predicts a very small
value for ε′ because of the requirement that all three families of quarks must contribute
to the amplitude. The parameter ε′ was determined in challenging measurements by
the NA28 and KTeV experiments and is usually presented as the ratio Re(ε′/ε) =
16.6(2.3)× 10−4 [1]. Since the indirect CP violation parameter ε = 2.228(11)× 10−3 is
itself very small, these direct effects are on the order of one part per million, implying that
comparison of experiment with the standard model predictions offers a highly sensitive
opportunity to discover the presence of new sources of CP violation.

Calculations of ε′ in the standard model from first principles have become available
only recently [2, 3] with a result Re(ε′/ε) = 21.7(2.6)(6.2)(5.0)× 10−4 that is consistent
with experiment. Here the left-most errors are statistical and systematic while the third
error estimates the omitted effects of electromagnetism and the difference between the
up and down quark masses. This lattice QCD result is the fruit of a more than 25-year
effort that depends on a number of important advances in method, for example a lattice
fermion formulation (DWF) with tightly controlled violations of chiral symmetry [4, 5],
the ability to treat two-pion states in finite volume [6] and a method (RI/SMOM) to
accurately renormalize composite lattice operators with continuum conventions [7, 8].

The increasingly accurate calculation of ε′ remains one of the most important goals
of the RBC and UKQCD collaborations. We are now carrying out calculations following
two complementary computational strategies. The first is a continuation of our previous
work in which G-parity boundary conditions were imposed on the quark and gauge
fields. This results in pions which obey anti-periodic boundary conditions so that the
first finite-volume state with energy above the vacuum is a two-pion state with non-
zero pion relative momentum whose energy can be tuned to equal the kaon mass giving
on-shell decay matrix elements [6]. Collecting large statistics and using a bootstrap
method to determine the appropriate χ2 distribution for correlated fits [9] allows multi-
parameter fits which incorporate nearby ππ excited states and give meaningful p-values
for the resulting fits.

The second approach being developed uses standard periodic boundary conditions.
With periodic boundary conditions ππ states with near-zero relative momenta are al-
lowed and the energy-conserving decay matrix element must then involve an excited,
higher-energy finite-volume ππ state which the Generalized Eigenvalue Problem (GEVP)
method [10, 11] is used to identify [12]. This quite different method should provide im-
portant verification of the earlier G-parity results and remove the burden of creating
special G-parity ensembles of gauge configurations. A further advantage is that the use
of periodic boundary conditions will allow the introduction of electromagnetism which
is obstructed by the charge non-conserving character of G-parity boundary conditions
which transform an up quark into an anti-down quark as it passes through the boundary.

We will briefly discuss the major sources of error in the most recent lattice result
for ε′ [3] and the prospects for their reduction. We will provide necessarily uncertain
estimates of the computer resources needed for such future calculations based on the
approximately 500 M Cori core hours or 1.5 Exaflops-hours (3600 × 1018 floating-point
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operations) required for the results presented in Refs. [3, 13].

1. Statistics. The calculation of the I = 0 component of K → ππ decay is made
difficult by the vacuum quantum numbers of the I = 0 state and the resulting
disconnected diagrams. The 10% statistical error for the result in Ref. [3] was
achieved with 741 Monte Carlo samples which is relatively large for a lattice QCD
calculation. While demanding of computer resources, increasing statistics poses
no fundamental barrier and this error can in principle be reduced to whatever level
is needed.

2. Finite lattice spacing. The current calculation of ε′ is performed using a single
lattice spacing and the resulting errors estimated from the calculation of the I =
2 decay amplitude A2 whose lattice QCD calculation [14] includes a continuum
extrapolation. The RBC and UKQCD collaborations have begun a long-term
project to extend the current calculation with G-parity boundary condition to
two smaller lattice spacings with first calculations underway on the Perlmutter
machine at NERSC. These calculations have the prospect of removing this source
of systematic error at the cost of an increased statistical error from the necessary
a → 0 extrapolation. This initial study of finite lattice spacing errors plans to
compare the original 323 × 64 lattice volume with inverse lattice spacing 1/a =
1.38 GeV with two finer ensembles: (403 × 96, 1/a = 1.7 GeV) and (483 × 96,
1/a = 2.1 GeV) at computational costs of 1.7 and 2.1 Exaflops-hours respectively.

It should be noted that the continuum extrapolation carried out in Ref [14] involved
a 10% change in value for Im(A2) so that performing such an extrapolation for ε′ is
important. Achieving percent-level errors will require an extrapolation involving
more than two values for the lattice spacing and a comparison with descriptions
of the lattice spacing dependence which include more than a single a2 term.

Such a more accurate a → 0 extrapolation should also be possible using G-parity
versions of current Iwasaki-action ensembles with but with somewhat smaller val-
ues of the lattice spacing: (483 × 96, 1/a = 2.1 GeV), (643 × 128, 1/a = 2.8 GeV)
and (963 × 192, 1/a = 4.1 GeV) at a cost of 7, 23 and 120 Exaflops-hours respec-
tively. Here generation of the (963 × 192, 1/a = 4.1 GeV) ensemble would require
techniques not yet proven to reduce critical slowing down. However, such an ex-
tensive continuum-limit study may be more appropriate when other errors have
been reduced and should likely include an active charm quark and even smaller
values of perhaps four different lattice spacings.

3. Short-distance effects. As with all lattice QCD calculations of weak interaction
phenomena, the predictions of the standard model are provided by a four-fermion
effective weak Hamiltonian which contains Wilson coefficients that are evaluated to
first- or second-order in electroweak perturbation theory and to some finite order in
QCD perturbation theory [15]. We should distinguish two important possibilities.
First, the effective weak Hamiltonian includes the effects of virtual charm quarks
and is to be used in a three-flavor QCD calculation in which only u, d and s quarks
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appear: the charm quark has been “integrated out”. This is the case for the ε′

calculation presented in Ref. [3].

Such a three-flavor effective theory contains two systematic errors arising from this
treatment of short distance physics. By treating the charm quark as very heavy,
terms of order (ΛQCD/mc)

2 are being ignored. These errors are often described
as resulting from omitted higher-dimension operators which would have Wilson
coefficients with an extra factor of (1/mc)

2. While we might hope that such effects
are on the order of a few percent, a four-flavor calculation is needed if these errors
are to be known and eliminated.

The second source of systematic error arises because finite-order QCD perturbation
theory is used to calculate the Wilson coefficients. These essential perturbative cal-
culations relate the four-fermion effective weak Hamiltonian to the actual standard
model prediction obtained from the exchange of Z’s and W ’s. For the three-flavor
case, the perturbative calculation of the Wilson coefficient must involve energy
scales at or below the charm quark mass, a relatively low energy region in which
the convergence of QCD perturbation theory may be uncertain. The resulting un-
certainty in the Wilson coefficients is an important source of error in the ε′ result
in Ref. [3].

This QCD perturbation theory error in a three-flavor calculation might be removed
by introducing non-perturbative methods to relate the three-flavor theory with the
more accurate theory with four quark flavors. Rather than performing the entire
K → ππ calculation with four flavors, the Wilson coefficients alone might be de-
termined non-perturbatively by working in a four-flavor theory but in a smaller
volume without physical pions to match non-perturbative Green’s functions in-
volving three- and four-flavor operators with external states that do not involve
charm quarks. Developing a method to do this is an active research project [16] and
promises to eliminate almost all short-distance error from a three-flavor calculation
of ε′ except that arising from higher dimensional operators.

With this approach both the three-flavor calculation and four-flavor calculation
discussed below would rely on the accurate perturbative calculation of the four-
flavor Wilson coefficients. These errors can be reduced by extending the usual
non-perturbative RI/SMOM to a higher energy scale, increasing the lowest energy
at which QCD perturbation theory is used and by working to higher order in QCD
perturbation theory. The Wilson coefficients used in the calculation of ε′ in Ref. [3]
relied on one-loop QCD perturbation theory [15]. A very important advance in this
topic [17] will be a two-loop calculation [18] that may be nearing completion. This
combination of working at a higher scale and including two-loop renormalization
results promises to reduce the errors in the Wilson coefficients to the percent level.
Even greater accuracy could be achieved if needed.

A more accurate treatment would simply include the charm quark in the lat-
tice calculation and use a four-flavor effective Hamiltonian which includes pairs of
operators creating and destroying the charm quark. Of course, the resulting four-
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flavor lattice calculation would be much more computationally costly than the
corresponding three-flavor version. In addition to the problems from disconnected
graphs and identifying the energy-conserving I = 0 ππ final state, one must accu-
rately treat a virtual charm quark loop. The charm quark mass introduces a new,
higher energy scale which requires working at substantially smaller lattice spacing
while maintaining the same size physical volume as was needed for the three-flavor
calculations. In fact, in such a four-flavor calculation the virtual charm quark’s
momentum is on the order of the charm mass, increasing the requirement of small
lattice spacing beyond that needed for the more common treatment of valence
charm quarks in D or D∗ mesons where the charm quark momentum is on the
order of ΛQCD, considerably smaller than the charm quark mass and allowing a
variety of heavy-quark effective theories to be used.

A realistic four-flavor calculation of ε′ has not yet been attempted and is likely five
or more years in the future. However, when adequate resources become available
this will be an important improvement to make and does not pose any fundamental
difficulties. Such a four-flavor calculation should be able to reduce the errors from
the truncation of QCD perturbation theory and the omission of higher dimension
operators (which would now arise from the bottom quark) to the percent level.
Based on our present experience including a charm valence quark in the calculation
of ∆MK described below, such a four-flavor calculation would require significantly
smaller lattice spacings than presently available. Four-flavor calculations of ε′

on three ensembles (643 × 256, 1/a = 2.76 GeV), (963 × 384, 1/a = 4.14 GeV)
and (1283 × 512, 1/a = 5.51 GeV) at a cost of 50, 240 and 1500 Exaflops-hours
respectively. (The time extent of each lattice volume has been doubled to allow
for the use of open boundary conditions [19], a step that may be needed to control
finite-volume errors associated with frozen topology.)

4. Isospin-violating corrections. For most quantities a careful treatment of isospin
violating effects becomes important only when one wishes to reduce systematic
errors well below the level of 1%. However, as is well known, the facts that indirect
CP violation in KL → ππ decay requires non-zero values for both the I = 0 and
I = 2 amplitudes A0 and A2 and that A2 is roughly twenty times smaller than
A0 implies that isospin breaking corrections to A0 will produce corrections to A2

which are effectively twenty times larger than they would typically be.

A thorough study using the large Nc approximation and chiral perturbation the-
ory [20] found these isospin breaking contributions to ε′ to be 25% with a nearly
100% uncertainty. Making a first-principles calculation of this correction which
verifies and refines the result of Ref. [20] is now a high priority goal of lattice
QCD. Such a calculation is complicated both by the three weak and electromag-
netic vertices that appear in the decay amplitude to be computed and by the
long-range character of the electromagnetic interaction.

Current efforts introduce Coulomb gauge to separate the calculation into two inde-
pendent components. The first is the correction resulting from the instantaneous
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Coulomb interaction between the quark charges. This source of isospin breaking
appears amenable to the methods of lattice QCD allowing a treatment of finite
volume effects with errors which decrease exponentially as the linear extent of the
lattice increases [21]. An exploratory calculation is underway using this method to
study the electromagnetic corrections to π+π+ scattering. With the introduction
of isospin breaking effects, the I = 0 and I = 2 channels mix. Fortunately it
appears [22] that the resulting two-channel problem can be treated using lattice
QCD in finite volume by existing techniques [23, 24] combined with exploiting
perturbation theory in αEM. (The effects of the isospin breaking mass difference
between the up and down quarks can be included in such a calculation without
added difficulty.)

The second component of such a lattice QCD calculation of the isospin breaking
corrections to ε′ is less well understood. Here the effects of the transverse photons
present in Coulomb gauge must be computed. While the effects of soft radiation
can be accurately treated classically, more energetic virtual photons which are
sensitive to hadronic structure require lattice QCD and new methods may need to
be developed to deal with the effect of the three-body K → ππγ decay.

5. Finite-volume errors In most lattice QCD calculations finite-volume errors can
be estimated by simply comparing results from two or more physical volumes.
However, the energy-conserving condition on the finite-volume ππ energy, Eππ =
MK in the calculation of ε′ makes a change of physical volume more difficult. The
finite-volume errors can be divided into two classes. The first are errors arising
from approximations made when the Lellouch-Lüscher finite-volume treatment of
this decay is implemented [6]. These are corrections which fall as inverse powers
of the physical volume and can likely be controlled at the percent-level by careful
analytic study of the terms in the Lellouch-Lüscher treatment which have been
neglected. This was done, for example, in Section VII.E. Higher partial wave
correction of Ref. [13].

The second class of finite-volume error arises from the bound states and the decay
process being “compressed” into a finite volume and decreases exponentially as the
linear size of the system increases. These errors can be estimated using chiral per-
turbation theory. In our recent calculation [3] this source of finite-volume error is
estimated at 7% from an inflated value of the finite-volume error suggested by chi-
ral perturbation theory applied to the amplitude A2. To be confident of such error
estimates at the 1% level, it will likely be necessary to perform calculations on two
or more volumes, working with what will be multiple excited finite-volume states
with Eππ = MK . Here the K → ππ project with periodic boundary conditions is
already developing the techniques that will be needed.

As discussed above there are substantial theoretical and computational obstacles to
a lattice QCD calculation of the standard model prediction for ε′ with reduced errors.
However, it may not be unreasonable to expect that with continued effort a reduction
in errors below the 30% level in five years and below 10% in ten years may be achieved.
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2 The KL −KS mass difference

With a measured value of 3.482(6)× 10−12 MeV this small mass difference (∆MK) has
sensitivity to physics at the 1,000 TeV scale and yet has been predicted by the standard
model with only 36% accuracy [25]. The charm quark and the GIM mechanism play a
critical role in determining ∆MK in the standard model. In fact the small size of ∆MK

may have been the first evidence for the existence of the charm mass scale [26]. Using a
three-flavor weak Hamiltonian in second-order electro-weak perturbation theory results
in a quadratically divergent expression for ∆MK . Moving to the four-flavor theory this
quadratic divergence is removed and the resulting expression is finite, provided the small
effects of the top quark are neglected and the high-momentum GIM cancellation between
the charm and up quarks is treated as exact.

Thus, to few-percent accuracy, all contributions to ∆MK come from energy scales
between ΛQCD and mc. This suggests that the methods of lattice QCD may be sufficient
for a complete calculation of ∆MK , provided a sufficiently small lattice spacing is used
to accurately treat the virtual charm quark loops. This is in fact the case – making the
accurate calculation of ∆MK important opportunity for lattice QCD [27, 28, 29, 30, 31].

Here we discuss the present state of our on-going calculation of ∆MK using phys-
ical quark masses on a 643 × 128 lattice volume with inverse lattice spacing of 1/a =
2.38 GeV [31] and the longer-term prospects for future calculations at smaller lattice
spacing. The preliminary result from this calculation is ∆MK = 5.8(0.6)stat(2.3)sys ×
10−12 MeV. This calculation was performed using 152 gauge configurations and required
approximately 200 M core hours on the Mira machine at the Argonne National Labo-
ratory. This corresponds to a total number of floating point operations of 0.5 Exaflops-
hours. We now discuss the various errors present in the current calculation and the
prospects for reducing them.

1. Statistics The calculation of ∆MK is carried out by studying the Euclidean-space
Green’s function

∫ tf−T

ti+T

dt2

∫ tf−T

ti+T

dt1

〈

(

K0(tf )
)†
HW (t2)HW (t1)K

0(ti).
〉

(1)

Here HW is the ∆S = −1 effective weak Hamiltonian, K0 an interpolating oper-
ator which creates a kaon and T is chosen sufficiently large that only the matrix

element with an initial K0 and final K
0
state appears. While this treatment of the

initial and final kaon states poses no special difficulties, the possible intermediate
states which can occur between the two weak operators present serious challenges.
A Euclidean Green’s function such as that in Eq. (1) contains a number of dis-
tinct transition amplitudes which must be identified and separated. Intermediate
vacuum, single-pion, two-pion and η states contribute to both ∆MK as well as to
terms growing exponentially in the separation |t2− t1| relative to the contribution
which gives ∆MK (or falling slowly with increasing |t2 − t1| as is the case for the
η). These latter contributions must all be removed and for states much lighter
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than MK large statistical noise remains after the unwanted contributions of these
states have been subtracted.

Dealing with the contribution of these unwanted transition amplitudes is especially
challenging for the η in which statistically noisy disconnected diagrams play a large
role and where the near degeneracy of the η and the kaon results in a near-vanishing
energy denominator. While still a significant source of statistical error, the physical
and unphysical contributions of the η are best simply eliminated by introducing
a physically-irrelevant s̄d term into HW with its coefficient adjusted to achieve
〈η|HW |K0〉 = 0.

As suggested by the 10% statistical error given above, these statistical problems
have been largely solved. The analysis of an increased number of Monte Carlo sam-
ples, a careful treatment of the integral over the relative time separation t2 − t1 in
Eq. (1) known as the “single-integration method” to avoid integration regions that
contribute only noise and a shift in computational strategy to devote the largest
number of samples to the computation of only those diagrams with the largest
statistical noise has reduced the original statistical errors [32] three fold. It is rea-
sonable to expect a further 3× to 10× reduction in statistical errors over the next
decade driven by the increase in computer capability and continued algorithmic
ingenuity.

2. Finite lattice spacing. At present the problem of non-zero lattice spacing is the
largest difficulty faced by the lattice calculation of ∆MK and is reflected in the
large systematic error in our current preliminary result for ∆MK [31] given above.
In fact, the completion of further studies of this systematic error is the final step
in our physical-mass calculation of ∆MK [31]. Our original expectation was that
the large charm quark mass would be the dominant source of finite lattice spacing
errors in this calculation where the product of bare charm quark mass and lattice
spacing m

(bare)
c a ≈ 0.3 is close to the largest value at which the domain wall

fermion (DWF) formulation should be expected to be reliable [33, 34]. To address

this issue, a series of five values ofm
(bare)
c a were studied and no anomalous behavior

seen.

In addition to this exploration of the charm quark mass dependence, we also per-
formed a companion calculation studying the lattice-spacing dependence of some
of the amplitudes which contribute to ∆MK using two larger lattice spacings, cor-
respondingly smaller charm quark masses and heavier-than-physical light quark
masses. These calculations showed an unexpectedly large, approximate 40% error
coming perhaps equally from the large charm quark mass and ≈ 20% scaling vio-
lations in the matrix elements of the unfamiliar four-quark operator belonging to
the (20, 1) representation of SUL(4)×SUR(4) which contributes to ∆MK . We note
that similar-size scaling violations have been seen in the past for matrix elements
of (8, 8) operators in studies of the ∆I = 3/2 contribution to K → ππ decay.
However, for that case cancellations reduced the O(a2) errors in the final physical
amplitude [14].
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This experience suggests that a calculation of ∆MK with controlled finite lattice
spacing errors is best carried out on the soon-to-be-available exascale resources
using the three lattice spacings and corresponding lattice volumes also needed for
the four-flavor calculation of ε′ discussed above: (643 × 256, 1/a = 2.76 GeV),
(963 × 384, 1/a = 4.14 GeV) and (1283 × 512, 1/a = 5.51 GeV) at a cost of 2, 8
and 32 Exaflops-hours respectively. These estimates include a four times increase
in statistics with the goal of a 5% result for ∆MK in 2026.

3. Finite volume errors. Because of the contribution of discrete, finite-volume ππ en-
ergy eigenstates, a lattice result for ∆MK includes potentially large power-law
finite-volume effects. Fortunately the needed finite-volume corrections can be ac-
curately computed and applied by using a generalization of the familiar Lüscher
treatment of ππ scattering in finite volume [30]. In our present physical-mass cal-
culation [31] these corrections are on the order of a few percent. However, they
may become larger depending on the proximity of a quantized ππ energy and the
kaon mass. Should this correction become larger or a greater accuracy desired,
more care will be needed when making this correction. Such an enhanced calcu-
lation of this correction would be a natural adjunct to the K → ππ calculations
required to determine ε′. In the more distant future when a calculation of ∆MK

with 0.1% accuracy is attempted it will become important to correct for the more
difficult finite-volume effects arising from three-pion states. This is at present an
unsolved problem but one which may have been brought under control [35] before
this degree of precision is needed.

4. Omitted standard model contributions The four-flavor treatment of ∆MK described
above assumes the upper left 2 × 2 corner of the CKM matrix is unitary and ig-
nores the weak coupling of the top quark to the down and strange quarks. This
introduces a few-percent error into the calculation of ∆MK [36] – an error which
could be removed by a calculation of the omitted top-quark contribution in QCD
perturbation theory. While such a perturbation theory calculation would itself
contain long-distance errors of the sort described below for similar calculations
of ε and K+ → π+νν̄, these few-percent corrections would be unimportant until
a lattice calculation of ∆MK with an accuracy on the order of the experimental
result was being attempted.

5. Other errors. The lattice QCD calculation of ∆MK will contain a variety of other
errors such as those present in the perturbative calculation of the needed Wilson
coefficients and finite-volume errors that are exponentially suppressed in the linear
lattice size as the lattice volume is increased. These involve similar considerations
to those outlined above in the discussion of ε′.

We conclude that an ab initio lattice QCD calculation of ∆MK in the standard model
which reaches the experimental accuracy is likely not possible within the coming decade.
However, achieving errors on the five-percent level and perhaps smaller can be achieved
with adequate computer resources.
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3 Indirect CP violation and ε

Important lattice QCD calculations of the kaon bag parameter BK led to early predic-
tions for the short-distance part of ε which would now be accurate at the one-percent
level, except for the larger uncertainties arising from the current errors for Vcb – errors
which should substantially decrease over the next decade. However, to reach sub-percent
accuracy, the few-percent contribution of long-distance physics to ε [37] must be com-
puted. This long-distance contribution is closely related to the calculation of ∆MK

described above. It is a contribution to the CP-violating, imaginary part of the same

off-diagonal element of the K0 −K
0
mixing matrix whose real part determines ∆MK .

In contrast to ∆MK , when computed using the product of two four-flavor operators
as in Eq. (1) this contribution is logarithmically divergent and is made finite only by the
structure of the underlying box diagram whose long-distance behavior is represented by
the product of these two four-quark operators. While more complex than the calculation
of ∆MK , this dependence on the short distance structure of the standard model can
be accurately handled in a lattice calculation by imposing an RI/SMOM condition to
remove the short distance singularity as the two operators in Eq. (1) approach each other.
In fact an exploratory calculation of this correction to ε which deals with this difficulty
has been carried out [38]. After this renormalization step, the lattice QCD calculation
of the long-distance correction to ε becomes similar to the calculation of ∆MK and the
discussion in the previous section of errors and computational goals applies.

There are two added complications that should be recognized. First, the four-quark
operators that appear in the CP violating effective weak interaction are more complex
than those that are needed to calculate ∆MK , requiring that more diagrams be evalu-
ated. This more than doubles the computational cost of these long-distance corrections
to ε. Second, as discussed above this use of the effective weak ∆S = 1 Hamiltonian HW

in second order perturbation theory introduces a new logarithmic singularity which can
be properly subtracted and replaced by an additional four-quark operator multiplied
by a new low-energy constant which encodes the remaining short-distance physics and
cannot be determined using lattice QCD. By using the RI/SMOM scheme to define the
short distance behavior of the HWHW product, this low energy constant becomes acces-
sible to QCD perturbation theory as the value of a Green’s function with four external
quark lines carrying large non-exceptional external momenta. Thus, in order to obtain
a physical result for this long-distance correction to ε this lattice calculation must be
augmented by a perturbative calculation of an infrared-safe low energy constant to two
or three loops in QCD perturbation theory. This new low energy constant represents
an additional, critical dependence of this lattice QCD calculation on QCD perturbation
theory.

4 K+ → π+νν̄ decay

The rare kaon decays K → πνν̄ have attracted increasing interest during the past few
decades. As flavor changing neutral current processes, these decays are highly suppressed
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in the standard model and thus provide ideal probes for the observation of new physics
effects. The known branching ratio measurement [39] of K+ → π+νν̄ is almost twice
the standard model prediction [40], but with a 60-70% uncertainty it is still consistent
with the standard model. The current experiment, NA62 at CERN, which aims at an
observation of O(100) events and a 10%-precision measurement of Br(K+ → π+νν̄),
recently reports an upper limit of 1.78× 10−10 for the Br(K+ → π+νν̄) at 90% CL [41].

These decays are known to be short-distance dominated and are theoretically clean.
The long-distance contributions are safely neglected in KL → π0νν̄ and are expected to
be small, perhaps of O(5 - 10%), in K+ → π+νν̄ decays. Though small, by including the
long-distance contribution estimated from chiral perturbation theory, the branching ratio
Br(K+ → π+νν̄) is enhanced by 6% [42], which is comparable to the 8% total standard
model error [40]. Since it will be possible to compare the standard model predictions
with the new experimental measurement of Br(K+ → π+νν̄) relatively soon, a lattice
QCD calculation of the long-distance contributions is important and timely.

In the past years, we have developed the theoretical framework [43] and performed
exploratory numerical calculations with the pion mass approaching its physical value [44,
45, 46]. To reach the full physical kinematics, we also need a fine lattice to avoid lattice
artifacts arising from the physical mass of the charm quark. We are currently carrying
out a physical-kinematics calculation of the long-distance contribution to K → πνν̄ with
a target of 30% total uncertainties.

This calculation is similar to the calculation of the long distance corrections to ε
and requires a similar RI/SMOM subtraction of a logarithmic dependence on the lattice
spacing and a companion perturbative QCD calculation of the corresponding low energy
constant. The discussion of resource requirements and future prospects is thus similar
to that found in Sections 2 and 3.

5 K → πℓ+ℓ− decays

These decays are expected to be extensively observed in the next years through the
NA62 and LHCb experiments. They are dominated by standard model long-distance
effects featuring an electroproduction of the lepton pair through the intermediate process
K → πγ∗. Using Ward-Takahashi identities, the amplitude of this decay can generally
be written

Aµ[K(k) → π(p)γ∗(q)] = −i
GF

(4π)2
[q2(k + p)µ − (M2

K −M2
π)qµ]V (z) , (2)

with z = q2/M2
K . A reliable standard model prediction of these decays requires a precise

description of the z-dependence of the form factor V (z). A parametrisation commonly
accepted [47] to describe well the experimental data is

V (z) = ac + bcz + Vππ(z) , (3)

where c ∈ {+, S} indicates the kaon state, ac and bc are two unknown real constants
and Vππ(z) describes the additional contributions above the q2 = 4M2

π threshold. The
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constants ac and bc are currently only known from experimental measurement [48] or
phenomenological descriptions [49]. These constants can be correlated to other rare de-
cays, for example in the B sector, through lepton flavour universality violating extensions
of the standard model [50].

Our collaboration pioneered the first calculations of this rare kaon decay in an un-
physical context [51, 52], and recently achieved the first calculation of this amplitude
with physical quark masses [53]. Despite a considerable investment of computing time,
we did not manage to obtain a statistically significant result for the a+ parameter at the
physical point. This is mainly due to the reduced effect of the GIM cancellation when
the up and charm quark have their physical values, leading to a large enhancement of the
statistical noise in the diagrams featuring up/charm quark loops. Thanks to this work,
we now have a clear direction for numerically improving our calculation and extending
this work is very well suited to the next generation of supercomputers. We believe that
over the next 5-10 years, lattice QCD will be in a position to produce predictions of
aS, a+, bS, and b+ with uncertainties below the 10% level.

Finally, there are growing efforts in the LHCb experiment [54, 55] to also measure
the rare hyperon decay Σ+ → pℓ+ℓ− which can be seen as a baryon version of the
rare kaon decay K+ → π+ℓ+ℓ−. Similarly, it is dominated by long-distance effects
through the intermediate process Σ+ → pγ∗. Where the rare kaon decays K+ → π+γ∗

need only one form factor to describe the amplitude, the decay Σ+ → pγ∗ needs four
form factors because of the higher spin of the external states. The extensive work
in Ref. [56] uses various phenomenological approaches to constrain these form factors.
Additionally there is a renewed phenomenological interest in these decays in Ref. [57],
where they are discussed jointly with the rare kaon decays. We are currently preparing
a theoretical publication demonstrating how to compute the rare hyperon amplitude
from first principles using lattice QCD. The approach is similar to the one used in the
kaon case, but the numerical challenge is expected to be much higher due to the known
statistical issues in correlation function involving baryon operators. Beyond supporting
the experimental efforts, we are confident that addressing these challenges will push the
boundaries of our field for the computation of complex baryon decay processes and the
understanding of baryon scattering.

6 KL → µ+µ− decay

This accurately-measured strangeness-changing neutral current process does not allow
a corresponding high-profile test of the standard model at second-order because of the
background resulting from the largely unknown, two-photon exchange O(α2

EMGF )KL →
µ+µ− decay amplitude. Substantial progress over the last few years in using lattice QCD
to compute the hadronic light-by-light contribution to the anomalous magnetic moment
of the muon [58, 59] raises the possibility that similar methods may be developed to
compute this two photon process which also involves a complex product of QED and
QCD amplitudes [60]. While important problems posed by the calculation of this two-
photon exchange amplitude remain unsolved, significant progress has been made toward
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this goal.
In particular a complete calculation of the simpler but related decay π0 → e+e−

has been carried out with physical quark masses, a continuum limit evaluated and an
empirically determined size for both the contribution of disconnected diagrams and
the effects of finite volume [61]. The combined statistical and systematic errors on
the result are on the order of a few percent. Of greatest interest may be an analytic
method of treating the two-photon intermediate state which eliminates the exponentially
growing contribution that would arise from the standard Euclidean-space treatment of
two-photon intermediate states with energy below mπ. Explicit analytic continuation
of the energy in the loop integral involving the two intermediate photons and virtual
electron allows the lattice calculation of the entire, complex π0 → e+e− amplitude
without exponentially growing terms, with a continuum treatment of the perturbative
degrees of freedom and with finite-volume errors that decrease exponentially in the size
of the volume within which lattice QCD is used.

This development effort has now been extended further to the combined weak and
electromagnetic decay KL → γγ [62]. This exploratory calculation has been carried
out using a 243 × 64 lattice volume and physical quark masses but with a single, small
inverse lattice spacing of 1/a = 1 GeV. The hadronic matrix element needed for this de-
cay involves a four-point function with two electromagnetic currents, the effective weak
operator HW and a kaon interpolating operator. Here unphysical exponential growth
can occur as the time elapsed between the absorption of the strange quark by HW and
the emission of the first photon. As in the calculation of ∆MK this relative exponen-
tial growth arises from states lighter than the kaon, specifically the π0. An additional
unphysical contribution of the η, while falling exponentially in this separation, falls so
slowly that its explicit subtraction is needed. While the explicit removal of the interme-
diate π0 contribution has been done successfully, a treatment of the η similar to what
was possible in the calculation of ∆MK requires substantially more statistics to yield
useful results given the critical role played here by disconnected diagrams. We expect
that a successful treatment of the η intermediate state and the associated disconnected
diagrams will be possible when this calculation is moved to a larger lattice volume with
a smaller lattice spacing because of the increased statistics that will result from more
extensive volume averages. However, the targetKL → µ+µ− calculation involves compu-
tational challenges that have not yet been solved. Perhaps the most serious is caused by
ππγ intermediate states with energy below MK where enhanced finite-volume methods
are needed.

7 Conclusion

All of the phenomena considered here offer significant opportunities to discover new
physics in the precision comparison of predictions of the standard model with often
difficult-to-obtain experimental results. In each case the continued development of
numerical algorithms and more efficient Euclidean-space lattice field theory methods
promise searches for new physics with increased precision. Each is a challenging lat-
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tice calculation which requires substantial access to the most powerful HPC resources
and the continuing investment in software and algorithm development needed to make
effective use of this cutting edge hardware.

In light of these remarkable advances in theoretical technique and the continued in-
crease in experimental capability, such high-precision studies of rare processes may be
ripe for new experiments that exploit our increasing understanding and control of QCD.
The strong interactions among the quarks create unique opportunities for precision ex-
periments but often lead to difficulties in making equally precise predictions – difficulties
which in many cases are now being overcome by the methods of lattice QCD.
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