Trust Challenges in Reusing Open Source Software: An
Interview-based Initial Study

Javad Ghofrani
University of Libeck
Libeck, Germany
javad.ghofrani@gmail.com

Kambiz A. Babaei
University of Guilan
Rasht, Iran
kambiz.a.babaei@gmail.com

ABSTRACT

Open source projects play a significant role in software production.
Most of the software projects reuse and build upon the existing open
source projects and libraries. While reusing is a time and cost saving
strategy, some of the key factors are often neglected that create
vulnerability in the software system. We look beyond the static code
analysis and dependency chain tracing to prevent vulnerabilities at
the human factors level. Literature lacks a comprehensive study of
the human factors perspective to the issue of trust in reusing open
source projects. We performed an interview-based initial study
with software developers to get an understanding of the trust issue
and limitations among the practitioners. We outline some of the
key trust issues in this paper and layout the first steps towards a
trustworthy reuse of software.

KEYWORDS

Systematic Reuse, Trust, Package Dependency, Reusability, Empiri-
cal study, Open source Software

1 INTRODUCTION

Reusing software libraries and open-source projects is an essen-
tial part of any software development process [9, 11]. Reusing can
increase software quality by decreasing time to market and the
risk of encountering unanticipated failure [5, 14]. Despite these
advantages, heavy reuse (direct or indirect) creates complex depen-
dencies that are hard for software developers to maintain [4]. As
manually maintaining and tracking the required updates for all of
the dependencies is a complex task, several automated tools have
been recently developed. Apache Ant [15], Apache Maven [12] and
Gradle Build Tool [2] are among these tools that facilitate efficient
and automated maintenance of dependencies. These tools use a
repository to download and attach libraries before building the
software projects.

Software-intensive systems usually have complex dependency
chains. Any issue in one of the components in the chain can cause
failure of the entire software. This is a source of vulnerability that
may not reveal itself during the development. The software may run
smoothly and pass the testing phase. In 2021, the log4j library !, a
logging library that was reused in almost 95% of the java projects at
the time, caused a huge damage to the software industry and many

Ihttps://logging.apache.org/log4j/2.x/security.html

Paria Heravi
University of Guilan
Rasht, Iran
paria.heravi@gmail.com

Mohammad D. Soorati
University of Southampton
Southampton, UK
m.soorati@soton.ac.uk

companies that were dependent to this library. Within 42 hours of
the issue, 800,000 exploitation attempts from unauthorised entities
have been registered 2. Another example of the vulnerability in
reused software library is the issue that was reported in Equifax [1]
that allowed hackers to steal 147 million users’ personal information.
Such incidents bring attention to the vulnerability issue that exists
in the large dependency chains.

Reusing open source projects faces many challenges [20]. Be-
sides the technical issues, the developers’ point of view must be
considered. As long as the developers’ perspective is not taken
into account, we cannot fully utilise the opportunity given by the
availability and the variety of the open source projects. Developer’s
trust has a strong correlation with the quality of the software that
they are reusing but the subset of the quality characteristics that
have significant role in defining the level of trust is unknown. For
instance, a developer might trust a software with high reliability
while another may believe that a software with high maintainability
is more trustworthy. After creating a model of the trust, we need
to measure the difference between an ideal and the existing level
of trust and layout a road map to reach the target trust level.

The first step towards the comprehensive outline of the trust
issues in reuse is to understand the developers’ point of view and
measure the awareness among the practitioners. In this study we
focus on learning the developers’ concerns that limits the trust
and present some of the solutions that the developers offered that
could allow us to improve the trust level. This paper aims at under-
standing how well the developers are aware the of the vulnerability
of software with heavy reuse and how we can address them. We
conducted exploratory interviews with sixteen software developers
who were active in the industry for the last 5 to 10 years.

In the next section we go over the related work (Section 2). We
then describe our interview study in Section 3 and present the
results in Section 4. We outline future work and limitations of our
study as well as a conclusion in Section 5.

2 RELATED WORK

Related work in this area can be grouped into two categories.

Zhttps://www.zdnet.com

2.1 Static code analysis

The studies this category mainly look for security issues in repos-
itories and perform static code analysis. They look up the public
security announcements and search for related issues in the open
source repositories such as GitHub. The main issue with these ap-
proaches is that the code in repositories may not be well-maintained
and the occurrence of issues in outdated projects is not undeni-
able. For instance, static code analysis was used on open source
software repositories to find the correlation between test ratio and
test coverage, lines of code, programming language, development
methodology and trends, dependency ratio and other metrics to
evaluate the vulnerable severity [5-7]. Similarly, Mitropoulos et
al. [13] show that bigger projects are more likely to contain secu-
rity vulnerabilities. Other studies perform dynamic code analysis in
addition to static analysis to find a correlation between the known
security vulnerabilities and the source code[18]. They also pro-
pose a tool that help in mitigating vulnerability. In an empirical
study, Kula et al. [10] analysed GitHub Projects to find security
vulnerabilities in their dependencies and observe that those library
dependencies will not be actively updated. Prana et al. [19] scanned
some of the Java, Python and Ruby open source projects to find
vulnerable dependencies. They used a novel extracting method and
analysed registered metadata in repositories such as commits and
fixes that were used for the maintenance of the projects. Wermke
et al. [21] conducted interviews with 27 people who were involved
in the maintenance of open source projects and analysesd their
practices for security and trust.

2.2 Dependency chain tracing in software
ecosystems

The second set of studies focus on tracing public security announce-
ments in dependency chain of the software ecosystems (e.g., Maven,
PyPL, RubyGems, nmp). These methods are more effective compared
to static code analysis as they reveal the vulnerability in depen-
dency chains that can lead to security issues in the fully-developed
projects. The argue that due to the high dependency density in
software ecosystem packages, any simple security issue can affect a
large number of programs. For instance, Hejderup et al. [8] propose
a method that analyses dependency graphs in the code and also
traces the dependencies through the repositories of reused pack-
ages. Another study analysed the evolution of npm open source
packages over the course of 6 years to find correlations between
the discovered vulnerabilities and the software packages[3]. Their
study suggests that the package maintainer should act more actively
in updating the fixes for security vulnerabilities and informing the
developers about the reported issues and updates. Zimmermann et
al. [22] report that npm packages from npm ecosystem suffer from
unmaintained packages, even years after the publicly announced
security issues. Their proposed mitigation method focuses on train-
ing the maintainers and also performing security tests on the npm
repository before updating a new library. Pashchenko et al. [16]
report that not all vulnerabilities may cause sever security issues
in the industrial projects. They also developed a methodology to
prioritise the reported vulnerabilities and available fixes to help
practitioners to focus on most important issues and fix them [17] .

All of these approaches take the perspective of the developers
and the maintainers of the original code rather than the software
developers that reuse these projects. We take the latter approach
to investigate the human factors and trust issues in reusing open
source projects.

3 SURVEY

3.1 Preparation

We designed an interview questionnaire after a series of brain-
storming sessions with the authors and a group of researchers at
the university of Luebeck. We have started the pilot interview with
five software developers. Three of them were in the same level of
knowledge and experience as our main interviewees. 2 of them
were junior software engineering with less than 2 years of expe-
rience. First, we measured the time required for conducting the
interview. Then, we considered that the all of test interviewees have
similar understanding and interpretation of the questions. This step
helped us to remove double meaning of the questions and prevent
them in the main interviews. After three iterations, the questions
were finalised and we started the interviews. In order to produce
robust and reliable results, we selected mid-level developers with
at least 5 years of experience. We have searched in social networks,
especially LinkedIn, for the senior developers. We checked their
timeline to make sure that they had at least 5 years of experience
in software development. Our goal was to have enough diversity in
field of work (e.g. back-end development, front-end development,
hardware programming, windows applications, etc.). We contacted
more than 100 people from different work domains.

3.2 Structure

The questionnaire consists of three sections. The first part (Section
A) is designed to collect the introductory information including
the experience and the field/domain of expertise. The second part
(Section B) asks the interviewees for the activities and guidelines
with regards to reusing open source software components in their
current organisations. The final part (Section C) of the questionnaire
collects their opinion regarding the challenges and the solutions
for mitigating the security issues of reuse. At the beginning of the
interview, the participants were briefed about the data collected
during the interviews and the anonymity of the published results.
The participants were informed about the objectives this research.
In order to prevent the bias, the participants were not aware of the
hypothesis and the general purpose of this study until after the
interview sessions. Table 1 shows the list of questions asked during
the semi-structured interviews.

4 RESULTS

We conducted 16 interviews in total. 2 interviews were offline and
14 other interviewees were online and transcribed. All interviewees
and interviewers working in different companies. 14 interviewees
work in Iran while 1 works in UK and 1 works in Germany. We
transcribed the interviews and put the answers to each question
in one table. Then we coded the transcribed text and assigned
keywords to each answer. We created a clustering of keywords and
grouped similar keywords together. Then, we mapped the answers
to their corresponding clusters. The limitations and solutions arose

Table 1: List of questions used for our semi-structured interviews.

Question (main question, follow-up question)
Part I: Describe your organization and your role.
MO How many years of experience do you have?
What are the activities that you are mainly involved in? What is the main software development
Introductory methodology in your organization?
questions FQ What is the main sector of your organization? What are the services and products that your
organization provides?
Is your organization independent or is it a subsidiary of another company?
FQ | Does your company have active partnership with other companies? If yes, what are the
type of this partnership?
Optional:
Was there a major technological or structural change in your organization during the last
three years? If yes, describe the changes?
Part II:
FQ How do you define reuse of libraries and software modules? In your organization,
how much do you reuse other modules or libraries (Low, High)?
Do you follow a certain guideline or standard for reuse
MQ Open Source Projects :
Key How much do you use open source projects (estimated percentage)?
. In general, what makes you use open source projects?
questions FQ Sy . .
What are the key factors that you consider in choosing an open source project to reuse?
MO Do you think that the scale of reuse has changed since you joined your organization?
If yes, how much (Scale one to five)
After the change:
How was your experience?
FQ | How did it affect your activities and tasks?
What was improved in your activities?
What were the new challenges?
Do you pay attention to the security concerns of reusing open source projects?
MQ If yes, how do you deal with the security concerns?
If no, describe the reason for the negligence.
Part III: (We have asked for your understanding and knowledge so far, the rest of the questions
Future MO are focused on your ({pin?on.) o . .
issues Aside from the organization’s perspective, in your opinion, what are the key challenges, risks and
common mistakes in reusing open source projects?
What are the solutions for mitigating these issues?
FQ | Are there any challenges in implementing those solutions?
If yes, describe them.
from discussions between the co-authors based on the contents of Participant’s Role Number of Answers
each cluster. Front-end developer 4
Table 2 shows the distribution of the interviewees over their Back-end developer 4
domain of work. Among them we have 4 Front-end Developers, 2 Mobile app developer 3
lecturers, 2 Al Researchers, 1 CTO, 1 DevOps Engineer, 1 Network Al researcher 2
security researcher, 1 Hardware developer, 3 Mobile app developers Lecturer 2
and 4 Back-end developers. DevOps engineer 1
Table 3 lists the working experience of the interviewees in the Network security researcher | 1
company where they currently work. Most of them have between Hardware developer 1
1-3 years of working experience, one interviewee has more than 15 CTO 1

years of experience, and two interviewees have between 10-15 of
experience. Note that, our interviewees have more than 5 years of
work experience. The values listed in Table 3 show the experience
of the interviewees in their current organisations.

Table 2: Domain of the work of interviewees

Years of work in current organisation | Answers
between 1 and 3 years 4
between 3 and 5 years 3
between 5 and 10 years 3
1
2

between 10 and 15 years
more than 15 years
not mentioned 3

Table 3: How many years of experience do the interviewees
have with their current organisation

Frequency of reusing open source projects | Answers
more than 70% 8
between 30% and 70% 3
less than 30% 5

Table 4: Frequency of reusing open source projects

Table 4 lists the number of interviewees who said how much
they reuse open source modules in their projects. It means, we
asked how often the interviewees reuse code in their projects. With
"less than 30%" meant that none of their projects was based on
reuse of open-source projects and they do almost everything from
scratch, while "more than 70%" meant that most of the time, if they
should develop new functionalities or software, they prefer existing
package and software repository to reuse. Half of them (8 from 16)
use open source projects more than 70% in their projects while 5 of
them reuse open source projects less than 30% in their projects.

We extracted the key expressions from the interviewees. When
asked about the considered factors in choosing a library or open
source project for reuse, 5 participants mentioned “Relevance to
current project”, 2 mentioned that they check if there is a decent
documentation available. 4 of them mentioned that they consider
the number of downloads. 2 of them check if there is enough up-
dated tests in the project. 3 consider the quality factors of the code
such as clean code, availability and extendibility of the projects.
5 of them mentioned the size of the developer community and 5
check the lifeline of the projects. 3 participants mentioned that the
user communities and their reviews about the project are important
to them. 5 look into the recent commits and 2 check the security
issues. 3 keywords mention the ranking stars from GitHub.

For the question regarding the developers’ consideration for the
security of reused modules, 12 stated *Yes’ and 4 said 'No’. Only
3 of the interviewees check the security and vulnerability of the
reused codes themselves. 5 of them have an extra security team that
decide and define the policies and the guidelines for allowing or
forbidding the reuse of libraries and dependencies. 5 have no special
mechanism to control the trust and the security of the reused code.

The participants were asked about their opinion regarding the
key challenges, risks and common mistakes in reusing open source
projects and what their suggested solutions for overcoming those
challenges are.

4.1 Identified Limitations

Figure 1 shows the main limitation for trust in reusing open source
software that extracted from our interviews. There are 5 key issues
as listed below.

4.1.1 Lack of continuous support. Limitation: The users were con-
cerned that the open source project developers may abandon the
project and leave the project without continuous support, updates,
commits and bug fixes. Even big projects can be stopped after a
while since the main developer or development team leave the com-
munity or the project. This issue is mentioned by 5 interviewees.

Suggested solutions: Sponsorship, long-term participation on
donation and collective payment methods should be established for
motivating and supporting the developers to continue their work
(mentioned by 3). Other suggestion was to solve this challenge
by checking which developer community/development team are
driving the package/library. It is also recommended to (re)use the
code and libraries only from strongly supported communities like
Eclipse Foundation or Apache Software Foundation.

4.1.2 Maintenance Cost. Limitation: Open source projects can-
not meet the full requirements and objectives of the users’ projects.
Therefore, reusing open-source projects requires additional effort to
tailor, extend or integrate the existing project to meet the end-users’
goals and requirements. There is always the risk that the integration
of open-source projects may lead to additional integration effort
rather than saving the time or improving the quality as it is expected
from reusing. Some new security vulnerabilities can be introduced
during the integration and manipulation of the reused code. Fur-
thermore, tracing the published updates and the integration over
time can have more overhead compared to the modules that are
entirely developed from scratch. One participant mentioned that
the unnecessary parts of reused software code should be removed.
Otherwise it can cause maintenance problems and introduce addi-
tional costs in the future. Another interviewee stated that in the
case of obsolesce of reused dependencies, migration can add cost
and may lead to new problems. Replacing new libraries require a
tedious effort of extracting the dependencies to the old library and
maintaining the software after such change can be very costly.
Suggested solutions: 2 Participants believe that reducing branch-
ing of the open source projects and intention to use open source
packages and libraries can help solve the issue. One interviewee
suggested to reuse the idea instead of reusing the code. The par-
ticipant explained that rather than direct reuse of the open source
projects, developers should get inspired and study their methods for
to develop their own projects. Another suggestion was to perform
code reviews before reusing to reduce cost at the later phases.

4.1.3 Lack of Alternatives. Limitation: Developers may reuse be-
cause there is a pressure from product owners and project man-
agers or they do not have enough competence or skills to develop a
project. The reuse in this case is not due to their informed decision
with options but because of there is no other viable alternative. 6
interviewees raised this issue.

Suggested solutions: An interviewee suggested to use scanning
tools before reusing the packages or open source projects. Another
interviewee mentioned that the developers should consult with
their team and ask for other experiences and opinion before reusing.

Maintenance
Cost

Lack of
Continuous
Support

Low
Software

Quality

Trust
(Limitations in
\ Reusability

N

@:;y !

Vulnerability

\
_4

-

f Lack of
\\ Alternatives

@

Figure 1: Interconnected limitations of trust in reusing open source software from the point of view of developers.

4.1.4 Security Vulnerabilities. Limitation: 5 interviewees raised
this issue as a challenge in reusing open source libraries. Based on
their input, known and unknown bugs and issues in both libraries
and software codes can lead to security issues in the end product.
Furthermore, some projects are so huge that the developers forget
to remove unnecessary parts from their own project after reuse
which reduces the performance of the software and opens new
potential vulnerabilities.

Suggested solutions: an interviewee suggested isolation poli-
cies for reused packages and libraries. The participant believed that
there should be limitations in the architecture of the projects. This
way, if some exploits try to use the security vulnerabilities of reused
packages, the damage can be less harmful. However, the trade-off
between the effort for isolation and the benefits of reuse should
be considered. One other interviewee suggested periodic security
reviews which includes automatic and semi-automatic usage of
scanner tools and checking updates, fixes and dependencies. An-
other interviewee advised against directly using the last version
of packages and libraries after release. According to his/her sug-
gestion, using penultimate version of packages and libraries can
prevent security issues.

4.1.5 Low Software Quality. Limitations: One participant said
that although software reuse can increase the quality of the software
product, it should be applied in a reasonable way. A wrong way of

reuse can cause performance issues. Lack of documentation is one of
the reasons that makes it hard to search and understand the reusable
code and packages. Furthermore, low quality of reused code makes
it hard to understand, extend and maintain such projects.

Suggested solutions: The interviewees mainly believed that
we should consider the match level between requirements of the
project and the existing libraries. They also suggested to perform
a quality estimation based on well-known metrics (updates, test,
comments of user community, etc.) before deciding to reuse a library
or a package.

5 CONCLUSION AND DISCUSSION

This paper focuses on the issue of vulnerabilities in open source
software packages from the perspective of the developers that reuse
them. We reflected the state of the practice and studied the devel-
opers’ awareness and trust. We interviewed 16 developers from
different domains and asked for their point of view on the main
risks of reusing open source software. We asked them about the
risks and their proposed solutions to mitigate the identified risks.
We collected and analysed the results and presented a trust limi-
tation factors in this paper. We identified five key limitations in
reuse that are lack of continuous support, maintenance cost, low
software quality, security vulnerability and lack of alternatives.

The results of interview show that the developers are well-aware
of the risks and have a justified level of trust in third party open
source projects and libraries. However, the proposed solutions
mainly lack a proposition to use automated tools or systematic
methods. The suggested solutions are mostly based on the develop-
ers’ experience rather than any existing framework or tools. This
implies that the developers see themselves responsible for any is-
sues and this is a challenge that needs to be handled manually.
Despite our classification of concerns, it needs to be noted that
the limitations are interconnected. For instance, lack of continuous
support will gradually lead to security vulnerability and a project
that has many vulnerabilities may cost so much that the software
will not be maintained anymore.

5.1 Threat to Validity

The results in this paper are a summary of observations and should
not be used as a proof, proposal or guideline. This paper presented
a sample of viewpoints in order to put forward an initial study.
However, there are some points that should be discussed regarding
the validity of this paper.

External Validity: Although 14 out of 16 interviewees work in
Iran, we could not find any evidence that the open source culture in
Iran differed from other countries around the world. However, this
is still a threat to validity that we could not exclude in this research.
Thus, more research in a bigger scale is required, which we planned
for future work. Furthermore, regarding population validity, we
do not believe that the results in this paper are representative of
the community of the developers. However, we tried to collect
various opinions from different domains of work. Still there are
limitations in terms of number, location, domains, experience and
gender which should be considered when this work is reused or
extended. A last point about the study’s external validity regards
language. We excluded misunderstandings and misinterpretations
of interview questions by conducting the interviews in the native
language of interviewees.

Internal validity. In order to prevent errors and mistakes in the
classification of results, all authors are involved in the classification
process. We did not translate the answers to English to exclude
misunderstandings, but the assigned keywords are decided trough
discussion by the authors.

5.2 Outlook

There are plenty of opportunities to build on our study. One di-
rection for future work is to perform a bigger and comprehensive
interviews that covers many working domains and includes diver-
sity. We also encourage future studies that focus on evaluating the
effect of preventive methods on solving security issues in reusing
open source software.

6 ACKNOWLEDGMENTS

We would like to thank the interviewees who provided shared
their knowledge and opinion with us. The participants may not
necessarily agree with our interpretation and conclusion but their
inputs were essential for this manuscript. We also acknowledge
funding from University of Luebeck, Germany.

REFERENCES

[1] HalBerghel. 2017. Equifax and the latest round of identity theft roulette. Computer

50, 12 (2017), 72-76.

Adam L Davis. 2019. Gradle. In Learning Groovy 3. Springer, 105-114.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution of

technical lag in the npm package dependency network. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 404-414.

[4] William Frakes and Carol Terry. 1996. Software reuse: metrics and models. ACM
Computing Surveys (CSUR) 28, 2 (1996), 415-435.

[5] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2019. A double-edged
sword? Software reuse and potential security vulnerabilities. In International
Conference on Software and Systems Reuse. Springer, 187-203.

[6] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software reuse

cuts both ways: An empirical analysis of its relationship with security vulnera-

bilities. Journal of Systems and Software 172 (2021), 110653.

Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS:

a dataset of security vulnerabilities in open-source systems. In Proceedings of the

15th International conference on mining software repositories. 18-21.

Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software ecosys-

tem call graph for dependency management. In 2018 IEEE/ACM 40th International

Conference on Software Engineering: New Ideas and Emerging Technologies Results

(ICSE-NIER). IEEE, 101-104.

Charles W Krueger. 1992. Software reuse. ACM Computing Surveys (CSUR) 24, 2

(1992), 131-183.

[10] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384-417.

[11] Niko Mikitalo, Antero Taivalsaari, Arto Kiviluoto, Tommi Mikkonen, and Rafael
Capilla. 2020. On opportunistic software reuse. Computing 102, 11 (2020), 2385-
2408.

[12] Frederic P Miller, Agnes F Vandome, and John McBrewster. 2010. Apache Maven.
Alpha Press.

[13] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios,
and Diomidis Spinellis. 2014. The bug catalog of the maven ecosystem. In
Proceedings of the 11th Working Conference on Mining Software Repositories. 372—
375.

[14] Parastoo Mohagheghi, Reidar Conradi, Ole M Killi, and Henrik Schwarz. 2004. An
empirical study of software reuse vs. defect-density and stability. In Proceedings.
26th International Conference on Software Engineering. IEEE, 282-291.

[15] Matthew Moodie. 2006. Pro Apache Ant. Apress.

6] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable open source dependencies: Counting those that
matter. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 1-10.

[17] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2020. Vulndreal: A methodology for counting actually vulnerable
dependencies. IEEE Transactions on Software Engineering (2020).

[18] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-source
software. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 449-460.

[19] Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo, An-
drew E Santosa, Asankhaya Sharma, and David Lo. 2021. Out of sight, out of
mind? How vulnerable dependencies affect open-source projects. Empirical
Software Engineering 26, 4 (2021), 1-34.

[20] Victor Rea Sanchez, Pablo Neira Ayuso, José A Galindo, and David Benavides.
2020. Open source adoption factors—a systematic literature review. IEEE Access
8 (2020), 94594-94609.

[21] Dominik Wermke, Noah Wéhler, Jan H Klemmer, Marcel Fourné, Yasemin Acar,
and Sascha Fahl. 2022. Committed to Trust: A Qualitative Study on Security &
Trust in Open Source Software Projects. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy. IEEE Computer Society.

[22] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995-1010.

[2
[

eACo)

7

[8

[o

