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ABSTRACT

We present a new X-Ray Accretion Disk-wind Emulator (xrade) based on the 2.5D
Monte Carlo radiative transfer code which provides a physically-motivated, self-consistent
treatment of both absorption and emission from a disk-wind by computing the local ionization
state and velocity field within the flow. xrade is then implemented through a process that
combines X-ray tracing with supervised machine learning. We develop a novel emulation
method consisting in training, validating, and testing the simulated disk-wind spectra into a
purposely built artificial neural network. The trained emulator can generate a single synthetic
spectrum for a particular parameter set in a fraction of a second, in contrast to the few hours
required by a standard Monte Carlo radiative transfer pipeline. The emulator does not suffer
from interpolation issues with multi-dimensional spaces that are typically faced by traditional
X-ray fitting packages such as xspec. xrade will be suitable to a wide number of sources
across the black-hole mass, ionizing luminosity, and accretion rate scales. As an example, we
demonstrate the applicability of xrade to the physical interpretation of the X-ray spectra of the
bright quasar PDS 456, which hosts the best-established accretion-disk wind observed to date.
We anticipate that our emulation method will be an indispensable tool for the development of
high-resolution theoretical models, with the necessary flexibility to be optimized for the next
generation micro-calorimeters on board future missions, like XRISM/Resolve and Athena/X-
IFU. This tool can also be implemented across a wide variety of X-ray spectral models and
beyond.

Key words: Radiative transfer – methods: numerical – techniques: spectroscopic – galaxies:
active – galaxies: individual (PDS 456)

? Correspondence to: gabriele.matzeu@unibo.it

1 INTRODUCTION

Accretion-disk winds are generally observed through blueshifted
absorption features at rest-frame energies > 7 keV, imprinted in the
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2 Matzeu et al.

X-ray spectra of active galactic nuclei (AGNs; Chartas et al. 2002;
Reeves, O’Brien & Ward 2003; Pounds et al. 2003). Their degree
of blueshift from the lab energies of FexxvHeα (He-like) and/or
FexxviLyα (H-like) implies mildly relativistic outflow velocities,
typically falling in the range ∼ 0.1–0.4c (e.g., Reeves et al. 2009;
Gofford et al. 2014; Nardini et al. 2015; Matzeu et al. 2016, 2019;
Parker et al. 2020; Middei et al. 2020). Their frequent detection, in
approximately 35–40% of local AGNs (Tombesi et al. 2010; Gof-
ford et al. 2013; Igo et al. 2020), suggests that the wind geometry is
characterized by a large covering factor (Ω). This was confirmed by
the direct measurement of Ω & 2π in the luminous quasar PDS 456
(Nardini et al. 2015, N15 hereafter). With such a high covering fac-
tor, coupled with high column densities (NH & 1023 cm−2, Tombesi
et al. 2011; Gofford et al. 2013) and high velocities, a large amount
of kinetic power can be transported, possibly exceeding the 0.5–5%
of the bolometric luminosity required for significant AGN feedback
(King 2003; King & Pounds 2003; DiMatteo, Springel &Hernquist
2005; Hopkins & Elvis 2010).

Measuring the intrinsic physical properties of these winds can
provide important insights into the mechanism through which they
are driven (launched, accelerated). There are currently three known
physical mechanism responsible for driving accretion disk winds:
gas pressure, radiation pressure, and magnetic fields. While gas
pressure (thermal driving) is unable to explain the large velocities
observed in accretion disk winds in AGN, the two other mecha-
nisms are in principle able to do so. Three possible scenarios might
therefore be able to explain the observations of AGN accretion disk
winds: (i) radiatively-driven winds (e.g., Proga, Stone & Kallman
2000; Proga & Kallman 2004; Kallman & Bautista 2001; Giustini
& Proga 2019); (ii) magnetically-driven (MHD hereafter) winds
(e.g., Emmering, Blandford & Shlosman 1992; Ohsuga et al. 2009;
Fukumura et al. 2010; Kazanas et al. 2012; Fukumura et al. 2015);
and/or (iii) to some extent a likely combination of the two (e.g., de
Kool & Begelman 1995; Everett 2005; Matzeu et al. 2016).

In the radiatively driven scenario, the AGN radiation pressure
launches a wind from the accretion disk from tens to thousands
of gravitational radii from the supermassive black hole (SMBH;
the gravitational radius rg = GMBH/c2, with G the gravitational
constant, c the speed of light, and MBH the black hole mass). The
detection of strongly blueshifted broad absorption lines (BALs),
associated with the UV transitions (e.g., Weymann et al. 1991;
Matthews et al. 2016; Rankine et al. 2020) demonstrates that sub-
stantial momentum can be transferred from a powerful radiation
field to the gas, thus accelerating mass outflows. These type of
radiatively driven outflows are described as line-driven winds, as
their strength depends on the opacity of the absorption lines, which
acts as a force multiplier to the radiation pressure and can make
the bound-bound absorption cross-section considerably larger than
the Thomson cross-section for electron scattering (i.e., σline � σT ;
e.g., Castor, Abbott & Klein 1975; Stevens & Kallman 1990; Dan-
nen et al. 2019). The strength of line-driven disk winds depends on
the ionization state of the gas ξ = L/nR2, where n is the gas den-
sity, L is the ionising luminosity, and R is the distance between the
gas and the source of the ionising luminosity. As demonstrated by
Dannen et al. (2019), for a typical AGN spectral energy distribution
the effects of the force multiplier drop at log ξ > 3, where all the
relevant opacity is lost. Line-driven winds are therefore likely more

relevant for sub-Eddington sources1, where the ionising luminosity
is not as large as completely ionise the illuminated gas.

In AGN close to Eddington or super-Eddington, the ionization
state of the gas is so high that the dominant interaction between
the outflowing gas and the radiation field is likely Thomson (and
Compton) scattering (King&Pounds 2003;King 2010). In this case,
a direct correlation between the momentum rate of the outflow and
the momentum rate of the radiation field, i.e. ṗout ∼ ṗrad (= L/c),
would be expected if the optical depth to electron scattering is
τ ∼ 1. This indeed appears to be the case in many observations of
fast, highly-ionized winds (Tombesi et al. 2013; Gofford et al. 2015;
Nardini, Lusso & Bisogni 2019), but it does require the AGN to
radiate at a considerable fraction of its Eddington luminosity, LEdd

(King & Pounds 2003).
Most theoretical outflow studies are mainly concentrated on

radiatively-driven winds in both AGNs (Sim et al. 2008, 2010;
Hagino et al. 2015, 2016a,b; Nomura & Ohsuga 2017; Matthews
et al. 2016, 2020; Luminari et al. 2018; Nomura, Ohsuga & Done
2020; Quera-Bofarull et al. 2020; Mizumoto et al. 2021), X-ray
binaries (XRBs; Higginbottom et al. 2019, 2020; Tomaru et al.
2020b,a), and cataclysmic variables (e.g., Matthews et al. 2015).
Nevertheless, MHD wind models have been successfully applied to
both AGNs (Fukumura et al. 2010, 2015, 2018) and XRBs (Fuku-
mura et al. 2017, 2021; Ratheesh et al. 2021). These findings suggest
that both driving/launching mechanisms apply across the black hole
mass and luminosity scales.

The development of physical models for accretion disk winds
and a self-consistent test of their predictions are among the pri-
mary goals in modern X-ray astronomy. Predictions can be tested
by using grids of spectral simulations generated for different values
of the physical parameters of interest, such as the ionisation state
and column density of the gas. Up until now, astronomers had to
compromise between the sampling resolution and the extent of the
parameter space covered in the model, due to the extremely de-
manding computational times involved. Although grids generated
with coarser sampling generally allow one to explore a broader
parameter space, they are more susceptible to interpolation issues
(Arnaud 1996) that may affect the degree of accuracy of the mea-
surements. The next generation of instruments, on board XRISM
and Athena (planned to be launched in 2023 and early 2030’s,
respectively) will provide a significant increase in spectral resolu-
tion, with ∆E ∼ 5 eV for XRISM/Resolve (Tashiro et al. 2020) and
∆E ∼ 2.5 eV for Athena/X-IFU (Barret et al. 2018). Such advances
in technology will inevitably require the development of higher
resolution grids to match the improved spectral information.

Machine learning techniques, which allow us to learn the map-
ping from an input space to an output space, can play a fundamental
role in speeding up this process. In supervised machine learning, a
sample of both the input and the output is known, and the objective
is to learn a mapping that is able to best reproduce the output for
a given loss function. In our case, the loss function is a measure
of how close the machine learning emulated X-ray spectra are to
ground truth, the simulated spectral values. This is the training of
the model, and the data sample is known as the training data. Ma-
chine learning benefits from large data samples and although such

1 The Eddington Luminosity is defined as LEdd = 4πGMmpc/σT , with mp
the proton mass and σT the Thomson cross section, and it is the luminosity
for which the radiation pressure and the gravitational pull are equal, for a
given mass M.
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process can be computationally expensive to train, the trained data
are capable of efficiently computing the mapping.

Consequently, supervised learning methods can be useful to
reduce the computational cost of large and complex models, pro-
vided that a representative training set can be obtained (Kasim et al.
2020). Trained machine learning models can be used as surrogate
models to approximate computationally expensive models such as
the weather and climate (Watson-Parris 2021). These frameworks
are known as emulators, and they can be developed as artificial
neural networks (ANNs hereafter). The ANN architecture is loosely
based on the human brain and consists of interconnected neurons
organized into layers. ANNs are also quickly becoming popular in as-
tronomy to approximate simulations and interpolate between them
(see e.g. Chardin et al. 2019; He et al. 2019). Kerzendorf et al.
(2021) created an emulator to replace expensive radiative transfer
codes for modelling supernova spectral time series, while Alsing
et al. (2020)’s stellar population synthesis (SPS) model emulator
accurately generates galaxy spectra and photometry from SPS pa-
rameters.

The aim of this paper is to present the description, develop-
ment, and application of a new extended Monte Carlo radiative
transfer (MCRT hereafter) accretion disk-wind code initially de-
veloped by Sim et al. (2008, 2010, S08, S10 hereafter): X-Ray
Accretion Disk-wind Emulator (xrade). The novel approach in the
development of xrade is twofold: (i) firstly, we compute a new set
of synthetic X-ray spectra in order to explore the physical conditions
of accretion disk-winds in a larger AGNpopulation. (ii) Secondly, as
the synthetic spectra are fed into a purposely built ANN, the data will
undergo a process of training, validation, and testing with the aim
of: (a) accelerating the process of synthetic spectra simulations, and
(b) solving the multi-dimensional interpolation problems2 that arise
when multiplicative tables are adopted in spectral fitting packages
such as xspec (Arnaud 1996). Our ANN allows the user to gener-
ate customised xrade tables at their requirement. On this basis,
we generated two new largeMCRT tables, namely slow64 and
fast32, which cover a larger parameter space (CPU time: ∼7–8
months with 480 50Gb cores), than the one generated in S08, S10
and Reeves et al. (2014). In the future, the spectral resolution of
the wind grids will also be increased, in order to match the next-
generation calorimeter data. Hence to reduce the computational
demands for our future tables, machine learning is a very important
tool.

This paper is organized as follows: in section 2 we give an
overview of theMCRT methods used to simulate disk-wind syn-
thetic spectra from the code originally developed in S08, S10, andwe
describe the physical assumptions adopted in the disk-wind slow64
and fast32 models. We also discuss the input parameters and we
present a brief description of the main input parameters. In section 3
we describe in detail the methods adopted for the development of
xrade. In section 4 we apply xrade to the quasar PDS 456, which
hosts one of the most powerful and persistent accretion disk-winds
discovered to date. We specifically test xrade on the XMM-Newton
and NuSTAR 2013 observation of PDS 456, as the X-ray spectrum
is characterized by the most prominent and best studied P-Cygni-
like profile yet observed. In section 5 we draw our conclusions and
discuss further work.

2 https://heasarc.gsfc.nasa.gov/xstar/docs/html/node95.
html

2 RADIATIVE TRANSFER CODE OVERVIEW

The development of xrade is based on training the synthetic wind
spectra simulated with theMCRT code by S08, S10 into an ANN.
Note that amore detailed description of the inputmodel setup can be
found in S08, S10. In this section we present, for completeness, an
overview of the physical basis and approach adopted in generating
the inputMCRT wind spectra for xrade.

Initially, S08 carried out multi-dimensional (2.5D) Monte
Carlo radiative transfer simulations in a bi-conical wind structure
(see Figure 1). The simulated spectra were calculated over grid
points with coordinates x, y, z, under the assumption that the system
is axisymmetric about the polar (z) axis in the azimuthal direction.
S10 extended the atomic database with the inclusion of the L- and
M- shell transitions. As a result, the simulated synthetic spectra
were more accurate over a larger range of photon energies (i.e.,
0.2–10 keV). Additionally, the Monte Carlo ray-tracing method de-
scribed in Lucy (2002, 2003) was implemented in the code. This
allowed the treatment of ionization and radiative heating of the gas
by means of self-consistent calculations of the heating/cooling of
electrons based on the photon packets (the computational struc-
ture used in the simulations) that propagate throughout the wind. A
temperature gradient is then calculated in order to provide a more
physical representation of the ionization structure of the wind. This
process is then reiterated multiple times to accurately define the
heating and cooling rates for the wind until they reach equilibrium.
In slow64 and fast32 we set 160, 000 photon packets each, which
are then collected and grouped into 10, 000 energy bins (and binned
up by a factor of 10× giving a total of 1000 energy bins), based on
their viewing (observer) angle (θ) from the z-axis.

TheMCRT code creates tables of simulated wind spectra that
take into account the effects of the radiation transmitted through
the wind, which include the scattering and reflected emission from
the flow. An interesting outcome of this model is that the accretion
disk-wind itself can give rise to FeK emissions, with line widths up
to σwidth ∼ 1 keV (Parker et al. 2022b) . Such profiles are obtained
from the combination of: (i) velocity shear in the flow, (ii) its rota-
tion around the polar axis, and (iii) the Compton scattering of the
FeKα line photons in the wind. Thus the disk-wind model can pro-
vide a physically-motivated, self-consistent treatment of both the
absorption and emission produced in the wind by computing the
ionization state and velocity field within the flow. In other words,
the disk-wind model calculates the ionization at each point in the
wind over a wide range of states, thus describing a more realistic
(non-uniform) ionization structure and velocity field throughout the
outflow. As for iron, the code covers charge states from Fex–xxvii,
and the output spectra include not just the absorption and emission
from FeK, but also from L-shell iron and the K-shell lines of lighter
elements in the soft X-ray band.

Routines that take into account special relativistic aberration
of angles and Doppler shifts between the co-moving and observer
frames are included in our MCRT code, so that the model fully
accounts for special relativistic effects. Such an implementation
provides realistic and accurate estimates of the mass outflow rate
and overall energetics, as the local radiative pressure might require
non-negligible special relativistic corrections (e.g., Luminari et al.
2020, 2021). The number of energy packets used in each simulation
is chosen so that the Monte Carlo noise in the estimators is < 3 per
cent. This level of precision is sufficient given the quality of the
observational data available at present (see section 4).

MNRAS 000, 1–?? (?)
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Table 1. fast32 and slow64 input parameters. Note that the 172, 800 output spectra will be available for developing xrade. For the quantities flagged with †
or ‡, more details are provided in AppendixA3 and A4 respectively. Note that in the bottom 5 rows the ANN input parameters are also the measurable output
when fast32 and slow64 tables are loaded into X-ray fitting packages such as xspec.

Input Parameter Values
fast32 slow64

range of source photon energies in simulation 0.1–511 keV
photon packets 160, 000
size of X-ray emission region (rer) 6 rg
inner radius of the accretion disk (rd) 6 rg
inner launch radius (Rmin) 32 rg 64 rg
outer launch radius (Rmax) 1.5Rmin
distance to wind focus (d) Rmin
velocity scale length (Rv)† Rmin
velocity exponent (β)† 1.0
launch velocity (v0)† 0.0
mass-loss exponent (κ)‡ −1.0
outer radius of simulation grid 33876 rg
3D Cartesian RT grid cells 180 × 180 × 180
2D wind grid zones 100 × 100

Input Parameter Values

source power-law photon index (Γ) {1.6, 1.8, 2.0, 2.2, 2.4}
terminal velocity parameter ( fv) {0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0}
source luminosity

(
LX =

L2−10 keV
LEdd

)
{0.0252, 0.0475, 0.0796, 0.1415, 0.2516, 0.4475, 0.7958, 1.4151, 2.5165} × 10−2

wind mass-loss rate
(
Ṁw =

Ṁout
ṀEdd

)
{0.0196, 0.0270, 0.0373, 0.0515, 0.0710, 0.0980, 0.1352, 0.1866, 0.2575, 0.3552, 0.4901, 0.6762}

angular bins (µ = cos θ) {0.025, 0.075, 0.125, 0.175, 0.225, 0.275, · · · 0.725, 0.775, 0.825, 0.875, 0.925, 0.975}

x

z

Rmax

Rmin

accretion disk

X-ray 
source

outflow outflo
w

outflowoutflo
w

R

d

θmax

θmin

Figure 1. Schematic representation of the bi-conical structure adopted for
the disk-wind model. The 2D geometry is defined with three parameters:
Rmin, Rmax, and d. Rmin and Rmax correspond to the radii at which the inner
and outer edges of the disk wind intercept the disk plane, respectively. The
blue-shaded area represents the physical extent of the outflow,while d defines
the focus point of the wind below the disk plane, which controls the degree
of collimation and opening angle of the wind (where tan θmin =

Rmin
d ). This

2D structure is then rotated around the vertical z–axis and mirrored with
respect to the accretion-disk plane to produce an axisymmetric 2.5D wind
geometry.

2.1 Geometry

The assumed bi-conical structure of the inner disk-wind geometry
is shown in Figure 1. The x–axis corresponds to the plane of the
accretion disk, and the z– axis to the polar (rotational) direction.
The black hole is located at the origin and the X-ray source is

located within 6 rg from it (see subsection A2). Rmin and Rmax are,
respectively, the distances from the origin to the inner and outer edge
of the wind at the interception with the equatorial (xy) plane. The
radii Rmin and Rmax (expressed in gravitational units)then enclose
the disk-wind launch region, and set the collimation and the overall
opening angle (equatorial or polar) together with the parameter d,
which represents the distance of the focal point of the wind along
the z–axis below the origin. The overall wind inclination angle θ is
measured with respect to the z–axis, with the polar opening angle
defined as θmin = arctan Rmin/d. Here we set d/Rmin = 1, so the
wind opening angle is 45 degrees from the pole. The observer’s
polar angle is included in the code through µ = cos θ, where any
line of sight with µ< 0.7 intercepts the wind. The terminal velocity3

attained by the wind is v∞ = fvvesc, where vesc = (2/Rmin)1/2c, and
the factor fv parameter allows the user to vary the terminal velocity
for a given launch radius (see below). The lines that extend from d
and intercept the xy–plane in Rmin and Rmax produce the first quarter
of the bi-conical wind, which is made axisymmetric under rotation
in the azimuthal direction and reflected with respect to the disk
plane (see Figure 1). The difference between the outer- and inner-
most launch radii (∆R = Rmax − Rmin) of the flow off the disk plane
defines the overall thickness of the wind streamline.

2.2 Velocity

Having set up the geometric framework in which the wind is sim-
ulated, we now describe the properties and key parameters of the
synthetic spectra which will be subsequently fed into the ANN. Note

3 See AppendixA3 for a calculation of the velocity field through the stream-
line, up to the maximum terminal velocity, v∞.

MNRAS 000, 1–?? (?)
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that the emulation process itself will be described in more de-
tail in section 3. For the purpose of this work we generated two
MCRT disk-wind wind tables named fast32 and slow64 (see
Table 1 for the summary of their parameter space). The former is
tuned to the fastest disk-wind cases like PDS 456, where typically
vout/c = 0.25–0.35 (e.g., Matzeu et al. 2017), with Rmin = 32 rg;
thus, for fv = 1, v∞ = −0.25c. The latter is instead tuned to
slower winds, e.g., MCG–03–58–007 (e.g., Braito et al. 2022) or
PG 1211+143 (e.g., Pounds et al. 2016), with Rmin = 64 rg; for
fv = 1, v∞ = −0.177c (see subsection A2). Our input choice of
Rmin is related to the range of outflow velocities typically observed
in AGNs, between vw ∼ 0.05–0.4c (e.g., Tombesi et al. 2010; Gof-
ford et al. 2013; Reeves et al. 2018; Igo et al. 2020; Chartas et al.
2021). The terminal velocity parameter fv can be considered a fine-
tuning factor of the outflow velocity, which allows the user to adjust
v∞ tomatch their observations. So v∞ is regulated by changing the fv

parameter, for a given launch radius.Note that for theseMCRT sim-
ulations a black hole mass of MBH = 109 M� is assumed. However
as most of the units are normalized, e.g. radii to the gravitational
radius, mass outflow rate and X-ray luminosity to the Eddington
value (see below), the output table parameters are black hole mass
invariant.

Note that these versions of these MCRT tables are newly
generated in this work and they will be made publicly available.
Hence, the new range of parameters are tabulated in Table 1. The
spectral properties of these grids, in particular in relation to the
inclination and launch radius, are discussed further in AppendixA.
Both the slow64 and fast32 tables were generated with fv ranging
between 0.25–2 in steps of ∆ fv = 0.25. As a result, the following
ranges of v∞ are covered:

v∞/c =

−0.500 . v∞/c . −0.0625 Rmin/ rg = 32,
−0.354 . v∞/c . −0.0442 Rmin/ rg = 64.

(1)

For simplicity, for both the fast32 and slow64 tables, the
geometric thickness of the outflow is set to be Rmax/Rmin = 1.5, but
in principle this could be variable. The outer boundary of the sim-
ulations is set as log (Rout/ rg) = 4.53 (i.e., ∼ 34, 000 rg), whereas
the X-ray source is set to originate from a central region of 6 rg in
radius. Both the slow64 and fast32 tables are generated with 5
grid points for the photon index (Γ; see subsection 2.5), 8 for the ter-
minal velocity parameter ( fv), 12 for the normalized mass outflow
rate (Ṁw; see subsection 2.3), 9 for the ionizing luminosity (LX; see
subsection 2.4) and 20 angular bins (µ). The combination of these
parameters produces 5× 8× 12× 9× 20 = 86, 400 synthetic spectra
in each table, for a total of 172, 800. Each spectrum is simulated
over 10004 spectral points, uniform in log-space, and subsequently
used in the emulation process described below.

2.3 Mass outflow rate

The mass within the flow is determined by the normalized mass
outflow rate parameter, which is expressed in Eddington units as
Ṁw = Ṁout/ṀEdd (a radiative efficiency for a Schwarzschild black
hole of η = 0.06 is assumed Shapiro & Teukolsky 1983). Hence,
Ṁw is not directly dependent upon the black hole mass of the
source. An increase in Ṁw affects the mass density in each cell

4 Note that 1000 energy bins are adopted when simulating CCDs resolution
spectra i.e., ∆E = 60 eV at 6 keV, over the 0.1–511 keV range. For future
micro-calorimeter resolution we will increase the binning by at least one
order of magnitude.

by increasing the opacity of the medium thereby yielding a higher
column density through the wind and deeper absorption lines (see
AppendixA4). Additionally, as scattering of photons increases with
opacity, the relative strength of the component scattered out of the
flow would also increase proportionally with Ṁw. In both tables,
the Ṁw parameter covers the 0.020 < Ṁw < 0.676 range in 12
equally-spaced logarithmic steps (see Table 1). This range covers
the bulk of the typical measurements carried out in the literature
i.e., −2 . log(Ṁw) . 0 (see Fig. 2 in Tombesi et al. 2012 and
Fig. 1 in Gofford et al. 2015). Note that for future grids it is our
intention to extend the Ṁw parameter space to super-Eddington
values, Ṁw & 1.

2.4 Ionizing X-ray luminosity

The ionizing luminosity parameter is defined as the fraction of X-
ray luminosity, calculated in the 2–10 keV band, with respect to
the Eddington luminosity, i.e, LX = L2−10 keV/LEdd. As per Ṁw,
with this normalization the LX parameter keeps the same meaning
across the black-hole mass scale.LX measures the overall degree of
ionization of the material within the flow, where lower values ofLX,
typically < 1% of LEdd, lead to the wind being less ionized and more
opaque to X-rays. In contrast, an increase in LX will lead to winds
that are more ionized and transparent to X-rays, to the extent that the
spectrumbecomes completely featureless. In the disk-wind code, the
ionization of the plasma is self-consistently computed at each point
in the wind, whilst both shielding and scattering of photons are also
accounted for in the calculations. As a result, the overall ionization
is stratified along the wind, whereby the innermost surface of the
wind is almost fully ionized (mainly Fexxvi), as expected, being
fully exposed to the X-ray source. The denser base of the wind is,
not surprisingly, less ionized (with charge states down to Fex–xvi).
The decrease in ionization occurs both along the flow and across the
base of the wind. More details regarding the input spectrum and its
effect upon the wind ionization will be discussed in subsection 2.5.

Compared to other models (e.g., Hagino et al. 2015, see sub-
section 4.2), the disk-wind code has access to more extensive atomic
data, which cover a wide range in ionization; ions from Fex–xxvi
as well as from lighter elements such as C–Si are included. Thus,
for any given observation of an AGN, the LX parameter can be
calculated by comparing the intrinsic 2–10 keV luminosity to the
(known) Eddington luminosity, and it is not a degenerate parameter
in the modelling. The synthetic spectra for xrade were simulated
over a range of 2.5 × 10−4 < LX < 2.5 × 10−2 (or 0.025% to
2.5% of LEdd) over 9 equally-spaced logarithmic increments (see
Table 1). It is worth briefly discussing how such a range compares
to the observed distributions of Eddington ratios (λEdd = Lbol/LEdd)
and bolometric corrections (kbol = Lbol/L2−10 keV) as, by definition,
LX = λEdd/kbol. These two quantities are known to correlate with
each other, and their ratio typically falls in the range ≈ 10−3 − 10−2

for the majority of type 1 AGNs (e.g. Vasudevan & Fabian 2009;
Lusso et al. 2012). We conservatively adopt forLX a more extended
range, especially at the low end, based on the evidence that the
strongest winds are usually observed in sources that are relatively
weak in theX-rays compared to theUV (hence a larger kbol), which is
interpreted as a requirement for effective line-driving (e.g., Castor,
Abbott & Klein 1975; Giustini & Proga 2019).

2.5 The Input Spectrum

The choice of the initial input spectrum is a crucial step for setting
the MCRT simulations, required for the development of xrade,
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Figure 2. Seven input SEDs, calculated in the 0.1–511 keV range, cor-
responding to five power laws with slope between Γ = 1.6–2.4 and two
more physically motivated input spectra, such as a double broken power
law and the disk-corona Comptonization model optxagnf (see text). The
spectra have been normalized to unity in the 2–10 keV band for comparison
purposes. The shaded area indicates the energy band above the ionization
threshold of Fexxvi, at E = 9.28 keV.

as the intrinsic spectrum can profoundly affect the observable disk-
wind parameters. Steep (i.e., Γ > 2) spectral slopes of the X-ray
continuum are, in fact, critically responsible for producing strong
absorption profiles. On the other hand, harder spectra (i.e., Γ < 2)
likely over-ionize the obscuring medium, leading to a considerable
attenuation or disappearance of the absorption profiles (e.g., Pinto
et al. 2018).

Various surveys on Seyfert galaxies and quasars (e.g., Porquet
et al. 2004; Piconcelli et al. 2005; Bianchi et al. 2009; Scott &
Stewart 2014; Marchesi et al. 2016; Williams, Gliozzi & Rudzinsky
2018; Chartas et al. 2021) established the diverse nature of the
primary continuum slope in AGNs. The vast majority of objects
studied in the above samples are type 1 sources, hence they provide
a reliable measure of their intrinsic spectral shape due to the general
lack of obscuration. These studies show that ∼ 80% of AGNs are
characterized by an intrinsic slope distribution ranging between
Γ = 1.6–2.4 and peaking at Γ ∼ 2.

A power-law SED is assumed to be a reasonable first-order
approximation of the intrinsic X-ray continuum of AGNs, but in
reality we know it to be much more complex. In Figure 2 we show
seven possible input spectra that correspond to five power-laws with
Γ = 1.6–2.4 along with two more complex SED models, such as
a broken power-law and optxagnf5 (Done et al. 2012), where the
integrated 2–10 keV fluxes of the input spectra are normalized to
unity. In this plot, the fraction of luminosity radiated above Elab =

9.28 keV (i.e., the ionization threshold of Fexxvi, shaded area)
compared to the hardest (Γ = 1.6) power law is calculated for each
of the input continua. The percentages of the integrated photon flux
in the 9.28–511 keV band, corresponding to each of the seven input
spectra, are also noted in Figure 2. As the input spectrum becomes
steeper, the number of photons above Elab = 9.28 keV decreases,
leading to a lower mean charge of iron within the flow. On the
other hand, harder spectra would induce a higher ionization of the
gas, possibly over-ionizing iron for its K-shell to be significantly
populated.

5 optxagnf is a self-consistent Comptonized disk emissionmodel inxspec,
and it was adopted in generating xstar (Bautista & Kallman 2001; Kallman
et al. 2004) tables for PDS 456 (see Section 4.2 in Matzeu et al. 2016, for
more details). Note that in this exercise we adopted a Γ = 2.4 and a hot
coronal temperature of kTe = 100 keV.

Figure 3. The total (black), direct (red) and scattered (green) simulated
wind spectra normalized to their corresponding input SED from Fig. 2. The
blueshifted absorption profile at E ∼ 9 keV increases in strength and shifts
to lower energies as the input SED becomes steeper. On the other hand, the
hardening of the spectra would lead to an increase of ionizing photons that
would eventually over-ionize the wind. As a consequence the over-ionized
material would lose its opacity, which translates into a shallow absorption
feature as shown in the top panel. For this example, the disk-wind simulations
were carried out by assuming a 2–10 keV luminosity of 1.24% of LEdd, an
outflow rate of ∼ 40% of ṀEdd, fv = 1.25 (vw = 0.3125c for Rmin = 32 rg)
and an inclination of µ = 0.675.

In Figure 3, we show the output spectra corresponding to the
different Γ = 1.6–2.4 in Figure 2, which illustrate how a change in
ionization affects the spectra. Note that the optxagnf and broken
power-law continuum, which both adopted a Γ = 2.4 photon index
at hard X-rays, produced a very similar FeK absorption line depth
as per the corresponding simple power-law case. In other words, the
cases with a more complex continuum (optxagnf, broken power-
law) produced consistent results compared to the equivalent power-
law case (Γ = 2.4). Subsequently, to generate our slow64 and
fast32 tables, we choose a power-law SED with a photon-index
range of Γ = 1.6–2.4 with 5 linear steps of ∆Γ = 0.2 between 0.1–
511 keV. The above results in Figure 3, suggests that the strongest
lines from disk-winds should occur in steep spectrumX-ray sources.
For the case of the simulations in Figure 3, the equivalent width of
the Fexxvi line increases four-fold from Γ = 1.6 (EW ∼ 110 eV)
to Γ = 2.4 (EW ∼ 420 eV). This could be the case observationally,
where strong (EW & 100 eV) blue-shifted FeK absorption lines
are apparent in AGNs with steep (Γ > 2) photon indices or when
they are intrinsically X-ray weak (low LX), e.g. PDS 456 (Reeves
et al. 2021), PG 1211+143 (Pounds et al. 2003), IRAS 13224−3809
(Parker et al. 2017; Pinto et al. 2018).

3 ARTIFICIAL NEURAL EMULATOR

ANNs are machine learning algorithms consisting of a set of neu-
rons organized into layers. Each neuron is a distinct mathematical
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Figure 4. The FFNN architecture of the emulator constructed for xrade. Each circle represents a neuron. Each connection is marked as a right arrow.

operation. They take an input x and apply an affine transformation
followed by a threshold function a, known as the activation function,
to ensure the mathematical operation is non-linear. This then allows
several neurons to be applied sequentially, thus forming a network.
If the network is fully connected then the output of each neuron in
a given layer becomes the input to every neuron in the next layer:

xn
m = a(xn−1 ·Wm + bm), (2)

where xn−1 is the input to the nth layer and xn
m is the mth neuron

in the nth layer. W and b are the trainable weight and bias (i.e.,
analogue role to a constant value in a linear function) parameters
that are updated during the training phase of the model.

The universal approximation theorem (Hornik, Stinchcombe&
White 1989) states that ANNswith just a single layer can approximate
any continuous function with a finite number of neurons. Here we
train a simple Feed-Forward Neural Network (FFNN) (Bebis &
Georgiopoulos 1994) to map physical parameters to simulated disk-
wind spectra (y), using both the fast32 and slow64 disk-winds.

The inputs to the first layer are the parameters describing the
AGN spectra x0 = {Γ, Ṁw, fν, LX, µ,Rin} and the output of the
final layer xN are the predicted spectral values (ŷ). The trainable
parameters (NP) of the network are updated to optimise the loss
function by comparing the predicted spectral values with the true
spectral values. We explored the use of various loss functions and
we found that the mean square error loss function,

L2 =
∑

i

(yi − ŷi)2, (3)

was most suited to this problem, as it is simple to compute and sen-
sitive to outliers: an important characteristic to ensure absorption
and emission lines are conserved. Furthermore, we experimented

with the use of various activation functions6: linear, tanh, exponen-
tial linear unit (ELU), and sigmoid (see e.g. Nwankpa et al. 2018).
Additionally, we tested the activation functions outlined in Alsing
et al. (2020), which was developed specifically to reproduce well
both to smooth and sharp features – again, an important feature
for spectra. Nevertheless, we found that these activation functions
underperformed compared to the rectified linear unit (ReLU) acti-
vation function on our data set,

a(x) = max(0, x). (4)

This activation ensures that the outputs are positive, which is a
key requirement for spectra. Under this same constraint, it is not
possible to fit spectra in log units, where values can be ≤ 0. In
the case of log spectra, the network would have to be redesigned
with some other activation function such as tanh, and/or a linear
final activation function. Our emulator network consists only of
fully connected layers, the best of which used 3 dense layers, each
with 1000 neurons (Figure 4). In ANN a dense (or hidden) layer is
located between inputs and outputs of the algorithm and performs
non-linear transformations (i.e., fitting complex data) of the inputs
and directs them into the outputs. They are referred to as dense (or
hidden) because the ‘true’ values of their neurons are unknown.
In total, this results in NP = 2, 009, 000 trainable parameters (see
Appendix B for the derivation).

The network was trained over 1500 epochs, where each epoch
comprises the entire data cycle, however for improved efficiency
(i.e., not to feed the data at the same time), the parameters of the

6 The activation function is a mathematical function that is added to an ANN
in order to ensure non-linearity. In this way the ANN can learn the complex
patterns of the training data ‘fed’ into it.
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network are updated in batches. For the training, we use an incre-
mental batch size updating from 1 to 100, to 1000 at each 500 epoch
interval. The batch size, is the size of the training data sub-sample
that is used to optimise the weights at a time. Larger batch sizes
require more memory to load that can result in slower training,
but smaller batch batch sizes give more stochastic loss which can
will also take longer for the network to reach global minima. We
use an increasing batch size that is equivalent to decreasing the
learning rate (Smith et al. 2017). The learning rate is another hyper-
parameter that determines the size of the changes made to weights
at each step. This aids the network in reaching the minimum loss,
because as you approach the minima you need to make smaller
changes to the weights or you will overshoot. Similarly, slowly in-
creasing the batch size provides more confidence in the direction of
descent to the minima as opposed to the stochastic descent provided
by a small batch size. Additionally, early stopping (Yao, Rosasco &
Caponnetto 2007) is implemented to prevent over fitting. This ends
the training process once the model is no longer improving. We use
the adaptive optimiser Adam (Kingma & Ba 2014) to update the
weights with learning rate of 10−3.

In addition to training data that are used to optimize the net-
work, additional data are required to validate the model, to ensure
that it will generalise to new data. These data are seen during the
training of the network to determine when to stop training. The
performance of the trained network was then evaluated on addi-
tional test data that are not seen during the training of the network.
In total we have 172, 800 MCRT synthetic spectra available for
the ANN and we choose a train-validation-test split of 0.8–0.1–0.1.
This equates to 138, 240 spectra for training, 17, 280 for validation
and 17, 280 for testing. The training set was checked to ensure a
good representation of all parameters was included. The final L1
(absolute error),

L1 =
∑

i

|yi − ŷi|, (5)

and L2 (mean square error) loss on the validation data was 0.0071
and 0.0002, respectively. The L1 and L2 statistics for the test data set
are 0.0071 and 0.0001, respectively. Figure 5 shows some examples
of the spectra predicted by the emulator from the test data set.

3.1 Mitigating interpolation issues with emulation

Until now, the data used to train and test the network areMCRT
simulations from 2 grids of parameters. But we need to know if the
emulator is capable of reproducing parameter values between all the
grid points. To do this, the trained network is further tested against
2000 newMCRT simulations, where 100 of each of the parameters
are drawn from uniform distributions: Γ ∼ U(1.6, 2.4), Ṁw ∼

U(0.0196, 0.6762), fν ∼ U(0.25, 2), LX ∼ U(2.52 × 10−4, 2.52 ×
10−2), and the launch radius from a binomial distribution Rin ∼

B(1, 0.5), corresponding to the fast32 and slow64 winds. For
each spectrum, we have corresponding µ values of 0.025 to 0.975
in steps of 0.05. Figure 6 shows the fractional offset of the predicted
from the ground truth spectra,

fractional error =

∣∣∣∣∣ ŷ − y
y

∣∣∣∣∣ . (6)

The fractional error is in most cases smaller than the noise on the
simulated spectra, and we find no bias with respect to any particular
parameter. Typical errors are of per-cent level across the entire
energy range (Figure 7), although a non-negligible error is seen in
the 7–8 keV band, corresponding to Fexxv–xxvi transitions in both
emission and absorption.

To investigate the influence of the fractional error in the 7-8 keV
band on the parameters (Figure 7), we take take the fractional error
on the flux values at from the test simulations at 8 keV. We order the
error values and take the parameter set corresponding to the 70%,
75%, 80%, 85% and 90% error value as shown in Figure 8. From
these 5 parameters sets we emulate spectra using xrade and create
CCD observations, by using the XMM-Newton EPIC-pn response
and background files corresponding to the PDS 456 ObsCD obser-
vation in 2013 (see section 4), between the 0.3–10 keV energy range
(i.e., the XMM-Newton band-pass), using xspec. The observation is
then fit using theMCRT tables. The parameters are generally well
recovered despite the differences between the MCRT tables and
xrade. We find that the recovery of µ is the only parameter that is
affected by the uncertainty on the Iron K band pass. This parameter
is the one that affects the shape of the spectral features the most (see
AppendixA1).

The fractional error seems to increase, not as severely, at en-
ergies corresponding to other wind features e.g., Oviii, Nex, and
Sixiv. The network could benefit from training data with more
spectral points in these regions, and ideally a more finely sampled
grid of parameters (see section 5). In particular, in the near future,
we also aim to re-generate steps for the fast32 and slow64 grids
in linear (rather than log) space for the LX and Ṁw parameters.
This will likely increase the accuracy of mapping these parameters
through the emulator and this could be especially important in train-
ing the emulator at the higher Ṁw range, which is currently more
sparsely sampled in logarithmic space. As a consequence, this may
also reduce the fractional error seen over the ironK band-pass in
Figure 7.

This test demonstrates that not only are we able to use the
emulator for parameter values within the training range, but also
on parameter values that lie between points on the simulated grid.
The trained emulator can predict spectra for a particular parameter
set in ∼ 0.04 seconds in comparison to ∼2–3 hours when using the
MCRT pipeline, which allows us to emulate finer grids of models
more efficiently. In this light, we test whether the predictions of
our emulation process are able to reproduce a true (or ground)
spectrum.We then compare themwith spectra arising from standard
interpolation between grid values, which is normally occurring in
X-ray fitting packages such as xspec. For this test, a true spectrum
can be selected from any of the 17, 280 available test spectra. We
chose two test cases in Figure 9, one (upper panels) where there is
one free wind parameter (µ) and one where two parameters (µ and
fv) are varied (Figure 9, lower).

For the 1D test we considered the case where the true spec-
trum has the following parameters: xtrue = [Γ = 2.0, Ṁw =

0.257, fv = 1.0,LX = 2.52 × 10−4, µ = 0.625,Rmin = 64 rg].
Here the 1D (panel A, upper-left Figure 9) interpolation (blue) be-
tween µ = 0.575 and µ = 0.675 (to order to reproduce a real
value of µ = 0.625). Here the interpolation does a reasonable job
in reproducing the true spectrum with the following conditions:
xtrue = [Γ = 2.0, Ṁw = 0.257, fv = 1.0,LX = 2.52 × 10−4, µ =

0.625,Rmin = 64 rg] (orange), but underestimates the profile depth.
The emulated true spectrum plotted in panel B (blue) is better at re-
producing the depth of the absorption trough at∼ 8 keV, but slightly
worse at estimating the higher-order transition at ∼ 8.3 keV. Over-
all, both methods reasonably predict the true spectrum between
5–12 keV.

In examples C and D we compare a 2D interpolation (i.e.,
two parameters of interest) between µ = (0.575, 0.675) and fv =

(0.75, 1.25) to respectively reproduce µ = 0.625 and fv = 1.0. In
this scenario it is much harder for the interpolated spectrum to
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Figure 5. Randomly chosen examples of 12 ground truth spectra (orange) out of the 17, 280 available from the test data (10% of total) with the corresponding
emulated predicted spectra (blue). Note the ANN had not seen the spectra from the test set (10% of the total) during training. The input parameters corresponding
to {Γ, Ṁw, fv, LX, µ, Rmin = 64 rg (0.0) or 32 rg (1.0)} are listed above each plot.

Figure 6. Histogram of absolute fractional error of the emulated spectra on
the 2000 additional simulations.

reproduce xtrue as these parameters produce both a shift in energy
and depth simultaneously. Clearly the interpolated spectrum fails
to reproduce the true spectrum. On the other hand the emulated
spectrum is a closer match to xtrue (panel D). It is worth noting that
any interpolation issues in Ṁw nor LX are not as dramatic, given
that they are mainly affecting the profile depth and do not tend to
produce a shift in energy between the points.

Figure 7. Fractional error on flux at different energies for the 2000 additional
test simulations from 0.1–511 keV. We show 68%, 90%, and 95% of the
sample.

4 OBSERVATIONAL DATA: FITTING THE POWERFUL
DISK-WIND IN PDS456 WITH XRADE AND FAST32

The generated xrade spectra are tabulated into fits files and can be
used as multiplicative grids within xspec. In this section we want to
compare the overall performance and reliability consistency check
of ourMCRT andxrade tableswith real CCDdata. we alsowant to
check and compare them in the the ability predicting values between
the grid points.

As a test case we consider the ‘prototypical’ (andmost studied)

MNRAS 000, 1–?? (?)



10 Matzeu et al.

Figure 8. The fractional error on individual parameters fit using theMCRT
tables based on 5 different spectra generated from xrade with increasing
fractional error at the 8 keV band (x-axis).

disk-wind hosted in the luminous quasar PDS 456. A large monitor-
ing campaign, covering 6months, was carried out between 2013 and
2014 and consisted of five joint XMM-Newton and NuSTAR obser-
vations (ObsA–ObsE) of ∼ 100 ks each. During these observations,
a prominent and persistent P-Cygni profilewas revealed (N15). Such
a feature is characterized by the combination of a broad emission
and absorption profile, where the former is produced by scattered
photons off the wind averaged from all angles and the latter from
transmitted photons through the material. ObsC and ObsD were
separated by only ∼ 3 days, so their spectra were virtually identical.
As per N15, we subsequently combined them into a single ObsCD
observation resulting into a total net exposure time of 195 ks, show-
ing a P-Cygni feature of unprecedented quality. The XMM-Newton
and NuSTAR data considered here are the EPIC-pn (Strüder et al.
2001) and FPMA+FPMB (Harrison et al. 2013), respectively and
they are reduced following the procedure presented in N15.

From what was discussed in subsection A2, the initial setting
of Rmin has a direct impact on the range of outflow velocities that can
bemeasured (see Equation 1). In this paper we chose fast32 for our
comparison with xrade. Note that fast32, was initially generated
based on the range of velocities observed in PDS 456 (Matzeu et al.
2017; Reeves et al. 2018, e.g., vout/c = 0.25 − 0.35) since its first
detection with XMM-Newton in 2001 (Reeves, O’Brien & Ward
2003). On the other hand, by following the same prescription in
subsection A2, slow64 was successfully applied in modelling the
powerful disk-wind observed in the Seyfert 2 galaxy MCG–03–58–
007 (Braito et al. 2022).

In Figure 10, we show the unfoldedXMM-Newton andNuSTAR
spectra of PDS 456 (ObsCD) between 2–40 keV against a simple
Γ = 2 power-law. Once the continuum (cyan) is accounted for, there
are strong residuals in the FeK region that correspond to the P-Cygni
feature. From a visual inspection the centroid energies are located at
Erest,em ∼ 7 keV and Erest,abs ∼ 9 keV for the emission and absorption
component, respectively. The model in xspec is expressed as:

Tbabs×pcfabs× (powerlaw×highecut)×xrade (or fast32),

(7)

where Tbabs is the Galactic absorption of NGal
H = 2.9 × 1021 cm−2

(Reeves et al. 2021). To model the soft X-ray spectral curvature we
adopt a layer of neutral partial covering (pcfabs in xspec) with
NH = 7.9+2.1

−2.5 × 1022 cm−2, and covering fraction of Cfrac = 0.37+0.05
−0.02.

Table 2. Customized xrade model values and ranges used for PDS 456
ObsCD.

Parameter value range ∆ value Steps

Γ 1.6–2.4 0.1 9
Ṁw 0.05–0.65 0.05 13
fv 0.25–2.0 0.097 19
LX (0.05–1.5)×10−2 9.7×10−4 16
µ 0.2–0.9 0.05 15
Rmin 32 rg – –

Number of emulated spectra: 533, 520

A high-energy rollover (highecut) fixed at Ecut = 100 keV was
also adopted and a cross-normalization factor between the XMM-
Newton and NuSTAR detectors was measure at Ccal = 1.10 ± 0.02.
For this test, we generated a customized xrade grid with the values
tabulated in Table 2.

Fitting the P-Cygni profile with xrade yielded a mass outflow
rate of Ṁw = 0.318+0.014

−0.046, i.e. about 30% of ṀEdd. In PDS 456,
with MBH ∼ 109 M� and LEdd ∼ 1.3 × 1047 erg s−1, then ṀEdd ∼

40 M� yr−1 for η = 0.06, Ṁout ∼ 10 M� yr−1. The X-ray ionizing
luminosity is LX = 0.272+0.090

−0.061 × 10−2 or ∼ 0.3% of LEdd , i.e.,
L2−10 keV ∼ 4.0 × 1044 erg s−1. By comparison, the directly observed
intrinsic 2–10 keV luminosity is of the order of ∼ 5 × 1044 erg s−1

and hence consistent with the xrade predicted value, see Table 3.
A line-of-sight orientation angle of θ ∼ 50◦ (i.e., µ = 0.63+0.01

−0.02) with
respect to the polar axis is required, suggesting that the sight-line
fully intercepts the innermost and fastest wind streamline, hence
explaining the prominence (and high degree of blueshift) of the
P-Cygni feature. The terminal velocity parameter was measured at
fv = 1.33+0.03

−0.04 and, as xrade was generated by assuming a launch
radius of Rmin = 32 rg, this translates into a terminal wind velocity
of v∞ = −0.33+0.01

−0.01c.
Note that the input photon index of the xrade model is tied to

the powerlaw continuum at Γ = 2.19+0.05
−0.02. The addition of xrade

resulted in a large improvement on the fit statistics by ∆χ2/∆ν =

−231.4/4 (> 99.99%), for an overall best-fit χ2/ν = 655.3/682. We
subsequently replacedxradewith ourMCRT generated fast32 in
Equation 7. We find that both fits are excellent and almost identical
with χ2/ν = 659.7/682 (see Figure 10 (bottom right). During the
fitting procedure inxspec, the ‘delta’ value parameter has been set to
be 0.001 (via the xset command) so that a like-for-like comparison
could have been achieved between xrade and fast32. Moreover,
the same best-fit values were returned when restoring the original
fixed delta values of the model (i.e., via the command xset delta
0.0)

The values are largely consistent with xrade, as shown in
Table 3. This initial consistency test demonstrates that both phys-
ical models provide an excellent fit to the P-Cygni like profile in
PDS 456 and that xrade is able to reproduce the results obtained
by the MCRT grid. Note that errors measured in both grids are
indeed similar due to CCD spectral resolution of the data which il-
lustrates that, at the resolution of the data, xspec interpolation upon
theMCRT table models achieves an equally adequate parameter-
ization of the data as per the emulated xrade tables. However the
limitations of the former and over-reliance of interpolation is more
likely to have a significant impact for calorimeter resolution spectra,
which we further discuss below.

In Figure 11we show three simulatedAthena/X-IFU resolution
(i.e., 2 eV at 6.4 keV) spectra using the high-resolution disk-wind
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Figure 9. A comparison between interpolated spectra, normally produced in xspec, and those predicted by our trained ANN. Top row: in panel A we show the
true spectrum of xtrue = [Γ = 2.0, Ṁw = 0.257, fv = 1.0,LX = 2.52 × 10−4, µ = 0.625,Rmin = 64 rg] (orange) and the spectral prediction using interpolation
between µ = (0.675, 0.575). Same in panel B, but the true spectrum is predicted by the emulator (blue). Panel C: same as panel A but with a 2D parameter
interpolation involving µ and fv (see text box). The resulting interpolated spectrum is not able to accurately recover the amplitude and shape of the spectral
lines. Panel D: the emulator is able to produce an accurate mapping of the ground truth spectrum.

grid (f32hires; see Parker et al. 2022a for details). f32hires was
aMCRT generated table to match the micro-calorimeter resolution
data of XRISM/Resolve and Athena/X-IFU with a total of 10,000
energy bins (i.e., with an energy resolution of∆E = 1.8 eV) between
0.1–20 keV. Due to its high CPU cost, f32hires is in a preliminary
stage and is limited to 2400 grid points, however it will be expanded
in the near future.

Here we keep all the parameters fixed (see caption) whilst
the changing the velocity factor parameter to fv = 1 (black),
fv = 1.25 (blue) and the interpolated value of fv = 1.15 (red) be-
tween the former two grid points. As expected, both the highly
ionized (i.e., FexxvHeα and FexxviLyα) absorption features are
prominent in both fv = 1 and fv = 1.25 spectrum, although more
blueshifted in the latter. The intermediate (interpolated) point seems
to generated a spectrum that is characterized by some hybrid set of
absorption feature caused by interpolation. The intermediate (in-

terpolated) spectrum at fv = 1.15 is characterized by a hybrid set
of absorption features caused by interpolation in energy space, be-
tween the fv = 1 and fv = 1.25 grid points. In fact such an issue is
already striking, unlike in the CCD resolution framework (see Fig-
ure 9), in the simplest 1D interpolation discussed in subsection 3.1.
A more detailed set of experiments will be performed and reported
on a following companion paper.

At this stage, the key contrast between these two tables is the
vast difference in the CPU time required to generate these grids. In
fact, to produce the 86, 400 synthetic spectra in fast32 required
an overall CPU time of ∼ 4 months on 600 cores at 50Gb RAM
(per core), against an impressive time-scale of ∼ 4 seconds for gen-
erating 533, 520 emulated spectra for the xrade table. Note that
our emulator has the flexibility to generate parameter ranges with
unprecedented resolutions within minutes.
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Figure 10. Top: Unfolded XMM-Newton (black) and NuSTAR (blue) spectra
(ObsCD) of PDS 456 (against a Γ = 2 power-law) between 2–40 keV with
the continuum onlymodel (cyan), xrade (red) and fast32 (green) superim-
posed. Bottom: The corresponding data/model ratio plots. Both models do
an excellent job in fitting the P-Cygni feature, of which they self-consistently
fit the broad emission (scattered/reflected component) and absorption (direct
component).

Figure 11. Three simulated micro-calorimeter resolution (i.e., 2 eV at
6.4 keV) spectra, using an high resolution fast32 grid, corresponding to
fv = 1 (black) and fv = 1.25 (blue). The remaining disk-wind parameters
are fixed to Γ = 2, Ṁw = 0.3, LX = 0.5 and µ = 0.625. The interpolated
spectrum between fv = 1 and fv = 1.25, corresponding to fv = 1.15 is
shown in red. Note the asymmetry of the profiles visible at high resolution
is a direct result of the acceleration of the gas along the streamline.

Table 3. xrade and fast32 model results for PDS 456 ObsCD. The un-
certainties are calculated at a 90% confidence level which correspond
to a ∆χ2/∆ν = 2.71/1. The power-law normalization is in unit of
photons keV−1cm−2 s−1 at 1 keV

Parameter xrade fast32

Γ 2.19+0.02
−0.05 2.21+0.05

−0.04
Ṁw 0.318+0.014

−0.046 0.243+0.056
−0.131

fv (v∞) 1.33+0.03
−0.04

(
−0.33+0.01

−0.01c
)

1.31+0.08
−0.04

(
−0.33+0.02

−0.01c
)

LX 0.273+0.090
−0.061 × 10−2 0.208+0.058

−0.130 × 10−2

µ = cos θ 0.629+0.010
−0.017 0.652+0.008

−0.022

log(NH/cm−2) 22.8+0.4
−0.4 22.9+0.4

−0.4
Cfrac 0.39+0.04

−0.04 0.37+0.03
−0.02

norm/10−3 3.2+0.05
−0.3 2.7+0.3

−0.2
Ccal 1.10+0.02

−0.02 1.10+0.02
−0.02

∆χ2/∆ν 655.3/682 659.7/682

4.1 Global parameter exploration

We sought to test the emulated parameter space created with
xrade via global parameter exploration. We use the same XMM-
Newton/EPIC-pn and NuSTAR PDS 456 datasets as described in
section 4 and an identical model setup. For the purposes of compar-
ing the different parameter spaces, we use the fast32 and xrade
table model as in Equation 7 (see Table 2). We employ the Bayesian
X-ray Analysis (bxa v2.10; Buchner et al. 2014) software platform
which connects the nested sampling algorithm MultiNest (Feroz,
Hobson & Bridges 2009) with the Xspec fitting environment. In
brief, nested sampling (see Buchner 2021 for a recent review) stores
a set of parameter vectors drawn from the prior distribution. The
lowest Likelihood parameter vector is iteratively replaced with a
new one of higher Likelihood, until some termination condition is
met. In this way, the algorithm scans the global prior-defined pa-
rameter space and is thus a useful tool for visually exploring and
comparing the multi-dimensional parameter spaces associated with
fast32 and xrade.

We assign uniform priors to all parameters apart from the
partial covering absorber column density and intrinsic power-law
normalisationwhichwere assigned log-uniform priors, and themul-
tiplicative cross-calibration constant which was assigned a custom
log-Gaussian prior with mean zero (i.e. a linear cross-calibration
of unity) and 0.1 standard deviation. This choice of prior is use-
ful for the cross-calibration to avoid negative values, whilst also
peaking close to unity (e.g., Madsen et al. 2017). The same 10 free
parameters were used in both models.

The result of the fits are shown in Figure 12 with grey and
blue contours for fast32 and emulated xrade tables, respectively.
Shaded regions represent the 2σ level, though note that the percent-
age of points encompassed by the 2D contours is not the same as in
the 1D histograms7. In general, the parameter space attained with
xrade appears tomatch the fast32 parameter spacewell with good
agreement within 2σ. The majority of individual posterior shapes
also show good agreement, indicating that the emulation process is
able to reliably map different regions of parameter space to spectral
space.

There are some parameters that have different posterior shapes,
e.g., µ. Disagreements between posterior shapes could indicate that
particular regions of the emulated spectral/parameter space require

7 See https://corner.readthedocs.io/en/latest/pages/sigmas.html
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more training data as input. Alternatively, even though both models
were fit with xspec, the emulated parameter grid of xradewas finer
than fast32, hence with the corresponding interpolation between
adjacent grid points performed over smaller parameter steps with
xspec. We note that the higher-resolution xrade table does not
necessarily mean that the confidence intervals should be smaller,
since the aim of the emulator is to reproduce the multi-dimensional
parameter space associatedwith the original fast32model as accu-
rately as possible. The ultimate limitation to the confidence intervals
is thus the data quality, since the emulated xrademodel was trained
on fast32 originally.

If the input training data was sufficient for the ANN to learn the
complex mapping process involved, posterior differences could hint
to alternative parameter estimation with emulation vs. interpolation.
However, since Ṁw, fv and µ have a very strong (and/or non-linear)
relation to the observed spectral shape of themodel, such parameters
are most likely to suffer from interpolation issues, suggesting such
parameters may require finer parameter resolution training grids in
particular. Nonetheless, testing future emulated xrade tables on
real data with bxamay be an efficient method to iteratively explore
and check the emulated parameter space in detail.

Figure 13 presents an alternative comparison between the spec-
tral fits performed with BXA in Section 4.1. A total of 500 poste-
rior parameter vectors from the fast32 (left) and XRADE (right)
model fits were loaded and over plotted with the unfolded spec-
tral data. The models found for each dataset (distinguished by the
cross-calibration) are plotted with the same colour in each panel
and shaded regions represent the overall 500 realizations. Clearly
the spectral shapes are very similar apart from a small difference at
∼8 keV, in agreement with Figure 7.

4.2 Other models

A model similar to xrade is defined and used in Hagino et al.
(2015) (MONACO: MONte Carlo simulation for Astrophysics and
COsmology), which is then subsequently applied in Hagino et al.
(2016a,b) to fit the disk winds in PDS 456, 1H0707–495 and
APM08279+5255. Here, the same bi-conical structure is used (see
fig. 3 in Hagino et al. 2015).MONACO separates the wind structure
into shells and then performs a series of xstar runs to ascertain
the ionization balance and the luminosity leaving and entering each
layer. The radiative transfer is then performed using the He-like and
H-like iron and nickel transitions along with Compton scattering.
This has the benefit of being less computationally expensive than our
disk-wind code, as the higher the number of lines which are tracked,
the more computationally intensive the simulation. Therefore, the
limited number of transitions allows a quicker exploration of the
parameter space. The argument for only tracking the highly ionized
species is that high-velocity winds are typically highly ionized.

However, lower ionization species can survive in thicker winds
and should be considered in a more general case. These lower ion-
ization species may be observed at lower energies, such as the lower
ionization lines observed in the XMM-Newton RGS data of many
AGNs. In PG1211+143 (Pounds et al. 2016; Reeves, Lobban &
Pounds 2018) and PDS 456 (Reeves et al. 2016, 2020) these soft
features appear to be physically associated with the highly ionized
outflow. These features may be studied in more detail in the future
by lowering the ionization in runs. This can be done by either low-
ering the source luminosity or increasing density through clumps
within the streamlines.

It is thus important to stress that the faster winds will not just
produce more highly blue-shifted lines, but also produce intrinsi-

cally broader line profiles, both in emission and absorption. While
in principle such profiles may be accounted for in other non-wind
scenarios (e.g. by absorption through a co-rotating disk atmosphere,
Gallo & Fabian 2011; Gallo et al. 2013; Fabian et al. 2020), in sec-
tion 4 we demonstrate that the broad P-Cygni like profile in PDS 456
can be self consistently modelled by our Solar abundance, fast32
and xrade table of models.

5 CONCLUSIONS AND FUTUREWORK

In this paperwe presented an improved version of the state-of-the-art
disk-wind model obtained from a Monte Carlo multi-dimensional
(2.5D) radiative transfer code initially developed by Sim et al. (2008,
2010). For this purpose, we generated two large MCRT tables,
slow64 and fast32, of 172, 800 synthetic spectra, covering amuch
wider parameter space (see Table 1) than previously presented (S08;
S10, Reeves et al. 2014; Reeves & Braito 2019). These will allow
us to explore the physical conditions that characterize the accretion
disk-winds across a wide range of sources, as our measurements are
black hole mass invariant. As mentioned above, slow64 has been
already applied to MCG–03–58–007 (Braito et al. 2022), and the
fast32 will be applied to all the PDS 456 data from 2001-2019
(Reeves et al. in prep).

We also presented the development and implementation of a
novel emulator based on a purposely built ANN: X-Ray Accretion
Disk-wind Emulator (xrade). The method developed here works as
follows. From the availableMCRT generated spectra, we fed 80%
(or 138, 240 spectra) into the ANN. A further 10% (17, 280) are used
for validation and the remaining 10% are exclusively kept for testing
the emulated spectra. Our emulator is not only able to reproduce the
slow64 and fast32 synthetic spectra, which required a total of ∼ 8
months (600 cores) to be generated, but also to emulate 533, 520
spectra (see Table 2) within a 4-minute timescale, i.e. ∼ 5 orders of
magnitude faster, with an average mean square error of just 1.4%.

After the training and validation process, our built ANN can
emulate synthetic MCRT spectra well within 10% accuracy. As
far as using xrade in xspec, we are able to successfully produce
finer tables than slow64 and fast32 as long as they are within
the parameter boundaries set in the MCRT tables. Any user can
easily build a fully customized xrade multiplicative table that will
be suitable for spectral analysis in xspec. A future test is, however,
to explore whether a coarser and wider parameter grid can be used
in order to localize regions of the parameter space to an acceptable
level of precision, via e.g. the bxa process and error searches. Once
the parameter space is mapped, then finer grids can be adopted.

We note that a finer xrade table would still be susceptible
to xspec interpolation issues. Our foreseeable goal is to exploit
the ANN impressive emulation rate to be directly implemented in
the fitting procedure. We aim at eventually bypassing interpolation
based fitting programs such as xspec, as well as grid development,
and use xrade in the likelihood calculations for parameter inference
in a Bayesian model. One solution is to integrate xrade into the
publicly available Bayesian software e.g., 3ml8. The advantage of
such an approach is that we will be able to obtain more accurate
parameter estimates and their full posterior distributions, all the
while taking into account any principled prior information about
the source.

8 https://threeml.readthedocs.io/en/stable/xspec_users.
html
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Figure 12. Corner plot showing the results obtained from fitting the XMM-Newton and NuSTAR spectra with fast32 (grey) and xrade (blue) using bxa.
Shaded regions show the 2σ confidence level.

The great advantages of xrade are the following: (a) it avoids
the need to rerun the initial time consuming ray tracing simulations,
speeding up, in turn, the process of generating new spectra or even
grids; (b) ourANN allows the user to generate fully customisedxrade
tables at the user’s specific requirements; (c) it produces very large
xrade tables, e.g., with much finer steps, over a much shorter com-
putational timescale, i.e., seconds–minutes; (d) it greatly mitigates
interpolation issues within xspec between coarse grid points, while
maintaining numerical accuracy to the 1% level (see Figure 10); and
finally, (e) the emulation process can be applied to a large variety
of models (see text below) and can be easily implemented directly
into Bayesian inference pipelines.

We presented a test case by applying xrade and fast32 to
PDS 456, which hosts one of the most powerful, persistent accre-
tion disk-winds. We specifically tested xrade on the combined
XMM-Newton and NuSTAR 2013 September 17–21 observations of

PDS 456, as the X-ray spectrum is characterized by the best-quality
P-Cygni feature observed to date, and compared the results with
those from fast32. We found that both xrade and fast32 return
an excellent fit to the data, providing measurements of Ṁw, LX,
fv, µ and Γ with < 10% discrepancy. We demonstrated that xrade
provides an excellent fit to the P-Cygni profile in PDS 456.

The best-fit values measured with both fast32 and xrade
are loosely consistent with N15; in particular the Ṁw is a factor of
∼ 3 smaller than in N15. This difference can be simply attributed
to an assumed launching radius being a factor of ∼ 3 larger i.e.,
Rmin = 100 rg = 1.5× 1016 cm than here. It is important to note that
since Rmin is not yet a free parameter but fixed a priori, the ‘true’
mass outflow rate maintains a certain degree of uncertainty. For this
reason, in future work it is our priority to make Rmin a measurable
parameter in xrade, as well as to further explore the wind thickness
(Rmax/Rmin) or even a variable d parameter (i.e., changes the wind

MNRAS 000, 1–?? (?)
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Figure 13. Unfolded model realisations from the bxa fits with the original fast32 (grey) and xrade (blue) multiplicative table models. The data adopted here
are the same as per Figure 10.

opening angle). Note that another source of discrepancy for Ṁw

can be also attributed, on a lower extent, to the assumed accretion
efficiency value of η = 0.06 here w.r.t. that in N15 (i.e., η = 0.1).

The extended energy band from 0.1 keV up to 511 keV was
adopted as in S10 in order to allow a comparison with observational
measurements from future instruments with a significant effective
area at relatively high photon energies, > 100 keV. However, as
such a milestone has not been achieved yet, a possibility for the
near future would be to restrict the energy range of the calorimeter-
resolution grids, so to optimize computational time and parameter
space sampling over the region where this is most relevant (espe-
cially for covering the FeK region).

At present, the major difference between xrade and disk-wind
tables (slow64 and fast32) generated through a ‘standard’ X-ray
tracing method is the enormous difference of CPU time involved
in the process. To emulate one single spectrum we require a CPU
time of 4.9× 10−5 seconds, against 10–50 minutes (∼ 60 eV resolu-
tion) or 2–3 hours for (2 eV resolution). We also used bxa to per-
form a global exploration of the parameter spaces associated with
the original fast32 and finer xrade tables whilst fitting PDS 456
(subsection 4.1). We find good agreement between the overall best-
fitting parameter contours, as well as individual posterior distribu-
tion shapes (see Figure 12), indicating that the ANN is able to learn
the complex mapping between parameter space and spectral space.
Global parameter exploration algorithms thus represent a powerful
tool to iteratively test the accuracy of emulation-based table models
in the future.

Although xrade is already a powerful alternative model to the
computationally expensiveMCRT simulations, there is still much
room for improvement. Most notably, the increase in fractional er-
ror seen in the FeK band will be improved by introducing finer
sampling in the training process. Currently our training set is based
on simulated spectra generated from a grid of parameters, however
ideally we would train from spectra that have parameter values that
are randomly sampled across the chosen parameter range. Using a
random parameters allows the network to better map the domain and
parameter space in comparison to the grid of parameters. Analogous
to this, is the extensive research that has shown that random search

is superior over grid search methods for hyper parameter turning
of machine learning algorithms (see e.g. Bergstra & Bengio 2012).
Any future work must allow for a sampling of µ and, most impor-
tantly, Rmin values, so that a more accurate energetics and eventually
the launching/driving mechanism involved in the disk-wind can be
can be achieved. The real power of the emulation method is that the
implementation of our ANN will undoubtedly be an indispensable
tool in anticipation of future X-ray detectors, such as the micro-
calorimeters on board XRISM and Athena. Our emulation method
will not be only restricted to the development of xrade, but it will be
implemented in other windmodels, such as magneto-hydrodynamic
(e.g., Fukumura et al. 2010) and WINd Emission (WINE) models
(Luminari et al. 2020). This tool can be also applied to non-wind
models and beyond X-ray astronomy studies.
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7 DATA AVAILABILITY

fast32 and slow64 will be publicly available on https://
gabrielematzeu.com/disk-wind/. xrade models will be ini-
tially available on request to the authors and the xrade genera-
tor will be publicly available in the foreseeable future. All XMM-
Newton and NuSTAR data used in this work are publicly available
from the corresponding archives.
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APPENDIX A: SPECTRAL PROPERTIES OF THE
DISK-WIND

A1 Influence of geometry on the disk-wind features

In theMCRT code, the photon packets are collected into 20 inclina-
tion bins and then processed into 1000 energy bins. The observer’s
line-of-sight inclination (θ) is measured with respect to the polar
z–axis. Each angular bin is defined by µ = cos θ and determines the
degree of line-of-sight interception through the wind. In both tables,
the angular bins cover the range 0.025 < µ < 0.975 in 20 incremen-
tal linear steps of ∆µ = 0.05. As the geometric framework assumes

Figure A1. Dependence of the line-of-sight column density on the viewing
angle bins for a given Ṁw = 0.4 in fast32. Along a line-of-sight with
θ < 45◦ the wind does not intercept the line of sight to the X-ray source
so the column density is approaching zero, although the observed spectrum
is modified by photons scattered into the line of sight. The column density
increases for θ & 45◦ as the line of sight becomes more edge-on. The dashed
red line represents one Compton depth, corresponding to NH = 1/σT =

1.5 × 1024 cm−2, where the flux is suppressed to 38% of the unattenuated
flux.

a flow with an opening angle of 45◦, the observer’s line-of-sight
does not directly intercept the wind when θ < 45◦, or µ & 0.7. In
such a scenario, the corresponding spectra will be dominated by a
reflection component via photons scattered off the wind (see Tatum
et al. 2012 for examples of fitting the wind spectra to the ironK
emission profiles of bare Seyferts). Conversely, at high inclinations
(µ . 0.7), the line-of-sight intercepts the wind and, consequently,
blueshifted absorption features, as well as scattered emission, will
be imprinted on the spectra.

Depending on the range of the angular bin, the inclinations
can be denoted as: low (polar; θ = 0–45◦), intermediate (wind fully
intercepted; θ = 45–66◦), and high (edge-on or equatorial; θ = 66–
90◦). The different sight lines, from each angular bin, intercept
material with increasing column densities (or optical depth). Fig-
ure A1 illustrates how the column density of the obscuring medium
(for a given Ṁw = 0.4 i.e., 30% of ṀEdd in fast32), rapidly reaches
the optically-thick regime (i.e., NH = 1/σT = 1.5× 1024 cm−2) with
increasing θ. The boundary at the opening angle θ = 45◦ would
unavoidably create some discontinuity regions in the simulations.

In Figure A2 we show the output spectra from the different
inclination ranges indicated above, where the total, direct (or trans-
mitted), and scattered/reflected spectral components are denoted in
black, red, and green, respectively. Specifically, at low-inclination
e.g., θ ∼ 30◦ (left), the line-of-sight does not intercept the wind,
so the transmitted spectrum (red) is unaffected by the medium. The
total spectrum (black) is dominated by the primary continuum and
is supplemented by the scattered/reflected component (green) from
the wind material. Distinct features such as the ‘Compton hump’
(peaking at 20–30 keV ) and FeKα emission at∼ 6.4 keV (blurred by
the Doppler shifts within the flow) are prominent. At intermediate
values, θ ∼ 50◦ (middle), the line-of-sight intercepts the outflowing
Compton-thick material with NH ∼ 2 × 1024 cm−2. The scattered
component is similar to before, however the direct continuum is
now suppressed by the obscuring medium with absorption features
imprinted on the spectra. At high inclinations, θ ∼ 75◦ (right), the
scattered emission dominates over the transmitted component as the
line-of-sight is intercepting material with NH ∼ 5 × 1024 cm−2 (see
Figure A1), corresponding to a Thomson (or Compton) depth of
τ ∼ 3.

The difference in shape and centroid energy of the absorption
profiles, as seen in Figure A2 (centre and right), reveals how the
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FeK strength and degree of blueshift are strongly dependent on
both the wind opening angle and the line-of-sight orientation. In
fact, at intermediate inclination, the centroid energy is measured at
∼ 8.2 keV (centre), whilst at high inclination, the line is centred at ∼
7.2 keV (right). In other words, as the viewing angles progressively
become polar the shift in velocity of the profile increases. Such
variation arises from the line-of-sight projection of the velocity
vector (see Fig. 6, S08).

A2 Influence of the launch radius on wind features

The overall shape of the FeK absorption profile in the simulated
spectra changes upon the choice of the launch radius Rmin and thick-
ness of the flow ∆R. In Figure A3 we show the broadband simulated
spectra for the slow64 and fast32 grids with fine-tuning velocity
factor parameter fixed at fv = 1. We find that:

(i) the effect of Rmin on the terminal velocity, and thus the degree
of blueshift of the profiles, is larger at smaller radii;
(ii) thewidth of the absorption lines depends on the range of the ve-
locities intercepted. Broader profiles are thus naturally reproduced
for faster (inner) winds – due to both the larger range in terminal
velocity and the wider shear of velocities intercepted along the flow
up to v∞ (see AppendixA3);
(iii) an inner, faster wind has a greater opacity as its ∆R (in rg) is
smaller, thus the density is higher for any given Ṁw.

A3 Calculation of Wind velocity

A prescription that stipulates the rotational velocity at every point
in the wind, following the parameterization of Knigge, Woods &
Drew (1995), was included in the S10 code. It is assumed that the
specific angularmomentum is conserved by the outflowing ‘packets’
of matter about the polar z–axis. At the base of the wind streamline,
the angular momentum of the packets is assumed to be Keplerian
for the radius at which the streamlines cross the xy–plane. Thus the
rotational velocity is solely defined by choosing the wind geometry
and black hole mass of the source.

The outflow radial velocity, which points away from the focus
point of the wind d (see Fig. 1), is:

vl = v0 + (v∞ − v0)
(
1 −

Rv

Rv + l

)β
, (A1)

where l is the distance along thewind streamline, andRv is the veloc-
ity scale length (set to be equal to Rmax), which defines how far the
packet of matter has travelled before reaching halfway of the termi-
nal speed in the streamline. The β exponent governs the acceleration
rate and is usually set to 1 due to difficulties in constraining it with
the X-ray data currently available. The initial velocity v0 is set to 0,
given that v0 � v∞. Variations in the Rv and β terms in Equation A1
can result in a change of the width of the simulated wind feature
profiles. Reducing β would increase the red-wing of the absorption
feature, as the material would take longer to accelerate to v∞. On
the other hand, by reducing Rv, the packet of matter would travel
a shorter distance along the streamline before v∞ is reached, hence
reducing the red-wing. Additionally, the presence and strength of a
red-wing characterizes the probability of observing slower packets
of matter along a given streamline.

A4 Mass density

Thewind is assumed to be smooth and in a steady state, and it can be
characterized by amass-loss rate Ṁout which corresponds to the total
mass present within the flow. The local mass-loss rate per unit area
as a function of R is defined as dṁ/dA ∝ Rκ. In these simulations
the mass-loss exponent is set to κ = −1 (default value) which falls
within the range expected in a continuous large-scale radial outflow
i.e.−1.3 < κ < −1 (Behar 2009). The integral of dṁ/dA has to equal
the total mass-loss rate, such that Ṁout = 4π

∫ Rmax

Rmin
(dṁ/dA)Rd(R).

Thus,

dṁ
dA

=
Ṁout(κ + 2)

4π[Rκ+2
max − Rκ+2

min]
Rκ. (A2)

A decrease of the mass-loss parameter has the effect of making the
mass within the flowmore centrally concentrated. The mass density
for a given cell is ρ = dm/dV , the unit volume is dV = vldtdA,
where vldt is the distance travelled by a packet of matter at velocity
vl along the streamline. By combining these terms, the mass per
unit volume is:

ρ =
1
vl

dṁ
dA

. (A3)

The above expression suggests that the mass density falls off
faster than what is expected in Equation A2 at κ = −1, as the
wind accelerates up to v∞. Such occurrence can be seen in Fig-
ure A4 where the mass number density at R = 103 rg and 104 rg

is log(ρ/g cm−3) = −17.6 and log(ρ/g cm−3) = −20.1 respectively
i.e.,∆ log(ρ/g cm−3) = −2.5. Thus themass density falls off quicker
than what would be expected from the mass loading Equation A2
at κ = −1 due the effect of the increasing velocity vector of the flow
along the stream lines.

APPENDIX B: NETWORK PARAMETERS

In a Feed-Forward Neural Network framework the number of train-
able parameters (Np) is derived from the number of connection in
between each layer plus the number of biases in each layer. Each
dense layer contains one bias per neuron, so we have a total of 3000
biases. A general expression can be written as

Np =

n∑
k=1

NHk NH(k−1) + NHk (B1)

where n is the number of dense layers, NH0 is the number of inputs
to the neural network. In our case n = 3 and NH0 = 6. Each of of the
3 dense layers H1,H2 and H3 have 1000 neurons each so we have
Np = (6 × 1000 + 1000) + (1000 × 1000 + 1000) + (1000 × 1000 +

1000) = 2, 009, 000.
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Figure A2. Simulated fast32 spectra between 5–12 keV with given Ṁw = 0.5, LX (%) = 0.2 and fv = 1.0 corresponding to low (left; µ = 0.875, or θ ∼ 30◦),
intermediate (centre; µ = 0.625, or θ ∼ 50◦) and high-inclinations (right; µ = 0.275, or θ ∼ 75◦). The total spectra (black) and their respective direct (red) and
scattered (green) components are shown. Low inclinations: as the line-of-sight does not intercept the wind, the resulting spectrum is dominated by scattered
photons from the inner edge of the flow, leading to the broad FeK emission feature peaking at E ∼ 7 keV. Intermediate inclinations: as the line-of-sight fully
intercepts the wind, deep absorptions e.g, from Fexxv–xxvi, as well as broad emissions are imprinted on the spectra. High inclinations: at nearly equatorial
line-of-sight orientation, the total spectrum is dominated by the scattering component whilst the primary continuum is heavily suppressed by the Compton-thick
material at the base of the flow. Such orientation would lead to a broad, shallow absorption feature in the spectra.

FigureA3.Left: Total broadband simulated spectra shown in the 0.1–100 keV band, with a given µ = 0.625, corresponding to launch radii ofRmin = 64 rg (black)
and Rmin = 32 rg (red). Right: Zoom on the FeK region. Regulated by the assumptions on Rmin, a velocity shift is observed in the synthetic spectra, whereby the
black one (Rmin = 64 rg) is slower than the red one (Rmin = 32 rg). This is a natural consequence of the velocity along the streamline, which scales directly with
the escape velocity at the base of the flow. As the terminal velocity v∞ = fv

√
2/Rmin( rg) c is affected by both Rmin and fv (or an effective Rmin ∝ f 2

v ), in our
simulations we kept fv = 1 for clarity. Additionally, with a given mass outflow rate (Ṁw = 0.5) and ionizing luminosity (LX = 2× 10−3, i.e., L2−10 keV = 0.2%
of LEdd), the fastest wind spectrum (red) is overall more attenuated and with stronger line depths than its counterpart. The innermost winds have a larger column
density as a consequence of the observer’s line-of-sight crossing a larger portion of the wind than the outer flows (see AppendixA4).
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Figure A4. Colour map of an example model run showing the distribution
of the mass number density through the wind cells which falls offwith radius
as a function of R(κ=−1). The corresponding density values in log scale, are
shown in the colour bar in units of g cm−3. The x-axis represents the disk
plane while the z-axis is along the rotational axis. Both axes are in units of
gravitational radii.
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