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In the first part of the article, I review and discuss the pioneering contributions of the 

late Alastair Scott and T.M.F Smith to time series analysis of repeated survey data. In 

the second part, I review and discuss some of the extensive theoretical and applied 

developments in this area, emerging from their work over the ensuing 40 years or so. 
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1. Introduction 

Most of the population and business surveys carried out by Statistical Bureaus all over 

the world are repeated over time at regular time intervals between them, such as every 

month, quarter, or annually. In some surveys a new sample is drawn every time the 

survey is carried out, but very often, the samples taken at the different times are 

partially overlapping, whether by design, or because the same sample is intended to 

be always surveyed, but some of the units drop out and others join the sample instead. 

The result of this process is a sequence of estimates, published regularly, forming a 

genuine time series. Familiar examples include employment and unemployment rates 

from Labor Force Surveys, mean income (or income inequality) estimates from 

Household Expenditure Surveys, and industrial production or trends of production from 

Business Surveys. 

 

Classical survey sampling theory considers the unknown population values of a target 

variable as constants, basing the inference solely on the randomization distribution, 

implied by the random sample selection, as defined by the sampling design. See, e.g., 

Cochran (1977, Sections 12.10-12.13) and Binder and Dick (1989) for review of the 

main results of estimation of population means from repeated surveys under this 

theory. A fundamental paper of this approach is of Patterson (1950). The author 

considered the case of partially overlapping samples with exponentially decaying 

autocorrelations between observations relating to the same sampled units. With some 

additional assumptions, Patterson (1950) derived the Minimum Variance Linear 

Unbiased Estimators (MVLUE) of the population means for the current time point, 

previous time points and for the change between two successive time points.  

 

The pioneering contribution of Alastair Scott and Fred Smith (hereafter S&S) to 

inference from repeated surveys was to consider the unknown target population 

parameters such as means, proportions, etc. as realizations of a stationary time series 

model, which evolves stochastically over time. Specifically, a model is assumed, which 

consists of two parts. The first part accounts for the statistical relationship between the 

sampling errors of concurrent estimators and past sampling errors, termed by S&S as 

secondary analysis, or between observations corresponding to the same unit at 

different points in time, termed by the authors as primary analysis. It is this part of the 

model that is used under the classical survey sampling inference approach described 

above. The second part of the model considers the target population parameters like 
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the unknown population means as an unobservable time series, although as shown in 

Section 2, the model underlying this time series need not be specified explicitly other 

than the assumption of stationarity, possibly after appropriate transformation such as 

differencing. 

 

Scott, Smith, and their colleagues (students) published their work during the seventies 

of the previous century and since then, the use of two-part time series models for the 

estimation of population parameters has developed in all kinds of ways and directions 

and is now routinely used by many statistical bureaus for the production and 

publication of their official statistics. In Section 2, I highlight the main contributions of 

S&S. In the remaining sections, I attempt to review some of the more recent 

developments emerging from their fundamental contributions. Due to space and my 

own time limitations, I was unable to review many other important developments and 

in particular, I do not review the many related studies under the Bayesian framework, 

an extremely important area on its own. 

 

2. Scott and Smith contributions to estimation from repeated surveys 

To introduce the idea, suppose that it is required to estimate the population mean, 
t

of a variable Y  at month t . Denote by 
tiy  the value linked to unit i  at time t .  

 

Blight and Scott (1973) consider the following explicit two-part model: 

      
2

( 1), 1( ) ; ( ) 0, ( ) , ( , ) 0,ti t t i t ti ti ti ti iy y E Var Cov t          − −− = − + = = =  , (2.1) 

      
2

1( ) ; ( ) 0, ( ) , ( , ) 0,t t t t t tE Var Cov t            −− = − + = = =  .             (2.2) 

It is also assumed that ( , ) 0t iCov   =  for all t  and  .  

Equation (2.1) defines the relationship between successive values associated with the 

same unit. A similar assumption is made in many of the studies under the classical 

sampling approach mentioned above, sometimes implicitly. Equation (2.2) defines a 

simple model for the evolution of the unknown population means over time, the new 

fundamental contribution to estimation from repeated surveys. Both parts of the model 

are autoregressive models of order 1 [AR (1)].  

Remark 1. Blight and Scott (1973) note the somewhat anomalous position under the 

classical sampling theory of assuming a time series relationship between the individual 
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observations 
tiy  at different times as in Equation (2.1), but not assuming a time series 

relationship between the population means of these observations. 

Blight and Scott (1973) consider the estimation of the population mean 
t  and the 

change 
1( )t t t   −= −  under the model (2.1)-(2.2), with added normality assumptions, 

based on all the data observed until and including time t . Assuming that all the model 

parameters are known, the authors derive efficient recursive algorithms for the 

computation of the estimators ˆ ˆ( , )t t   and their variances, distinguishing between 

matched observations with the previous sample, (units observed in both samples), 

matched observations with the next sample, and unmatched observations with both 

samples. Two other problems considered are the optimal matching proportion 

between two successive samples and the estimation of the unknown model 

parameters. 

Remark 2. Nowadays, the optimal estimators, their variances and variance estimators 

could be derived by writing the model holding for the matched and unmatched means 

in state-space form and applying the Kalman filter (Kalman, 1960), and the prediction 

error decomposition for maximum likelihood parameter estimation. See Binder and 

Dick (1989) and Section 3. The authors propose the use of moment estimators, stating 

that "there are no simple expressions for full maximum-likelihood or Bayes estimates." 

Smith (1978) mentions the use of the Kalman filter as a way for estimating the 

unknown population means recursively. 

S&S (1974) follow similar ideas, but recognizing that the individual observations are 

often unknown to the person analyzing the data, they model the relationship between 

the direct design-based estimators, denoted hereafter by {
tY }, which are assumed to 

be unbiased for { }t  with respect to the randomization (design-based) distribution 

over all possible sample selections, such that 
2; ( ) 0, ( )t t t t t tY e E e Var e s= + = = ; 

where ( )t t te Y = −  is the sampling error.  

An interesting observation made by the authors is that without modelling the 

relationship between the true population means, “if the samples are non-overlapping, 

the estimate of 
t  reduces to 

tY  and the previous estimates cannot improve this 

estimate. This implies wasting valuable information, considering that under normal 
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circumstances, the population means are expected to only change slowly over time.“ 

As illustrated below and throughout the paper, by modelling the relationship between 

the true (unknown) population means, this limitation is removed and efficient estimates 

of the current mean or changes in the means are obtained, employing all the direct 

estimates for all the times.  

Specifically, denoting ( ) 1( ,..., )t tY Y =Y , for non-overlapping surveys  

                   ( ) ( 1) ( 1) ( 1)( | ) ( , | ) / ( | ) ( | ) ( | )t t t t t t t t t t tf f Y f Y f Y f   − − −= Y Y Y Y           (2.3) 

and under normality assumptions, the best (optimal) predictor of 
t  and its variance 

are shown to be, 

                          
2 2ˆ ˆ ˆˆ(1 ) , ( ) ( ) (1 )t t t t t t t t t tY Y Mse E s      = − + = − = − ,                (2.4) 

where 
2

( 1)/ ( | )t t t ts Var Y −= Y  and ( 1) ( 1)
ˆ ( | ) ( | )t t t t tY E E Y − −= =Y Y . Notice that the 

variance 
2

ts  of the direct estimator 
tY  is reduced by the factor (1 )t−  by use of the 

estimator ˆt  and the reduction would normally increase as the sample size decreases. 

S&S (1974) propose to derive the estimates ˆtY  and ( 1)( | )t tVar Y −Y  by fitting standard 

time series models to the series ( )tY , such as ( , , )ARIMA p d q models, which permits 

also predicting future means  
t l +

 at time t , without specifying an explicit model for 

{ }t . No standard survey sampling theory exists when the surveys are not overlapping 

but the population means are random. 

Remark 3. S&S (1974) already advocate the use of time series models for improving 

the estimates in small subgroups, nowadays referred to as small area estimation. I 

return to this topic in Section 4.  

The estimator (2.4) is derived under the assumption of non-overlapping samples but 

in practice, repeated surveys are often partially overlapping, inducing correlations 

between the sampling errors ( )t t te Y = − . S&S (1974) consider the case where { }t  

follow an AR (1) model (possibly after differencing), and { }te  follows an (1,0,1)ARIMA

model, and derive the optimal estimators of t  and 1( )t t t   −= −  under the model for 

known model parameters. Simple estimates for the parameters are proposed, defining 

the corresponding empirical best predictors.  
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Jones (1980) considered the case under which the estimates at time t consist of a 

vector of elementary estimates, 
1 J( ,... )t t tY Y =Y , (estimates based on individuals joining 

and leaving the sample at the same time). Denoting ( ) 1( ,..., )t t
  =Y Y Y  and 

( ) 1( ,..., )t t  = , the author considers the general model, 

                                        ( ) ( ) ( ) ( ); ( , )t t t t t tX N E= + 0Y θ e e ,                                          (2.5) 

where 
tX  is a fixed matrix of 0's and 1's linking the estimates and the parameters, ( )t  

is assumed to be multivariate normal with zero mean and variance matrix 
( )t

  and 

( )te  is the vector of survey errors.  Using conditional arguments, it follows that 

    
( ) ( )

1 1 1 1 1 1 1

( ) ( ) ( ) ( )( | ) (X ) ; ( | ) (X )
t tt t t t t t t t t t t t tE E X X E Var E X 

− − − − − − − = + = +θ Y Y θ Y .     (2.6) 

The result (2.6) is quite general and it produces the current and smoothed estimators 

(of past means) in one run. However, it requires new computations at every time t, 

with inversion of matrices of increasing dimensions. As stated earlier, this problem is 

solved by use of state-space models with recursive filters. See Section 3. 

Remark 4. S&S (1974) comment that even with non-overlapping samples, it is difficult 

to update estimates of past values, 
t k −

 as new direct estimates become available but 

as shown below, Scott Smith and Jones (1977, hereafter SSJ) handle this problem.  

SSJ consider a general formulation by which the series { }tY  and { }t  are uncorrelated 

stationary processes. By fitting an ARIMA model to the series{ }tY , optimal estimators 

of the means{ , 0, 1,...}t l l + =   (the signals) and their mean-squared error (Mse) are 

derived by signal extraction techniques, as found in Whittle (1963). The respective 

theoretical formulae when the model parameters and the covariances 

( ) ( , )e t t jc j Cov e e −=  are known are quite complicated, and can be found in SSJ. (In 

practice, the unknown model parameters and the sampling error covariances need to 

be replaced by sample estimates.) Denoting by ˆ ( )t l  the optimal predictor of 
t l +

 at 

time t, the predictor has the attractive expression, 

                                               ˆ ˆ ˆ( ) ( ) ( )t t tl Y l e l = − ,                                                  (2.7) 
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where ˆ ( )tY l  is the predictor of 
t lY +

 at time t as obtained from the ARIMA model, and 

ˆ ( )te l  is the forecasted sampling error (the noise), obtained from the signal extraction. 

For non-overlapping surveys, ˆ (0)t  reduces to the estimator (2.4).  

Noting that for non-overlapping surveys ˆ ( ) 0te l =  for 0l  , by (2.5) ˆ ˆ( ) ( )t tl Y l =  and   

ˆ ˆ[ ( )] [ ( )] (0)t t eMse l Mse y l c = − . Perhaps more interesting is the case where it is 

desired to update the previous estimate, 1
ˆ (0)t − , as a new estimate, 

tY , becomes 

available. The updated (smoothed) estimate and its Mse are,   

       
2

1 1 1 1 1
ˆ ˆ ˆ ˆ( 1) (0) [ (0)]; [ ( 1)] (1 ) (0) (0)t t t t t e ea Y Mse c a c     − − −− = − − − = − − ,         (2.8) 

where 
1a  is the coefficient of 

1tY −
 when representing the model for { }tY  in the general 

form 
0 j t j tj
a Y 



−=
=  and (0) / ( )e tc Var = . Recall that any stationary and invertible 

model can be represented in this form. Comparing (2.8) with (2.4) shows the further 

reduction in the Mse from using the new estimate 
tY  at time t.  

Remark 5. All the results above are derived by fitting a time series model to the 

estimates { }tY , without specifying explicitly the model for the true means{ }t . As 

stated in the next section, modern applications of time series models to repeated 

surveys employ state-space models, which require specifying the model holding for 

the means { }t , but are more flexible and allow for further inference possibilities.  

Samples overlap if the units at any stage of the sampling process appear in more than 

one survey. For example, in two-stage sampling it may happen that some or all of the 

primary sampling units (clusters) are drawn by design in more than one survey, but 

new secondary (ultimate) units are sampled in each survey. There are many variations 

of such designs but in all the cases, the effect of overlap is that the sampling errors 

are correlated. Estimation of these correlations becomes complicated under a 

secondary analysis for which the individual observations are not available, requiring 

additional strong assumptions.   

SSJ (1977) consider the case where the sampled units are retained in the sample for 

at most 1q +  occasions, such that irrespective of the pattern of the sampling design, 

the sampling errors can be represented by a moving average model of order q  [
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( )MA q ]. This case covers in particular the multi-stage sampling designs mentioned 

above, yielding the following current, forecasted and smoothed estimators:  

                     

2 0 0

1 1

2 0 0

1

1 1 2 0

1ˆ (0) ( ) ,

1ˆ ˆ ˆˆ(1) (1) (1) (1) ( 1) ,

1ˆ ˆˆ( 1) ( 1) (0) [ ( 1)] ,

q q j

t t k e t jj k

q q j

t t t t k e t jj k

q

t t t t j e tj

Y a c j k

Y e Y a c j k

Y e a c j

 


 


  


−

−= =

− − −

−= =

+

− − =

= − +

= − = − + +

− = − − = − −

 

 



          (2.9) 

where, using previous notation, ( ) ( , )e t t lc l Cov e e −=  and the coefficients { }ja  are 

defined by the model representation 
0 j t j tj
a Y 



−=
=  with 

2 ( )tVar = . Recall that 

the residuals , 0,1,...t j j − =  are the one-step ahead prediction errors under the model 

fitted tor the observed series. For 0q = , the estimates (2.9) reduce to the estimates 

presented for non-overlapping surveys. SSJ (1977) discuss possible ways of 

estimating the covariances ( )ec l , depending on data availability.  

Remark 6. The theoretical results derived in the article are illustrated empirically with 

detail, by applications to real sample data.  

3. New developments following Scott and Smith contributions 

Since the pioneering work of S&S described in Section 2, the use of time series models 

for finite population estimation became a common routine in many statistical bureaus 

throughout the world, mostly for estimation in small areas for which the sample sizes 

are not sufficient to base the inference on classical survey sampling theory. In this 

section, I describe some of the main developments following S&S, focusing on the 

models used and estimation procedures applied. Due to space limitations, I shall not 

elongate much on technical details, which can be found in the references provided. 

 

3.1 Summary and extensions of SSJ results 

I start with results of Bell and Hillmer (1987,1989, 1990, hereafter B&H). Denote by 

( ) ( ) ( )( , , )N N NY e  the vectors of the observed estimates, the population means and the 

sampling errors for time 1,...,t N= , such that ( ) ( ) ( )N N N= +Y e . Assuming ( )( )NE = 0e  

and that ( )N  and ( )Ne  are stationary and independent, 

                          
( ) ( )( ) ( ) ( ) 1( ) ( ) ( ,..., ) ;
N NN N N N NE E E  = = =  =  +

Y
Y   .                (3.1) 
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Under (3.1), the minimum Mse linear predictor of ( )N  and its variance matrix are, 

       
( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ( ); ( )

N N NN N N N N N N N NVar E E E− −= +   − − = − 
Y Y

Y     .        (3.2)   

 

With added normality assumptions, (3.2) defines the conditional mean and variance 

matrix of   
(T) ( )
ˆ | TY  and it is easily shown to coincide with the estimator (2.6) derived 

by Jones (1980) in the special case, ( )N = 0 , 1J = , 
tX I=   and t N= , by employing 

the formula for the inverse of the sum of two matrices. B&H extend the results to the 

case where the series ( )TY  requires differencing to achieve stationarity and show the 

optimality of the estimators obtained in this case. Similar results have been derived by 

Jones (1980) , but without the optimality properties. B&H (1990) establish some other 

properties of the optimal results in (3.2); in particular, that the estimator 
( )
ˆ

N  is 

consistent under the joint distribution of ( )NY  and 
( )
ˆ

N , but that it is biased under the 

randomization distribution, when ( )
ˆ

N  is assumed to be constant.  

Remark 7. Following S&S (1974) and SSJ (1977), B&H obtain the expressions in (3.2) 

by use of signal extraction, without specifying a time-series model for 
( )
ˆ

N . B&H (1989) 

discuss the use of models for ( )
ˆ

N  and ( )Ne , putting them in state-space form and 

using the Kalman filter and smoother as an efficient way to obtain the predictors and 

their variances. See Section 3.2 for details. Pfeffermann and Tiller (2006) show that a 

model for ( )Ne  is not required and it is sufficient to account for the correlations of the 

sampling errors. 

 

Remark 8. Equation (3.2) assumes known ( )N  and variance matrices. In practice, 

any unknown parameter needs to be estimated from the available data, in which case 

the variances of the prediction errors when substituting the model parameters in (3.2) 

by their sample estimators ignore the contribution to the variance of the prediction 

errors from the use of the estimates, thus underestimating the true variances. 

Pfeffermann and Tiller (2005) established a bootstrap procedure, which yields the 

variance of the prediction errors to correct order when using estimated parameters. 

See also Bollineni-Balabay et al. (2017).  
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3.2 State-space models 

 

S&S fit ARIMA models to the survey estimates and obtain the estimates of the 

underlying population means by signal extraction. The big advantage of this approach 

is that the model holding for the means need not be specified. However, as discussed 

and illustrated by B&H (1987, 1989, 1990), simple models for the observed series 

cannot reflect non-stationarities in the sampling errors, such as sampling variances 

that change over time. Also, the use of a simple time series model for the observed 

series may imply an unreasonable model for the signal. In theory (although in extreme 

cases), the implied model for the signal could violate the requirement that the 

corresponding spectrum is non-negative at all frequencies. Signal extraction is often 

complicated and requires repeating the whole estimation process every time that new 

observations become available.  

 

For these reasons, an alternative approach adopted by several statistical agencies, 

(the Bureau of Labor Statistics- BLS in the U.S., Statistics Netherland, the CBS in 

Israel, and currently experimented in other countries), is to specify a model for the 

observed data given the population means, and a model for the population means, 

combine the two models in state-space form and then apply the Kalman filter (Kalman, 

1960) and a smoothing algorithm to obtain the required estimators and their Mses. As 

detailed below, one of the main advantages of this approach is that it enables 

computing the desired estimators and their Mses recursively, without having to refit 

the model every time that new data become available. In what follows I describe briefly 

the main steps of this procedure. The book by Harvey (1989) is an excellent reference 

for this modelling approach. 

  

The basic (linear) state-space model is defined as follows:  

Observation (measurement) equation, 

         
t t t tZ= + Y ; 

*( ) , ( ) , ( ) 0t t t t tE E E = =  =0      for  *t t ,                    (3.3) 

Transition (state) equation, 

1t t tT −= +   ; *( ) , ( ) , ( ) 0t t tE E Q E = = =0
t t
η η    for *t t .                     (3.4)                    

It is also assumed that ( ) 0tE  =
t*
η  for all (t,t*). In this formulation, , , ,t t tt

Y η   are 

vectors, ,tZ T  are “design” matrices,  which may contain  unknown  parameters and 

0 (0 ) is the null vector (matrix) of appropriate order. (The matrices , ,T Q  can be 
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time-dependent but for convenience, I assume that they are fixed over time.) As noted 

before, the model defined by (2.1)-(2.2) is a simple special case of the model in (3.3)-

(3.4). See Binder and Dick (1989) for an appropriate formulation. Notice that for  

, 0T I Q= = , 
t =  , the  model (3.3)-(3.4) reduces to a standard regression model. 

The Kalman filter is a recursive algorithm which updates the best linear unbiased 

predictor (BLUP) of the state vector 
t  at time ( 1)t −  when new data 

tY  become 

available. Denote by 1
ˆ

t−  the BLUP of 
1t− , based on the observations ( 1)t−Y , and by 

1tP−
 the corresponding prediction variance matrix; 1 1 1 1 1

ˆ ˆ[( )( ) ']t t- t- t- t-P E− = − −β β β β . 

Then, under the model the predictor of 
t  at time ( 1)t −  is, | 1 1

ˆ ˆ
t t t-T− = β  and 

1 1
ˆ( ) 't|t- tVar TP T Q−= +β = | 1t tP − . 

When the new data 
tY  become available, the updated BLUP of 

t  and its Mse are,  

         
1 1

| 1 | 1 | 1 | 1 | 1 | 1 | 1
ˆ ˆ ˆ( );t t t t t t t t t t t t t t t t t t t t t t tP Z F Z P P P Z F Z P P− −

− − − − − − −
 = + − = −   Y ,           (3.5) 

where | 1 | 1
ˆ( ) ( )t t t t t t t tF Z P Z Var Y Y− −

= +  = − . 

Past estimators of the state vectors can be updated by the following recursive 

smoothing algorithm, where we denote by |
ˆ

t Nβ  the smoothed estimate of 
t  based on 

all the data ( )NY , t N , and by |t NP  the corresponding prediction error variance matrix:     

             
*

1| 1 1 1
ˆ ˆ ˆ ˆ( )t t t t t t-P T− − −= + −β β  , 

* *

1| 1 1 | 1 1 1( ) 't t t t t t t t tP P P P P P P− − − − − −= − −  ,          (3.6) 

             
* 1

1 1 | 1t t t tP P T P−

− − −
= ;  

             

*

1| 1 1 | 1

* *

1| 1| 1 1| 1 1 1 | 1 | 1 1

ˆ ˆ ˆ ˆ( ),

ˆ ˆ[( )( ) '] ( ) .

t N t- t t N t-

t N t N t- t N t- t t t t t N t t

P T

P E P P P P P P

− −

− − − − − − − −

= + −

= − − = − − 

β β β β

β β β β
         (3.7)                     

The algorithm starts with | |
ˆ ˆ ,N N N N N NP P= =β  . 

The algorithms described so far assume known model parameters. In practice, they 

are replaced by sample estimates, yielding what is known as the empirical best linear 

predictors (EBLUP). See also Remark 8 above. Possible ways of estimating the 

unknown model parameters and the variances of the resulting prediction errors, which 

account for the variability of the parameter estimators, are mentioned later. 
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3.3. Applications to estimation from repeated surveys 

I start by defining what is known as the Basic Structural Model (BSM), which when 

combined with a model for the sampling errors, forms the basis for many applications 

of analysing repeated survey data. See Harvey (1989) for the theoretical properties of 

the BSM. For convenience, I assume a monthly series. 

t t t tY L S = + + ; 
2(0, )t N    

 ,  ;  , ,  

;                                                                                                          (3.8)                                                                                                                                                      

  
 

 ; 2 /12; 1,...,6j j j = = . 

In this model, 
tY  is the (univariate) direct estimate at time t ,  is the trend level,  

is the slope of the trend, 
tS  is the seasonal effect and 

t  is the irregular term. The 

disturbances 
*

, ,, , , ,
t tt L R j t j t      are independent white noise series. The model for the 

trend approximates a local linear trend, while the model for the seasonal effects uses 

the traditional decomposition of the seasonal component into 6 cyclical components 

corresponding to the seasonal frequencies. The added noise term permits the 

seasonal effects to evolve stochastically over time, but imposing that the expectation 

of the sum of 12 successive seasonal effects is 0. The BSM is easily  formulated in 

state-space form, with 
tZ  being a row vector and 

t  a scalar.  

Remark 9. The BSM can be extended to allow also for the effect of moving festivals 

and trading days effects. See, e.g., Morris and Pfeffermann (1984) and Bell and 

Hillmer (1990). 

The BSM does not account for autocorrelations between the sampling errors of the 

estimators 
tY  in the case of repeated surveys. For this, the model has to be extended 

by adding to the observation equation (or the state equations, see later) an additional 

component te , representing the sampling error. In what follows, I describe several 

extensions of the BSM that account for the sampling errors of the survey estimates 

and their correlation structure. I refer to such models as extended BSM (EBSM).  

Pfeffermann (1991) fitted an EBSM to estimates obtained from the Labor Force Survey 

in Israel (ILFS). At that time, the ILFS was a quarterly survey consisting of 4 panels, 

1 1t t t LtL L R − −= + +
2~ (0, )Lt LN 

1t t RtR R −= +
2~ (0, )Rt RN 

6

,1t j tj
S S

=
=

* 2

, , 1 , 1 , ,cos sin , ~ (0, )j t j j t j j t j t j t SS S S N    − −= + +

* * * * 2

, , 1 , 1 , ,sin cos , ~ (0, )j t j j t j j t j t j t SS S S N    − −= − + +

tL tR
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with 3 of them included in previous surveys and one panel surveyed for the first time. 

Specifically, every new panel was included in the sample for two successive quarters, 

left out of the survey for the next two quarters and then included again for two more 

quarters. This rotation pattern produced 50% sample overlaps between two 

successive quarters and between the same quarter in two successive years. Denote 

by 
t j

ty −
 the survey estimate of the population mean at time t, based on the panel 

joining the sample for the first time at time , 0,1,4,5t j j− = . The separate panel 

estimates at any given time are independent by design, but correlated over time. 

Following Scott and Blight (1973), Pfeffermann assumed an AR(1) model for the 

individual observations
tiy  (Eq., 2.1) with mean (signal) 

t t tL S = + , implying the 

following model for the sampling errors of the panel estimators:  

1 1 1

1

t t t

t t te e − − −

−= + ,
4 3 4 4

3

t t t

t t te e − − −

−= + , 
5 5 5

1

t t t

t t te e − − −

−= + , ( , ) 0, 0t t k

t tCorr e e k− =  . (3.9)    

Denoting 
1 4 5( , , , )t t t t

t t t t ty y y y− − − =Y , the model holding for 
tY  and the corresponding 

sampling errors is easily formulated in the state-space form (3.3)-(3.4), with the models 

holding for 
tL  and 

tS  as under the BSM (see Remark 10 below), and the model holding 

for the sampling errors defined by (3.9). Notice that the sampling errors are part of the 

state vector. See Section (3.4) for an alternative approach. 

Remark 10. Pfeffermann (1991) actually assumed that the seasonal effects evolve 

according to the model 
3

0 tt k Sk
S −=

= , instead of the trigonometric model in (3.8). 

Pfeffermann (1991) extended the model considered so far by accounting for what is 

known as rotation group bias (RGB), under which sampled units tend to provide 

different information on different rounds of interview, because of “interview fatigue”, 

the use of different modes of data collection in different rounds of interview (for 

example, face to face interview Vs. telephone interview, which is common in LFS), etc. 

The bias of the panel estimates may also result from different patterns of nonresponse 

across the panels. To account for the possible bias of the separate panel estimates, 

Pfeffermann (1991) added to the observation equation a constant term j  for the panel 

joining the sample for the first time at time ( )t j− , such that 

( ) ; 0,1,4,5t j

t t t jE y L S j− = + + = .  
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By assuming normality of the disturbance terms in the model, the unknown model 

variances, the RGB constants and the AR(1) coefficients have been estimated by 

maximum likelihood (MLE), with the log likelihood obtained from the prediction error 

decomposition. Denoting by   the set of unknown parameters and using the notation 

in Section (3.2), the log-likelihood is, 

                    
1

| 1 | 11

1 ˆ ˆ( ) [log | | ( ) ( )]
2

N

t t t t t t t tt
l const F F −

− −=
= − + − − Y Y Y Y .                (3.10) 

Remark 11. Statistical bureaus all over the world produce routinely seasonally 

adjusted and trend estimates of all their core time series, which constitute a major part 

of the published official statistics. The BSM and its extension (EBSM), yield such 

estimates, although as far as I can tell, this family of models is not routinely used for 

this purpose. The procedure in common use is X13ARIMA. See the reference list. 

Maravall (1985) compares the BSM with the conventional filters used by the X-11 

seasonal adjustment procedure, preceding but forming the basis for X13ARIMA. See 

also Pfeffermann et al. (1998) for empirical comparisons. 

Brakel and Krieg (2009) fitted a similar model to Pfeffermann (1991) to the LFS survey 

estimates in the Netherlands. The Dutch LFS is also based on a rotating panel design 

by which a new sample enters the survey every month. The new sample is observed 

5 times with an interval of 3 months between successive observations, and then it is 

replaced by a new sample. Thus, using previous notation with t defining months, the 

observed series at time t consists in this case of the vector   

3 6 9 12( , , , , )t t t t t

t t t t t ty y y y y− − − − =Y . The model accounts for RGB by assuming that there is 

no bias in the sample observed for the first time [ ( )t

t t tE y L S= + ], and modelling the 

other RGBs as random walk. The model accounts also for “shocks” in the series (e.g., 

change of the sampling design), by adding a level shift; a dummy variable taking the 

value 1 when the shock starts.  

Remark 12. The model is used by Statistics Netherlands since 2010 for the production 

of the official monthly Labor Force figures at the national level, and for six domains 

defined by age and gender.  

Brakel and Krieg (2016) combined the separate models for the six domains into a 

single thirty-dimensional model, thus accounting also for the cross-sectional 
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correlations between the trend disturbance terms of the domain models. This way, the 

model borrows strength over time and space. Another extension considered by the 

authors, proposed originally by Harvey and Chung (2000), is to add to the observation 

equation the series of “claimant counts” (people claiming unemployment benefits), as 

auxiliary variables “explaining” the variation in the labor force estimates. Notice that by 

adding auxiliary variables to the observation equation of the EBSM, the seasonal and 

trend components in the model account for the “residual” trend and seasonal effects, 

not explained by the auxiliary variables.  

3.4. Filtering algorithm for state-space models with correlated sampling errors 

As mentioned before, a common practice to account for the correlation structure of the 

sampling errors in overlapping surveys is to assume an ARMA model for them, and 

add the model to the state equations of the state-space model. This paradigm has 

been used in the studies reviewed so far. However, the ARMA model may include 

many terms and when modelling jointly many time series, as for example for 

benchmarking (Section 4), the resulting state vector is of very high dimension and 

application of the Kalman filter and smoother runs into all kinds of problems, even with 

modern high power computers. To deal with this problem, Pfeffermann and Tiller 

(2006) developed a filtering algorithm for state-space models with autocorrelated 

measurement errors in the observation equation, which does not require modelling the 

sampling errors. The filter coincides with the Kalman filter when the measurement 

errors are uncorrelated over time. 

Consider the following multivariate state-space model, 

         
t t t tZ= +Y β e ;  1, ,( ) , ( ) [ ,..., ]t t t t D tE E Diag    = =  =0e e e ,                    (3.11) 

        
1t t- tT= +β β η ; 

*( ) , ( ) , ( ) 0t t t t tE E Q E = = =0η ηη ηη  for *t t .                     (3.12)   

In this model, 
1( ,..., )t t DtY Y =Y  is a vector of independent survey estimators measured 

for 1D   series at time t, but each series d  contains autocorrelated sampling errors 

dte . Accordingly,  1( ,..., )t t Dte e =e , 
1( ,..., )t t Dt   =η , 

t DZ I = 
dt

z , a block diagonal 

matrix with 
dt
z  as the dth block, D tQ I Q=   and 1[ ,..., ]DT T T  = . (

DI  defines the 

identity matrix of order D ). It is assumed that all the state vectors ( )tβ  are of fixed 

dimension q , which defines the dimension of all the other vectors and matrices above.  
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Using previous notation, let 
| 1 1
ˆ ˆ

t t tT− −=   define the predictor of 
t  at time ( 1)t − , with 

variance matrix | 1 1 't t tP TP T Q− −= + . Consider the following generalized regression 

model (GLS) with random coefficients, 

                            1
ˆ

;qt
t

t tt

ΙT
Z

−
     

= +    
    

t|t -1
u

β
eY

  1
ˆ

t tT −= −
t|t -1

u β ,                              (3.13) 

and define | 1 ,

' ,
t t t

t
t t

P C
V Var

C
−   

= =     

t|t -1

t

u

e
. The covariance matrix [ , ]t tC Cov=

t|t -1
u e  is 

computed as follows: Let 
1

1 2[ , '] [ , ]q j j j jΙ Z V B B− = , where 1jB  contains the first q  

columns and 2jB  the remaining columns. Define 1 ,j j jA TP B=

2 ; 2, ,( 1)j j jA TP B j t= =  −  and 1 1A TK= , where 
1

1 1|0 1 1K P Z F −=  is the ‘Kalman gain’ 

with 1|0 0 'P TPT Q= +   and 1 1 1|0 1 1F Z P Z = +  . Then, 

 1 2 2 1 1 1 2 3 2 2 1 2 2, 1 1,... ... ...t t t t t t t t t t t t t tC A A A A A A A A A A A− − − − − − − − −=    +    + +  +  .   (3.14) 

The (GLS) predictor of 
tβ  and the respective prediction error variance matrix are, 

                     

1

' 1 ' 1
1

1

' 1

ˆˆ ( , ) ( , )

ˆ ˆ[( )( ) '] ( , ) .

q t
t q t t q t t

t t

q
t t t t t q t t

t

Ι TΙ Z V Ι Z V
Z

Ι
P E Ι Z V

Z

−

− −
−

−

−

    
=     

    

  
= − − =   

  

Y

β β



 

                              (3.15)  

Pfeffermann and Tiller (2006) show that the predictor ˆt  is the BLUP of t  based on 

1
ˆ
tT −  and 

tY . It is not the BLUP based on all the observations  ( ) 1( ,..., )t t
  =Y Y Y , but 

simulation results show that the loss from not including all the observations for the 

prediction of tβ  (which is not practical in a production environment), is very mild. As 

stated before, when the sampling errors are uncorrelated, the GLS predictor (3.15) 

coincides with the optimal, Kalman filter predictor

4. Benchmarking in Small Area Estimation  

4.1. Introduction  

The use of time series models for finite population estimation from repeated surveys 

becomes essential in small area estimation (SAE), because the sample sizes in at 

least some of the areas are usually too small to allow using design-based estimators. 
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Furthermore, in many real applications, no samples are available for many of the areas 

and there exists no design-based theory for estimation in areas with no samples.  

On the other hand, at the national level or for large areas, the sample sizes are often 

sufficiently large and statistical bureaus tend to use design-based estimators for the 

large areas, thus avoiding the use of models. This, however, may result in “publication 

inconsistency”, in the sense that the model-based estimators in the small areas do not 

conform to the design-based estimator in the large area to which they belong. For 

example, the sum of the model-based estimators in the small areas may differ from 

the design-based estimator in the large area. While this may indicate model 

misspecification or breakdown, in practice it is often the case that the model cannot 

be modified easily in a production environment, and it may take many time points 

before the change in the model can be detected and accounted for properly. 

To deal this problem, it is common practice to benchmark the model-based small area 

predictors, such that they conform to the corresponding design-based estimator in the 

large area. Denote by ,
ˆ
dt m  the model dependent predictor at time t in area d, belonging 

to a large group L of D areas for which the design-based estimator is sufficiently 

accurate, and by 
dtY  the corresponding design-based estimator. Benchmarking means 

imposing in every time t the constraint, 

                                   ,d=1 d=1

ˆ ; 1,2...
D D

dt dt m dt dtb b Y t = =  ,                                     (4.1) 

with constant weights { }dtb . For example, 1dtb =  when estimating totals, 

1
/

D

dt dt dtd
b N N

=
=   when estimating means or proportions, where 

dtN  is the size of 

the target population in area d. 

Other than guaranteeing publication consistency, the use of benchmarking has two 

other important properties. First, if all the design-based estimates in the group L jointly 

increase or decrease due to some external effects that are not accounted for by the 

model, the benchmarked estimators will reflect this change much faster than the model 

dependent estimators. This happens because time series models adapt to changes in 

the behaviour of the observed series much slower. This property is illustrated very 

strikingly in Pfeffermann and Tiller (2006), using data from the U.S Current Population 

Survey (CPS). Second, by incorporating the constraints, the benchmarked estimators 
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borrow information from both past data and cross-sectionally, unlike the model 

dependent estimators, which only borrow information from past data. 

Remark 13. A notable feature of the benchmark equations (4.1) is that the model-

dependent estimates are benchmarked to a weighted mean of the design-based 

estimates, which are the input data for the model, known as internal benchmarking. 

This is different from external benchmarking, under which the model-dependent 

estimates are benchmarked to external (independent) data sources. Benchmarks of 

this kind are not frequently available, and in what follows I restrict to internal 

benchmarking. See, e.g., Hillmer and Trabelsi (1987) and Durbin and Quenneville 

(1997) for external benchmarking in state-space modelling.  

Remark 14. External and internal benchmarking have been investigated extensively 

in cross-sectional SAE under the frequentist and Bayesian paradigms. See, e.g., Bell 

et al. (2012) and Pfeffermann (2013). Pfeffermann et al. (2014) compare cross-

sectional and time series benchmarking procedures using simulated series. 

A simple way in common use of enforcing the constraint (4.1), known as ratio or pro-

rata benchmarking is,  

                            , ,d=1 d=1

ˆ ˆ ˆ/ ; 1,2...
D Dbmk

dt dt m dt dt dt dt mb Y b t  = =  .                            (4.2) 

However, the use of (4.2) has three important limitations. (i)- it multiplies all the model-

based predictors by the same ratio, irrespective of their precision, (ii)- the 

benchmarked estimator in a given area does not converge to the true population value 

when only increasing the sample size in that area, (iii)- the use of (4.2) does not lend 

itself to simple variance estimation and hence, correct filtering in state-space models. 

4.2 Internal benchmarking in state-space models with autocorrelated 

     measurement errors 

Pfeffermann and Burck (1990) developed a benchmarking procedure for SAE in the 

context of a state-space model, but assumed uncorrelated sampling errors. 

Pfeffermann and Tiller (2006, hereafter PT) extended their work to account for 

correlated sampling errors, with reference to the U.S. Current Population Survey 

(CPS, the U.S. LFS), and in what follows I review this procedure.  

The CPS is a monthly survey of households (HH) with a rather complicated rotation 

pattern under which every sampled HH is retained in the survey for 4 successive 
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months, it is dropped from the survey in the ensuing 8 months and then it is included 

again in the following 4 successive months. This rotation pattern induces highly 

correlated sampling errors. The same sampling design is used in Brazil and Israel. 

Tiller (1982) fitted the BSM (3.8) separately for each of the 51 States of the U.S, but 

with the measurement errors replaced by sampling errors which have been modelled 

by an AR(15) model and added to the state equations. The resulting state vector 

consists of 29 elements. Benchmarking the monthly estimates within the filtering and 

smoothing algorithms, requires fitting the State models jointly, imposing each month 

the benchmark constraint. This implies that even with only 10 States, the state vector 

would consist of 290 elements, with the prediction variance matrix 
tP  which needs to 

be inverted as part of the filter (see Section 3.2), being of dimension 290.  

To deal with this problem, PT combined the state-space models holding for the areas 

under consideration into a single joint model, such that 
1( ,..., )t t DtY Y =Y  is the vector 

of the survey estimates of the area means 
1( )t t Dt  =   at time t, and added the 

constraints (4.1) to the measurement equations of the combined model. 

Let 
dtβ  be the sub-vector of 

tβ  in the model (3.11)-(3.12) corresponding to area d , 

such that ( ,..., )t 1t Dt
  =β β β . With this notation, the benchmark constraints (4.1) are, 

                                     
1 1

ˆ , 1,2,...
D Dbmk

dt dt dt dt dtd d
b b Y t

= =
 = = z β                               (4.3) 

However, under the model, 
1 1 1

D D D

dt dt dt dt dt dt dtd d d
b Y b b e

= = =
= +  z β . In order to impose 

the benchmarks, PT added the last equation to the measurement equations in (3.11), 

such that the new measurement equations are, 

 ( ) ( ),1 1
1 1

; , , ,
, ,

D Dt

t t t t t dt dt t t t dt dtd d
t t Dt Dt

Z
Z b Y Z b e

b b= =

  
 = + = = =   
 t

Y β e Y Y e e
z z

.  (4.4)                                                                                                                                   

The benchmarked predictors are computed as follow: First, use the random 

coefficients regression model representation (3.13) for the augmented measurement 

equations, using | 1 1
ˆ ˆbmk bmk

t t tT− −=   as the state vector predictor;  

11
1 1

ˆ
ˆ; ( ),

bmkbmk
q bmk bmkt|t-t-

t t|t- t- t

t tt

ΙT
T

Z

    
= + = −     
    

u
β u β

eY


  

| 11

bmk bmkbmk
t t tt|t-

t
bmk

t t tt

P C
Var V

C

−
  

= =  
     

u

e
   (4.5)      
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| 1 1 1 1
ˆ ˆ[( )( ) ]bmk bmk bmk bmk

t t t- t t- t tP E T T TP T Q− −
 = − − = +β β  ; 

1 1 1 1 1
ˆ ˆ[( )( ) ]bmk bmk bmk

t t- t- t t-P E− −
= − −β β  , 1( , )bmk bmk

t t|t- tC E = u e , ( )tttt t tE  = e e
tt tt

tt ttv

 
=   

h

h
, 

2

1 1
( ) ( )

D D

tt dt dt dt dtd d
v Var b e b Var e

= =
= =   and 

1
( , )

D

tt t dt dtd
Cov b e

=
= h e

1 1[ ( ),..., ( )]t t Dt Dtb Var e b Var e = .  

Second, compute the benchmarked predictor for time t  by imposing 
1

0
D

dt dtd
b e

=
=

1 1
( )

D D

dt dt dt dt dtd d
b y b

= =
=  z   in the last equation of (4.4). This is done by enforcing

1
( ) 0

D

dt dtd
Var b e

=
= , 

1
( , ) 0

D

dt dt rtd
Cov b e e

=
=  for 1,...,r D= . Defining ,0 ( ,0)t t

 =e e , 

,0 ,0 ,0( )tt t tE  = e e , ,0 1 ,0( )bmk bmk

t t|t- tC E = u e , it follows from (3.15) after some additional 

algebra that the benchmarked predictor ˆ
bmk

t  of 
tβ  is, 

1

1 | 1 ,0 | 1 ,0 ,0 ,0 1
ˆ ˆ ˆ( )( ) ( )bmk bmk bmk bmk bmk bmk bmk bmk

t t t t t t t t t t t t t t tt t t t-T P Z C Z P Z Z C C Z Y Z T−

− − −
  = + − − − +  −   . (4.6) 

The benchmarked predictors of the small area means and the corresponding variance 

matrix of the prediction errors are,     

                     ˆ ˆ ˆ ˆ, [( )( ) ]bmk bmk bmk bmk bmk

t t t t t t t t t tZ E Z P Z = − − =      .                           (4.7) 

See Appendix D in PT for the computation of the matrices 1( , )bmk bmk

t t|t- tC E = u e  and

ˆ ˆ[( )( ) ]bmk bmk bmk

t t t t tP E = − −    .  

Notice that the enforcement 
1

0
D

dt dtd
b e

=
=  is only used for computing the 

benchmarked predictor, but not when computing the variance matrices of the 

prediction errors. Thus, the matrix 1

bmk

tP−  and hence | 1 1

bmk bmk

t t tP TP T Q− −
= +  appearing in 

(4.6) are the correct prediction variance matrices.  

Remark 15. The variance matrix in (4.7) accounts for the variances and 

autocovariances of the sampling errors, the variances and autocovariances of the 

benchmark errors 
1 1 1

D D D

dt dt dt dt dt dt dtd d d
b e b Y b

= = =
= −   z   and their covariances with 

the area sampling errors, and the variances of the model errors.  

 



21 

 

Two other important properties of the benchmarked predictors are: 

(a)- Unbiasedness: if 
1 1

ˆ( )bmk

t- t-E − = 0  , then under the model, 
1

ˆ( )bmk

t tE T − − = 0   and 

hence ˆ( )bmk

t tE − = 0   by (4.6). Thus, to ensure unbiasedness at all time points, it is   

only required to initialize the filtering process with an unbiased predictor.  

(b)- Consistency: unlike with pro-rata benchmarking (Eq. 4.2), as the sample size 
dtn  

in area d  increases, the benchmarked predictor ˆ
bmk

dt  is consistent for the true area 

mean 
dt . See Pfeffermann et al. (2014) for discussion of this property. 

Remark 16. Pfeffermann and Tiller also developed a corresponding benchmarked 

smoothing algorithm. Interested readers can contact the authors for details. 

4.3 Two-stage benchmarking  

Survey data are often structured hierarchically, in which case it might be necessary to 

benchmark the model-dependent predictors at each level of the hierarchy. For 

example, in the U.S. CPS the States are classified into 9 Census Divisions (CD), and 

estimates are produced and published for each CD and State. Thus, it is necessary to 

first benchmark the model-based CD estimates to agree with the reliable design-based 

national estimate, and then benchmark the model-dependent State estimates within 

each CD to agree with the CD benchmarked estimate obtained in the first stage. 

Application of this two-stage benchmarking procedure guarantees publication 

consistency at each level of the hierarchy.  

Pfeffermann et al. (2014) developed a two-stage benchmarking procedure, which is 

similar to the single-stage procedure in Section (4.2), but with the following main 

changes. Consider a first-level hierarchy d, consisting of S small areas. The 

benchmark equation is now, 

                              , , ,1

ˆ ˆˆ
S bmk bmk

ds t ds t ds t dt dt dts
b 

=
 = = z α z  ;  1,2,...t = ,                            (4.8) 

where ˆ bmk

dt   is the benchmarked predictor in level d . Let ˆ( )bmk bmk

dt dt dt dt dtr  = −z z   

define the benchmark error at the higher hierarchy. Assuming ,ds t dt s= z z , 

, ,1

S

dt ds t ds ts
b

=
=  and hence, , ,1

ˆ( )
Sbmk bmk

dt dt dt dt ds t ds ts
r b

=
 = − z z   and ( ) 0bmk

dtE r = .   
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The observed values in the measurement equations are now 
1, ,

ˆ( ,..., , )d bmk

t d t dS t dtY Y  =Y  

with ,ds tY  denoting the small area survey estimates in the lower hierarchy, and the 

corresponding vector of sampling and benchmark errors is 1, ,( ,..., , ) ;d bmk

t d t dS t dte e r =e

compare with (4.4). The rest of the computations are similar (but more complicated) 

to the computations in Section (4.2). See Pfeffermann et al. (2014) for details.   

5. Recent advances in time-series analysis of repeated surveys 

 

A “hot topic” for more than a decade, not only in time series modelling of survey data, 

is how to use “big data” information to improve survey estimates, or even replace them. 

Brakel et al. (2017) apply a bivariate time series model that combines a time series of 

monthly survey estimates of consumer confidence with a related index series, derived 

from messages left in social media platforms. The latter series is timelier than the 

consumer confidence series. The models assumed for each series are similar to the 

BSM (Section 3), with the sampling errors of the survey estimates assumed to be 

independent and absorbed in the population irregular term, but allowing the error terms 

of the slopes in the two series to be correlated. The variances of the error terms of the 

trends are set to zero to avoid numerical identification problems, which is a common 

practice in many studies. As shown by the authors, the use of the bivariate model 

improves the estimates of the population means and permits nowcasting the mean in 

a concurrent month, when the social media figure is already known, while the survey 

estimate is still unknown (only available a month later). 

It may happen that many big data series related to the survey estimates are available. 

Schiavoni et al. (2021) propose a dynamic state-space factor model to nowcast 

monthly unemployment figures, with 100n   Google trends. Denote by 
tX  the n  

google trend series for time t . In the first step, common factors are computed by 

applying principal components analysis, using the model, 

                    Λt t t= +X f  , t( ) =ΨVar ε ;  , ( )t t-1 t rt V= + ar Ι=u uf f ,                      (5.1)  

where tf  is a r-dimensional vector of common factors with r n , Λ  is the 𝑛 × 𝑟 

matrix of factor loadings and Ψ  is diagonal.  

In the second step, a joint state-space model is fitted to the LFS series 

3 6 9 12( , , , , )t t t t t

t t t t t ty y y y y− − − − =Y  defined before and the series 
tX , 
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5

ˆ

( )

Λ

t tt t t

t n tt

L S +     
= + +       

      

1

0

Y λ e

X f 
,                                               (5.2) 

where the model for 
tY  is defined as in Brakel and Krieg (2015) mentioned in Section 

3.3 with 
tλ  representing the random walk RGB, 

51 is the unit vector of length 5 and  
n0  

the null vector of order n . The common factors 
tf  are re-estimated under the 

combined model. 

Another major topic occupying many statisticians throughout the world for more than 

two years is how to model, or account for the effects of COVID-19. In the context of 

time series analysis of repeated surveys, Brakel et al. (2021) modified the model of 

Brakel and Krieg (2015) to account for the effects of the pandemic by increasing the 

variance of the slope disturbance during that period. This way, the trend estimates 

assign more weight to the current survey estimates and less to past data. See also 

Harrison and Stevens (1976). (As noted to me by Brakel van den in private 

communication, if the overall sample size is large enough to publish monthly direct 

estimates at the national level, one could use instead the benchmark procedure in 

Section 4.2.) One of the effects of COVID-19 in many countries is that no face-to-face 

(CAPI) interviews were possible at certain time periods. To deal with this effect, the 

authors fit a separate time series model with no CAPI responses, and used this model 

to identify the coefficient of a level shift during the the pandemic. (As mentioned in 

Section 3.3, Brakel and Krieg, 2009 already account for “shocks” in the series by 

adding level shifts.) Gonçalves et al. (2021) compare different structural time series 

models aimed for producing monthly labor force estimates in Brazil during COVID-19.  

I conclude this section by considering some recent advances in SAE. The results 

presented in Section 4 assume a fixed number of areas with observations, implying 

that the benchmarking procedures considered relate only to these areas. In practice, 

it is often the case that survey estimates are only available for some of the areas, and 

the sampled areas with survey estimates, as well as their number may change from 

one time to another.    

Braverman (2022, in final prep), considers this situation. Suppose that the population 

consists of a fixed number of M areas, but at each time t, samples , 1,...,it tS i m=  are 
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available for only 
tm  out of the M areas. The author assumes the following general 

linear mixed model (LMM) for the sampled area survey estimates: 

                             , 1,2,...t t t t t tX Z t= + + =Y v e                                                    (5.3) 

where 
tY  is now the 

tm  vector of survey estimates, 
t  is a vector of regression 

coefficients that can vary across areas and over time and 
tv ,

te  are vectors of random 

effects and sampling errors, satisfying ( )tE = 0v , ( ) v

t tE  
 = v v ; ( )tE = 0e , 

( ) e

t tE  
 = e e ; ( ) 0tE 

 =v e  for all ,t .  

The model (5.3) is very general and includes the SAE models reviewed in Section 4 

as special cases. It also extends the models considered by Pfeffermann and Burck 

(1990) and by Rao and Yu (1994), which account for cross-sectional area random 

effects that do not change over time. However, the model is defined for only the 
tm  

survey estimates.  

To include the non-sampled areas in the benchmarking and prediction processes, 

Braverman (2022) writes the model holding for all the 𝑀 areas. Let 
* * * *, , ,t t t tX Z v  define 

the equivalent matrices and vectors of , , ,t t t tX Z v  when applied to the 𝑀 areas, 

such that 
*

tX  and 
*

tZ  have now M rows, with similar extensions of the dimensions of 

the other vectors and matrices. Denote by 
ii  the column vector of length M, with 1 in 

position i  and zeroes elsewhere, such that 
1[ ,..., ] IM M=i i . Let 1

tm

t i itS S==   and define 

the (𝑀 ×𝑚𝑡) matrix operator,  

                                     ( )* Δ col
tt i iS=  i ,  𝑡 = 1, 2, …                                              (5.4) 

For example, if at time 𝑡 the first 
tm   areas are sampled, 

*

,[I 0 ]
t t tt m m M m−

 = . ( ,0a b  

defines the zero matrix of dimension ( , )a b .) It follows that for all 𝑡 and 𝜏, 

*

tΔ
* *

t t t tX = X β β , 
* *Δ *

t t t ttZ = Z


vv  and 
*' v* * v

τ τt t τtΔ .Σ Δ = Σ  Consequently, the model (5.3) can 

be written in terms of all the 𝑀 areas as,  

                                  
* * * * ** * *

t t t t t t t t tX + Z +  =    Y β v e ,                                            (5.5)  
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with the variance matrices 
*v

t , 
*e

t  defined similarly to (5.3), but with respect to all the 

M areas. (Notice, however, that no sampling errors exist for the nonsampled areas.) 

Remark 16. Braverman (2022) assumes an ARMA model for the autocorrelated 

sampling errors, which as mentioned and illustrated before, is the common practice in 

many studies. In Section 3.4, I describe and discuss an alternative approach, which 

only requires defining the correlation structure of the sampling errors. 

To fit the model, Braverman (2022) formulates it in state-space form and extends the 

GLS algorithm developed by Pfeffermann and Tiller (2006). In this case, the 

observation equation has the form,  

                          

*'* **' * *'
t ,t tt t t

*

*

*

M M

Δ 0Δ X Δ
+

0 -I 0 I

tm Mt

M t tM

t

M

Z       
=       

         

β

0 ν ν

Y e
,                            (5.6)                                      

with the corresponding state equation defined by the model. As noted in Remark 16, 

the sampling errors are part of the state vector. Notice the extension of the observed 

data by a vector of zeros, which permits estimating the area means of non-sampled 

areas. See Pfeffermann (1984) for optimal properties of this model formulation.  

Below is a brief summary of the other new developments in Braverman (2022): 

1- Development of a second filtering algorithm, which consists of two separate state 

equations, one for 
*

t and the other for 
*

tν  and 
*

te . The use of this algorithm has 

computational advantages compared to the Kalman filter. Like the Kalman filter but 

unlike the GLS, the filter produces the best predictors (BP) of the area means at time 

t , based on all the observations until that time point under normality of the error terms, 

(BLUP otherwise). See the end of Section 3.4 for properties of the GLS filter. 

2- Derivation of predictors and prediction variances for areas with no samples, as an 

integral part of the estimation process, 

 

3- Benchmarking of all the area estimates and not just the areas with direct survey 

estimates, with corresponding prediction variances of the benchmarked predictors, 

 

4- Development of smoothing algorithms under the LMM (5.3) with the benchmarks. 

 

Braverman (2022) studies the performance of his new developments by an extensive 

simulation study.   
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6. Summary 

This article is a tribute for Alastair Scott and Fred Smith, highlighting their outstanding 

contributions to inference on population parameters from repeated surveys. What 

distinguishes their work is that the ideas were all new, with no direct preceding 

references. As noted to me by Doctor Bill Bell from the Census Bureau in the U.S., 

S&S ideas were “ahead of their time”.  

The pioneering contribution of S&S to inference from repeated surveys was to 

consider the unknown target population parameters such as means, proportions, etc. 

as realizations of a stationary time series, which evolves stochastically over time. This 

was in contrast to the classical survey sampling inference approach used until the 

publication of their work, under which the true target population parameters are  

considered as fixed constants, thus accounting only for the randomization distribution 

over all possible sample selections in the inference process. As shown theoretically 

and illustrated empirically under different scenarios of the sample overlap over time,  

assuming that the population parameters evolve stochastically results in much more 

accurate estimates, notably with small sample sizes. This is true even without 

specifying explicitly the time series model underlying their evolvement and holds also 

for the case of new independent samples at each time point. As illustrated in the 

present article, the approach also formed the basis for SAE from repeated surveys 

and in away, also for SAE based on cross-sectional surveys where again, a model is 

assumed for the target population parameters. Many other developments and 

applications emerging from S&S ideas are reviewed and discussed. 

In recent years, more and more external data sources, such as administrative files and 

big data become available, and with the advancement of data science, there is an 

obvious desire to use these data sources for the production of official statistics. There 

are even opinions that in the long run, external data sources should replace the use 

of surveys. I personally think that at least in the foreseen future, surveys will continue 

to be needed, for the simple reason that I don’t believe that administrative files and big 

data will be available for all the thousands of questions asked in surveys, and because 

based on my own experience and unlike what is often claimed, results from a survey 

are often much faster than from external sources. For example, information about 

income is available at the end of a survey, whereas by tax office regulations, this 
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information only becomes available after a year from the end of the reference year (up 

to two years for businesses).  

Irrespectively, I clearly hope to see more and more studies combining survey data with 

external data sources for enhancing official statistics produced from repeated surveys. 

The work of Schiavoni et al. (2021) reviewed in Section 5 is a nice example for this 

kind of inference. 

All the developments in this article assume probability samples, under which every 

unit in the target population has a positive probability to be included in the sample, 

with known probabilities for the sampled units. However, in recent years there is a 

growing tendency to use nonprobability samples, although not yet in official statistical 

bureaus, except for isolated cases. Inference from repeated nonprobability samples is 

another big challenge for the future.   

To conclude, the present article contains many important theoretical developments 

and applications for inference from repeated surveys, starting with the pioneering 

contributions of Alastair Scott and Fred Smith, and I do hope that it will prompt new 

research in this very important area of statistics.  
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