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Abstract
While remote sensing data have long beenwidely used in archaeological prospection over large areas,
the task of examining such data is time consuming and requires experienced and specialist analysts.
However, recent technological advances in the field of artificial intelligence (AI), and in particular
deep learningmethods, open possibilities for the automated analysis of large areas of remote sensing
data. This paper examines the applicability and potential of supervised deep learningmethods for the
detection andmapping of different kinds of archaeological sites comprising features such aswalls and
linear or curvilinear structures of different dimensions, spectral and geometrical properties. Ourwork
deliberately uses open-source imagery to demonstrate the accessibility of these tools. One of themain
challenges facing AI approaches has been that they require large amounts of labeled data to achieve
high levels of accuracy so that the training stage requires significant computational resources. Our
results show, however, that evenwith relatively limited amounts of data, simple eight-layer, fully
convolutional network can be trained efficiently usingminimal computational resources, to identify
and classify archaeological sites and successfully distinguish them from features with similar
characteristics. By increasing the number of training sets and switching to the use of high-performance
computing the accuracy of the identified areas increases.We conclude by discussing the future
directions and potential of suchmethods in archaeological research.

1. Introduction

Analysis of aerial imagery revolutionized archaeology
in the early twentieth century, exponentially increas-
ing the number of known sites, allowing large areas to
be rapidly surveyed and giving access to remote
regions (Reeves 1936, Bewley and Raczkowski 2002;
Mossun et al 2013; Lambers 2018). For example, a
search for scientific publications related with Archae-
ology and Remote Sensing using the Dimensions
scientific research database returns 2,732 articles on
2013, 5,172 on 2018 and 14,323 in 2021 (https://app.
dimensions.ai; accessed inMay 2022).

With the introduction of a wider range of airborne
(i.e., manned aircraft and drones) and space-based
data, including passive high spatial resolution optical
sensors, multispectral and hyperspectral sensors, light

detection and ranging (LIDAR), Synthetic aperture
radar (SAR), thermal sensors and geophysical images,
the amount of data available to archaeologists has also
increased exponentially in recent years (e.g., Chi et al
2016; Tamiminia et al 2020). These data hold sig-
nificant potential to transform our understanding of
the archaeological record, but also pose a significant
challenge with regards to the amount of time analysis
would take using traditional human-led image analy-
sismethods.

Artificial Intelligence (AI) offers a potential bypass
to this bottle neck and therefore substantially reduce
the required human labor. AI describes the ability of
computers to perform tasks and reaching decisions
through learning either directly from the data (unsu-
pervised methods) or from past experience where the
correct outcome is provided (supervised methods),
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imitating human intelligence (e.g., Dey, 2016;
Copeland 2020).

Over the past three decades, applications of
machine learning (ML)methods have seen significant
increase in Archaeology. ML algorithms such as sup-
port vector machine (Cortes and Vapnik 1995; Kao
et al 2004) random forests (Ho 1995; Ho 1998),
K-means (Cao et al 2009; Jin and Han, 2011; Qi et al
2017) and other similar approaches have been widely
adopted with considerable success in detecting or clas-
sifying archaeological sites, and artifacts (e.g., Kintigh
and Ammerman 1982; Baxter 2009; Menze and
Ur 2012; Flores et al 2019; Orengo et al 2020). These
methods, often referred to as traditional ML algo-
rithms, require the careful selection of input features
(e.g., various spectral indices in satellite imaging) by
human-experts, that are important for the outcome.
Then through an iterative optimization process by the
input of exemplar data the algorithm is trained
based upon multivariate statistics and progressively
improves its performance. Since it requires the deter-
mination and the prior calculation of a range of possi-
ble statistically significant input features, it inevitably
suffers from a level of bias as although the training
procedure can point out which from the features are
statistically insignificant, it cannot suggest, or extract
features different than the provided ones. Also, the
relatively limited number of the features inmost appli-
cations often cannot fully describe the targets at
different situations or environmental conditions.
Therefore, the applicability of these algorithms is often
limited to specific cases and restricts the identification
to features with limited spectral and geometric
variations.

In the early 2000s a newmachine learning technol-
ogy emerged known as Deep Learning (DL) based on
Artificial Neural Networks (ANN), and in the case of
image applications, Convolutional Neural Networks
(CNNs). This new technology was largely based on the
seminal work of Fukushima (1980) as well as Hubel
and Wiesel (1959) that introduced the ‘neocognitron’
(Fukushima 1980; 1983; 2003) and established the use
of convolutional and down-sampling layers. In 1986,
Rina Decher was one of the first to use the term ‘deep
learning’ to the machine learning community, in
which ‘deep’ was used to describe the use of multiple
layers in a network. Later, Waibel (1987) proposed the
time delay neural network (TDNN), one of the first
convolutional networks followed by LeCun et al
(1989) who applied that in a handwritten character
recognition problem using a 7-level Convolutional
Neural Netowork (CNN), called LeNet-5 (LeCun et al
1998). A significant advantage of deep learning meth-
ods is that the feature extraction and selection stage is
performed by the learning algorithm automatically
and not by a person. Yet, this usually requires sig-
nificant amounts of labeled data and considerable
computational resources for the training process. The
utilization of GPUs in the training process was the

turning point for using CNNs in image recognition. In
the 2012 ImageNet competition, the first CNN ever
submitted, named AlexNet (Krizhevsky et al 2012),
won the competition. The training of AlexNet used
over one million labeled images about ∼1000 object
categories and took∼6 days using 2 GPUs (Krizhevsky
et al 2012). Since then, deep neural networks have won
many international pattern recognition competitions
and have attracted broad attention, by outperforming
legacy machine learning methods and handling better
large amounts of data with minimum user interven-
tion (Schmidhuber 2015). As such, they offer con-
siderable potential for archaeology.

Among the common tasks assigned to deep learn-
ing CNN networks are image classification, object
detection, and semantic segmentation. Classification
is a basic process routinely performed in archaeology
with the objective of classifying groups of images that
share some common features, or objects into one of a
number of predefined classes. For example, AI meth-
ods have been used to analyze use-wear on lithic tools
(e.g., Van den Dries 1998) and to classify and identify
types of pottery (e.g., Hörr et al 2008; Anichini et al,
2021; Pawlowicz and Downum 2021). Caspari and
Crespo (2019), used an object-detection basedmethod
to identify Iron Age burial mounds in aerial imagery.
More recently, Agapiou et al (2021) applied the object
detection method to detect surface ceramics in drone
images. Finally, semantic segmentation algorithms
attempt to analyze images further, by partitioning
them into semantically meaningful parts and after-
wards by classifying each part into one of the ‘X’ pre-
determined classes i.e., interpretable image regions for
instance, archaeological sites, regions of vegetation,
modern structures and others (e.g., Garcia-Garcia et al
2018; Minaee et al 2020). Semantic segmentation
operates at pixel-level in the sense that each pixel of an
image is labeled according to the class it belongs to.
This makes semantic segmentation a much more
complicated and computationally intensive task, yet it
can produce more informative and detailed results
compared to classification and object identification
(e.g., Kendall et al 2015; Garcia-Garcia et al 2018;
Minaee et al 2020). The value of this approach for
geophysical analysis has been demonstrated in the
work of Küçükdemirci and Sarris’s (2020) using
ground-penetrating radar images.

For all this success, only recently there have been
limited yet increasing work adopting CNNapproaches
for the automated detection of archaeological sites
(Trier et al 2018; Caspari and Crespo, 2019; Kazimi
et al 2019; Lambers et al 2019; Rayne et al 2020;
Somrak et al 2020; Soroush et al 2020; Bonhage et al
2021; Verschoof-van der Vaart and Landauer 2021)
from Earth observation (EO) data. In part, this is due
to the need for an abundance of labeled data to enable
the CNN to accurately identify different signatures.
For example, ImageNet, an openly available visual
database designed for use in everyday contemporary
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object recognition comprises 14,197,122 images (Rus-
sakovsky et al 2015). It is this volume of labelled data,
which has enabled rapid advances in the use of CNN in
day-to-day tasks. In archaeology however, similarly to
other fields, the amount of freely available, properly
labeled data is currently limited. Furthermore, online
sharing of such data is often restricted by con-
fidentiality issues that arise often from local legisla-
tion, related with the effort to protect these sites from
looting.

In this paper, we offer a route forward by using
openly available satellite high spatial resolution ima-
gery and through examining two neural network
architectures: The SegNet (Kendall et al 2015), a deep
convolutional encoder-decoder architecture for
robust semantic pixel-wise labeling; and a custom
8-layer CNN designed for this research (SimpleNet).
We also open-up access to these tools through provid-
ing a packaged application (supplementary informa-
tion) allowing readers to run their own analysis,
helping them to evaluate the strengths and weaknesses
of this network and begin a more open and inclusive
conversation about their use in archaeology.

2. Convolutional neural networks (CNN)

In this section we briefly introduce the fundamental
concepts of CNNs. Although a more extensive pre-
sentation of CNNs is beyond the scope of this work,
the interested reader can find detailed introductions
focusing on various aspects of CNNs in several works
including, Nielsen (2015); Wu (2017); Alzubaidi et al
(2021); Li et al (2021); and Ulku and Akagün-
düz (2022).

Deep learning algorithms are a type of machine
learning technique that uses ANN of several layers in a
hierarchical architecture to enable machines to pro-
cess data in a nonlinear manner. Artificial neural net-
works consist of circuits of simple, yet highly
interconnected, nodes to selectively transmit signals in
a process that mimics the biological neurons
(Hopfield 1982), thereby simulating the way biological
neural networks work. These nodes are organized in

layers which process information by outputting
dynamic state responses to external inputs (commonly
a response from a previous layer). Data are introduced
to the ANN through an input layer and results deliv-
ered with a final output layer. All intermediate layers
are termed hidden layers, which carry out all the pro-
cessing. The larger the number of hidden layers, the
‘deeper’ the network, enabling the identification pro-
gressively of more complex patterns and details. For
example, the first layer may learn recognizing edges in
an image, the second shapes, the third objects and
so on.

Information is passed between layers through con-
nections that are characterized by weights and biases,
so that the received total output corresponds to a
weighted sum of individual node-inputs, plus some
bias. The result output may or may not exceed a
threshold defined by a pre-set activation function such
as a sigmoid or most commonly a rectified linear acti-
vation function (ReLU; see below), essentially deciding
if this information should be transmitted to the next
layer (forward passed), as it is or in a modulated form,
or rather filtered out. The optimal values of each
weight and bias are defined by the training of the net-
work: a non-linear optimization process whereby a
cost function representing the distance between train-
ing labeled data and that predicted by network results
isminimized.

The number of required deep layers within the
network, and therefore indirectly the number of
unknowns (i.e., parameters that are to be tunned
through the training), depends on the complexity of
the patterns to be identified and the amount of labeled
data. At present, a limited number of labelled images
for archaeology imposes a requirement for careful
design of learning networks, keeping the number of
layers and connections low enough to ensure that the
optimization problem of network training is not
under-determined i.e., the number of unknown para-
meters exceed the number of data and prior con-
straints that are used to regularize/stabilize the
training and reduce the generalization error (over-
fitting) (e.g., Goodfellow et al 2016).

Figure 1.Demonstration of the convolution of an imagewith an edge detection filter. On the left is the initial image, in themiddle is an
edge detection filter and on the right is the resulted image, which shows the edges of the initial image.
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Here we examine two different, supervised, fully
convolutional, neural networks: one based on the
architecture of Semantic Segmentation called SegNet
(Kendall et al 2015; Badrinarayanan et al 2017); and
the other a custom 8-layer network developed by the
authors called SimpleNet. Both are fully convolutional
neural networks, a category of network consisting of
locally connected layers so that each neuron only
receives input from a small local subgroup of the pixels
in the input image. Such Layers can perform convolu-
tion/deconvolution, pooling (i.e., a sample-based dis-
cretization process that effectively down-samples the
image) and up-sampling, but not containing fully con-
nected layers, and thus requiring significantly less
memory and computational power (Long et al 2015).
Semantic segmentation algorithms have been used
widely in classifying features in various remote sensing
images including high resolution Google Earth images
(Yu et al 2021). Additionally, the custom 8-layer net-
work was designed to be implemented for the low
number of labeled data used in this work. In the fol-
lowing sections, we describe the architecture and func-
tionality of these twonetworks.

2.1. SegNet
SegNet is a deep fully convolutional neural network
that segments the image by classifying each pixel
independently. It consists of an encoder network with
13 layers, each designed for object classification. Each
layer is convolved using a set of 2D filters to produce a
set of feature maps of increasing complexity as
described previously. These maps are later batch
normalized i.e., to have a mean output close to 0 and
the output standard deviation close to 1. Next, a ReLU
activation function is applied followed by down-
sampling using a max pooling layer with a 2×2 non
overlapping window (Kendall et al 2015; Badrinaraya-
nan et al 2017). The ReLU activation function is a
linear function that outputs the input if it is positive, or
else, outputs zero (Hara et al 2015). The max pooling
function calculates the maximum, in each patch of
each feature map (Chollet 2017). In the final layer the
resulting output, from the previous step, is sub-
sampled by a factor of 2 while the boundary informa-
tion is also stored. This is crucial as during the
successive down-sampling operations the high fre-
quency details of the image are lessened resulting in

Figure 2.Architecture of the 8-layer convolutional neural network.

Table 1.Archaeological sites in Peru used to train the algorithm.

Archaeological areas& sites CoordinatesWGS84 (centre point) Period

LaCentinela (ChinchaValley) −13.450385,−76.171092 Inca (AD1476–1532) Late Intermediate (AD1000–1476AD)
Cahuachi (NazcaValley) −14.818241,−75.117462 Early Intermediate (c. 200BC–AD600)
Caral (SupeValley) −10.890938,−77.521858 Late Preceramic (c. 3000–1800 BC)
TamboColorado (PiscoValley) −13.704619,−75.829431 Inca (AD1476–1532)

Table 2.Additional archaeological sites (areas) in Peru to further train the algorithm.

Archaeological areas& sites CoordinatesWGS84 (centre point) Periods

Various (Lower IcaValley) −14.614319,−75.614994 Various (1800 BC–AD1534)
NazcaGeoglyphs (Pampa de San José,NascaValley) −14.696486,−75.178422 Early Intermediate (200 BC–AD600AD)
Cerro Sechín (CasmaValley) −9.480703,−78.258997 Initial Period (1600 BC)
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blurry and inaccurate boundaries. However, bound-
aries are important in small objects and structures
such as buildings, cropmarks etc and by storing this
information it can be retrieved during the decoding
stage.

The network consists of 13 decoder layers each one
corresponding to its respective encoder layer. The role
of the encoder layers is to semantically project the
lower resolution features extracted (learnt) by the
encoder, onto the higher resolution image space to get
a dense classification, i.e., a classification for each pixel
in the original sized image. Each decoder layer pro-
duces dense feature maps (images) by up-sampling its
input feature maps (the output of the previous layer)
using the memorized max-pooling indices produced
on the previous stage. Then convolution is applied
using a trained dictionary of filters to produce dense
feature maps. The final decoder output is fed into a
SoftMax classifier, i.e., a layer that assigns each pixel
independently to a class according to a probability
score among the candidate classes (e.g., Nielsen 2015;
Alzubaidi et al 2021).

2.2. A custom8-layer convolutional neural network
(SimpleNet)
Since the amount of labeled data available for archae-
ology is limited, we constructed a custom 8-layer
convolutional neural network (SimpleNet), based on
the SegNet architecture with the aim of keeping the
number of layers and trainable parameters as low as
possible while achieving adequately accurate results.
Thefirst layer is an image input layer that receives RGB
images. The next layer is a convolutional layer with 32
trainable filters applied in a non-overlapping moving
window of size 5×5 and with stride 1. Stride shows

howmuch the filter shifts around the input volume (in
our case it shifts by one unit) while the filter
approximates the Laplacian (i.e., a 2D second spatial
derivative) of the Gaussian operator and essentially
when convolved with an image derives as an output an
approximation of its second spatial derivative. This
means that in regions where the image has constant
intensity the filter’s response will be zero. In regions
where the intensity (i.e., pixel brightness) changes
rapidly, however, such as at the edges of an object, the
filter’s response yields high amplitudes (figure 1).

The filters can be conceived of as 2D images whose
shape and color are adjusted through the training pro-
cess to optimally express different features of the data
(e.g., figure 2). Next, a rectified linear unit (ReLU) is
applied followed by a max-pooling with a 2×2 non
overlapping window with stride 2 and a padding with
0’s. This is the most common configuration as it dis-
cards the 75% of the activations in an input image due
to down-sampling by 2 in both width and height. Fol-
lowing this, a transpose convolution is applied with
the same number of filters and a window with 4×4
size and stride 2. Likewise, this is a common config-
uration, as the divisibility of the window size by the
stride mitigates the problem of checkerboard artifacts
in the up-sampled image (e.g., Odena et al 2016). The
sixth layer is another convolutional layer of 1×1
window size and stride 1. Then, a SoftMax classifier is
applied, to the final output from the previous layer, to
assign each pixel into a class. Finally, the image is seg-
mented into the assigned classes by a classification
layer that calculates the class weighed cross-entropy
loss (e.g., Bishop 2006). The 8-layer convolutional
neural network technique is illustrated infigure 2.

Figure 3.A sample of the 2000Training images, of size 256× 256× 3 pixels (Google Earth imagery), from various archaeological areas
around Peru. The top row shows the initial images and the bottom row the labeled images.
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3. Training and optimisation

3.1.Data
Weused openly available high-resolution images from
Google Earth of archaeological sites in Peru as a
training set for both networks. This geographical
region was chosen for its continued discovery of new
sites using remotely sensed data (Ruggles 2015;
Bikoulis et al 2018; Cigna and Tapete 2018) and the
availability of data from previous large-scale archae-
ological terrestrial surveys for evaluation purposes.

Initially, we labeled 500 images from 4 different
archaeological sites, (table 1). A small part of the
Tambo Colorado archaeological site was then used to
train the algorithm and a larger area of the same site
for testing.

Later, we augmented the original 500 images with
a further 1500 from wider archaeological areas and
sites across Peru to further train the algorithm (table 2)
and check its performance as the number of labeled
data increase. These additional images consist mostly
of geoglyphs (usually linear features) marked in open
desert pampa environments. Figure 3 shows some
samples of labeled images used in this work.

3.2.Optimisation process
The data were labelled with the ImageLabeler program
inMatlab 9.6 using four different classes: ‘archaeologi-
cal’, ‘modern’, ‘vegetation’ and ‘background’. As
‘archaeological’ we included every target of archae-
ological interest, regardless of shape, condition, color,
period etc We labeled linear, rectilinear, and circular
features that were clearly visible in the Google Earth
imagery, corresponding to a large variety of archae-
ological features. We used such broad terminology
because the target of this work was to further increase
the number of training images available to users in

future, with sub-classification open as an option to
thosewhowish tomake use of the dataset. As ‘modern’
we labeled modern structures such as modern build-
ings and vehicles. ‘Vegetation’ incorporates areas of
grass, plants, and trees. Finally, as ‘background’ we
classified everything else, such as soil, non-paved
roads, and fields without vegetation. Images in the
initial set of 500 were denoted as D500, and in the
larger 2000 set as D2000. Images for the sites/areas of
interest were extracted from Google Earth in RGB
(Red, Green, Blue) as jpg files. Our goal, is to train an
algorithm to use high resolution, freely available
Google Earth images. Unfortunately, Google Earth
does not provide raw images therefore we have to rely
on the already processed images that are made
available through the Google Earth application. It
should be noted here that at present, the high-
resolution images in Google Earth application are not
available in Google Earth Engine and therefore is not
possible to use this environment to train dataset.

Figure 4.Histogram illustrating the number of pixels used in each of the 4 classes for theD500 dataset with orange color and for the
D2000 dataset with blue color.

Table 3.Optimal set of parameters for SegNet, 8-layerD500 and
D2000 networks.

Parameter name Value

Gradient decay factor 0.9000

Squared gradient decay factor 0.9990

Epsilon 1e-08

Initial learning rate 1e-04 (D500) and 1e-03 (D2000)
Drop rate factor 0.4

Drop period 5

L2- regularization parameter 1e-09

Gradient thresholdmethod Using the L2-norm

Max epochs 30

Mini batch size 5 (D500) and 15 (D2000)
Shuffle At every epoch
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Although the native resolution is not provided, we
estimate it at a ground resolution of 0.5m (Airbus
imagery). Next, 256×256 × 3pixel tiles were gener-
ated from the original images. The labels for each
image were stored in the form of an 8-bit monochro-
matic copy of the image, with 4 distinct intensity
values reserved to represent each one of the 4 different
classes, in addition to the null-intensity that represents
the unlabeled regions of the image. Labeled pixels in
each dataset corresponded to the classes of back-
ground (61.45% and 79.96% respectively); vegetation
(28.24% and 13.72%, respectively); archaeological
(8.41% and 7.94%); and modern (1.90% and 1.38%),

(figure 4, histogram). To avoid bias in the learning
process due to this imbalance between classes
(Verschoof-van derVaart et al 2020), weweighted each
class by the inverse of its frequency. The weighting was
applied at the last layer of the classification networks,
i.e., the Pixel Classification Layer.

For the training of both networks the Adaptive
Moment Estimation (Adam) optimizer (Kingma and
Ba 2015)was used. Aftermultiple tests over both train-
ing datasets (D500 and D2000) and both networks, we
concluded the quasi-optimal set of parameters shown
in table 3. These were kept unchanged for both net-
works in subsequentwork.

Figure 5. Segmentation of the archaeological site of TamboColoradowith the 3 trained networks , (a)Google Earth image (Google
Earth Pro 7.3.2.5776, 2019,−13.704619,−75.829431, viewed 16May 2020, 〈http://www.google.com/earth/index.html〉), (b)
segmented image using the SegNet network, (c) segmented image using the 8-layer networkwith theD500 dataset, (d) segmented
image using the 8-layer networkwith theD2000 dataset and (e) themanually segmented image.
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We used the IRIDIS supercomputer of the Uni-
versity of Southampton to train the network. The
training ran in parallel using 12 CPU cores and one

Nodewith 264GB ofmainmemory and took approxi-
mately 3 h to complete. For the calculations we used
MATLAB 9.6 (2019a).

Table 4.Comparison between themanually labeled image and the segmented images of each trained network for the archaeological area of
TamboColorado.

ClassName
True positive% False positive% False negative%

SegNet SN-D500 SN-D2000 SegNet SN-D500 SN-D2000 SegNet SN-D500 SN-D2000

Archaeological Feature 87.41 97.41 97.39 13.97 18.62 16.00 12.58 2.58 2.60

Background 87.45 86.99 88.12 21.67 23.34 23.57 12.54 13.00 11.87

Vegetation 80.67 78.65 77.86 4.696 2.70 2.20 19.32 21.34 22.13

Modern Structure 6.61 9.85 32.74 5.591 1.68 2.39 93.38 90.14 67.25

Figure 6. Segmentation of the archaeological area of ChanChanwith the 3 trained networks. (a)Google Earth image (Google Earth
Pro 7.3.2.5776, 2019,−8.094848,−79.071257, viewed 16May 2020, 〈http://www.google.com/earth/index.html〉), (b) segmented
image using the SegNet (c) segmented image using the 8-layer networkwith theD500 dataset, (d) segmented image using the 8-layer
networkwith theD2000 dataset and (e) themanually segmented image.
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3.3. Evaluation
Evaluation of how successful the training had been
carried out through analysis of additional images from
Peru which had not been included in the training
datasets. We compared the results from the D500 and
D2000 trained networks, as well as SegNet versus
SimpleNet. The evaluation image covered two differ-
ent areas:

3.3.1. Tambo colorado
TamboColorado (−13.704619,−75.829431) is a large
Inca administrative and ceremonial center built in the
last quarter of the 15th C in the Pisco Valley, south
coast Peru alongside the imperial highway linking the
coast with the southern highlands (Hyslop 1985;
Protzen and Morris 2004). A small part of the
archaeological site (not shown in figure 5) was used to
train the algorithm, while the rest of the site and its
surrounding area (figure 5)was used to test it.

To evaluate the performance, we manually labeled
the image with the ImageLabeler program and then
used this baseline to compare each segmented image
independently. The labellingwas completed according
to what is clearly visible and can be confidently classi-
fied as archaeological. The results, expressed as
percentage, are shown in table 4 There are three types
of results, the True Positive (R) corresponds to the suc-
cessfully identified pixels:

R 1c
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where N is the total number of pixels, i is the pixel
index within the segmented image, d is the Kronecker
delta, c is the current class, G is the ground truth image
in column indexing order and S is the segmented
image of the current trained network.

False Positive (FP), represents a pixel falsely iden-
tified as a member of the class though, it belongs in
another class.

FP
N

1

max 1 ,
2c

i
N

c G i c S i

i
N

c G i

1 , ,

1 ,( )∣
( ) ·

( )
( )( ) ( )

( )

d d

d
=

å -

å -
=

=

False Negative (FN ), corresponds to a pixel which
although it belongs to the class it was falsely classified
as not belonging to it.
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The data show in table 4 and the final segmented
images (figure 5) show similar results between the
8-layer CNN with the D500 and D2000 datasets, with
the exception of the modern structure class which is
far better covered in the D2000 trained network. Seg-
Net, on the other hand, gives less reliable results with

Figure 7. Segmentation of the 56.19 km2 area around the IcaValley, Peru, (a) segmented image using the 8-layer networkwith the
D2000 dataset. (b)Google Earth image corresponding to the region enclosedwithin rectangle on the left (figure 7(a)), depicting all
archaeological remains by period.
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Table 5.Comparison between themanually labeled image and the segmented images of each trained network for the archaeological area of
Chan-Chan.

Class name
True positive% False positive% False negative%

SegNet SN-D500 SN-D2000 SegNet SN-D500 SN-D2000 SegNet SN-D500 SN-D2000

Archaeological Feature 95.16 64.76 73.94 45.58 18.45 20.69 4.83 35.23 26.05

Background 48.85 77.95 78.15 1.12 12.86 12.25 51.54 22.04 21.84

Vegetation 69.81 78.48 77.78 0.83 2.61 1.41 30.18 21.51 22.21

Modern Structure N/A N/A N/A 1.26 2.28 0.00 N/A N/A N/A

Figure 8.Zoomed parts of the segmented lower IcaValley image. (a) a zoomed part of theGoogle Earth image showing a looted
MiddleHorizon cemetery 755 (Cadwallader et al 2018a and 2018b), (b) corresponding part of the segmented imagewhere parts of the
cemetery have been correctly classified, (c) shows a zoomed part of theGoogle Earth image from aLate Intermediate habitation site
H-8 (Beresford-Jones 2011), (d) the corresponding segmented imagewhere parts of the site have been correctly classified, (e) a zoomed
part of theGoogle Earth image showing various types of archaeological features (relict canal, huranago trunks, pits etc.), (Beresford-
Jones 2011) and (f) the corresponding segmented imagewhere some parts of the site have been correctly classified. The green dots
represent the location of the known archaeological features that exist in this area.
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lower values for the classes of archaeological features,
background, andmodern structures.

3.3.2. Chan chan
Chan Chan (−8.094848, −79.071257) was the urban
capital of the Chimú Empire (c. AD 900–1475) built in
the Moche Valley near the modern city of Trujillo,
north coast Peru. Covering over 20 km2 it comprises
nine palace-mausoleum enclosures (cuidadelas) of the
Chimú ruling dynasty some with extant adobe walls
up to 10m high, surrounded by dense agglomerations
of thousands of humble dwellings and workshops
(Holstein 1927;Moseley 1975; Smailes 2011).

The data shown in table 5 and the final segmented
images (figure 6) show that for Chan-Chan the
SegNet algorithm segmented archaeological features
better than the other two methods, although segmenta-
tion of background and vegetation classes is poor com-
pared with the other two algorithms. Moreover, both
SegNet and the 8-layer D500 networks appear to have
falsely classified pixels as modern structure when they
should belong to another class. In table 5, N/A repre-
sents the lack of modern structures in the image. Gen-
erally, the 8-layerD2000 network seems to give themost
balanced and reliable results.

4. Application to larger andmore complex
landscape

The evaluation described above focused on the ability
of the network to identify linear features in areas where
there was a strong and distinctive archaeological
signature. While a critical first step, this testbed is
hardly representative of more complex and extensive
areas typically of interest to archaeologists. To investi-
gate the performance and efficiency of the trained
network in such circumstances a 56.19 Km2 area of the
lower Ica Valley (Peru) was analyzed with the D2000
8-layer network. This area was chosen becausewe have
carried out extensive pedestrian and aerial archaeolo-
gical survey there since 2002 (Beresford-Jones 2011;
Haburaj et al 2017; Cadwallader et al 2015, 2018a
and 2018b) thereby allowing for direct testing of AI
generated results.

4.1. Lower ica valley, peru
The archaeological record of the lower Ica Valley
comprises looted cemeteries, eroded mounds and
fragmentary adobe architecture, dispersed pottery
scatters, middens and linear relict canal features
amidst a largely wind-deflated arid landscape, patchy
riparian vegetation, and some modern agriculture

Figure 9.Application of theD2000 dataset trained network at the IcaValley, Peru. (a)Google Earth image (Google Earth Pro
7.3.2.5776, 2019,−14.6145737,−75.592288, viewed 16May 2020, 〈http://www.google.com/earth/index.html〉), (b) Segmented
image using the 8-layer SimpleNetworkwith theD2000 dataset, (c) zoomed part of theGoogle Earth image, (d) the corresponding
zoomed part of the segmented image and (e) is themanually segmented image.
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(Beresford-Jones 2011, Cadwallader et al 2018a
and 2018b). Such remains provide highly variable
archaeological signatures, mostly far more diffuse and
contrasting significantly with the well-defined recti-
linear architecture in the labelled image dataset used to
train the network.

The large size of the study area corresponds to an
image of 17853×34429 x 3 pixels. This meant that
segmentation was applied patch-wise, with each patch
measuring 1024×3072 × 3. Similarly, the resulted
segmented image was constructed as a mosaic, patch
by patch. These calculations took about 1 and a half
hours on a mid-range laptop with intel i7, 7500 CPU
and 16 GB of memory, demonstrating the computa-
tional efficiency and accessibility of this approach,
evenwhen applied to large geographic areas.

The trained algorithm classified a significant num-
ber of features as archaeological in a region in which
we had previously surveyed 278 diverse archaeological
features of 27 different types, including habitation
sites, mounds and cemeteries, but also artifacts well
below the resolution of the satellite imagery, such as
ceramic scatters. Nevertheless, we superimposed the
known site locations over the segmented images for
evaluation. After segmentation, at least 102 archae-
ological sites were correctly identified at the pixel level
(figure 7). The areas of greatest success related to larger
and linear features (figure 8) which are the types of

archaeological features that the algorithm was trained
to identify. As was expected given the nature and reso-
lution of the input labelled images, the algorithm was
less successful at identifyingmore diffuse features such
as erodedmounds andmiddens (table 6).

The desert landscape of the lower Ica Valley
includes many linear geological exposures which, in
some cases, were falsely classified as archaeological by
the algorithmbecause of their similarity to the training
data. Although the lower Ica Valley image is not
labeled at the pixel level, and thus direct quantified
comparisons are not possible, the broader site loca-
tion-to-classified-pixel assessment given in table 6 and
figure 8, when tested against archaeological survey
data, shows good agreement across all four classes.

The pampa alongside the lower Ica Valley also
manifests a significant number of trapezoidal geo-
glyphs (Cadwallader et al 2018b), although they can be
challenging to identify and map by aerial image analy-
sis or pedestrian survey because of their often-remote
locations and relative invisibility at ground level. We
selected an area that included a previously surveyed
trapezoidal geoglyph (−14.61457, −75.59229) with
whichwe could test the trained algorithm (figure 9(a)).

The resulting segmented image (figure 9(b)) shows
thatwhile the algorithmhas in a fewplaces falsely identi-
fied some geological exposures as archaeology (2.4%) it
has also successfully classified 29.8%of the geoglyph.

5.Discussion

In this work we examined two different deep learning
networks, SegNet and an 8-layer network designed for
the project (SimpleNet). Initial evaluation suggested
that the 8-layer network performed better at identify-
ing features of interest, and that increasing the amount
of labelled data available improved the performance
(albeit not in dramatic fashion between 500 to 2000
images). Our results show that there is not systematic
behavior in the occurrence false-positives/negatives
break down, and this largely depends upon the proper-
ties of each case/tested image. For example, false
positive instances of archaeological features are domi-
nated in regions that should be classified as back-
ground, in the presence of rough topography. This is
because at its heart the network focuses on picking out
linear and slightly rounded features, and currently
performs less well on more circular to curvilinear
forms such as eroded mounds and middens. Rather
than a reflection of conceptual limits, this is an
outcome of the labelled images used to train the
network. This, in turn, means that there are a large
number of false positives, mostly of geological or
rough topographic features in the desert landscape
picked out as of archaeological interest. This is
illustrated in figure 10 which shows an area of the
Nazca valley that has been processed with geological
features classified as archaeology. Yet, within

Table 6.Types of archaeological sites around the Ica
Valley and the number of correctly classified features
with the total features of the same type.

Archaeological features Correctly classified/total

Looted tombs 5/5
Tombs 22/22
Grey layer 2/2
Cemetery 11/16
Canal &Canal Fragments 11/24
Post holes 11/12
Habitation site 8/9
unknown 7/16
Midden 1/16
Mound 1/32
Fired Earth pit 4/14
Pit 2/6
Looters pit 1/3
Ceramic scatter 2/6
Adobe structures 3/13
Round stonewall 1/2
PlantMacro 8/20
Huarango trunk 3/24
Platform 5/6
Camelid bones 0/1
Datum 0/2
Geoglyphs 0/9
Duracrete 0/1
Nazca 0/6
Ocucaje 0/3
Feature 0/7
Fluvial deposit 0/1
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figure 10(b), it is now also possible to pick out much
more easily archaeological geoglyph features, which
otherwisewould not have been so easily identifiable.

This, together with the comparison between the
network’s analysis of the lower Ica Valley and the
results of pedestrian archaeological survey, shows the
significant contribution such approaches can play in
large area analysis. There is no doubt that the network
has misidentified some features, and only partially
recognized or failed to acknowledge others.

In other cases, false negative pixel classifications
occur because the delineation of the archaeological
features in the segmented images is wider than what it
has beenmanuallymarked but it is certainly associated
with true features (e.g., figure 6). Possibly the applica-
tion of the method in larger amounts of data with
wider variety in image, background and target proper-
ties, where ground truth is available, will allow for
more insightful statistical analysis recognizing possible
systematic errors and/or improving its accuracy when
these data are included in training.

Nonetheless, this was a network trained on only
2000 images, carried out in rapid assessment. Even at
this level of accuracy as a tool to aid and accelerate
large area survey these are significant results. Clearly,
deep learning methods have significant potential to

identify archaeological targets of different dimensions,
spectral and geometrical properties.

Moreover, the shortcomings of the analysis pre-
sented here can be easily overcome: most straightfor-
wardly by radically increasing the amount of labelled
data available for the network to learn. It is this task, of
increasing the shared resource of open access labelled
data that other disciplines such as marine biology are
now rapidly working to achieve (Gregory et al 2019;
Sagi et al 2020). Deep learning techniques work best
when this pool reaches the order of millions, or more.
What we have demonstrated here is that even in the
initial stages of building these resources there are sig-
nificant benefits to be had. A possible future direction
is to automatically label images using georeferenced
mapping data of archaeological sites. This can include
features that are not directly perceptible in satellite
images and remove the human bias during the label-
ing. However, this task requires tracing the perimeter
of the features to provide adequate accuracy in the
labeling process. However, it should be noted that
there is always the possibility that certain confirmed
archaeological features may not be physically visible
from the satellite image for various reasons (e.g., cov-
ered by vegetation, resolution, etc). Therefore, includ-
ing such data could be challenging.

Figure 10.Application of theD2000 dataset trained network at the archaeological areaNazcaValley, (a) theGoogle Earth image
(Google Earth Pro 7.3.2.5776, 2019,−14.852303–75.081781, viewed 16May 2020, 〈http://www.google.com/earth/index.html〉), (b)
the segmented image using the 8-layer networkwith the 2000 dataset, and (c) themanually segmented image.
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Another direction is to explore the benefits of
transfer learning in improving the effectiveness of the
segmentation. In transfer learning a pretrained net-
work focused on a different application can be used as
starting point, and then replace the very last layers
whichmap the recognized features to the specific clas-
ses of the present application. Then a fine-tune train-
ing stage is required to optimize only the weights and
the parameters of these final new layers. This allows to
take advantage of the ability of the trained network to
extract/recognize complicated features from its pre-
vious application, without requiring large amounts of
data. Furthermore, the computational resources for
the training is kept at minimum as only a small subset
of parameters are to be optimized while the others of
the previous layers are kept fixed.

6. Conclusions

In this work the data we used to train the algorithm are
from various archaeological areas in Peru. The main
target of this project is to test the performance of two
different CNN algorithms and their applicability in
limited number of training images and create a trained
deep learning algorithm that will be able to identify
different types of archaeological structures from
around the world. We have shown that even with
limited data, we can train a network to identify various
kinds of archaeological features. Using openly avail-
able images like those provided by Google Earth, the
trained network can successfully identify regions of
archaeological interest, helping to guide analysts to
locations for further investigation. Our future target is
to continue building this library by adding more
datasets from different types of sensors from other
locations worldwide. In turn, these datasets become
the foundations on which larger, more variable
libraries of labelled images can be built, and shared
with the community. It is only through doing this,
through acting collectively, that the greatest gains will
be made and the wider potential of CNNs realized
within archaeology.
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