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We construct a model for dense matter based on low-density nuclear matter properties that ex-
hibits a chiral phase transition and that includes strangeness through hyperonic degrees of freedom.
Empirical constraints from nuclear matter alone allow for various scenarios, from a strong first-order
chiral transition at relatively low densities through a weaker transition at higher densities, even up
to a smooth crossover not far beyond the edge of the allowed range. The model parameters can be
chosen such that at asymptotically large densities the chirally restored phase contains strangeness
and the speed of sound approaches the conformal limit, resulting in a high-density phase that re-
sembles deconfined quark matter. Additionally, if the model is required to reproduce sufficiently
massive compact stars, the allowed parameter range is significantly narrowed down, resulting for
instance in a very narrow range for the poorly known slope parameter of the symmetry energy,
L ' (88− 92) MeV. We also find that for the allowed parameter range strangeness does not appear
in the form of hyperons in the chirally broken phase and the chiral transition is of first order. Due
to its unified approach and relative simplicity – here we restrict ourselves to zero temperature and
the mean-field approximation – the model can be used in the future to study dense matter under
compact star conditions in the vicinity of the chiral phase transition, for instance to compute the
surface tension or to investigate spatially inhomogeneous phases.

I. INTRODUCTION

Hadronic matter is expected to undergo a transition to the quark-gluon plasma at sufficiently large temperatures or
baryon densities. The nature of this transition and its location in the phase diagram is poorly known, except for very
small baryon chemical potentials, where a smooth crossover is predicted from lattice calculations [1]. In this paper,
we are interested in the transition – here: the chiral phase transition – at zero temperature and thus large, but not
asymptotically large, baryon chemical potentials, a region not accessible from first principles with currently available
methods. Besides its significance for the QCD phase diagram, this transition is highly relevant for the properties of
compact stars, whose interiors may host deconfined quark matter [2].

We do not intend to describe this transition from first principles, we shall rather employ a relatively simple phe-
nomenological model. Even giving up the rigor of the underlying fundamental theory, it is a challenge to account for
both quark matter and hadronic matter within a single approach. Using a single model is beneficial if one is interested
for example in the critical chemical potential at which the chiral phase transition occurs. While this transition point
is a prediction of a unified approach, it is essentially a model parameter if two separate descriptions of hadronic and
quark matter are glued together. Another advantage is that properties in the vicinity of the phase transition can
be calculated more reliably, most notably the surface tension (if the transition is of first order), for which the full
potential, connecting both local minima, needs to be known1. The reason for that lies in the fact that, given the
effective potential, one can resort to the full power of semiclassical methods, perturbing the system around classical
solutions instead of trivial vacua (see e.g. Refs. [6, 7]). Such classical solutions probe the entire structure of the
potential, including the different phases it allows.

The majority of studies of hybrid stars – compact stars with a quark matter core and a nuclear mantle – employ
two separate descriptions for the two phases, see for instance Refs. [8–16]. A few unified approaches do exist in the
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different models, it requires extra information that is usually not available, which results in more free parameters and uncertainties
[3–5]. In particular, one needs information on the barrier, which is directly related to the surface tension.
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literature. One example is to start from a Lagrangian that contains both baryonic and quark degrees of freedom
[17, 18], another is a holographic approach where baryonic and quark phases are realized in a consistent way [19–21].
Here we pursue a very simple idea, already put forward in Refs. [22, 23]: we start from a Lagrangian with only
baryonic degrees of freedom, where the masses are entirely generated through the chiral condensate, similar to the
extended linear sigma model employed in Refs. [24, 25]. This allows us to observe a chiral phase transition and a
(approximately) chirally symmetric phase at high densities with very small baryonic masses. This is in contrast to
similar models of the Walecka type [26–30], which can only be used to describe chirally broken matter. Our study
extends the model of Refs. [22, 23, 31, 32] to include strangeness via hyperonic degrees of freedom, which gives rise
to a more realistic picture of the chirally restored phase, resembling “strange quark matter” in various aspects that
will be discussed in detail. In particular for neutron star conditions this is an essential improvement since without
strangeness the model does not have any degrees of freedom that carry both baryon number and negative electric
charge. This is relevant due to the neutrality constraint and can also be expected to alter the screening effects at the
interfaces of mixed phases, and thus our study provides a framework to improve the study of “chiral pasta” [23].

By including hyperons we do not necessarily change the baryonic phase of the model. Whether actual hyperons
appear is decided dynamically. They may be disfavored before the chiral phase transition, and we shall see that
they indeed only appear for values of the model parameters that are in conflict with astrophysical data of compact
stars. However, the hyperonic degrees of freedom do play a role in the chirally restored phase and we shall see that
parameter regions allowed by empirical constraints do also allow for strangeness in the chirally restored phase for all
chemical potentials above the chiral phase transition. It is in this sense that we speak of strange quark matter from
a baryonic approach, having in mind that there are no quark degrees of freedom in our model and that we should
not expect to reproduce all known properties of weakly interacting, three-flavor quark matter at asymptotically large
densities. Instead, our model provides a prediction for chirally restored matter close to the chiral phase transition,
relevant for compact stars, with properties very different from simple extrapolations of weakly-coupled quark matter.

We shall keep most of the approximations used in the non-strange version of the model [22, 23], i.e. our evaluation
will be in the mean-field and no-sea approximations at zero temperature, and we shall neglect Cooper pairing that is
expected to occur in nuclear matter [33] and quark matter [34]. As in Refs. [22, 23], we should keep in mind that our
description of dense matter is based on extrapolating a model constructed mainly to reproduce low-density properties
of nuclear matter. We shall restrict ourselves to thermodynamic properties and homogeneous phases, within the
constraints of equilibrium with respect to the weak interactions and local electric charge neutrality. The main idea of
the paper is to set up the model and explore its parameter space in order to identify regions in which it reproduces
basic properties of symmetric nuclear matter at saturation, basic properties of strange quark matter at asymptotically
large densities and is able to reproduce compact stars with a mass of at least about 2.1 solar masses, meeting the
constraint set by the heaviest known compact star [35, 36]. In doing so, we can e.g. constrain to a very narrow range
the poorly known slope parameter of the symmetry energy, L ' (88− 92) MeV. Our study thus lays the ground for
future studies for instance of the quark-hadron mixed phase or the chiral density wave [24, 37, 38] in the vicinity of
the chiral phase transition.

Our paper is organized as follows. We set up the model in Sec. II, including the underlying Lagrangian and the
resulting Euler-Lagrange equations. Some guidance and insight for the setup is gained from an SU(3) symmetric
approach, which we review in Appendix A. In Sec. III we discuss carefully the matching procedure of our parameters
and identify the freedom in the parameter choices left by experimental uncertainties, mainly in the strangeness sector.
Our main results are presented and discussed in Sec. IV, which we have divided into a subsection on a few selected
parameters sets, Sec. IV A, and a more general survey of the parameter space, Sec. IV B, where we draw some
parameter-independent conclusions. We give a summary and an outlook in Sec. V.

II. SETUP

A. Lagrangian

The hadronic part of our Lagrangian is composed of baryonic and mesonic contributions and baryon-meson inter-
actions,

L = LB + LM + LI . (1)

The baryonic part is

LB =
∑
i

ψ̄i(iγ
µ∂µ + γ0µi)ψi , (2)
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where ψ̄i = ψ†i γ
0 and the sum is over the baryon octet, i = n, p,Σ0,Σ−,Σ+,Λ,Ξ0,Ξ−. We have not included any

explicit mass terms, all baryon masses will be generated dynamically by the chiral condensate. Since in QCD chiral
symmetry is only approximate, adding small explicit masses does not violate general principles, and this was indeed
done in comparable approaches [39]. For simplicity, and to avoid additional parameters, we shall account for explicit
chiral symmetry breaking only in the meson potential and the choice of the baryon-meson coupling constants. The
Lagrangian formally contains a chemical potential for each of the 8 baryon species, but in (three-flavor) QCD there
are only three independent chemical potentials, associated with baryon number, isospin, and strangeness. In terms of
these chemical potentials,

µi = µB + IiµI + SiµS , (3)

where Ii is the third component of the isospin and Si is the strangeness of the baryons, such that explicitly

µn/p = µB ± µI , (4a)

µΣ± = µB ∓ 2µI − µS , (4b)

µΛ = µΣ0 = µB − µS , (4c)

µΞ−/Ξ0 = µB ± µI − 2µS . (4d)

The number of independent chemical potentials is further reduced by the conditions of equilibrium with respect
to the weak interactions and electric charge neutrality. We require the leptonic process p + e → n + νe to be in
equilibrium with the inverse reaction n → p + e + ν̄e, and the same for the non-leptonic processes n + n ↔ p + Σ−.
Other weak reactions involving hyperons exist but their equilibration does not yield independent conditions for our
chemical potentials. We shall assume that neutrinos have mean free paths larger than the size of the system, such
that we may set the neutrino chemical potential to zero. This is a good assumption for neutron stars unless the
temperature is larger than about a few MeV, which is only the case in the very early stages of their evolution and in
merger processes. At zero temperature, weak equilibrium directly translates into simple conditions for the chemical
potentials, µp + µe = µn, and 2µn = µp + µΣ− . As a result, we can express µB , µI , µS in terms of neutron and
electron chemical potentials,

µB = µn −
µe
2
, µI =

µe
2
, µS = −µe

2
. (5)

The mesonic part of the Lagrangian contains the scalar meson σ and the vector mesons ωµ, ρµ0 , φµ,

LM =
1

2
∂µσ∂

µσ − U(σ)− 1

4
ωµνω

µν − 1

4
φµνφ

µν − 1

4
ρ0
µνρ

µν
0 +

m2
ω

2
ωµω

µ +
m2
φ

2
φµφ

µ +
m2
ρ

2
ρ0
µρ
µ
0

+
d

4
(ωµω

µ + ρ0
µρ
µ
0 + φµφ

µ)2 , (6)

where ωµν = ∂µων − ∂νωµ and analogously for φµν and ρ0
µν . This Lagrangian can be viewed as a subset of the

Lagrangian containing the full scalar, pseudoscalar, and vector meson nonets [40], only keeping the fields that we
assume to condense in the medium given by the baryons. This is justified by the mean-field approximation, where
the fluctuations of the meson fields are neglected. For instance, the pseudoscalar nonet is completely omitted here
because we assume none of these fields to condense. It is only indirectly used by fitting one of the parameters of the
potential U to the pion mass. Moreover, in the scalar sector, the fields corresponding to the 0 and 8 direction with
regard to the commonly used generators of U(3) are usually rotated to give a non-strange scalar field σ and a strange
field ζ. This is explained more explicitly in Appendix A, where we briefly review the more systematic approach using
the full mesonic and baryonic multiplets. Here, in the main part, we omit the ζ field (and condensate) for simplicity.
This is comparable to the approximation used in Walecka-like models, where the excitations of the scalar fields (not
their condensates) are fundamental degrees of freedom of the Lagrangian. In this case, the strangeness sector, i.e.,
the excitation of the ζ, is sometimes omitted as well for phenomenological reasons [16, 41]. The potential for the
remaining scalar meson is chosen to be the same as in the two-flavor version of this model [22, 23, 31, 32],

U(σ) =

4∑
n=1

an
n!

(σ2 − f2
π)n

2n
− ε(σ − fπ) , (7)
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with parameters a1, a2, a3, a4, ε and the pion decay constant fπ ' 92.4 MeV. Temporarily including pion fluctuations,
we fit a1 = m2

π to reproduce the vacuum mass of the pion mπ = 139 MeV, and requiring the vacuum value of the chiral
condensate to be 〈σ〉 = fπ, we obtain ε = m2

πfπ. For the vector meson masses in Eq. (6) we will use mω = 782 MeV,
mφ = 1020 MeV, mρ = 775 MeV. We have included a quartic meson coupling term [18, 42–44] with coupling constant
d ≥ 0, which will play an important role for our results. The structure of this term is a particular choice within the
more general quartic term based on a chiral approach, see appendix A and in particular Eq. (A7).

The baryon-meson interactions are given by

LI = −
∑
i

ψ̄i(giσσ + giωγ
µωµ + giργ

µρ0
µ + giφγ

µφµ)ψi . (8)

As dictated by the chiral SU(3) approach, the coupling constants within each isospin multiplet are related, see
appendix A, and will be denoted by

gNx ≡ gnx = gpx , gΣx ≡ gΣ0x = gΣ±x , gΞx ≡ gΞ0x = gΞ−x , (9)

for x = σ, ω, φ, and

gNρ ≡ gnρ = −gpρ , gΣρ ≡ gΣ+ρ = −gΣ−ρ , gΞρ ≡ gΞ0ρ = −gΞ−ρ , (10)

while gΣ0ρ = gΛρ = 0. The coupling constants giσ between the baryons and the scalar field are fixed by their vacuum
masses. At mean-field level, and using that in the vacuum 〈σ〉 = fπ, the baryonic vacuum masses are mi = giσfπ.
Using mN ≡ mn/p ' 939 MeV, mΛ ' 1115 MeV, mΣ±/Σ0 ' 1190 MeV, mΞ−/Ξ0 ' 1315 MeV, this fixes the coupling
constants giσ. Fixing the couplings between the baryons and the vector mesons is more complicated. It is possible to
derive the coupling terms from a SU(3) invariant approach, see appendix A. We shall use the resulting constraints
for some of the hyperonic couplings, combined with a phenomenological approach for the nucleonic couplings, as we
shall explain in Sec. III.

B. Free energy and stationarity equations

We allow the scalar meson field and the temporal components of the vector meson fields to condense and denote
the corresponding condensates by

σ ≡ 〈σ〉 , ω ≡ 〈ω0〉 , ρ ≡ 〈ρ0
0〉 , φ ≡ 〈φ0〉 . (11)

They are assumed to be homogeneous in space, and we neglect all mesonic fluctuations. This allows us to write down
an effective “mean-field Lagrangian”,

L =
∑
i

ψ̄i(iγ
µ∂µ + γ0µ∗i −Mi)ψi − U(σ)− V (ω, ρ, φ) , (12)

with the vector meson potential

V (ω, ρ, φ) = −1

2
(m2

ωω
2 +m2

ρρ
2 +m2

φφ
2)− d

4
(ω2 + ρ2 + φ2)2 , (13)

the effective chemical potentials

µ∗n/p = µn/p − gNωω − gNφφ∓ gNρρ , (14a)

µ∗Σ0 = µΣ0 − gΣωω − gΣφφ , (14b)

µ∗Σ± = µΣ± − gΣωω − gΣφφ∓ gΣρρ , (14c)

µ∗Λ = µΛ − gΛωω − gΛφφ , (14d)

µ∗Ξ0/Ξ− = µΞ0/Ξ− − gΞωω − gΞφφ∓ gΞρρ , (14e)

and the effective, medium-dependent masses

Mn/p = gNσσ , MΣ0/Σ± = gΣσσ , MΛ = gΛσσ , MΞ0/Ξ− = gΞσσ . (15)
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As often done in comparable phenomenological models, we shall omit the (renormalized) vacuum contribution (“no-
sea approximation”). The idea is that this contribution would only yield a quantitative change and since the entire
approach is of phenomenological nature there is not much to be gained from the inclusion of this contribution, given
that the parameters of the model will be fitted within this approximation to low-energy nuclear matter properties.
(There are cases, however, where the vacuum part makes a qualitative difference, for instance in the case of a back-
ground magnetic field [25, 45–47].) We shall also restrict ourselves to zero temperature throughout the paper. Then,
the free energy density becomes

Ω = −
∑
i

p(µ∗i ,Mi) + U(σ) + V (ω, ρ, φ)− p(µe,me)− p(µµ,mµ) , (16)

where the pressure of each fermion species is given by the function

p(µ,M) =
Θ(µ−m)

8π2

[(
2

3
k3
F −m2kF

)
µ+m4 ln

kF + µ

m

]
, (17)

with the Fermi momentum

kF =
√
µ2 −m2 . (18)

In Eq. (16) we have added the leptonic contribution, with electron and muon chemical potentials µe, µµ, and their
masses me = 0.511 MeV and mµ = 106 MeV. Weak equilibrium requires µe = µµ, for instance through the processes
e → µ + ν̄µ + νe and µ → e + ν̄e + νµ. We define the following general expressions for the scalar density and the
fermionic number density,

nsc(µ,m) ≡ − ∂p

∂m
= Θ(µ−m)

m

2π2

(
kFµ−m2 ln

kF + µ

m

)
, (19a)

n(µ,m) ≡ ∂p

∂µ
= Θ(µ−m)

k3
F

3π2
. (19b)

Then, the Euler-Lagrange equations can be written as

0 =
∂Ω

∂σ
=
∂U

∂σ
+
∑
i

giσnsc,i , (20a)

0 =
∂Ω

∂ω
=
∂V

∂ω
+
∑
i

giωni , (20b)

0 =
∂Ω

∂ρ
=
∂V

∂ρ
+
∑
i

giρni , (20c)

0 =
∂Ω

∂φ
=
∂V

∂φ
+
∑
i

giφni , (20d)

where nsc,i ≡ nsc(µ∗i ,Mi) and ni ≡ n(µ∗i ,Mi). Additionally, we need the constraint from local electric charge
neutrality, which reads

0 =
∂Ω

∂µe
= −np − nΣ+ + nΣ− + nΞ− + ne + nµ . (21)

For the equation of state we shall need the energy density

ε = −P + µene + µµnµ + µBnB + µSnS + µInI = −P + µnnB , (22)

where P = −Ω is the pressure, where, in the second step, we have used the chemical potentials (5) and the charge
neutrality condition (21), and where baryon, strangeness, and isospin number densities are

nB =
∑
i

ni , nS =
∑
i

Sini , nI =
∑
i

Iini . (23)
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C. Speed of sound

We require that our model reproduces the speed of sound of asymptotically dense cold QCD, such that our chirally
restored phase shares this property with realistic quark matter. At asymptotically large densities the speed of sound
squared c2s of QCD goes to the conformal limit 1/3, since in this limit µB is much larger than the QCD scale and, due
to asymptotic freedom, also much larger than the constituent quark masses. Therefore, the baryon density is that of
a free gas of fermions, nB ∝ µ3

B , which yields c2s = 1/3, independent of the proportionality constant, as can be easily
checked from the definition

c2s =
∂P

∂ε
=
nB
µB

(
dnB
dµB

)−1

. (24)

Here, the first expression is valid in general, i.e., also for nonzero temperatures, in which case the derivative with
respect to ε is taken at fixed entropy per particle. The second expression is valid at zero temperature; see for instance
appendix E of Ref. [19] for a derivation of the general expression in terms of derivatives with respect to the chemical
potential and temperature.

To discuss the speed of sound in our model, let us for illustrative purposes in this section only consider isospin-
symmetric nuclear matter without strangeness, i.e. we ignore hyperons for now and the only nonzero meson conden-
sates are σ and ω. Also ignoring neutrality and a possible lepton contribution, the only relevant equations are Eqs.
(20a) and (20b), which have to be solved for σ and ω and which we write as

0 = f1(σ, ω, µB) ≡ ∂U

∂σ
+ 2gNσnsc(µ∗B ,M) , (25a)

0 = f2(σ, ω, µB) ≡ ω(m2
ω + dω2)− gNωnB , (25b)

with M = gNσσ, µ∗B = µB − gNωω. For the speed of sound we need the derivative

dnB
dµB

=
∂nB
∂µB

+
∂nB
∂σ

∂σ

∂µB
+
∂nB
∂ω

∂ω

∂µB
. (26)

The explicit derivatives of nB are easily obtained, but σ and ω are only given implicitly by Eqs. (25) (there is no
analytical solution even in this simplified scenario). We can, however, compute the relevant derivatives in terms of σ
and ω via

(
∂σ

∂µB
,
∂ω

∂µB

)
= −

(
∂f1

∂µB
,
∂f2

∂µB

)
∂f1

∂σ

∂f2

∂σ
∂f1

∂ω

∂f2

∂ω


−1

. (27)

Inserting all this into the definition of the speed of sound yields after some algebra

c2s =
1

3

k2
F

µBµ∗B


2kFµ

∗
B

π2
+

3

M

∂U

∂M
− ∂2U

∂M2

2k3
F

π2µ∗B
+

3

M

∂U

∂M
− ∂2U

∂M2

+
2g2
NωkFµ

∗
B

π2(m2
ω + 3dω2)

 , (28)

where k2
F = (µ∗B)2−M2. This relatively compact expression is valid for all densities, but still requires solving equations

(25) numerically for an explicit evaluation. In this section we are only interested in the asymptotic limit, which can
be evaluated analytically. One observes that taking the limit µB →∞ does not commute with the limit d→ 0. If we
first send d→ 0, the solutions of Eq. (25) become for large µB

d = 0 : σ '
(

2g2
Nωπ

3m2
ω

)2/3
fπm

2
π

g2
Nσµ

2/3
B

, ω ' µB
gNω

−
(

3π2m2
ωµB

2g5
Nω

)1/3

. (29)

The subleading term in ω is needed to obtain the leading behavior for µ∗B . Since for µB → ∞ we have kF ' µ∗B ,
the first term in the square brackets in Eq. (28) approaches 1. It is therefore subleading and the asymptotic speed of
sound is given by the second term in the square brackets. With the relations (29) we find c2s = 1. Therefore, if the
quartic self-interactions are switched off in the Lagrangian, d = 0, the speed of sound approaches the speed of light
at asymptotically large µB .
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On the other hand, if we first take the limit µB →∞ at nonzero d we find for the leading terms of the solution of
Eqs. (25)

σ '

[
1 +

(
2g4
Nω

3π2d

)1/3
]2

fπm
2
ππ

2

gNσµ2
B

, ω '

[
1 +

(
3π2d

2g4
Nω

)1/3
]−1

µB
gNω

. (30)

Again, the first term in the square brackets in Eq. (28) becomes 1, but this time it is of the same order as the second
term, and both terms together give the asymptotic result c2s = 1/3 for all d > 0, a conclusion also reached for a similar
model in Ref. [48]. This shows that only in the presence of a quartic vector meson self-coupling our model reproduces
the asymptotic speed of sound of QCD.

These observations also suggest that by choosing a sufficiently small but nonzero d, the speed of sound becomes
arbitrarily close to 1 at intermediate densities. The reason is that the behavior of the condensates (29) also holds in
a regime where µB is large compared to all other energy scales while the dimensionless parameter dµ2

B/m
2
ω is small,

see Eqs. (25b) and (28). For any nonzero d, of course, the behavior (30) eventually takes over as µB is increased and
the speed of sound approaches 1/3 asymptotically. This can be confirmed numerically, as well as the fact that these
asymptotic limits derived here remain valid in the more complicated scenario including strangeness and the neutrality
constraint.

III. PARAMETER CHOICES

Our strategy for fixing the parameters of the Lagrangian is to fit as many as possible to empirical vacuum and
low-density quantities, and explore the parameter space of the remaining ones to understand the qualitative behavior
of the model, in particular with respect to the chiral phase transition and the onset of strangeness. We have already
used vacuum properties to fix ε, a1,mω,mφ,mρ, gNσ, gΛσ, gΣσ, gΞσ. We assume that the nucleons do not couple to
the hidden strangeness meson, gNφ = 0 [39, 49, 50]. It remains to choose values for, first, a2, a3, a4, d, gNω, gNρ, and,
second, the couplings of the hyperons to the vector mesons gΛω, gΣω, gΞω, gΛφ, gΣφ, gΞφ, gΣρ, gΞρ. Let us discuss these
two groups of parameters separately.

A. Saturation properties

We relate the 6 parameters a2, a3, a4, d, gNω, gNρ to 6 properties of isospin-symmetric nuclear matter at saturation:

we use the well-known binding energy EB = −16.3 MeV and saturation density n0 = 0.153 fm−3, and also work with a
definite symmetry energy S = 32 MeV, following the empirical estimates S ' (30.2−33.7) MeV [51, 52] (see, however,
Ref. [53], which predicts a somewhat larger value based on measurements of the neutron skin thickness by the PREX
collaboration [54]). The incompressibility at saturation is less well known, K ' (200− 300) MeV. In our main results
we shall employ the value K = 250 MeV. We have checked that our results do not change much under variations of K
in the empirically allowed range. There is much more sensitivity to the effective nucleon mass at saturation, M0, and
the slope L of the symmetry energy with respect to density changes away from saturation. For later, we shall keep in
mind an empirical range of M0 ' (0.7− 0.8)mN [55–60]. Estimates for the slope of the symmetry energy range from
L ' (40− 60) MeV [61–63] to more recent values using the result of the PREX experiment [54], indicating that larger
values might be favored, L ' (70− 140) MeV [53]; for a recent overview of the various estimates for L see Ref. [64].

To set up the relation between the model parameters and the saturation properties, we denote the chemical potential
at the onset of isospin-symmetric (non-strange) baryonic matter by µ0 = 922.7 MeV, and the effective baryon chemical

potential by µ∗0 = µ∗n = µ∗p =
√
k2
F +M2

0 , where the Fermi momentum can be expressed in terms of the saturation

density via n0 = 2k3
F /(3π

2), which yields kF ' 260 MeV. In the absence of hyperons, baryon and isospin densities are
nB = nn + np and nI = nn − np, respectively. In symmetric nuclear matter, where nI = 0, the stationarity equations
(20) give ρ = φ = 0, while ω obeys the cubic equation

gNωn0 = m2
ωω + dω3 , (31)

whose relevant solution we write as

ω0 =
gNωn0

m2
ω

f(x0) , (32)

with

f(x) ≡ 3

2x

1− (
√

1 + x2 − x)2/3

(
√

1 + x2 − x)1/3
, x0 ≡

3
√

3d gNωn0

2m3
ω

. (33)



8

With limx→0 f(x) = 1 we recover the case without quartic vector meson interactions, d = 0. We also need the
definitions of incompressibility, symmetry energy, and slope of the symmetry energy,

K = 9nB
∂µB
∂nB

, S =
nB
2

∂µI
∂nI

, L = 3nB
∂S

∂nB
, (34)

where K is evaluated for symmetric nuclear matter, the derivative in S is taken at fixed nB and evaluated at nI = 0,
and the derivative in L is taken at fixed nI = 0.

Putting all of this together, we obtain the following six conditions for the model parameters:

g2
Nω =

m2
ω

2n0
(µ0 − µ∗0)

[
1 +

√
1 +

4dn0(µ0 − µ∗0)

m4
ω

]
, (35a)

g2
Nρ =

3π2m2
ρ

k3
F

(
S − k2

F

6µ∗0

)(
1 +

dω2
0

m2
ρ

)
, (35b)

L =
3g2
Nρn0

2(m2
ρ + dω2

0)

[
1− 2dn0gNωω0

(m2
ρ + dω2

0)(m2
ω + 3dω2

0)

]
+

k2
F

3µ∗0

(
1− K

6µ∗0

)
+
g2
Nωn0k

2
F

2m2
ωµ
∗2
0

[f(x0) + x0f
′(x0)] , (35c)

K =
6k3
F

π2

g2
Nω

m2
ω

[f(x0) + x0f
′(x0)] +

3k2
F

µ∗0
− 6k3

F

π2

(
M0

µ∗0

)2
[

1

g2
Nσ

∂2U

∂σ2
+

2

π2

∫ kF

0

dk k4

(k2 +M2
0 )3/2

]−1

, (35d)

0 =
m2
ω

2
ω2

0 +
d

4
ω4

0 − U(σ) +
1

4π2

[(
2

3
k3
F −M2

0 kF

)
µ∗0 +M4

0 ln
kF + µ∗0
M0

]
, (35e)

0 =
∂U

∂σ
+
gNσM0

π2

(
kFµ

∗
0 −M2

0 ln
kF + µ∗0
M0

)
. (35f)

Here, the first relation is obtained from inserting the relation µ∗0 = µ0 − gNωω0, which follows from Eq. (14a), into
Eq. (31); the next relations are obtained by computing S, L, and K from their definitions (34); finally, we have the
condition that the pressure at saturation be identical to the pressure of the vacuum, which in our convention is zero,
and the stationarity equation (20a) for σ, whose value is σ = M0/gNσ at saturation.

For given L, S,K,M0, µ0, n0, Eqs. (35) can now be solved to obtain the model parameters a2, a3, a4, gNω, gNρ, d.
For the practical calculation it is useful to note that (35a), (35b), (35c) do not depend on a2, a3, a4 (which only enter
through the meson potential U), such that they can be solved separately for gNω, gNρ, d. The results are then used to
solve Eqs. (35d), (35e), (35f) for a2, a3, a4. If the quartic coupling is set to zero, d = 0, Eqs. (35a) and (35b) can be
used to obtain gNω and gNρ, and the coupled equations (35d), (35e), (35f), are used to fix a2, a3, a4, while L can only
be computed afterwards, i.e., in this case there is no freedom in the parameter set to reproduce a given value for L.

Interestingly, Eqs. (35) can be used to compute a window in the M0-L plane for a given value for K. From Eqs.
(35a) and (35b) we see that in order for g2

Nω and g2
Nρ to be positive we need

kF

√(
kF
6S

)2

− 1 < M0 <
√
µ2

0 − k2
F . (36)

We can also compute the limits of L for d = 0 and d→∞, which gives the range

S +
k2
F (3µ0 −K)

18µ∗20

< L <
3g2
Nρn0

2m2
ρ

+
k2
F

3µ∗0

(
1− K

6µ∗0

)
+
g2
Nωn0k

2
F

2m2
ωµ
∗2
0

, (37)

where the lower (upper) limit comes from d→∞ (d = 0). We have considered the possibility of negative d, but have
not found any physically sensible solutions, in most cases indicated by a superluminal speed of sound combined with
the solutions of the stationarity equations turning complex at large densities, see also Refs. [48, 65]. The resulting
window in the M0-L plane is shown in Fig. 1 for K = 250 MeV (with all other saturation properties as given above).
If we apply the realistic window M0 ' (0.7 − 0.8)mN we see that this already constrains the range for the slope of
the symmetry energy to L ' (47− 93) MeV, as indicated by the shaded bands in the figure.
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Figure 1: Allowed window (red curves) of the model in the M0-L plane bounded by the limits (36) and (37), solely derived from
known saturation properties of symmetric nuclear matter. Here we have set K = 250 MeV, which we will use throughout the
paper. The thin black curves are lines of constant d, d = 10, 102, 103, 104 from right to left. The grey horizontal band indicates
the empirically favored range for M0, which results in a predicted range L ' (47− 93) MeV, shown by the red vertical band.

B. Couplings between hyperons and vector mesons

The choice for the hyperon couplings gΛω, gΣω, gΞω, gΛφ, gΣφ, gΞφ, gΣρ, gΞρ is much less constrained by experimental
data. Here our strategy is to combine phenomenological constraints with the relations given by the chiral approach
of appendix A, while leaving one degree of freedom to be varied to probe the dependence of our results on different
choices of the hyperon couplings. The connection between the coupling constants and (potential) experimental data is

made by the hyperon potential depths. The potential depth U
(j)
i of a single hyperon i in a medium of baryon species

j at arbitrary baryon density nB is computed as follows. We assume isospin-symmetric media, such that np = nn for
j = N , nΣ+ = nΣ0 = nΣ− for j = Σ, and nΞ0 = nΞ− for j = Ξ. As a consequence, ρ = 0 in each case, and the Fermi
momentum kF is related to the baryon density by

nB =
sk3
F

3π2
, (38)

where s is a degeneracy factor, s = 2, 1, 3, 2 for baryonic media N,Λ,Σ,Ξ, respectively. The single-baryon energy E
(j)
k,i

of baryon i in a medium of baryon j obeys the relation

E
(j)
k,i − µi =

√
k2 + (M

(j)
i )2 − µ∗(j)i , (39)

where M
(j)
i is the medium-dependent mass of baryon i and µ

∗(j)
i is its effective chemical potential, containing the

actual chemical potential µi and the medium-dependent condensates, see Eq. (14). The potential is given by the

minimum of the single-baryon energy E
(j)
k=0,i minus the vacuum mass mi,

U
(j)
i = M

(j)
i − µ

∗(j)
i + µi −mi = giσ(σ(j) − fπ) + giωω

(j) + giφφ
(j) , (40)

where, in the second step, we have expressed the vacuum mass in terms of the vacuum value of the chiral condensate,
mi = giσfπ. The medium-dependent mass and effective chemical potential have been written in terms of the meson
condensates in the medium of baryon j, which have to be computed numerically with the help of the stationarity
equations at the given baryon density nB (38). For our purposes, Eq. (40) is only needed for the hyperon potentials
in a medium of nucleons at saturation density. In this case φ = 0, and using gNσσ

(N) = M0, gNσfπ = mN we can
write

U
(N)
i =

giσ
gNσ

(M0 −mN ) + giωω0 , (41)

where ω(N) = ω0 is the value of the condensate at saturation (32). We thus have three relations, i = Σ,Λ,Ξ, to relate
three hyperon potentials to the hyperon-omega coupling constants.
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gNω gNρ gΛω gΣω gΞω a2 a3[MeV−2] a4[MeV−4] M0/mN L[MeV] Figs. 2 – 6

10.23 4.138 14.53 14.59 16.39 44.69 2.917·10−4 5.071·10−5 0.72 89.91 black

8.196 4.297 12.35 12.03 13.63 55.15 -7.465·10−3 9.553·10−5 0.8 86.24 red

6.610 4.379 10.86 10.17 11.65 73.15 3.120·10−2 2.865·10−4 0.85 84.66 blue

3.291 4.477 9.371 7.155 8.738 465.5 3.643 1.305·10−2 0.92 83.14 green

Table I: Parameter sets used in Sec. IV A, Figs. 2 – 6. We have included the resulting values for the Dirac mass at saturation
M0 and the slope parameter L, while K = 250 MeV in all four cases. The parameters ε, a1,mω,mφ,mρ, gNσ, gΛσ, gΣσ, gΞσ

are the same in all cases and fixed by vacuum properties as explained in Sec. II. Moreover, in all four cases d = 21, and the
hyperon couplings listed here are chosen to give U = −50 MeV. The remaining hyperon-meson couplings gΛφ, gΣφ, gΞφ, gΣρ, gΞρ

are determined by the chiral relations (A12) in each case separately.

In all our results we shall use the value

U
(N)
Λ = −30 MeV , (42)

as suggested by experimental data [66, 67] and adopted in comparable models [41, 68, 69]. The potentials for Σ and

Ξ are less well known experimentally, with chiral effective theory suggesting U
(N)
Ξ to have a relatively small absolute

value with either sign possible and U
(N)
Σ more likely to be positive [70, 71]. For simplicity, we shall assume the values

of both potentials to be identical,

U ≡ U (N)
Σ = U

(N)
Ξ , (43)

and vary U within a reasonable range. We shall see that within this simplistic approach we will have to choose

in particular U
(N)
Σ to be different from what is usually adopted. Due to the large uncertainties in our knowledge

of these potentials this may not seem too unreasonable. Moreover, empirical constraints drive our choice to more
attractive potentials compared to the most common values in the literature, such that one might expect hyperons to be
unusually favored in our results. However, we shall see that for the parameter sets that meet astrophysical constraints
strangeness does not occur in the chirally broken phase. Therefore, even if the hyperon potentials we choose are
different from their value in nature, we do not have hyperons with unphysical properties in our system. The hyperon
coupling constants then rather characterize the interactions in the chirally restored phase (i.e., of “strange quark
matter”), for which no direct experimental information is available and where astrophysical data are our best source
for constraints, forcing us to somewhat stretch the usual regime for the hyperon potentials.

After choosing a value of U , Eqs. (41), (42), (43) fix the ω coupling constants gΣω, gΛω, gΞω. This leaves the
coupling constants gΛφ, gΣφ, gΞφ, gΣρ, gΞρ, which we compute from the chiral relations (A12) (ignoring the relations
in that equation for gΣω, gΛω, gΞω).

IV. RESULTS

We present and discuss our results as follows. First, in Sec. IV A we choose four parameter sets in order to
demonstrate qualitatively different scenarios with respect to the chiral phase transition and the onset of strangeness
that our model can produce. At this point, we do not yet discard parameter regions disfavored by astrophysical data.
The reason is that it is instructive to see that different scenarios can be realized in principle, keeping in mind that our
model is of phenomenological nature. Therefore, a scenario realized in the present version of the model that appears
to be excluded by data may be allowed in an improved version of the model, or in a different phenomenological model
– or in QCD. Then, second, in Sec. IV B, we do discuss the empirical and astrophysical constraints systematically,
which will lead to conclusions independent of the particular parameter choices.

A. Selected parameter sets

We start with the four parameter sets specified in Table I. They all give a potential U = −50 MeV for the Σ
and Ξ, and the quartic meson self-coupling constant is fixed to d = 21. As mentioned above, we also keep the
incompressibility at saturation fixed to K = 250 MeV. The parameter sets are then obtained by varying the Dirac
mass at saturation from low (approximately the lower end of the empirically allowed range) to high (somewhat larger
than the empirically allowed maximum). The slope parameter L then adjusts accordingly (varying, however, only by
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Figure 2: Effective nucleon mass as a function of the neutron chemical potential for the four parameter sets given in Table
I. Solid lines correspond to stable phases, while the dashed segments are metastable (MN decreasing with µn) or unstable
(MN increasing with µn). The open squares mark the onset of strangeness, and the dots mark the phase transition within the
baryonic phase (upper left and both lower panels) and the chiral phase transition (both upper panels and lower left). In the
bottom right panel the chiral transition has become a (steep) crossover.

a few percent for the given choices). Note that a4 turns out to be positive in all four cases as it should be since this
ensures a bounded vacuum potential for σ.

1. Chiral transition and onset of strangeness

In Fig. 2 we show the effective nucleon mass MN ≡Mn/p as a function of the neutron chemical potential, obtained
by solving the stationarity equations (20) together with the neutrality constraint (21) numerically for σ, ω, φ, ρ, µe at
given µn (and T = 0). Since all baryon masses are proportional to the chiral condensate σ (multiplied by a coupling
constant to reproduce the vacuum masses), the effective hyperon masses follow the same behavior. The figure shows
all branches of the solution, including the unstable and metastable ones. In all cases, there is an approximately
chirally symmetric phase at large chemical potentials, where the baryon masses are very small. In three of the four
cases shown here, the chirally restored phase is reached via a first-order phase transition. The location of the phase
transition has to be determined from the free energy, i.e., by inserting the solutions of the stationarity equations back
into the free energy density (16). An example is shown in Fig. 3, corresponding to the lower left panel in Fig. 2.
Determining the state with the lowest free energy at each µn allows us to identify the stable branches, shown as solid
curves in Fig. 2.

Besides the very prominent chiral phase transition, Fig. 3 also shows a much weaker first-order phase transition at
relatively low densities within the chirally broken phase. This phase transition can be understood as a “remnant” of
the first-order onset of isospin-symmetric nuclear matter. In that case, the free energy is multi-valued at the onset,
and moving towards more neutron-rich matter tends to diminish this multivaluedness, i.e., decrease the spinodal
region. This happens gradually, and thus, even in the neutron-rich environment obtained here by the conditions of
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Figure 3: Free energy density as a function of the neutron chemical potential for the third case (blue) of Fig. 2. The large
three-valued region is the spinodal region of the first-order chiral phase transition, while the zoom-in shows a (weak) first-order
transition within the chirally broken phase.

weak equilibrium and charge neutrality, it is possible that the spinodal region survives. This is the case in three of
the four cases in Fig. 2, as indicated by the dots that mark the effective nucleon mass on either side of the transition.
In contrast to the chiral transition, the curves of stable and unstable phases in the vicinity of this transition are not
distinguishable by naked eye on the given scale.

Fig. 2 also indicates the onset of strangeness (open squares). We see that there are qualitatively different cases with
respect to that onset (and demonstrating these differences is one main motivation for our choice of parameter sets):
in the two upper panels, the onset of strangeness occurs in the metastable or unstable regime. This implies that the
baryonic phase does not contain any hyperons, while strangeness appears immediately after the chiral transition, i.e.
the transition is from nuclear matter to “strange quark matter”. Showing the possibility of this scenario within a
model based on baryonic degrees of freedom has been one of the main goals of this paper (and we shall see below that
astrophysical constraints favor this case). The precise location of the strangeness onset within the metastable/unstable
regime is irrelevant for the stable, homogeneous phases discussed in this paper. However, it would be interesting for
future studies to see how this location affects the properties of inhomogeneous phases, such as a mixed phase, which
does know about the behavior of the model away from the stable branches. In the lower left panel of Fig. 2, strangeness
occurs already in the baryonic phase. Therefore, in this case the sequence of phases is nuclear matter → hyperonic
matter → chirally restored matter with strangeness. Finally, the lower right panel shows yet another qualitatively
different behavior, namely a chiral crossover. In this case, strangeness occurs deeply in the baryonic regime (judging
from the effective nucleon mass, which is about 800 MeV at that point). Then, there is a continuous transition to the
phase with light degrees of freedom. It is striking that, first, this transition is still relatively “sharp”. It is difficult to
distinguish it by naked eye from a weak first-order transition. And, second, this sharp transition occurs at extremely
large chemical potentials, much larger than in the interior of neutron stars. We have not found any parameter set with
reasonable low-density properties that shows a significantly smoother crossover or a significantly smaller transition
density. (Judging from the results of the non-strange, isospin-symmetric version of our model [22], a much larger
incompressibility, far beyond the physical range, is needed for such a scenario.) Nevertheless, it is interesting that our
model allows for the possibility of a crossover, which is conceivable within QCD and corresponding model equations
of state have been constructed [72, 73], although this question becomes more subtle in the presence of Cooper pairing
[74–77].

While the onset of strangeness marked in Fig. 2 refers to the first strange degree of freedom, Fig. 4 shows all
individual particle fractions as functions of density. We have distinguished non-strange baryons from hyperons and
leptons by the color of the curves to facilitate the interpretation. Since the horizontal axis represents density, there
are disallowed regions due to the first-order phase transitions. There are metastable and unstable branches in these
regions which we have omitted since they are not very instructive. Also, the disallowed regions can be populated by
inhomogeneous mixed phases, which we are ignoring in this paper. We see that the lower critical density of the chiral
phase transition varies greatly between the different parameter sets, occurring as early as nB ' 0.4n0 in the upper
left panel. We have also marked the maximal central densities reached in compact stars for each case by an arrow.
These densities lie somewhere in the range nB ∼ (7−10)n0, a somewhat large number compared to most comparable
phenomenological models.
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Figure 4: Density fractions as a function of baryon density (normalized to the saturation density of symmetric nuclear matter
n0) for the four cases of Fig. 2, showing non-strange baryons (red), strange baryons (blue) and leptons (black). First-order
transitions appear in the form of a gap in the horizontal direction since the density is discontinuous. Cusps arise from the
onset of baryonic species. The arrow on the horizontal axis marks the central density of the most massive star possible for each
parameter set.

The figure also shows that the most prevalent strange degree of freedom in all four cases is the Σ−, which is the
lightest non-leptonic degree of freedom with negative electric charge. We also see that in the cases with a first-order
chiral phase transition the density fractions of the strange degrees of freedom decrease as the density is increased.
This is perhaps somewhat unexpected, at least having in mind the following simple picture of quark matter: At
intermediate densities we expect the constituent mass of the strange quark to be larger than that of the up and
down quarks. At ultra-high densities, due to asymptotic freedom, the quark masses approach the current mass
limit, whose scale becomes negligible compared to the chemical potential. As a consequence, one might expect the
strangeness content to increase as one moves to higher densities, although the strong-coupling nature of the problem
at intermediate densities does not allow a firm first-principles prediction for this behavior. What is firmly predicted
by QCD, however, is that three-flavor quark matter becomes flavor symmetric at asymptotically large densities. Our
results in Fig. 4 show two interesting properties of asymptotically dense matter. First, a nonzero amount of strangeness
survives asymptotically. The parameter sets are chosen deliberately to ensure this property, and we shall discuss in
the subsequent section that this is not the case for all parameter choices. Second, our asymptotic matter is clearly not
flavor symmetric, i.e., the up, down, and strange content of our baryonic degrees of freedom is not equal. We show in
Appendix B that there are choices of the hyperon-meson coupling constants that lead to asymptotic flavor symmetry
(while keeping the saturation properties of symmetric nuclear matter fixed). This would be desirable in our context
since this would make our chirally restored matter even more similar to actual QCD quark matter. However, we have
not found parameter sets that at the same time produce sufficiently heavy neutron stars, and thus here, in the main
part, we do not work with the parameter constraints derived in Appendix B.

2. Speed of sound and mass-radius curves

We show the speed of sound squared c2s for the four parameter sets of the previous subsection in Fig. 5. This figure
contains various interesting aspects. First, we see that all curves approach the conformal limit c2s = 1/3, as already
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Figure 5: Speed of sound squared as a function of the neutron chemical potential for the four cases of Fig. 2, showing only the
stable branches. Colors correspond to the colors of Fig. 2, i.e. the Dirac mass at saturation increases from black to red to blue
to green. The large discontinuities in the black, red, and blue curves indicate the chiral phase transition, while the green curve
has a chiral crossover, as the zoom-in proves. The arrows mark the chemical potentials in the center of the most massive star
of each case, and the horizontal dashed line marks the conformal value, c2s = 1/3, that is attained asymptotically by all curves.

suggested by the analytical calculation in Sec. II C. While that calculation was performed for symmetric nuclear
matter without strangeness, here we see that the conformal limit is also assumed asymptotically in the electrically
neutral, beta-equilibrated case including strange matter. As pointed out in Sec. II C, the nonzero value of the vector
meson self-coupling d is crucial for this behavior. Second, the zoom-in shows that the lower right panels of Figs. 2
and 4 indeed contain a smooth chiral crossover: the speed of sound – containing a second derivative of the free energy
– is continuous and smooth.

Third, and perhaps most importantly, let us comment on the behavior of the speed of sound in the intermediate
density regime, relevant for neutron star matter. It is striking that in the cases of a first-order chiral transition
the speed of sound increases through the discontinuity as we move towards large densities. Even in the case of the
crossover this tendency is retained; through the sharp crossover the speed of sound is increased from just below to just
above the conformal limit. (We have checked that there are parameter sets where c2s > 1/3 before the sharp crossover,
i.e., this is not a generic feature.) The large speed of sound in our chirally restored phase is somewhat surprising if we
have in mind perturbative QCD, which predicts c2s < 1/3 where it is applicable. We should emphasize that our model
is not asymptotically free. Even though the conformal limit is approached asymptotically, interactions still play a role
in this limit. Therefore, we cannot expect to reproduce this prediction of perturbative QCD. At intermediate densities,
QCD is strongly coupled and we have no first-principle results for the speed of sound of quark matter. Therefore,
our result is not in any contradiction with QCD. Another reason to expect a smaller speed of sound in the chirally
restored phase might be the increase in degrees of freedom as we cross the phase transition. While this tends to soften
the equation of state, i.e., to decrease the speed of sound, there are at least two opposing effects that, in our model,
turn out to dominate the behavior. Namely, the near-masslessness of the degrees of freedom in the chirally restored
phase should indeed contribute to an increase of the speed of sound, and, of course, the form of the interactions plays
an important role, which is not easy to disentangle from the other effects. A speed of sound of quark matter above
the conformal limit has also been observed in resummed perturbation theory [78] and in the color-flavor locked phase
[79]. In fact, it has been shown that no exotic degrees of freedom are necessary in order to generate a speed of sound
that surpasses its asymptotic conformal limit. Rather, a peak in the speed of sound of homogeneous matter naturally
emerges in the transition from a phase with broken chiral symmetry to one with a gapped Fermi surface [80].

The speed of sound is a measure for the stiffness of matter, and we expect stiff matter to give rise to large neutron
star masses. This connection is borne out in the mass-radius curves shown in Fig. 6. They are computed by inserting
the equation of state P (ε), with pressure P = −Ω and energy density ε from Eqs. (16) and (22), into the so-called
Tolman-Oppenheimer-Volkoff equations [81–83], which describe a static, spherically symmetric matter configuration
in general relativity. By choosing the central pressure as a boundary condition and solving the differential equations
numerically one obtains the mass and radius of the star. Varying the central pressure generates a mass-radius curve,
representing all possible stars for a given equation of state.

In Fig. 6 we show three different classes of stars, which are best explained with the help of the free energy in Fig.
3: “neutron stars”, i.e., stars made entirely of baryonic matter, probe the chirally broken branch of our solution.
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Figure 6: Mass-radius curves of quark stars (curves reaching back to the origin), hybrid stars (dashed), and neutron stars for
the four cases of Fig. 2. The shaded bands mark the stars containing strangeness. Only the upper left panel is in accordance
with the heaviest known neutron star. (Radius constraints must be ignored here since we have not included a crust, which
would change radii, but not the maximal masses, significantly.) The lower right panel corresponds to a parameter set with a
chiral crossover and thus only has a single class of stars.

Their maximal central pressure is given by the phase transition point (µn ' 1.4 GeV in Fig. 3) if only stable baryonic
matter is considered. In the mass-radius plots we have traced the neutron star branch beyond the transition point
into the spinodal region, following the (now metastable) chirally broken solution. Importantly, this spinodal region
ends at some point, which corresponds to the end points of the neutron star curves in Fig. 6. In an approach using
different models for quark and hadronic matter the metastable branch would continue to arbitrarily large densities
and no prediction for the endpoint in the mass-radius curve can be made. This metastable neutron star segment can
be of astrophysical relevance since it is made of two-flavor nuclear matter (entirely in the upper left panel and for a
large part in the upper right panel). Therefore, it is conceivable that it survives for non-microscopic times since the
conversion to strange quark matter would require the injection of strangelets.

If we follow the thermodynamically stable branches through the phase transition, we branch off of the neutron star
curve by following the chirally restored branch. We obtain hybrid stars, shown by the dashed curves in Fig. 6, i.e.,
stars with a chirally broken mantle and a chirally restored core. This gives rise to the possibility of “twin stars”, stable
stars with the same mass but different radii [84]. Twins both having thermodynamically stable matter – one neutron
star, one hybrid star – are (barely) realized in the upper right panel. However, our results also suggest the existence
of twins where one star is made of metastable hadronic matter and its hybrid twin containing a strange quark matter
core (upper panels). In all mass-radius plots we have included segments that are expected to be unstable with respect
to radial oscillations of the star [58, 85]. Therefore, for instance, the lower left panel does not allow for twin stars
because the entire hybrid branch is expected to be unstable.

We also show the mass-radius curves of “quark stars” made entirely out of chirally restored matter in our model.
To this end, we follow the chirally restored solution in Fig. 3 backwards until the pressure (and thus the free energy
density) is zero. In the three cases considered here where this construction is possible, this includes a metastable
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segment of the solution, towards low densities, similar to the metastable neutron stars just discussed, where the
metastable matter sits at high densities. There are parameter regions where the metastable segment does not reach
back to zero pressure, which results in quark matter only appearing in hybrid stars, and not also in a separate branch
of quark stars. There are also parameter regions where the chirally restored branch is stable all the way down to zero
pressure, which we can interpret as a realization of the strange quark matter hypothesis [86, 87]. We shall come back
to this possibility – and identify the region in the parameter space where it is realized – in the subsequent section.

In the calculation of the mass-radius curves we have not included any mixed phase at the chiral phase transition.
A mixed phase layer in the star would smoothen the cusp-like transition from the neutron star branch to the hybrid
star branch, but otherwise is not expected to change the results significantly. Moreover, we have not included a
crust but rather used the homogeneous phases of our model down to the lowest densities. This simplification has a
large effect on the radii of the stars. A crust would generate a much larger layer of matter with an average density
below saturation density and can be expected to correct the radii to much larger values (see for instance Ref. [88]),
with the exception of the quark stars, where only a small crust is expected (see for instance Ref. [89]). Importantly,
however, the inclusion of a crust and its precise properties are not expected to change the maximal mass of the given
dense matter equation of state [88]. Therefore, the radii in Fig. 6 should not be taken too seriously, and we should
thus not attempt to compare these results to the latest data for neutron star radii, and neither to constraints for
the tidal deformability, which is strongly influenced by the radius of the star. However, the maximal mass of our
mass-radius curves can be taken seriously. As a consequence, we see that only the upper left panel corresponds to an
equation of state allowed by the existence of a 2.1-solar mass star [35, 36]. In particular, the scenario with the chiral
crossover (lower right panel) gives rise to very low masses and thus is in contradiction with astrophysical data. These
observations reflect the behavior of the speed of sound in Fig. 5: heavy stars are possible for large speeds of sound, and
the largest mass is obtained for the case with the earliest chiral phase transition such that the stiff chirally restored
phase constitutes a large volume fraction of the heaviest stars. This is in line with recent discussions suggesting the
necessity for a non-monotonic behavior of the speed of sound in order to meet astrophysical constraints [2, 90, 91].
While in many approaches, either purely baryonic or in connection with a separate quark matter model, the maximum
of the speed of sound is reached in the baryonic phase it has also been argued that this behavior may be generated
by the so-called quarkyonic phase [92]. In contrast, our results suggest that the peak of the speed of sound may well
appear in the quark matter phase, while the baryonic phase exhibits sound speeds below the conformal limit.

B. Parameter-independent conclusions

We have seen that our model allows for qualitatively different scenarios regarding the chiral phase transition, with
different thermodynamic properties and different properties of compact stars. We now intend to determine the region
in parameter space where our model is useful and realistic. For simplicity we keep the incompressibility at saturation
fixed to K = 250 MeV, and vary the Dirac mass at saturation M0, the slope parameter L, and the hyperon potential
U . We present our results in the M0-L plane, making the connection to Fig. 1. It is useful to consider also the M0-d
plane for an alternative representation. For a given pair (M0, d) one can always compute the more physical pair
(M0, L).

Our results are shown in Fig. 7. Let us first focus on the upper panels, which are obtained with the choice
U = −50 MeV, to explain and interpret the various curves.

• Asymptotic strangeness. For our main goal to describe strange quark matter with our chirally restored phase we
need to check in which cases there is strangeness at asymptotically large densities. (As we have seen in Fig. 4, if
strangeness survives asymptotically, it tends to be present right after the phase transition as well.) The line in the
parameter space that separates the region with asymptotic strangeness from the one without can be calculated
with the help of an expansion similar to the asymptotic expansion employed in Appendix B. The ansatz for
the solution of the stationarity equations used in this appendix led to conditions for the coupling constants,
guaranteeing flavor-symmetric asymptotic strangeness. The weaker condition of the existence of asymptotic
strangeness is found by the ansatz ρ ' ρ∞µn, µe ' µe,∞µn and all other condensates as in Eq. (B2). This
ansatz leads to a set of stationarity equations for the coefficients of the leading-order terms ω∞, ρ∞, φ∞, µe,∞,
which can easily be solved numerically. Then, for instance at a fixed d, we can determine the value of M0 at
which a strange degree of freedom first sets in asymptotically, and repeating the procedure for many values of
d gives a curve in the M0-d plane and thus also in the M0-L plane, shown as a blue solid curve, where regions
with and without asymptotic strangeness are labeled by “s” and “/s”.

• Stability of nuclear matter at zero pressure. If our chirally restored phase is favored at zero pressure, it prevails
for all nonzero densities and the main purpose of the model, to develop a unified approach in the vicinity of the
quark-hadron transition, is not realized. Therefore we need to identify the parameter region in which nuclear
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Figure 7: Upper panels: Distinct regions in the M0-L and M0-d planes for K = 250 MeV and U = −50 MeV. “s” (“/s”) labels
regions with (without) strangeness at asymptotic densities, “N” (“Q”) labels regions where nuclear matter (quark matter) is
preferred at zero pressure. In the shaded triangular region maximal masses of (hybrid) stars of more than 2.1 solar masses are
reached, in addition to having asymptotic strangeness and nuclear matter being stable at zero pressure. In the right panel, the
dashed-dotted (almost horizontal) curve divides the region where hyperons appear before the chiral transition (towards large
M0) from the region where strangeness only appears in the chirally restored phase (towards small M0). Above the dotted line
the chiral transition is a crossover. The grey shaded band in both panels is the empirically preferred regime for M0, and the
thin horizontal dashed line in the right panel marks the upper limit of M0 according to Fig. 1. The asterisks correspond to the
parameter choices in Figs. 2 – 6 (in the left panel only two of them lie in the shown range). Lower panels: Blue lines as in the
upper panels, now with added curves for U = −30 MeV (green) and U = −70 MeV (red).

matter is the favored phase at zero pressure. We can compute the line that bounds this region by computing
the points in the M0-d plane at which chirally restored, zero-pressure matter sits exactly at µn = mN , where
the second-order onset of charge neutral, beta-equilibrated nuclear matter occurs. If it sits at larger µn, as in
Fig. 3 and all parameter sets of Sec. IV A, there is a chiral transition and we denote this case in Fig. 7 by “N”;
if it sits at lower µn there is no chiral transition and we denote this case by “Q” since it suggests that quark
matter is absolutely stable. Together with the criterion for asymptotic strangeness we find four regions: sN,
sQ, /sN, /sQ. (The M0-L plane additionally has the region of negative d, which we do not consider.) For our
purpose, the sN region – asymptotic strangeness and absolutely stable nuclear matter – is the most relevant.

• Realistic neutron stars. On the blue dashed curve the maximal mass of a hybrid star is exactly 2.1M�, heavier
stars are sitting to the right (upper left panel) or below (upper right panel) this curve. We have restricted this
curve to the sN region and only indicated that it also extends into the the sQ region (where there are no hybrid
stars, i.e. the maximal mass is reached by a quark star) and into the /sN region. The resulting window in the
sN region containing stars with maximal masses compatible with astrophysical data is shaded in blue. One of
the four parameter sets of Sec. IV A, indicated by asterisks, lies in that region. We see that the shaded region
is compatible with the empirical constraints for M0, and that it defines a remarkably narrow range in L. As a
measure for the largest possible mass of the star inside the triangular region we have also computed the mass
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at the tip of the triangle opposite of the dashed curve and found M ' 2.28M�, i.e. if a star with a larger mass
than that value was measured, our shaded region would disappear. [For the two additional parameter sets in
the lower panels, these values are M ' 2.36M� (green) and M ' 2.23M� (red).]

• Appearance of hyperons. Parameter choices above the dashed-dotted curve in the upper right panel lead to the
appearance of hyperons. More precisely, to plot this curve we have for each d determined the M0 at which we
first see the appearance of (any) strange degrees of freedom just below the chiral phase transition, i.e., at the
lower density of the density jump. We find that hyperons only appear for very large values of M0. Although the
boundaries of the grey band M0 ' (0.7 − 0.8)mN should not be taken as sharp constraints, it is unlikely that
M0 assumes such a large value. Perhaps more importantly, hyperons only appear in a region where the maximal
masses of compact stars are well below two solar masses. This observation puts our results into the context of
the “hyperon puzzle” [93]: while hyperons are expected to appear at sufficiently large chemical potentials they
tend to soften the equation of state and thus render large masses of neutron stars impossible. This is exactly
what our model shows, and, importantly, within the same model a solution is suggested, namely the appearance
of a stiff chirally restored phase before a potential hyperon onset, allowing for sufficiently heavy hybrid stars.

• Crossover. The dotted line at even larger M0 marks the change from a first-order chiral transition to a crossover.
In other words, below that line there is a multivalued solution of the stationarity equations at high densities, and
for each d we have determined the M0 where the solution turns into a single-valued curve. As already suggested
by Fig. 6, the scenario of a chiral crossover is – within our model – incompatible with realistic maximal masses
of compact stars.

In the lower two panels of Fig. 7 we have added the curves for two different values of the hyperon potential,
U = −30 MeV and U = −70 MeV. To avoid too much cluttering we do not show the hyperon onset and crossover lines
for these cases, but we have checked that they are also above the grey band, i.e., in an empirically unfavored region. In
the lower right panel we see that the line separating absolutely stable nuclear matter from the region where the strange
quark matter hypothesis is realized (i.e., “N” from “Q”) looks qualitatively different for larger (less negative) hyperon
potentials. This gives rise to a second, disconnected sN region, which, however, is disfavored due its incompatibility
with the empirical constraints for M0. We also observe that for less negative values the shaded area leaves the grey
band. Sufficiently heavy stars still exist in the grey band, but not in conjunction with asymptotic strangeness, which
tends to disappear if U is made less negative or even positive. As we mentioned at the end of Sec. III B, in the
realistic parameter regime the hyperon potentials are effectively only relevant for the chirally restored phase, fixing
the interactions between light degrees of freedom because actual hyperons do not appear in this parameter regime.
If, on the other hand, we go to even more negative U , the triangular region itself becomes smaller and smaller as
it moves to larger values of M0 and smaller L. As a consequence, the most important conclusion from the lower
plots is that the prediction for the value of L is not altered much by allowing the hyperon potential to vary. The
lower left panel suggests that independently of the value of the hyperon potential the allowed region of L turns out to
be L ' (88 − 92) MeV. This is a remarkably narrow range, which can be expected to become somewhat larger by
exhausting the remaining uncertainties in the incompressibility K and the symmetry energy S.

V. SUMMARY AND OUTLOOK

We have discussed cold and dense matter undergoing a chiral phase transition within a nucleon-meson model. The
main idea has been to include strange baryonic degrees of freedom in the Lagrangian, not necessarily to account for
hyperons, which may or may not be favored, but to create a chirally restored phase that resembles strange quark
matter. We have pointed out that it is possible to choose the parameters of the model such that flavor-symmetric
matter is obtained at ultra-high densities, as expected from asymptotically dense three-flavor quark matter in QCD.
However, in this parameter regime the model does not produce compact stars with masses that meet the astrophysical
constraints. Therefore, we have mainly explored a parameter region which is not flavor-symmetric asymptotically, but
still has nonzero strangeness for large densities and a speed of sound that approaches the conformal limit, as expected
from QCD.

Within this parameter region, we have shown that qualitatively different scenarios are possible regarding the chiral
phase transition (first order vs. crossover) and the onset of strangeness (within the baryonic phase as hyperons vs.
only in the chirally restored phase). Requiring the model to produce compact stars of at least 2.1 solar masses
and the correct saturation properties of symmetric nuclear matter disfavors a chiral crossover and the appearance of
hyperons. The heaviest stars in the model turn out to be hybrid stars, which can be traced back to a large speed of
sound in the chirally restored phase, which peaks just after the chiral phase transition. Furthermore, putting together
low-density and astrophysical constraints we have shown that the poorly known slope parameter of the symmetry
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energy is narrowed down to about L ' (88 − 92) MeV. Due to the phenomenological nature of the model and the
simplifications we have made, these numbers should of course be taken with some care.

The main motivation for developing this setup was to provide a unified approach for both quark and hadron phases
which enables us to consistently compute properties of matter in the vicinity of the chiral phase transition, such as
the surface tension, the free energy of a mixed phase, or the possible existence of an inhomogeneous chiral condensate,
for instance in the form of a chiral density wave. Especially in view of the significance of (global) electric charge
neutrality in a neutron star, the inclusion of strangeness has been a step forward because starting with non-strange
baryonic degrees of freedom leaves us with no negative charge carriers (except for leptons) in the chirally symmetric
phase. These applications of the model are thus natural directions for the future.

It would also be interesting to further improve the model itself. For instance, we have neglected the hidden-
strangeness scalar condensate, such that all baryon masses are generated by the non-strange chiral condensate. Also,
one may include small explicit baryon masses, which we set to zero, such that the chiral symmetry was explicitly
broken only through the potential of the scalar field and a non-SU(3) symmetric choice of the baryon-meson coupling
constants. We have also restricted ourselves to zero temperatures, and extensions to finite temperatures, desirably
going beyond the mean-field approximation, would be interesting and relevant for applications to the mergers of
compact stars in the presence of a quark-hadron transition [94, 95].

Moreover, applications of our idea to related models are possible, for instance by including strange baryonic degrees
of freedom (and their chiral partners) into the extended linear sigma model of Refs. [24, 96, 97]. It is also conceivable
to include Cooper pairing, both in the chirally broken and the chirally restored phases, and it would be interesting
to see whether a version of the color-flavor locked phase at high densities, where all fermionic degrees of freedom
participate in pairing [34, 98], can be constructed. It would then be possible to compute for instance the surface
tension in the presence of Cooper pairing consistently within a single model. Or, considering the case of a crossover,
the model might be able to provide a realization of the quark-hadron continuity in the sense suggested by Ref. [74].
Finally, our setup can be used for studying a possible quarkyonic phase, which has been predicted to occur in QCD
at a large number of colors Nc and may survive for Nc = 3 [99]. This phase was for instance constructed in a model
that includes both quark and hadronic degrees of freedom [100] (besides other approaches [21, 92, 101]). It would
be interesting to see whether our more unified approach might be able to show a transition from baryonic through
quarkyonic to quark matter.
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Appendix A: Chiral setup

In this appendix we review the foundations of our model within the framework of an SU(3)×SU(3) chiral approach.
This discussion makes explicit which mesonic degrees of freedom we have omitted and which assumptions we have
made for the structure of the interaction terms, which is useful to keep in mind for potential extensions in the future.
It also provides relations between the baryon-meson coupling constants, some of which we employ in the main part,
besides guidance from phenomenology to fix them. Our baryonic degrees of freedom are usually parametrized in the
baryon octet as

B =



Σ0

√
2

+
Λ√
6

Σ+ p

Σ− −Σ0

√
2

+
Λ√
6

n

Ξ− Ξ0 −
√

2

3
Λ

 , (A1)

and the kinetic part of the baryonic Lagrangian can be written as Tr[B̄iγµ∂µB]. The scalar and pseudoscalar meson
nonets are summarized in the field Φ = S+ iP = Ta(σa + iπa), where Ta = λa/2 for a = 0, . . . , 8, with the Gell-Mann
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matrices λa for a = 1, . . . , 8 and λ0 =
√

2/31. This is usually reparametrized as

S = Taσa =
1√
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 , (A2a)

P = Taπa =
1√
2
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 . (A2b)

One may now construct the potential up to a given order in Φ systematically. For instance, up to fourth order [40],

U(Φ) = m2Tr[Φ†Φ] + λ1(Tr[Φ†Φ])2 + λ2Tr[(Φ†Φ)2]− c(det Φ† + det Φ)− Tr[H(Φ† + Φ)] , (A3)

with parameters m2, λ1, λ2 for the quadratic and quartic contributions, c for the chiral anomaly term and a matrix
H for a small explicit symmetry breaking. In the scalar sector, one can trade σ0 and σ8 for non-strange and strange
scalar fields by the transformation (

σ

ζ

)
=

1√
3

( √
2 1

1 −
√

2

)(
σ0

σ8

)
. (A4)

Omitting all other scalar fields results in S = 1
2diag(σ, σ,

√
2ζ). As explained in the main text we further simplify this

by omitting the scalar field ζ. The pseudoscalar nonet P is not directly relevant because we assume none of these
fields to condense, and our mean-field approach ignores the fluctuations. It is only indirectly used by fitting one of
the parameters of the meson potential (7) to the pion mass. Our potential thus effectively only depends on σ, which
is a drastic simplification of the full potential (A3). However, we have included terms of higher order than 4 in σ, to
make the connection with the previous (non-strange) version of our baryon-meson model [22, 23].

The vector meson nonet can be parametrized as

Vµ = Taω
a
µ =

1√
2
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µ√
2
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ωµ√

2
ρ+
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ρ0
µ√
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K∗0µ

K∗−µ K̄∗0µ φµ

 , (A5)

where ωµ and φµ are defined by the same transformation as used in Eq. (A4) for the scalar mesons,(
ωµ

φµ

)
=
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3
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2
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ω0
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ω8
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)
. (A6)

Keeping only the fields ωµ, φµ, ρ0
µ, the matrix Vµ becomes diagonal, and we can write down the two quartic structures

d1(Tr[VµV
µ])2 + d2Tr[(VµV

µ)2] =
d1

4
(ωµω

µ + ρ0
µρ
µ
0 + φµφ

µ)2 +
d2

8

[
(ωµω

µ)2 + (ρ0
µρ
µ
0 )2 + 6ωµω

µρ0
νρ
ν
0

]
. (A7)

In the main text we work for simplicity with d2 = 0 (and denote d = d1). For a more complete study of vector meson
self-interactions in a chiral approach, including axial-vector mesons and derivative interactions with three meson fields,
see for instance Refs. [102, 103].
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Next, let us discuss the baryon-meson interactions. For the scalar sector, and temporarily including the ζ field, the
chirally invariant structures are

A1Tr[B̄SB] +A2Tr[B̄BS] +A3Tr[B̄B]Tr[S]

= gNσ(n̄σn+ p̄σp) + gNζ(n̄ζn+ p̄ζp) + gΣσ(Σ̄0σΣ0 + Σ̄+σΣ+ + Σ̄−σΣ−) + gΣζ(Σ̄
0ζΣ0 + Σ̄+ζΣ+ + Σ̄−ζΣ−)

+gΛσΛ̄σΛ + gΛζΛ̄ζΛ + gΞσ(Ξ̄0σΞ0 + Ξ̄−σΞ−) + gΞζ(Ξ̄
0ζΞ0 + Ξ̄−ζΞ−) . (A8)

We have introduced 8 coupling constants, which all are linear combinations the 3 independent parameters A1, A2, A3.
Therefore, one can choose 3 independent couplings, and the chiral structure fixes the other 5. In our approximation,
where we omit the ζ, we have 4 coupling constants and thus, if we wanted to respect the structure given by chiral
symmetry, we can choose three of them freely, say gNσ, gΣσ, gΛσ. For the remaining coupling constant this yields the
constraint

gΞσ =
3gΛσ − 2gNσ + gΣσ

2
. (A9)

In the main part we fix all four coupling constants separately with the help of the vacuum masses, such that this
relation is (slightly) violated in our phenomenological approach: with gNσ = 10.16, gΛσ = 12.07, gΣσ = 12.88, the
relation (A9) would yield gΞσ = 14.38, while our fit gives gΞσ = 14.23.

Finally, for the interactions with the vector mesons, keeping only the fields ω, ρ0, and φ, we find the structure

C1Tr[B̄γµVµB] + C2Tr[B̄γµBVµ] + C3Tr[B̄γµB]Tr[Vµ]

= gNω(n̄γµωµn+ p̄γµωµp) + gNφ(n̄γµφµn+ p̄γµφµp) + gNρ(n̄γ
µρ0
µn− p̄γµρ0

µp)

+gΣω(Σ̄0γµωµΣ0 + Σ̄+γµωµΣ+ + Σ̄−γµωµΣ−) + gΣφ(Σ̄0γµφµΣ0 + Σ̄+γµφµΣ+ + Σ̄−γµφµΣ−)

+gΣρ(Σ̄
+γµρ0

µΣ+ − Σ̄−γµρ0
µΣ−) + gΛωΛ̄γµωµΛ + gΛφΛ̄γµφµΛ

+gΞω(Ξ̄0γµωµΞ0 + Ξ̄−γµωµΞ−) + gΞφ(Ξ̄0γµφµΞ0 + Ξ̄−γµφµΞ−) + gΞρ(Ξ̄
0γµρ0

µΞ0 − Ξ̄−γµρ0
µΞ−) . (A10)

Here, the 11 couplings are linear combinations of the 3 independent coefficients C1, C2, C3. Equivalently, we may write
C1, C2, C3 in terms of 3 coupling constants, say the 3 nucleonic couplings gNω, gNφ, gNρ, and express the remaining
8 hyperonic couplings as

gΣω =
gNω +

√
2gNφ − gNρ
2

, gΛω =
5gNω +

√
2gNφ + 3gNρ
6

, gΞω =
gNω +

√
2gNφ + gNρ
2
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√
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2
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2
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2gNω + 4gNφ − 3

√
2gNρ

6
, gΞφ =

gNω − gNρ√
2

. (A11)

A particular choice for the independent coupling constants is gNφ = 0 and gNρ = − gNω

3 . This yields the following
relations,

gΣω = gΛω = 2gΞω =
2

3
gNω , gΣρ = 2gΞρ = −2gNρ , gΣφ = gΛφ =

gΞφ

2
=

√
2

3
gNω . (A12)

These relations are often employed in the literature, see for instance Ref. [41] and references therein (our sign con-
vention for the ρ and φ couplings is different compared to that reference). Also following the literature, we then fit
gNω and gNρ to reproduce saturation properties of nuclear matter, as explained in the main text. This violates the
relation gNρ = − gNω

3 . Since this relation was used to derive Eqs. (A12) this procedure also violates the original chiral
relations (A11). Furthermore, we relate the ω couplings to the hyperon potential depths, ignoring the first relation
of Eq. (A12). For example, for one of the parameter sets used in Sec. IV A we have gNω = 10.23, gNρ = 4.14. With
the first line of Eqs. (A11) this would yield gΣω = 3.05, gΛω = 10.6, gΞω = 7.1, while the fit to the hyperon potential
U = −50 MeV (used for all parameter sets in Sec. IV A) gives the larger couplings gΣω = 14.6, gΛω = 14.5, gΞω = 16.4,
see also Table I. For the ρ and φ couplings we employ the relations in Eqs. (A12).
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solution 1 solution 2 solution 3

gΣφ gNφ + a(gNω − gΣω) gNφ + a(gNω − gΣω)
a2 + 1

4a
gΛω −

a2 − 3

4a
gΣω

gΛφ gNφ + a(gNω − gΛω)
gΛω

a
−3a2 − 1

4a
gΛω +

3(a2 + 1)

4a
gΣω

gΞφ −
3a2 − 1

a2 + 1
gNφ − 2a

a2 − 1

a2 + 1
gNω + a

3gΣω + gΛω

2
− 5a2 − 2

2(a2 + 1)
gNφ − a

3a2 − 4

2(a2 + 1)
gNω +

3a

2
gΣω −a

2 − 1
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gNφ +

2a

a2 + 1
gNω

gΞω
4a

a2 + 1
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3a2 − 1
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gNω −

3gΣω + gΛω

2

7a

2(a2 + 1)
gNφ +

5a2 − 2

2(a2 + 1)
gNω −

3

2
gΣω

2a

a2 + 1
gNφ +

a2 − 1

a2 + 1
gNω

Table II: Three sets of conditions for the baryon-meson coupling constants, each leading to equal number densities of the three
flavors at asymptotic densities for any value of the constant a, reproducing the behavior of asymptotically dense three-flavor
QCD. Since none of the solutions seems to allow for sufficiently heavy stars they are not employed in the main part of the
paper.

Appendix B: Asymptotic flavor symmetry

In asymptotically dense three-flavor QCD, quark matter with equal numbers of up, down, and strange quarks is
electrically neutral and beta-equilibrated. In this appendix we ask whether our model can reproduce this symmetric
situation, i.e., whether there is a certain choice of parameters such that our chirally restored phase shares this property
with actual quark matter. To this end, we first define the up, down, and strange number densities according to the
flavor content of the baryons,

nu = nn + 2np + nΣ0 + 2nΣ+ + nΛ + nΞ0 , (B1a)

nd = 2nn + np + nΣ0 + 2nΣ− + nΛ + nΞ− , (B1b)

ns = nΣ+ + nΣ− + nΣ0 + nΛ + 2(nΞ− + nΞ0) . (B1c)

The condition nu = nd together with the neutrality condition (21) yields ne+nµ = 0. The solution of the stationarity
equations thus has to be consistent with µe going to zero asymptotically. As an ansatz let us assume the following
asymptotic behaviors for µn →∞,

µe '
µe,∞
µn

, σ ' σ∞
µ2
n

, ω ' ω∞µn , φ ' φ∞µn , ρ ' ρ∞
µn

, (B2)

with coefficients µe,∞, σ∞, ω∞, φ∞, ρ∞ constant in the neutron chemical potential. We shall see that this ansatz
indeed leads to a valid solution of the stationarity equations, which can also be confirmed numerically. In the neutrality
equation (21), the only leading-order contributions proportional to µ3

n come from np and nΞ− . Since the mass terms
are of higher order due to σ behaving like 1/µ2

n, this yields the asymptotic condition µ∗p = µ∗Ξ− . Since the ρ condensate
also vanishes asymptotically on account of the ansatz (B2), this immediately gives the relation

ω∞ =
gΞφ − gNφ
gNω − gΞω

φ∞ . (B3)

Now, Eqs. (20b) and (20d) have leading-order contributions proportional to µ3
n which depend only on ω∞ and φ∞

(and none of the other coefficients of the ansatz (B2)). Together with Eq. (B3) these are three conditions for the
two variables ω∞ and φ∞. Thus, in order for (B2) to be a valid solution we require (20b) and (20d) to give the
same condition. This can be translated into conditions for the coupling constants as follows: we insert Eq. (B3) into
the leading-order contribution of Eqs. (20b) and (20d) to eliminate ω∞. Then, we require the four coefficients of
the powers φ0

∞, φ1
∞, φ2

∞, φ3
∞ of the two equations to be identical up to a constant, say a, to find four conditions

for the coupling constants. In fact, there are three possible solutions, i.e., three sets of four conditions, which we
show in Table II. As a consistency check, one can ask whether we recover the chiral relations (A11), which we would

expect to reproduce flavor-symmetric matter. Indeed, solution 1 with a =
√

2 is satisfied by the chiral relations
(A11). The inverse is obviously not true: even within solution 1, since it consists of only four conditions, there are
choices for the coupling constants that obey solution 1 but not the chiral relations (A11) (in particular, if we allow
for arbitrary values of a). The solutions can be used to compute the corresponding φ∞ and ω∞. The results are not
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very instructive, but we have checked that they agree with the numerical evaluation. Similarly, one can consider the
subleading contributions in µn to the stationarity equations to compute σ∞, µe,∞, ρ∞, but, again, we refrain from
showing these results explicitly. The main observation is that there exist choices of the coupling constants, given by
the solutions in the table, for which at asymptotically large densities nu = nd = ns, with the flavor densities defined
in Eq. (B1). However, we have not found a parameter set within the constraints of Table II which simultaneously
fulfills all empirical constraints. Therefore, in the main text we content ourselves with employing parameter sets that
do produce asymptotic strangeness, but not in a fraction of 1/3.
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