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Abstract

The study of pomonoid amalgams was initiated by Fakhuruddin in the 1980s and
subsequently extended by Bulman-Fleming, Sohail and the authors in the 2000s. We
further investigate pomonoids amalgams and in particular we consider the concept of
subpomonoid amalgams possessing a suitable ordered version of the unitary property.
If [U ;T1, T2] is an amalgam of subpomonoids of the amalgam [U ;S1, S2] we consider
the question of whether the free product of the pomonoid amalgam [U ;T1, T2] is poem-
beddable in the free product of the pomonoid amalgam [U ;S1, S2], giving a sufficient
condition in terms of strongly pounitary subpomonoids.
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1 Introduction and preliminaries

Many of the definitions and concepts introduced in this paper have natural counterparts
and are generalisations of similar concepts important in the unordered theory of semigroup
amalgams. We refer the reader to the bibliography for more details.
We start with a brief introduction to the category of S−posets and introduce the concepts
of pounitary and popure morphisms. Section 2 investigates direct limits and pushouts of
S−posets with the pounitary property while Section 3 concerns pullpacks. Lastly in section
4 we answer the main problem on amalgams of subpomonoids, the proof of our main rsult
follows, in some way, from Renshaw’s method of dealing with pure monomorphisms in the
unordered case (see [11] for details). However, the construction in the category of pomonoids
is more complicated than the unordered case and needs more care.

Free product with amalgamation is an important construction in many areas of algebra and
it is reasonable to enquire about sub-structures of these free products. In particular, we
would like to know under what conditions a subposemigroup of a free product of posemi-
groups is itself a free product. Howie [7] showed that, unlike the case for groups, if Ti
are subsemigroups of semigroups Si such that U ⊆ Ti then the amalgamated free product∏∗
U Ti is not in general a subsemigroup of the amalgamated free product

∏∗
U Si. The au-

thors have previously extended some of Renshaw’s subsequent study of this problem, to deal
with partially ordered monoids ([1]) and here we further extend his work from [11] and [12].

A partially ordered monoid (pomonoid) is a monoid S endowed with a partial order relation
≤ which is compatible with the binary operation on S in the sense that

∀s, t, u ∈ S, t ≤ u⇒ st ≤ su and ts ≤ us.

Recall that if X and Y are posets then a map f : X → Y is said to be monotone if
∀x, y ∈ X,x ≤ y ⇒ f(x) ≤ f(y), while it is said to be an order embedding if ∀x, y ∈ X,x ≤
y ⇔ f(x) ≤ f(y). It is obvious that any order embedding is one-to-one and monotone. A
surjective order embedding is called an order isomorphism.

If S and T are pomonoids and A is a non-empty poset then A is called a right S−poset if A
is a right S−act and the S−action is monotonic in each variable. Left S−posets are defined
dually. Let A and B be S−posets. A map f : A → B is an S−poset morphism when f
is monotonic and an S−morphism. The class of S−posets and S−poset morphisms forms
a category in which the monomorphisms are exactly the one-to-one S−poset morphisms
and the epimorphisms are exactly the onto S−poset morphisms [3]. When A is both a left
S−poset and a right T−poset and satisfies (sa)t = s(at) for all s ∈ S, a ∈ A, t ∈ T then A
is called an (S, T )−biposet.

From [3], a congruence θ on an S−poset A is an S−act congruence such that A/θ can be
endowed with a suitable partial order making A→ A/θ is an S−poset morphism.
Define the relation ≤θ on A by

a ≤θ b if and only if there exist n ≥ 1 and a1, a
′
1, . . . , an, a

′
n ∈ A, such that

a ≤ a1 θ a′1 ≤ a2 θ a′2 ≤ · · · ≤ an θ a′n ≤ b.

Let R be a binary relation on right S−poset A. The right S−poset congruence ν(R) induced
on A by R is defined as

a ν(R) b if and only if a ≤α(R) b ≤α(R) a
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where a α(R) b if and only if either a = b or there exist n ≥ 1 and (xi, x
′
i) ∈ R, si ∈ S for

i = 1, . . . , n such that
a = x1s1, x

′
1s1 = x2s2, . . . , x

′
nsn = b.

We shall consider the following order on A/ν(R)

aν(R) ≤ bν(R) if and only if a ≤α(R) b.

The congruence on A generated by R is the right S−poset congruence θ(R) = ν(R∪R−1).

Let S be a pomonoid, A be a right S−poset and B be a left S−poset. Then the tensor
product of the S−posets A and B is the poset A ⊗S B = (A × B)/τ where τ is the poset
congruence generated by

H = {((as, b), (a, sb))|a ∈ A, b ∈ B, s ∈ S}.

Here (A×B) is endowed with a poset structure in the obvious way.
For simplicity the tensor product will dnoted by A⊗B. It is known from [14, Theorem 5.2]
that the order relation on A⊗B is defined by:

a⊗ b ≤ a′ ⊗ b′ if and only if there exists a scheme such that

a ≤ a1s1 s1b ≤ t1b2
a1t1 ≤ a2s2 s2b2 ≤ t2b3

...
...

an−1tn−1 ≤ ansn snbn ≤ tnb′

antn ≤ a′,

where n ≥ 1, a1, . . . , an ∈ A, b2, . . . , bn ∈ B and s1, . . . , sn, t1, . . . , tn ∈ S.

Let λ: A → B be a left S−poset morphism and Y be a right S−poset. From [1], if
y⊗ a ≤ y′⊗ a′ in Y ⊗A then y⊗ λ(a) ≤ y′⊗ λ(a′) in Y ⊗B, while from [13, Corollary 1.3]
y ⊗ s ≤ y′ ⊗ s′ in Y ⊗S S if and only if ys ≤ y′s′.

Let U be a subpomonoid of the pomonoid S. Recall from [1] that we say

1. U is upper strongly right pounitary in S if v ≤ su ⇒ s ∈ U

2. U is lower strongly right pounitary in S if su′ ≤ v′ ⇒ s ∈ U

3. U is strongly right pounitary in S if (v ≤ su ∨ su′ ≤ v′) ⇒ s ∈ U

4. U is right pounitary in S if v ≤ s1u1, s1u′1 ≤ s2u2, . . . snu′n ≤ v′ ⇒ s1, s2, . . . , sn ∈ U

5. U is right unitary in S if su = v ⇒ s ∈ U ,

where v, v′, u, u′, u1, u
′
1, . . . , un, u

′
n ∈ U, s, s1, s2, . . . , sn ∈ S. Left-sided and two-sided ver-

sions of these conditions are defined similarly. In all cases, the two-sided version is equivalent
to the conjunction of the right and left sided version. If both the right and left sided versions
hold then we shall omit the right (left) prefix.

We can extend these definitions to S−posets as follows (see [1]). Let f : X −→ Y be a right
U−poset order embedding. Then

1. f is a upper strongly right pounitary (USRPU) if f(x) ≤ yu ⇒ y ∈ im f

2. f is a lower strongly right pounitary (LSRPU) if yu ≤ f(x) ⇒ y ∈ im f
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3. f is a strongly right pounitary (SRPU) if (f(x) ≤ yu ∨ yu′ ≤ f(x′)) ⇒ y ∈ im f

4. f is a right pounitary (RPU) if

f(x) ≤ y1u1, y1u′1 ≤ y2u2, . . . , ynu′n ≤ f(x′)⇒ y1, y2, . . . , yn ∈ im f

5. f is a right unitary (RU) if yu = f(x) ⇒ y ∈ im f ,

where u, v, u1, u
′
1, . . . , un, u

′
n ∈ U, y, y1, . . . , yn ∈ Y , x ∈ X.

Again, the left and two-sided versions of these conditions are defined in similar fashion. The
inclusion map U −→ S is said to be pounitary if U is pounitary in S. From now on, when
using these properties, we shall assume that f is an order embedding.

The implications represented by the following diagram are fairly clear.

RU

RPU

LSRPU USRPU

SRPU = LSRPU ∧ USRPU

Lemma 1.1. Let f : X → Y and g : Y → Z be right pounitary. Then g ◦ f is also right
pounitary.

Proof. Suppose that gf(x) ≤ z1u1, z1u
′
1 ≤ z2u2, . . . , znu

′
n ≤ gf(x′) where zi ∈ Z, ui, u′i ∈ U

and 1 ≤ i ≤ n. Since g is pounitary, we have zi = g(yi) for some yi ∈ Y . Hence we may
write that gf(x) ≤ g(y1)u1, g(y1)u′1 ≤ g(y2)u2, . . . , g(yn)u′n ≤ gf(x′). Because g is an order
embedding, we find that f(x) ≤ y1u1, y1u

′
1 ≤ y2u2, . . . , ynu

′
n ≤ f(x′). Hence yi = f(xi)

since f is pounitary. Therefore zi = gf(xi) as required.

The following result will be important later.

Lemma 1.2 ([1, Lemma 3.2]). Let f : X −→ Y be lower strongly right pounitary and A be
a left U−poset. If y ⊗ a ≤ f(x) ⊗ a′ in Y ⊗U A then there exists x′ ∈ X such that y = f(x′)
and indeed f(x′)⊗ a ≤ f(x)⊗ a′ in im f ⊗A.

The proof of the previous result can quite easily be modified to prove the following lemma.

Lemma 1.3. Let f : X −→ Y be right pounitary and A a left U−poset. If y⊗a = f(x)⊗a′
in Y ⊗U A then there exists x′ ∈ X such that y = f(x′).

The following lemma will also prove useful later. Its proof, being straightforward, is omitted.

Lemma 1.4. Let f : X → Y and g : A → B be (resp. lower strongly, upper strongly,
strongly) pounitary. Then f ⊗ g : X ⊗ A→ Y ⊗ B is (resp. lower strongly, upper strongly,
strongly) pounitary.
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A right S−poset order embedding f : X → Y is called right popure (resp. pure) if for all left
S−posets A the map f ⊗ 1 : X⊗A→ Y ⊗A is an order embedding (resp. monomorphism).
Left popure and left pure are defined dually. An (S, S)−poset order embedding f : X → Y
is said to be popure (resp. pure) if for all left S−poset A and all right S−poset B the map
1 ⊗ f ⊗ 1 : B ⊗X ⊗ A → B ⊗ Y ⊗ A is an order embedding (resp. monomorphism). It is
clear that an S−poset order embedding is popure then it is also pure.

Lemma 1.5 (Cf. [1, Lemma 3.3]). Let U be a pomonoid and let f : X → Y be a right
pounitary U−poset morphism. Then f is right popure.

In a similar manner we can prove the following lemma.

Lemma 1.6. If f : X −→ Y is (U,U)−pounitary then f is popure.

We say that A = [U ;Si;ϕi] is a pomonoid amalgam when {Si|i ∈ I} is a family of pomonoids,
U is a pomonoid and {ϕi : U → Si|i ∈ I} is a family of pomonoid order embeddings. The
pomonoid U is called the core of the amalgam. We shall often omit reference to ϕi when
the context is clear. When there exist a pomonoid W and monomorphisms (resp. order
embeddings) θi : Si →W such that θiϕi = θjϕj for all i 6= j in I then the amalgam is said to
be weakly embeddable (resp. weakly poembeddable) in W . The amalgam is said to be strongly
embeddable (resp. strongly poembeddable) in W if in addition θi(Si) ∩ θj(Si) = θiϕi(U).

Recall from [1] that the free product of a family {Si : i ∈ I} of pairwise disjoint posemigroups,
F =

∏∗
Si is the set of non-empty words a1 . . . an with each ak ∈ Si for some i ∈ I, 1 ≤ k ≤ n

and no two adjacent letters in the same Si. The binary operation can be defined on this set
by

(a1 . . . an)(b1 . . . bm) =

{
a1 . . . anb1 . . . bm if an ∈ Si, b1 ∈ Sj , i 6= j

a1 . . . (anb1) . . . bm if an, b1 ∈ Si.

The partial order on F is defined as a1 . . . ar ≤ b1 . . . bs if and only if

1. r = s

2. ai ≤ bi in Sj , for each ai, bi ∈ Sj where 1 ≤ i ≤ r and 1 ≤ j ≤ n.

Recall from [1] that the amalgamated free product of the pomonoid amalgam [U ;S1, S2] is
F/σ where σ = ν(R ∪R−1) is the pomonoid congruence on F generated by

R = {(ϕi(u), ϕj(u)) : u ∈ U},

and ϕi : U → Si for i = 1, 2. It is usually denoted by S1 ∗U S2.

Let X be a subposet of a poset P . We say that X is convex if for any x, y ∈ X, z ∈ P,

(x ≤ z ≤ y)⇒ z ∈ X.

An S−poset morphism f : X → Y is called convex if im(f) is convex in Y .

2 Direct limits

Fakhruddin was the first to study direct limits in the category of S−posets in the 1980s and
the reader is directed to [6] for more details.
Let I be a quasi-ordered set (i.e. a set with a reflexive and transitive relation). A direct
system of right S−posets (Xi, ϕ

i
j)i∈I is a collection of right S−posets Xi and a collection of

S−poset morphism ϕij : Xi → Xj , i ≤ j, which satisfy
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1. ϕii = 1Xi
,

2. ϕjk ◦ ϕij = ϕik whenever i ≤ j ≤ k.

The direct limit of this direct system is an S−poset X together with S−poset morphisms
ϕi: Xi → X which satisfy

1. ϕj ◦ ϕij = ϕi whenever i ≤ j,

2. if Y is an S−poset and θi: Xi → Y is an S−poset morphism such that θj ◦ ϕij = θi
whenever i ≤ j, then there exists a unique S−poset morphism ψ: X → Y such that
ψ ◦ ϕi = θi for all i ∈ I.

It is easy to show that for any direct system of S−posets the direct limit exists and it is
unique up to isomorphism.

We say that I is directed if for all i, j ∈ I there exists k ∈ I such that k ≥ i, j. The first part
of the following lemma appears as [2, Proposition 2.5], the other parts are from [1, Lemma
1.3].

Lemma 2.1. Let (Xi, ϕ
i
j) be a direct system in the category of (S, T )−posets with directed

index set and let (X,αi) be the direct limit of this system. Then

1. ϕi(xi) ≤ ϕj(xj) in X if and only if there exists k ≥ i, j such that ϕik(xi) ≤ ϕjk(xj);

2. the map ϕi is one-to-one if and only if ϕik is one to one for all k ≥ i;

3. the map ϕi is an order embedding if and only if ϕik is an order embedding for all k ≥ i.

We can then easily deduce the following useful result.

Lemma 2.2. (Cf. [10, Lemma I.3.20]) Let (Xi, ϕ
i
j) and (Yi, θ

i
j) be directed systems in

S−posets, having the same directed index set I and let (X,ϕi) and (Y, θi) be the direct limits
of these systems respectively. If there exist S−poset order embeddings (resp. monomorphism)
ψi : Xi −→ Yi such that the diagram

Xi Xj

Yi Yj

-
ϕi

j

?

ψi

?

ψj

-
θij

commutes whenever i ≤ j, then there exists an S−poset order embedding (resp. monomor-
phism) ψ : X −→ Y such that the diagram

Xi Yi

X Y

-ψi

?

ϕi

?

θi

-
ψ

commutes for all i.
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Lemma 2.3. Let (Xi, ϕ
i
j) and (Yi, θ

i
j) be directed systems of S−posets having the same

directed index set and let (X,ϕi) and (Y, θi) be the direct limits of these systems respectively.
If there exist (upper, lower) strongly right pounitary maps ψi : Xi → Yi such that the diagram

Xi Xj

Yi Yj

-
ϕi

j

?

ψi

?

ψj

-
θij

commutes whenever i ≤ j, then there exists a (upper, lower) strongly right pounitary map
ψ : X → Y such that the diagram

Xi Yi

X Y

-ψi

?

ϕi

?

θi

-
ψ

commutes for all i.

Proof. We prove this result for upper strongly pounitary maps. Let x ∈ X. Notice that
x = φi(xi) for some i ∈ I, xi ∈ Xi. Define ψ : X → Y by ψ(x) = θiψi(xi). From Lemma
2.2, the map ψ is an order embedding. Suppose that ψ(x) ≤ ys, where y = θj(yj) so that
θiψi(xi) ≤ θj(yj)s. Since θi is upper strongly right pounitary, there exists yi ∈ Yi such that
θi(yi) = θj(yj). Hence ψi(xi) ≤ yis. Also, since ψi is upper strongly right pounitary there
exists x′i ∈ Xi such that yi = ψi(x

′
i). Hence θiψi(x

′
i) = θi(yi) = θj(yj) = y. So, ψ is upper

strongly right pounitary.

When I = 2 the direct limit in the category of S−posets is called the pushout. Consider the
diagram

A B

C

-α

?
β

From [3] the pushout is isomorphic to the quotient of the coproduct D = B∪̇C by the
S−poset congruence ρ generated by

R = {(α(a), β(a)) : a ∈ A}.

The maps γ : B → D/ρ and δ : C → D/ρ are given by γ(b) = bρ and δ(c) = cρ respectively.
As in the category of S−acts, tensor products preserve pushouts [2].

If f : X → Y is an S−poset morphism then we define the relation

−−−−→
ker(f) = {(x, x′) ∈ X ×X : f(x) ≤ f(x′)}.

The following result characterises the pushout when α is a monomorphism and β is onto.
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Proposition 2.4. Let

A B

C P

-α

?
β

?

γ

-
δ

be a pushout of S−posets and let α be a monomorphism and β be onto. Then P ∼= B/σ
where σ is the S−poset congruence induced on B by

T = {(α(a), α(a′)) : (a, a′) ∈
−−−→
kerβ}.

Proof. Let P ′ = B/σ. Define γ : B → P ′ by γ(b) = bσ. Since σ is a congruence then it is
clear that γ preserves the S−action on B. Also, define δ : C → P ′ by δ(c) = γα(a) = α(a)σ,
where c = β(a) and note that δ is well-defined. It is clear that γα = δβ. Now suppose there
exists an S−poset D and S−poset morphisms γ′ : B −→ D and δ′ : C −→ D such that
γ′α = δ′β. We want to show that there exists a unique S−poset morphism ψ : P ′ −→ D
such that ψγ = γ′ and ψδ = δ′. To this end, define ψ(bσ) = γ′(b). Then ψγ = γ′ and
ψδβ(a) = ψγα(a) = γ′α(a) = δ′β(a). To show ψ is a well-defined monotonic map suppose
that bσ ≤ b′σ. Then there exist n ≥ 1, bi, b

′
i ∈ B and 1 ≤ i ≤ n such that

b ≤ b1α(T )b′1 ≤ b2α(T )b′2 ≤ · · · ≤ bnα(T )b′n ≤ b′.

We can assume that the number of α(T ) terms is minimal. If there are no such terms then
b ≤ b′. Consequently γ′(b) ≤ γ′(b′) and so ψ(bσ) ≤ ψ(b′σ). Otherwise, for each i there
exists a scheme such as:

bi = α(a1)s1, α(a′1)s1 = α(a2)s2, . . . , α(a′m)sm = b′i

where (α(aj), α(a′j)) ∈ T , sj ∈ S, 1 ≤ j ≤ m and m ≥ 1. Hence β(ajsj) ≤ β(a′jsj).
Since α is one to one, we have a′jsj = aj+1sj+1 and so β(a′jsj) = β(aj+1sj+1). This gives
β(a1s1) ≤ β(a′msm). Now

γ′(bi) = γ′α(a1s1) = δ′β(a1s1) ≤ δ′β(a′msm) = γ′α(a′msm) = γ′(b′i).

Since γ′ is monotonic, we have γ′(b) ≤ γ′(b′) and so ψ(bσ) ≤ ψ(b′σ). Hence ψ is monotonic
and therefore well-defined. Since γ is an S−poset map and σ is an S−poset congruence,
it follows that ψ preserves the S−action on P ′. We can then easily check that ψ is unique
with respect to this property.

In the above result when α is strongly pounitary, it easily follows from the definition of σ
and the definition of strongly pounitary, that the following conditions hold.

1. bσ ≤ b′σ if and only if b ≤ b′ or b = α(a), b′ = α(a′) such that β(a) ≤ β(a′);

2. bσ = b′σ if and only if b = b′ or b = α(a), b′ = α(a′) such that β(a) = β(a′).

Consider the previous pushout diagram where α is strongly pounitary and β is onto. Define

R = {(α(a), α(a′)) : (a, a′) ∈ ker β}.

Then it is easy to show that ρ = R ∪ 1B is an S−act congruence. This relation is also
an S−poset congruence since b ρ b′ whenever b ≤ρ b′ ≤ρ b. The order on B/ρ is the
compatible order which is given by bρ ≤ b′ρ if and only if b ≤ b′ or b = α(a), b′ = α(a′) with
β(a) ≤ β(a′).

Define the relation
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τα = {(b, b′) ∈ B ×B : b ≤ b′ or b ≤ α(a), α(a′) ≤ b′ where (a, a′) ∈
−−→
ker β}.

Proposition 2.5. Let

A B

C P

-α

?
β

?

γ

-
δ

be a pushout of S−posets. If α is an order embedding and β is onto, then
−→
ker γ = τα.

Proof. From Proposition 2.4, P ' B/σ. Suppose that (b, b′) ∈
−→
ker γ. Then bσ ≤ b′σ and so

there exists n ≥ 1, bi, b
′
i ∈ B with 1 ≤ i ≤ n such that

b ≤ b1 α(T ) b′1 ≤ b2 . . . ≤ bn α(T ) b′n ≤ b′.

By using a technique similar to the one used in the proof of Proposition 2.4 we can show
that for each bi α(T ) b′i there are two cases - either bi = b′i or bi = α(ai), b

′
i = α(a′i) and

β(ai) ≤ β(a′i). Since α is an order embedding we can easily prove that either b ≤ b′ or
b ≤ α(a1), α(an) ≤ b′ and β(a1) ≤ β(an). Hence (b, b′) ∈ τα.

Conversely suppose that (b, b′) ∈ τα. Then if b ≤ b′ it is clear that (b, b′) ∈
−→
ker γ. While if

b ≤ α(a), α(a′) ≤ b′, where β(a) ≤ β(a′), then δβ(a) ≤ δβ(a′). Hence γ(b) ≤ γα(a) = δβ(a)
≤ δβ(a′) = γα(a′) ≤ γ(b′) as required.

When α is S−strongly pounitary we have the following special case.

Corollary 2.6. Let

A B

C P

-α

?
β

?

γ

-
δ

be a pushout of S−posets. If α is strongly pounitary and β is onto then

−→
kerγ = {(b, b′) : b ≤ b′ or b = α(a), α(a′) = b′ where (a, a′) ∈

−−→
ker β}.

3 Pullbacks

The notion of pullback in the category of S−posets has been studied by Bulman-Fleming
and Mahmoudi [3]. In the category of S−acts, pullbacks have a close connection with the
study of monoid amalgams, in particular when studying the idea of subamalgams. We shall
see later that this is also the case for pomonoid amalgams.

It is known from [3] that the pullback of the diagram of S−posets

B

C D
?
α

-
β

exists and is isomorphic to A ' {(b, c) ∈ B×C : α(b) = β(c)} where the S−poset morphisms
γ : A −→ B, δ : A −→ C are given by γ(b, c) = b and δ(b, c) = c respectively. We shall
denote the pullback simply by A.

8



Proposition 3.1. Consider the pullback diagram

A B

C D

-γ

?
δ

?
α

-
β

of S−posets. If α satisfies any of the properties of being an order embedding, monomorphism,
onto, convex, upper strongly pounitary or lower strongly pounitary, then δ also satisfies the
same property.

Proof. Suppose that α is an order embedding and δ(b, c) ≤ δ(b′, c′). Then c ≤ c′ and so
β(c) ≤ β(c′). In addition since αγ = βδ, we have α(b) = β(c) and α(b′) = β(c′). Hence
α(b) ≤ α(b′) and so b ≤ b′. Therefore (b, c) ≤ (b′, c′). A similar argument holds if α is a
monomorphism.

Suppose now that α is onto. It is clear that for all c ∈ C there exists d ∈ D such that
β(c) = d. But since α is onto, there exists b ∈ B such that d = α(b). Hence c = δ(b, c).

Suppose next that α is convex and δ(b, c) ≤ c′′ ≤ δ(b′, c′). Then c ≤ c′′ ≤ c′ and so β(c) ≤
β(c′′) ≤ β(c′). It is known that α(b) = β(c) and α(b′) = β(c′). Hence α(b) ≤ β(c′′) ≤ α(b′).
Since α is convex, there exists b′′ ∈ B such that α(b′′) = β(c′′). Therefore δ(b′′, c′′) = c′′. A
similar argument holds when α is either upper or lower strongly pounitary.

Consider the commutative diagram

A B

C D

-γ

?
δ

?
α

-
β

of S−posets. This diagram is called an almost pullback if whenever α(b) = β(c) then there
exists a unique a ∈ A such that γ(a) = b and δ(a) = c. It is clear that every pullback is an
almost pullback.

Proposition 3.2. Let

A B

C D

-γ

?
δ

?
α

-
β

be a commutative diagram in S−posets and γ be an S−poset order embedding. Then this
diagram is an almost pullback if and only if it is a pullback.

Proof. Suppose the diagram is an almost pullback and there exists an S−poset P and
S−poset morphisms γ′ : P → B and δ′ : P → C such that αγ′ = βδ′. Define ψ : P → A by
ψ(p) = a where a is such that γ′(p) = γ(a) and δ′(p) = δ(a). It is clear that a is unique from
the definition of almost pullback. Suppose that p ≤ p′ in P so that γ′(p) ≤ γ′(p′). Then
γ(a) ≤ γ(a′) and so a ≤ a′. Hence ψ is an S−poset morphism. It is clear that γψ = γ′ and
δψ = δ′ and so A is a pullback. The converse is clear.

9



Proposition 3.3. Let

A B

C D

A E

?

γ

-f

?
ε

-ψ

?

ϕ

?
α

-
β

be commutative diagram in S−posets where ϕγ = 1A, ψ is an S−poset order embedding and−→
ker α ⊆ τψ where

τψ = {(d, d′) : d ≤ d′or d ≤ ψ(c), ψ(c′) ≤ d′where (c, c′) ∈
−−→
ker ϕ}.

Then αε is an S−poset order embedding if the following conditions hold

1. ε is an order embedding,

2. if ε(b) ≤ ψ(c) then there exists a ∈ A such that ε(b) ≤ εf(a) ≤ ψ(c) and if ψ(c) ≤ ε(b)
there exists a′ ∈ A such that ψ(c) ≤ εf(a′) ≤ ε(b).

Proof. Suppose that αε(b) ≤ αε(b′). Then (ε(b), ε(b′)) ∈ τψ and hence if ε(b) ≤ ε(b′) then

by (1) b ≤ b′, as required. Otherwise there exist (c, c′) ∈
−−→
ker ϕ such that ε(b) ≤ ψ(c)

and ψ(c′) ≤ ε(b′). From (2) there exist a, a′ ∈ A such that ε(b) ≤ εf(a) ≤ ψ(c) and
ψ(c′) ≤ εf(a′) ≤ ε(b′). Hence b ≤ f(a), f(a′) ≤ b′, γ(a) ≤ c and c′ ≤ γ(a′). Now from
ϕγ(a) ≤ ϕ(c) and ϕ(c′) ≤ ϕγ(a′), we have ϕγ(a) ≤ ϕ(c) ≤ ϕ(c′) ≤ ϕγ(a′) and so a ≤ a′.
Consequently b ≤ f(a) ≤ f(a′) ≤ b′ as required.

Proposition 3.4. Let

A B D E

C P F Q

-α

?
β

?
λ

-δ

?

γ

?

η

-
f

-
g

be pushouts in the category of S−posets and suppose there exist S−order embeddings ϕ :
A→ D, θ : B → E and ε : C → F which makes the following diagram commute.

A B

D E

C P

F Q

Also suppose that the commutative diagram

A B

D E

-α

?

ϕ

?
θ

-
δ

10



is a pullback. When γ : D → F and β : A→ C are both onto and α : A→ B and δ : D → E
are both strongly pounitary then there exists a unique S−order embedding ζ : P → Q making
the resultant cube commute.

Proof. We have that P ' B/σ, where σ is defined in Proposition 2.4. From the universal
property of the pushout P , there exists a unique S−poset morphism ζ : P → Q such that

ζ(λ(b)) = η θ(b). From Corollary 2.6
−→
ker η = {(δ(d), δ(d′)) : (d, d′) ∈

−→
ker γ} ∪ −→1E . To show

ζ is an order embedding suppose ηθ(b) ≤ ηθ(b′). Then there are two cases:

1. If θ(b) ≤ θ(b′) then λ(b) ≤ λ(b′) as required;

2. Let θ(b) = δ(d), θ(b′) = δ(d′) where γ(d) ≤ γ(d′). Since the last diagram is a pullback
there exist unique a, a′ ∈ A such that b = α(a), d = ϕ(a), b′ = α(a′) and d′ = ϕ(a′).
This gives εβ(a) = γϕ(a) ≤ γϕ(a′) = εβ(a′). Hence β(a) ≤ β(a′) and so λ(b) =
fβ(a) ≤ fβ(a′) = λ(b′) as required.

The following rather technical result will also prove useful later.

Proposition 3.5. Let

A B E F

C D G H

A P E Q

-α1

?
β1

?

η1

-α2

?
β2

?

η2

-
λ1

?

γ1

?

σ1

-
λ2

?

γ2

?

σ2

-
δ1

-
δ2

be commutative diagrams in the category of S−posets where the top squares are pullbacks
and the bottom squares are pushouts and γ1β1 = 1A, γ2β2 = 1E. When η1, η2 are S−poset
order embeddings λ1, λ2 are strongly pounitary and there exist S−poset order embeddings
ϕ : A → E, θ : C → G, ε : B → F , ψ : D → H, ζ : P → Q making the following diagram
(with the obvious labelling of arrows)

A B

E F

C D

G H

A P

E Q

commute, and when the diagrams

C D B F

G H D H

-λ1

?
θ

?
ψ

-ε

?

η1

?

η2

-
λ2

-
ψ

11



are pullbacks then

B F

P Q

-ε

?

σ1η1

?
σ2η2

-
ζ

is also a pullback.

Proof. From Corollary 2.6 it is known that
−→
ker σ1 = {(λ1(c), λ(c′)) : (c, c′) ∈

−→
ker γ1} ∪−→

1D. First, we are aiming to show that σ1η1 and σ2η2 are order embeddings. We show
that Condition (2) of Proposition 3.3 is satisfied. To see this suppose that η1(b) ≤ λ1(c).
Since λ1 is strongly pounitary then η1(b) = λ1(c′). Also, since the top square is a pullback,
there exists a unique a ∈ A such that α1(a) = b and β1(a) = c′. Hence η1(b) = η1α1(a) =
λ1β1(a) ≤ λ1(c) as required. A similar conclusion holds when λ1(c) ≤ η1(b). Therefore, from
Proposition 3.3, the map σ1η1 is an order embedding. In a similar way the map σ2η2 is also
an order embedding. Now suppose that ζ(p) = σ2η2(f) where p ∈ P and f ∈ F . Since γ1 is
onto, by Proposition 2.4, P ' D/σ where σ is defined as in Proposition 2.4. Hence p = σ1(d)
for some d ∈ D. Now, we have ζ(p) = ζσ1(d) = σ2ψ(d) and hence σ2ψ(d) = σ2η2(f). So we

have σ2ψ(d) ≤ σ2η2(f) and σ2η2(f) ≤ σ2ψ(d). From Corollary 2.6 we see that
−→
ker σ2 = {

(λ2(g), λ2(g′)) : (g, g′) ∈
−→
ker γ2} ∪

−→
1H . Now there are four cases, as given below.

1. Let ψ(d) ≤ η2(f) and η2(f) ≤ ψ(d). Then ψ(d) = η2(f). Since the commutative
diagram

B F

D H

-ε

?

η1

?

η2

-
ψ

is a pullback, there exists a unique b ∈ B such that d = η1(b) and f = ε(b). Hence
f = ε(b) and p = σ1(d) = σ1η1(b).

2. Suppose that η2(f) ≤ ψ(d) and ψ(d) = λ2(g), η2(f) = λ2(g′) where (g, g′) ∈
−→
ker γ2.

Since ψ(d) = λ2(g) and the diagram

C D

G H

-λ1

?
θ

?
ψ

-
λ2

is a pullback, there exists a unique c ∈ C such that d = λ1(c) and g = θ(c). Suppose
that b = α1γ1(c). Then σ1η1(b) = σ1λ1β1γ1(c) = δ1γ1(c) = σ1λ1(c) = σ1(d) = p.
In addition, σ2η2ε(b) = ζσ1η1(b) = ζ(p) = σ2η2(f) and so ε(b) = f . To show that b
is unique, suppose there exists b′ ∈ B such that f = ε(b′) and p = σ1η1(b′). Then
f = ε(b′) = ε(b) and since ε is order embedding it follows that b = b′.

3. Assume that ψ(d) ≤ η2(f) and η2(f) = λ2(g2), ψ(d) = λ2(g′2) where (g2, g
′
2) ∈

−→
ker γ2.

By using an argument similar to Case 2 we can show that there exists a unique b ∈ B
such that f = ε(b) and p = σ1η1(b).

4. Let ψ(d) = λ2(g1), η2(f) = λ2(g′1) where (g1, g
′
1) ∈

−→
ker γ2 and η2(f) = λ2(g2),

ψ(d) = λ2(g′2) where (g2, g
′
2) ∈

−→
ker γ2. We have ψ(d) = λ2(g1) = λ2(g′2) and η2(f) =

12



λ2(g′1) = λ2(g2). Since λ2 is an order embedding, we have g1 = g′1 = g2 = g′2. So
we have ψ(d) = λ2(g1), η2(f) = λ2(g′1) where (g1, g

′
1) ∈ ker γ2. Finally using an

argument similar to Case 2, we see that there exists a unique b ∈ B such that f = ε(b)
and p = σ1η1(b).

Consequently, in all of the cases the diagram

B F

P Q

-ε

?

σ1η1

?
σ2η2

-
ζ

is an almost pullback and hence by Proposition 3.2 it is a pullback.

We now examine a connection between pounitary maps and pullbacks.

Proposition 3.6. Let U be a subpomonoid of a pomonoid T and T be a subpomonoid of a
pomonoid S. Suppose also that U is pounitary in S. If A is a T−poset, B is an S−poset
and f : A→ B is U−pounitary then the diagram

A B

A⊗U T B ⊗U S

-f

? ?
-

f⊗γ

is a pullback where the arrows A→ A⊗UT and B → B⊗US are defined by a 7→ a⊗1, b 7→ b⊗1
respectively.

Proof. Clearly U is pounitary in the pomonoid T . Suppose that b⊗ 1 = f(a)⊗ t in B⊗U S.
Since f is also pounitary, we deduce from Lemma 1.3 that there exists a′ ∈ A such that
b = f(a′) and that t ∈ U . Consequently f(a′) = b = b1 = f(a)t = f(at) and so a′ = at.
Hence the diagram is an almost pullback. It is a pullback by Proposition 3.2 is a pullback.

Theorem 3.7. Let f : X → Y be upper (resp. lower) strongly left pounitary and g : A→ B
be lower (resp. upper) strongly right pounitary. Then the commutative diagram

A⊗X B ⊗X

A⊗ Y B ⊗ Y

-g⊗1X

?
1A⊗f

?
1B⊗f

-
g⊗1Y

is a pullback.

Proof. To show that the diagram is an almost pullback suppose that g(a) ⊗ y = b ⊗ f(x)
in B ⊗ Y . Then from Lemma 1.3 and Lemma 1.5 we see that y = f(x′), b = g(a′) and
a ⊗ x′ = a′ ⊗ x. Hence the above diagram is an almost pullback. It is a pullback by
Proposition 3.2.

We can also show that tensor products preserve pullbacks in the following sense.
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Theorem 3.8. Let the commutative diagram

A B

C D

-α

?
β

?

γ

-
δ

be a pullback and all its maps be (S, S)−pounitary. Then for any right S−posets X and left
S−posets Y the diagram

X ⊗A⊗ Y X ⊗B ⊗ Y

X ⊗ C ⊗ Y X ⊗D ⊗ Y

-

? ?
-

is a pullback in the category of posets.

Proof. Suppose that x ⊗ δ(c) ⊗ y = x′ ⊗ γ(b) ⊗ y′ in X ⊗ D ⊗ Y . Using Lemma 1.4 and
Lemma 1.3, we can deduce that there exists b′ ∈ B, c′ ∈ C such that δ(c) = γ(b′) and
γ(b) = δ(c′). Since the first diagram is a pullback, there exists unique a, a′ ∈ A such that
α(a) = b, β(a) = c′, α(a′) = b′ and β(a′) = c. Hence x ⊗ c ⊗ y = x ⊗ β(a′) ⊗ y and
x′ ⊗ b ⊗ y′ = x′ ⊗ α(a) ⊗ y′. Since x ⊗ γ(b′) ⊗ y = x ⊗ δ(c) ⊗ y = x′ ⊗ γ(b) ⊗ y′, we have
by Lemma 1.6 x⊗ b′ ⊗ y = x′ ⊗ b⊗ y′. So, x⊗ α(a′)⊗ y = x′ ⊗ α(a)⊗ y′ and hence, again
by Lemma 1.6, we have x⊗ a′ ⊗ y = x′ ⊗ a⊗ y′. It is clear that x′ ⊗ a⊗ y′ is unique with
the required property and consequently the diagram is an almost pullback and therefore a
pullback by Proposition 3.2.

The following result will be useful later.

Lemma 3.9. Let the commutative diagram

A B

C D

-α

?
β

?

γ

-
δ

be an almost pullback in the category of S−posets. In addition suppose that

A B

C D

Q

α

β

δ

γ

ψ

θ

ε

commutes. If ψ : D → Q is an S−poset order embedding then the diagram

A B

C Q

-α

?
β

?
ε

-
θ
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is an almost pullback.

Proof. Suppose that ψ : D → Q is order embedding and ε(b) = θ(c). Then ψγ(b) = ψδ(c).
Hence γ(b) = δ(c). Now, because

A B

C D

-α

?
β

?

γ

-
δ

is an almost pullback, there exists a unique a ∈ A such that α(a) = b and β(a) = c as
required.

The proof of the following lemma is straightforward and so it is omitted.

Lemma 3.10. Let
A B E

C D F

-α

?
β

?

γ

-ε

?
ψ

-
δ

-
θ

be a commutative diagram in the category of S−posets and suppose that the left and right
hand squares are almost pullbacks. Then the outer square is also an almost pullback.

It is well known that pullbacks in the category of pomonoids exist. In fact it is straightfor-
ward to prove that the pullback of the diagram of pomonoids and pomonoid morphisms

S

T P
?
α

-
β

is Q ' {(s, t) ∈ S × T : α(s) = β(t)} together with the pomonoid morphisms γ : Q −→ S,
δ : Q −→ T which are defined by γ(s, t) = s and δ(s, t) = t respectively. The next result
establishes a connection between the poembeddability property of the pomonoid amalgam
and pomonoid pullbacks.
The proof of the following remark is an easy exercise.

Remark 3.11. The pomonoid amalgam [U ;S1, S2] is strongly poembeddable (resp. em-
beddable) in a pomonoid T if and only if there exist pomonoid order embeddings (resp.
monomorphisms) λi : Si → T such that

U S1

S2 T

-ϕ1

?

ϕ2

?
λ1

-
λ2

commutes and is a pullback.
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4 Subpomonoid amalgams

In the unordered case Howie [7] shows that for monoids U ⊆ Ti ⊆ Si the free product of
the monoid amalgam [U ;Ti]i∈I is not always embeddable in the free product of the monoid
amalgam [U ;Si]i∈I . He also proved that when U and Ti are unitary in Si for all i ∈ I, then
such an embedding is possible. Renshaw extended this work and proved that the embedding
is also possible when either U → Ti and Ti → Si are both pure [11], or U → Ti and Ti → Si
are both perfect [12].

As the trivial order is a partial order relation, Howie’s example from [7] can be used to show
that embeddability is not always guaranteed in the ordered case. Hence the free product
of the pomonoid amalgam [U ;Ti]i∈I is not always poembeddable in the free product of the
pomonoid amalgam [U ;Si]i∈I . We aim to find the conditions under which this poembed-
dability is possible.

Let [U ;Si]i∈I be a pomonoid amalgam and Ti, i ∈ I, be a family of pomonoids such that Ti ⊆
Si for all i ∈ I. Then we shall say that the pomonoid amalgam [U ;Ti]i∈I is a subpomonoid
amalgam of the pomonoid amalgam [U ;Si]i∈I . We shall restrict our attention to the case of
|I| = 2.

Let f : X → Y be right U−poset morphism where U is a subpomonoid of a pomonoid S, Y
is a right U−poset and X is a right S−poset. The free S−extension of X and Y is a right
S−poset F = F (S;X,Y ) with a U−poset morphism g : Y → F such that

1. h = gf : X → F is an S−poset morphism;

2. if there is a right S−poset Z and a right U−poset morphism α : Y → Z such that β =
αf is a right S−poset morphism then there exists a unique right S−poset morphism
ψ : F → Z such that ψg = α and ψh = β.

From [1] it is known that the free S−extension exists in the category of S−posets and is
unique up to isomorphism. The authors have also shown that it is possible to define the free
S−extension in terms of pushouts.

Proposition 4.1. Let U be a subpomonoid of a pomonoid T and T be a subpomonoid of a
pomonoid S such that U is strongly pounitary in S and T is strongly pouintary in S. Suppose
also that A is a (U, T )−poset, B,D are (U,U)−posets, C is a (U, S)−poset, α1 : A → B
and α2 : C → D are (U,U)−poset morphism, δ : A → C is a (U, T )−poset morphism and
ε : B → D is a (U,U)−poset morphism. If α1, α2, δ and ε are (U,U)−strongly pounitary
such that

A B

C D

-α1

?
δ

?
ε

-
α2

is a pullback then there exists a (U,U)−order embedding ψ : F (T ;A,B)→ F (S;C,D) such
that the diagram

B F (T ;A,B)

D F (S;C,D)

-β1

?

ε

?

ψ

-
β2

is a pullback, where β1 : B → F (T ;A,B) and β2 : D → F (S;C,D) are the canonical maps.
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Proof. Since U is strongly pounitary in S it follows that U is also strongly pounitary in T .
Hence from [1] Theorem 3.5, the maps β1 : B → F (T ;A,B) and β2 : D → F (S;C,D) are
(U,U)−strongly pounitary.

Define ψ : F (T ;A,B) → F (S;C,D) by ψ((b ⊗ t)/σ1) = (ε(b) ⊗ t)/σ2, where σ1 is a
(U, T )−poset congruence induced on B⊗T by R1 = {(α1(a)⊗t, α1(a′)⊗t′) : at ≤ a′t′} and σ2
is a (U, S)−poset congruence induced on D⊗S by R2 = {(α2(c)⊗s, α2(c′)⊗s′) : cs ≤ c′s′}.
From [1] Lemma 2.3 the (U,U)−posets F (T ;A,B) and F (S;C,D) are the pushouts of the
diagrams

A⊗ T B ⊗ T C ⊗ S D ⊗ S

A C

-

?

-

?

respectively. Consequently the diagram

A⊗ T B ⊗ T

C ⊗ S D ⊗ S

A F (T ;A,B)

C F (S;C,D)

commutes. Hence from Lemma 1.3 and its dual, Lemma 1.5 and Proposition 3.4, the map
ψ is an order embedding whenever the following diagram

A⊗ T B ⊗ T

C ⊗ S D ⊗ S

-

? ?
-

is a pullback. The above diagram is an almost pullback since from Lemma 3.10 it can be
described as follows:

A⊗ T B ⊗ T

C ⊗ T D ⊗ T

C ⊗ S D ⊗ S

-

? ?
-

? ?
-

The top square is an almost pullback by the assumption and by Theorem 3.8, and the
bottom square is an almost pullback from Theorem 3.7. Hence from Proposition 3.2 it is a
pullback. To show that

B F (T ;A,B)

D F (S;C,D)

-β1

?

ε

?

ψ

-
β2
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is a pullback we use Proposition 3.5 and the fact that the following four diagrams are
pullbacks.

A B C D

A⊗ T B ⊗ T C ⊗ S D ⊗ S

-

? ?

-

? ?
- -

A⊗ T B ⊗ T B D

C ⊗ S D ⊗ S B ⊗ T D ⊗ S.

-

? ?

-

? ?
- -

Since U → T and U → S are strongly pounitary, it is clear by Theorem 3.7 that the first and
second diagrams are pullbacks. That the third diagram is pullback has been shown above.
The fourth diagram is a pullback by Proposition 3.6. This completes the proof.

Let [U ;T1, T2] be a subpomonoid amalgam of a pomonoid amalgam [U ;S1, S2] and let U be
strongly pounitary in Ti and Ti be strongly pounitary in Si, i ∈ {1, 2}. Using a construction
similar to [9] Theorem 1 define a directed system (Yn, kn) in the category of U−posets as
follows:

Let Y1 = S1, Y2 = S1⊗U S2 and k1 : Y1 → Y2 be given by k1(s1) = s1⊗1. Define inductively
Yn = F (Si;Yn−2, Yn−1) = (Yn−1 ⊗U Si)/δn−2, i ≡ n (mod 2), where δn−2 is the Si−poset
congruence induced on Yn−1 ⊗U Si by

Vn−2 = {(kn−2(yn−2)⊗ si, kn−2(y′n−2)⊗ s′i) : yn−2si ≤ y′n−2s′i},

and let kn−1 : Yn−1 → Yn be the U−poset morphism defined by kn−1(yn−1) = (yn−1 ⊗
1)δn−2. Then a typical element of Yn is

yn = (. . . ((s1 ⊗ s2 ⊗ s3)δ1 ⊗ s4)δ2 ⊗ . . .⊗ sn)δn−2.

For simplicity, the element yn of Yn will be denoted by [s1, . . . , sn] and a typical element of
S1 ∗U S2 by (s1, . . . , sn). By a similar argument, define the directed system (An, hn), where

An = (. . . (T1 ⊗U T2 ⊗U T1)σ1 ⊗U · · · ⊗U Ti)σn−2

σn−2 = {(hn−2(xn−2)⊗ ti, hn−2(x′n−2)⊗ t′i) : xn−2ti ≤ x′n−2t′i}

and i ≡ n (mod 2). For simplicity, a typical element of An will be denoted by [t1, . . . , tn]′

and a typical element of T1 ∗U T2 by (t1, . . . , tn)′. It follows from [1] Theorem 2.7 that the
free product of the pomonoid amalgam [U ;S1, S2], S1 ∗U S2, and the free product of the
pomonoid amalgam [U ;T1, T2], T1∗UT2, are direct limits in the category of U−posets of these
directed systems respectively. From [1] Theorem 3.5 the maps kn and hn are (U,U)−strongly
pounitary order embeddings. In addition from [1] Lemma 3.4 and Theorem 3.6 the maps
αn : Yn −→ S1 ∗U S2 and βn : An −→ T1 ∗U T2 are (U,U)−strongly pounitary.

Define λ1 : A1 −→ Y1 as the inclusion map and λ2 : A2 −→ Y2 by λ2(t1 ⊗ t2) = t1 ⊗ t2, and
define the map λn : An −→ Yn by λn([t1, t2, . . . , tn]) = [t1, t2, . . . , tn]′ for n ≥ 3. From the
uniqueness of the free extension it can be concluded that the map λn is the unique Ti−poset
morphism which makes the diagram
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An

An−1An−2

Yn

λn

hn−1

hn

kn−1λn−1kn−1kn−2λn−2

commute. As a result we get the following commutative diagram.

A1 A2 A3
. . .

Y1 Y2 Y3 . . .

T1 ∗U T2

S1 ∗U S2

h1 h2 h3

β1 β2 β3

λ1 λ2 λ3

k1 k2 k3

α1 α2 α3

This includes a map ψ : T1 ∗U T2 −→ S1 ∗U S2 such that ψβi = αiλi for all i ≥ 1, and our
main aim is to prove that, under certain conditions, ψ is U−strongly pounitary. To this end
we notice that from Lemma 2.3, ψ will be U−strongly pounitary providing λi is U−strongly
pounitary for each i. We therefore introduce a property that will guarantee that each λi is
indeed U−strongly pounitary.

Let U be a subpomonoid of a pomonoid S and consider the following property

for all s, s′ ∈ S, if ss′ ∈ U, then s, s′ ∈ U. (*)

It is clear that Condition (*) implies that U is unitary.
Let U and V be semigroups and let S = U ∪̇V ∪̇{0} be the 0-direct union of U and V , where
the multiplication in U and V is extended to S by setting all other products equal to 0. It
is clear that 1U is strongly pounitary in 1S and satisfies conditions (*).

The amalgamated free product of the amalgam [U ;T1, T2] is denoted by T1 ∗U T2

Theorem 4.2. Let [U ;T1, T2] be a subpomonoid amalgam of a pomonoid amalgam [U ;S1, S2].
If Ti satisfies condition (*) in Si, U is strongly pounitary in Ti and Ti is strongly pounitary
in Si for i ∈ {1, 2} then the canonical map T1∗U T2 → S1∗U S2 is (U,U)−strongly pounitary.

Proof. We use the above construction and notation of S1 ∗U S2 and T1 ∗U T2 in terms of
directed colimits. It is easy to show that λ1 and λ2 are (U,U)−strongly pounitary. Hence
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from Theorem 3.7 the diagram

T1 T1 ⊗ T2

S1 S1 ⊗ T2

-

? ?
-

is a pullback. Note here that the tensor products are over U and it is clear that the diagram
commutes. Since the map S1⊗T2 → S1⊗S2 is an order embedding, it follows from Lemma
3.9 and Proposition 3.2 the diagram

T1 T1 ⊗ T2

S1 S1 ⊗ S2

-

? ?
-

is also a pullback. Hence from Proposition 4.1 the map λ3 : A3 → Y3 is an order embedding
and the diagram

A2 A3

Y2 Y3

-

? ?
-

is a pullback. To show that λ3 is (U,U)−lower strongly pounitary suppose that v(s1 ⊗ s2 ⊗
s3)δ1u ≤ (t1 ⊗ t2 ⊗ t3)δ1. Then there exist x1j ⊗ x2j ⊗ x3j , x′1j ⊗ x′2j ⊗ x′3j ∈ S1 ⊗ S2 ⊗ S1

such that

vs1 ⊗ s2 ⊗ s3u ≤ x11 ⊗ x21 ⊗ x31α(V1)x′11 ⊗ x′21 ⊗ x′31 ≤ . . .
≤ x1p ⊗ x2p ⊗ x3pα(V1)x′1p ⊗ x′2p ⊗ x′3p ≤ t1 ⊗ t2 ⊗ t3

where 1 ≤ j ≤ p and p ≥ 1. By transitivity of ≤ on A3, we can assume without loss
of generality that the number of α(V1) terms is minimal. If there are no such terms then
vs1 ⊗ s2 ⊗ s3u ≤ t1 ⊗ t2 ⊗ t3. Hence s1, s3 ∈ T1 and s2 ∈ T2 as required. Otherwise, for
every j ∈ {1, . . . , p} there exists a scheme

x1j ⊗ x2j ⊗ x3j = v1y11 ⊗ 1⊗ y31u1
v1y
′
11 ⊗ 1⊗ y′31u1 = v2y12 ⊗ 1⊗ y32u2

...
vmy

′
1m ⊗ 1⊗ y′3mum = x′1j ⊗ x′2j ⊗ x′3j

where y1ly3l ≤ y′1ly′3l in S1, 1 ≤ l ≤ m, and m ≥ 1. Using Lemma 1.2 it is straightforward to
show that x2l, x

′
2l ∈ U and x1jx2jx3j ≤ x′1jx

′
2jx
′
3j in S1. Hence s2, t2 ∈ U and vs1s2s3u ≤

t1t2t3. Since T1 is strongly pounitary in S1, we have s1s2s3 ∈ T1. Therefore, from condition
(*) it follows that s1, s3 ∈ T1 and s2 ∈ U and so λ3 is (U,U)−lower strongly pounitary.
By a similar argument we can show that λ3 is (U,U)−upper strongly pounitary. Hence
λ3 is (U,U)−strongly pounitary. From Proposition 4.1 the map λ4 : A4 → Y4 is an order
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embedding and

A3 A4

Y3 Y4

-

? ?
-

is a pullback. The result will follow if we show that λn is (U,U)−strongly pounitary for
all n. We proceed inductively. Suppose that λn−1 is (U,U)−strongly pounitary and the
diagram

An−2 An−1

Yn−2 Yn−1

-

? ?
-

is a pullback. Then from Proposition 4.1 the map λn is an order embedding. To show λn
is (U,U)−lower strongly pounitary suppose that v[s1, . . . , sn]′u ≤ [t1, . . . , tn]′. Then there
exists a scheme such as that

[vs1, . . . , sn−1]′ ⊗ snu ≤ [x1, . . . , xn−1]′ ⊗ xn
α(Vn−1)[x′1, . . . , x

′
n−1]′ ⊗ x′n ≤ [t1, . . . , tn−1]′ ⊗ tn.

We can assume without loss of generality that the number of α(Vn−1) terms is one. If
there are no such terms then [x1, . . . , xn−1]′ ⊗ xn = [x′1, . . . , x

′
n−1]′ ⊗ x′n. This gives

[vs1, . . . , sn−1]′ ⊗ snu ≤ [t1, . . . , tn−1]′ ⊗ tn. Hence from the definition of the tensor product
and from our assumption, it is clear that [s1, . . . , sn−1]′ ∈ im λn−1(An−1) and sn ∈ Tn.
Otherwise, for [x1, . . . , xn−1]′ ⊗ xn α(Vn−1) [x′1, . . . , x

′
n−1]′ ⊗ x′n there exists a scheme

[x1, . . . , xn−1]′ ⊗ xn = v1[y1, . . . , yn−2, 1]′ ⊗ ynu1
v1[y′1, . . . , y

′
n−2, 1]′ ⊗ y′nu1 = [x′1, . . . , x

′
n−1]′ ⊗ x′n

where [y1, . . . , yn−2yn]′ ≤ [y′1, . . . , y
′
n−2y

′
n]′. We can also assume without loss of gener-

ality that this scheme has minimal length. Since [x′1, . . . , x
′
n−1]′ ∈ im λn−1(An−1) and

x′n ∈ Tn, it follows from Lemma 1.2 and our inductive assumption that [y′1, . . . , y
′
n−2, 1]′ ∈

im λn−1(An−1) and y′n ∈ Tn. Hence [y1, . . . , yn−2yn]′ ∈ im λn−1(An−2) and so yn−2yn ∈
Tn−2 = Tn. From Condition (*) we get yn−2, yn ∈ Tn−2 = Tn. Consequently [y1, . . . , yn−2, 1]′

∈ im λn−1(An−1) and yn ∈ Tn. Therefore [x1, . . . , xn−1]′ ∈ im λn−1(An−1) and xn ∈ Tn.

By a similar argument we get that [s1, . . . , sn−1]′ ∈ im λn−1(An−1) and sn ∈ Tn. Therefore
λn is (U,U)−lower strongly pounitary. In a similar manner it can be shown that λn is
a (U,U)−upper strongly pounitary order embedding and hence from Lemma 2.3 ψ is a
(U,U)−strongly pounitary order embedding.

From Nasir [8] it is known that the amalgamated free product of a commutative pomonoid
amalgam [U ;S1, S2] is the tensor product S1 ⊗U S2.

A right S−poset X is called right poflat (resp. flat) if for every left S−poset order em-
bedding f : A → B the poset morphism 1 ⊗ f : X ⊗ A → X ⊗ B is an order embedding
(resp. monomorphism). Left poflatness and left flatness are defined in a similar manner.
A pomonoid S is called (right, left) absolutely poflat if all its (left, right) U−posets are
poflat. Analogous definitions are given for (right, left) absolutely flat. It is clear that poflat
S−posets are flat.
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Let [U ;S1, S2] be a commutative pomonoid amalgam with [U ;T1, T2] being a subpomonoid
amalgam of [U ;S1, S2] and let S1 and T2 be poflat (resp. flat). Since T1 → S1 is an order
embedding and T2 is poflat (resp. flat) then the map T1⊗T2 → S1⊗T2 is an order embedding
(resp. monomorphism). Since T2 → S2 is an order embedding and S1 is poflat (resp. flat)
then the map S1 ⊗ T2 → S1 ⊗ S2 is an order embedding (resp. monomorphism). Hence the
composition T1 ⊗ T2 → S1 ⊗ S2 is an order embedding (resp. monomorphism). Therefore
we have the following

Proposition 4.3. Let [U ;S1, S2] be a commutative pomonoid amalgam with subpomonoid
amalgam [U ;T1, T2] and S1 and T2 be poflat (resp. flat). Then the map T1 ⊗ T2 → S1 ⊗ S2

is an order embedding (resp. monomorphism).

The following corollary is then clear.

Corollary 4.4. Let [U ;S1, S2] be a commutative pomonoid amalgam with subpomonoid
amalgam [U ;T1, T2]. If U is absolutely poflat (resp. flat) then the map T1 ⊗ T2 → S1 ⊗ S2

is an order embedding (resp. monomorphism).

Finally, from the definition of the pounitary, we immediately deduce the following.

Proposition 4.5. Let [U ;S1, S2] be a commutative pomonoid amalgam with subpomonoid
amalgam [U ;T1, T2] and Ti be a pounitary in Si for i ∈ {1, 2}. Then the map T1 ⊗ T2 →
S1 ⊗ S2 is an order embedding.
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