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Geographically precise identification and targeting of populations at risk of vaccine-preventable diseases
has gained renewed attention within the global health community over the last few years. District level
estimates of vaccination coverage and corresponding zero-dose prevalence constitute a potentially useful
evidence base to evaluate the performance of vaccination strategies. These estimates are also valuable for
identifying missed communities, hence enabling targeted interventions and better resource allocation.
Here, we fit Bayesian geostatistical models to map the routine coverage of the first doses of
diphtheria-tetanus-pertussis vaccine (DTP1) and measles-containing vaccine (MCV1) and corresponding
zero-dose estimates in Nigeria at 1x1 km resolution and the district level using geospatial data sets. We
also map MCV1 coverage before and after the 2019 measles vaccination campaign in the northern states
to further explore variations in routine vaccine coverage and to evaluate the effectiveness of both routine
immunization (RI) and campaigns in reaching zero-dose children. Additionally, we map the spatial dis-
tributions of reported measles cases during 2018 to 2020 and explore their relationships with MCV
zero-dose prevalence to highlight the public health implications of varying performance of vaccination
strategies across the country. Our analysis revealed strong similarities between the spatial distributions
of DTP and MCV zero dose prevalence, with districts with the highest prevalence concentrated mostly in
the northwest and the northeast, but also in other areas such as Lagos state and the Federal Capital
Territory. Although the 2019 campaign reduced MCV zero-dose prevalence substantially in the north,
pockets of vulnerabilities remained in areas that had among the highest prevalence prior to the cam-
paign. Importantly, we found strong correlations between measles case counts and MCV RI zero-dose
estimates, which provides a strong indication that measles incidence in the country is mostly affected
by RI coverage. Our analyses reveal an urgent and highly significant need to strengthen the country’s
RI program as a longer-termmeasure for disease control, whilst ensuring effective campaigns in the short
term.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Achieving high rates of vaccination coverage is vital for disease
control, elimination and eradication. Since the introduction of the
WHO Expanded Programme on Immunization (EPI) in 1974, sub-
ance of
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stantial gains in vaccination coverage have been made globally
through a combination of routine immunization (RI) and campaign
strategies. However, within the last decade, coverage levels have
stalled or regressed in many countries [1–3]. This situation is fur-
ther exacerbated by the ongoing COVID-19 pandemic, which has
caused severe disruptions to vaccination services globally, leading
to the postponement of campaigns and inadequate routine immu-
nization service delivery [4–6]. In 2020, it was estimated that 22.7
million children missed out on routine immunization – a 19.5 %
increase from 2019, with the number of children who had received
no vaccines increasing from 13.6 million in 2019 to 17.1 million in
2020 [5]. This implies that countries, districts and communities
where these un- and under-immunized populations reside con-
tinue to be at risk of vaccine-preventable diseases (VPDs).

Inequities in vaccination coverage and vulnerabilities to VPDs
most often occur because of suboptimal RI performance and/or
ineffective vaccination campaigns. To identify these vulnerable
populations, spatially detailed data are required, beyond the
large-area summaries reported from household surveys. Such data
are crucial for mapping areas that are un- or under-vaccinated via
each delivery method [7,8] and understanding which strategies to
adopt to fill gaps and boost coverage. Geospatial analyses have
now gained traction as a vital tool for creating high-resolution
and district level maps of health and demographic indicators
[1,7–11]. In the case of vaccination coverage, these maps are inte-
grated with relevant gridded population data to produce estimates
of numbers of un-vaccinated (i.e., zero-dose prevalence) and
under-vaccinated populations at various spatial scales, thus help-
ing with identifying and delineating clusters of vulnerabilities
within countries and better allocation of resources. Such spatially
detailed data also enable integration with other data sources such
as health facility catchment maps and locations of vaccination
posts, to give more complete health metrics or decision-making
information. The programmatic relevance of spatially detailed data
for immunization is well recognized by global health policy frame-
works such as the WHO Immunization Agenda 2030 [12] which
has a target of achieving a 50 % reduction in numbers of ‘‘zero-
dose” children by 2030, and Gavi Strategy 5.0 [13] which aims to
achieve equity in vaccination coverage and a 25 % reduction in
the number of zero-dose children by 2025 through reaching
missed communities. Furthermore, the distribution of zero-dose
populations, when combined with disease incidence, could present
a fuller picture to evaluate the relative performance of RI and cam-
paigns. Where disease surveillance systems have consistent report-
ing rates over time [14], decreases in both reported incidence and
zero-dose prevalence following a campaign are a more compelling
demonstration of the impact of the campaign. Also, hotspots of
susceptibility as evidenced by high zero-dose prevalence and high
incidence, are most likely indicative of poor RI performance, sub-
optimal campaigns or the failure of RI to sustain and improve upon
the gains made through campaigns, particularly in high birth rate
settings.

In 2019 and 2020, Nigeria was identified as being among the
top 3 countries with the most un- or under-vaccinated children
globally [2]. WHO and UNICEF estimates of national immunization
coverage (WUENIC) show that the coverage of basic vaccines such
as DTP3 and MCV1 has only increased slightly or stagnated in
recent years, standing at 56% and 59% respectively in 2021 [2].
Geospatial analyses of data from various surveys conducted in
the country since 2013 [1,8,10,15] have shown a persistent
north–south divide in coverage, with the northern states having
relatively low coverage levels despite concerted efforts to improve
coverage levels across the country. A recent analysis of measles
case-based surveillance data also found higher incidence rates in
the north, in addition to a high proportion of MCV zero-dose indi-
viduals (70.8%) among confirmed cases during 2008–2018 [16].
2

Several studies have identified different demand- and supply-
side factors, such as maternal access to and utilization of health
services, maternal education, religion, ethnicity, wealth, maternal
age, mobile phone usage, poor attitude of health workers and vac-
cine stockouts as being responsible for the slow rate of progress
within the country [17–19]. All of this points to an urgent need
to identify and prioritize high-risk areas for effective follow up
through appropriate routine and campaign strategies and robust
disease surveillance[14], to put the country on a path to achieving
its disease control and elimination targets.

Our subnational assessments of the relative effectiveness of RI
and campaigns have typically focused on comparing maps of
DTP3 and MCV1 coverage [7] or analyzing coverage maps of
post-campaign coverage survey (PCCS) indicators [8]. Here, we
focus on the subnational distributions of DTP and MCV zero-dose
children. We use the term ‘zero-dose’ to refer independently to
non-receipt of DTP (i.e., DTP zero-dose) and non-receipt of MCV
(i.e., MCV zero-dose) vaccines. Specifically, we examine the perfor-
mance of RI in 2017–2018 using the spatial distributions of DTP
and MCV zero-dose estimates produced using the 2018 Nigeria
Demographic and Health Survey (NDHS). We also assess the speci-
fic and combined performance of RI and the 2019 measles cam-
paign (northern states only) using MCV zero-dose estimates
produced through mapping MCV1 coverage before and after the
campaign using the 2019 PCCS. Finally, we triangulate the zero-
dose estimates with aggregate measles case-based surveillance
data during 2018 – 2020 to explore the spatial relationships
between RI and post-campaign MCV zero-dose prevalence and
measles incidence.
2. Methods

2.1. Vaccination coverage data from the 2018 NDHS and 2019 PCCS

Routine immunization coverage data for DTP1 and MCV1 were
obtained from the 2018 NDHS for children aged 12–23 months
[20]. The 2018 NDHS used a stratified, two-stage sampling design
to produce estimates of health and demographic indicators, includ-
ing vaccination coverage, at the national, regional and state levels
and for urban and rural areas. Stratification was achieved by sepa-
rating each of the 36 states and the Federal Capital Territory (FCT)
into urban and rural areas. Samples were drawn from within each
stratum in two stages: the first stage involved the selection of sur-
vey clusters (enumeration areas) from a national sampling frame
using a probability proportional to size sampling scheme, while
the second stage involved selecting households randomly from
household lists within the selected clusters. In all, the survey was
implemented in a total of 1389 clusters, with 11 of the 1400 clus-
ters selected initially dropped due to security reasons. Fieldwork
took place between August and December 2018. This was within
one year of completion of the 2017–18 national follow-up measles
vaccination campaign targeting children aged 9 to 59 months [20],
which was conducted during October - December 2017 in the
northern states and February - March 2018 in the southern states
[8]. As discussed later, there could be some misclassification of
campaign doses as RI for children without documentation of RI
vaccination hence we consider our estimate of routine MCV1 cov-
erage for children aged 12–23 months ‘‘an upper bound estimate”.

For each vaccine, we used information obtained from both
home-based records and maternal/caregiver recall. Hence, our
analysis captures crude estimates of coverage [21]. At the cluster
level, we aggregated the individual level data to produce numbers
of children surveyed, numbers vaccinated and empirical propor-
tions of children vaccinated.
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The 2019 measles campaign in Nigeria was conducted between
September and December 2019 in the 20 northern states only.
Post-campaign coverage surveys (PCCS) were implemented in each
state within two weeks of conclusion of the campaigns. However,
at the time of analysis, data were not available for Niger and Kogi
states, leaving only 18 states for the analysis. Information on
receipt of MCV1 was based on campaign cards or maternal/care-
giver recall, and data were collected for all eligible children aged
9–59 months. However, our analysis is restricted to children aged
9–35 months to exclude those that may have participated in the
previous campaign. We followed the methodology implemented
in a previous analysis and extracted data for six PCCS indicators
[8], although we report here onlyMCV coverage before the campaign
and coverage with at least one dose of MCV by the end of the
campaign.
Fig. 1. Cluster-level maps of MCV1 and DTP1 coverage (a and b, from DHS), and MCV1 cov
the campaign (c and d, from 2019 PCCS).

3

All the extracted cluster-level vaccination coverage data are dis-
played in Fig. 1, showing where lower and higher coverage levels
were observed at the cluster level for each indicator.

2.2. Geospatial covariate data, covariate selection and population data

Geospatial covariates are essential in geostatistical modelling to
explain and predict the outcome variable, although the latter ratio-
nale is paramount. As in previous work [7,8,10], we assembled a
suite of geospatial socio-economic, environmental, and physical
covariates for the analyses. These included travel time to the near-
est health facility (providing routine immunization services), pov-
erty, economic index, nightlight intensity, livestock density,
distance to conflicts and land surface temperature (see [7,8,10]).
These covariates were processed as detailed in previous work to
erage before the campaign and coverage with at least one dose of MCV by the end of
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produce 1x1 km raster data sets and cluster level data using the
geographical coordinates from each of the surveys.

Following previous work [7,8,10], covariate selection was car-
ried out to determine the best subset of covariates for modelling
each indicator. The covariate selection process involved checking
the relationships between the covariates and (the empirical logit
transform of) vaccination coverage and applying the log transfor-
mation where necessary to improve linearity; fitting of single
covariate models and ranking the covariates based on their predic-
tive ability (i.e. using predictive R2 values); checking for (multi)
collinearity and selecting between highly correlated covariates
(correlation > 0.8 or variance inflation factor > 4.0) using their
ranks; and using stepwise regression (backward elimination based
on Akaike Information Criterion (AIC)) to choose the best model/-
combination of covariates for modelling the indicator in a non-
spatial framework using binomial regression models. For the anal-
ysis using PCCS data, we additionally created a uniform set of
covariates for the modelled outcome indicators – see Utazi et al [8].

To enable the production of coverage estimates for different
administrative areas, as is required in geospatial estimation of health
and demographic indicators, we obtained population estimates for

children aged under 5 years from WorldPop (https://www.world-

pop.org) [22]. The data were also used to produce estimates of num-
bers of children under 5 years who had not received DTP1 or MCV1,
otherwise known as DTP and MCV zero-dose children.

2.3. Measles case-based surveillance data

Laboratory-supported measles surveillance has been in place in
Nigeria since 2006 [16]. Routine measles case-based surveillance
data are collected at the health facility level and then transmitted
to the district (or local government area (LGA)), state and national
levels. As recommended by WHO, suspected cases of measles are
classified as confirmed by one of: a laboratory assay (Immunoglob-
ulin M (IgM)) positive for measles, an epidemiologic linkage to a
laboratory-confirmed case, or clinical signs and symptoms meeting
the measles clinical case definition [23]. The data were obtained for
the years 2018 to 2020 and then summarized at both the district
and state levels. Relevant variables included in the data for each
suspected case were date of birth/age, sex, vaccination status/num-
ber of doses of MCV received, case address (ward, district and
state), date of onset of illness, urban/rural, final classification (lab-
oratory confirmed or laboratory-discarded, epidemiological link-
age, or clinically compatible) and outcome (survived or died).
The confirmed measles case counts (i.e., excluding discarded cases)
are displayed in Fig. 4. Other summaries of the data are included in
supplementary materials.

2.4. Geospatial model fitting, validation and prediction

To model and predict vaccination coverage at 1x1 km resolu-
tion, we fitted geostatistical models with binomial likelihoods.
For i ¼ 1; � � � ;n and a given indicator, where n is the number of sur-
vey locations, let Y sið Þ denote the number of children vaccinated at
survey location si and m sið Þ the number of children sampled at the
location. The first level of the model assumes that

Y sið ÞjpðsiÞ � Binomial m sið Þ;p sið Þð Þ; ð1Þ
where p sið Þ ð0 � p sið Þ � 1Þ is the true vaccination coverage at

location si: We model p sið Þ using the logistic regression model as

logit pðsiÞð Þ ¼ x sið ÞTbþx sið Þ þ �ðsiÞ; ð2Þ
where xðsiÞ is the vector of covariate data associated with si, b is

a vector of the corresponding regression coefficients, �ðsiÞ is an
independent and identically distributed (iid) Gaussian random
4

effect with variance, r2
� , used to model non-spatial residual varia-

tion, and xðsiÞ is a Gaussian spatial random effect used to capture
residual spatial correlation in the model. That is,
x ¼ x s1ð Þ; � � � ;xðsnÞð ÞT � Nð0;RxÞ. Rx is assumed to follow the
Matérn covariance function [24] given by
Rxðsi; sjÞ ¼ r2

2m�1C mð Þ jksi � sjk
� �mKmðjksi � sjkÞ, where k:k denotes

the Euclidean distance between cluster locations si and sj;r2 > 0
is the marginal variance of the spatial process, j is a scaling param-

eter related to the range rðr ¼
ffiffiffiffi
8m

p
j Þ – the distance at which spatial

correlation is close to 0.1, and Km is the modified Bessel function
of the second kind and order m > 0. Further, for identifiability rea-
sons, we set the smoothing parameter, m ¼ 1, see [25].

For the PCCS indicators – MCV1 coverage before the campaign
and coverage with at least one dose of MCV by the end of the cam-
paign - we adopted the conditional probability modelling frame-
work described in Utazi et al [8] to ensure that the modelled
estimates were consistent with those of other indicators. We also
note that a similar approach proposed in [26] could be used for
estimating the coverage of the DTP dose series, but we did not con-
sider this necessary here as we were only interested in the cover-
age of the first dose, DTP1.

In each case, the model described in equations (1) and (2) was
fitted in a Bayesian framework using the integrated nested Laplace
approximation – stochastic partial differential equation (INLA-
SPDE) approach (INLA-SPDE) approach [25,27]. Using the fitted
models, we obtained predictions at 1x1 km resolution. Further,
using the posterior samples of the 1x1 km predictions, we obtained
the district and state level predictions as population-weighted
averages taken over the 1x1 km grid cells falling withing each dis-
trict or state.

Methods for assessing the out-of-sample predictive perfor-
mance of the fitted model are detailed elsewhere [8–10]. Here,
we rather focus on describing the patterns in the modelled esti-
mates. All analyses were carried out in R [28] and through using
the R-INLA package [29].
3. Results

3.1. DTP1 and MCV1 coverage maps and zero-dose estimates

In Fig. 2(a), we present the DTP1 and MCV1 coverage estimates
(including documented and verbal recall evidence of vaccination)
at 1x1 km and the district and state levels to examine routine vac-
cination coverage in children aged 12–23 months in 2018. The cor-
responding uncertainty estimates are presented in supplementary
Fig. 1. The patterns in the routine coverage of both vaccines are
very similar, although MCV1 coverage estimates are generally
lower than DTP1 coverage estimates as expected, due to the drop-
outs that often occur between the two vaccine doses. There are vis-
ible spots of higher coverage in more urban areas, especially in the
southern regions (see Aheto et al [18]), but MCV1 coverage appears
more heterogenous in the south compared to DTP1 coverage. Sup-
plementary Fig. 2 shows that the dropout rates between both vac-
cines (relative to DTP1 coverage) varied substantially across the
country, with an overall median value of 22.2% and an interquartile
range of 15.7%. Areas with the highest positive dropout rates are
spread across the six regions (e.g., Taraba, Plateau, Cross River,
Akwa Ibom, Kogi and Oyo states); whereas areas with the most
negative dropout rates (i.e., MCV1 coverage was higher than
DTP1) are located mostly in the northwest, the northeast and some
coastal areas of the south-south region (Bayelsa and Delta states).
Interestingly, some of the areas with the highest positive dropout
rates were also areas where higher DTP1 coverage was estimated
(e.g., Akwa Ibom, Cross-River and Plateau states). Also, as was

https://www.worldpop.org
https://www.worldpop.org


Fig. 2. (a) Modelled estimates of crude routine DTP1 and MCV1 coverage for 2018, children aged 12–23 months, 2018 NDHS. (b) MCV coverage before the 2019 campaign and
coverage with at least one dose of MCV by the end of the 2019 campaign, children aged 9–35 months, produced using the 2019 PCCS for northern states. Corresponding
uncertainty estimates are shown in supplementary Fig. 1.
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shown in previous studies [7,8,10], there is an apparent north–
south divide in the routine coverage of both vaccines, with poorer
coverage levels more pronounced in the northwest and northeast.
5

At the district level, the lowest coverage areas (� 20%) are concen-
trated in Sokoto and Zamfara states for both vaccines. Both states
also have the lowest coverage rates for both vaccines.
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Patterns of MCV coverage before the 2019 measles campaign
(Fig. 2(b)) were similar to those for the 2018 NDHS although in
some states, e. g., Sokoto, Taraba, Yobe and Zamfara states, cover-
age was higher in the former perhaps reflecting recall bias or inclu-
sion of doses received during outbreak response activities. The
spatial distribution of MCV1 coverage by the end of the 2019 cam-
paign (coverage with at least one dose of MCV) shows marked
improvements in these northern states. However, some hetero-
geneities still exist as evidenced by the occurrence of pockets of
low coverage areas. Notably, some states with lower RI coverage
levels in 2018 (e.g., Sokoto and Zamfara) also had among the low-
est coverage after the campaign. The patterns in the uncertainties
associated with these coverage estimates (supplementary Fig. 1)
mostly reveal lower precision in areas where data were sparse.
These also show that the precision of the estimates increases sub-
stantially with decreasing spatial detail.

To enable a fuller assessment of disease risk, we present the
estimated distributions of numbers of zero-dose children at the
district level in Fig. 3 corresponding to the coverage estimates pre-
sented earlier (state level zero-dose estimates are shown in sup-
plementary Fig. 3). These figures show strong similarities
between MCV and DTP zero-dose estimates in 2018, with high-
prevalence districts concentrated mostly in the northeastern and
northwestern regions, generally mimicking the patterns observed
in the coverage maps (Fig. 2). However, there are also high-
prevalence districts in other areas such as the FCT and the south-
western states of Lagos and Ogun. Districts with the highest DTP
zero-dose prevalence (� 50;000 unvaccinated children aged under
5 years or under 5s) were in Zamfara, Kebbi and Gombe states; and
for MCV, Zamfara, Kebbi, Gombe, FCT, Bauchi, Kaduna and Yobe
states. Importantly, for both vaccines, these districts with the high-
est zero-dose prevalence do not include some of the lowest cover-
age districts identified earlier (e.g., some districts in Sokoto state),
which had low population density, and vice versa.

Fig. 3(d) and (e) reveal the extent to which the 2019 measles
vaccination campaign had been successful in reducing MCV zero-
dose prevalence that had accumulated across the northern states.
District-level MCV zero-dose estimates post-campaign are below
20, 338 children as against 76, 617 children prior to the campaign
in 2018, revealing large reductions particularly in high zero-dose
prevalence districts. However, some areas with relatively high
zero-dose prevalence (> 16;000 under 5s) remained after the cam-
paign and these are in Kano (Ugongo), Bauchi (Bauchi), Kebbi (Bir-
nin Kebbi) and FCT (Municipal Area Council). Some districts in
Bauchi (e.g., Bauchi, Darazo and Ningi) were consistently high-
prevalence districts in 2018 and before and after the campaign.
There were also a few districts where it appeared that the cam-
paign was not effective in reaching zero-dose children (Fig. 3(e)),
although these had lower zero-dose prevalence in 2018
(< 10;000 zero-dose children).
3.2. Trends in measles incidence and relationships with MCV zero-dose
estimates

In Fig. 4, we show the spatial distributions of confirmedmeasles
case counts for all age groups at the district and state levels from
2018 to 2020. Our analysis revealed a total of 7,603, 28,440 and
9,394 confirmed cases of measles in the respective years, most of
which occurred in children aged under 5 years (see supplementary
Figs. 4 and 5). The larger number of cases reported in 2019 was due
to large measles outbreaks in some districts in Borno state (Maidu-
guri, Jere and Bama) [30], many of which were either clinically
diagnosed or epidemiologically-linked (supplementary Fig. 4).
There were also spikes in case numbers in some districts in Katsina
(Katsina district) in 2018 and 2019.
6

The distribution of cases according to the number of vaccine
doses received (supplementary Fig. 6) shows that irrespective of
method of diagnosis, most of the confirmed cases occurred in
MCV zero-dose individuals, suggesting that poor vaccination cov-
erage rather than decreased vaccine efficacy would have been
responsible for these cases. For all three years, the patterns in these
maps closely resemble the spatial distribution of RI coverage in
2018 and the corresponding zero-dose estimates (Figs. 2 and 3).
Notably, there is a marked, persistent north–south divide in case
distribution over the years, with a concentration of higher case
numbers in the districts in the north. The same pattern can also
be seen in the measles incidence rates shown in supplementary
Figure 7, although there are some minor differences.

At the state level (Fig. 5), we estimated correlations of 0.55, 0.60
and 0.57 (Spearman’s correlation coefficient, excluding the outly-
ing observations) between the case counts and MCV zero-dose
estimates in 2018 (nationwide) and 2019 (northern states only) –
before and after the campaign, respectively. These show strong
relationships between measles incidence and the zero-dose esti-
mates obtained through using MCV1 RI coverage and a combina-
tion of RI and campaign coverage. In 2018, areas with a
combination of higher case counts (between 154 and 1,914 indi-
viduals) and higher zero-dose estimates (between 461,091 and
954,963 under 5s) were concentrated in the northern states of
Borno, Bauchi, Jigawa, Kano, Katsina, Kaduna, Niger and Kebbi,
and the southwestern state of Oyo. In 2019 before the campaign,
these areas were in Kano, Kaduna, Katsina, Borno and Sokoto states
(zero-dose estimate range: 461,557–1,146,982 under 5s; case
count range: 356–15,432 individuals); while after the campaign,
these were in Kano, Katsina, Sokoto and Kebbi states (zero-dose
estimate range: 116,633–230,449 under 5s). Thus, while the cam-
paign was successful in reducing the numbers of zero-dose chil-
dren in the northern states as demonstrated earlier, considerable
numbers of under 5s remained unvaccinated in some areas. We
note that the reported case count for Sokoto state was lower in
2018 even though it had a higher zero-dose estimate for the same
year.

At the district level (supplementary Figure 8), the estimated
correlations were poorer for both years (0.36 in 2018, and 0.29 (be-
fore campaign) and 0.20 (after campaign) in 2019), with most of
the cases occurring in districts where the zero-dose estimates fall
between 10,000 and 50,000 under 5s for RI coverage
and � 10,000 under 5s for campaign coverage.

In Fig. 6, we compare the spatial distribution of measles case
counts in 2020 with MCV zero-dose estimates in 2018 due to lack
of survey coverage estimates in 2020 at the time of analysis. First,
we observe that despite the measles vaccination campaign in the
northern states in 2019, the spatial distribution of the case counts
in 2020 reveals higher incidence in the north (Fig. 4) and this cor-
relates strongly with the distribution of cases in 2018 (correla-
tion = 0.61 at the state level and 0.39 at the district level),
suggesting a replay of the 2018 scenario. In particular, all the states
designated as high risk by virtue of higher zero-dose estimates
with or without higher confirmed case counts, by the end of the
campaign in 2019 (except Nasarawa state), had higher numbers
(�200) of confirmed cases in 2020. Further, we estimated correla-
tions of 0.82 and 0.42 between the case counts in 2020 and zero-
dose estimates in 2018 at the state and district levels respectively,
which points to the failure of the routine immunization system in
these areas to maintain the gains achieved via campaigns. We also
observe that almost all the northeastern and northwestern states
(except Gombe, Adamawa and Taraba) and Niger state had a com-
bination of higher case counts (between 196 and 1,591 confirmed
cases) and higher zero dose estimates. At the district level, there
are visible clusters of high-risk areas (i.e., areas with a combination



Fig. 3. District-level estimates of numbers of zero-dose children among under-5 s for (a) DTP and (b) MCV in 2018 (produced using the 2018 NDHS), and MCV in 2019 (c)
before and (d) at the end of the 2019 measles campaign (produced using the 2019 PCCS). The insets in panels (c) and (d) show the distributions of zero-dose prevalence at the
ward level. Panel (e) shows percentage change in MCV zero-dose prevalence between 2018 and after the 2019 measles campaign in the districts in the northern region.
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Fig. 4. Spatial distribution of confirmed cases of measles in Nigeria reported between 2018 and 2020 at the district (top row) and state (bottom row) levels (all ages).

C. Edson Utazi, Justice M.K. Aheto, A. Wigley et al. Vaccine xxx (xxxx) xxx
of higher case counts and higher zero-dose estimates) within the
high-risk states.
4. Discussion

Immunization Agenda 2030 [12] has a target of reducing the
number of zero-dose children substantially by reaching high and
equitable coverage levels by 2030. To interrupt measles transmis-
sion and prevent outbreaks, this means reaching at least 95% cov-
erage with both recommended doses of MCV. Our analyses
revealed that Nigeria is far from reaching these targets due to sub-
optimal RI performance and the failure of frequent campaigns to
achieve or maintain such high coverage levels, resulting in the per-
sistence of highly heterogeneous coverage levels across the coun-
try. The lower coverage in northern states is especially
concerning for measles transmission [31] because these states also
have higher birth rates [20,32], which facilitates transmission as
well as increasing the challenge of sustaining RI coverage for a gen-
erally weaker health system and infrastructure [33].

Our work demonstrates the utility of geospatial analysis for
uncovering areas with suboptimal routine immunization systems
and where campaigns have been less effective in terms of reaching
previously unvaccinated children, both of which are crucial for
designing effective strategies to reach missed communities and
high-risk areas. We found that districts where RI performance
had been significantly lower and which had among the highest
zero-dose prevalence were mostly located in the northeastern
and northwestern parts of the country, although some high RI
zero-dose prevalence districts were found in other parts of the
country which had high population densities, e.g., Lagos and Ogun
8

states. We also estimated that some of these districts (e.g., Munic-
ipal Area Council in the FCT and Bauchi in Bauchi state) had some
of the highest residual MCV zero-dose prevalence after the 2019
measles vaccination campaign, although the campaign was shown
to reduce pre-campaign MCV zero-dose prevalence substantially.
The persistence of these clusters of vulnerabilities pose significant
risk to disease control [8]. Hence, the estimation of residual zero-
dose prevalence following vaccination campaigns should be under-
taken and reported by PCCS and can contribute to the design of
follow-up activities. Unfortunately, this has been done infre-
quently to date and in countries with higher RI coverage than Nige-
ria, it can be difficult and costly to undertake PCCS with the goal of
estimating coverage among previously unreached children [34].

Our analyses further revealed that despite SIAs reducing pre-
dicted measles incidence in Nigeria [35], they have not interrupted
transmission and incidence continues to be related to routine
immunization coverage. For both non-campaign years that we
analysed – 2018 and 2020, we found strong correlations between
confirmed measles case counts and MCV zero-dose estimates. In
2019, we also observed strong correspondence between the case
counts and the zero-dose estimates, both before and after the
2019 measles campaign in the northern states. Although the SIA
substantially improved coverage levels relative to RI, only Plateau
state and very few districts achieved � 95% coverage, and 147 dis-
tricts (out of 373) had below 90% coverage. Furthermore, the PCCS
(like DHS) omitted the most insecure areas from the sampling
frame and a small number of selected clusters in the survey could
not be visited due to conflict. Areas omitted are likely to have lower
RI and SIA coverage [36,37]. Thus, it is not surprising that the cam-
paign had not been fully effective in controlling the spread of
measles, especially in the north. Gains from SIAs are shorter-



Fig. 5. Top row: Joint spatial distribution of confirmedmeasles case counts (all ages, in blue) and MCV zero-dose estimates (in red) at the state level in 2018 and 2019. Bottom
row: Plots showing the relationships between confirmed measles case counts (all ages) and MCV zero-dose estimates in 2018 and 2019 at the state level. The black lines are
simple least square fits to the data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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lived in northern than southern states, due to the higher birth rate
and lower RI coverage in the north. Recognising this, Nigeria sched-
uled SIAs in the north 2 years after the previous SIA while an SIA
was planned in 2020 in the south but postponed due to the
COVID-19 pandemic. While RI coverage is so low in the north,
however, an annual SIA in the northeast and northwestern states
could be a more effective strategy, though more costly [35]. Alter-
natively, where there is evidence that frequent SIAs reach more
previously vaccinated children, then the implementation of tar-
geted SIAs or RI interventions such as multi-antigen periodic inten-
sification of routine immunization in districts with higher zero-
dose prevalence could be an even more effective option for disease
control. Our analyses also revealed strong similarities between the
spatial distributions of MCV and DTP zero-dose estimates in 2018,
further pointing to weaker RI systems in the northern parts of the
country.

We found that the dropout rates between the routine coverage
of DTP1 and MCV1 (relative to DTP1 coverage) in the 2018 NDHS
varied substantially across the country. Some areas with the high-
est (positive) dropout rates such as Akwa Ibom, Cross-River and
Plateau states also had higher DTP1 coverage, suggesting that fac-
tors other than access to vaccination services may have been
responsible for the low uptake of MCV1 in these areas – see Aheto
et al [18]. In the northeast and northwest, where DTP1 coverage
was lowest, some areas had higher MCV1 coverage which may
reflect inadvertent classification of SIA or outbreak response cam-
paign doses as RI doses for MCV. Vaccination records were only
seen for 40% of children in the 2018 NDHS (and only 33.9% and
28.5% in northeast and northwest regions, respectively), hence reli-
ance was placed on the mother’s ability to correctly state whether
9

the child had received MCV and to distinguish between routine and
campaign doses. Importantly, others have found that opportunities
to administer MCV1 when eligible children attend health facilities
for other vaccines are more frequently missed in northern states
than southern, although missed opportunities for simultaneous
vaccination have decreased over time [38]. These findings point
to the need for regional or subnational approaches when investi-
gating/analysing the drivers of vaccination coverage in the country.
Such analyses are also likely to be beneficial for designing effective
strategies to reach zero-dose children.

Our work revealed stronger correlations between MCV zero-
dose estimates and measles case counts at the state level compared
to the district level. This may be due to data quality issues such as
diagnosis occurring outside a patient’s district of residence, non-
reporting of cases, likely variation in the accuracy of clinical diag-
nosis of measles by time and place which may have affected the
distribution of the reported case counts at the district level. Also,
the uncertainties associated with coverage estimates underlying
the zero-dose estimates are generally higher at the district level
than the state level. Hence, although the importance of spatially
detailed estimates of health and demographic indicators for health
policy and decision-making and resource allocation is well recog-
nized, there is a need for greater investments to boost the quality
of data available at smaller geographical units.

Our analyses are subject to some limitations. Our vaccination
coverage estimates are based on information obtained from vacci-
nation cards as well as via caregiver recall and are hence subject to
information/recall bias [39]. The sampling frames used for the sur-
veys analysed may have missed important hard-to-reach/
disadvantaged populations such as those living in conflict areas



Fig. 6. Relationships between confirmed measles cases in 2020 and MCV zero-dose estimates in 2018 at the state (left panels) and district (right panels) levels. In the bottom
panels, the red lines and grey coloured bands are natural splines fits and corresponding uncertainty intervals while the black lines are simple least square fits to the data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(e.g., some districts in Borno state [20]) or urban slums. This may
have led to an underestimation of the zero-dose prevalence in
some areas. The estimation of vaccination coverage and associated
zero-dose prevalence for these at-risk populations can be much
improved in future analysis through using more accurate data from
targeted surveys. Geospatial data from the 2018 NDHS and 2019
PCCS analyzed in our work were based on displaced geographical
coordinates at the cluster level. Although these displacements do
not generally result in the coordinates being positioned outside
their districts of origin, it is likely that these may have had some
effect on the coverage estimates and resulting zero-dose estimates
particularly at more granular levels where clear distinctions
between types of residence (formal urban, urban slums and rural
settlements) may be required [40]. Our analyses include compar-
isons of MCV coverage (and zero-dose estimates) between the
2018 NDHS and the 2019 PCCS. Some of the differences seen in
these comparisons may have been due to the different methodolo-
gies used in implementing the surveys. The accuracy of the zero-
10
dose estimates presented in our work depends largely on the accu-
racies of the underlying population and coverage estimates. We did
not account for the uncertainties in the population (and coverage)
estimates [41,42] when producing the zero-dose estimates. In
practice, this could be best done using a joint modelling approach
which is beyond the scope of our work. We did not obtain an offi-
cial endorsement from the Nigerian government to use WorldPop
data for producing the zero-dose estimates, although these data
have been used widely in similar contexts [22,43]. Also, by using
the distribution of zero-dose children to assess the performance
of vaccine delivery strategies, our study precludes scenarios where
certain demand-side barriers to immunization cannot be overcome
through effective and efficient immunization service delivery. Our
study did not assess the timeliness of vaccination vis-à-vis the dis-
tribution of zero-dose children, considering that these children are
right-censored in our analysis and may be vaccinated at a later
time. Nevertheless, the best framework to evaluate the effect of
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timeliness of vaccination on zero-dose prevalence is a longitudinal
study.

Furthermore, the measles case-based surveillance data analysed
here are an underestimate of measles incidence, since most cases
may not have been reported [16]. Only a small proportion
(16.4 % overall; and 22.8 %, 11.3 % and 27 % for 2018, 2019 and
2020, respectively) of the confirmed cases included in our study
were confirmed by a laboratory, signalling additional data quality
issues. Stockouts of measles laboratory test kits, loss of accredita-
tion in 2018 of the measles regional reference laboratory in Gombe,
staffing shortages and sample transportation challenges have con-
tributed to poor measles serum sample testing rates. Overall, VPD
surveillance was additionally impacted during 2020 by the COVID-
19 pandemic, particularly due to significant shifts of resources and
priorities from VPD surveillance to COVID-19 response, and lock-
downs and bans on interstate movement reducing access to health
facilities and uptake of health services, and hindering sample
transport. Also, the preponderance of missing age information in
the data hindered our ability to undertake any meaningful age-
dependent analysis of the confirmed cases. Hence, we undertook
comparisons of all-age case counts with the zero-dose estimates.
We did not investigate the role of migration (e.g., rural–urban
migration) and conflict on measles incidence. However, we note
that the spike in case counts observed in Borno state in 2019
(Fig. 5) is likely due to the disruption to vaccination services caused
by insurgency. Also, higher confirmed case counts recorded in
urban districts (e.g., Maiduguri and Katsina districts – see supple-
mentary Figure 8) may have been due to rural–urban migration,
including those fleeing to the urban areas due to high spate of
insurgency within the mostly remote rural areas, as well as other
contributory factors such as better surveillance and slum areas
[44]. Lastly, the stark differences in estimated MCV RI coverage
from the 2018 DHS and the pre-campaign data recorded in the
2019 PCCS calls for improvements in data quality, particularly
improved retention of up-to-date HBRs from which more accurate
data can be obtained.

Nigeria has committed to a target of 30% reduction in the num-
ber of zero-dose children by 2025. The estimated number of rou-
tine zero-dose children could be an indication of health system
performance and a proxy measure for broader health outcomes
of communities that have clusters of zero-dose children. Further
analyses categorizing the estimated distribution of zero-dose chil-
dren as unreached (programme delivery failure), far-to-reach (dis-
tance, easily solvable through additional mobility support), hard-
to-reach (insecurity, difficult terrain), and never reached (un-
mapped, unknown), could help with the selection and resourcing
of appropriate programmatic interventions. Nigeria is currently
developing a zero-dose and unreached strategy for routine immu-
nization which is building on the above categorization and could
become a part of its broader health and immunization strategy.
During the recent SIAs, a zero-dose reduction operation plan
(zero-drop initiative) was launched by the involvement of supple-
mentary immunization officers and supporting them to reach more
unreached settlements and zero-dose children. The challenges to
VPD surveillance due to COVID-19 pandemic described previously
also impacted RI coverage in Nigeria during 2020–22. COVID-19
vaccine hesitancy affected the uptake of routine vaccines, due to
fear that a COVID-19 vaccine would be administered instead of
or in addition to other antigens being offered during RI or SIAs.
The nationwide measles vaccination campaign that had been
planned for early 2021 was postponed due to the pandemic and
global supply shortage. Only 13 northern states implemented the
campaign during the fourth quarter of 2021, and implementation
in the remaining states was postponed to June 2022 in three states
and September-October 2022 in 21 states. Combined with the
reduction in RI coverage, the delayed campaigns resulted in a
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build-up of a large cohort of susceptible children and increased
measles outbreaks and related deaths [45]. Also, economic impacts
arising from the pandemic and other factors have led to an increase
in insecurity and insurgency in Nigeria, including areas not previ-
ously affected, further impacting vaccination coverage.

In future work, we will explore the utility of the zero-dose esti-
mates for optimizing the placement and improvement of vaccina-
tion posts both for outreach RI activities and SIAs, as well as
integration with health facility catchments to facilitate the design
and implementation of localized interventions to improve vaccina-
tion services. We will also explore alternative definitions of ‘‘zero
dose” such as non-receipt of any of the four basic vaccines (bacille
Calmette-Guérin vaccine (BCG), DTP, oral polio vaccine (OPV) and
MCV). Although our work has revealed interesting similarities
between MCV and DTP zero-dose, it will be informative to under-
stand how these compare with the spatial distribution of children
who had not received any of the basic vaccines. We will conduct
multi-level analyses similar to Aheto et al [18] and Utazi et al
[37], but at the regional level, to better understand regional differ-
ences in the major drivers of poor vaccine uptake. Beyond the
descriptive analysis using measles case-based surveillance data
presented here, we will explore different options to model and
refine the data using geospatial approaches. These data can also
be incorporated into geostatistical models of vaccination coverage
in a fusion modelling framework to improve coverage estimation.
We will also examine how the spatial distribution and frequency
of measles outbreaks (and those of other diseases such as yellow
fever, cholera and circulating vaccine-derived polio virus), as
against the case counts used in this work, relate to the distribution
of zero-dose children, and also possibly develop a framework for
predicting outbreaks. This will be useful for understanding where
health systems require strengthening. We will consider developing
an online data visualization tool to facilitate access to and utility of
the outputs of the current work and other future work by policy
makers and other researchers. Finally, we will seek an expansion
of the work presented here and other follow-on analyses to other
countries.
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