
NeuroPack: An Algorithm-Level
Python-Based Simulator for
Memristor-Empowered
Neuro-Inspired Computing
Jinqi Huang*, Spyros Stathopoulos, Alexantrou Serb and Themis Prodromakis

Centre for Electronics Frontiers, Electronics and Computer Science, University of Southampton, Southampton, United Kingdom

Emerging two-terminal nanoscale memory devices, known as memristors, have
demonstrated great potential for implementing energy-efficient neuro-inspired
computing architectures over the past decade. As a result, a wide range of
technologies have been developed that, in turn, are described via distinct empirical
models. This diversity of technologies requires the establishment of versatile tools that
can enable designers to translate memristors’ attributes in novel neuro-inspired
topologies. In this study, we present NeuroPack, a modular, algorithm-level Python-
based simulation platform that can support studies of memristor neuro-inspired
architectures for performing online learning or offline classification. The NeuroPack
environment is designed with versatility being central, allowing the user to choose from
a variety of neuron models, learning rules, and memristor models. Its hierarchical structure
empowers NeuroPack to predict any memristor state changes and the corresponding
neural network behavior across a variety of design decisions and user parameter options.
The use of NeuroPack is demonstrated herein via an application example of performing
handwritten digit classification with the MNIST dataset and an existing empirical model for
metal-oxide memristors.

Keywords: memristor, neuro-inspired computing, neuromorphic computing, neural networks, online learning,
offline classification

1 INTRODUCTION

Over the last decade, neuro-inspired computing (NIC) has experienced an immense growth,
manifesting itself in a range of advances across theory, hardware, and infrastructure. Theoretical
NIC has proposed a very wide range of artificial neural network (ANN) configurations, such as
convolutional neural networks (LeCun et al., 1999) and LSTMs (Hochreiter and Schmidhuber,
1997), that may operate at various levels of weight and signal quantization (Dundar and Rose, 1995)
and spanning across both spiking (Wu and Feng, 2018) and non-spiking (Sengupta et al., 2019)
approaches. Evidently, this design process comprises multiple decision points that overall renders a
very substantial and complex design space.

Simultaneously, research on novel hardware technologies has developed along multiple strands
including fully digital architectures (Painkras et al., 2013; Akopyan et al., 2015; Davies et al., 2018),
supra-threshold (Schmitt et al., 2017), and sub-threshold (Benjamin et al., 2014) analog
architectures, with some more recent contenders (Burr et al., 2016) utilizing post-CMOS
electronic components called “memristors” (Chua, 1971). This latter category is the focus of this

Edited by:
M. P. Anantram,

University of Washington Tacoma,
United States

Reviewed by:
Jason Eshraghian,

University of Michigan, United States
Robert A Nawrocki,

Purdue University, United States
Yi Yang,

Purdue University, United States, in
collaboration with reviewer RN

*Correspondence:
Jinqi Huang

J.Huang@soton.ac.uk

Specialty section:
This article was submitted to

Nanodevices,
a section of the journal

Frontiers in Nanotechnology

Received: 10 January 2022
Accepted: 03 March 2022
Published: 20 April 2022

Citation:
Huang J, Stathopoulos S, Serb A and
Prodromakis T (2022) NeuroPack: An

Algorithm-Level Python-Based
Simulator for Memristor-Empowered

Neuro-Inspired Computing.
Front. Nanotechnol. 4:851856.

doi: 10.3389/fnano.2022.851856

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518561

TECHNOLOGY AND CODE
published: 20 April 2022

doi: 10.3389/fnano.2022.851856

http://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2022.851856&domain=pdf&date_stamp=2022-04-20
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full
http://creativecommons.org/licenses/by/4.0/
mailto:J.Huang@soton.ac.uk
https://doi.org/10.3389/fnano.2022.851856
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2022.851856

work. Fundamentally, memristive devices are electrically tuneable
(non-linear) resistors which have shown great promise in
efficiently implementing the most numerous components
found in neural networks: the synapses and mapping of their
weights. Memristors feature the potential for extreme
downscaling (Khiat et al., 2016), back-end-of-line (BEOL)
integrability (Xia et al., 2009), sub-ns switching capability
(Choi et al., 2016), and very low switching energy (Goux et al.,
2012). Multiple families of memristive devices have been
developed exploiting different electrochemical effects ranging
from atomic-level effects in metal-oxides (Prodromakis et al.,
2010) and atomic switches (Aono and Hasegawa, 2010) to bulk
crystallisation/amorphisation effects in phase-change memory
devices (Bedeschi et al., 2009) and magneto-resistive effects in
spin-transfer torque (STT) devices (Vincent et al., 2015), to name
a few. Each of these families features its own idiosyncrasies in
terms of electrical behavior and is correspondingly described via
distinct empirical models.

The broad interest in employing memristors within neuro-
inspired hardware mainly stems from their multi-bit storage
(Stathopoulos et al., 2017) capability and their simple
architecture that can be tessellated in large arrays (Sivan et al.,
2019). Those excellent features make memristors good candidates
for multiply–accumulate operations (Serb et al., 2017) required in
in-memory computing (IMC) applications. Moreover, the
intrinsic properties of memristors are similar to those of
biological synapses (Serrano-Gotarredona et al., 2013).
Inspired by this fact, designs such as Serb et al. (2016) and
Covi et al. (2016) successfully applied memristors as synapses
in online learning with spike-timing-dependent plasticity
(Markram et al., 1997), which is a learning rule inspired from
biological NNs. Memristors have also been employed as
components for NIC from offline classification (Yao et al.,
2020) to online learning (Payvand et al., 2020). Along these
lines, software-based simulation platforms designed for
memristor-based neuomorphic systems become significant for
fast validation of design ideas and predicting device behavior.

Current simulators (e.g., MNSIM (Xia et al., 2018) and
NeuroSim (Chen et al., 2018)) focus more on circuit-level
designs, serving as tools either to simulate the behavior of
different hardware modules, or to estimate the performance of
memristor-based neuromorphic hardware in integrated circuit
designs. Sitting at a higher level of abstraction would be an
“algorithm-level device-model-in-the-loop” simulator (or
“algo-simulator” for short) designed to test functionally
defined (as opposed to explicitly designed) circuits with
memristive device models at algorithm level, for example,
performing specific online or offline learning tasks with
memristors as synapses in spike-based NNs. Such tools would
allow fast verification of design concepts before serious hardware
design effort is committed, in essence answering the question: Is
my design likely to function given the knowledge on my
memristive devices, assuming the rest of the circuit functions
flawlessly? If yes, work can proceed to the next stage.

In this study, we present NeuroPack: a simulator for
memristor-based neuro-inspired computing at algorithm level.
NeuroPack is a complete, hierarchical framework for simulating

spiking-based neural networks, supporting various neuron
models, learning rules, memristor models, memristor devices,
neural networks, and different applications. Written in Python, it
can be easily extended and customized by users, as will be shown.
NeuroPack also integrates an empirical memristor model
proposed by Messaris Y. et al. (2017). Between processing
algorithms and setting and monitoring memristor states, there
is the significant step of applying a pulse of specific voltage and
duration to trigger a memristor state change corresponding to
some desired weight change calculated from learning rules.
NeuroPack integrates a module to convert desired weight
changes to estimated stimulation pulse parameters for bridging
this gap. In addition, NeuroPack is also able to connect with
commercially available instruments such as ArC 1 (Berdan et al.,
2015) to use parameters extracted from real devices. In terms of
applications, we use NeuroPack to demonstrate image
classification on MNIST dataset in our ‘Results’ section. We
also give result analysis for systems with different R tolerance,
a parameter used in weight updating, and two biasing methods as
examples to showcase that NeuroPack assists users to investigate
how key design, device, and architectural factors affect
memristor-based neuromorphic computing systems. Finally,
NeuroPack includes a built-in analysis tool with a user-
friendly graphic user interface (GUI) for visualizing and
processing classification results. The main contributions of this
work include:

1. Developing an algo-simulator for memristor-powered neuro-
inspired computing with selectable neuron and device models,
as well as learning rules

2. Modeling memristor state changes in neuro-inspired
computing tasks given user-defined memristor parameters

3. Converting expected weight changes prescribed by learning
rules into parameters of bias pulses used for triggering
memristor state changes in weight updating

The rest of the article is organized as follows: In Section 2, we
compared NeuroPack with related work. Section 3 introduces the
architecture of NeuroPack with core parts and the workflow.
Section 4 demonstrates an example application of handwritten
digit recognition inMNIST dataset performed in NeuroPack, and
Section 5 summarizes the article.

2 RELATED WORK

In this section, we compare NeuroPack with related neural
network simulators with or without memristor models. Results
are summarized inTable 1. We can broadly group these tools into
three categories: 1) general algorithm-level SNN simulators, 2)
hardware performance prediction (circuit level), and 3) more
bespoke tools.

First group tools focus on simulating spiking neural networks.
Brian (Goodman and Brette, 2008) and snnTorch (Eshraghian
et al., 2021) are such simulators. Brian targets the rapid
prototyping of spiking neural network connectivity
architectures, uses single-compartment neurons, and operates

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518562

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

fully in Python. However, it does not integrate learning rules.
snnTorch is designed to extend Pytorch, a mature tensor-based
deep learning framework, to SNNs. It provides functions for
backpropagation with surrogate gradient, spike generation, data
conversion, and data visualization. It also supports CUDA
implementation (i.e., the ability to run the model on NVidia’s
“CUDA cores”), although it is not designed to provide
information on hardware efficiency per se. To our knowledge,
no such tool exists for memristor-based designs. The closest
equivalent is memTorch (Lammie et al., 2020), which
effectively extends Pytorch by introducing models of
memristive devices, but does not include SNN support; it
covers exclusively ANNs. It supports the “linear memristor”
and VTEAM memristor models (Kvatinsky et al., 2015), and
estimates non-ideal variation by generating random numbers
given a predefined distribution. It is open source, and supports
CUDA running. memTorch focuses on inference only, and does
not include learning rule support.

Second group tools seek to predict the hardware performance
of memristor-based microchip designs before they are fully
developed and laid out. These have been progressively refined
to take into account more and more parameters from basic ones
such as technology node and array size to increasingly detailed
ones such as line resistances. NeuroSim (Chen et al., 2018) and
MNSIM (Xia et al., 2018) are such tools for parametrized designs
of memristor-based neuromorphic integrated circuits. They
receive parameters such as crossbar array size, memristive
device ON and OFF resistances, technological node, and
choice of read-out circuit module, and produce a prediction of
layout area, dynamic power dissipation, latency, leakage power,
and other such performance indicators. NeuroSim supports not
only emerging non-volatile devices such as memristors but also
mainstream memory devices. Similarly, MNSIM operates on the
basis of a hierarchical, memristor-based neuromorphic
computing system structure. Both NeuroSim and MNSIM
allow simulation for both inference and training. Finally,
TxSim (Roy et al., 2020) represents a further refinement over
that mentioned above and evaluates training on memristor
crossbars with DACs, memristor crossbars, and ADC non-
linearity taken into consideration.

In the third group, we find work such as Demirag et al. (2021),
which reported an online training task for spiking recurrent
neural networks with phase-change memory models using the
e-prop learning rule (Bellec et al., 2020). It developed an
algorithm-level, fully Python-based, open-source simulator to

perform online training. However, it is a more architecture-
specific design focusing on spiking recurrent neural networks
using the e-prop learning rule only.

Neuropack seeks to cover the area of general-purpose
simulation sitting at algorithm level for memristor-based
SNNs. Neuropack exhibits an unconventional combination of
features: 1) it is oriented toward SNNs, 2) supports both inference
and training operations, 3) is designed for extreme flexibility
when it comes to neurons, memristive devices, and plasticity
models, and 4) features an intimate connection to hardware by
directly interfacing a memristive device characterization tool that
can extract reasonably accurate models of physical devices.

3 METHODS

3.1 Design Overview
NeuroPack is designed for predicting the outcomes of online
learning or offline classification tasks under selectable neuron,
plasticity and memristive device models, as well as for triggering
and monitoring memristor state changes. To achieve those two
tasks, NeuroPack’s workflow (see Figure 1) is divided into five
parts: input file handling, virtual memristor array, neuron core,
plasticity core, and analysis tool.

For input data handling, there are three input files that need to
be generated from users: configuration file, connectivity matrix
file, and stimuli file. The configuration file contains the main
parameters for building up NNs (e.g., network size, NN depth,
number of neurons for each layer, etc.), setting up neuron models
(e.g., leakage, noise scale, etc.), and initializing memristor devices
(e.g., up and bottom boundaries for memristor resistance). The
connectivity matrix file is used to define neuron connectivity and
to map synapses to virtual memristors. The stimuli file stores both
input signals and output labels. When loaded in the NeuroPack
main panel, input signals and output labels are split by checking if
the neuron is an output neuron using the information provided
by the configuration file. Note: NeuroPack is designed to receive
spike trains as an input. The specific encoding from raw (e.g.,
sensor) input to spikes should be performed independently before
feeding the input to the simulator. All input files are loaded via
the NeuroPack main panel. For more details on loading input
files, please see Supplementary Material.

We now walk through the procedure for carrying out a
classification task in a spiking network. First, the input signals
to the neuron model are converted to spikes and saved in the

TABLE 1 | Comparison of NeuroPack with other related work (Lammie et al., 2022).

Simulator Language Training SNN support Open source Design level

Brian (Goodman and Brette, 2008) Python — ✓ ✓ Algo level
snnTorch (Eshraghian et al.,2021) C++, Python ✓ ✓ ✓ Algo level
NeuroSim (Chen et al.,2018) C++, Python ✓ — ✓ Circuit level
MNSIM (Xia et al.,2018) Not specified ✓ — ✓ Circuit level
memTorch (Lammie et al.,2020) C++, Python — — ✓ Algo level
TxSim (Roy et al.,2020) Python ✓ — — Algo level
(Demirag et al.,2021) Python ✓ ✓ ✓ Algo level
NeuroPack Python ✓ ✓ ✓ Algo level

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518563

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

stimuli file. Training and test datasets are loaded separately. Since
NeuroPack uses a framework of consecutive, non-overlapping
abstract time intervals, at each time step, an input neuron can
either be spiking 1) or silent (0) lasting for exactly one time step.
Next, the neuron core reads out the resistive states (RSs) from a
virtual memristor array, and calculates internal variables, such as
membrane voltages, according to the selected neuron model. The
new fire states are then calculated in two steps: first, considering
whether neurons are supposed to fire by checking if the
membrane voltages surpass the threshold, and second, adding
network-level constraints (e.g., winner-take-all networks). When
the current input stimuli belong to a training dataset, inference
results are sent to the plasticity core to trigger weight update as
per selected learning rule. When the test dataset is processed,
plasticity updates are skipped.

Weight updates happen during the plasticity phase. For STDP,
long-term potentiation (LTP) or long-term depression (LTD)
“events” are directly applied to memristor devices based on a
calculation taking nothing into account except for spike-timing
information. For other learning rules, other types of information
may be necessary. These can be made available to the system
configuration file. Importantly, there are two main conceptual
ways of specifying plasticity events. The simpler way is to create a
function that maps plasticity-relevant variables directly to pulsing
parameters. Thereafter, the physics of the memristor
(correspondingly the response of the memristor model) will
determine the actual resistive state change, which in turn will
be reflected into a weight change via a resistance-to-weight
mapping function. The more complex route involves mapping
plasticity-relevant variable configurations to a requested weight
change, and then searching the device model (a model is

necessary for this approach) for a solution, predicting that
some set of pulse parameters will result in the required
change. The same process will be repeated for the given
number of samples. Inference results as well as internal
variables and parameters, including membrane voltages, fire
history, and weights, can be sent to the built-in analysis tool
for further visualization and analysis.

3.2 Neuron Models and Learning Rules
Neuron models and learning rules are placed in “neuron core”
and “plasticity core”, respectively, in Figure 1. For some learning
rules, such as backpropagation which requires calculation of error
gradients, the equations depend on the neuron model. Therefore,
neuron models must be treated as first-class objects (in the
“programming language” context of the term). However, a
simpler solution implemented in this tool is to ensure that
each learning rule is paired with one neuron core and placed
together in the same “core” document because of the hefty
interdependences between neuron and plasticity rule models.
NeuroPack provides four example core files: leaky-integrate-
and-fire neuron (LIF) (Abbott, 1999) with STDP, leaky-
integrate-and-fire neuron with backpropagation (BP)
(Rumelhart et al., 1986), Tempotron (Gütig and Sompolinsky,
2006), Izhikevich neuron (Izhikevich, 2003), and direct random
target projection (DRTP) (Frenkel et al., 2021). Other neuron and
plasticity rules can be customized according to users’ needs by
simply using existing example cores as standard templates and
introducing user-defined cores. In this section, we provide one
specific example, where we use a LIF neuron model and BP to
implement a fully connected multi-layer spiking neural network
with winner-take-all functionality (Oster et al., 2009).

FIGURE 1 | NeuroPack workflow. The system reads three configuration files: connectivity matrix, (neural) stimuli, and config. The memristor model is embedded
within the virtual memristor array, which initializes a number of memristor devices according to instructions in the configuration and connectivity matrix files. Neuron
models and learning rules are placed in the core file. In “updating fire history” stage, there are three separate steps: calculating fire states assuming neurons fire ‘freely’;
adding network-level constraints; and updating the fire history matrix. “Calculating ΔW” is supported by most learning rules except STDP. By replacing the core file,
users can apply different neuron models and learning rules.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518564

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

3.2.1 Leaky-Integrate-and-Fire Neuron and
Backpropagation
Leaky-integrate-and-fire (LIF) is a simple and relatively
computationally friendly neuron model. Most neuromorphic
accelerators, with (Guo et al. (2019)) or without memristors
(Merolla et al. (2011); Yin et al. (2017a)), use LIF neurons. LIF
has been implemented in NeuroPack using the following
equations adapted from the differential form (Gerstner et al.,
2014) by assuming discretised time steps:

Vt � ∑Wxt + αVt−1 1 − yt−1()
yt � h Vt − Vth() , (1)

where Vt represents membrane voltage at time t,W is the weight,
xt is incoming spike to the neuron (considered 1 or 0), α ∈ [0, 1] is
a leakage term, yt is the output spike, h(x) is the step function, and
Vth is the neuron threshold. The equations describe that the
neuron membrane voltage at any time step is determined by two
parts: the weighted sum of incoming spikes at this time step and
the membrane voltage at the last time step. If the membrane
voltage surpasses the threshold, a spike is generated and the
membrane voltage is reset. The cost function E at time step t is
then given by

E t() � 1
2N

∑N
i�0

yi,t − ŷi,t()2, (2)

where N is the number of output neurons, i is the output neuron
index, and ŷi,t is the correct firing state of output neuron i at time
step t. Finally, weight changes are given by

ΔWk � −ηδk,txT
k,t

δk,t �
1
N

yk,t − ŷt() ⊙ h′ Vk,t − Vth() if k � K

WT
k+1,tδk+1,t() ⊙ h′ Vk,t − Vth() otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
, (3)

where η is the learning rate, k is the layer index, and K is the
number of layers. Wk gives the weight matrix between layer k− 1
and k. ⊙ means element-wise multiplication. δ gives the error
backpropagated from output neurons. Notably, gradient descent
on SNNs is problematic because the step function h (Vt − Vth) is
discontinuous. The common solution to address this issue is to
use surrogate gradient descent (O’Connor et al., 2013) with
straight through estimators (STEs) (Hinton, 2012; Bengio
et al., 2013). In this work, we use a surrogate derivative
proposed by Yin et al. (2017b). For the full derivation with the
surrogate derivative, please refer to the supplementary material.
We note that the only potentially problematic variable is ŷi,t,
which is provided in stimuli file; everything else is accessible
directly to NeuroPack.

3.2.2 Adding Winner-Take-All Functionality
We now introduce winner-take-all (WTA) functionality,
which constrains the output layer to have at most one firing
neuron at each time step. This is performed by adding one
softmax layer and making the neuron that has the largest
softmax result fire:

St � softmax Vt ⊙ yt(). (4)
The cost function correspondingly needs to be adjusted by

taking a cross-entropy form:

E � −∑N
i�0

ŷi,t ln Si,t() � −ln Sj,t(), (5)

where j is the index of the output neuron that should fire. Based
on new cost function, weight changes are calculated as

ΔWk � −ηδk,txT
k,t

δk,t � St − ŷt() ⊙ yt + Vt ⊙ h′ Vk,t − Vth()() if k � K
WT

k+1,tδk+1,t() ⊙ h′ Vk,t − Vth() otherwise
{ .

(6)
Before application of WTA, all variables are accounted for; the

freshly introduced softmax can be computed entirely within the
same core file by simply adding network-level constraints. For the
full derivation, please refer to the supplementary material.

In summary, to configure a multi-layer spiking neural network
with WTA using LIF neurons with BP in NeuroPack, parameters
including learning rate, noise scale, threshold, and leakage are
loaded from the configuration file. Input spikes encoded from
stimuli files are fed to the “neuron core” in the core file. The
“neuron core” reads the memristor states from the device array,
calculates membrane voltages, and updates fire history during the
inference phase. If training is enabled, inference results, ground
truth information as well as internal variables are loaded into the
“plasticity core”, which then adjusts the memristive weights
according to calculated weight changes, precisely as
summarized in Figure 1.

3.3 Memristor Model
When using virtual memristive devices, as is the case in Figure 1,
a memristive model has to be used for predicting memristor RS as
a function of read-out voltage and RS changes in response to
plasticity events. Here, we use an empirical memristor model
proposed by Messaris Y. et al. (2017), but other user-defined
models are also compatible with NeuroPack. With different
values of parameters, this model has shown flexibility to
model large ranges of memristor devices. The model expresses
RS switching rate (dRdt) as a function of initial RS and biasing
voltage. The switching rate equation is reproduced here for
convenience:

dR

dt
� m R, v()

�
Ap −1 + e

|v|
tp() rp v() − R()2 if v> 0, R< rp v()

An −1 + e
|v|
tn() R − rn v()()2 if v≤ 0, R≥ rn v()

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (7)

whereAn andAp are scaling factors. The (e
|v|
tp,n − 1) termmarks the

main, exponential dependency of the switching rate on bias
voltage with tn, tp as fitting parameters extracted during
modeling. Next, the last term encapsulates the dependence of
the switching rate on the current resistive state with the aid of
fitting parameters a0p, a1p, a0n, and a1n. The main effect here is

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518565

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

that the closer the RS is to the upper (lower) limit, the harder it is
to continue pushing it further up (down), implementing “RS
saturation”. Finally, rp,n(v) is a simple, first order polynomial
helper function that helps capture the exact nature of the
switching rate’s dependency on current RS:

r v() � rp v() � a0p + a1pv if v> 0
rn v() � a0n + a1nv if v≤ 0{ . (8)

While models may take different forms (e.g., charge-flux models
(Shin et al., 2010)), the fundamental condition that is observed is that
the device model is always fed a series of time-wise discretised
voltages, and then must be able to calculate current and change in
resistive state.Models that by default take current inputs are presently
not supported. dt is treated as a predefined, fixed parameter and
remains constant throughout the simulation in the current
implementation. NeuroPack organizes memristor model instances
in a virtual array with user-defined parameters as inputs by using a
class ParametricDevice(*args) to create a device object and methods
initialise(R) and step_dt(V, dt) in the same class to set the current
resistance, and send a pulse with a magnitude of V and a pulse width
of dt to the memristor device correspondingly. “Virtual memristor
array” also provides methods, such as read (w,b) and pulse (w, b, v,
pw), to read the RS of the device at a given wordline w and bitline b
address within the virtual array and apply a pulse withmagnitude of v
and pulse width pw to the device at said address correspondingly.
When we apply a ‘write’ operation, the pulse (w, b, v, pw)method is
called. This takes pw and slices it into quanta of duration dt, and then
applies the resulting group of ‘sub-pulses’ in succession. dt is a user-
defined parameter stored in the configuration file. For a ‘read’
operation, we open an option for users to decide whether to
consider the effect read-out voltages bring on memristor RSs,
though it is ignored as default to save simulation time. It is these
functions that neuron models and learning rules in the core files use
to access memristor RS and trigger RS change. Using model
parameter sets from different types of devices (different stacks or
even devices with different underlying electrochemical mechanisms),
as well as varying the parameters of the model in an exploratory
fashion, are great tools to gain an understanding of how different
memristive devices can influence the outcome of basic machine
learning algorithms.

3.4 Weight Mapping and Updating
Most memristor-based neuromorphic designs (Hu et al., 2018); Li
et al., 2018) store weights as memristor conductance and apply
incoming inputs as voltages across memristors, so that the
multiplication results can be easily attained by measuring the
current according to Ohm’s law. Therefore, weights are mapped
linearly to memristor conductance by default in NeuroPack, but
users are allowed to define other mapping methods if needed.
However, memristors being non-linear devices, obtaining well-
controlled weight changes is challenging because the resistive
state after application of a triggering pulse depends both on the
current resistance state and biasing parameters (typ. pulse voltage
and duration). To deal with this issue, NeuroPack includes a
module for calculating biasing parameters, which is expected to
produce the desired weight changes. In this module, inputs are

memristor model parameters for initializing a memristor device,
current state, target state, dt, and a list of tuples, each of which
contains magnitude and pulse width to represent a pulse.

Inside the module, a ParametericDevice object is created by
passing memristor model parameters. Resulting resistance for
each set of pulse parameters is calculated by calling step_dt (V,
dt) method. After all resulting resistance values are attained,
distance to the resistance expected to be written to memristors is
calculated, and the set of parameters that lead to the shortest
distance will be selected. The pseudo code of this module has been
included in the supplementary material.

The weight update scheme using the pulse parameter selection
module is as follows: to begin with, user-defined R-tolerance,
which is defined as the maximum Rnew−Rexpected

Rexpected
that NeuroPack

assumes the device state has converged, and maximum updating
steps are loaded in Neuropack. After calculating the target
resistance for a device, the actual resistance is read, and the
resulting value is used as the initial resistance in the pulse
parameter selection module. After attaining the set of
parameters that will lead to the closest resistance, a pulse is
sent and the new resistance is read. This predict-write-verify
process is repeated until the calculated Rnew−Rexpected

Rexpected
is smaller than

the R-tolerance or the maximum step number is reached.

3.5 Customization, Usage Scenarios, and
Interface
With Python as programming language, NeuroPack can be
flexibly customized at both algorithm level and device level,
and is able to encourage community-led engagement in the
further development of this tool. At algorithm level,
NeuroPack can apply user-defined neuron models and
learning rules. As it is shown in Figure 1, neuron core and
plasticity core are placed in the same core file. In NeuroPack, there
are four example core files, which will be explained in detail in the
next section. By writing and selecting user-defined core files, users
can apply any customized neuron models and plasticity rules. At
the device level, users can easily set and change memristor
parameters to describe different device characteristics.

There are two main usage scenarios for NeuroPack. One is as a
supporting tool to explore how different parameter values and
settings affect classification performance in NIC tasks
(Figure 2A). In this scenario, users can load parameters in the
configuration file with different values to monitor how memristor
devices behave differently, or to investigate how classification
accuracy or error rate is affected. Another usage scenario is to
use NeuroPack to test and validate NN algorithms, including neuron
models and learning rules (Figure 2B). In this scenario, a user-
defined core file or an example template is loaded to perform NN
simulations. Users can then quickly test the algorithm and validate
the idea by visualizing and displaying memristor device state and
other NN key variables (such as membrane voltage).

The visualization and analysis tool in NeuroPack provides a
user-friendly GUI to display inference results. This tool is
separated from the main panel of NeuroPack. When executing
a classification task, NeuroPack saves variables for every sample
including membrane voltages, input stimuli, fire history, output

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518566

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

errors, and weights as measured from the memristors in a Numpy
(.npz) file. Array-related variables such as weights are displayed in
a color map, and neuron-related variables, for example,
membrane voltages and fire history, are visualized in curves to
show the changing tendencies.

4 RESULTS

We use an MNIST handwritten digit recognition task as an
example application to validate NeuroPack. Original images
with 28 × 28 pixels from the MNIST dataset have been

FIGURE 2 | Usage scenarios for NeuroPack. Pink icons show the argeted part of design for exploration in different scenarios.

FIGURE 3 | Image recognition task with TiOxmemristor-based neural network simulation in NeuroPack. (A)Binary handwritten digits fromMNIST dataset cropped
to 22 × 22. Dark blue and yellow represent weights 0 and 1, respectively. (B)–(D) Conductance sets before training (B), after 2000 samples (C), and after 10,000
samples (D). Conductance spans from 86.9 uS to 0.442 mS, indicating final memristor RSs ranging from around 2.26–11.5 kohms (E) Concept diagram of spiking
neural network used in this image recognition task. In practice, the network is fully connected. 22 × 22 -pixel images are unrolled to 484-bit input sending to 484
input neurons correspondingly as input spikes. In this task, a two-layer network with 484 input neurons and 10 output neurons is applied. (F) Accuracy curves over the
training process for both memristor version and non-memristor version. We calculate and plot every 100 samples for clarity. Provided 2000 images from a separated test
set, the memristor version and non-memristor version achieved an accuracy of 82.00 and 83.55%, respectively.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518567

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

cropped to 22 × 22 and binarised (see input images for 10 digits in
Figure 3A). Background pixels and digit pixels are represented as
0 and 1, respectively. A single image is unrolled to a 484-
dimensional vector with 0 and 1 only to be sent to input
neurons in parallel. The spike encoding scheme sends a spike
when the input bit is 1, and no spike for 0. The neural network
used in this task is a 484-input 10-output two-layer feedforward
winner-take-all spiking neural network with leaky-integrate-and-fire
neuron model and gradient descent learning rule (see Figure 3E for
neural network architecture for this task). To map all 484 × 10
synapses, a 100 × 100 array of memristors is used. The network was
trained using 10,000 samples, and to evaluate the training effect
quickly, we used a balanced 2000 subset from MNIST’s full 10,000
test image set. Please see supplementary section 6 for more details. In
simulation, we use a “sample index”-based x-axis for performing an
inference as opposed to having a real-time step.We acknowledge that
this will have an impact in scenarios where the memristive devices
used have volatile characteristics (and so real-time dynamics come
into play), but due to the difficulties in controlling timing via a
non–real-time operating system, adding this functionality currently
remains a planned upgrade. Parameters used in NeuroPack for
MNIST handwritten digit classification task can be found in
Table 2. Memristor parameters listed in the table are based on the
extractionmethod fromMessaris I. et al. (2017) and devices presented
in the work of Stathopoulos et al. (2017), given voltage range from 0.9
to 1.2 V for positive bias and from −0.9 V to −1.2 V for negative bias
with 11 kΩ as initialized resistance. Therefore, pulse options used to

update memristors are all within those ranges. The model yielded an
estimated memristor operating range between 2.23 and 12.8 kΩ given
a bias voltage of ±1.2V and 12.5–18.9 kΩ given a bias voltage of
±0.9 V. The resulting conductance caused by the bias voltages of
±0.9 V- ± 1.2 V is 5.3 × 10−5−4.48 × 10−4 S. To make sure the weights
can bemapped to range (0, 1), the linearmapping betweenmemristor
conductance and weights is given by the equation below:

W � 2.53 × 103 × G − 0.1337.

Before training, memristor RSs are initialized to 11 kΩ with a
maximum variation of ±500Ω. Memristor initial RSs are mapped to
small weights close to the bottom boundary of the operating range,
given conductance as the linear mapping of synaptic weights.
Conductance maps before training, after training 2000 samples,
and after training 10,000 samples can be found in Figures 3B,C,E.
During training, conductance associated with digit pixels and labeled
output neurons will be increased gradually, while other conductances
stay small; therefore, targeted digits show up in the conductance sets
along the training process. The weight sets show the same tendency as
the mapping is linear. Figure 3F shows the accuracy evolution curve
plotted for every 100 samples. 2000 images from a separated test set
were fed to the network after training, and 1,640 out of 2000 got
classified correctly, giving a general inference accuracy of 82.00%. The
baseline given by the version storing weights directly without using
memristor models achieved a test accuracy of 83.55%, which indicates
that the accuracy bottleneck is not the memristor model. Further
exploration regarding improving the accuracy can be found in
supplementary section 7.

We now use NeuroPack to illustrate how the intimate
device and programming protocol-related issue of selecting
an appropriate R-tolerance affects recognition accuracy.
Figures 4A,B show the training accuracy curves and test set
accuracy results for different R-tolerance values. When
R-tolerance is small (within 1%), the accuracy is not
affected significantly. With a larger R-tolerance, training
accuracy increases initially, but then starts to drop. This is
also reflected in the corresponding test set accuracy. To
investigate the causes, we look into the resistance changes
in both stimulated and non-stimulated synapses with different
R-tolerance values, as displayed in Figure 4C. The red line
shows the baseline virtual resistance values calculated
according to the weight mapping scheme for a stimulated
synapse (specifically the one between input neuron 250 and
output neuron 6) as yielded by a non-memristor, software
synapse. The baseline shows a gradual decrease tendency
throughout the whole training using 10,000 samples. In
contrast, resistance update with different R-tolerance values
cuts off increasingly early as R-tolerance increases: for 0.1, 1, 2,
and 3%, saturation occurs roughly after training ~ 9,000, 7,000,
1,000, and 100 samples, respectively. Intuitively speaking, if we
use a smooth, continuous curve to fit the baseline trace, we find
that its gradient progressively decreases. This can be explained
by the decreasing gradient of the cost function during the
training process. This indicates that the required resistance
changes between successive time steps reduce as training
continues. Meanwhile, R-tolerance is defined as Rnew−Rexpected

Rexpected

TABLE 2 | Parameters used in NeuroPack for the MNIST handwritten digit
classification task.

Global settings

Array size 100 × 100
Array type With selectors
Read noise 0.1%

Neuron model —

Threshold 25.16 or 24.16 (for biasing method comparison only)
Leakage −0.3

Learning rule —

Learning rate 3.5 × 10–6

Noise scale 10–6

Memristor model —

Ap 0.21389
An −0.81302
tp 1.6591
tn 1.5148
a0p 37,087
a0n 43,430
a1p −20193
a1n 34,333

Weight updating —

Voltage ±0.9, ±1.1, ±1.2, ±1.2, ±1.2, ±1.2
Pulse width 10–6, 10–6, 10–6, 5 × 10–6, 10–5, 5 × 10–5

R tolerance 0.1%
Maximum update steps 5

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518568

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

in NeuroPack; therefore, it can be regarded as the cut-off ratio
of memristor RS change. In other words, when resistance
change between two time steps is smaller than the
R-tolerance, the resistance update stops. Therefore, the
larger the R-tolerance, the earlier the memristor RSs stop
updating. Figures 4D–H show the memristor RS sets before
training (D), after training 1,000 samples (with R tolerance of
2% (E) and 0.1% (F)), and after 10,000 samples (with R
tolerance of 2% (G) and 0.1% (H)). There are three color
regions that can be clearly seen: blue (high resistive range),
white (middle resistive range), and red (low resistive range).
Before training, memristor RSs are initialized to the high
resistive range. After 1,000 samples, both versions with an
R tolerance of 2 and 0.1% show distinguishable high and
middle resistive ranges, reflecting the increasing training
accuracy before 1,000 samples in Figure 4A. After 10,000
samples, the version with R-tolerance of 0.1% clearly
displays high, middle, and low resistive regions, while the
low resistive region is merged to the middle region in
versions with an R-tolerance of 2% because of the cut-off of
a too large R-tolerance. The version with an R-tolerance of 2%
is not able to distinguish specific images when the middle

region becomes larger as stimuli from different digits will all be
assigned to weights with middle values. Therefore, the
accuracy curves for large R-tolerance display decreasing
tendency after certain points in Figure 4A.

Finally, we present a comparison between two biasing
schemes: 1) bias voltages are only applied to selected device
(corresponding selector-based crossbar array) scenarios, and 2)
half-bias voltages are also applied to unselected devices in the
same bitlines and wordlines (as in selectorless crossbars).
Figure 5A shows the accuracy of both versions. In the
training accuracy curves, both versions show the same
tendency with a noticeable gap in between. The test accuracy
bar chart further displays the ~20% gap. In order to explore the
cause of the accuracy gap, we look into the resistance change
curves of memristors representing a stimulated synapse (between
input neuron 250 and output neuron 6) and a non-stimulated
synapse (between input neuron 10 and output neuron 6). The
baseline curves (red) are given by virtual resistance values of the
baseline which stores weights directly without using memristor
models. The resistance change for the stimulated synapse in the
selector-based version (dark blue trace) shows the same
decreasing tendency as the baseline (red), while the resistance

FIGURE 4 | Classification accuracy affected by R tolerance. (A),(B) Accuracy in training and test phases with different R tolerance, respectively. (C) Resistance
changes in a memristor representing a stimulated synapse (between input neuron 250 and output neuron 6) in training process with different R tolerance. Notice that we
use virtual resistance values for the baseline (D)–(H). Memristor resistive states before training (D), after 1,000 samples for R tolerance of 2% (E) or 0.1% (F), and after
10,000 samples for R tolerance of 2%(G) or 0.1%(H). The total range of memristor RSs is from 2.26 to 11.5kΩ, which gives the range of weights as 0.98 to 0.086
correspondingly.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8518569

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

in the selectorless version (orange) displays an increasing
tendency. Zooming into samples 0 to 200, we observe
unexpected resistance increases when no resistance update
should happen for the selectorless scenario. This is because
some memristors representing synapses connected to the
neurons that are not supposed to fire have been applied pulses
to increase the weights according to the learning rule, and they
shared the same wordlines or bitlines with those whose resistance
are supposed to decrease. A cycle of half-voltage bias only caused
a trivial resistance increment, but there were many cycles of
unexpected resistance drop happening in the same time step as
there were many devices in the same wordlines/bitlines; therefore,
the resistance increment accumulated and caused a large gap to
the baseline. For the non-stimulated synapse, both the selector-
based (purple) and the baseline (green) traces stay around their
initial values throughout the whole training phase, while
unexpected resistance increases occur in the selectorless
version. However, the resistance in memristors representing
the stimulated synapse is still slightly smaller than that of the
non-stimulated synapse in the given examples in the selectorless
scenario. Because of this slight resistance difference, the NN based
on selectorless array is still able to learn images and classify
correctly in some cases. We present the memristor resistive states
before and after training for both versions in Figures 5C–E. Due
to the half-voltage bias, the new memeristor operation range
changes to 2.23 k-28kΩ, giving the new conductance range from

3.57 × 10−5 S to 4.48 × 10−4 S. Therefore, the linear mapping from
conductance to weights now is changed to the following equation:

W � 2.42 × 103 × G − 0.0866.

Memristor RSs are initialized as ~11 kΩ before the training.
After 10,000 samples, the resistive states of stimulated
memristors in selector-based array (Figure 5D) decrease to
a low resistive range (~2.26 kΩ), while the non-stimulated stay
in a high resistive range (~11 kΩ). In the selectorless version,
stimulated memristor RSs increase to a very high resistive
range (~18 kΩ), with non-stimulated ones increasing even
higher to (~22 kΩ). Thus, NeuroPack has helped us uncover
the perhaps surprising result that even in the presence of
invasive unexpected weight update, the NN is still capable
of distinguishing the MNIST digits substantially better than
chance, albeit with a very different weight distribution than the
selector-based network.

5 CONCLUSION

In this study, we presented NeuroPack, a versatile algorithm-
level software emulator for memristor-based neuro-inspired
computing systems. NeuroPack allows users to customize the
simulator at both system level and device level. This platform
can work as a standalone tool to emulate neuro-inspired

FIGURE 5 | Classification with versions using selector-based and selectorless memristor arrays. (A) Accuracy in selector-based and selectorless arrays. (B)
Resistance changes in memristors representing a stimulated (between input neuron 250 and output 6) and a non-stimulated (between input neuron 10 and output
neuron 6) synapse (C)–(E) give memristor resistive states before training (C) and after training for both selector-based (D) and selectorless (E) versions. The color bar
shows the memristor states from 2.26 k to 25kOmega, which give weights in range 0.98 to 0.01 correspondingly.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 85185610

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

computing with different neuron models, learning rules,
memristor models, different types and numbers of memristor
devices, different neural network architectures, and different
applications. We further showcased an application example
using NeuroPack to simulate a two-layer SNN for
handwritten digit recognition with the MNIST dataset. We
explored how different factors such as R-tolerance in weight
updating and biasing methods in different array structures affect
system classification accuracy and quickly reached two
conclusions: 1) Even a surprisingly lax 1% tolerance in
resistive state (an engineering parameter) allows for sufficient
training efficiency to closely match the performance of an ideal
model for this architecture and dataset. This indicates that
memristor-based systems may be able to achieve competitive
performance without requiring expensive precision circuits at
least in some scenarios. 2) Even in a scenario with unexpected
weight updates due to the half-voltage biasing method in
selectorless arrays, it may be possible to decode useful
information from the state of the system after training. These
investigations illustrate the role NeuroPack can play in assisting
users to design and validate neuro-inspired concepts and
improve system performance involving emerging nanoscale
memory technologies. We envisage that by varying datasets,
biasing and other experimental parameters, and device
technology and connectivity patterns, users from across the
community will be able to use this tool to generate the results
that suit their needs quickly and efficiently.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at https://github.com/
hjq310/NeuroPack.

AUTHOR CONTRIBUTIONS

JH, AS, and TP wrote the manuscript. JH and SS developed the
software design. JH delivered the experiments.

FUNDING

The authors acknowledge the support of the EPSRC FORTE
Programme Grant (EP/R024642/1) and the RAEng Chair in
Emerging Technologies (CiET 1819/2/93), as well as the EU
projects SYNCH (824162) and CHIST-ERA net SMALL.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/
full#supplementary-material

REFERENCES

Abbott, L. F. (1999). Lapicque’s Introduction of the Integrate-And-Fire Model
Neuron (1907). Brain Res. Bull. 50, 303–304. doi:10.1016/S0361-9230(99)
00161-6

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al.
(2015). Truenorth: Design and Tool Flow of a 65 Mw 1 Million Neuron
Programmable Neurosynaptic Chip. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 34, 1537–1557. doi:10.1109/TCAD.2015.2474396

Aono, M., and Hasegawa, T. (2010). The Atomic Switch. Proc. IEEE 98, 2228–2236.
doi:10.1109/jproc.2010.2061830

Bedeschi, F., Fackenthal, R., Resta, C., Donze, E. M., Jagasivamani, M., Buda, E. C.,
et al. (2009). A Bipolar-Selected Phase Change Memory Featuring Multi-Level
Cell Storage. IEEE J. Solid-state Circuits 44, 217–227. doi:10.1109/jssc.2008.
2006439

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A Solution to the Learning Dilemma for Recurrent Networks of Spiking
Neurons. Nat. Commun. 11. doi:10.1038/s41467-020-17236-y

Bengio, Y., Léonard, N., and Courville, A. C. (2013). Estimating or Propagating
Gradients through Stochastic Neurons for Conditional Computation. CoRR
abs/1308.3432.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,
Bussat, J.-M., et al. (2014). Neurogrid: A Mixed-Analog-Digital Multichip
System for Large-Scale Neural Simulations. Proc. IEEE 102, 699–716. doi:10.
1109/JPROC.2014.2313565

Berdan, R., Serb, A., Khiat, A., Regoutz, A., Papavassiliou, C., and Prodromakis, T.
(2015). A $\mu $ -Controller-Based System for Interfacing Selectorless RRAM
Crossbar Arrays. IEEE Trans. Electron. Devices 62, 2190–2196. doi:10.1109/
TED.2015.2433676

Burr, G. W., Brightsky, M. J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., et al.
(2016). Recent Progress in Phase-Change_newline Memory Technology. IEEE
J. Emerg. Sel. Top. Circuits Syst. 6, 146–162. doi:10.1109/JETCAS.2016.2547718

Chen, P.-Y., Peng, X., and Yu, S. (2018). Neurosim: A Circuit-Level Macro Model
for Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 37, 3067–3080. doi:10.1109/
TCAD.2018.2789723

Choi, B. J., Torrezan, A. C., Strachan, J. P., Kotula, P. G., Lohn, A. J., Marinella, M.
J., et al. (2016). High-Speed and Low-Energy Nitride Memristors. Adv. Funct.
Mater. 26, 5290–5296. doi:10.1002/adfm.201600680

Chua, L. (1971). Memristor-the Missing Circuit Element. IEEE Trans. Circuit
Theor. 18, 507–519. doi:10.1109/tct.1971.1083337

Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., and Spiga, S. (2016).
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised
Learning. Front. Neurosci. 10, 482. doi:10.3389/fnins.2016.00482

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: A Neuromorphic Manycore Processor with On-Chip Learning.
IEEE Micro 38, 82–99. doi:10.1109/MM.2018.112130359

Demirag, Y., Frenkel, C., Payvand, M., and Indiveri, G. (2021). Online Training of
Spiking Recurrent Neural Networks with Phase-Change Memory Synapses.
CoRR abs/2108.01804.

Dundar, G., and Rose, K. (1995). The Effects of Quantization on Multilayer Neural
Networks. IEEE Trans. Neural Netw. 6, 1446–1451. doi:10.1109/72.471364

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al.
(2021). Training Spiking Neural Networks Using Lessons from Deep Learning.
CoRR abs/2109.12894.

Frenkel, C., Lefebvre, M., and Bol, D. (2021). Learning without Feedback: Fixed
Random Learning Signals Allow for Feedforward Training of Deep Neural
Networks. Front. Neurosci. 15, 20. doi:10.3389/fnins.2021.629892

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition.

Goodman, D., and Brette, R. (2008). Brian: a Simulator for Spiking Neural
Networks in python. Front. Neuroinform. 2. doi:10.3389/neuro.11.005.2008

Goux, L., Fantini, A., Kar, G., Chen, Y.-Y., Jossart, N., Degraeve, R., et al. (2012).
“Ultralow sub-500nA Operating Current High-Performance
TiN\Al2O3\HfO2\Hf\TiN Bipolar RRAM Achieved through Understanding-

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 85185611

Huang et al. NeuroPack

https://github.com/hjq310/NeuroPack
https://github.com/hjq310/NeuroPack
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnano.2022.851856/full#supplementary-material
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/jproc.2010.2061830
https://doi.org/10.1109/jssc.2008.2006439
https://doi.org/10.1109/jssc.2008.2006439
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/TED.2015.2433676
https://doi.org/10.1109/TED.2015.2433676
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/TCAD.2018.2789723
https://doi.org/10.1109/TCAD.2018.2789723
https://doi.org/10.1002/adfm.201600680
https://doi.org/10.1109/tct.1971.1083337
https://doi.org/10.3389/fnins.2016.00482
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/72.471364
https://doi.org/10.3389/fnins.2021.629892
https://doi.org/10.3389/neuro.11.005.2008
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

Based Stack-Engineering,” in 2012 Symposium on VLSI Technology (VLSIT),
159–160. doi:10.1109/VLSIT.2012.6242510

Guo, Y., Wu, H., Gao, B., and Qian, H. (2019). Unsupervised Learning on Resistive
Memory Array Based Spiking Neural Networks. Front. Neurosci. 13, 1–16.
doi:10.3389/fnins.2019.00812

Gütig, R., and Sompolinsky, H. (2006). The Tempotron: a Neuron that Learns
Spike Timing–Based Decisions. Nat. Neurosci. 9, 420–428.

Hinton, G. (2012). Coursera - Neural Networks for Machine Learning - Geoffrey
hinton.

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., et al. (2018). Memristor-
based Analog Computation and Neural Network Classification with a Dot Product
Engine. Adv. Mater. 30, 1705914. doi:10.1002/adma.201705914

Izhikevich, E. M. (2003). Simple Model of Spiking Neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi:10.1109/TNN.2003.820440

Khiat, A., Ayliffe, P., and Prodromakis, T. (2016). High Density Crossbar Arrays
with Sub- 15 Nm Single Cells via Liftoff Process Only. Sci. Rep. 6, 32614–32618.
doi:10.1038/srep32614

Kvatinsky, S., Ramadan, M., Friedman, E. G., and Kolodny, A. (2015). Vteam: A
General Model for Voltage-Controlled Memristors. IEEE Trans. Circuits Syst.
62, 786–790. doi:10.1109/TCSII.2015.2433536

Lammie, C., Xiang, W., Linares-Barranco, B., and Azghadi, M. R. (2020).
Memtorch: An Open-Source Simulation Framework for Memristive Deep
Learning Systems. CoRR abs/2004.10971.

Lammie, C., Xiang, W., and Rahimi Azghadi, M. (2022). Modeling and Simulating
In-Memory Memristive Deep Learning Systems: An Overview of Current
Efforts. Array 13, 100116. doi:10.1016/j.array.2021.100116

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). “Object Recognition with
Gradient-Based Learning,” in Shape, Contour and Grouping in Computer Vision
(Berlin, Heidelberg: Springer). doi:10.1007/3-540-46805-6_19

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018). Efficient and Self-
Adaptive In-Situ Learning in Multilayer Memristor Neural Networks.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
Synaptic Efficacy by Coincidence of Postsynaptic Aps and Epsps. Science 275,
213–215. doi:10.1126/science.275.5297.213

Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., and Modha, D. S.
(2011). “A Digital Neurosynaptic Core Using Embedded Crossbar Memory
with 45pj Per Spike in 45nm,” in 2011 IEEE Custom Integrated Circuits
Conference (CICC), 1–4. doi:10.1109/CICC.2011.6055294

Messaris, I., Nikolaidis, S., Serb, A., Stathopoulos, S., Gupta, I., Khiat, A., et al.
(2017a). “A Tio2 Reram Parameter Extraction Method,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), 1–4. doi:10.
1109/ISCAS.2017.8050789

Messaris, Y., Serb, A., Khiat, A., Nikolaidis, S., and Prodromakis, T. (2017b). A
Compact Verilog-A Reram Switching Model.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time
Classification and Sensor Fusion with a Spiking Deep Belief Network. Front.
Neurosci. 7. doi:10.3389/fnins.2013.00178

Oster, M., Douglas, R., and Liu, S.-C. (2009). Computation with Spikes in a winner-
take-all Network. Neural Comput. 21, 2437–2465. doi:10.1162/neco.2009.07-
08-829

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C., et al.
(2013). Spinnaker: A 1-w 18-core System-On-Chip for Massively-Parallel
Neural Network Simulation. IEEE J. Solid-state Circuits 48, 1943–1953.
doi:10.1109/JSSC.2013.2259038

Payvand, M., Fouda, M. E., Kurdahi, F., Eltawil, A. M., Neftci, E. O., and Neftci, E.
O. (2020). On-Chip Error-Triggered Learning of Multi-Layer Memristive
Spiking Neural Networks. IEEE J. Emerg. Sel. Top. Circuits Syst. 10,
522–535. doi:10.1109/jetcas.2020.3040248

Prodromakis, T., Michelakis, K., and Toumazou, C. (2010). Switching Mechanisms
in Microscale Memristors. Electron. Lett. 46, 63–65. doi:10.1049/el.2010.2716

Roy, S., Sridharan, S., Jain, S., and Raghunathan, A. (2020). Txsim: Modeling
Training of Deep Neural Networks on Resistive Crossbar Systems. CoRR abs/
2002.11151.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
Representations by Back-Propagating Errors. Nature 323, 533–536. doi:10.
1038/323533a0

Schmitt, S., Klahn, J., Bellec, G., Grubl, A., Guttler, M., Hartel, A., et al. (2017).
“Neuromorphic Hardware in the Loop: Training a Deep Spiking Network on
the Brainscales Wafer-Scale System,” in 2017 International Joint Conference on
Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7966125

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going Deeper in Spiking
Neural Networks: Vgg and Residual Architectures. Front. Neurosci. 13, 95.
doi:10.3389/fnins.2019.00095

Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., and Prodromakis, T. (2016).
Unsupervised Learning in Probabilistic Neural Networks with Multi-State Metal-
Oxide Memristive Synapses. Nat. Commun. 7. doi:10.1038/ncomms12611

Serb, A., Manino, E., Messaris, I., Tran-Thanh, L., and Prodromakis, T. (2017).
“Hardware-level Bayesian Inference,” in Neural Information Processing Systems.

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., and
Linares-Barranco, B. (2013). STDP and STDP Variations with Memristors
for Spiking Neuromorphic Learning Systems. Front. Neurosci. 7, 2–15. doi:10.
3389/fnins.2013.00002

Shin, S., Kim, K., and Kang, S.-M. (2010). Compact Models for Memristors Based
on Charge-Flux Constitutive Relationships. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 29, 590–598. doi:10.1109/tcad.2010.2042891

Sivan, M., Li, Y., Veluri, H., Zhao, Y., Tang, B., Wang, X., et al. (2019). All Wse2
1t1r Resistive Ram Cell for Future Monolithic 3d Embedded Memory
Integration. Nat. Commun. 10. doi:10.1038/s41467-019-13176-4

Stathopoulos, S., Khiat, A., Trapatseli, M., Cortese, S., Serb, A., Valov, I., et al.
(2017). Multibit Memory Operation of Metal-Oxide Bi-layer Memristors. Sci.
Rep. 7. doi:10.1038/s41598-017-17785-1

Vincent, A. F., Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat,
C., et al. (2015). Spin-transfer Torque Magnetic Memory as a Stochastic
Memristive Synapse for Neuromorphic Systems. IEEE Trans. Biomed.
Circuits Syst. 9, 166–174. doi:10.1109/TBCAS.2015.2414423

Wu, Y.-c., and Feng, J.-w. (2018). Development and Application of Artificial
Neural Network.Wireless Pers Commun. 102, 1645–1656. doi:10.1007/s11277-
017-5224-x

Xia, L., Li, B., Tang, T., Gu, P., Chen, P.-Y., Yu, S., et al. (2017). Mnsim: Simulation
Platform for Memristor-Based Neuromorphic Computing System. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37, 1. doi:10.1109/TCAD.2017.2729466

Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., et al.
(2009). Memristor−CMOS Hybrid Integrated Circuits for Reconfigurable
Logic. Nano Lett. 9, 3640–3645. doi:10.1021/nl901874j

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully
Hardware-Implemented Memristor Convolutional Neural Network. Nature
577, 641–646. doi:10.1038/s41586-020-1942-4

Yin, S., Venkataramanaiah, S. K., Chen, G. K., Krishnamurthy, R., Cao, Y.,
Chakrabarti, C., et al. (2017a). Algorithm and Hardware Design of Discrete-
Time Spiking Neural Networks Based on Back Propagation with Binary
Activations. CoRR abs/1709.06206. doi:10.1109/biocas.2017.8325230

Yin, S., Venkataramanaiah, S. K., Chen, G. K., Krishnamurthy, R., Cao, Y.,
Chakrabarti, C., et al. (2017b). “Algorithm and Hardware Design of
Discrete-Time Spiking Neural Networks Based on Back Propagation with
Binary Activations,” in 2017 IEEE Biomedical Circuits and Systems
Conference (BioCAS), 1–5. doi:10.1109/BIOCAS.2017.8325230

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huang, Stathopoulos, Serb and Prodromakis. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 85185612

Huang et al. NeuroPack

https://doi.org/10.1109/VLSIT.2012.6242510
https://doi.org/10.3389/fnins.2019.00812
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/srep32614
https://doi.org/10.1109/TCSII.2015.2433536
https://doi.org/10.1016/j.array.2021.100116
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1109/CICC.2011.6055294
https://doi.org/10.1109/ISCAS.2017.8050789
https://doi.org/10.1109/ISCAS.2017.8050789
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1162/neco.2009.07-08-829
https://doi.org/10.1162/neco.2009.07-08-829
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/jetcas.2020.3040248
https://doi.org/10.1049/el.2010.2716
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ijcnn.2017.7966125
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1038/ncomms12611
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.1109/tcad.2010.2042891
https://doi.org/10.1038/s41467-019-13176-4
https://doi.org/10.1038/s41598-017-17785-1
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1007/s11277-017-5224-x
https://doi.org/10.1007/s11277-017-5224-x
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1021/nl901874j
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/biocas.2017.8325230
https://doi.org/10.1109/BIOCAS.2017.8325230
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles

	NeuroPack: An Algorithm-Level Python-Based Simulator for Memristor-Empowered Neuro-Inspired Computing
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Design Overview
	3.2 Neuron Models and Learning Rules
	3.2.1 Leaky-Integrate-and-Fire Neuron and Backpropagation
	3.2.2 Adding Winner-Take-All Functionality

	3.3 Memristor Model
	3.4 Weight Mapping and Updating
	3.5 Customization, Usage Scenarios, and Interface

	4 Results
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

