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Emerging two-terminal nanoscale memory devices, known as memristors, have
demonstrated great potential for implementing energy-efficient neuro-inspired
computing architectures over the past decade. As a result, a wide range of
technologies have been developed that, in turn, are described via distinct empirical
models. This diversity of technologies requires the establishment of versatile tools that
can enable designers to translate memristors’ attributes in novel neuro-inspired
topologies. In this study, we present NeuroPack, a modular, algorithm-level Python-
based simulation platform that can support studies of memristor neuro-inspired
architectures for performing online learning or offline classification. The NeuroPack
environment is designed with versatility being central, allowing the user to choose from
a variety of neuron models, learning rules, and memristor models. Its hierarchical structure
empowers NeuroPack to predict any memristor state changes and the corresponding
neural network behavior across a variety of design decisions and user parameter options.
The use of NeuroPack is demonstrated herein via an application example of performing
handwritten digit classification with the MNIST dataset and an existing empirical model for
metal-oxide memristors.

Keywords: memristor, neuro-inspired computing, neuromorphic computing, neural networks, online learning,
offline classification

1 INTRODUCTION

Over the last decade, neuro-inspired computing (NIC) has experienced an immense growth,
manifesting itself in a range of advances across theory, hardware, and infrastructure. Theoretical
NIC has proposed a very wide range of artificial neural network (ANN) configurations, such as
convolutional neural networks (LeCun et al., 1999) and LSTMs (Hochreiter and Schmidhuber,
1997), that may operate at various levels of weight and signal quantization (Dundar and Rose, 1995)
and spanning across both spiking (Wu and Feng, 2018) and non-spiking (Sengupta et al., 2019)
approaches. Evidently, this design process comprises multiple decision points that overall renders a
very substantial and complex design space.

Simultaneously, research on novel hardware technologies has developed along multiple strands
including fully digital architectures (Painkras et al., 2013; Akopyan et al., 2015; Davies et al., 2018),
supra-threshold (Schmitt et al., 2017), and sub-threshold (Benjamin et al., 2014) analog
architectures, with some more recent contenders (Burr et al., 2016) utilizing post-CMOS
electronic components called “memristors” (Chua, 1971). This latter category is the focus of this
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work. Fundamentally, memristive devices are electrically tuneable
(non-linear) resistors which have shown great promise in
efficiently implementing the most numerous components
found in neural networks: the synapses and mapping of their
weights. Memristors feature the potential for extreme
downscaling (Khiat et al., 2016), back-end-of-line (BEOL)
integrability (Xia et al., 2009), sub-ns switching capability
(Choi et al., 2016), and very low switching energy (Goux et al.,
2012). Multiple families of memristive devices have been
developed exploiting different electrochemical effects ranging
from atomic-level effects in metal-oxides (Prodromakis et al.,
2010) and atomic switches (Aono and Hasegawa, 2010) to bulk
crystallisation/amorphisation effects in phase-change memory
devices (Bedeschi et al., 2009) and magneto-resistive effects in
spin-transfer torque (STT) devices (Vincent et al., 2015), to name
a few. Each of these families features its own idiosyncrasies in
terms of electrical behavior and is correspondingly described via
distinct empirical models.

The broad interest in employing memristors within neuro-
inspired hardware mainly stems from their multi-bit storage
(Stathopoulos et al., 2017) capability and their simple
architecture that can be tessellated in large arrays (Sivan et al.,
2019). Those excellent features make memristors good candidates
for multiply–accumulate operations (Serb et al., 2017) required in
in-memory computing (IMC) applications. Moreover, the
intrinsic properties of memristors are similar to those of
biological synapses (Serrano-Gotarredona et al., 2013).
Inspired by this fact, designs such as Serb et al. (2016) and
Covi et al. (2016) successfully applied memristors as synapses
in online learning with spike-timing-dependent plasticity
(Markram et al., 1997), which is a learning rule inspired from
biological NNs. Memristors have also been employed as
components for NIC from offline classification (Yao et al.,
2020) to online learning (Payvand et al., 2020). Along these
lines, software-based simulation platforms designed for
memristor-based neuomorphic systems become significant for
fast validation of design ideas and predicting device behavior.

Current simulators (e.g., MNSIM (Xia et al., 2018) and
NeuroSim (Chen et al., 2018)) focus more on circuit-level
designs, serving as tools either to simulate the behavior of
different hardware modules, or to estimate the performance of
memristor-based neuromorphic hardware in integrated circuit
designs. Sitting at a higher level of abstraction would be an
“algorithm-level device-model-in-the-loop” simulator (or
“algo-simulator” for short) designed to test functionally
defined (as opposed to explicitly designed) circuits with
memristive device models at algorithm level, for example,
performing specific online or offline learning tasks with
memristors as synapses in spike-based NNs. Such tools would
allow fast verification of design concepts before serious hardware
design effort is committed, in essence answering the question: Is
my design likely to function given the knowledge on my
memristive devices, assuming the rest of the circuit functions
flawlessly? If yes, work can proceed to the next stage.

In this study, we present NeuroPack: a simulator for
memristor-based neuro-inspired computing at algorithm level.
NeuroPack is a complete, hierarchical framework for simulating

spiking-based neural networks, supporting various neuron
models, learning rules, memristor models, memristor devices,
neural networks, and different applications. Written in Python, it
can be easily extended and customized by users, as will be shown.
NeuroPack also integrates an empirical memristor model
proposed by Messaris Y. et al. (2017). Between processing
algorithms and setting and monitoring memristor states, there
is the significant step of applying a pulse of specific voltage and
duration to trigger a memristor state change corresponding to
some desired weight change calculated from learning rules.
NeuroPack integrates a module to convert desired weight
changes to estimated stimulation pulse parameters for bridging
this gap. In addition, NeuroPack is also able to connect with
commercially available instruments such as ArC 1 (Berdan et al.,
2015) to use parameters extracted from real devices. In terms of
applications, we use NeuroPack to demonstrate image
classification on MNIST dataset in our ‘Results’ section. We
also give result analysis for systems with different R tolerance,
a parameter used in weight updating, and two biasing methods as
examples to showcase that NeuroPack assists users to investigate
how key design, device, and architectural factors affect
memristor-based neuromorphic computing systems. Finally,
NeuroPack includes a built-in analysis tool with a user-
friendly graphic user interface (GUI) for visualizing and
processing classification results. The main contributions of this
work include:

1. Developing an algo-simulator for memristor-powered neuro-
inspired computing with selectable neuron and device models,
as well as learning rules

2. Modeling memristor state changes in neuro-inspired
computing tasks given user-defined memristor parameters

3. Converting expected weight changes prescribed by learning
rules into parameters of bias pulses used for triggering
memristor state changes in weight updating

The rest of the article is organized as follows: In Section 2, we
compared NeuroPack with related work. Section 3 introduces the
architecture of NeuroPack with core parts and the workflow.
Section 4 demonstrates an example application of handwritten
digit recognition inMNIST dataset performed in NeuroPack, and
Section 5 summarizes the article.

2 RELATED WORK

In this section, we compare NeuroPack with related neural
network simulators with or without memristor models. Results
are summarized inTable 1. We can broadly group these tools into
three categories: 1) general algorithm-level SNN simulators, 2)
hardware performance prediction (circuit level), and 3) more
bespoke tools.

First group tools focus on simulating spiking neural networks.
Brian (Goodman and Brette, 2008) and snnTorch (Eshraghian
et al., 2021) are such simulators. Brian targets the rapid
prototyping of spiking neural network connectivity
architectures, uses single-compartment neurons, and operates
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fully in Python. However, it does not integrate learning rules.
snnTorch is designed to extend Pytorch, a mature tensor-based
deep learning framework, to SNNs. It provides functions for
backpropagation with surrogate gradient, spike generation, data
conversion, and data visualization. It also supports CUDA
implementation (i.e., the ability to run the model on NVidia’s
“CUDA cores”), although it is not designed to provide
information on hardware efficiency per se. To our knowledge,
no such tool exists for memristor-based designs. The closest
equivalent is memTorch (Lammie et al., 2020), which
effectively extends Pytorch by introducing models of
memristive devices, but does not include SNN support; it
covers exclusively ANNs. It supports the “linear memristor”
and VTEAM memristor models (Kvatinsky et al., 2015), and
estimates non-ideal variation by generating random numbers
given a predefined distribution. It is open source, and supports
CUDA running. memTorch focuses on inference only, and does
not include learning rule support.

Second group tools seek to predict the hardware performance
of memristor-based microchip designs before they are fully
developed and laid out. These have been progressively refined
to take into account more and more parameters from basic ones
such as technology node and array size to increasingly detailed
ones such as line resistances. NeuroSim (Chen et al., 2018) and
MNSIM (Xia et al., 2018) are such tools for parametrized designs
of memristor-based neuromorphic integrated circuits. They
receive parameters such as crossbar array size, memristive
device ON and OFF resistances, technological node, and
choice of read-out circuit module, and produce a prediction of
layout area, dynamic power dissipation, latency, leakage power,
and other such performance indicators. NeuroSim supports not
only emerging non-volatile devices such as memristors but also
mainstream memory devices. Similarly, MNSIM operates on the
basis of a hierarchical, memristor-based neuromorphic
computing system structure. Both NeuroSim and MNSIM
allow simulation for both inference and training. Finally,
TxSim (Roy et al., 2020) represents a further refinement over
that mentioned above and evaluates training on memristor
crossbars with DACs, memristor crossbars, and ADC non-
linearity taken into consideration.

In the third group, we find work such as Demirag et al. (2021),
which reported an online training task for spiking recurrent
neural networks with phase-change memory models using the
e-prop learning rule (Bellec et al., 2020). It developed an
algorithm-level, fully Python-based, open-source simulator to

perform online training. However, it is a more architecture-
specific design focusing on spiking recurrent neural networks
using the e-prop learning rule only.

Neuropack seeks to cover the area of general-purpose
simulation sitting at algorithm level for memristor-based
SNNs. Neuropack exhibits an unconventional combination of
features: 1) it is oriented toward SNNs, 2) supports both inference
and training operations, 3) is designed for extreme flexibility
when it comes to neurons, memristive devices, and plasticity
models, and 4) features an intimate connection to hardware by
directly interfacing a memristive device characterization tool that
can extract reasonably accurate models of physical devices.

3 METHODS

3.1 Design Overview
NeuroPack is designed for predicting the outcomes of online
learning or offline classification tasks under selectable neuron,
plasticity and memristive device models, as well as for triggering
and monitoring memristor state changes. To achieve those two
tasks, NeuroPack’s workflow (see Figure 1) is divided into five
parts: input file handling, virtual memristor array, neuron core,
plasticity core, and analysis tool.

For input data handling, there are three input files that need to
be generated from users: configuration file, connectivity matrix
file, and stimuli file. The configuration file contains the main
parameters for building up NNs (e.g., network size, NN depth,
number of neurons for each layer, etc.), setting up neuron models
(e.g., leakage, noise scale, etc.), and initializing memristor devices
(e.g., up and bottom boundaries for memristor resistance). The
connectivity matrix file is used to define neuron connectivity and
to map synapses to virtual memristors. The stimuli file stores both
input signals and output labels. When loaded in the NeuroPack
main panel, input signals and output labels are split by checking if
the neuron is an output neuron using the information provided
by the configuration file. Note: NeuroPack is designed to receive
spike trains as an input. The specific encoding from raw (e.g.,
sensor) input to spikes should be performed independently before
feeding the input to the simulator. All input files are loaded via
the NeuroPack main panel. For more details on loading input
files, please see Supplementary Material.

We now walk through the procedure for carrying out a
classification task in a spiking network. First, the input signals
to the neuron model are converted to spikes and saved in the

TABLE 1 | Comparison of NeuroPack with other related work (Lammie et al., 2022).

Simulator Language Training SNN support Open source Design level

Brian (Goodman and Brette, 2008) Python — ✓ ✓ Algo level
snnTorch (Eshraghian et al.,2021) C++, Python ✓ ✓ ✓ Algo level
NeuroSim (Chen et al.,2018) C++, Python ✓ — ✓ Circuit level
MNSIM (Xia et al.,2018) Not specified ✓ — ✓ Circuit level
memTorch (Lammie et al.,2020) C++, Python — — ✓ Algo level
TxSim (Roy et al.,2020) Python ✓ — — Algo level
(Demirag et al.,2021) Python ✓ ✓ ✓ Algo level
NeuroPack Python ✓ ✓ ✓ Algo level
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stimuli file. Training and test datasets are loaded separately. Since
NeuroPack uses a framework of consecutive, non-overlapping
abstract time intervals, at each time step, an input neuron can
either be spiking 1) or silent (0) lasting for exactly one time step.
Next, the neuron core reads out the resistive states (RSs) from a
virtual memristor array, and calculates internal variables, such as
membrane voltages, according to the selected neuron model. The
new fire states are then calculated in two steps: first, considering
whether neurons are supposed to fire by checking if the
membrane voltages surpass the threshold, and second, adding
network-level constraints (e.g., winner-take-all networks). When
the current input stimuli belong to a training dataset, inference
results are sent to the plasticity core to trigger weight update as
per selected learning rule. When the test dataset is processed,
plasticity updates are skipped.

Weight updates happen during the plasticity phase. For STDP,
long-term potentiation (LTP) or long-term depression (LTD)
“events” are directly applied to memristor devices based on a
calculation taking nothing into account except for spike-timing
information. For other learning rules, other types of information
may be necessary. These can be made available to the system
configuration file. Importantly, there are two main conceptual
ways of specifying plasticity events. The simpler way is to create a
function that maps plasticity-relevant variables directly to pulsing
parameters. Thereafter, the physics of the memristor
(correspondingly the response of the memristor model) will
determine the actual resistive state change, which in turn will
be reflected into a weight change via a resistance-to-weight
mapping function. The more complex route involves mapping
plasticity-relevant variable configurations to a requested weight
change, and then searching the device model (a model is

necessary for this approach) for a solution, predicting that
some set of pulse parameters will result in the required
change. The same process will be repeated for the given
number of samples. Inference results as well as internal
variables and parameters, including membrane voltages, fire
history, and weights, can be sent to the built-in analysis tool
for further visualization and analysis.

3.2 Neuron Models and Learning Rules
Neuron models and learning rules are placed in “neuron core”
and “plasticity core”, respectively, in Figure 1. For some learning
rules, such as backpropagation which requires calculation of error
gradients, the equations depend on the neuron model. Therefore,
neuron models must be treated as first-class objects (in the
“programming language” context of the term). However, a
simpler solution implemented in this tool is to ensure that
each learning rule is paired with one neuron core and placed
together in the same “core” document because of the hefty
interdependences between neuron and plasticity rule models.
NeuroPack provides four example core files: leaky-integrate-
and-fire neuron (LIF) (Abbott, 1999) with STDP, leaky-
integrate-and-fire neuron with backpropagation (BP)
(Rumelhart et al., 1986), Tempotron (Gütig and Sompolinsky,
2006), Izhikevich neuron (Izhikevich, 2003), and direct random
target projection (DRTP) (Frenkel et al., 2021). Other neuron and
plasticity rules can be customized according to users’ needs by
simply using existing example cores as standard templates and
introducing user-defined cores. In this section, we provide one
specific example, where we use a LIF neuron model and BP to
implement a fully connected multi-layer spiking neural network
with winner-take-all functionality (Oster et al., 2009).

FIGURE 1 | NeuroPack workflow. The system reads three configuration files: connectivity matrix, (neural) stimuli, and config. The memristor model is embedded
within the virtual memristor array, which initializes a number of memristor devices according to instructions in the configuration and connectivity matrix files. Neuron
models and learning rules are placed in the core file. In “updating fire history” stage, there are three separate steps: calculating fire states assuming neurons fire ‘freely’;
adding network-level constraints; and updating the fire history matrix. “Calculating ΔW” is supported by most learning rules except STDP. By replacing the core file,
users can apply different neuron models and learning rules.
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3.2.1 Leaky-Integrate-and-Fire Neuron and
Backpropagation
Leaky-integrate-and-fire (LIF) is a simple and relatively
computationally friendly neuron model. Most neuromorphic
accelerators, with (Guo et al. (2019)) or without memristors
(Merolla et al. (2011); Yin et al. (2017a)), use LIF neurons. LIF
has been implemented in NeuroPack using the following
equations adapted from the differential form (Gerstner et al.,
2014) by assuming discretised time steps:

Vt � ∑Wxt + αVt−1 1 − yt−1( )
yt � h Vt − Vth( ) , (1)

where Vt represents membrane voltage at time t,W is the weight,
xt is incoming spike to the neuron (considered 1 or 0), α ∈ [0, 1] is
a leakage term, yt is the output spike, h(x) is the step function, and
Vth is the neuron threshold. The equations describe that the
neuron membrane voltage at any time step is determined by two
parts: the weighted sum of incoming spikes at this time step and
the membrane voltage at the last time step. If the membrane
voltage surpasses the threshold, a spike is generated and the
membrane voltage is reset. The cost function E at time step t is
then given by

E t( ) � 1
2N

∑N
i�0

yi,t − ŷi,t( )2, (2)

where N is the number of output neurons, i is the output neuron
index, and ŷi,t is the correct firing state of output neuron i at time
step t. Finally, weight changes are given by

ΔWk � −ηδk,txT
k,t

δk,t �
1
N

yk,t − ŷt( ) ⊙ h′ Vk,t − Vth( ) if k � K

WT
k+1,tδk+1,t( ) ⊙ h′ Vk,t − Vth( ) otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
, (3)

where η is the learning rate, k is the layer index, and K is the
number of layers. Wk gives the weight matrix between layer k− 1
and k. ⊙ means element-wise multiplication. δ gives the error
backpropagated from output neurons. Notably, gradient descent
on SNNs is problematic because the step function h (Vt − Vth) is
discontinuous. The common solution to address this issue is to
use surrogate gradient descent (O’Connor et al., 2013) with
straight through estimators (STEs) (Hinton, 2012; Bengio
et al., 2013). In this work, we use a surrogate derivative
proposed by Yin et al. (2017b). For the full derivation with the
surrogate derivative, please refer to the supplementary material.
We note that the only potentially problematic variable is ŷi,t,
which is provided in stimuli file; everything else is accessible
directly to NeuroPack.

3.2.2 Adding Winner-Take-All Functionality
We now introduce winner-take-all (WTA) functionality,
which constrains the output layer to have at most one firing
neuron at each time step. This is performed by adding one
softmax layer and making the neuron that has the largest
softmax result fire:

St � softmax Vt ⊙ yt( ). (4)
The cost function correspondingly needs to be adjusted by

taking a cross-entropy form:

E � −∑N
i�0

ŷi,t ln Si,t( ) � −ln Sj,t( ), (5)

where j is the index of the output neuron that should fire. Based
on new cost function, weight changes are calculated as

ΔWk � −ηδk,txT
k,t

δk,t � St − ŷt( ) ⊙ yt + Vt ⊙ h′ Vk,t − Vth( )( ) if k � K
WT

k+1,tδk+1,t( ) ⊙ h′ Vk,t − Vth( ) otherwise
{ .

(6)
Before application of WTA, all variables are accounted for; the

freshly introduced softmax can be computed entirely within the
same core file by simply adding network-level constraints. For the
full derivation, please refer to the supplementary material.

In summary, to configure a multi-layer spiking neural network
with WTA using LIF neurons with BP in NeuroPack, parameters
including learning rate, noise scale, threshold, and leakage are
loaded from the configuration file. Input spikes encoded from
stimuli files are fed to the “neuron core” in the core file. The
“neuron core” reads the memristor states from the device array,
calculates membrane voltages, and updates fire history during the
inference phase. If training is enabled, inference results, ground
truth information as well as internal variables are loaded into the
“plasticity core”, which then adjusts the memristive weights
according to calculated weight changes, precisely as
summarized in Figure 1.

3.3 Memristor Model
When using virtual memristive devices, as is the case in Figure 1,
a memristive model has to be used for predicting memristor RS as
a function of read-out voltage and RS changes in response to
plasticity events. Here, we use an empirical memristor model
proposed by Messaris Y. et al. (2017), but other user-defined
models are also compatible with NeuroPack. With different
values of parameters, this model has shown flexibility to
model large ranges of memristor devices. The model expresses
RS switching rate (dRdt) as a function of initial RS and biasing
voltage. The switching rate equation is reproduced here for
convenience:

dR

dt
� m R, v( )

�
Ap −1 + e

|v|
tp( ) rp v( ) − R( )2 if v> 0, R< rp v( )

An −1 + e
|v|
tn( ) R − rn v( )( )2 if v≤ 0, R≥ rn v( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (7)

whereAn andAp are scaling factors. The (e
|v|
tp,n − 1) termmarks the

main, exponential dependency of the switching rate on bias
voltage with tn, tp as fitting parameters extracted during
modeling. Next, the last term encapsulates the dependence of
the switching rate on the current resistive state with the aid of
fitting parameters a0p, a1p, a0n, and a1n. The main effect here is
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that the closer the RS is to the upper (lower) limit, the harder it is
to continue pushing it further up (down), implementing “RS
saturation”. Finally, rp,n(v) is a simple, first order polynomial
helper function that helps capture the exact nature of the
switching rate’s dependency on current RS:

r v( ) � rp v( ) � a0p + a1pv if v> 0
rn v( ) � a0n + a1nv if v≤ 0{ . (8)

While models may take different forms (e.g., charge-flux models
(Shin et al., 2010)), the fundamental condition that is observed is that
the device model is always fed a series of time-wise discretised
voltages, and then must be able to calculate current and change in
resistive state.Models that by default take current inputs are presently
not supported. dt is treated as a predefined, fixed parameter and
remains constant throughout the simulation in the current
implementation. NeuroPack organizes memristor model instances
in a virtual array with user-defined parameters as inputs by using a
class ParametricDevice(*args) to create a device object and methods
initialise(R) and step_dt(V, dt) in the same class to set the current
resistance, and send a pulse with a magnitude of V and a pulse width
of dt to the memristor device correspondingly. “Virtual memristor
array” also provides methods, such as read (w,b) and pulse (w, b, v,
pw), to read the RS of the device at a given wordline w and bitline b
address within the virtual array and apply a pulse withmagnitude of v
and pulse width pw to the device at said address correspondingly.
When we apply a ‘write’ operation, the pulse (w, b, v, pw)method is
called. This takes pw and slices it into quanta of duration dt, and then
applies the resulting group of ‘sub-pulses’ in succession. dt is a user-
defined parameter stored in the configuration file. For a ‘read’
operation, we open an option for users to decide whether to
consider the effect read-out voltages bring on memristor RSs,
though it is ignored as default to save simulation time. It is these
functions that neuron models and learning rules in the core files use
to access memristor RS and trigger RS change. Using model
parameter sets from different types of devices (different stacks or
even devices with different underlying electrochemical mechanisms),
as well as varying the parameters of the model in an exploratory
fashion, are great tools to gain an understanding of how different
memristive devices can influence the outcome of basic machine
learning algorithms.

3.4 Weight Mapping and Updating
Most memristor-based neuromorphic designs (Hu et al., 2018); Li
et al., 2018) store weights as memristor conductance and apply
incoming inputs as voltages across memristors, so that the
multiplication results can be easily attained by measuring the
current according to Ohm’s law. Therefore, weights are mapped
linearly to memristor conductance by default in NeuroPack, but
users are allowed to define other mapping methods if needed.
However, memristors being non-linear devices, obtaining well-
controlled weight changes is challenging because the resistive
state after application of a triggering pulse depends both on the
current resistance state and biasing parameters (typ. pulse voltage
and duration). To deal with this issue, NeuroPack includes a
module for calculating biasing parameters, which is expected to
produce the desired weight changes. In this module, inputs are

memristor model parameters for initializing a memristor device,
current state, target state, dt, and a list of tuples, each of which
contains magnitude and pulse width to represent a pulse.

Inside the module, a ParametericDevice object is created by
passing memristor model parameters. Resulting resistance for
each set of pulse parameters is calculated by calling step_dt (V,
dt) method. After all resulting resistance values are attained,
distance to the resistance expected to be written to memristors is
calculated, and the set of parameters that lead to the shortest
distance will be selected. The pseudo code of this module has been
included in the supplementary material.

The weight update scheme using the pulse parameter selection
module is as follows: to begin with, user-defined R-tolerance,
which is defined as the maximum Rnew−Rexpected

Rexpected
that NeuroPack

assumes the device state has converged, and maximum updating
steps are loaded in Neuropack. After calculating the target
resistance for a device, the actual resistance is read, and the
resulting value is used as the initial resistance in the pulse
parameter selection module. After attaining the set of
parameters that will lead to the closest resistance, a pulse is
sent and the new resistance is read. This predict-write-verify
process is repeated until the calculated Rnew−Rexpected

Rexpected
is smaller than

the R-tolerance or the maximum step number is reached.

3.5 Customization, Usage Scenarios, and
Interface
With Python as programming language, NeuroPack can be
flexibly customized at both algorithm level and device level,
and is able to encourage community-led engagement in the
further development of this tool. At algorithm level,
NeuroPack can apply user-defined neuron models and
learning rules. As it is shown in Figure 1, neuron core and
plasticity core are placed in the same core file. In NeuroPack, there
are four example core files, which will be explained in detail in the
next section. By writing and selecting user-defined core files, users
can apply any customized neuron models and plasticity rules. At
the device level, users can easily set and change memristor
parameters to describe different device characteristics.

There are two main usage scenarios for NeuroPack. One is as a
supporting tool to explore how different parameter values and
settings affect classification performance in NIC tasks
(Figure 2A). In this scenario, users can load parameters in the
configuration file with different values to monitor how memristor
devices behave differently, or to investigate how classification
accuracy or error rate is affected. Another usage scenario is to
use NeuroPack to test and validate NN algorithms, including neuron
models and learning rules (Figure 2B). In this scenario, a user-
defined core file or an example template is loaded to perform NN
simulations. Users can then quickly test the algorithm and validate
the idea by visualizing and displaying memristor device state and
other NN key variables (such as membrane voltage).

The visualization and analysis tool in NeuroPack provides a
user-friendly GUI to display inference results. This tool is
separated from the main panel of NeuroPack. When executing
a classification task, NeuroPack saves variables for every sample
including membrane voltages, input stimuli, fire history, output
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errors, and weights as measured from the memristors in a Numpy
(.npz) file. Array-related variables such as weights are displayed in
a color map, and neuron-related variables, for example,
membrane voltages and fire history, are visualized in curves to
show the changing tendencies.

4 RESULTS

We use an MNIST handwritten digit recognition task as an
example application to validate NeuroPack. Original images
with 28 × 28 pixels from the MNIST dataset have been

FIGURE 2 | Usage scenarios for NeuroPack. Pink icons show the argeted part of design for exploration in different scenarios.

FIGURE 3 | Image recognition task with TiOxmemristor-based neural network simulation in NeuroPack. (A)Binary handwritten digits fromMNIST dataset cropped
to 22 × 22. Dark blue and yellow represent weights 0 and 1, respectively. (B)–(D) Conductance sets before training (B), after 2000 samples (C), and after 10,000
samples (D). Conductance spans from 86.9 uS to 0.442 mS, indicating final memristor RSs ranging from around 2.26–11.5 kohms (E) Concept diagram of spiking
neural network used in this image recognition task. In practice, the network is fully connected. 22 × 22 -pixel images are unrolled to 484-bit input sending to 484
input neurons correspondingly as input spikes. In this task, a two-layer network with 484 input neurons and 10 output neurons is applied. (F) Accuracy curves over the
training process for both memristor version and non-memristor version. We calculate and plot every 100 samples for clarity. Provided 2000 images from a separated test
set, the memristor version and non-memristor version achieved an accuracy of 82.00 and 83.55%, respectively.
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cropped to 22 × 22 and binarised (see input images for 10 digits in
Figure 3A). Background pixels and digit pixels are represented as
0 and 1, respectively. A single image is unrolled to a 484-
dimensional vector with 0 and 1 only to be sent to input
neurons in parallel. The spike encoding scheme sends a spike
when the input bit is 1, and no spike for 0. The neural network
used in this task is a 484-input 10-output two-layer feedforward
winner-take-all spiking neural network with leaky-integrate-and-fire
neuron model and gradient descent learning rule (see Figure 3E for
neural network architecture for this task). To map all 484 × 10
synapses, a 100 × 100 array of memristors is used. The network was
trained using 10,000 samples, and to evaluate the training effect
quickly, we used a balanced 2000 subset from MNIST’s full 10,000
test image set. Please see supplementary section 6 for more details. In
simulation, we use a “sample index”-based x-axis for performing an
inference as opposed to having a real-time step.We acknowledge that
this will have an impact in scenarios where the memristive devices
used have volatile characteristics (and so real-time dynamics come
into play), but due to the difficulties in controlling timing via a
non–real-time operating system, adding this functionality currently
remains a planned upgrade. Parameters used in NeuroPack for
MNIST handwritten digit classification task can be found in
Table 2. Memristor parameters listed in the table are based on the
extractionmethod fromMessaris I. et al. (2017) and devices presented
in the work of Stathopoulos et al. (2017), given voltage range from 0.9
to 1.2 V for positive bias and from −0.9 V to −1.2 V for negative bias
with 11 kΩ as initialized resistance. Therefore, pulse options used to

update memristors are all within those ranges. The model yielded an
estimated memristor operating range between 2.23 and 12.8 kΩ given
a bias voltage of ±1.2V and 12.5–18.9 kΩ given a bias voltage of
±0.9 V. The resulting conductance caused by the bias voltages of
±0.9 V- ± 1.2 V is 5.3 × 10−5−4.48 × 10−4 S. To make sure the weights
can bemapped to range (0, 1), the linearmapping betweenmemristor
conductance and weights is given by the equation below:

W � 2.53 × 103 × G − 0.1337.

Before training, memristor RSs are initialized to 11 kΩ with a
maximum variation of ±500Ω. Memristor initial RSs are mapped to
small weights close to the bottom boundary of the operating range,
given conductance as the linear mapping of synaptic weights.
Conductance maps before training, after training 2000 samples,
and after training 10,000 samples can be found in Figures 3B,C,E.
During training, conductance associated with digit pixels and labeled
output neurons will be increased gradually, while other conductances
stay small; therefore, targeted digits show up in the conductance sets
along the training process. The weight sets show the same tendency as
the mapping is linear. Figure 3F shows the accuracy evolution curve
plotted for every 100 samples. 2000 images from a separated test set
were fed to the network after training, and 1,640 out of 2000 got
classified correctly, giving a general inference accuracy of 82.00%. The
baseline given by the version storing weights directly without using
memristor models achieved a test accuracy of 83.55%, which indicates
that the accuracy bottleneck is not the memristor model. Further
exploration regarding improving the accuracy can be found in
supplementary section 7.

We now use NeuroPack to illustrate how the intimate
device and programming protocol-related issue of selecting
an appropriate R-tolerance affects recognition accuracy.
Figures 4A,B show the training accuracy curves and test set
accuracy results for different R-tolerance values. When
R-tolerance is small (within 1%), the accuracy is not
affected significantly. With a larger R-tolerance, training
accuracy increases initially, but then starts to drop. This is
also reflected in the corresponding test set accuracy. To
investigate the causes, we look into the resistance changes
in both stimulated and non-stimulated synapses with different
R-tolerance values, as displayed in Figure 4C. The red line
shows the baseline virtual resistance values calculated
according to the weight mapping scheme for a stimulated
synapse (specifically the one between input neuron 250 and
output neuron 6) as yielded by a non-memristor, software
synapse. The baseline shows a gradual decrease tendency
throughout the whole training using 10,000 samples. In
contrast, resistance update with different R-tolerance values
cuts off increasingly early as R-tolerance increases: for 0.1, 1, 2,
and 3%, saturation occurs roughly after training ~ 9,000, 7,000,
1,000, and 100 samples, respectively. Intuitively speaking, if we
use a smooth, continuous curve to fit the baseline trace, we find
that its gradient progressively decreases. This can be explained
by the decreasing gradient of the cost function during the
training process. This indicates that the required resistance
changes between successive time steps reduce as training
continues. Meanwhile, R-tolerance is defined as Rnew−Rexpected

Rexpected

TABLE 2 | Parameters used in NeuroPack for the MNIST handwritten digit
classification task.

Global settings

Array size 100 × 100
Array type With selectors
Read noise 0.1%

Neuron model —

Threshold 25.16 or 24.16 (for biasing method comparison only)
Leakage −0.3

Learning rule —

Learning rate 3.5 × 10–6

Noise scale 10–6

Memristor model —

Ap 0.21389
An −0.81302
tp 1.6591
tn 1.5148
a0p 37,087
a0n 43,430
a1p −20193
a1n 34,333

Weight updating —

Voltage ±0.9, ±1.1, ±1.2, ±1.2, ±1.2, ±1.2
Pulse width 10–6, 10–6, 10–6, 5 × 10–6, 10–5, 5 × 10–5

R tolerance 0.1%
Maximum update steps 5
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in NeuroPack; therefore, it can be regarded as the cut-off ratio
of memristor RS change. In other words, when resistance
change between two time steps is smaller than the
R-tolerance, the resistance update stops. Therefore, the
larger the R-tolerance, the earlier the memristor RSs stop
updating. Figures 4D–H show the memristor RS sets before
training (D), after training 1,000 samples (with R tolerance of
2% (E) and 0.1% (F)), and after 10,000 samples (with R
tolerance of 2% (G) and 0.1% (H)). There are three color
regions that can be clearly seen: blue (high resistive range),
white (middle resistive range), and red (low resistive range).
Before training, memristor RSs are initialized to the high
resistive range. After 1,000 samples, both versions with an
R tolerance of 2 and 0.1% show distinguishable high and
middle resistive ranges, reflecting the increasing training
accuracy before 1,000 samples in Figure 4A. After 10,000
samples, the version with R-tolerance of 0.1% clearly
displays high, middle, and low resistive regions, while the
low resistive region is merged to the middle region in
versions with an R-tolerance of 2% because of the cut-off of
a too large R-tolerance. The version with an R-tolerance of 2%
is not able to distinguish specific images when the middle

region becomes larger as stimuli from different digits will all be
assigned to weights with middle values. Therefore, the
accuracy curves for large R-tolerance display decreasing
tendency after certain points in Figure 4A.

Finally, we present a comparison between two biasing
schemes: 1) bias voltages are only applied to selected device
(corresponding selector-based crossbar array) scenarios, and 2)
half-bias voltages are also applied to unselected devices in the
same bitlines and wordlines (as in selectorless crossbars).
Figure 5A shows the accuracy of both versions. In the
training accuracy curves, both versions show the same
tendency with a noticeable gap in between. The test accuracy
bar chart further displays the ~20% gap. In order to explore the
cause of the accuracy gap, we look into the resistance change
curves of memristors representing a stimulated synapse (between
input neuron 250 and output neuron 6) and a non-stimulated
synapse (between input neuron 10 and output neuron 6). The
baseline curves (red) are given by virtual resistance values of the
baseline which stores weights directly without using memristor
models. The resistance change for the stimulated synapse in the
selector-based version (dark blue trace) shows the same
decreasing tendency as the baseline (red), while the resistance

FIGURE 4 | Classification accuracy affected by R tolerance. (A),(B) Accuracy in training and test phases with different R tolerance, respectively. (C) Resistance
changes in a memristor representing a stimulated synapse (between input neuron 250 and output neuron 6) in training process with different R tolerance. Notice that we
use virtual resistance values for the baseline (D)–(H). Memristor resistive states before training (D), after 1,000 samples for R tolerance of 2% (E) or 0.1% (F), and after
10,000 samples for R tolerance of 2%(G) or 0.1%(H). The total range of memristor RSs is from 2.26 to 11.5kΩ, which gives the range of weights as 0.98 to 0.086
correspondingly.
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in the selectorless version (orange) displays an increasing
tendency. Zooming into samples 0 to 200, we observe
unexpected resistance increases when no resistance update
should happen for the selectorless scenario. This is because
some memristors representing synapses connected to the
neurons that are not supposed to fire have been applied pulses
to increase the weights according to the learning rule, and they
shared the same wordlines or bitlines with those whose resistance
are supposed to decrease. A cycle of half-voltage bias only caused
a trivial resistance increment, but there were many cycles of
unexpected resistance drop happening in the same time step as
there were many devices in the same wordlines/bitlines; therefore,
the resistance increment accumulated and caused a large gap to
the baseline. For the non-stimulated synapse, both the selector-
based (purple) and the baseline (green) traces stay around their
initial values throughout the whole training phase, while
unexpected resistance increases occur in the selectorless
version. However, the resistance in memristors representing
the stimulated synapse is still slightly smaller than that of the
non-stimulated synapse in the given examples in the selectorless
scenario. Because of this slight resistance difference, the NN based
on selectorless array is still able to learn images and classify
correctly in some cases. We present the memristor resistive states
before and after training for both versions in Figures 5C–E. Due
to the half-voltage bias, the new memeristor operation range
changes to 2.23 k-28kΩ, giving the new conductance range from

3.57 × 10−5 S to 4.48 × 10−4 S. Therefore, the linear mapping from
conductance to weights now is changed to the following equation:

W � 2.42 × 103 × G − 0.0866.

Memristor RSs are initialized as ~11 kΩ before the training.
After 10,000 samples, the resistive states of stimulated
memristors in selector-based array (Figure 5D) decrease to
a low resistive range (~2.26 kΩ), while the non-stimulated stay
in a high resistive range (~11 kΩ). In the selectorless version,
stimulated memristor RSs increase to a very high resistive
range (~18 kΩ), with non-stimulated ones increasing even
higher to (~22 kΩ). Thus, NeuroPack has helped us uncover
the perhaps surprising result that even in the presence of
invasive unexpected weight update, the NN is still capable
of distinguishing the MNIST digits substantially better than
chance, albeit with a very different weight distribution than the
selector-based network.

5 CONCLUSION

In this study, we presented NeuroPack, a versatile algorithm-
level software emulator for memristor-based neuro-inspired
computing systems. NeuroPack allows users to customize the
simulator at both system level and device level. This platform
can work as a standalone tool to emulate neuro-inspired

FIGURE 5 | Classification with versions using selector-based and selectorless memristor arrays. (A) Accuracy in selector-based and selectorless arrays. (B)
Resistance changes in memristors representing a stimulated (between input neuron 250 and output 6) and a non-stimulated (between input neuron 10 and output
neuron 6) synapse (C)–(E) give memristor resistive states before training (C) and after training for both selector-based (D) and selectorless (E) versions. The color bar
shows the memristor states from 2.26 k to 25kOmega, which give weights in range 0.98 to 0.01 correspondingly.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 85185610

Huang et al. NeuroPack

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


computing with different neuron models, learning rules,
memristor models, different types and numbers of memristor
devices, different neural network architectures, and different
applications. We further showcased an application example
using NeuroPack to simulate a two-layer SNN for
handwritten digit recognition with the MNIST dataset. We
explored how different factors such as R-tolerance in weight
updating and biasing methods in different array structures affect
system classification accuracy and quickly reached two
conclusions: 1) Even a surprisingly lax 1% tolerance in
resistive state (an engineering parameter) allows for sufficient
training efficiency to closely match the performance of an ideal
model for this architecture and dataset. This indicates that
memristor-based systems may be able to achieve competitive
performance without requiring expensive precision circuits at
least in some scenarios. 2) Even in a scenario with unexpected
weight updates due to the half-voltage biasing method in
selectorless arrays, it may be possible to decode useful
information from the state of the system after training. These
investigations illustrate the role NeuroPack can play in assisting
users to design and validate neuro-inspired concepts and
improve system performance involving emerging nanoscale
memory technologies. We envisage that by varying datasets,
biasing and other experimental parameters, and device
technology and connectivity patterns, users from across the
community will be able to use this tool to generate the results
that suit their needs quickly and efficiently.
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