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Summary 

Data for statistical analysis is often available from different samples, with each sample 

containing measurements on only some of the variables of interest. Statistical matching 

attempts to generate a fused database containing matched measurements on all the target 

variables. In this article, we consider the use of statistical matching when the samples are 

drawn by informative sampling designs and are subject to not missing at random nonresponse. 

The problem with ignoring the sampling process and nonresponse is that the distribution of the 

data observed for the responding units can be very different from the distribution holding for 

the population data, which may distort the inference process and result in a matched database 

that misrepresents the joint distribution in the population. Our proposed methodology employs 

the empirical likelihood approach and is shown to perform well in a simulation experiment and 

when applied to real sample data. 
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1. Introduction 

Statistical matching has become popular in recent years. Information on a set of variables 

of interest is often available in different micro databases, with each database containing only 

some of the variables, but with no joint observations on all the variables. For example, in Italy 

reliable information on households income is provided by SHIW (Survey on Household Income 

and Wealth) conducted by Banca d’Italia. On the other hand, information on consumption 

expenses is provided by the HBS (Household Budget Survey), run by ISTAT (Italian National 

Institute of Statistics). Cf. Conti et al. (2017). This constitutes a serious problem since 

household data on income and expenditure are used by policy makers for analyzing the impact 

of policy strategies. Statistical matching attempts to combine the data obtained from different, 

non-overlapping samples, drawn from the same target population. At a micro level, the main 

objective is to construct a synthetic (fused) data set, with joint observations on all the variables 

of interest. At a macro level, the main objective is the estimation of the joint population 

distribution of all the variables of interest.  

Let A  and B  be two independent samples of size 
An  and 

Bn  respectively, selected from a 

population of N  independent and identically distributed (i.i.d.) records, generated from some 

joint probability (density) function (pdf), ( , , ; )pf x y z   of variables ( , , )X Y Z  indexed by a 

vector parameter  , where p  signifies the population model (the model holding for the 

population values). We suppose that the population is large, such that the samples A  and B  

can be assumed to have no units in common. The statistical matching problem is that 

( , , )X Y Z  are not jointly observed in the two samples: only ( , )X Y  are observed for the units in 

sample A , and only ( , )X Z  are observed for the units in sample B ; see Rässler (2002) and 

D’Orazio et al. (2006b). Thus, the units in A  have missing Z  values while the units in B  have 

missing Y  values. Because of the lack of joint information on all the three variables, the joint 

pdf ( , , ; )pf x y z   is not directly identifiable, unless under strong assumptions, which are 

generally hard to confirm. Several alternative approaches have been proposed in the literature 

to overcome the identification problem. The first (common) approach assumes conditional 

independence (CIA) between Y  and Z  given X , see, e.g., Okner (1972). A second approach 

assumes the existence of external information. Relevant external information may be available 

in one of the following forms: i) a sample C  with joint observations on ( , , )X Y Z ; (Singh et al., 

1993); (ii) proxy variables for Y , Z  as in Zhang (2015), where a range of statistical matching 
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techniques are reviewed and developed for estimating the joint population pdf of categorical 

variables. Proxy variables, if sufficiently associated with Y  or Z , can help studying the 

relationship between Y  and Z  and in particular, help verifying or refuting the CIA.  Empirical 

results in Zhang (2015) demonstrate that the use of proxy variables not only reduces the 

uncertainty associated with data fusion, but also provides more accurate estimates of the 

target joint distribution. Notice, however, that the CIA cannot be tested from the samples A  

and B  alone, and external information is often not available. (As discussed and illustrated in 

subsequent sections, the CIA can be tested indirectly by use of the estimated respondents’ 

distribution resulting from this assumption.) 

     A third approach proposed in the literature consists therefore of analyzing the uncertainty 

regarding the joint distribution of ( , , )X Y Z . Under this approach, several alternative models for 

the joint distribution of ( , , )X Y Z , compatible with the distributions of ( , )X Y  and ( , )X Z  in the 

samples A  and B  are considered, resulting in “uncertainty intervals” for the joint pdf of all the 

three variables, and the target estimators derived from them. See, e.g., Moriarity and Scheuren 

(2001), Rässler (2002) and D’Orazio et al. (2006a). Uncertainty in statistical matching in a 

nonparametric setting is considered in Conti et al. (2015). Zhang and Chambers (2019) 

describe a general approach for inference based on incomplete 2X2 tables (including the case 

of statistical matching and nonresponse), when assumptions required for validating a 

likelihood-based approach cannot be supported by the available data. The authors develop the 

concept of corroboration, as a measure of the statistical evidence in the observed data for the 

unknown parameter values, which is not based on likelihoods. For this, the authors compute 

intervals for each of the parameter values (rather than point estimates), without relying on any 

additional assumptions that can lead to pointwise identification of the joint distribution. The 

interval corresponding to a maximum corroboration value identifies the parameter value that is 

the hardest to refute based on the observed data. 

  

     In practice, the independence assumption between sample measurements pertaining to 

different units in the sample is itself questionable when dealing with sample survey data. Often, 

the sample selection employs complex sampling designs that involve different inclusion 

probabilities, which could be related to the survey variables of interest, known in the statistical 

literature as informative sampling. This can distort the independence assumption and result in 

a different distribution of the observed data from the distribution holding in the population from 

which the sample is drawn. See Pfeffermann and Sverchkov (2009) for discussion of the notion 
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of informative sampling and review of methods to handle this problem.  

     Statistical matching of complex sample surveys is studied by Rubin (1986), Renssen (1998) 

and Conti et al. (2016). Marella and Pfeffermann (2019) considered statistical matching under 

informative sampling designs, assuming complete response. However, in practice, not all the 

sampled units respond, and as well known, the response rates are steadily decreasing all over 

the world. Most of the approaches dealing with nonresponse assume that the missing data are 

missing at random (MAR, Little and Rubin, 1987). By this assumption, the response 

probabilities do not depend on the unobserved data, after conditioning on the observed data. 

In reality, the MAR assumption is often violated and when the response probabilities are 

correlated with the target outcomes even after conditioning on the observed data (often, the 

model covariates), the missing data are not missing at random (NMAR nonresponse).  

     In this article, we consider the case where the sampling designs used to select the samples 

A  and B  are informative, and the nonresponse in the two samples is NMAR. As studied 

theoretically and illustrated in many articles, even informative sampling with complete 

response, or noninformative sampling but with NMAR nonresponse, already results in a 

different joint distribution of the observed data in the sample from the distribution of the same 

variables in the population from which the sample is taken. See, e.g., Pfeffermann (2017). Not 

surprisingly and as illustrated later, ignoring the sampling and response processes in statistical 

matching (the focus of the present article) can result in severely biased estimators and a 

misrepresentative fused dataset. To the best of our knowledge, no other article has been 

published so far, considering the dual effects of informative sampling and NMAR nonresponse 

in statistical matching. Our proposed methodology utilizes the empirical likelihood (EL) 

approach.  

     In Section 2 we define more formally the statistical framework under consideration. Section 

3 develops the EL in the statistical matching context under informative sampling designs and 

NMAR nonresponse, assuming the CIA. The proposed approach combines the EL with a 

parametric model for the response probabilities. In Section 4 the CIA is dropped, the 

uncertainty in statistical matching is introduced and a procedure for choosing a population 

distribution from the class of plausible pdfs is described. Section 5 presents the results of a 

simulation study, aimed for assessing the performance of our proposed methodology. In 

Section 6 we apply the methodology to the SHIW and HBS samples mentioned in the 

introduction. Section 7 contains a brief summary. 
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2. Statistical matching under nonignorable sampling and nonresponse. 

Notation and assumptions 

Consider a finite population of N  units { 1,..., }i N . Associated with unit i  are values of 

three study variables, ( , , )X Y Z . Suppose that the population values 

1 1 1{( , , ),...,( , , )}p N N ND x y z x y z  are independent realizations from a distribution with pdf 

( , , ; )pf x y z  . Let 
,p AV , 

,p BV  be sets of population values of design variables used for selecting 

two nonoverlapping samples, A  and B  respectively.  Some or all of the variables ( , , )X Y Z  

might be included among the design variables. We assume that , ,, ,p p A p BD V V  are realizations 

of a random process, implying that the first order inclusion probabilities  , ,,i A i B   may be 

viewed as random as well. Denote by , ,1/i A i Aw  , , ,1/i B i Bw   the (base) sampling weights. 

We assume that under complete response, the data available to the analyst consist of the 

samples 
,( , , )i i i AA x y w  of size 

An  and 
,( , , )i i i BB x z w  of size 

Bn , but not the population 

values of the design variables, which are known to the persons drawing the samples but 

generally not to the persons analysing the sample data. Following Marella and Pfeffermann 

(2019), we assume that the sampling designs for selecting the two samples are informative for 

the corresponding joint population distribution, in the sense that the sample selection 

probabilities are correlated with at least some of the variables ( , , )X Y Z , implying that even if 

all the three variables had been observed in the two samples, the joint sample pdf ( , , )Sf x y z  of 

the sample data is different from the corresponding population pdf, ( , , )pf x y z , for ,S A B .  

In this article, we assume that in addition to the use of informative sampling designs, the 

samples A  and B  are subject to not missing at random (NMAR) unit nonresponse, in the 

sense that the probability to respond depends on the study variables. The data available to the 

analyst consist therefore of the sets of responding units in A ( AR ) and B ( BR ), respectively. 

Consequently, the joint pdf of the observed data, ( , , )
SRf x y z , differs from the sample pdf 

( , , )Sf x y z  under complete response, and from the population pdf ( , , )pf x y z , ,S A B . Here, 

for convenience, we omit the parameters indexing the three distributions. Notice that while the 

sampling probabilities are generally known, and thus can be used to account for informative 

sampling, the response probabilities are practically unknown and need to be modelled. 
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Pfeffermann and Sikov (2011) review approaches proposed in the literature to deal with NMAR 

nonresponse.  

Accounting for informative sampling but with complete response for statistical matching is 

considered in Marella and Pfeffermann (2019). The authors applied a parametric approach, 

basing the inference on the sample distribution, i.e., the distribution holding for the observed 

sample data. However, as discussed in Pfeffermann and Landsman (2011), the maximization 

of sample likelihoods can be complicated numerically and result in unstable estimates, 

depending on the population model and the model assumed for the sample selection 

probabilities, given the observed data. For this reason, and in order to account also for NMAR 

nonresponse, we propose in Section 3 the use of the empirical likelihood (EL), which enables 

estimating the parameters governing the sampling and response models, without specifying 

the corresponding population model. 

3.  Statistical matching under nonignorable sampling and nonresponse by EL 

In Section 3.1, the statistical framework under the EL approach is briefly described. The EL 

under informative sampling is introduced in Section 3.2 and extended to NMAR nonresponse 

in Section 3.4. The generation of a fused data set under the EL approach is described in 

Section 3.3.   

3.1. Statistical framework under the empirical likelihood approach  

The use of the EL for analyzing complex survey data has its origins in the pioneering article by 

Hartley and Rao (1968), where an estimator based on the multinomial function under simple 

random sampling is proposed. The use of EL gained increasing interest in general statistical 

contexts, following the work of Owen (1990, 1991, 2001, 2013). See also Qin and Lawless 

(1994) and the review article by Chen and Van Keilegom (2009). The EL combines the 

robustness of nonparametric methods with the efficiency of the likelihood approach. It is 

essentially the likelihood of the multinomial distribution employed by Hartley and Rao (1968), 

where the unknown parameters are the point masses assigned to the distinct sample values. 

Chen and Qin (1993) proposed an EL approach for using auxiliary information in simple 

random sampling without replacement. Chen and Sitter (1999) extended the method to 

unequal probability sampling, applying a “pseudo-empirical likelihood approach”. Wu (2004) 

used pseudo-empirical likelihood methods to combine information from two independent 

surveys, and obtained an estimator for a mean, which is asymptotically equivalent to a GREG-
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type estimator. The EL approach facilitates the use of calibration constraints. See Remark 4 for 

the form of the constraints and Chaudhuri et al. (2010) for details of the constrained estimation 

procedure and the asymptotic properties of the resulting estimators. Most importantly, the use 

of this approach does not require specifying the population model, and is thus more robust and 

often easier to implement.  

     In the present section, we assume the CIA but this assumption is dropped in the following 

sections. We also assume that X  can take K  distinct values with probabilities 

1

P( ), 1
K

X X

k k k

k

p X x p


   , while Y  and Z  are continuous. The “matching variable”, X , 

measured in both samples, might be a stratification variable and/or a socio-demographic 

variable. Socio-demographic characteristics are often related to other variables of interest.  

 The basic idea of the EL approach is to approximate the population distribution by a 

multinomial model, which support is given by the empirical observations. Let ( , . )i i ix y z  define 

the values associated with unit i  and denote by Pr( )X

i ip X x  , 
| Pr( | )Y X

i i ip Y y X x   , 

| Pr( | )Z X

i i ip Z z X x   , each with the support observed in the samples. Then, under the CIA, 

the joint population multinomial probability of unit i  is given by 
| |XYZ X Y X Z X

i i i ip p p p . Finally, let  

 :k i kA i A x x    be the set of sampled units in A  with kX x , such that for ki A , 

( )X X

i k kp P X x p   , 1,..,k K .  

3.2. The empirical likelihood approach under informative sampling  

In what follows we define the EL in the statistical matching context under informative 

sampling. Let 
A

iI  be the sample indicator taking the value 1 if unit i  is drawn to the sample A  

and 0 otherwise. For ki A  denote, 

    , ( 1| , ),XY A

i A i i iP I x y   | ( | )Y X

i i ip P y x ,
|

, , ,( 1| )
k

X A XY Y X X

i A i i j A j k A

j A

P I x p  


    .           (3.1) 

It follows that, 

               

|

,| |

, |

,

( 1| , )
( | , 1)

( 1| )
k

XY Y XA
i A iY X A Y Xi i i

i A i i i iA XY Y X

i i j A j

j A

pP I x y
p P y x I p

P I x p







   

 
.                                 (3.2)     

Similarly, for ki A   
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,

,

,

1

( 1| )
( | 1)

( 1)

X XA
k A kX A Xi k

k A k i k KA
X Xi
j A j

j

pP I x
p P x I p

P I
p







   




.                                 (3.3)  

     Under informative sampling, the observed outcomes are no longer representative of the 

population outcomes and the sample models (3.2), (3.3) are different from the corresponding 

population models
| ,Y X X

i kp p . Nonetheless, as shown and illustrated in Pfeffermann et al. (1998), 

if the population values are independent under the population model (see beginning of Section 

2), then under mild conditions they are also asymptotically independent under the sample 

model, when the sample size remains fixed but the population size increases. This permits 

approximating the sample likelihood by the product of the sample pdfs over the corresponding 

sample observations. Hence, for sufficiently large populations, the sample EL (ESL), based on 

the observed data in A  is,  

                                                  , |

, ,

1

( )
X
k A

k

K
nA X Y X

Obs k A i A

k i A

ESL p p
 

  ,                                              (3.4)                                                                    

where ,

X

k An  is the size of kA . An analogous expression to (3.4) holds for the ESL based on the 

observed data in B . Hence, the ESL based on the sample A B  is,                                                     

    , ,| | | |

, , , , , , , ,

1 1

( ) ( )
X X
k A k B

k k

K K
n nA B X Y X X Z X X Y X X Z X

Obs i A i A i B i B k A i A k B i B

i A i B k i A k i B

ESL p p p p p p p p

     

  
   
  
      ,              (3.5) 

where 
Z|

, ( | , 1)X B

i B i i ip P z x I  . By (3.2), (3.3) (with analogue expressions for the sample B), and 

(3.5), the log-likelihood based on A B  is,      

| |

, , , , ,

1

| |

, , , , ,

1 1

, ,

1

log( ) log( ) log log( )

log log( ) log

log(

k k

k k

K
A B XY Y X X XY Y X X X X

Obs i A i k A i A i k A k A k

i A i A k

K K
X X X XZ Z X X XZ Z X

k A j A j i B i k B i B i

k j i B i B

K
X X

k B k B

k

ESL p n p n p

n p p n p

n p

  

  





  

   



 
    

 

  
     

   



  

   

 , ,

1 1

) log .
K K

X X X X

k k B j B j

k j

n p
 

 
  

 
 

             (3.6) 

Notice that the sampling probabilities in A  and B  may depend on many unobserved variables 

and yet, by definition of the sample pdf, one only needs to model the probabilities 

( 1| , )A

i i iP I x y [ ( 1| , )B

i i iP I x z ]. Furthermore, following Pfeffermann and Sverchkov (1999), 

the probabilities , ,( 1| , ) 1/ ( | , )XY A

i A i i i A i A i iP I x y E w x y     and , ,1/ ( | , )XZ

i B B i B i iE w x z   can be 
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estimated outside the likelihood by regressing the sample weights ,i Aw ( ,i Bw ) against 

( , )i ix y [( , )]i ix z , using the observed data in A  and B  respectively, or non-parametrically, as 

considered in Feder and Pfeffermann (2019). The resulting estimates can then be inserted into 

the expressions for ,

XY

i A  and ,

XZ

i B , with ,

X

k A  and ,

X

k B  defined by (3.1). Moreover, as discussed 

and illustrated in Pfeffermann (2011), the resulting sample models can be tested. The unknown 

parameters in (3.6) are thus the probabilities 
| |{ , , }X Y X Z X

k i ip p p . In the statistical matching 

context, different approaches can be used for maximization of the likelihood. For convenience, 

we describe the approaches for the case where no variables with known sample values and 

corresponding population means exist, which as noted before can be used for calibration. 

When such variables exist, the calibration equations are imposed to constrain the maximization 

process. See Remark 4 below.  

Remark 1. In practice, the covariates contained in the population model need not be the same 

as the covariates contained in the model of the conditional sample inclusion probabilities 

( 1| , )A

i i iP I x y . However, to simplify the presentation, we assume for convenience that the 

same covariates appear in the two models or alternatively, that ix  defines the union of the two 

sets of covariates. 

3.2.1. Estimating the unknown probabilities separately from the samples A  and B   

     Noting that the likelihood (3.5) can be factorized into a likelihood based only on the sample 

A , and a likelihood based only on the sample B , the unknown probabilities 
| |{ , , }X Y X Z X

k i ip p p  

can be estimated separately from the two samples. This implies two sets of estimates for the 

probabilities { }X

kp , which need to be harmonized. See Renssen (1998) and below. The EL 

estimators of the unknown probabilities are obtained by maximizing the loglikelihood (3.6), 

subject to the constraints, 

                        
| | | |

1

0, 0, 0, 1, 1, 1
k k

K
X Y X Z X X Y X Z X

k i i k j j

k j A j B

p p p p p p
  

        .                       (3.7) 

Following Kim (2009), Chaudhuri et al. (2010), and Marella and Pfeffermann (2019), the 

estimators are: 
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1 1 1 1

, , , , , , , , , ,

1 1

| 1 1 | 1 1

, , , ,

ˆ ˆ[ ( ) ] / [ ( ) ], [ ( ) ] / [ ( ) ]

ˆ ˆ( ) / ( ) , ( ) / ( ) ,
k k

K K
X X X X X X X X X X

k A k A k A j A j A k B k B k B j B j B

j j

Y X XY XY Z X XZ XZ

i i A j A i i B j B

j A j B

p n n p n n

p p

   

   

   

 

   

 

 

 

 

 
           (3.8)                                                                     

where .
ˆ X

k Ap , ,
ˆ X

k Bp  are the estimates of 
X

kp  obtained from the samples A  and B , respectively. 

Harmonization of the estimates ,
ˆ X

k Ap , .
ˆ X

k Bp  into a unique estimate 
X

kp  can be achieved by use 

of a linear combination of the two estimates, i.e.,   

                                      , ,
ˆ ˆ ˆ(1 )X X X

k k A k Bp p p    ,  0,1  .                                                   (3.9)                                                                                             

A plausible choice is / ( )A A Bn n n   . Alternatively, one may choose the value   minimizing 

the variance of (3.9). To this end, variance estimates of , ,
ˆ ˆ,X X

k A k Bp p  can be computed by 

resampling methods for finite populations, as proposed by Conti et al. (2020). The methods 

use a two-stage procedure. In the first stage, a pseudo-population, which can be viewed as a 

prediction of the target finite population is constructed, using the sampling weights. In the 

second stage, samples are drawn from the pseudo-population using the same sampling 

designs used for drawing the original samples. The procedure is also applicable for the case of 

informative sampling designs. 

Remark 2. Another approach consists of replacing ,

X

k Ap  and ,

X

k Bp  in (3.5) by , ,(1 )X X

k A k Bp p   , 

and maximizing the sample EL with respect to 
| |{ , , }X Y X Z X

k i ip p p  and  .  

Remark 3. Chen and Sitter (1999) consider a pseudo empirical likelihood (PEL) approach, 

which in the context of statistical matching implies the following likelihood, 

                        
, ,

, ,| |

1 1

( ) ( )
i A i B

i A i Bi A i Bk k

k k

w wK K
w w

A B X Y X X Z X

PEL k i k i

k i A k i B

EL p p p p
 

   
   
   

    

   

 
    .                    (3.10) 

Notice that in (3.10), the two samples are not considered separately. It follows from Chen and 

Sitter (1999) that in the absence of calibration constraints, the estimates maximizing the 

likelihood (3.10) are, 

                       

, ,

| |

, , , , , , ,

, ,

1 1

ˆ ˆ ˆ, / , / .k k

A B

k k

j A j B

j A j BX Y X Z X

k PEL i PEL i A j A i PEL i B j Bn n
j A j B

j A j B

j j

w w

p p w w p w w

w w

 

 

 



  



 
 

 
      (3.11) 
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The PEL estimators of 
| |{ , }Y X Z X

i ip p  in (3.11) have the same form as in (3.8), but with the base 

sampling weights 
, ,{ , }j A j Bw w , instead of the weights 

1 1

, ,{( ) ,( ) }XY XZ

j A j B  
. The basic difference 

between the two approaches is that in Chen and Sitter (1999), the likelihood is with respect to 

the population distribution, while the likelihood in (3.5) is with respect to the sample distribution.  

3.2.2. File concatenation for estimation of the probabilities 
X

kp   

Rubin (1986) proposed to estimate the population probability distribution of X  by computing 

concatenated weights for the sample A B  as follows:  

             
, , ,

,

, , ,

1 1 1

( )
( | 1 1)

X X X X X

k A k B k k A B kX A B

k A B k i i K K K
X X X X X X

j A j j B j j A B j

j j j

p p
p P x I I

p p p

  

  







  


     

  
,                    (3.12)                                                

where , , ,

X X X

k A B k A k B     . The basic assumption underlying (3.12) is that the probability of a 

unit to be drawn to both samples is negligible, such that [( 1 1) | ] 0A B

i i kP I I x    . This is 

generally true when the two samples are independent, with small sampling fractions. Define, 

, , ,

X X X

k A B k A k Bn n n   . With this notation,  

                                  , | |

, , ,

1

( )
X
k A B

k k

K
nAUB X Y X Z X

Obs k A B i A i B

k i A i B

ESL p p p



  

   .                                          (3.13)                                        

The ESL (3.13) is maximized under the constraints (3.7), yielding the estimators,    

1 1 | 1 1

, , , , , ,

1

| 1 1

, ,

ˆ ˆ[ ( ) ] / [ ( ) ], ( ) / ( ) ,

ˆ ( ) / ( ) .

k

k

K
X X X X X Y X XY XY

k k A B k A B j A B j A B i i A j A

j j A

Z X XZ XZ

i i B j B

j B

p n n p

p

   

 

   

   

 

 



 



 


       (3.14)   

Remark 4. When population means of variables measured in the sample A  and/or in the 

sample B  are known, they can be added to the constraints of the ESL. The following 

calibration constraints may be added, depending on data availability: 
1

K
X

k k X

k

p x 


 , 

|

1 k

K
X Y X

k i i Y

k i A

p p y 
 

  , 
|

1 k

K
X Z X

k i i Z

k i B

p p z 
 

  ,  where , ,X Y Z    are the population means of 

, ,X Y Z , respectively. In the simulation study of Section 5 and the application to real sample 
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data in Section 6, we added the constraint 
1

K
X

k k X

k

p x 


 .  

3.3. Generation of a fused data set 

     Once the probabilities 
| |{ , , }X Y X Z X

k i ip p p  governing the population multinomial model have 

been estimated, a fused data set with joint observations ( , , )x y z  are constructed as follows:  

(i) Generate n  observations taking values 1 2( , ,..., )Kx x x  with  probabilities 1 2
ˆ ˆ ˆ( , ,..., )X X X

Kp p p ;  

(ii) For 1,...,i n  and 1,...,k K , draw at random a value iy  from the estimated probability 

function 
|ˆ Y X

ip , taking the values 
,

1 2( , ,..., )X
k A

k k k

n
y y y  with probabilities 

,

| | |

1 2
ˆ ˆ ˆ( , ,..., )k k k

X
k A

Y x Y x Y x

n
p p p , where 

, #{ : }X

k A i kn i A x x   . 

(iii) Apply a similar procedure for drawing values iz  from the estimated probability function 

|ˆ Z X

ip .  

The consistency of the estimators of the model parameters guarantees that for sufficiently 

large sample sizes 
An  and 

Bn , the fused data set can be considered as being generated from 

the joint population pdf.   

Remark 5. It is not correct to only impute the missing z -values in A , and only the missing y -

values in B , and then consider the union of the two samples as the fused data set. This is so 

because although in the sample A  the missing z -values could be imputed using the estimated 

probabilities 
|ˆ Z X

ip , under informative sampling the observed ( , )x y  values in A are not 

representative of the population ( , )x y  values. The same holds for the sample B . 

3.4. Use of the EL under nonignorable sampling and nonresponse 

     In what follows we assume that additionally to informative sampling, the samples A  and B  

are subject to NMAR nonresponse, by which the response probabilities depend in some 

stochastic way on the study variables of interest. Let 
A

iR  define the response indicator, taking 

the value 1 if sample unit i A  responds and 0 otherwise. Let AR  denote the set of responding 

units in A  and Ar , the size of AR . The response process is assumed to be independent 

between units. This way, the set of respondents can be viewed as the result of a two phase 

sampling process: (i) a sample A  is selected from the finite population with known inclusion 
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probabilities 
,i A ; (ii) the response set AR  is selected from A  with unknown response 

probabilities ( 1| 1)A A

i iP R I  . Let , ( 1| , 1)X A A

i A i i iP R x I    . By Bayes rule, for ki A   

  
, ,

, ,

, ,

1

( 1| , 1)
( | 1, 1) ,

( 1| 1)A

X X XA A
k A k A kX A A Xi k i

k R k i i k A KA A
X X Xi i
j A j A j

j

pP R x I
p P x I R p

P R I
p

 

 


 
    

 


                            (3.15)  

  

,

|

, ,| |

, , |

, ,

( 1| , , 1)
( | , 1, 1) ,

( 1| , 1)A

A k

XY XY Y XA A
i A i A iY X A A Y Xi k i i

i R i k i i i AA A XY XY Y X

i k i i A i A i

i R

pP R x y I
p P y x I R p

P R x I p

 

 


 
    

  
                (3.16)                              

where ,

X

k A  and ,

XY

i A  are defined in (3.1),  , :A k A i kR i R x x    defines the group of 

respondents in A  with kX x  of size ,

X

k Ar  and 

                      

,

|

, , ,( 1| , 1) ( | , 1)
A k

X A A A A XY Y X

k A i k i A i k i i A i A

i R

P R x I E R x I p 


       ,                      (3.17)          

                      , ( 1| , , 1) ( | , , 1)XY A A A A

i A i k i i A i k i iP R x y I E R x y I      .                                    (3.18)                          

In (3.15), the sample model 
|

,

Y X

i Ap  and the model assumed for the response probabilities define 

the model holding for the outcomes of the responding units. Notice that unless 

( 1| , , 1)A A

i k i iP R x y I   ( 1| , 1)A A

i k iP R x I    for all ( , )k ix y , the model (3.16) is different from 

the sample model 
|

,

Y X

i Ap  defined by (3.2), which is different from the corresponding population 

model under informative sampling. Specifically, the respondents model is a function of the 

corresponding population model, the conditional expectations of the sampling weights, 

, ,( 1| , ) 1/ ( | , )XY A

i A i i i A i A i iP I x y E w x y    , and the response probabilities 

, ( 1| , , 1)XY A A

i A i k i iP R x y I    . Assuming that the response is independent of the sample 

selection,  , ,( | , ) ( | , )
AA i A i i R i A i iE w x y E w x y , in which case the probabilities ( 1| , )A

i i iP I x y  can 

be estimated by regressing ,i Aw  against ( , )i ix y , using the observed data in A , and similarly 

for the sample B . See Section 3.2. Clearly, if the response probabilities depend in some way 

on the sample selection, say, higher nonresponse rates for units with higher sampling 

probabilities, the expectations ,( | , )A i A i iE w x y  need to be estimated in some more elaborated 

manner. See also the concluding remarks in Section 7. 
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Remark 6. Under MAR nonresponse, the response probability does not depend on the target 

outcome variable after accounting for the model covariates, such that in (3.16), 
| |

, ,A

Y X Y X

i R i Ap p . 

However, a nonresponse bias may still exist if the probabilities { }X

kp  are not estimated 

properly. Recall that the covariates are only assumed to be known for the responding units.  

     With straightforward modification of the notation, similar expressions to (3.15)-(3.18) are 

obtained for the model holding for the responding units in B . Thus, the empirical respondents’ 

likelihood (ERL) for the sample A B  is given by, 

                      ( ) ( )
X X

k,A k,B

A A B B

A,k B,k

K K
r rA B X Y|X X Z|X

Obs k,R i,R k,R i,R

k=1 i R k=1 i R

ERL = p p p p

 

    .                           (3.19)             

Remark 7. The likelihood (3.19) only depends on the observed data for the responding units.  

     The response probabilities in (3.15)-(3.16), defining the probabilities in (3.19) are unknown 

and need to be estimated from the available data. Since no "response weights" are known, 

parametric models for the response probabilities in the two samples need to be postulated. For 

example, 

                          0, , ,( 1| , , 1) ( )A A

i i i i A A x A i y A iP R x y I g x y       ,                                     (3.20)    

                          0, , ,( 1| , , 1) ( )B B

i i i i B B x B i z B iP R x z I g x z       ,                                      (3.21)                                   

for some functions ,A Bg g , with unknown parameters 0, , ,( , , )A A x A y A    , 0, , ,( , , )B B x B z B    . 

Here again, we assume for convenience that the response probabilities depend on the same 

covariates as in the sample model. See Remark 1. Modelling the response probabilities by the 

logit or probit functions is common, but notice that in our case the probabilities depend also on 

the study variables, which is different from the familiar “propensity scores” approach, under 

which the response probabilities only depend on the observed covariates, which are in 

common use under MAR nonresponse. The unknown vector parameters, 
A ,

B , indexing the 

response models in the two samples are then estimated as part of the maximization of the 

likelihood. Thus, one needs to maximize the likelihood (3.19) with respect to a larger set of 

parameters [
| |{ , , }, ,X Y X Z X

k i i A Bp p p   ], satisfying the constraints,  

                 

, ,

| | | |

1

0, 0, 0, 1, 1, 1
A k B k

K
X Y X Z X X Y X Z X

k i i k j j

k j R j R

p p p p p p
  

        .                            (3.22) 

for all k  and i . Notice the difference from the constraints in (3.7) under full response.  
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     For subsequent inference in the statistical matching context, one only needs estimates of 

the probabilities 
| |{ , , }X Y X Z X

k i ip p p , suggesting considering the coefficients 
A ,

B  as nuisance 

parameters. In order to write the likelihood (3.19) as only a function of the three sets of   

probabilities, we adopt the profile likelihood approach. Suppose that the three sets of 

probabilities are “known”. (In practice, we use some initial estimates, see Remark 8 below). 

The profile likelihood function is defined as 
| |( , ) ( , | , , )A B X Y X Z X

A B Obs A B k i iG ERL p p p     and it is 

maximized with respect to (
A ,

B ), yielding the estimators,  

                                     
| |

( , )

ˆ ˆ( , ) argmax ( , | , , )
A B

A B X Y X Z X

A B Obs A B k i iERL p p p
 

    .                       (3.23)                                                                  

Next we substitute the estimates (3.23) into the likelihood (3.19) and maximize the resulting 

likelihood with respect to the unknown sets of probabilities, yielding  

                            
| |

| | | |

( , , )

ˆ ˆˆ ˆ ˆ( , , ) argmax ( , , , , )
X Y X Z X
k i i

X Y X Z X A B X Y X Z X

k i i Obs k i i A B
p p p

p p p ERL p p p   .                     (3.24)                 

This completes the first iteration in the estimation process. In the second iteration, we consider 

the estimates in (3.24) as “known”, re-estimate the parameters (
A ,

B ), and then the unknown 

probabilities. The iterations continue until convergence. See Feder and Pfeffermann (2019) for 

conditions guaranteeing the convergence of the maximization process.  

     As noted before, the model for the response probabilities can be tested by testing the 

estimated models, 
|

,
ˆ

A

Y X

i Rp  and 
Z|

,
ˆ

B

X

i Rp  for the observed data, using standard goodness of fit tests. 

See Pfeffermann and Landsman (2011) and Feder and Pfeffermann (2019) for examples of 

relevant test procedures. Once the probabilities of the population multinomial models have 

been estimated, a fused data set with observations ( , , )x y z  is constructed, following the 

procedure in Section 3.3. 

Remark 8. In the simulation study (Section 5), initial estimates of 
| |{ , , }X Y X Z X

k i ip p p  are 

computed by the relative frequency of the observed values in the samples A  and B . For 

example, for kX x  and  iY y , the initial value of 
|Y X

ip  is the ratio between the number of 

units in ,A kR  with kX x  and  iY y , and ,

X

k Ar . If Y  is a continuous variable, all the observed 

values are different and the initial estimates are ,1/ X

k Ar . We maximized the ERL (3.19) by using 

the R function emplik. See Owen (2013) for related theory and further details. 
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Remark 9. One of the reviewers of the present article proposed an EM algorithm for 

maximization of the ERL. We hope to investigate the properties of this algorithm in the future. 

See also the concluding remarks in Section 7.  

4. Uncertainty in statistical matching under informative sampling and 

 NMAR nonresponse  

So far, we assumed that the joint population pdf satisfies the CIA. Clearly, the CIA may not 

hold in practice and having no joint measurements for the variables of interest, disallows 

distinguishing between different plausible distributions. In Section 4.1 we drop the CIA and 

define instead a class of plausible joint pdfs for the outcome variables of interest. Some 

measures quantifying the size of the class are introduced. In Section 4.2, a procedure for 

choosing a pdf from the class of plausible pdfs is described.  

4.1. Measuring uncertainty in statistical matching 

In statistical matching, estimation of the joint pdf of ( , , )X Y Z  requires the estimation of (i) 

the marginal pdf of X  and (ii) the joint conditional pdf of ( , )Y Z  given X . Denote by 

( , | )p kF y z x  the joint cumulative population distribution function (cdf) of ( , )Y Z  given kX x , 

and by ( | )p kF y x , ( | )p kG z x  the corresponding marginal cdfs.  

Notice that unless under additional assumptions, the only valid statement regarding 

( , | )p kF y z x  is that it lies in the set 
k

p  of all joint distributions having marginal cdfs ( | )p kF y x , 

( | )p kG z x , i.e., { ( , | ) : ( , | ) ( | ); ( , | ) ( | )}k

p p k p k p k p k p kF y z x F y x F y x F z x G z x      . For 

known ( | )p kF y x , ( | )p kG z x , [ ( | ), ( | )] ( , | ) [ ( | ), ( | )]p k p k p k p k p kL F y x G z x F y z x U F y x G z x  , 

where 

                       [ ( | ), ( | )] min[ ( | ), ( | )]p k p k p k p kU F y x G z x F y x G z x ,                                        (4.1) 

                       [ ( | ), ( | )] max[0, ( | ) ( | ) 1]p k p k p k p kL F y x G z x F y x G z x   .                             (4.2)  

The bounds (4.1), (4.2) are the Fréchet bounds, see Nelsen (1999). A natural pointwise 

uncertainty measure is the length of the interval { [...], [...]}L U . For kX x , the measure is, 

      
2

{ [ ( | ), ( | )] [ ( | ), ( | )]} ( | ) ( | )k

p p k p k p k p k p k p kU F y x G z x L F y x G z x dF y x dG z x


   .             (4.3) 

Weight functions different from ( | ) ( | )p k p kdF y x dG z x  can be used instead. Our choice has a 

clear interpretation, with larger weights assigned to intervals with larger marginal densities. The 
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measure in (4.3) is easily estimated from the sample data (Equation (4.5)).   

    An overall uncertainty measure is defined by the average of the conditional measures (4.3),  

                                                         
1

K
k X

p p k

k

p


   .                                                               (4.4)     

As shown in Conti et al. (2012), the value 1/ 6k

p   of the conditional uncertainty measure 

(4.3) represents the maximum uncertainty when no external information beyond knowledge of 

the marginal cdfs ( | )p kF y x  and ( | )p kG z x  is available. Consequently, the maximum 

unconditional uncertainty measure (4.4) also equals 1/6. Denote, 
,

, 1 2( , ,..., )X
A k A

k k k

k R r
y y y  , 

,
, 1 2( , ,..., )X

B k B

k k k

k R r
z z z  . The measure (4.3) can be estimated by averaging the , ,

X X

k A k Br r  pointwise 

uncertainty measures,  

           

, ,, ,

1 ˆ ˆˆ ˆ ˆ[ ( ( | ), ( | )) ( ( | ), ( | )]
k R k RA B

k

p p k p k p k p kX X
y zk A k B

U F y x G z x L F y x G z x
r r  

    ,                   (4.5) 

where ˆ ( | )p kF y x  and ˆ ( | )p kG z x  are the estimated cdfs of ( | )p kF y x  and ( | )p kG z x ; 

,

|

1

ˆ ˆ( | ) ( )

X
k A

k

r

Y x k

p k i i

i

F y x p I y y


  , 
,

|

1

ˆ ˆ( | ) ( )

X
k B

k

r

Z x k

p k i i

i

G z x p I z z


  . The overall uncertainty measure 

(4.4) is estimated as, 

                                                                   
1

ˆ ˆ ˆ
K

k X

p p k

k

p


   .                                               (4.6)  

The bounds  (4.1), (4.2) can  be  narrowed  when  additional  information  is  available. The  

reduction in uncertainty due to the use of external information is investigated in Conti et al. 

(2015, 2016), where conditionally on kX x , constraints of the form ( , )k k ka c y z b   with 

( , )kc y z  defining a monotone function of y ( )z  for each z ( )y , are added. The class of 

plausible pdfs is now,  

, { ( , | ) : ( , | ) ( | ), ( , | ) ( | ), ( , ) }k

p c p k p k p k p k p k k k kF y z x F y x F y x F z x G z x a c y z b        .     (4.7)  

Hereafter, each bivariate pdf in the class (4.7) is referred to as a plausible matching pdf for 

( , )Y Z , conditionally on kX x . For example, Okner (1972) imposed the constraint Y Z . 

With this constraint, the Fréchet bounds (4.1)-(4.2) become (see Conti et al. 2015),                      

           [ ( | ), ( | )] min[ ( | ), ( | ), ( | )]c p k p k p k p k p kU F y x G z x F y x F z x G z x                                     (4.8) 



 18 

         
[ ( | ), ( | )] max[0, ( | ) ( | ) 1,

min( ( | ), ( | )) ( | ) 1]

c p k p k p k p k

p k p k p k

L F y x G z x F y x G z x

F y x F z x G z x

  

 
.                       (4.9)                                  

Notice the difference from (4.1) and (4.2), when no additional information is available. The 

corresponding uncertainty measures, ,

k

p c ,
,p c , are defined similarly to (4.3), (4.4) but with 

respect to the bounds (4.8), (4.9). By choosing a matching distribution from the class (4.7), the 

uncertainty measure 
,p c  provides an upper bound for the matching error. The statistical 

matching problem consists therefore of choosing a matching distribution from the class (4.7).  

4.2. Choosing a matching distribution  

Conti et al. (2016) proposed a procedure for choosing a pdf in the class (4.7), based on 

Iterative Proportional Fitting (IPF, Bishop et al.1975). The procedure consists of the following 

steps: 

Step 1: Discretize Y  and Z  by grouping their ascending values in pre-defined classes. 

Conditionally on kX x , the range of Y  is divided into kh  adjacent intervals 

| | |

1 ,.., ,..,k k k

k

Y x Y x Y x

h hI I I , where 
|

1[ , ]kY x

h h hI y y , 1,.., kh h  with 
0 iy min y , h iy max y . Similar 

notation applies to the variable Z ; 
|

1[ , ]kZ x

g g gI z z  for 1,.., kg g . For kX x , denote by 

,d kY ( ,d kZ ) the discretized variable corresponding to Y ( Z ), taking kh ( kg ) values defined by the 

midpoints ,d hy ,( )d gz  of each interval. Let {
kC } be the contingency table defined by the 

k kh g  

values 
|

,1 ,1 , , , ,[( , ),..,( , ),..,( , )]k

k k

YZ x

d d d h d g d h d gy z y z y z  , with cell probabilities 

, , , , , ,| | |

11( ,.., ,..., )d k d k k d k d k k d k d k k

k k

Y Z x Y Z x Y Z x

hg h gp p p . Initial values , ,0, |
{ }d k d k kY Z x

hgp  of the cell probabilities when 

applying the IPF are defined in Step 3 below. Note that a separate contingency table {
kC } is 

defined for each value kx . As also explained in Step 3, the constraint ( , )k k ka c y z b   on the 

support of ( , ) | kY Z x  is applied to the values , ,( , )d k d kY Z , resulting in cells with structural zeroes. 

Step 2: For kX x , the marginal probabilities , |

.
d k kY x

hp , , |

.
d k kZ x

gp  in {
kC }, i.e., the probabilities that 

,d kY  and ,d kZ  take the values ,d hy , ,d gz , are estimated as,  
,

, | | |

.

1

ˆ ˆ ( )

X
k A

d k k k k

r
Y x Y x Y xk

h i i h

i

p p I y I


  , 

,

, | | |

.

1

ˆ ˆ ( )

X
k B

d k k k k

r
Z x Z x Z xk

g i i g

i

p p I z I


  , where 
| |ˆ ˆ,k kY x Z x

i ip p  are the MLE of the ERL (3.19). 
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Step 3: Once the contingency table {
kC } has been defined, the midpoints 

, ,( , )d h d gy z  are 

checked to identify cells in {
kC }, which do not satisfy the constraint 

, ,( , )k k d h d g ka c y z b  . 

These cells define structural zeroes in {
kC }. The IPF initial cell probabilities are defined as, 

, , , ,0, | | |

. .
ˆ ˆd k d k k d k k d k kY Z x Y x Z x

hg hg h gp p p , where 1hg   for cells not containing structural zeroes and 0hg   

otherwise.  

      A fused data set for ( , , )X Y Z  is constructed from the estimated matching distribution 

obtained at the end of the iterations, as follows: (i) Generate n  observations ix  from the 

estimated distribution of X , taking values 1 2( , ,..., )Kx x x  with probabilities 1 2
ˆ ˆ ˆ( , ,..., )X X X

Kp p p . Let 

X

kn  be the number of observations with 
i kx x ; (ii) For each observation , 1,.., X

i kx i n , draw 

independently 
X

kn  pairs ,1 ,1 , , , ,[( , ),..,( , ),..,( , )]
k kd d d h d g d h d gy z y z y z  with cell probabilities 

, , , , , ,| | |

11
ˆ ˆ ˆ( ,.., ,..., )d k d k k d k d k k d k d k k

k k

Y Z x Y Z x Y Z x

hg h gp p p ,  computed by the IPF algorithm. 

5. Simulation Study 

5.1. Description of simulation experiment 

In order to evaluate the performance of our proposed methodology, we performed a 

simulation experiment, consisting of the following steps: 

Step1. Generate a population of 10,000N   values ix , taking the values 1,2,3,4k   with 

probabilities 1 2 3 4( , , , ) (0.4,0.1,0.3,0.2)X X X X Xp p p p p  . For each ix , generate independently 

values iy  and iz  from the following distributions: (i) |i iy x  is normal with parameters 

2

| 0 1 |( , )Y X i Y Xx     ; 0 0.5  , 1 2  , | 4Y X  , (ii) |i iz x  is normal with parameters 

2

| 0 1 |( , )Z X i Z Xx     ; 
0 2  , 1 2  , | 4Z X  .  

Thus, the CIA holds in the population and 0.27CIA

YZ XY XZcor cor cor  .  

Remark 10. In Section 5.3 and in the application in Section 6 with real sample data, we no 

longer assume the CIA and illustrate the theory of Section 4.  

Step 2. Draw independently samples A  and B  from the population generated in Step 1 by use 

of Poisson sampling with expected sample sizes ( ) ( ) 3,000A BE n E n   and selection 

probabilities, 
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, ,

,

, ,

1

exp( )

exp( )

x A i y A i

i A A N

x A j y A j

j

x y
n

x y

 


 






;   

, ,

,

, ,

1

exp( )

exp( )

x B i z B i

i B B N

x B j z B j

j

x z
n

x z

 


 






,                        (5.1)                      

where 
, ,( , )A x A y A    and 

, ,( , )B x B z B    denote the sampling model coefficients (specified 

later). Notice that for 
, 0y A  , 

, 0z B  , the two sampling designs are informative.  

Step 3. Generate the samples of responding units in the two samples with response 

probabilities, 

                     
1

, , ,( ) ( )XY

i A A x A i y A ilogit x y     ;
1

, , ,( ) ( )XZ

i B B x B i z B ilogit x z     ,                  (5.2)                                                                                                                                                             

where 
, ,( , )A x A y A   , , ,( , )B x B z B    govern the response models acting in the samples A  

and B  respectively (specified later). Clearly, the nonresponse is NMAR.   

In what follows we assume knowledge of the mean 
4

1

X

X k

k

p k


  of X , hereafter the 

calibration constraint, abbreviated C-C. See Remark 4. 

     The probabilities 
| |{ , , }X Y X Z X

k i ip p p  are estimated under three scenarios:  

Scenario 1: All the sampled units respond and the sampling designs used for selecting the 

samples A  and B  are ignored. The ESL is in this case, 

, , | |

1

( )
X X
k A k B

k k

K
n nA B X Y X Z X

Obs k i i

k i A i B

ESL p p p


  

    and it is maximized under the constraints (3.7) and the 

C-C. The estimates of 
X

kp  obtained from the two samples are harmonized according to (3.9), 

with / ( )A A Bn n n   . Denote by 
| |

,1 ,1 ,1
ˆ ˆ ˆ{ , , }X Y X Z X

k i ip p p  the estimated population pdf.   

Scenario 2: All the sampled units respond, but the informative sampling designs are taken into 

account in the estimation process. The ESL (3.6) is maximized subject to the constraints (3.7) 

and the C-C. The expectations ,( | , ; )A i A i i AE w x y   are estimated by regressing ,i Aw  against 

( , )i ix y , assuming the model, 
2 2

,( | , ) exp{ }A i A i iE w x y ax bx cy dy    . A similar model is used 

for estimating the expectations ,( | , )B i B i iE w x z . The use of these models guaranties positive 

expectations. The two estimates of 
X

kp  obtained from samples A  and B  are harmonized as 

under Scenario 1. We denote by 
| |

,2 ,2 ,2
ˆ ˆ ˆ{ , , }X Y X Z X

k i ip p p  the estimated population pdf under this 

scenario. 
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Scenario 3: The sampled units respond with probabilities defined by (5.2) and we account for 

both the informative sampling designs and the NMAR nonresponse. For this, we maximized 

the ERL (3.19) with respect 
| |{ , , }X Y X Z X

k i ip p p , under the constraints (3.22) and the C-C. The 

response is independent of the sample selection, such that , ,( | , ) ( | , )
AA i A i i R i A i iE w x y E w x y , 

and the probabilities ( 1| , )A

i i iP I x y  are estimated by regressing 
,i Aw  against ( , )i ix y , using 

the observed data. A similar procedure is applied for the sample B . As in Scenario 2, we used 

exponential regression models. Denote by 
| |

,3 ,3 ,3
ˆ ˆ ˆ{ , , }X Y X Z X

k i ip p p  the estimated population pdf 

under this scenario. The two estimates of 
X

kp  are harmonized as under  Scenario 1. 

     Different sampling parameters ,A B   and response parameters ,A B   are considered, thus 

distinguishing between informative and noninformative samples and different NMAR 

nonresponse models. We repeated Steps 2-3 for each scenario and each combination of the 

parameters ,A B  , ,A B  , 400M   times.  

5.2 Simulation results when the population distribution satisfies the CIA  

We begin by studying the effect of ignoring the informative sampling mechanisms used for 

drawing the samples A  and B . To this end, we estimated for each of the 400 samples the 

probabilities { }X

kp  under the scenarios 1 and 2 ( 1,2h  ). Next, we computed the mean ,
ˆ X

k hp  

and their variance-covariance matrix, but only for 1,2,3k  , since the sum of the probabilities 

and their estimates equals 1. In order to evaluate the overall performance of the estimators, we 

use the Hotelling 
2T  statistic 

1ˆˆ ˆ( ) ( )p p V p p  , where p̂  is the mean vector of the estimated 

probabilities over the 400 samples and V̂  is the empirical V-C matrix of p̂ .  

Table 1 displays the p-values ( hpv ) of the test for different choices of the vectors ,A B  , 

defining the sampling probabilities (Eq. 5.1).  

Table 1. P-values for different choices of the vectors ,A B   defining the sampling probabilities. 

 

 

 

 

A B   1pv  2pv  

(0,0)   0.614 0.614 

(0.25,0.25) <0.0001 0.727 

(0.5,0.5) <0.0001 0.824 
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As can be seen, when (0,0)A B   , the sampling designs generating the samples A  and 

B  are not informative, and the null hypothesis of no sampling effects is not rejected. However, 

for (0.25,0.25)A B    and (0.5,0.5)A B   , when the sampling processes are ignored 

under Scenario 1, the null hypothesis is rejected with extremely small p-values. When the 

sampling processes are accounted for under Scenario 2, the null hypothesis is not rejected.  

     So far we focused on the estimation of the probabilities { }X

kp . Next we turn our attention to 

the estimation of the population model ( | )p kF y x . For each kX x , we used the estimated 

probabilities 
|ˆ{ }Y X

ip  to generate a fused data set of size 10,000n   (Section 3.3) and 

computed the Kolmogorov-Smirnov (KS) distance 
|

, ,
ˆsup ( | ) ( | )kY x

p h p k p h k
y

KS F y x F y x
 

   

between the normal pdf ( | )p kF y x  used to generate the population values (Step 1 in Section 

5.1) and the estimated pdf, 
,

ˆ ( | )p h kF y x  in the fused data set, with the index 1,2h   labelling 

the scenario. Table 2 shows the average of the 400 KS values, denoted 
|

,
kY x

p hKSd , 1,2,3,4kx  .  

Table 2.  Distance measures 
|

,
kY x

p hKSd , for 1,2,3,4kx  , 1,2h   with different choices of the 

vector coefficients ,A B   defining the sample selection probabilities (Eq. 5.1). 

 

A B   |1

,1

Y

pKSd  
|1

,2

Y

pKSd  
|2

,1

Y

pKSd  
|2

,2

Y

pKSd  
|3

,1

Y

pKSd  
|3

,2

Y

pKSd  
|4

,1

Y

pKSd  
|4

,2

Y

pKSd  

(0,0) 0.033 0.033 0.060 0.060 0.020 0.020 0.021 0.021 

(0.25,0.25) 0.380 0.181 0.381 0.164 0.334 0.071 0.251 0.043 

(0.5, 0.5) 0.624 0.258 0.566 0.222 0.438 0.123 0.271 0.069 
 

The conclusions from Table 2 are similar to those drawn from Table 1. When (0,0)A B   , 

| |

,1 ,2
k kY x Y x

p pKSd KSd  for 1,2,3,4kx   and all the distances are very small. When 

(0.25,0.25)A B   , the distance measures are much larger, and they increase further when 

(0.5,0.5)A B   . Notice that for each 1,2,3,4kx  , 
|

,1
kY x

pKSd  is much larger than 
|

,2
kY x

pKSd , 

because under Scenario 2, we account for the informative sampling designs. We also observe 

that the 
|

,
kY x

p hKSd  distances for 1,2kx   are much larger than the corresponding distances for 

3,4kx  . This result is explained by the fact that the mean of the inclusion probabilities 

increases as kx  increases, changing from 0.10 for 1kx  , 0.20 for 2kx  , 0.39 for 3kx    and 

0.62 for 4kx   when (0.25,0.25)A B   , with similar means for  (0.5,0.5)A B   . Thus, 
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the informativeness of the sampling design reduces, as X increases. Similar results (not 

reported) are obtained when estimating the population cdf of |Z X .  

     Next consider Scenario 3, by which in addition to informative sampling, the samples A  and 

B  are subject to NMAR nonresponse. Figure 1 exhibits the population pdf and the kernel 

density estimates of the sample pdf with full response, the respondents pdf and the estimated 

population pdf of | 2kY x  , for one of the 400 samples A , for the case (0.5,0.5)A  , 

(0.05,0.1)A B   . For selecting the bandwidth for the kernel estimates, we followed 

Sheather and Jones (1991). Evidently, the sample  pdf  is different from the population  pdf  

due to informative sampling, and the respondents' pdf is different from the sample pdf  

because of the nonresponse. Notice that the estimated population pdf is the closest to the 

population pdf.   Similar results (not reported) are obtained for the pdfs of | kY x , 1,3,4kx   and 

| kZ x , 1,2,3,4kx  . 

Figure 1. Population pdf and kernel density estimates of the sample pdf, the respondents pdf  

and the estimated pdf of  | 2kY x  , (0.5,0.5)A  , (0.05,0.1)A B   . 

                                      

     Table 3 shows how by accounting for the sampling and response effects under Scenario 3, 

we are able to fit the population model, using the same sample used for Figure 1. For this, we 

use the KS test statistic with critical values computed by parametric bootstrap, as established 

theoretically by Babu and Rao (2004) and applied by Pfeffermann and Landsman (2011). 

Specifically, we generated 500B   bootstrap samples from the estimated model, re-estimated 
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for each sample the unknown model parameters and computed the KS statistic with the 

estimated parameters, and then obtained the critical value at the 0.05   level from the 

resulting empirical distribution of the KS statistics. Table 3 reports the KS statistic of the 

estimated pdf of | kY x  ( 1,2,3,4kx  ) for the sample in Figure 1 and the corresponding critical 

value computed by the parametric bootstrap. 

Table 3.  Kolmogorov-Smirnov test statistic and critical values for 0.05  . 

Distribution KS statistic Critical value 

Y | 1X    0.14 0.18 

Y | 2X   0.11 0.16 

Y | 3X   0.04 0.11 

Y | 4X   0.04 0.07 
 

     We also applied the Hotteling test based on all the 400  samples as in Table 1, with 

(0.05,0.1)A B    and (0.1,0.1)A B   , and obtained extremely high p-values for all the 

three choices of the vectors ,A B   defining the sample selection probabilities, thus verifying 

that the model which accounts for the sampling and response processes fits well the 

population distribution of X . Table 4 shows the 
|

,3
kY x

pKSd  distances for the estimated cdf 

ˆ ( | )p kF y x , computed as in Table 2 by constructing a fused data set. See Section 3.3.  

Table 4. Distance measures 
|

,3
kY x

pKSd  for different choices of ,A B  , with (0.05,0.1)A B   . 

 

A B   |1

,3

Y

pKSd  
|2

,3

Y

pKSd  
|3

,3

Y

pKSd  
|4

,3

Y

pKSd  

(0,0) 0.088 0.073 0.043 0.062 

(0.25,0.25) 0.223 0.197 0.096 0.057 

(0.5,0.5) 0.281 0.231 0.143 0.081 
 

It appears from Table 4 that the distortion in the estimation of the pdfs 
|{ }Y X

ip  worsens under 

the combination of informative sampling and NMAR nonresponse, particularly for 1,2kx  . 

Note, however, that the measures 
|

,3
kY x

pKSd  are always much smaller than the corresponding 

measures 
|

,1
kY x

pKSd  reported in Table 2, and only mildly larger than the measures 
|

,2
kY x

pKSd .  
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5.3 Simulation results when the CIA in the population model does not hold 

In this section, we study the performance of the methodology proposed in Section 4. For 

this, we consider the following Scenario 4, which consists of 3 parts: 

(i) Generate a population of 10,000N   values ix , taking the values 1,2,3,4k   with the same 

probabilities as before. Conditionally on kX x , generate ( , )Y Z -values from a bivariate 

normal distribution with parameters as in Step 1 of Section 5.1 and 
| 0.77YZ xcor  . The 

unconditional correlation is 0.83YZcor  .  

(ii) Remove values ( , )Y Z  for which Y Z . The resulting final population of joint ( , , )X Y Z  

values consists of 7,135N   observations, with empirical correlation 0.91YZcor  . 

(iii) Select samples ( , )A B  similarly to Section 5.1, with (0.25,0.25)A B   . Select the 

responding units in the two samples according to Eq. (5.2), with (0.05,0.1)A B   .  

     We start by computing the overall (average) uncertainty measure (4.4), under the constraint 

Y Z . For this, we split the population data in (ii) into two datasets, the first containing the 

values ( , )X Y  and the second containing the values ( , )X Z . Under the constraint Y Z , the 

measure is , 0.10p c  . When estimating the uncertainty measure but ignoring the sampling 

and response processes, the estimate is , ,

1

ˆ ˆ ˆ 0.15
K

k X

p c p c k

k

p


    . When accounting for the two 

processes, ,
ˆ 0.11p c  .  

     Next, we estimated the parameters defining the marginal distributions of | kY x  and | kZ x  

under Scenario 3 of Section 5.1, following the methodology of Section 3. We then used the 

estimates for choosing a matching distribution from the class (4.7) of plausible distributions 

under the constraint Y Z  by use of the IPF, as developed in Section 4.2. For each value kx , 

the range of the variable Y ( Z ) has been divided into intervals of equal size,
,

X

k Ar   ,

X

k Br , 

(Dougherty et al., 1995). The IPF accuracy, measured by the maximum deviation between the 

final row and column marginal probabilities upon convergence and the target probabilities as 

estimated from the original samples, over all values kx  was found to be 0.02. Finally, we 

generated a fused data set of size 10,000n  , as described at the end of Section 4.2. The 

correlation between the imputed values of Y  and Z  obtained from the IPF distribution is 0.95 , 
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very close to the correlation, 0.91YZcor   in (ii) above. For (1,2,3,4)k  , 

 ( , )| 0.87,0.88,0.88,0.88  
kY Z X xcor    for the population values and  0.90,  0.91,0.91,0.90 for the 

imputed values.  

6. Application to real data: matching of household income and expenditure 

6.1. Sampling designs and choice of the matching variable  

In this section, we apply our proposed methodology to the SHIW and HBS samples mentioned 

in the introduction, and construct a fused data set with joint measurements of income and 

expenditure. SHIW is conducted by Banca d'Italia every two years. Its main goal is to study the 

economic status of Italian households, focusing on income and wealth. The SHIW 

questionnaire also contains a section on households expenditures (food consumption, 

expenses for housing, health, etc.), and some “recall questions” used for constructing an 

approximate measure of total expenditure. A main drawback of these questions is that they 

lead to “heaping and rounding”. For example, the concept of nondurable goods is too complex 

to be measured by a single question. It includes many diverse items and without specific 

instructions of which items to include, different respondents account for different items in their 

assessment of total expenditure. Consequently, SHIW suffers from significant underreporting 

of household expenditure (about 30%).  

SHIW is drawn in two stages, with municipalities as the primary sampling units and 

households (HH) as the secondary sampling units. In the present application, we use the 2010 

wave, which consists of 387 municipalities drawn with probabilities proportional to size (PPS) 

and 7,951 HH sampled by simple random sampling (SRS). The HH income is defined as the 

combined disposable annual income of all the people living in the HH. The HBS uses a similar 

sampling design and collects detailed information on socio-demographic characteristics and 

expenditures on a disaggregated set of commodities (durable and non-durable). Here again, 

we use the 2010 wave, which consists of 470 municipalities and 22,227 HHs.  

As stated and illustrated throughout the article, statistical matching is usually based on a 

set of variables measured in all the data sources (the X variables). In our application, we 

considered three variables as plausible candidate matching variables, harmonized across the 

two samples: household size (hsize=1,2,3,4+), area of residence (area), and occupational 

status (condlav). The literature highlights three main criteria for selecting matching variables; 
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see, e.g., D’Orazio et al. (2006). 1- the variables need to be comparable with regard to their 

statistical content and have a similar distribution in the two surveys. 2- the variables must have 

good prediction power in predicting the outcome variables. 3- the use of these variables  

should minimize the “maximum error” in matching the joint distribution of the outcome variables 

of interest.  

     Regarding the first criterion, a common method for comparing the distribution of variables in 

different data sets is by use of the Hellinger distance  
2

, ,

1

1
ˆ ˆ

2

K
X X

k A k B

k

HD p p


  , where 

,
ˆ X

k Sp  are the estimates of the probabilities 
X

kp , obtained from sample ,S A B . It is generally 

accepted that a value exceeding 0.05 should raise concerns about the similarity of the 

distributions. The values in our case are 0.027 for hsize, 0.024 for area and 0.055 for condlav. 

As for the second criterion, we modelled the log-expenditure (Y ) based on the HBS data, and 

log-income ( Z ) based on the SHIW data, each time as a linear function of one of the 

candidate matching variables as the sole explanatory variable. The variables hsize, area and 

condlav are all statistically significant in explaining the variation of both the expenditure and 

income. However, hsize was found to have the best prediction power, with coefficients of 

determination 
2 0.20R   in the expenditure model, and 

2 0.11R   in the income model.  

     In order to examine the third criterion, we proceeded as follows: (i) compute for each pair 

( , )k k

i jy z , , ,1,.., , 1,..,X X

k A k Bi r j r   the pointwise uncertainty measure defined by the length of the 

Fréchet interval ( , )c cL U , with the bounds (4.8) and (4.9), where for kX x , ( , )k k

i jy z  defines a 

pair composed by an observed value of Y  and an observed value of Z . 

(ii) compute the average of the , ,

X X

k A k Br r   measures as an estimate of ,

k

p c , defined in Eq. (4.5); 

(iii) compute the unconditional uncertainty measure ,
ˆ

p c  defined in Eq. (4.6). We found that 

when hsize is used as the matching variable, the uncertainty measure is ,
ˆ 0.11p c  , and it 

remains approximately the same when including all three matching variables in the analysis. 

( ,
ˆ 0.107p c  ). Based on these findings, we use hsize as our sole matching variable. For 

applying our proposed methodology, we added the calibration constraint 
1

2.4
K

X

k k

k

p x


 , 
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(hereafter C-C), where 2.4 is the average size of households in 2010, as published in the 

ISTAT site http://dati.istat.it/#.  

6.2. Results obtained when matching the two surveys  

SHIW and HBS suffer from low response rates, about 62% in both samples. It is quite 

evident that the nonresponse is explained, at least in part, by the size of the HH and the 

income (or expenditure). The larger the HH, the more possibilities exist to find a contact person 

for an interview. In addition, HH consisting of only one or two elder people, often tend not to 

participate in surveys. Furthermore, as often reported in the literature, the response probability 

tends to decrease as the HH income or expenditure increase (Korinek et al., 2006). In order to 

obtain a response rate of about 62%, we computed the response probabilities in the two 

samples by use of the models defined by (5.2), with coefficients , ,( , )x A y A  (0.2, 0.002)  , 

, ,( , ) (0.2, 0.003)x B z B    .  

Table 5 displays 4 different estimates of the probabilities { }X

kp , when considering the 4 

possible size values (hsize=1,2,3,4+). The first column headed 
X

kp , shows the ISTAT's 

estimates of the household size distribution in Italy in 2010. These values are considered as 

the true probabilities, and serve as benchmarks for the performance of the other estimates. 

The estimates are defined as follows: ,1
ˆ X

kp  are the estimates obtained when ignoring the 

sampling design effects and assuming that all the units responded, and not imposing the C-C. 

The estimates are obtained by maximizing the likelihood as under Scenario 1 in Section 5.1, 

but only imposing the constraints (3.7); ,1
ˆ X

k Cp  are the estimates obtained under the same setup, 

but imposing also the C-C; ,2
ˆ X

k Cp  are the estimates obtained when accounting for the sampling 

effects (but still assuming full response) and imposing the C-C, obtained by maximizing the 

ESL (3.6), subject to the constraints (3.7) and the C-C; ,2
ˆ X

k CMp  are our proposed estimates, 

which account for the sampling designs and the nonresponse (Scenario 3 of Section 5.1), 

obtained by maximizing the ERL (3.19) under the constraints (3.22) and the C-C. We 

accounted for the sampling design effects by following the approach described in Section 3.2. 

The last four columns of Table 5 display the sample sizes and the numbers of respondents, 

with the index A  defining the HBS and the index B  the SHIW. 

http://dati.istat.it/
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Table 5.  Different Estimates of the probabilities
X

kp .  

hsize X

kp  ,1
ˆ X

kp  ,1
ˆ X

k Cp  ,2
ˆ X

k Cp  ,2
ˆ X

k CMp  ,

X

k An  ,

X

k Bn  ,

X

k Ar  ,

X

k Br  

1 0.284 0.260 0.264 0.276 0.276 5851 1989 3194 1074 

2 0.276 0.293 0.293 0.281 0.280 6292 2522 3783 1504 

3 0.209 0.210 0.208 0.200 0.205 4758 1589 3069 1028 

4 0.232 0.238 0.233 0.243 0.239 5326 1851 3730 1258 
 

In order to compare the goodness of fit of the four sets of estimators in Table 5, we computed 

again the Hellinger distances, with the estimates compared to the true probabilities, 
X

kp . For 

the estimates ,1
ˆ X

kp , the HD distance is 0.023. It reduces to 0.018 for ,1
ˆ X

k Cp , to 0.012 for ,2
ˆ X

k Cp  

and to 0.009 for ,2
ˆ X

k CMp .  

     In addition to estimating the probabilities 
X

kp , we estimated the pdfs 
| |{ , }Y X Z X

i ip p , both 

when ignoring the sampling designs and nonresponse and when accounting for them, 

imposing the calibration constraint C-C in both cases. Next, we generated a fused data set of 

size 10,000n   by assuming the CIA, as described in Section 3.3. The (weighted) correlations 

XYcor , 
XZcor  in the original samples are  0.38  and 0.31, respectively. In the fused data sets, 

the correlations are 0.34 and 0.28 when ignoring the sampling designs and nonresponse, and 

{0.38, 0.32} when accounting for them. The correlation between the imputed values of Y  and 

Z  when ignoring the sampling designs and nonresponse in the estimation of the probabilities 

| |{ , , }X Y X Z X

k i ip p p  is 0.08. The correlation increases to 0.13 when both processes are accounted 

for. Notice that when assuming the CIA, the correlation computed from the original samples is 

0.12CIA

YZ XY XZcor cor cor  .  

     As mentioned in Section 6.1, SHIW contains also some recall questions, aimed for   

constructing an approximate measure of total expenditure. The correlation in the SHIW sample 

between income and expenditure is 0.65. Thus, the fused data set constructed under the CIA 

seems to misrepresent the joint population distribution of ( , )Y Z . Consequently, we no longer 

assume the CIA and estimate instead a matching distribution for income and expenditure by 

assuming the class (4.7) of plausible distributions, with the added constraints Y Z  and the C-

C, and applying the IPF. (Section 4.2.) The IPF accuracy was found to be 
47 10 , much 

smaller than in the simulation study. Next, we used the estimated joint distribution for 

generating 10,000n    values ( , , )i i ix y z , as described at the end of Section 4.2. Figure 2 
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shows the bivariate density estimates obtained by application of the IPF and under the CIA, for 

households of size 3. Similar figures (not shown) have been produced for HH of size 1, 2 and 

4+. Evidently, the two estimated densities are different. As noted above, the correlation 

between the imputed values of Y  and Z  under the CIA is 0.12. The correlation increases to 

0.55 by use of the IPF. The correlation in the SHIW sample is 0.65, but recall that expenditure 

is not directly observed in SHIW. See Section 6.1.  

Figure 2. Estimation of pdf of ( )Y,Z  under the constraint Y Z  for 3hsize  . Estimate 

obtained by IPF (left) and under the CIA (right). 

 

     Rässler (2002) proposes four validation measures of decreasing importance in a statistical 

matching problem, which in our case are as follows: (1) preserving the true household values; 

(2) preserving the true joint distribution; (3) preserving correlation structures; (4) preserving 

marginal distributions. We cannot assess the first measure since the true incomes and 

expenditures at the HH level are unknown. The second measure requires knowledge of the 

true joint population distribution of ( , , )X Y Z , which is likewise unknown, but an uncertainty 

measure of the kind introduced in Section 4.1 can be used to assess how far the matching 

distribution is from the true joint distribution. When accounting for the sampling and 

nonresponse effects and imposing the constraint Y Z , the estimated uncertainty measure 

,
ˆ

p c  decreases from 0.16, (its maximum value with no constraint) to 0.11. The uncertainty 

measure increases to 0.13 when the sampling and nonresponse processes are ignored. 

Regarding the third measure, we note that the correlation between the imputed values of 

expenditure and income is 0.55 when applying the IPF. Thus, our proposed methodology 

seems to recover pretty well the “approximate” correlation of 0.65 between income and 

expenditure in the SHIW sample. Regarding the fourth measure, the constructed fused data 
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set preserves by construction, the marginal distributions of the income and expenditure. This 

follows from the use of the IPF, which adjusts the initial cell probabilities to fit the marginal 

distributions of the two variables, as estimated from the two samples separately. 

7.  Concluding Remarks 

In this paper, we propose a comprehensive approch to deal with statistical matching, when 

the samples containing the unmatched data are drawn by informative sampling designs and 

are subject to NMAR nonresponse. Our approach employs the EL to account for the sampling 

and response processes, thus enabling generating a fused data set, which represents 

sufficiently accurately the true joint population pdf of the target variables. We first consider the 

case where the target variables of interest are conditionally independent given the available 

matching variables (the CIA), and then the much more challenging problem when the CIA 

cannot be assumed. In order to deal with the latter case, we apply a procedure based on the 

IPF for choosing a pdf from a class of plausible pdfs, which satisfy available information 

regarding the relationship between the target variables and calibration constraints. An 

extensive simulation study and application to real datasets illustrate the good performance of 

our proposed methodology.  

We obviously hope that other researchers will apply our proposed approach with 

appropriate modifications required for their data. New theoretical developments of the present 

work include the use of proxy variables for estimation of the conditional sample inclusion 

probabilities ( 1| , )A

i i iP I x y  when the response process is not independent of the sampling 

process (Section 3.4), possibly by adding them to the covariates of the sampling and/or the 

response models. Good proxy variables may also be used for initialization of the IPF algorithm. 

Finally, we mention the EM algorithm for maximization of the empirical respondents’ likelihood 

(3.19), as proposed by one of the reviewers of the article. (See Remark 9.) 
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