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Summary

Data for statistical analysis is often available from different samples, with each sample contain-
ing measurements on only some of the variables of interest. Statistical matching attempts to gener-
ate a fused database containing matched measurements on all the target variables. In this article,
we consider the use of statistical matching when the samples are drawn by informative sampling
designs and are subject to not missing at random non-response. The problem with ignoring the
sampling process and non-response is that the distribution of the data observed for the responding
units can be very different from the distribution holding for the population data, which may distort
the inference process and result in a matched database that misrepresents the joint distribution in
the population. Our proposed methodology employs the empirical likelihood approach and is
shown to perform well in a simulation experiment and when applied to real sample data.

Key words: empirical likelihood; fusion; IPF algorithm; matching uncertainty; NMAR non-response;
sample and respondents distributions.

1 Introduction

Statistical matching has become popular in recent years. Information on a set of variables of
interest is often available in different micro databases, with each database containing only some
of the variables, but with no joint observations on all the variables. For example, in Italy, reliable
information on households income is provided by the Survey on Household Income and Wealth
(SHIW) conducted by Banca d’Italia. On the other hand, information on consumption expenses
is provided by the Household Budget Survey (HBS), run by the Italian National Institute of Sta-
tistics (ISTAT) (cf. Conti et al. 2017). This constitutes a serious problem because household
data on income and expenditure are used by policymakers for analysing the impact of policy
strategies. Statistical matching attempts to combine the data obtained from different,
non-overlapping samples, drawn from the same target population. At a micro level, the main ob-
jective is to construct a synthetic (fused) data set, with joint observations on all the variables of
interest. At a macro level, the main objective is the estimation of the joint population distribu-
tion of all the variables of interest.
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Let A and B be two independent samples of size nA and nB, respectively, selected from a pop-
ulation of N independent and identically distributed (i.i.d.) records, generated from some joint
probability (density) function (pdf ), f p x; y; z; θð Þ of variables X ; Y ; Zð Þ indexed by a vector
parameter θ, where p signifies the population model (the model holding for the population
values). We suppose that the population is large, such that the samples A and B can be assumed
to have no units in common. The statistical matching problem is that X ; Y ; Zð Þ are not jointly
observed in the two samples: Only X ; Yð Þ are observed for the units in sample A, and only
X ; Zð Þ are observed for the units in sample B ; see Rässler (2002) and D’Orazio
et al. (2006b). Thus, the units in A have missing Z values while the units in B have missing
Y values. Because of the lack of joint information on all the three variables, the joint pdf
f p x; y; z; θð Þ is not directly identifiable, unless under strong assumptions, which are generally
hard to confirm. Several alternative approaches have been proposed in the literature to overcome
the identification problem. The first (common) approach assumes conditional independence
(CIA) between Y and Z given X ; see, for example, Okner (1972). A second approach assumes
the existence of external information. Relevant external information may be available in one of
the following forms: (i) a sampleCwith joint observations on X ; Y ; Zð Þ (Singh et al., 1993) and
(ii) proxy variables for Y, Z as in Zhang (2015), where a range of statistical matching techniques
are reviewed and developed for estimating the joint population pdf of categorical variables.
Proxy variables, if sufficiently associated with Y or Z, can help in studying the relationship be-
tween Y and Z and in particular, help in verifying or refuting the CIA. Empirical results in
Zhang (2015) demonstrate that the use of proxy variables not only reduces the uncertainty as-
sociated with data fusion but also provides more accurate estimates of the target joint distribu-
tion. Notice, however, that the CIA cannot be tested from the samplesA andB alone and external
information is often not available. (As discussed and illustrated in subsequent sections, the CIA
can be tested indirectly by use of the estimated respondents’ distribution resulting from this
assumption.)

A third approach proposed in the literature consists therefore of analysing the uncertainty re-
garding the joint distribution of X ; Y ; Zð Þ. Under this approach, several alternative models for
the joint distribution of X ; Y ; Zð Þ, compatible with the distributions of X ; Yð Þ and X ; Zð Þ in the
samples A and B, are considered, resulting in ‘uncertainty intervals’ for the joint pdf of all the
three variables, and the target estimators derived from them. See, for example, Moriarity &
Scheuren (2001), Rässler (2002) and D’Orazio et al. (2006a). Uncertainty in statistical
matching in a non-parametric setting is considered in Conti et al. (2013, 2015). Zhang &
Chambers (2019) describe a general approach for inference based on incomplete 2 × 2 tables
(including the case of statistical matching and non-response), when assumptions required for
validating a likelihood-based approach cannot be supported by the available data. The authors
develop the concept of corroboration, as a measure of the statistical evidence in the observed
data for the unknown parameter values, which is not based on likelihoods. For this, the authors
compute intervals for each of the parameter values (rather than point estimates), without relying
on any additional assumptions that can lead to pointwise identification of the joint distribution.
The interval corresponding to a maximum corroboration value identifies the parameter value
that is the hardest to refute based on the observed data.

In practice, the independence assumption between sample measurements pertaining to differ-
ent units in the sample is itself questionable when dealing with sample survey data. Often, the
sample selection employs complex sampling designs that involve different inclusion probabili-
ties, which could be related to the survey variables of interest, known in the statistical literature
as informative sampling. This can distort the independence assumption and result in a different
distribution of the observed data from the distribution holding in the population from which the
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sample is drawn. See Pfeffermann & Sverchkov (2009) for discussion of the notion of informa-
tive sampling and review of methods to handle this problem.
Statistical matching of complex sample surveys is studied by Rubin (1986), Renssen (1998)

and Conti et al. (2016). Marella & Pfeffermann (2019) considered statistical matching under in-
formative sampling designs, assuming complete response. However, in practice, not all the sam-
pled units respond, and as well known, the response rates are steadily decreasing all over the
world. Most of the approaches dealing with non-response assume that the missing data are miss-
ing at random (MAR; Little & Rubin, 1987). By this assumption, the response probabilities do
not depend on the unobserved data, after conditioning on the observed data. In reality, the MAR
assumption is often violated, and when the response probabilities are correlated with the target
outcomes even after conditioning on the observed data (often, the model covariates), the miss-
ing data are not missing at random (NMAR non-response).
In this article, we consider the case where the sampling designs used to select the samples A

and B are informative, and the non-response in the two samples is NMAR. As studied theoret-
ically and illustrated in many articles, even informative sampling with complete response, or
non-informative sampling but with NMAR non-response, already results in a different joint dis-
tribution of the observed data in the sample from the distribution of the same variables in the
population from which the sample is taken. See, for example, Pfeffermann (2017). Not surpris-
ingly and as illustrated later, ignoring the sampling and response processes in statistical
matching (the focus of the present article) can result in severely biased estimators and a misrep-
resentative fused data set. To the best of our knowledge, no other article has been published so
far, considering the dual effects of informative sampling and NMAR non-response in statistical
matching. Our proposed methodology utilises the empirical likelihood (EL) approach.
In Section 2, we define more formally the statistical framework under consideration. Section

3 develops the EL in the statistical matching context under informative sampling designs and
NMAR non-response, assuming the CIA. The proposed approach combines the EL with a para-
metric model for the response probabilities. In Section 4, the CIA is dropped, the uncertainty in
statistical matching is introduced, and a procedure for choosing a population distribution from
the class of plausible pdfs is described. Section 5 presents the results of a simulation study,
aimed for assessing the performance of our proposed methodology. In Section 6, we apply
the methodology to the SHIW and HBS samples mentioned in the introduction. Section 7 con-
tains a brief summary.

2 Statistical Matching under Non-ignorable Sampling and Non-response: Notation
and Assumptions

Consider a finite population of N units i ¼ 1;…; ;Nf g . Associated with unit i are
values of three study variables, X ; Y ; Zð Þ . Suppose that the population values Dp ¼
x1; y1; z1ð Þ;…; xN ; yN ; zNð Þf g are independent realisations from a distribution with pdf

f p x; y; z; θð Þ. Let Vp; A, Vp; B be sets of population values of design variables used for selecting
two non-overlapping samples,A andB, respectively. Some or all of the variables X ; Y ; Zð Þmight
be included among the design variables. We assume that Dp; Vp; A; Vp; B are realisations of a
random process, implying that the first-order inclusion probabilities πi; A; πi; B

� �
may be viewed

as random as well. Denote by wi; A ¼ 1=πi; A, wi; B ¼ 1=πi; B the (base) sampling weights. We
assume that under complete response, the data available to the analyst consist of the samples
A ¼ xi; yi;wi; A

� �
of size nA and B ¼ xi; zi;wi; B

� �
of size nB, but not the population values of

the design variables, which are known to the persons drawing the samples but generally not
to the persons analysing the sample data. Following Marella & Pfeffermann (2019), we assume

3Nonignorable Sampling and Nonresponse
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that the sampling designs for selecting the two samples are informative for the corresponding
joint population distribution, in the sense that the sample selection probabilities are correlated
with at least some of the variables X ; Y ; Zð Þ, implying that even if all the three variables had
been observed in the two samples, the joint sample pdf f S x; y; zð Þ of the sample data is different
from the corresponding population pdf, f p x; y; zð Þ, for S ¼ A; B.

In this article, we assume that in addition to the use of informative sampling designs, the sam-
ples A and B are subject to not missing at random (NMAR) unit non-response, in the sense that
the probability to respond depends on the study variables. The data available to the analyst con-
sist therefore of the sets of responding units in A(RA) and B(RB), respectively. Consequently, the
joint pdf of the observed data, f RS

x; y; zð Þ, differs from the sample pdf f S x; y; zð Þ under com-
plete response and from the population pdf f p x; y; zð Þ, S ¼ A; B. Here, for convenience, we
omit the parameters indexing the three distributions. Notice that whereas the sampling probabil-
ities are generally known, and thus can be used to account for informative sampling, the re-
sponse probabilities are practically unknown and need to be modelled. Pfeffermann &
Sikov (2011) review approaches proposed in the literature to deal with NMAR non-response.

Accounting for informative sampling but with complete response for statistical matching is
considered in Marella & Pfeffermann (2019). The authors applied a parametric approach, bas-
ing the inference on the sample distribution, that is, the distribution holding for the observed
sample data. However, as discussed in Pfeffermann & Landsman (2011), the maximisation of
sample likelihoods can be complicated numerically and result in unstable estimates, depending
on the population model and the model assumed for the sample selection probabilities, given
the observed data. For this reason, and in order to account also for NMAR non-response, we
propose in Section 3 the use of the EL, which enables estimating the parameters governing
the sampling and response models, without specifying the corresponding population model.

3 Statistical Matching under Non-ignorable Sampling and Non-response by EL

In Section 3.1, the statistical framework under the EL approach is briefly described. The EL
under informative sampling is introduced in Section 3.2 and extended to NMAR non-response
in Section 3.4. The generation of a fused data set under the EL approach is described in Section
3.3.

3.1 Statistical Framework under the EL Approach

The use of the EL for analysing complex survey data has its origins in the pioneering article
by Hartley & Rao (1968), where an estimator based on the multinomial function under simple
random sampling is proposed. The use of EL gained increasing interest in general statistical
contexts, following the work of Owen (1990, 1991, 2001, 2013). See also Qin & Lawless (1994)
and the review article by Chen & Van Keilegom (2009). The EL combines the robustness of
non-parametric methods with the efficiency of the likelihood approach. It is essentially the like-
lihood of the multinomial distribution employed by Hartley & Rao (1968), where the unknown
parameters are the point masses assigned to the distinct sample values. Chen & Qin (1993) pro-
posed an EL approach for using auxiliary information in simple random sampling without re-
placement. Chen & Sitter (1999) extended the method to unequal probability sampling, apply-
ing a ‘pseudo-empirical likelihood approach’. Wu (2004) used pseudo-EL methods to combine
information from two independent surveys and obtained an estimator for a mean, which is as-
ymptotically equivalent to a GREG-type estimator. The EL approach facilitates the use of cal-
ibration constraints. See Remark 4 for the form of the constraints and Chaudhuri et al. (2010)
for details of the constrained estimation procedure and the asymptotic properties of the resulting
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estimators. Most importantly, the use of this approach does not require specifying the popula-
tion model and is thus more robust and often easier to implement.
In the present section, we assume the CIA, but this assumption is dropped in the following

sections. We also assume that X can take K distinct values with probabilities pXk ¼
P X ¼ xkð Þ; ∑

K

k¼1
pXk ¼ 1, whereas Y and Z are continuous. The ‘matching variable’, X , measured

in both samples, might be a stratification variable and/or a socio-demographic variable.
Socio-demographic characteristics are often related to other variables of interest.
The basic idea of the EL approach is to approximate the population distribution by a multi-

nomial model, which support is given by the empirical observations. Let xi; ; yi:zið Þ define the
values associated with unit i and denote by pXi ¼ Pr X ¼ xið Þ, pY∣Xi ¼ Pr Y ¼ yijjX ¼ xið Þ ,
pZ∣Xi ¼ Pr Z ¼ zijjX ¼ xið Þ , each with the support observed in the samples. Then, under the

CIA, the joint population multinomial probability of unit i is given by pXYZi ¼ pXi p
Y∣X
i pZ∣Xi . Fi-

nally, letAk ¼ i ∈ A:xi ¼ xkf g be the set of sampled units inAwithX ¼ xk, such that for i ∈ Ak,
pXi ¼ P X ¼ xkð Þ ¼ pXk , k ¼ 1; ::; K.

3.2 The EL Approach under Informative Sampling

In what follows, we define the EL in the statistical matching context under informative sam-
pling. Let IAi be the sample indicator taking the value 1 if unit i is drawn to the sample A and 0
otherwise. For i ∈ Ak, denote

τXYi; A ¼ P IAi ¼ 1jxi; yi
� �

; pY∣Xi ¼ P yijxið Þ; τXi; A ¼ P IAi ¼ 1jxi
� � ¼ X

j ∈ Ak

τXYj; Ap
Y∣X
j ¼ τXk; A: (1)

It follows that

pY∣Xi; A ¼ P yijxij; ; IAi ¼ 1
� � ¼ P IAi ¼ 1jxi; yi

� �
P IAi ¼ 1jxi
� � pY∣Xi ¼ τXYi; Ap

Y∣X
iX

j ∈ Ak

τXYj; Ap
Y∣X
j

: (2)

Similarly, for i ∈ Ak,

pXk; A ¼ P xk jjIAi ¼ 1
� � ¼ P IAi ¼ 1jxk

� �
P IAi ¼ 1
� � pXk ¼ τXk; Ap

X
k

∑
K

j¼1
τXj; Ap

X
j

: (3)

Under informative sampling, the observed outcomes are no longer representative of the popu-
lation outcomes and the sample models (2) and (3) are different from the corresponding popu-

lation models pY∣Xi ; pXk . Nonetheless, as shown and illustrated in Pfeffermann et al. (1998),
if the population values are independent under the population model (see beginning of
Section 2), then under mild conditions they are also asymptotically independent under the sam-
ple model, when the sample size remains fixed but the population size increases. This permits
approximating the sample likelihood by the product of the sample pdfs over the corresponding
sample observations. Hence, for sufficiently large populations, the sample EL (ESL), based on
the observed data in A, is

ESLAObs ¼ ∏
K

k¼1
pXk; A

� �nXk; A
∏

i ∈ Ak

pY∣Xi; A ; (4)

5Nonignorable Sampling and Nonresponse
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where nXk; A is the size of Ak. An analogous expression to (4) holds for the ESL based on the ob-
served data in B. Hence, the ESL based on the sample A∪B is

ESLA∪BObs ¼ ∏
i ∈ A

pXi; Ap
Y∣X
i; A

� 	
∏

i ∈ B
pXi; Bp

Z∣X
i; B

� 	
¼ ∏

K

k¼1
pXk; A

� �nXk; A
∏

i ∈ Ak

pY∣Xi; A ∏
K

k¼1
pXk; B

� �nXk; B
∏

i ∈ Bk

pZ∣Xi; B ; (5)

where pZ∣Xi; B ¼ P zijxij; ; IBi ¼ 1
� �

. By (2), (3) (with analogue expressions for the sample B) and
(5), the log-likelihood based on A∪B is

log ESLA∪BObs

� � ¼ X
i ∈ Ak

log τXYi; Ap
Y∣X
i

� �
� nXk; Alog

X
i ∈ Ak

τXYi; Ap
Y∣X
i

 !
þ ∑

K

k¼1
nXk; Alog τXk; Ap

X
k

� �
�

þ ∑
K

k¼1
nXk; Alog ∑

K

j¼1
τXj; Ap

X
j

� 	
þ
X
i ∈ Bk

log τXZi; Bp
Z∣X
i

� �
� nXk; Blog

X
i ∈ Bk

τXZi; Bp
Z∣X
i

 !
þ

þ ∑
K

k¼1
nXk; Blog τXk; Bp

X
k

� �
� ∑

K

k¼1
nXk; Blog ∑

K

j¼1
τXj; Bp

X
j

� 	
:

(6)

Notice that the sampling probabilities in A and B may depend on many unobserved variables,
and yet, by definition of the sample pdf, one only needs to model the probabilities
P IAi ¼ 1jxi; yi
� �

P IBi ¼ 1jxi; zi
� �
 �

. Furthermore, following Pfeffermann & Sverchkov (1999),
the probabilities τXYi; A ¼ P IAi ¼ 1jxi; yi

� � ¼ 1=EA wi; Ajxi; yi
� �

and τXZi; B ¼ 1=EB wi; Bjxi; zi
� �

can

be estimated outside the likelihood by regressing the sample weights wi; A wi; B

� �
against

xi; yið Þ xi; zið Þ½ �, using the observed data in A and B, respectively, or non-parametrically, as con-
sidered in Feder & Pfeffermann (2019). The resulting estimates can then be inserted into the ex-
pressions for τXYi; A and τXZi; B , with τXk; A and τXk; B defined by (1). Moreover, as discussed and
illustrated in Pfeffermann (2011), the resulting sample models can be tested. The unknown pa-

rameters in (6) are thus the probabilities pXk ; p
Y∣X
i ; pZ∣Xi

n o
. In the statistical matching context,

different approaches can be used for maximisation of the likelihood. For convenience, we de-
scribe the approaches for the case where no variables with known sample values and corre-
sponding population means exist, which as noted before can be used for calibration. When
such variables exist, the calibration equations are imposed to constrain the maximisation pro-
cess. See Remark 4.

Remark 1. In practice, the covariates contained in the population model need not be the same as the
covariates contained in the model of the conditional sample inclusion probabilities P IAi ¼ 1jxi; yi

� �
.

However, to simplify the presentation, we assume for convenience that the same covariates appear in
the two models or alternatively that xi defines the union of the two sets of covariates.

3.2.1 Estimating the unknown probabilities separately from the samples A and B

Noting that the likelihood (5) can be factorised into a likelihood based only on the sample A

and a likelihood based only on the sampleB, the unknown probabilities pXk ; p
Y∣X
i ; pZ∣Xi

n o
can be

6
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estimated separately from the two samples. This implies two sets of estimates for the probabil-
ities pXk

� �
, which need to be harmonised. See Renssen (1998) and below. The EL estimators of

the unknown probabilities are obtained by maximising the loglikelihood (6), subject to the
constraints,

pXk ≥ 0; pY∣Xi ≥ 0; pZ∣Xi ≥ 0; ∑
K

k¼1
pXk ¼ 1;

X
j ∈ Ak

pY∣Xj ¼ 1;
X
j ∈ Bk

pZ∣Xj ¼ 1: (7)

Following Kim (2009), Chaudhuri et al. (2010) and Marella & Pfeffermann (2019), the estima-
tors are

bpXk; A ¼ nXk; A τXk; A
� ��1

� 
= ∑

K

j¼1
nXj; A τXj; A
� ��1

� 
; bpXk; B ¼ nXk; B τXk; B

� ��1
� 

= ∑
K

j¼1
nXj; B τXj; B
� ��1

� 
bpY∣Xi ¼ τXYi; A

� ��1
=
P

j ∈ Ak
τXYj; A
� ��1

; bpZ∣Xi ¼ τXZi; B
� ��1

=
P

j ∈ Bk
τXZj; B
� ��1

;

(8)

where bpXk:A , bpXk; B are the estimates of pXk obtained from the samples A and B , respectively.

Harmonisation of the estimates bpXk; A , bpXk:B into a unique estimate pXk can be achieved by use
of a linear combination of the two estimates, that is,

bpXk ¼ λbpXk; A þ 1 � λð ÞbpXk; B; λ ∈ 0; 1½ �: (9)

A plausible choice is λ ¼ nA= nA þ nBð Þ. Alternatively, one may choose the value λ minimising
the variance of (9). To this end, variance estimates of bpXk; A; bpXk; B can be computed by resam-
pling methods for finite populations, as proposed by Conti et al. (2020). The methods use a
two-stage procedure. In the first stage, a pseudo-population, which can be viewed as a predic-
tion of the target finite population, is constructed using the sampling weights. In the second
stage, samples are drawn from the pseudo-population using the same sampling designs used
for drawing the original samples. The procedure is also applicable for the case of informative
sampling designs.

Remark 2. Another approach consists of replacing pXk; A and p
X
k; B in (5) by λp

X
k; A þ 1 � λð ÞpXk; B and

maximising the sample EL with respect to pXk ; p
Y∣X
i ; pZ∣Xi

n o
and λ.

Remark 3. Chen & Sitter (1999) consider a pseudo-empirical likelihood (PEL) approach, which in
the context of statistical matching implies the following likelihood.

ELA∪BPEL ¼ ∏
K

k¼1
pXk
� � P

i ∈ Ak

wi; A

 !
∏

i ∈ Ak

pY∣Xi

� �wi; A

∏
K

k¼1
pXk
� � P

i ∈ Bk

wi; B

 !
∏

i ∈ Bk

pZ∣Xi

� �wi; B

: (10)

Notice that in (10), the two samples are not considered separately. It follows from Chen & Sit-
ter (1999) that in the absence of calibration constraints, the estimates maximising the likelihood
(10) are

7Nonignorable Sampling and Nonresponse
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bpXk; PEL ¼

X
j ∈ Ak

wj; A þ
X
j ∈ Bk

wj; B

∑
nA

j¼1
wj; A þ ∑

nB

j¼1
wj; B

; bpY∣Xi; PEL ¼ wi; A=
X
j ∈ Ak

wj; A; bpZ∣Xi; PEL ¼ wi; B=
X
j ∈ Bk

wj; B: (11)

The PEL estimators of pY∣Xi ; pZ∣Xi

n o
in (11) have the same form as in (8), but with the base sam-

pling weights wj; A;wj; B

� �
, instead of the weights τXYj; A

� ��1
; τXZj; B
� ��1

� �
. The basic difference be-

tween the two approaches is that in Chen & Sitter (1999), the likelihood is with respect to the
population distribution, whereas the likelihood in (5) is with respect to the sample distribution.

3.2.2 File concatenation for estimation of the probabilities pXk

Rubin (1986) proposed to estimate the population probability distribution of X by computing
concatenated weights for the sample A∪B as follows:

pXk; A∪B ¼ P xk jjIAi ¼ 1∪IBi ¼ 1
� � ¼ τXk; A þ τXk; B

� �
pXk

∑
K

j¼1
τXj; Ap

X
j þ ∑

K

j¼1
τXj; Bp

X
j

¼ τXk; A∪Bp
X
k

∑
K

j¼1
τXj; A∪Bp

X
j

; (12)

where τXk; A∪B ¼ τXk; A þ τXk; B . The basic assumption underlying (12) is that the probability of a

unit to be drawn to both samples is negligible, such that P IAi ¼ 1∩IBi ¼ 1
� �jxk
 �

≅ 0. This is
generally true when the two samples are independent, with small sampling fractions. Define
nXk; A∪B ¼ nXk; A þ nXk; B. With this notation,

ESLAUBObs ¼ ∏
K

k¼1
pXk; A∪B

� �nXk; A∪B
∏

i ∈ Ak

pY∣Xi; A ∏
i ∈ Bk

pZ∣Xi; B : (13)

The ESL (13) is maximised under the constraints (7), yielding the estimators

bpXk ¼ nXk; A∪B τXk; A∪B
� ��1

� 
= ∑

K

j¼1
nXj; A∪B τXj; A∪B

� ��1
� 

; bpY∣Xi ¼ τXYi; A
� ��1

=
X
j ∈ Ak

τXYj; A
� ��1

;

bpZ∣Xi ¼ τXZi; B
� ��1

=
P

j ∈ Bk
τXZj; B
� ��1

:

(14)

Remark 4. When population means of variables measured in the sample A and/or in the sample
B are known, they can be added to the constraints of the ESL. The following calibration constraints

may be added, depending on data availability: ∑
K

k¼1
pXk xk ¼ μX , ∑

K

k¼1
pXk
X
i ∈ Ak

pY∣Xi yi ¼ μY ,

∑
K

k¼1
pXk
X
i ∈ Bk

pZ∣Xi zi ¼ μZ , where μX ; μY ; μZ are the population means of X ; Y ; Z, respectively. In

the simulation study of Section 5 and the application to real sample data in Section 6, we added

the constraint ∑
K

k¼1
pXk xk ¼ μX .

8
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3.3 Generation of a Fused Data Set

Once the probabilities pXk ; p
Y∣X
i ; pZ∣Xi

n o
governing the population multinomial model have

been estimated, a fused data set with joint observations x; y; zð Þ are constructed as follows:

1 Generate en observations taking values x1; x2;…; xKð Þ with probabilities bpX1 ;bpX2 ;…;bpXK� �
.

2 For i ¼ 1; …; en and k ¼ 1; …; K, draw at random a valueeyi from the estimated probability

function bpY∣Xi , taking the values yk1; y
k
2;…; yknXk; A

� 	
with probabilities

bpY∣xk1 ;bpY∣xk2 ;…;bpY∣xk
nXk; A

� 	
, where nXk; A ¼ # i ∈ A:xi ¼ xkf g.

3 Apply a similar procedure for drawing valuesezi from the estimated probability functionbpZ∣Xi .

The consistency of the estimators of the model parameters guarantees that for sufficiently large
sample sizes nA and nB, the fused data set can be considered as being generated from the joint
population pdf.

Remark 5. It is not correct to only impute the missing z-values in A, and only the missing y-values in
B, and then consider the union of the two samples as the fused data set. This is so because although

in the sample A the missing z-values could be imputed using the estimated probabilities bpZ∣Xi , under
informative sampling the observed x; yð Þ values in A are not representative of the population x; yð Þ
values. The same holds for the sample B.

3.4 Use of the EL under Non-ignorable Sampling and Non-response

In what follows, we assume that additionally to informative sampling, the samplesA andB are
subject to NMAR non-response, by which the response probabilities depend in some stochastic
way on the study variables of interest. Let RA

i define the response indicator, taking the value 1 if
sample unit i ∈ A responds and 0 otherwise. LetRA denote the set of responding units inA and rA,
the size of RA. The response process is assumed to be independent between units. This way, the
set of respondents can be viewed as the result of a two-phase sampling process: (i) A sampleA is
selected from the finite population with known inclusion probabilities πi; A; (ii) the response set
RA is selected from A with unknown response probabilities P RA

i ¼ 1jIAi ¼ 1
� �

. Let ρXi; A ¼
P RA

i ¼ 1jxi; IAi ¼ 1
� �

. By Bayes’ rule, for i ∈ Ak,

pXk; RA
¼ P xk jIAi ¼ 1;RA

i ¼ 1
� � ¼ P RA

i ¼ 1jxk ; IAi ¼ 1
� �
P RA

i ¼ 1jIAi ¼ 1
� � pXk; A ¼ τXk; Aρ

X
k; Ap

X
k

∑
K

j¼1
τXj; Aρ

X
j; Ap

X
j

; (15)

pY∣Xi; RA
¼ P yijxk ; IAi ¼ 1;RA

i ¼ 1
� � ¼ P RA

i ¼ 1jxkyi; IAi ¼ 1
� �
P RA

i ¼ 1jxk ; IAi ¼ 1
� � pY∣Xi; A ¼ τXYi; Aρ

XY
i; Ap

Y∣X
iX

i ∈ RA; k

τXYi; Aρ
XY
i; Ap

Y∣X
i

; (16)

9Nonignorable Sampling and Nonresponse
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where τXk; A and τ
XY
i; A are defined in (1), RA; k ¼ i ∈ RA :xi ¼ xkf g defines the group of respondents

in A with X ¼ xk of size rXk; A and

ρXk; A ¼ P RA
i ¼ 1jxk ; IAi ¼ 1

� � ¼ EA RA
i jxk ; IAi ¼ 1

� � ¼ X
i ∈ RA; k

ρXYi; Ap
Y∣X
i; A ; (17)

ρXYi; A ¼ P RA
i ¼ 1jxk ; yi; IAi ¼ 1

� � ¼ EA RA
i jxk ; yi; IAi ¼ 1

� �
: (18)

In (16) the sample model pY∣Xi; A and the model assumed for the response probabilities define the
model holding for the outcomes of the responding units. Notice that unless
P RA

i ¼ 1jxk ; yi; IAi ¼ 1
� � ¼ P RA

i ¼ 1jxk ; IAi ¼ 1
� �

for all xk ; yið Þ, the model (16) is different

from the sample model pY∣Xi; A defined by (2), which is different from the corresponding popula-
tion model under informative sampling. Specifically, the respondents model is a function of
the corresponding population model, the conditional expectations of the sampling weights,
τXYi; A ¼ P IAi ¼ 1jxi; yi

� � ¼ 1=EA wi; Ajxi; yi
� �

, and the response probabilities ρXYi; A ¼
P RA

i ¼ 1jxk ; yi; IAi ¼ 1
� �

. Assuming that the response is independent of the sample selection,
EA wi; Ajxi; yi
� � ¼ ERA wi; Ajxi; yi

� �
, in which case the probabilities P IAi ¼ 1jxi; yi

� �
can be esti-

mated by regressingwi; A against xi; yið Þ, using the observed data in A, and similarly for the sam-
ple B. See Section 3.2. Clearly, if the response probabilities depend in some way on the sample
selection, say, higher non-response rates for units with higher sampling probabilities, the expec-
tations EA wi; Ajxi; yi

� �
need to be estimated in some more elaborated manner. See also the con-

cluding remarks in Section 7.

Remark 6. Under MAR non-response, the response probability does not depend on the target out-
come variable after accounting for the model covariates, such that in (16), pY∣Xi; RA

¼ pY∣Xi; A . However, a

non-response bias may still exist if the probabilities pXk
� �

are not estimated properly. Recall that the

covariates are only assumed to be known for the responding units.

With straightforward modification of the notation, similar expressions to (15)–(18) are ob-
tained for the model holding for the responding units in B. Thus, the empirical respondents’
likelihood (ERL) for the sample A∪B is given by

ERLA∪BObs ¼ ∏
K

k¼1
pXk; RA

� �rXk; A
∏

i ∈ RA; k

pY∣Xi; RA
∏
K

k¼1
pXk; RB

� �rXk; B
∏

i ∈ RB; k

pZ∣Xi; RB
: (19)

Remark 7. The likelihood (19) only depends on the observed data for the responding units.

The response probabilities in (15) and (16), defining the probabilities in (19), are unknown
and need to be estimated from the available data. Because no ‘response weights’ are known,
parametric models for the response probabilities in the two samples need to be postulated.
For example,

P RA
i ¼ 1jxi; yi; IAi ¼ 1

� � ¼ gA γ0; A þ γx; Axi þ γy; Ayi
� �

; (20)

P RB
i ¼ 1jxi; zi; IBi ¼ 1

� � ¼ gB γ0; B þ γx; Bxi þ γz; Bzi
� �

; (21)
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for somefunctionsgA; gB,withunknownparametersγA ¼ γ0; A; γx; A; γy; A
� �

,γB ¼ γ0; B; γx; B; γz; B
� �

. Here again, we assume for convenience that the response probabilities depend on the same covar-
iates as in the sample model. See Remark 1. Modelling the response probabilities by the logit or
probit functions is common, but notice that in our case the probabilities depend also on the study
variables, which is different from the familiar ‘propensity scores’ approach, under which the re-
sponse probabilities only depend on the observed covariates, which are in common use under
MAR non-response. The unknown vector parameters, γA , γB , indexing the response models in
the two samples are then estimated as part of the maximisation of the likelihood. Thus, one needs
to maximise the likelihood (19) with respect to a larger set of parameters

pXk ; p
Y∣X
i ; pZ∣Xi

n o
; γA; γB

h i
, satisfying the constraints

pXk ≥ 0; pY∣Xi ≥ 0; pZ∣Xi ≥ 0; ∑
K

k¼1
pXk ¼ 1;

X
j ∈ RA; k

pY∣Xj ¼ 1;
X

j ∈ RB; k

pZ∣Xj ¼ 1: (22)

for all k and i. Notice the difference from the constraints in (7) under full response.
For subsequent inference in the statistical matching context, one only needs estimates of the

probabilities pXk ; p
Y∣X
i ; pZ∣Xi

n o
, suggesting considering the coefficients γA, γB as nuisance param-

eters. In order to write the likelihood (19) as only a function of the three sets of probabilities, we
adopt the profile likelihood approach. Suppose that the three sets of probabilities are ‘known’.
(In practice, we use some initial estimates; see Remark 8.) The profile likelihood function is de-

fined asG γA; γBð Þ ¼ ERLA∪BObs γA; γBjpXk ; pY∣Xi ; pZ∣Xi

� �
, and it is maximised with respect to (γA, γB),

yielding the estimators

bγA;bγBð Þ ¼ arg max
γA;γBð Þ

ERLA∪BObs γA; γBjpXk ; pY∣Xi ; pZ∣Xi

� �
: (23)

Next, we substitute the estimates (23) into the likelihood (19) and maximise the resulting like-
lihood with respect to the unknown sets of probabilities, yielding

bpXk ; bpY∣Xi ; bpZ∣Xi

� �
¼ arg max

pXk ;p
Y∣X
i ;pZ∣Xið Þ

ERLA∪BObs pXk ; p
Y∣X
i ; pZ∣Xi ;bγA;bγB� �

: (24)

This completes the first iteration in the estimation process. In the second iteration, we consider
the estimates in (24) as ‘known’, re-estimate the parameters (γA, γB) and then the unknown prob-
abilities. The iterations continue until convergence. See Feder & Pfeffermann (2019) for condi-
tions guaranteeing the convergence of the maximisation process.
As noted before, the model for the response probabilities can be tested by testing the esti-

mated models, bpY∣Xi; RA
and bpZ∣Xi; RB

for the observed data using standard goodness-of-fit tests. See
Pfeffermann & Landsman (2011) and Feder & Pfeffermann (2019) for examples of relevant test
procedures. Once the probabilities of the population multinomial models have been estimated, a
fused data set with observations x; y; zð Þ is constructed, following the procedure in Section 3.3.

Remark 8. In the simulation study (Section 5), initial estimates of pXk ; p
Y∣X
i ; pZ∣Xi

n o
are computed

by the relative frequency of the observed values in the samples A and B. For example, for X ¼ xk and

Y ¼ yi, the initial value of p
Y∣X
i is the ratio between the number of units in RA; k with X ¼ xk and Y ¼

yi , and rXk; A . If Y is a continuous variable, all the observed values are different and the initial

11Nonignorable Sampling and Nonresponse
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estimates are 1=rXk; A. We maximised the ERL (19) by using the R function emplik. See Owen (2013)

for related theory and further details.

Remark 9. One of the reviewers of the present article proposed an EM algorithm for maximisation
of the ERL. We hope to investigate the properties of this algorithm in the future. See also the con-
cluding remarks in Section 7.

4 Uncertainty in Statistical Matching under Informative Sampling and NMAR
Non-response

So far, we assumed that the joint population pdf satisfies the CIA. Clearly, the CIA may not
hold in practice, and having no joint measurements for the variables of interest disallows distin-
guishing between different plausible distributions. In Section 4.1, we drop the CIA and define
instead a class of plausible joint pdfs for the outcome variables of interest. Some measures
quantifying the size of the class are introduced. In Section 4.2, a procedure for choosing a
pdf from the class of plausible pdfs is described.

4.1 Measuring Uncertainty in Statistical Matching

In statistical matching, estimation of the joint pdf of X ; Y ; Zð Þ requires the estimation of (i)
the marginal pdf of X and (ii) the joint conditional pdf of Y ; Zð Þ given X . Denote by Fp y; z∣xkð Þ
the joint cumulative population distribution function (cdf) of Y ; Zð Þ given X ¼ xk , and by
Fp yjxkð Þ, Gp zjxkð Þ the corresponding marginal cdfs.

Notice that unless under additional assumptions, the only valid statement regarding
Fp y; z∣xkð Þ is that it lies in the set Ωk

p of all joint distributions having marginal cdfs Fp yjxkð Þ,
Gp zjxkð Þ , that is, Ωk

p ¼ Fp y; z∣xkð Þ:Fp y;∞jxkð Þ ¼ Fp yjxkð Þ; Fp ∞; zjxkð Þ ¼ Gp zjxkð Þ� �
.

For known Fp yjxkð Þ, Gp zjxkð Þ, L Fp yjxkð Þ; Gp zjxkð Þ
 �
≤ Fp y; z∣xkð Þ ≤ U Fp yjxkð Þ; Gp zjxkð Þ
 �

,
where

U Fp yjxkð Þ; Gp zjxkð Þ
 � ¼ min Fp yjxkð Þ; Gp zjxkð Þ
 �
; (25)

L Fp yjxkð Þ; Gp zjxkð Þ
 � ¼ max 0; Fp yjxkð Þ þ Gp zjxkð Þ � 1

 �

: (26)

The bounds (25) and (26) are the Fréchet bounds; see Nelsen (1999). A natural pointwise un-
certainty measure is the length of the interval L …½ �; ;U …½ �f g. For X ¼ xk, the measure is

Δk
p ¼ ∫

ℜ2

U Fp yjxkð Þ; Gp zjxkð Þ
 � � L Fp yjxkð Þ; Gp zjxkð Þ
 �� �
dFp yjxkð ÞdGp zjxkð Þ: (27)

Weight functions different from dFp yjxkð ÞdGp zjxkð Þ can be used instead. Our choice has a clear
interpretation, with larger weights assigned to intervals with larger marginal densities. The mea-
sure in (27) is easily estimated from the sample data, see (29).

An overall uncertainty measure is defined by the average of the conditional measures (27),

Δp ¼ ∑
K

k¼1
Δk
pp

X
k : (28)

12
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As shown in Conti et al. (2012), the valueΔk
p ¼ 1=6 of the conditional uncertainty measure (27)

represents the maximum uncertainty when no external information beyond knowledge of the
marginal cdfs Fp yjxkð Þ and Gp zjxkð Þ is available. Consequently, the maximum unconditional

uncertainty measure (28) also equals 1/6. Denote ϒk; RA ¼ yk1; y
k
2;…; ykrXk; A

� 	
, Γk; RB ¼

zk1; z
k
2;…; zkrXk; B

� 	
. The measure (27) can be estimated by averaging the rXk; Ar

X
k; B pointwise un-

certainty measures.bΔk
p ¼

1

rXk; Ar
X
k; B

X
y ∈ ϒk; RA

X
z ∈ Γk; RB

U bFp yjxkð Þ; ; bGp zjxkð Þ
� �

� L bFp yjxkð Þ; bGp zjxkð Þ
� i

;
h

(29)

where bFp yjxkð Þ and bGp zjxkð Þ are the estimated cdfs of Fp yjxkð Þ and Gp zjxkð Þ ; bFp yjxkð Þ ¼

∑
rXk; A

i¼1
bpY∣xki I yki ≤ y

� �
, bGp zjxkð Þ ¼ ∑

rXk; B

i¼1
bpZ∣xki I zki ≤ z

� �
. The overall uncertainty measure (28) is esti-

mated as

bΔp ¼ ∑
K

k¼1

bΔk
pbpXk : (30)

The bounds (25) and (26) can be narrowed when additional information is available. The reduc-
tion in uncertainty due to the use of external information is investigated in Conti et al. (2015,
2016), where conditionally on X ¼ xk , constraints of the form ak ≤ ck y; zð Þ ≤ bk with ck y; zð Þ
defining a monotone function of y zð Þ for each z yð Þ, are added. The class of plausible pdfs is now
Ωk

p; c ¼ Fp y; z∣xkð Þ:Fp y;∞jxkð Þ ¼ Fp yjxkð Þ; Fp ∞; zjxkð Þ ¼ Gp zjxkð Þ; ak ≤ ck y; zð Þ ≤ bk
� �

:

(31)

Hereafter, each bivariate pdf in the class (31) is referred to as a plausible matching pdf for
Y ; Zð Þ, conditionally onX ¼ xk. For example, Okner (1972) imposed the constraintY ≤ Z. With
this constraint, the Fréchet bounds (25) and (26) become (see Conti et al., 2015)

Uc Fp yjxkð Þ; Gp zjxkð Þ
 � ¼ min Fp yjxkð Þ; Fp zjxkð Þ; Gp zjxkð Þ
 �
(32)

Lc Fp yjxkð Þ; Gp zjxkð Þ
 � ¼ max½0; Fp yjxkð Þ þ Gp zjxkð Þ � 1;

min Fp yjxkð Þ; Fp zjxkð Þ� �þ Gp zjxkð Þ � 1� :

(33)

Notice the difference from (25) and (26), when no additional information is available. The cor-
responding uncertainty measures, Δk

p; c, Δp; c, are defined similarly to (27) and (28) but with re-
spect to the bounds (32) and (33). By choosing a matching distribution from the class (31), the
uncertainty measure Δp; c provides an upper bound for the matching error. The statistical
matching problem consists therefore of choosing a matching distribution from the class (31).

4.2 Choosing a Matching Distribution

Conti et al. (2016) proposed a procedure for choosing a pdf in the class (31), based on iter-
ative proportional fitting (IPF; Bishop et al., 1975). The procedure consists of the following
steps:

13Nonignorable Sampling and Nonresponse
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Step 1: Discretise Y and Z by grouping their ascending values in pre-defined classes. Condition-

ally onX ¼ xk, the range ofY is divided intohk adjacent intervals I
Y∣xk
1 ; ::; IY∣xkh ; ::; IY∣xkhk

,

where IY∣xkh ¼ yh � 1; yh½ � , h ¼ 1; ::; hk with y0 ¼ minyi , yh ¼ maxyi . Similar

notation applies to the variableZ; IZ∣xkg ¼ zg � 1; zg

 �

forg ¼ 1; ::; gk. ForX ¼ xk, denote
byYd; k(Zd; k) the discretised variable corresponding toY(Z), taking hk(gk) values defined
by themidpointsyd; h zd; g

� �
of each interval. Let {Ck} be the contingency table defined by

the hkgk valuesϒ
YZ∣xk ¼ yd; 1; zd; 1

� �
; ::; yd; h; zd; g
� �

; ::; yd; hk ; zd; gk
� �
 �

, with cell proba-

bilities p
Yd; kZd; k∣xk
11 ; ::; p

Yd; kZd; k∣xk
hg ;…; p

Yd; kZd; k∣xk
hkgk

� �
. Initial values p

0; Yd; kZd; k∣xk
hg

n o
of the

cell probabilities when applying the IPF are defined in Step 3. Note that a separate con-
tingency table {Ck} is defined for each value xk . As also explained in Step 3, the con-
straint ak ≤ ck y; zð Þ ≤ bk on the support of Y ; Zð Þ∣xk is applied to the values
Yd; k ; Zd; k

� �
, resulting in cells with structural zeroes.

Step 2: For X ¼ xk, the marginal probabilities pYd; k∣xk
h: , pZd; k∣xk

:g in {Ck}, that is, the probabilities
that Yd; k and Zd; k take the values yd; h , zd; g , are estimated as bpYd; k∣xk

h: ¼

∑
rXk; A

i¼1
bpY∣xki I yki ∈ IY∣xkh

� �
, bpZd; k∣xk

:g ¼ ∑
rXk; B

i¼1
bpZ∣xki I zki ∈ IZ∣xkg

� �
, where bpY∣xki ; bpZ∣xki are the

MLE of the ERL (19).
Step 3: Once the contingency table {Ckg has been defined, the midpoints yd; h; zd; g

� �
are

checked to identify cells in fCkg, which do not satisfy the constraint
ak ≤ ck yd; h; zd; g

� �
≤ bk. These cells define structural zeroes in {C

k}. The IPF initial cell

probabilities are defined as p
0; Yd; kZd; k∣xk
hg ¼ δhgbpYd; k∣xk

h: bpZd; k∣xk
:g , where δhg ¼ 1 for cells

not containing structural zeroes and δhg ¼ 0 otherwise.

A fused data set for X ; Y ; Zð Þ is constructed from the estimated matching distribution obtained
at the end of the iterations as follows: (i) Generate en observations exi from the estimated distri-
bution of X , taking values x1; x2;…; xKð Þ with probabilities bpX1 ;bpX2 ;…;bpXK� �

. Let enXk be the

number of observations with exi ¼ xk . (ii) For each observation xi; i ¼ 1; ::; enXk , draw
independently enXk pairs yd; 1; zd; 1

� �
; ::; yd; h; zd; g
� �

; ::; yd; hk ; zd; gk
� �
 �

with cell probabilitiesbpYd; kZd; k∣xk
11 ; ::;bpYd; kZd; k∣xk

hg ;…;bpYd; kZd; k∣xk
hkgk

� �
, computed by the IPF algorithm.

5 Simulation Study

5.1 Description of Simulation Experiment

In order to evaluate the performance of our proposed methodology, we performed a simula-
tion experiment, consisting of the following steps:

Step 1. Generate a population of N ¼ 10; 000 values xi, taking the values k ¼ 1; 2; 3; 4 with
probabilities pX ¼ pX1 ; p

X
2 ; p

X
3 ; p

X
4

� � ¼ 0:4; 0:1; 0:3; 0:2ð Þ. For each xi, generate inde-
pendently values yi and zi from the following distributions: (i) yi∣xi is normal with

14

International Statistical Review (2022)
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12524 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



parameters θY∣X ¼ β0 þ β1xi; σ
2
Y∣X

� �
; β0 ¼ 0:5, β1 ¼ 2, σY∣X ¼ 4; (ii) zi∣xi is normal

with parameters θZ∣X ¼ α0 þ α1xi; σ2Z∣X
� �

; α0 ¼ 2, α1 ¼ 2, σZ∣X ¼ 4.

Thus, the CIA holds in the population and corCIAYZ ¼ corXY corXZ ¼ 0:27.

Remark 10. In Section 5.3 and in the application in Section 6 with real sample data, we no longer
assume the CIA and illustrate the theory of Section 4.

Step 2. Draw independently samplesA andB from the population generated in Step 1 by use of
Poisson sampling with expected sample sizes E nAð Þ ¼ E nBð Þ ¼ 3000 and selection
probabilities.

πi; A ¼ nA
exp κx; Axi þ κy; Ayi
� �

∑
N

j¼1
exp κx; Axj þ κy; Ayj
� �; πi; B ¼ nB

exp κx; Bxi þ κz; Bzi
� �

∑
N

j¼1
exp κx; Bxj þ κz; Bzj
� �; (34)

where κA ¼ κx; A; κy; A
� �

and κB ¼ κx; B; κz; B
� �

denote the sampling model coefficients (specified
later). Notice that for κy; A ≠ 0, κz; B ≠ 0, the two sampling designs are informative.

Step 3. Generate the samples of responding units in the two samples with response
probabilities.

ρXYi; A γAð Þ ¼ logit�1 γx; Axi þ γy; Ayi
� �

; ρXZi; B γBð Þ ¼ logit�1 γx; Bxi þ γz; Bzi
� �

; (35)

where γA ¼ γx; A; γy; A
� �

, γB ¼ γx; B; γz; B
� �

govern the response models acting in the samples A

and B, respectively (specified later). Clearly, the non-response is NMAR.

In what follows, we assume knowledge of the mean μX ¼ ∑
4

k¼1
pXk k of X , hereafter the calibra-

tion constraint, abbreviated C-C. See Remark 4.

The probabilities pXk ; p
Y∣X
i ; pZ∣Xi

n o
are estimated under three scenarios:

Scenario 1: All the sampled units respond, and the sampling designs used for selecting
the samples A and B are ignored. The ESL is, in this case, ESLA∪BObs ¼
∏
K

k¼1
pXk
� �nXk; A þ nXk; B ∏

i ∈ Ak

pY∣Xi ∏
i ∈ Bk

pZ∣Xi , and it is maximised under the constraints

(7) and the C-C. The estimates of pXk obtained from the two samples are
harmonised according to (9), with λ ¼ nA= nA þ nBð Þ . Denote bybpXk; 1; bpY∣Xi; 1 ; bpZ∣Xi; 1

n o
the estimated population pdf.
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Scenario 2: All the sampled units respond, but the informative sampling designs are taken into
account in the estimation process. The ESL (3-8,15,16,19,24-29,31,32,6) is
maximised subject to the constraints (7) and the C-C. The expectations
EA wi; Ajxi; yi; κA
� �

are estimated by regressing wi; A against xi; yið Þ, assuming the

model EA wi; Ajxi; yi
� � ¼ exp axþ bx2 þ cyþ dy2

� �
. A similar model is used for

estimating the expectationsEB wi; Bjxi; zi
� �

. The use of these models guarantees pos-
itive expectations. The two estimates of pXk obtained from samples A and B are

harmonised as under Scenario 1. We denote by bpXk; 2; bpY∣Xi; 2 ; bpZ∣Xi; 2

n o
the estimated

population pdf under this scenario.
Scenario 3: The sampled units respond with probabilities defined by (35), and we account for

both the informative sampling designs and the NMAR non-response. For this, we

maximised the ERL (19) with respect pXk ; p
Y∣X
i ; pZ∣Xi

n o
, under the constraints (22)

and the C-C. The response is independent of the sample selection, such that
EA wi; Ajxi; yi
� � ¼ ERA wi; Ajxi; yi

� �
, and the probabilities P IAi ¼ 1jxi; yi

� �
are esti-

mated by regressing wi; A against xi; yið Þ, using the observed data. A similar proce-
dure is applied for the sample B. As in Scenario 2, we used exponential regression

models. Denote by bpXk; 3; bpY∣Xi; 3 ; bpZ∣Xi; 3

n o
the estimated population pdf under this sce-

nario. The two estimates of pXk are harmonised as under Scenario 1.

Different sampling parameters κA; κB and response parameters γA; γB are considered, thus dis-
tinguishing between informative and non-informative samples and different NMAR
non-response models. We repeated Steps 2 and 3 for each scenario and each combination of
the parameters κA; κB, γA; γB, M ¼ 400 times.

5.2 Simulation Results When the Population Distribution Satisfies the CIA

We begin by studying the effect of ignoring the informative sampling mechanisms used for
drawing the samples A and B. To this end, we estimated for each of the 400 samples the prob-

abilities pXk
� �

under Scenarios 1 and 2 (h ¼ 1; 2). Next, we computed the mean bpXk; h and their
variance–covariance matrix, but only for k ¼ 1; 2; 3, because the sum of the probabilities and
their estimates equals 1. In order to evaluate the overall performance of the estimators, we use
the Hotelling T2 statistic bp � pð Þ0bV�1 bp � pð Þ, where bp is the mean vector of the estimated

probabilities over the 400 samples and bV is the empirical V-C matrix of bp.
Table 1 displays the p-values (pvh) of the test for different choices of the vectors κA; κB, de-

fining the sampling probabilities (34).
As can be seen, when κA ¼ κB ¼ 0; 0ð Þ, the sampling designs generating the samplesA andB

are not informative, and the null hypothesis of no sampling effects is not rejected. However, for
κA ¼ κB ¼ 0:25; 0:25ð Þ andκA ¼ κB ¼ 0:5; 0:5ð Þ, when the sampling processes are ignored un-
der Scenario 1, the null hypothesis is rejected with extremely small p-values. When the sam-
pling processes are accounted for under Scenario 2, the null hypothesis is not rejected.

So far, we focused on the estimation of the probabilities pXk
� �

. Next, we turn our attention to
the estimation of the population model Fp yjxkð Þ. For each X ¼ xk, we used the estimated prob-

abilities bpY∣Xi

n o
to generate a fused data set of sizeen ¼ 10; 000 (Section 3.3) and computed the

Kolmogorov–Smirnov (KS) distance KSY∣xkp; h ¼ sup
�∞ < y < ∞

Fp yjxkð Þ � bFp; h yjxkð Þ
��� ��� between the
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normal pdf Fp yjxkð Þ used to generate the population values (Step 1 in Section 5.1) and the es-

timated pdf, bFp; h yjxkð Þ in the fused data set, with the index h ¼ 1; 2 labelling the scenario.

Table 2 shows the average of the 400 KS values, denoted KSdY∣xkp; h , xk ¼ 1; 2; 3; 4.
The conclusions from Table 2 are similar to those drawn from Table 1. When κA ¼ κB ¼

0; 0ð Þ, KSdY∣xkp; 1 ¼ KSdY∣xkp; 2 for xk ¼ 1; 2; 3; 4, and all the distances are very small. When κA ¼
κB ¼ 0:25; 0:25ð Þ, the distance measures are much larger, and they increase further when κA ¼
κB ¼ 0:5; 0:5ð Þ. Notice that for each xk ¼ 1; 2; 3; 4, KSdY∣xkp; 1 is much larger than KSdY∣xkp; 2 , be-
cause under Scenario 2, we account for the informative sampling designs. We also observe that

the KSdY∣xkp; h distances for xk ¼ 1; 2 are much larger than the corresponding distances for xk ¼
3; 4. This result is explained by the fact that the mean of the inclusion probabilities increases as
xk increases, changing from 0.10 for xk ¼ 1, 0.20 for xk ¼ 2, 0.39 for xk ¼ 3 and 0.62 for xk ¼ 4

Table 1. P-values for different choices of the vectors κA; κB defining the sampling probabilities.

κA ¼ κB pv1 pv2

(0,0) 0.614 0.614
(0.25,0.25) <0.0001 0.727
(0.5,0.5) <0.0001 0.824

Table 2. Distance measures KSdY∣xkp; h , for xk ¼ 1; 2; 3; 4, h ¼ 1; 2 with different choices of the vector coefficients κA; κB
defining the sample selection probabilities (34).

κA ¼ κB KSdY∣1p; 1 KSdY∣1p; 2 KSdY∣2p; 1 KSdY∣2p; 2 KSdY∣3p; 1 KSdY∣3p; 2 KSdY∣4p; 1 KSdY∣4p; 2

(0,0) 0.033 0.033 0.060 0.060 0.020 0.020 0.021 0.021
(0.25,0.25) 0.380 0.181 0.381 0.164 0.334 0.071 0.251 0.043
(0.5, 0.5) 0.624 0.258 0.566 0.222 0.438 0.123 0.271 0.069

Figure 1. Population pdf and kernel density estimates of the sample pdf, the respondents pdf and the estimated pdf of Y∣xk ¼
2, κA ¼ 0:5; 0:5ð Þ, γA ¼ γB ¼ 0:05; 0:1ð Þ.

17Nonignorable Sampling and Nonresponse
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when κA ¼ κB ¼ 0:25; 0:25ð Þ, with similar means for κA ¼ κB ¼ 0:5; 0:5ð Þ. Thus, the informa-
tiveness of the sampling design reduces, as X increases. Similar results (not reported) are ob-
tained when estimating the population cdf of Z∣X .

Next consider Scenario 3, by which in addition to informative sampling, the samples A and B
are subject to NMAR non-response. Figure 1 exhibits the population pdf and the kernel density
estimates of the sample pdf with full response, the respondents pdf and the estimated population
pdf of Y∣xk ¼ 2 , for one of the 400 samples A , for the case κA ¼ 0:5; 0:5ð Þ , γA ¼ γB ¼
0:05; 0:1ð Þ . For selecting the bandwidth for the kernel estimates, we followed Sheather &
Jones (1991). Evidently, the sample pdf is different from the population pdf due to informative
sampling, and the respondents’ pdf is different from the sample pdf because of the non-
response. Notice that the estimated population pdf is the closest to the population pdf. Similar
results (not reported) are obtained for the pdfs of Y∣xk, xk ¼ 1; 3; 4 and Z∣xk, xk ¼ 1; 2; 3; 4.

Table 3 shows how by accounting for the sampling and response effects under Scenario 3, we
are able to fit the population model, using the same sample used for Figure 1. For this, we use
the KS test statistic with critical values computed by parametric bootstrap, as established theo-
retically by Babu & Rao (2004) and applied by Pfeffermann & Landsman (2011). Specifically,
we generated B ¼ 500 bootstrap samples from the estimated model, re-estimated for each sam-
ple the unknown model parameters and computed the KS statistic with the estimated parameters
and then obtained the critical value at the α ¼ 0:05 level from the resulting empirical distribu-
tion of the KS statistics. Table 3 reports the KS statistic of the estimated pdf of Y∣xk (xk ¼
1; 2; 3; 4) for the sample in Figure 1 and the corresponding critical value computed by the para-
metric bootstrap.

We also applied the Hotteling test based on all the 400 samples as in Table 1, with γA ¼ γB ¼
0:05; 0:1ð Þ and γA ¼ γB ¼ 0:1; 0:1ð Þ, and obtained extremely high p-values for all the three
choices of the vectors κA; κB defining the sample selection probabilities, thus verifying that
the model which accounts for the sampling and response processes fits well the population dis-

tribution of X . Table 4 shows the KSdY∣xkp; 3 distances for the estimated cdf bFp yjxkð Þ, computed as
in Table 2 by constructing a fused data set. See Section 3.3.

It appears from Table 4 that the distortion in the estimation of the pdfs pY∣Xi

n o
worsens under

the combination of informative sampling and NMAR non-response, particularly for xk ¼ 1; 2.

Note, however, that the measuresKSdY∣xkp; 3 are always much smaller than the corresponding mea-

sures KSdY∣xkp; 1 reported in Table 2 and only mildly larger than the measures KSdY∣xkp; 2 .

Table 3. Kolmogorov–Smirnov test statistic and critical values for α ¼ 0:05.

Distribution KS statistic Critical value

Y∣X ¼ 1 0.14 0.18
Y∣X ¼ 2 0.11 0.16
Y∣X ¼ 3 0.04 0.11
Y∣X ¼ 4 0.04 0.07

Table 4. Distance measures KSdY∣xkp; 3 for different choices of κA; κB, with γA ¼ γB ¼ 0:05; 0:1ð Þ.

κA ¼ κB KSdY∣1p; 3 KSdY∣2p; 3 KSdY∣3p; 3 KSdY∣4p; 3

(0,0) 0.088 0.073 0.043 0.062
(0.25,0.25) 0.223 0.197 0.096 0.057
(0.5,0.5) 0.281 0.231 0.143 0.081
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5.3 Simulation Results When the CIA in the Population Model Does Not Hold

In this section, we study the performance of the methodology proposed in Section 4. For this,
we consider the following Scenario 4, which consists of three parts:

1 Generate a population of N ¼ 10; 000 values xi, taking the values k ¼ 1; 2; 3; 4 with the
same probabilities as before. Conditionally on X ¼ xk, generate Y ; Zð Þ-values from a bivar-
iate normal distribution with parameters as in Step 1 of Section 5.1 and corYZ∣x ¼ 0:77. The
unconditional correlation is corYZ ¼ 0:83.

2 Remove values Y ; Zð Þ for which Y > Z. The resulting final population of joint X ; Y ; Zð Þ
values consists of N ¼ 7; 135 observations, with empirical correlation corYZ ¼ 0:91.

3 Select samples A; Bð Þ similarly to Section 5.1, with κA ¼ κB ¼ 0:25; 0:25ð Þ . Select the
responding units in the two samples according to (35), with γA ¼ γB ¼ 0:05; 0:1ð Þ.
We start by computing the overall (average) uncertainty measure (28), under the constraint

Y ≤ Z . For this, we split the population data in (ii) into two data sets, the first containing the
values X ; Yð Þ and the second containing the values X ; Zð Þ. Under the constraintY ≤ Z, the mea-
sure is Δp; c ¼ 0:10. When estimating the uncertainty measure but ignoring the sampling and

response processes, the estimate is bΔp; c ¼ ∑
K

k¼1

bΔk
p; cbpXk ¼ 0:15. When accounting for the two pro-

cesses, bΔp; c ¼ 0:11.
Next, we estimated the parameters defining the marginal distributions of Y∣xk and Z∣xk under

Scenario 3 of Section 5.1, following the methodology of Section 3. We then used the estimates
for choosing a matching distribution from the class (31) of plausible distributions under the
constraint Y ≤ Z by use of the IPF, as developed in Section 4.2. For each value xk , the range

of the variable Y Zð Þ has been divided into intervals of equal size,
ffiffiffiffiffiffiffiffi
rXk; A

q ffiffiffiffiffiffiffiffi
rXk; B

q� �
(Dougherty

et al., 1995). The IPF accuracy, measured by the maximum deviation between the final row and
column marginal probabilities upon convergence and the target probabilities as estimated from
the original samples, over all values xk was found to be 0.02. Finally, we generated a fused data
set of size en ¼ 10; 000, as described at the end of Section 4.2. The correlation between the im-
puted values of Y and Z obtained from the IPF distribution is 0:95, very close to the correlation,
corYZ ¼ 0:91 in (ii) above. For k ¼ 1; 2; 3; 4ð Þ, cor Y ; Zð Þ∣X¼xk ¼ 0:87; 0:88; 0:88; 0:88ð Þ for
the population values and 0:90; 0:91; 0:91; 0:90ð Þ for the imputed values.

6 Application to Real Data: Matching of Household Income and Expenditure

6.1 Sampling Designs and Choice of the Matching Variable

In this section, we apply our proposed methodology to the SHIW and HBS samples men-
tioned in the introduction and construct a fused data set with joint measurements of income
and expenditure. SHIW is conducted by Banca d’Italia every 2 years. Its main goal is to study
the economic status of Italian households, focusing on income and wealth. The SHIW question-
naire also contains a section on households expenditures (food consumption, expenses for hous-
ing, health, etc.), and some ‘recall questions’ used for constructing an approximate measure of
total expenditure. A main drawback of these questions is that they lead to ‘heaping and
rounding’. For example, the concept of non-durable goods is too complex to be measured by
a single question. It includes many diverse items and without specific instructions of which
items to include, different respondents account for different items in their assessment of total

19Nonignorable Sampling and Nonresponse
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expenditure. Consequently, SHIW suffers from significant under-reporting of household expen-
diture (about 30%).

SHIW is drawn in two stages, with municipalities as the primary sampling units and house-
holds (HH) as the secondary sampling units. In the present application, we use the 2010 wave,
which consists of 387 municipalities drawn with probabilities proportional to size (PPS) and
7951 HH sampled by simple random sampling (SRS). The HH income is defined as the com-
bined disposable annual income of all the people living in the HH. The HBS uses a similar sam-
pling design and collects detailed information on socio-demographic characteristics and expen-
ditures on a disaggregated set of commodities (durable and non-durable). Here again, we use the
2010 wave, which consists of 470 municipalities and 22 227 HHs.

As stated and illustrated throughout the article, statistical matching is usually based on a set
of variables measured in all the data sources (the X variables). In our application, we considered
three variables as plausible candidate matching variables, harmonised across the two samples:
household size (hsize = 1,2,3,4+), area of residence (area) and occupational status (condlav).
The literature highlights three main criteria for selecting matching variables; see, for example,
D’Orazio et al. (2006b). (i) The variables need to be comparable with regard to their statistical
content and have a similar distribution in the two surveys. (ii) The variables must have good pre-
diction power in predicting the outcome variables. (iii) The use of these variables should mini-
mise the ‘maximum error’ in matching the joint distribution of the outcome variables of interest.

Regarding the first criterion, a common method for comparing the distribution of variables in

different data sets is by use of the Hellinger distance HD ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1

ffiffiffiffiffiffiffiffiffibpXk; Aq
�

ffiffiffiffiffiffiffiffiffibpXk; Bq� �2s
,

where bpXk; S are the estimates of the probabilities pXk , obtained from sample S ¼ A; B. It is gen-
erally accepted that a value exceeding 0.05 should raise concerns about the similarity of the dis-
tributions. The values in our case are 0.027 for hsize, 0.024 for area and 0.055 for condlav. As
for the second criterion, we modelled the log-expenditure (Y ) based on the HBS data and
log-income (Z) based on the SHIW data, each time as a linear function of one of the candidate
matching variables as the sole explanatory variable. The variables hsize, area and condlav are
all statistically significant in explaining the variation of both the expenditure and income. How-
ever, hsize was found to have the best prediction power, with coefficients of determination R2 ¼
0:20 in the expenditure model and R2 ¼ 0:11 in the income model.

In order to examine the third criterion, we proceeded as follows: (i) Compute for each pair

yki ; z
k
j

� �
, i ¼ 1; ::; rXk; A; j ¼ 1; ::; rXk; B the pointwise uncertainty measure defined by the length

of the Fréchet interval Lc;Ucð Þ, with the bounds (32) and (33), where for X ¼ xk, yki ; z
k
j

� �
de-

fines a pair composed by an observed value of Y and an observed value of Z. (ii) Compute the
average of the rXk; Ar

X
k; B measures as an estimate of Δk

p; c, defined in (29). (iii) Compute the un-

conditional uncertainty measure bΔp; c defined in (30). We found that when hsize is used as

the matching variable, the uncertainty measure is bΔp; c ¼ 0:11, and it remains approximately

the same when including all three matching variables in the analysis (bΔp; c ¼ 0:107). Based
on these findings, we use hsize as our sole matching variable. For applying our proposed meth-

odology, we added the calibration constraint ∑
K

k¼1
pXk xk ¼ 2:4 (hereafter C-C), where 2.4 is the

average size of households in 2010, as published in the ISTAT site (http://dati.istat.it/#).
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6.2 Results Obtained When Matching the Two Surveys

SHIW and HBS suffer from low response rates, about 62% in both samples. It is quite evident
that the non-response is explained, at least in part, by the size of the HH and the income (or ex-
penditure). The larger the HH, the more possibilities exist to find a contact person for an inter-
view. In addition, HH consisting of only one or two elder people often tend not to participate in
surveys. Furthermore, as often reported in the literature, the response probability tends to de-
crease as the HH income or expenditure increase (Korinek et al., 2006). In order to obtain a re-
sponse rate of about 62%, we computed the response probabilities in the two samples by use of

the models defined by (35), with coefficients γx; A; γy; A
� �

¼ 0:2; �0:002ð Þ , γx; B; γz; B
� � ¼

0:2; �0:003ð Þ.
Table 5 displays four different estimates of the probabilities pXk

� �
, when considering the four

possible size values (hsize = 1,2,3,4+). The first column headed pXk shows the ISTAT’s estimates
of the household size distribution in Italy in 2010. These values are considered as the true prob-
abilities and serve as benchmarks for the performance of the other estimates. The estimates are
defined as follows: bpXk; 1 are the estimates obtained when ignoring the sampling design effects
and assuming that all the units responded, and not imposing the C-C. The estimates are obtained
by maximising the likelihood as under Scenario 1 in Section 5.1, but only imposing the con-
straints (7); bpXk; 1C are the estimates obtained under the same set-up, but imposing also the C-

C;bpXk; 2C are the estimates obtained when accounting for the sampling effects (but still assuming
full response) and imposing the C-C, obtained by maximising the ESL (6), subject to the con-
straints (7) and the C-C; bpXk; 2CM are our proposed estimates, which account for the sampling de-
signs and the non-response (Scenario 3 of Section 5.1), obtained by maximising the ERL (19)
under the constraints (22) and the C-C. We accounted for the sampling design effects by follow-
ing the approach described in Section 3.2. The last four columns of Table 5 display the sample
sizes and the numbers of respondents, with the index A defining the HBS and the index B the
SHIW.
In order to compare the goodness of fit of the four sets of estimators in Table 5, we computed

again the Hellinger distances, with the estimates compared with the true probabilities, pXk . For
the estimates bpXk; 1, the HD distance is 0.023. It reduces to 0.018 for bpXk; 1C, to 0.012 for bpXk; 2C and

to 0.009 for bpXk; 2CM.
In addition to estimating the probabilities pXk , we estimated the pdfs pY∣Xi ; pZ∣Xi

n o
, both when

ignoring the sampling designs and non-response and when accounting for them, imposing the
calibration constraint C-C in both cases. Next, we generated a fused data set of size en ¼
10; 000 by assuming the CIA, as described in Section 3.3. The (weighted) correlations corXY ,
corXZ in the original samples are 0.38 and 0.31, respectively. In the fused data sets, the correla-
tions are 0.34 and 0.28 when ignoring the sampling designs and non-response and {0.38, 0.32}
when accounting for them. The correlation between the imputed values of Y and Z when

Table 5. Different estimates of the probabilities pXk .

hsize pXk bpXk; 1 bpXk; 1C bpXk; 2C bpXk; 2CM nXk; A nXk; B rXk; A rXk; B

1 0.284 0.260 0.264 0.276 0.276 5851 1989 3194 1074
2 0.276 0.293 0.293 0.281 0.280 6292 2522 3783 1504
3 0.209 0.210 0.208 0.200 0.205 4758 1589 3069 1028
4 0.232 0.238 0.233 0.243 0.239 5326 1851 3730 1258
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ignoring the sampling designs and non-response in the estimation of the probabilities

pXk ; p
Y∣X
i ; pZ∣Xi

n o
is 0.08. The correlation increases to 0.13 when both processes are accounted

for. Notice that when assuming the CIA, the correlation computed from the original samples is
corCIAYZ ¼ corXY corXZ ¼ 0:12.

As mentioned in Section 6.1, SHIW contains also some recall questions, aimed for construct-
ing an approximate measure of total expenditure. The correlation in the SHIW sample between
income and expenditure is 0.65. Thus, the fused data set constructed under the CIA seems to
misrepresent the joint population distribution of Y ; Zð Þ. Consequently, we no longer assume
the CIA and estimate instead a matching distribution for income and expenditure by assuming
the class (31) of plausible distributions, with the added constraints Y ≤ Z and the C-C, and ap-
plying the IPF. (Section 4.2.) The IPF accuracy was found to be 7� 10�4, much smaller than in
the simulation study. Next, we used the estimated joint distribution for generating en ¼ 10; 000
values xi; yi; zið Þ, as described at the end of Section 4.2. Figure 2 shows the bivariate density es-
timates obtained by application of the IPF and under the CIA, for households of size 3. Similar
figures (not shown) have been produced for HH of size 1, 2 and 4+. Evidently, the two estimated
densities are different. As noted above, the correlation between the imputed values of Y and Z
under the CIA is 0.12. The correlation increases to 0.55 by use of the IPF. The correlation
in the SHIW sample is 0.65, but recall that expenditure is not directly observed in SHIW. See
Section 6.1.

Rässler (2002) proposes four validation measures of decreasing importance in a statistical
matching problem, which in our case are as follows: (i) preserving the true household values;
(ii) preserving the true joint distribution; (iii) preserving correlation structures; and (iv) preserv-
ing marginal distributions. We cannot assess the first measure because the true incomes and ex-
penditures at the HH level are unknown. The second measure requires knowledge of the true
joint population distribution of X ; Y ; Zð Þ, which is likewise unknown, but an uncertainty mea-
sure of the kind introduced in Section 4.1 can be used to assess how far the matching distribu-
tion is from the true joint distribution. When accounting for the sampling and non-response ef-

fects and imposing the constraint Y ≤ Z, the estimated uncertainty measure bΔp; c decreases from
0.16 (its maximum value with no constraint) to 0.11. The uncertainty measure increases to 0.13
when the sampling and non-response processes are ignored. Regarding the third measure, we

Figure 2. Estimation of pdf of Y ; Zð Þ under the constraint Y ≤ Z for hsize ¼ 3. Estimate obtained by IPF (left) and under the
CIA (right).
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note that the correlation between the imputed values of expenditure and income is 0.55 when
applying the IPF. Thus, our proposed methodology seems to recover pretty well the ‘approxi-
mate’ correlation of 0.65 between income and expenditure in the SHIW sample. Regarding
the fourth measure, the constructed fused data set preserves by construction, the marginal dis-
tributions of the income and expenditure. This follows from the use of the IPF, which adjusts
the initial cell probabilities to fit the marginal distributions of the two variables, as estimated
from the two samples separately.

7 Concluding Remarks

In this paper, we propose a comprehensive approach to deal with statistical matching, when
the samples containing the unmatched data are drawn by informative sampling designs and are
subject to NMAR non-response. Our approach employs the EL to account for the sampling and
response processes, thus enabling generating a fused data set, which represents sufficiently ac-
curately the true joint population pdf of the target variables. We first consider the case where the
target variables of interest are conditionally independent given the available matching variables
(the CIA) and then the much more challenging problem when the CIA cannot be assumed. In
order to deal with the latter case, we apply a procedure based on the IPF for choosing a pdf from
a class of plausible pdfs, which satisfy available information regarding the relationship between
the target variables and calibration constraints. An extensive simulation study and application to
real data sets illustrate the good performance of our proposed methodology.
We obviously hope that other researchers will apply our proposed approach with appropriate

modifications required for their data. New theoretical developments of the present work include
the use of proxy variables for estimation of the conditional sample inclusion probabilities
P IAi ¼ 1jxi; yi
� �

when the response process is not independent of the sampling process
(Section 3.4), possibly by adding them to the covariates of the sampling and/or the response
models. Good proxy variables may also be used for initialisation of the IPF algorithm.
Finally, we mention the EM algorithm for maximisation of the empirical respondents’ likeli-

hood (19), as proposed by one of the reviewers of the article. (See Remark 9.)
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