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Abstract: Sludge biochar can be used as bio-carrier to enhance aerobic granular sludge, however,
its impact on the formation and especially long-term stability of aerobic granules has not been
fully investigated. In this paper, aerobic granular sludge was cultivated in two parallel sequencing
batch reactors (SBRs), R1 and R2, with and without sludge biochar addition in the activated sludge
inoculum, respectively. The sludge characteristics, wastewater treatment performance, and microbial
community structure of granular sludge were examined on a 240-day operation, during which aerobic
granular sludge in the two reactors experienced dynamic changes including granule formation,
maturation, breakage, filamentous proliferation, and recovery. Aerobic granules in R1 with biochar
formed two weeks earlier than that in R2, presenting a larger mean size, and higher settling ability
and biomass retention in the granule maturation period. Concurrently, aerobic granules in R1 showed
higher denitrification ability with over 80% removal efficiency throughout the whole operation period.
During the maturation period, the ratio of food to biomass (F/M) in R1 was below 0.5 gCOD/gVSS
d while it ranged between 0.5 and 1.0 gCOD/gVSS d in R2 due to lower biomass retention. The
elemental analysis showed more Ca and P accumulation in aerobic granular sludge from R1, with
3% Ca and 2.75% P in sludge from R1 and 0.91% Ca and 0.75% P in sludge from R2, respectively.
The microbial community in R1 had higher richness, diversity, excretion of extracellular polymer
substances (EPSs) and abundance of denitrifying genera than that in R2, supporting its higher
stability and denitrification performance. These results demonstrated that aerobic granular sludge
formed by using sludge biochar as a carrier for granulation can speed up granule formation, improve
denitrification performance, and enhance the long-term stability of aerobic granules. The findings
disclosed the enhancing effects of biochar for wastewater treatment by aerobic granular sludge,
suggesting the potential of practical application of biochar in aerobic granular sludge-based reactors.

Keywords: aerobic granular sludge; sludge biochar; denitrification; formation; long-term stability;
microbial community

1. Introduction

Aerobic granular sludge technology has demonstrated high performance efficiency
and small footprint in wastewater treatment practices. However, long start-up and un-
explainable sludge instability sometimes during long-term operations are concerns for
wide development of this technology in the wastewater treatment industry. To avoid
these two problems, intensive studies have been conducted. Different strategies were
used to speed up granulation such as using selective inoculum [1,2], adjusting operating
conditions [3,4], and dosing carrier media or chemicals [5–7]. Stability of granules can be
enhanced through the manipulation of operating conditions [8], selection of slow-growing
microorganisms [9], or selective sludge discharging [10]. However, cost-efficient methods
for fast start-up and long-term high performance and reliability stability are desirable in
aerobic granular sludge systems.
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In wastewater treatment plants, massive excess sludge discharge needs to be treated
and managed properly to minimize environmental risks [11]. Among the current treatment
methods of the excess sludge, pyrolysis can greatly decrease sludge volume, produce
pyrolytic oil, and sequester carbon in the form of biochars, which is a sustainable solution
for sludge disposal particularly in the circular economy. Biochars produced from sludge
pyrolysis have high specific surface, porous structure, and enriched nutrients, and have
great potential in soil mediation or the preparation of engineering materials. Recently,
sludge biochar has been studied in aerobic granular sludge systems as a carrier media
to enhance process. This opens a new method to enhance treatment efficiency of aerobic
granular sludge systems. For example, Wang et al., (2020) used biochar produced from
waste petroleum-activated sludge to enhance granulation and degradation of COD in
petroleum refinery wastewater by aerobic granular sludge successfully [12]. As carrier
media to be used for wastewater treatment by aerobic granular sludge, sludge biochar
may exert both positive and negative effects on aerobic granules. On one side, sludge
biochar may boost formation and enhance stability of granules by providing surface for
the agglomeration of bacteria. Moreover, nutrients in biochar can be favorable to attached
microbial organisms. On the other side, some compositions of sludge biochar especially
polycyclic aromatic hydrocarbons may be toxic to the microbial microorganisms in aerobic
granular sludge [13]. Thus, the functions and mechanisms of sludge biochar on the practical
operation of aerobic granular sludge need to be elucidated. In addition, long-term stability
of aerobic granular sludge with sludge biochar as a carrier has not been investigated yet,
which hinders its further practical applications.

In this study, sludge biochar was applied as a carrier into the aerobic granular sludge
system to investigate the formation and long-term stability of aerobic granules. The results
from the 240-days operation of aerobic granular sludge reactor sheds light on the effects and
mechanisms of biochar on the formation and long-term stability of aerobic granule sludge,
providing guidance for the practical application of sludge biochar in aerobic granular
sludge systems.

2. Materials and Methods
2.1. Biochar Preparation

The biochar was prepared by pyrolysis in a muffle furnace at 700 ◦C in a nitrogen
atmosphere. The feedstock was municipal waste sludge, which was collected from a
wastewater treatment plant in Kunming, Yunnan province of China. The dried sludge
was sieved through a mesh of 100-m, which provided a mean size of the produced sludge
biochar of 0.15 mm. The characteristics of the sludge biochar are presented in Table 1. The
main minerals in the biochar are as follows: Al (7.23%), Fe (6.33%), Ca (2.24%), Mg (0.92%),
K (0.91%), Ti (0.43%), and Zn (0.39%).

Table 1. Element analysis and property of the sludge biochar.

Sample
Element Analysis Ash

%
BET
m2/g pH

C% H% N% S/% O/% H/C O/C (N + O)/C

Biochar 7.09 0.48 0.52 0.32 10.59 0.07 1.49 1.57 90.58 67.45 8.57

2.2. Experimental Setup and Operation

The experiments were carried out in two bubble columns, R1 and R2, with sequential
batch operating modes. The working volume of the reactors was 2 L with the inner diameter
of 5 cm and the working height of 115 cm, resulting in a ratio of height to diameter (H/D)
ratio of 23. The influent was fed from the bottom and the effluent was discharged from
the middle with a volumetric exchange ratio of 50%. The cycle time of the SBRs was set as
4 h with 5 min of feeding, 55 min of anoxic condition, 145~170 min of aeration, 5~30 min
of settling, and 5 min of discharging. In the aeration phase, the air was pumped into the
reactors and diffused with an air sparger at the bottom of the reactors with a flowrate of
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2 L/min. In the anoxic phase, the wastewater was circulated from the top to the bottom
of the reactors to ensure good mixing. R1 and R2 were seeded with the activated sludge
collected from a local wastewater treatment plant. A total of 2 g of sludge biochar was
added to R1 as carrier media at the start of the experiment for enhancing the formation of
aerobic granules, while R2 without biochar addition was operated as the control. Aerobic
granular sludge is determined to form when granule is observed through a microscope
and meanwhile SVI30/SVI5 of the sludge is close to 1.

2.3. Medium

The influent was synthetic wastewater with COD of 500 mg/L and ammonia of
25 mgN/L. COD and ammonia were supplied by NaCH3COOH and (NH4)2SO4, re-
spectively. NaHCO3 was used to adjust pH in the range of 7.5–8.5. In addition, other
nutrition was supplied, which included KH2PO4 22.5 mg/L, CaCl2·2H2O 12.5 mg/L,
MgSO4·7H2O 15 mg/L, FeSO4·7H2O 10 mg/L, MnCl2·4H2O 0.12 mg/L, ZnSO4·7H2O
0.12 mg/L, CuSO4·5H2O 0.03 mg/L, (NH4)6Mo7O24·4H2O 0.05 mg/L, NiCl2·6H2O 0.1 mg/L,
CoCl2·6H2O 0.1 mg/L, AlCl3·6H2O 0.05 mg/L, and H3BO3 0.05 mg/L.

2.4. Analytical Method

COD, ammonia nitrogen, nitrite, and nitrate were measured by ultraviolet visible light
photometer (DR3900, HACH, Loveland, CO, USA). SVI, mixed liquor suspended solids
(MLSSs) and mixed liquor volatile suspended solids (MLVSSs) were analyzed according
to standard methods (APHA) [14]. Morphometry of the aerobic granules was observed
by an optical microscope equipped with a digital camera (Leica Microsystems Wetzlar
GmbH.DM100.DEU, Wetzlar, Germany). The mean size of the sludge was determined by
a laser particle size analysis system with a measuring range from 0 to 2000 µm (Malvern
MasterSizer Series 2600, Malvern Instruments Ltd., Malvern, UK). The elements such
as C, H, N, S, and O in the biochar were analyzed by an element analyzer (MicroCube,
Elementar, Frankfurt, Germany). Ca2+, Fe2+, and Mg2+ in aerobic granules were tested
by inductively coupled plasma–optical emission spectroscopy (ICP) (PerkinElmer Avio
200 ICP-OES, Waltham, MA, USA) and scanning electron microscopy (SEM) and energy
dispersive spectrum (EDS) (Hitachi SU-8010, Tokyo, Japan).

2.5. Extracellular Polymeric Substances (EPS) Measurement

EPS is composed of two fractions in aerobic granular sludge, including readily ex-
tractable EPS fraction termed as loosely bound EPS (LB-EPS) and condensed EPS fraction
termed as tightly bound EPS (TB-EPS), respectively. The LB-EPS and TB-EPS were deter-
mined by the high-speed centrifugation and thermal extraction method, respectively [15,16].
The total organic carbon (TOC) contents of LB-EPS and TB-EPS were determined by TOC
analyzer (vario TOC select, Elementar, Frankfurt, Germany).

Apart from the analysis of the content of EPS, the composition of EPS was further
analyzed by a fluorescent photometer to obtain three-dimensional excitation-emission
matrix fluorescence spectra (3D-EEM) (Hitach F-700, Tokyo, Japan) [17]. The spectrum
was set by 5 nm incremental scanning emission spectroscopy, ranging in 250~550 nm
and 200~400 nm. The scan velocity was set at 2400 nm/min. The data obtained from
fluorescence spectrum were analyzed by the software of Origin 2019 64Bit.

2.6. Microbial Community Analysis of Granular Sludge

The seed and sludge were collected on different operation days and stored at −80 ◦C
Sample DNA was extracted using a PowerSoil® DNA Isolation kit. The purity and concen-
tration of the isolated DNA were measured by a Qubit 2.0 DNA kit (Life Technologies, Carls-
bad, CA, USA). The 27F/1492R primer set (AGRGTTTGATYNTGGCTCAG/TASGGHTACC
TTGTTASGACTT) was used to amplify V1-V9 region of the bacterial 16SrDNA gene. Af-
ter amplification, PCR products were detected and purified. The amplicons were then
sequenced using the MiSeq platform (Illumina, LA, USA).
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The sequences were analyzed for diversity and taxonomic compositions. The opera-
tional taxonomic units (OUTs) clusters (USEARCH, version 10.0) were defined by a 97%
identity threshold of the 16S gene sequence variants, and then were annotated based on
Silva taxonomic database for OTUs taxonomic assignment. Microbial richness, indicated
by Chao1 richness estimator (Chao1) and Ace richness estimator (ACE), and microbial
diversity, indicated by Shannon–Wiener diversity index (Shannon) and Simpson diversity
indices (Simpson), were assessed within a community (α-diversity), and were calculated
and displayed with Mothur (Version 1.30).

3. Results and Discussion
3.1. Characteristics of the Aerobic Granular Sludge

Aerobic granular sludge was successfully cultivated in reactors R1 and R2 which were oper-
ated for 240 days. The morphology of the aerobic granules is shown in Supplementary Figure S1.
It can be seen that aerobic granules in R1 originally appeared on day 24 and became dom-
inant on day 33, while aerobic granules in R2 became dominant on day 55. At the same
time, sludge biochar was observed as cores encapsulated in granules on day 33 in R1. After
the maturation of aerobic granules, it was observed that mature granules in both reactors
were broken on around day 83 followed by filamentous proliferation on day 140, but the
granule deterioration occurred earlier in R2 than R1.

Sludge volume index in 30 min (SVI30) is an important indicator of settling ability
of sludge. For aerobic granular sludge with good properties, the ratio of SVI5 to SVI30
(SVI30/SVI5) is close to 1. Thus, SVI30/SVI5 can be used to indicate the dominance of
aerobic granular sludge. From Figure 1A,B, it can be seen that the settling ability of the
aerobic granules in R1 was relatively stable: SVI30 gradually decreased to 41.6 mL/g on day
20 and then plateaued at around 75 mL/g to day 120; after that, it maintained in the range
between 30 and 60 mL/g until the end of the operation. In contrast, the settling ability of
the aerobic granules in R2 was quite fluctuated, i.e., SVI30 fluctuated from 30 to 120 mL/g
after the first decrease to 50.8 mL/g on day 20. In addition, the value of SVI5/SVI30 reached
around 1 on day 33 in R1, and day 52 in R2, indicating that the formation of the aerobic
granules in R1 was about 20 days earlier than that in R2. The difference in the evolution of
SVI in the two reactors suggested that suspended activated sludge with biochar addition
can be more quickly transformed into aerobic granule with better settling stability and
maintain long-term stability.

Figure 1C,D show biomass concentration in the two reactors throughout the whole
operation period. It can be seen that the biomass concentration can be divided into 3 stages.
In the first stage, MLSS decreased to a low level and then increased quickly concurrently
with the formation and maturation of aerobic granules until day 60. At the end of the first
stage, MLSS in R1 and R2 reached 4.8 and 3.5 g/L, respectively. In the second stage, MLSS
leveled at 4.5 g/L for 40 days and then gradually decreased to 2.5 g/L on day 127 in R1,
while it fluctuated from 2.0 to 5.0 g/L in R2 until day 120. In this stage, it was observed
that aerobic granules in both reactors experienced spontaneous breakage and morphology
recovery (Supplementary Figure S1), leading to the fluctuation of MLSS. This indicates
that the growth of aerobic granular sludge is a dynamic process, in which aerobic granules
change particle size to adapt themselves to the changing environment caused by varied
MLSS and F/M ratios [18]. In the third stage, MLSS in R1 fluctuated from 2 to 4 g/L before
day 220 and then gradually increased to 4 at the end of the operation; while MLSS in R2
fluctuated at a lower concentration, i.e., around 1.5 g/L, until day 180, and then gradually
increased to 4.1 g/L at the end of the operation. In this stage, filamentous bacteria grew to
be dominant in both reactors; however, they just diminished without clear reasons. At the
same time, it was found that MLVSS had a similar development as MLSS. Though it seems
that the changing trends of sludge in both reactors were similar, it was noted that MLVSS
in the maturation period of the aerobic granular sludge in R1 was much higher than that
in R2, indicating that the presence of sludge biochar can assist to retain more biomass in
the reactor.
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Food-to-microbial biomass ratio (F/M) is the substrate loading per unit biomass for
wastewater treatment, which greatly affects the microbial growth in aerobic granular sludge.
It was reported that F/M above 1.8 gCOD/gVSS d may boost the formation of aerobic
granules, while F/M below 0.5 may sustain long-term stability of aerobic granules [19].
Figure 2 shows that F/M increased to the maximum of 2.5 gCOD/gVSS d in R1 on day
33 and 2.0 gCOD/gVSS d in R2 on day 35, respectively, due to the wash-out of biomass
under short settling time, providing favorable F/M ratios for the formation of aerobic
granular sludge. In the maturation period of the aerobic granular sludge, F/M reduced
below 0.5 gCOD/gVSS d in R1 due to the retention of well-settled granular sludge, while
fluctuated in the range of 0.5~1.0 gCOD/gVSS d in R2, showing that F/M ratio in R1
was more favorable to maintain the stability of mature granules than R2. In the following
filamentous proliferation period, F/M was in the range of 0.7~1.3 gCOD/gVSS d in R1,
which then greatly decreased due to the biomass wash-out caused by deteriorated settling
ability of sludge with filamentous and reached 0.5 gCOD/gVSS d again. With this favorable
F/M ratio, filamentous vanished and well-settled granules formed again at the end of the
operation. While in R2, F/M was highly fluctuated in the range of 1.0~2.0 gCOD/gVSS d in
this period, and there may be newly formed aerobic granular sludge since F/M increased
to be as high as the values which are favorable for the formation of granules. These results
revealed that R1 with sludge biochar addition operated more stably than R2 with relatively
stable F/M ratios throughout the whole operation period.

Figure 3 shows size development of the aerobic granular sludge in R1 and R2, respec-
tively. It can be seen that the mean size of the aerobic granular sludge in R1 was generally
larger than that in R2 on most days. From day 44 to 91, the mean size in R1 maintained at
around 526 µm, while it was between 345 and 440 µm in R2, smaller than that in R1. On
day 170, the mean size in R1 increased to 814 µm, and 762 µm in R2. On day 200, due to the
breakage of granules and overgrowth of filamentous bacteria, it decreased to 564 µm in R1
and 632 µm in R2. The discrepancy in the size development in the two reactors indicated
that the mean size of the aerobic granular sludge with biochar addition increased more
quickly than that of aerobic granular sludge without biochar.
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3.2. Elemental Analysis of the Aerobic Granular Sludge

Elements in the aerobic granules were analyzed after the formation of aerobic granules.
Table 2 shows that the carbon content of the aerobic granular sludge in R1 was higher
than that in R2. Since sludge biochar added in R1 had much lower carbon content (7.09%),
the higher carbon content in the aerobic granules in R1 may be mainly due to the higher
amount of microorganisms in the granules. At the same time, EDS analysis (Table 3 and
Figure 4) shows that aerobic granular sludge in R1 also had higher Ca and P content than
that in R2. Considering the high mineral content in sludge biochar, the high Ca and P
contents in R1 may originate from sludge biochar. It has been widely reported that Ca
and P are more likely to be observed at the core of aerobic granules. It is thus speculated
that the chemical microenvironment in granules is favorable for CaP precipitation due to
increased pH, Ca, and phosphate concentrations caused by mass transfer resistance and
other reasons [20,21]. At the same time, it can be calculated from Table 3 that Ca/P molar
ratio of granules in R1 is around 0.86, much smaller than the theoretical molar ratio (1.67)
of hydroxyapatite, suggesting that mineral participants can be other types of CaP rather
than hydroxyapatite [20] or calcium carbonate [22] observed in aerobic granules by others.
In addition, it has been reported that the large granule size can create a more favorable
chemical microenvironment for calcium precipitation [23], which might partly explain why
aerobic granules in R1 had higher Ca and P contents. Higher contents of Ca and P in R1
can enhance the stability of aerobic granules due to the increased mechanical strength
of granules.

Table 2. Elemental analysis of aerobic granular sludge.

Reactor C% H% N% S% O%

R1 35.45 4.41 6.83 1.81 37.73
R2 30.98 4.18 6.80 2.35 38.28

Table 3. Elemental analysis of aerobic granular sludge by EDS.

Reactor C% O% Na% P% S% Ca%

R1 57.38 33.94 2.22 2.65 0.82 3.0
R2 57.72 36.91 3.02 0.75 0.70 0.91
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3.3. Performance of Wastewater Treatment by the Aerobic Granular Sludge

Figure 5 shows the performances of wastewater treatment by the aerobic granules in
the two reactors. It was found that both reactors had high removal efficiency in most of the
operation period, i.e., over 95% for both COD and ammonia, though the aerobic granules
experienced breakage and filamentous bacteria proliferation. During the formation of
aerobic granular sludge, there was a period with lower ammonia removal efficiency in
the two reactors, i.e., 80~90%. This can be attributed to the low nitrifying population in
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low biomass concentration caused by the continuous wash-out of slow-settling flocs under
selective pressure exerted by short settling time.
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TN removal by aerobic granular sludge is typically restricted by denitrification because
of limited available carbon or insufficient anoxic zone in granules for denitrification [24].
From Figure 5, it can be seen that R1 had higher TN removal efficiency than R2. During
the maturation period of aerobic granules, TN removal efficiency in R1 averaged at 84.3%,
higher than 80.6% in R2. Even in the filamentous proliferation period, the TN removal
efficiency in R1 was higher than that in R2, with 80.2% in R1 and 70.0% in R2. This can be
partly explained by the larger size of the aerobic granules in R1, which may provide more
anoxic zones in the aerobic granules for nitrite/nitrate removal through denitrification. The
similar COD and ammonia removal efficiencies in both reactors and the higher TN removal
efficiency in R1 suggest that biochar has little negative effect on the microbial activities of
aerobic granules for COD and N removal.

3.4. EPS Contents in Aerobic Granular Sludge in R1 and R2

Extracellular polymeric substance (EPS) is the excretion of microbial organisms under
certain environmental conditions, which is an important component of aerobic granules and
may facilitate granule agglomeration, enhance resistance to unfavorable perturbation, and
serve as carbon source when substrates are scarce, in the formation and long-term operation
of aerobic granular sludge [25,26]. Normally, EPS integrated with aerobic granular sludge
has double-layered structures, consisting of tightly bound EPS tangled with cells and loosely
bound EPS extending outwards from cells, respectively. The content and composition of
the two EPSs throughout the whole operation period were traced to reveal the role of
sludge biochar on EPS of aerobic granular sludge. From Figure 6, it can be seen that
the total amount of EPS indicated by total organic carbon (TOC) has similar levels in R1
and R2 during the formation and maturation of aerobic granules from day 75 to day 117.
The amount of EPS increased consistently from around 60 to 120 mg/gVSS, facilitating
the granulation of aerobic granules in the two reactors. However, during the following
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filamentous proliferation period, the amount of EPS in the two reactors show a different
trend. In R1, the amount of EPS decreased greatly on day 167 corresponding to the
overgrowth of filamentous [27] and then recovered on day 199 and stabilized at high level
until the end of the operation. While in R2, the amount of EPS abnormally increased to
140 mg/gVSS on day 167 and then greatly decreased to a lower level, which gradually
recovered at the end of the operation. The reason for the abrupt increase in the amount
of EPS in R2 after the filamentous proliferation needs further investigation. Notably, the
high amount of EPS in R1 on day 199 and 240 shows that sludge biochar may stimulate the
secretion of EPS in aerobic granules in filamentous proliferation, ensuring higher stability
of aerobic granular sludge in long-term operation.
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Figure 6. LB-EPS and TB−EPS contents in aerobic granules in R1 and R2 during the long-term
operation period. (A) for R1; (B) for R2.

The composition of EPS in aerobic granular sludge in R1 and R2 were analyzed by 3D-EEM
fluorescence spectra of EPS. Based on the classification by Chen et al., (2003) [28], the peaks
representing the compositions of EPS can be classified as humic acid-like substances (Ex/Em:
320~380 nm/400~455 nm), tryptophan-like substances (Ex/Em: 260~300 nm/320~380), tyrosine-
like substance (Ex/Em: 210~240 nm/300~360 nm), marine humic acid-like substances (Ex/Em:
310~330 nm/360~400 nm), and fulvic-like substances (Ex/Em: 210~280 nm/360~450 nm).
Accordingly, the main peaks observed in Figures 7 and 8 corresponded to humic acid-like
substances (peak A and F), tryptophan-like substances (peak B), tyrosine-like substance
(peak C), marine humic acid-like substances (peak E), and fulvic-like substances (peak D,
G, H).
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As shown in Figure 7, even though the peak intensities were different, the compositions
of LB-EPS were quite similar in the two reactors, which consisted of humic acid-like
substances (peak A), tryptophan-like substances (peak B), tyrosine-like substances (peak
C), and fulvic-like substances (peak D). After the formation and maturation of aerobic
granules on days 75 and 117, humic acid-like substances and fulvic-like substances reached
a high quantity and increased with time in R1, while tryptophan-like substances and
tyrosine-like substances had a relatively high quantity in R2. Tryptophan-like substances
and tyrosine-like substances are the main components of aromatic protein, which are
important components of microbial cells and extracellular enzyme and can be released
during the metabolic process of cells. These protein substances were also reported to be
important components for both granule formation and maintenance of long-term stability
of aerobic granules [29]. Humic acid-like substances and fulvic-like substances are reported
to be related to biological activity and dead cells [30]. The high contents of humic acid-like
substances and fulvic-like substances in R1 can be correlated with the toxicity of sludge
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biochar. After day 117, the tryptophan-like substances and tyrosine-like substance were the
main compositions of LB−EPS in both reactors.
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(B,D,F,H,K) for R2.

Figure 8 shows the EEM spectra for TB−EPS of aerobic granular sludge in the two
reactors. It can be seen that the main compositions of TB−EPS were both tryptophan-like
and tyrosine-like substances in the two reactors before day 167. On day 199, marine humic
acid-like substances (peak E) and fulvic-like substances (peak F) gradually increased in
R1, while marine humic acid-like substances (peak E) and fulvic-like substances (peak G)
increased notably to be the main compositions with greatly declined tryptophan-like
substances and tyrosine-like substance in R2. The different degrees of increase in humic
acid-like and fulvic-like substances in the two reactors may indicate the high microbial
lethality due to toxicity of biochar, during which filamentous proliferation was prevailed in
the reactors.
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3.5. Microbial Community Structure of the Aerobic Granules in Two Reactors

The microbial population determines the characteristics and performance of aerobic
granular sludge for wastewater treatment. Its compositions, amount, and distribution
might be changed by the presence of biochar.

3.5.1. The Richness and Diversity of the Microbial Community in the Aerobic
Granular Sludge

Table 4 shows the richness and diversity indices of the microbial community in the
aerobic granular sludge in R1 and R2. It can be seen that OTUs ACE and Chao1 in the
inoculum decreased sharply after granules formed and there was not much difference
in different stages in terms of the richness indices between the aerobic granules in the
two reactors. This indicates that the species richness is highly dependent on sludge
morphology and operating conditions and it was not affected by the presence of biochar.
The granulation is a process to select some species with good auto or co-aggregation
ability while washing out species with poor aggregation ability. Thus, it is not very
surprising that OTUs and richness decreased after granules formed. The species diversity
indicated by the Shannon index in sludge showed a similar trend in the two reactors, which
decreased greatly after granular sludge formed and then decreased mildly until the end
of the operation. Correspondingly, the Simpson index, which is negatively related to the
species diversity, showed that the species diversity in the two reactors drastically decreased
after the formation of the granules and then recovered a little in the following operation.

Table 4. The alpha diversity indices of the species in aerobic granules in R1 and R2.

ACE Chao1 Simpson Shannon
Reactor R1 R2 R1 R2 R1 R2 R1 R2

Seed 7422.61 7421.42 5809.65 5810.05 0.03 0.03 5.69 5.70
Day 62 115.65 109.83 115.08 109.27 0.92 0.86 4.81 4.31

Day 130 148.46 138.64 152.07 137.25 0.88 0.78 4.15 3.73
Day 195 80.69 84.23 80.00 85.43 0.78 0.75 3.25 3.16

3.5.2. Microbial Population Dynamics and the Predominant Functional Groups

Figure 9 shows the composition of the microbial population in R1 and R2 at the
phylum level. It can be seen that during the formation period of aerobic granules on day 62,
the most predominant phyla in R1 and R2 were same, i.e., Proteobacteria, Bacteroidetes,
and Firmicutes, which are common in both activated sludge [31] and aerobic granular
sludge [19]. Proteobacteria and Bacteroidetes have high capability for the degradation
of COD and oxidation of ammonium. Firmicutes has high adaptive ability to an extreme
environment, which is easier to be enriched under the high selective pressure conditions
in an aerobic granular sludge system [32]. However, compared with the high abundance
of predominant phylum in R2, R1 had a more evenly distributed predominant phylum.
Specifically, the three phyla Proteobacteria, Bacteroidetes, and Firmicutes account for 97.8%
in R2, but account for 58.2% in R1 with six other phyla having at least 2% distributions, e.g.,
Verrucomicrobia and Cyanobacteria account for 5.38% and 4.48%, respectively. This relative
higher phylum diversity of the microbial population in R1 may indicate that biochar is
able to facilitate the survival of more microbial populations by providing a better niche
for the formation of aerobic granules. In the maturation period on day 130 and long-term
operation period on day 195, the predominant phylum was similar in the two reactors, with
Proteobacteria and Bacteroidetes accounting for over 90% of the microbial community. This
result is highly in agreement with the microbial community analysis with the clone library
reported by Liu et al. that Proteobacteria and Bacteroidetes were dominant in acetate-fed
granules [33].
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long-term operation period. (A) for R1; (B) for R2.

Figure 10 shows the composition of the microbial populations in R1 and R2 at the
genus level. It can be seen that diversity of the predominant genera in R1 was higher than
that in R2, especially on day 62 and 195. After the formation of the aerobic granules on
day 62, the predominant genera were Zoogloea, Thauera, Flavobacterium, and Saprospiraceae
in R2. While in R1, besides those four predominant genera, Lactobacillus, Lelliottia, and
Providencia also had higher percentages, accounting for 9.81%, 6.74%, and 4.31%, respec-
tively. Among the same predominant genera in the two reactors, Zoogloea and Thauera are
well-known important genera in aerobic granules [33], which normally have high micro-
bial proportions in granules with a good ability to denitrify nitrogen oxides and excrete
EPS [34,35]. Zoogloea was the most abundant in both reactors, with 24.42% in R1 and 34.12%
in R2, while Thauera accounted for 4.04% in R1 and 8.37% in R2. Their occurrence with
much higher abundance than activated sludge was an obvious sign of successful formation
of aerobic granules in the two reactors. Moreover, Flavobacterium, accounting for 6.41% in
R1 and 7.1% in R2, respectively, is a typical floc-forming bacteria, which can secrete excess
EPS and conduct denitrification [36,37]; Saprospiraceae, accounting for 2.72% and 4.38%,
respectively in R1 and R2, has EPS excretion ability, and may contribute to the fermentation
coupling with denitrification process [38]. These genera have functions of matrix structure
stabilization and denitrification, facilitating the maintenance of structural stability and
wastewater treatment performance of the aerobic granules. The other two predominant
genera only present in R1, i.e., Lelliottia and Providencia, both have denitrification ability
through different pathways [39–41]. The higher diversity and abundance of these functional
genera in R1 explained better reactor performance of R1 shown in Figure 5. This indicates
that the positive impact of sludge biochar on the reactor performance and granule stability
is mainly due to the higher diversity and abundance of microbial community enhanced
by biochar.
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During the maturation period of aerobic granules on day 130, the filamentous genus
Thiothrix proliferated in R2 with 44.19% content, compared with 5.93% in R1, leading to
sludge bulking in R2. As one of the most common genera causing fluffy aerobic granules,
Thiothrix is very competitive for organic substrates due to its high growth rate, especially in
substrate limiting environments [42]. In R2, with the overwhelming abundance of Thiothrix,
other genera had much lower abundances, with only three genera having a high percentage
of over 3%, including Hydrogenophaga of 12.12%, Azoarcus of 6.67%, and Saprospiraceae of
6.06%. In R1, without the over proliferation of Thiothrix, more denitrifiers with higher abun-
dances, such as Paracoccus, Thauera, Zoogloea, and Azoarcus, existed, accounting for 26.29%,
18.3%, 8.7%, and 7.32%, respectively. By comparison, it was noted that the most abundant
genus following Thiothrix in R2 was Hydrogenophaga, which is an autotrophic bacteria with
denitrification ability [43]; while the most abundant genus in R1 was Paracoccus, which is a
heterotrophic denitrifier, similar to other predominant genera [44]. This may demonstrate
that aerobic granules can survive in a filamentous proliferation environment if autotrophic
denitrifiers with no organic substrate demand, such as Hydrogenophaga, may enrich in the
microbial community. In addition, the abundance of Thiothrix in R1 was much lower than
that in R2, which might be due to the inhibitory effects of biochar on Thiothrix proliferation
in aerobic granular sludge which led to better settling ability of granules and more stable
physical characteristics of granules in R1.

On day 195, Thiothrix proliferated in both reactors, with 41.65% in R1 and 45.07% in
R2, respectively. Interestingly, Hydrogenophaga also became the most predominant genus
in R1 besides Thiothrix, similar to the conditions in R2 on day 130. This confirmed our
previous speculation that the accumulation of Hydrogenophaga in filamentous proliferation
may be favorable to the stability of aerobic granules. However, it was noted that Azonexus
substituted Hydrogenophaga as the most abundant genus besides Thiothrix in R2, which
accounted for 18.69% in contrast with only 2.66% of Hydrogenophaga. Azonexus is het-
erotrophic aerobic denitrifying genus, which greatly depends on organic substrates for
energy [45]. Its predominance due to substitution for autotrophic Hydrogenophaga indicated
that the substrates conditions in the environment that aerobic granules reside may have
changed from day 130 to 195, though filamentous proliferation similarly prevailed on the
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two days. By the comparison, it was noted that F/Ms of the two days in R2 were very
different, which were 1.41 gCOD/gVSS d on day 130 and 0.61 gCOD/gVSS d on day
195, respectively. The higher F/M on day 130 boosted microbial activities and substrate
uptake of Thiothrix, which inhibited the growth of heterotrophic bacteria due to the food
competition, and in turn saved space for the growth of autotrophic bacteria with no organic
carbon demand; while the lower F/M on day 195 was not optimal for Thiothrix, but suitable
for the growth of heterotrophic bacteria, which simultaneously inhibited the growth of
autotrophic bacteria [46] and caused a large decrease in the content of Hydrogenophaga.
Correspondingly, the higher F/M of 1.08 gCOD/gVSS d on day 195 in R1, boosted the
growth of Hydrogenophaga too, which was the same condition with that on day 130 in
R2. These findings demonstrate that the chemical environment in reactors controlled by
F/M affects the type of predominant genera and microbial community structure of aerobic
granules. Thus, to obtain a more stable reactor operation, F/M should be closely monitored
to guide sludge discharge for maintaining a stable and suitable F/M ratio.

4. Conclusions

By investigating the effects of sludge biochar on granule formation, stability, and
wastewater treatment performance, the conclusions below could be drawn:

1. Both the formation of and long-term stability of aerobic granules were enhanced by
adding biochar into inoculum only at the beginning of the reactor start-up;

2. The granules enhanced by biochar tended to accumulate more Ca and P which might
be due to the larger size of granules with the addition of biochar;

3. No noticeable positive effects were observed for the COD oxidization and nitrification
with the addition of biochar, but better denitrification with a higher abundance of
denitrifying genera was found;

4. The higher microbial richness, diversity, EPS excretion, and steadier chemical environ-
ment were achieved in the reactor with the addition of biochar, enhancing long-term
stability of aerobic granular sludge.

In summary, sludge biochar is promising to enhance aerobic granular sludge systems
for biological wastewater treatment by just being added in the inoculum once to stimulate
more healthy microbial community in granules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10112385/s1, Figure S1. Morphology of the aerobic granules
in R1 and R2 during the long-term operation period; Figure S2. SS in the effluent from R1 and R2;
Figure S3. Ammonia, nitrite, and nitrate in the effluent from R1 and R2.
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