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• River traffic can be effectively monitored
with satellite imagery and deep learning.

• In the Vietnamese Mekong Delta (VMD)
we achieved boat detection accuracies of
84–85 %.

• We developed Human Waterway Foot-
print (HWF) products to map river traffic
activity.

• HWF analysis showed human activity on
VMD waterways increased by 25 % over
2018–2021.

• HWF contributes to assessment of envi-
ronmental impacts of anthropogenic ac-
tivities.
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Mass urbanisation and intensive agricultural development across river deltas have driven ecosystem degradation,
impacting deltaic socio-ecological systems and reducing their resilience to climate change. Assessments of the drivers
of these changes have so far been focused on human activity on the subaerial delta plains. However, the fragile nature
of deltaic ecosystems and the need for biodiversity conservation on a global scale requiremore accurate quantification
of the footprint of anthropogenic activity across delta waterways. To address this need, we investigated the potential of
deep learning and high spatiotemporal resolution satellite imagery to identify river vessels, using the Vietnamese Me-
kong Delta (VMD) as a focus area. We trained the Faster R-CNN Resnet101 model to detect two classes of objects:
(i) vessels and (ii) clusters of vessels, and achieved high detection accuracies for both classes (f-score = 0.84–0.85).
The model was subsequently applied to available PlanetScope imagery across 2018–2021; the resultant detections
were used to generate monthly, seasonal and annual products mapping the riverine activity, termed here the
Human Waterway Footprint (HWF), with which we showed how waterborne activity has increased in the VMD
(from approx. 1650 active vessels in 2018 to 2070 in 2021 - a 25 % increase). Whilst HWF values correlated well
with population density estimates (R2 = 0.59–0.61, p < 0.001), many riverine activity hotspots were located away
from population centres and varied spatially across the investigated period, highlighting that more detailed
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information is needed to fully evaluate the extent, and type, of human footprint on waterways. High spatiotemporal
resolution satellite imagery in combination with deep learning methods offers great promise for such monitoring,
which can subsequently enable local and regional assessment of environmental impacts of anthropogenic activities
on delta ecosystems around the globe.
Fig. 1. The estimated population density in the Vietnamese Mekong Delta (VMD)
based on WorldPop (2020) data. The boundaries of provinces and municipalities
which contain main river channels are shown in grey, with major urban areas
named. The main waterways are annotated in blue: Mekong, Bassac, 1 - Tan
Chau - Chau Doc canal, 2 - Mekong-Vam Nao channel, 3 - Vam Nao, Mekong
split, Ham Luong, Co Chien. Insets show sites where monthly temporal analysis
of waterborne traffic was performed: near (a) the Vietnam-Cambodia border -
4.74 km2, (b) Sa Dec - 4.36 km2, (c) Long Xuyen - 4.00 km2. Respective areas
used for the analysis are shown in dark blue.
1. Introduction

Deltas are landscapes which, by their very nature, are defined bywater.
Globally, they are home to over 300million people and provide some of the
most fertile land for agriculture (Edmonds et al., 2020). Throughout his-
tory, many early civilisations (for example, the Ancient Egyptian civiliza-
tion on the Nile, and the Harappan culture on the Indus) developed in
deltaic regions due to the provision of productive agricultural land and
good transport links for trade. In the past century, the world's deltas have
seen major changes in their natural water and sediment regimes as a result
of increasing human pressures both within delta regions and as a conse-
quence of changes within their feeder basins upstream (Dunn et al., 2019).
Mass urbanisation and intensive agricultural development across delta plains
have driven a decline in biodiversity and ecosystem degradation, impacting
deltaic socio-ecological systems and reducing their resilience to climate
change (Tessler et al., 2015). Yet, assessments of the drivers of these changes
have so far been focused on human activity on the subaerial delta plains
rather than on the network of channels within deltas.

Analysis of the human footprint at global and regional scales (e.g.
Sanderson et al. (2002), Venter et al. (2016)) often focuses purely on
land, ignoring the distribution and intensity of waterway use completely.
Where considered, the human impact on navigable waterways tends to be
treated as being inversely weighted to the closest population centre
(Venter et al., 2016). Although applicable at large scale, such approaches
belie the importance these waterways have played throughout human
history as conduits for transport, trade and regional connectivity. More
importantly, they fail to account for the continuing importance of rivers
in modern delta systems for food provision, transport and commerce, the
provision of development materials (Bendixen et al., 2021), their role in
driving delta-wide changes in salinity and flood risk (Vasilopoulos et al.,
2021), and potential in reversing recent trends in freshwater biodiversity
declines (Tickner et al., 2020). The fragile nature of deltaic ecosystems
and the need for biodiversity conservation on a global scale require more
accurate quantification of the footprint of anthropogenic activity across
delta waterways.

The advent of high spatiotemporal resolution satellite imagery, devel-
opments in artificial intelligence, and increases in computational process-
ing power have together now opened up the possibility of mapping
riverine vessel activity over large spatial extents. Deep learning, a subfield
of artificial intelligence, has seen a significant increase in popularity in
recent years and is emerging as the leading tool for computer vision tasks,
such as object detection and recognition, scene reconstruction, and video
motion analysis. Its potential for monitoring pedestrian, vehicular, and
water traffic with the use of surveillance cameras has been widely demon-
strated (Chen et al., 2021; Chen et al., 2020; Zhou et al., 2018). Similarly, a
range of studies have demonstrated that deep learning can also be success-
fully applied to very high resolution satellite imagery for detection of a
range of objects, includingmotorised traffic (Froidevaux et al., 2020), infra-
structure (Monna et al., 2021), and wildlife (Duporge et al., 2021; Guirado
et al., 2019). Nevertheless, ship detection has so far focused heavily on the
marine (Zhang et al., 2021; Nie et al., 2020) and lacustrine environments
(Duan et al., 2019), with limited efforts, largely based on thresholding,
within riverine and estuarine settings (Zhang et al., 2019; Gruel et al.,
2022; Gruel and Latrubesse, 2021; Hackney et al., 2021).

This study, therefore, investigates whether riverine traffic activity can
be effectively monitored at delta scale using deep learning approaches
based on high spatiotemporal resolution satellite imagery, focusing on the
Vietnamese Mekong Delta (VMD) as a case study. We applied this new
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workflow to develop products mapping this type of anthropogenic activity,
termed here the Human Waterway Footprint (HWF), and subsequently ad-
dressed the following research questions: (i) how does the HWF spatially
and temporally vary across the VMD throughout the 2018–2021 period,
(ii) is activity on the VMD waterways closely related to the proximity to
population centres?

2. Material and methods

2.1. Study site

The VietnameseMekong Delta (VMD) is home to approximately 17mil-
lion people, of whom5.8million live within 5 kmof themain river network
(General Statistics Office of Vietnam, 2021). There are twomainwaterways
in the VMD, the Tien and Hau (Mekong and Bassac, respectively) rivers.
The VMD is low-lying, with an average ground elevation of 0.7–1.2 m,
with major population centres such as Can Tho (population ~ 1.2 million)
and Vinh Long (population 0.2 million) located along the major waterways
(Fig. 1). The livelihoods of the local population are reliant upon the produc-
tive agriculture and aquaculture supported by the delta and substantive
supporting infrastructure. Beyond their role for food provision, transport
and commerce, the waterways also have a high cultural value for the com-
munities (Ehlert, 2012; Osborne, 2000). The composition of the waterway
traffic is diverse, from small boats used for local navigation, through barges
used for in-channel sand excavation or transport of goods within the VMD,
to large trans-delta cargo vessels. Monitoring of any of this traffic is
currently extremely limited.



M. Smigaj et al. Science of the Total Environment xxx (xxxx) xxx
2.2. Remote sensing data

Satellite imagery from the PlanetScope constellation (Planet Team,
2017) that currently comprises approximately 130 “Dove” nano-satellites
was used. This constellation is superior in terms of spatiotemporal resolu-
tion, offering an unprecedented combination of one-day revisit time and a
ground sampling distance of approximately 3.7 m (nadir). As such, it has
great potential for developing near-real time monitoring. We restricted
the search to images that contained <10 % cloud cover, had a spatial reso-
lution of ≤4 m, were acquired within the 1 January 2018–31 December
2021 period, and cumulatively covered at least 10 % of the study area on
a given day. The obtained images were clipped to river extents (with a
100 m inland buffer) and sliced into 640 × 640 pixel image tiles to make
them compatible for deep learning.

2.3. Deep learning workflow for the detection of river vessels

The analysiswas restricted to large river vessels (defined here as>20m in
length), which we judged to be the minimum detectable size. Two classes of
objects were used: (i) vessels and (ii) clusters of vessels, where multiple ves-
sels were moored together, preventing effective separation at this spatial res-
olution. To ensure that a representative and diverse image sample was used
for training purposes (to capture variability in both vessel type and back-
ground river turbidity conditions), we utilised images captured in different
seasons – one for each month of the year 2020 (Table 1); the exact days
were randomly chosen from the pool of available imagery. The selected
image tiles were then randomly split into training (80 %) and validation
sets (20 %) to allow selection of the best model for vessel detection. The se-
lected image tiles were annotated by defining bounding boxes around each
vessel or a cluster of vessels with the LabelImg tool (Tzutalin, 2015). In
total, 8274 instances of individual vessels and 2198 instances of clusters of
vessels were used for training and validation purposes (Table 1).

The Faster R-CNN Resnet101 model (Ren et al., 2015; He et al., 2016)
was selected as most appropriate in terms of the trade-off between perfor-
mance and inference time. It was trained using Tensorflow, implemented
through Google Colaboratory, for 60,000 iterations with a learning rate of
0.01, batch size of 2 and a non-maximum suppression intersection oven
union (IoU) threshold of 0.4. Precision-recall (PR) curves and mean Aver-
age Precision metrics (mAP and mAP50) were used to assess its perfor-
mance – based on these a confidence threshold of 0.3, which kept the
precision and recall rates balanced, was selected for further application.
For the calculation of mAP ten IoU levels were used, starting from 0.50 to
0.95 (with a step size of 0.05), whilst for mAP50 a single IoU threshold of
0.50 was used. Comparisons against other tested models, input tensor
sizes and learning rates, as evaluated on the validation dataset, are avail-
able in the Supplementary Material. The post training performance of the
model was assessed using imagery from two additional randomly chosen
Table 1
Table 1. List of satellite image acquisition days used for the training and validation (Tra

Acquisition day No. of satellites Satellite IDs

10.01.2020 7 0e3a, 0f25, 0f28, 0f33, 1004, 1006, 106f
03.02.2020 5 0f28, 0f2a, 1004, 1006, 1040
24.02.2020 7 0e19, 0f49, 100d, 105a, 106d, 1008, 1014
28.03.2020 3 103e, 1043, 106d
30.04.2020 7 0f32, 0f36, 1011, 1012, 1027, 1034, 2277
16.05.2020 1 1049
06.06.2020 3 0f2b, 1008, 1014
25.07.2020 1 104b
21.08.2020 2 1003, 1049
08.09.2020 3 0f2b, 1053, 2304
16.09.2020 4 0e3a, 0f32, 0f46, 103b
24.10.2020 3 1040, 1061, 2235
13.11.2020 3 1035, 1053, 105e
03.12.2020 7 0f15, 0f3c, 1014, 103b, 106d, 2259, 2426

Total 46
Total 10
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days, which served as an independent test dataset with a total of 2649
instances of individual vessels and 633 instances of clusters of vessels
(Table 1). For each class, precision, recall and f1-score were calculated for
evaluation purposes. A match was recognised only when a model detec-
tion's centroid intersected its corresponding reference bounding box anno-
tation. The trained Faster R-CNN Resnet101 model was subsequently
applied to all acquired PlanetScope imagery.

2.4. Generation of Human Waterway Footprint (HWF) products

Centroids of the model detections were used to derive monthly and
yearly HumanWaterway Footprint (HWF) products across the VMD follow-
ing the workflow presented in Fig. 2. First, detections from each satellite
acquisition were converted into raster layers covering only river extents
(50 m pixel size). During the conversion “vessel” detections were given a
value of 1 and “cluster” detections were given a value of 2.6, which was
the average number of vessels in a cluster in the test datasets (based on
visual interpretation). A cloud mask provided by Planet was subsequently
applied to each raster set. Next, these sub-daily raster layers were averaged
to derive daily boat distributions and account for overlap between acquisi-
tions from different satellites. Similarly, monthly/seasonal/yearly distribu-
tions were derived by averaging the corresponding daily/monthly/
seasonal raster layers. Final HWF products were generated by first
converting these raster layers into points that were then used as inputs for
a weighted kernel density estimator from the Spatstat R package version
2.2–0 (Baddeley and Turner, 2005) with quartic kernel type, bandwidth
of 1 km, and raster averages as input weights. OurHWF products, therefore,
provide an estimation of the river traffic intensity per km2 on an average
day in a given month/season/year. For the generation of seasonal HWF
products we differentiated between the dry season (November–April) and
the wet season (May–October). The seasonal split was implemented to
ensure the derived interannual variation is not affected by lower image
availability in the wet season when cloud cover is more prevalent.

To explore the relationship between our HWF products and delta-top
human activity we investigated how well the annual HWF products corre-
spond with population density estimates based on available WorldPop
(2018, 2019 and 2020) data. For this purpose, the selected WorldPop layers
were first resampled to HWF's spatial resolution. Approximate population
density values for the water pixels were then obtained through a circular
focal filter (average) with a radius of 4 km. A 4 km radius was chosen to
reflect the distance over which an increased traffic activity due to the pres-
ence of a population centre would be expected. Pairwise pixel observations
of this density layer and annual HWF products were then extracted for each
year and Pearson's correlation coefficient computed following log scale data
normalisation. We also tested 1, 2, 3 and 5 km radius values for the popula-
tion density estimates – these, with the exception of the 1 km radius, pro-
duced similar outcomes, which are available in the Supplementary Material.
in/Val) and test datasets (Test), alongside respective number of class instances.

No. of tiles Dataset ‘Vessel’ instances ‘Cluster’ instances

716 Train/Val 1172 265
360 Train/Val 273 56
762 Test 2040 448
271 Train/Val 664 177
721 Train/Val 1188 231
150 Train/Val 497 153
131 Train/Val 449 135
143 Train/Val 143 48
186 Train/Val 555 105
223 Test 609 187
340 Train/Val 857 263
208 Train/Val 454 150
152 Train/Val 336 87
805 Train/Val 1686 528

4183 Train/Val 8274 2198
985 Test 2649 635



Fig. 2. The workflow for generation of yearly and monthly Human Waterway Footprint products. Individual vessels are marked in yellow, whilst clusters of vessels in red.
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2.5. Spatiotemporal variations in HWF across the delta

The annual HWF products were used to analyse the variation in traffic
activity levels across the investigated years. For each of the nine provinces
(see Fig. 1 for reference), we calculated the daily number of vessels in a
given year by extracting the average value from the corresponding annual
HWF andmultiplying it by the river area of a given province. This provided
an estimate of the total number of vessels present within each province/
municipality on an average day in a given year. We performed analogous
calculations of the total number of vessels for each of the eight main water-
ways in the VMD (see Fig. 1 for reference).

Additionally, we used the monthly HWF products to explore the month-
to-month variation in the number of vessels for three distinct river sections
located near: (a) the Vietnam-Cambodia border on the Mekong channel,
(b) Sa Dec on the Mekong channel, (c) Long Xuyen on the Bassac channel.
These are shown in Fig. 1 and cover areas of 4.74, 4.36 and 4.00 km2

respectively. We selected sites (b) and (c) as examples of waterborne
activity in proximity to population centres, and site (a) as an example of
activity focusing on in-channel sand extraction. For each month, the aver-
age number of PlanetScope images used for generation of the monthly
HWF layers across the period 2018–2021 was also counted to provide a
qualitative confidence measure for the derived traffic intensity.

3. Results

3.1. Riverine vessel detection performance and generation of HWF products

The applied workflow allowed successful identification of riverine traffic
with the trained model achieving mAP of 0.52 and mAP50 of 0.90. Though,
detections of vessel clusters had higher uncertainty levels as indicated by the
precision-recall curves provided in the Supplementary material. A sample
4

scene with resultant detections is shown in Fig. 3, whereas further model
evaluation metrics derived from the independent dataset are available in
Table 2. On both tested days, the model achieved high detection accuracy
for both individual vessels (f-score = 0.84–0.85) and clusters of vessels (f-
score = 0.84–0.85), with errors of omission and commission well balanced;
detailed confusionmatrices are provided in the SupplementaryMaterial. Ves-
sels which remained undetected were oftenmoored at the riverbank, making
them difficult targets. Conversely, river huts were occasionally mistaken for
clusters of vessels due to their similar overall appearance. Confusion between
the two classes also occurred but very sporadically, accounting for approxi-
mately 3 % of all detections.

The developed model was subsequently applied to the available
PlanetScope imagery meeting the search criteria; in total, we obtained
detections from varying spatial extents from 114 days in 2018, 96 days in
2019, 145 days in 2020, and 129 days in 2021. For an average pixel within
the delta, this translated to 38 separate days of information on waterborne
activity that contributed towards the generation of our annual HWF prod-
ucts. The number of days was dictated by image availability in a given
year, which was influenced by the number of Dove satellites in orbit at
the time, and cloud conditions. In particular, the monsoon season proved
problematic for ensuring adequate data coverage. In the case of monthly
HWF products, where no information on vessel occurrence was available
for an area in a given month, we retained null values. Despite these limita-
tions, satisfactory coverage for derivation of annual HWF products was
achieved, all of which were calculated from at least six monthly HWF
layers. The largest data gaps occurred in 2018 when 27 % of the VMD
area was covered by less than nine monthly composites. In contrast, in
2019–2021 nine or more monthly composite values were available for
over 95 % of the VMD. A visual summary and additional information on
the coverage of the monthly and annual HWF products across 2018–2021
are provided in the Supplementary Material.



Fig. 3. Sample results of the riverine vessel detection workflow (top) and the reference (bottom) near Sa Dec – 10°17′10″N 105°47′40″E. Individual vessels are shown in
yellow, whilst clusters of vessels are shown in red. Background: PlanetScope imagery from 24.02.2020.
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3.2. Anthropogenic activity across the VMD waterways

A sample annual HWF product, portraying vessel density across the
VMD in 2021, is shown in Fig. 4.a. Areas experiencing heightened pressure
from waterborne traffic, located in the middle and upper reaches of the
delta in particular, are clearly evident. Some of these are near the major
population centres. At the delta scale, we observed a clear relationship be-
tween the HWF products and population density estimates (Fig. 4.c). The
increasing trend of activity levels was consistent for all of the investigated
years (similar trendline slopes) with R2 values in the range of 0.59–0.61.
Nevertheless, many of the 2021 activity hotspots were located away from
densely populated areas. Over the course of the 4 years investigated here
(2018–2021) major shifts in hotspot distribution in the Mekong River oc-
curred (Fig. 4.b), demonstrating the dynamic nature of the waterborne an-
thropogenic activity that cannot be fully captured with population density
estimates. Conversely, in the Bassac river a general increase in activity
Table 2
Accuracymeasures for the developed vessel detection approach. The “combined” class is
a cluster.

Date Class No. of features No. of detections True positi

24.02.2020 Vessel 2040 1963 1672
Cluster 448 394 357
Combined 2488 2357 2093

08.09.2020 Vessel 609 606 518
Cluster 187 176 152
Combined 796 782 701

5

can be seen (increase from the average of 1.35 vessels per km2 in 2018 to
1.91 vessels per km2 in 2021 across the full length of the river).

Both province-level and channel-level estimates of the total number of
vessels present per day exhibited varied multitemporal patterns (Fig. 5).
Most provinces exhibited similar activity levels over the course of the four
investigated years. Among the exceptions were An Giang that experienced
a steady rise and Can Tho municipality where a step increase occurred in
2019. These changes were reflected in the Bassac, the Mekong and the
Mekong - Vam Nao channel estimates. The sharp increase in Can Tho
municipality corresponds well with local reports on the acceleration of ille-
gal sand and clay mining (Vnexpress, 2020a). Illegal mining activities have
also become pervasive in An Giang because of the sand quality and avail-
ability in this province (MONRE, 2015, Le Manh Hung, 2013). Dong
Thap similarly observed a substantial increase in the number of vessels
until 2021. This peak coincides with relaxed regulation of riverine traffic
observed during COVID-19 lockdown restrictions in 2020 (Vnexpress,
given to show the overall performance, i.e. a successful detection of either a vessel or

ve False negative False positive Precision Recall F score

368 291 0.85 0.82 0.84
91 37 0.91 0.80 0.85

395 264 0.89 0.84 0.86
91 88 0.85 0.85 0.85
35 24 0.86 0.81 0.84
95 81 0.90 0.88 0.89



Fig. 4. Annual HWF for 2021 (a); boxes along the main river channels relate to zoomed in insets identified by numerals within each box. (b) Difference in kernel density
between annual HWF for 2018 and 2021 with the main channels of the VMD labelled. (c) Colour shaded scatterplots between annual HWF and population density values
extrapolated from WorldPop (2018, 2019, 2020) data.

Fig. 5. Number of vessels on an average day for the period 2018–2021 for each province/municipality (top) and river channel (bottom) within the VMD.

M. Smigaj et al. Science of the Total Environment xxx (xxxx) xxx
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2020b); in the following yearwith the return to normalcy the activity levels
were on par with those in 2019. A similar pattern was observed at the delta
scale, with an increase from approx. 1650 vessels in 2018 across the VMD
through 1950 in 2019 reaching 2180 in 2020, followed by a drop to
2070 vessels in 2021.

3.3. Local monitoring of the riverine traffic intensity

Monthly HWF products generated here can provide useful insights into
riverine traffic patterns at the provincial level. Fig. 6 portrays the temporal
variation in waterborne activity at three distinct river sections, revealing
substantial differences in traffic volume and in inter-annual trends of activ-
ity. Near the Vietnam-Cambodia border on the Mekong channel we
observed a high concentration of vessels that according to the trendline
(see dotted line on Fig. 6) consistently exceeded 60 vessels within an area
of 4.74 km2 (>12.7 vessels per km2). Throughout the investigated period
a significant increase in vessel numbers occurred, which accelerated from
the beginning of 2020. By the end of 2021 the number of vessels in the
area doubled compared to 2018 levels, reaching 158 vessels (or 33.5 vessels
per km2, based on the trendline estimates, compared to 15.7 vessels per
km2). These changes can be attributed to the increase in the in-channel
sand mining activity in this region, which has been reported in recent
years (Gruel et al., 2022; Vnexpress, 2020a).

Conversely, near Sa Dec, vessel numbers have been diminishing since
2020 when we observed a peak of waterborne activity - approx. 56 vessels
within an area of 4.36 km2 based on the trendline values (12.9 vessels per
km2). This peak can similarly be attributed to in-channel sand mining,
which could not be effectively regulated during the introduction of
COVID-19 restrictions (Vnexpress, 2020b). By the end of 2021 the traffic
intensity levels substantially decreased (5.6 vessels per km2), reflecting
Fig. 6. Daily number of vessels >20 m in length during the period 2018 to 2021
alongside the average number of PlanetScope images used for the generation of
monthly HWF within the sample area near (a) the Vietnam-Cambodia border,
(b) Sa Dec, and (c) Long Xuyen (see Fig. 1 for reference). Dotted lines represent sec-
ond order polynomial trend lines.
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those from the beginning of 2018 (4.7 vessels per km2). The final site
near Long Xuyen experienced consistently low traffic until 2020 (4.3 ves-
sels per km2 based on the trendline estimates). A steep increase followed
at the end of 2020 and throughout 2021when the number of vessels within
this river section tripled compared to 2018 levels, reaching 51 vessels
(12.8 vessels per km2).

For each of these three sites, we also included the average number of
PlanetScope images used for the generation of monthly HWF products to
serve as a qualitative measure for the traffic estimates (Fig. 6). These high-
light lower data availability during the monsoon season months. Neverthe-
less, the extracted traffic estimates appeared largely insensitive to the
changing number of input images - there was no significant correlation
between the number of used images and the resultant number of detected
vessels.

4. Discussion

This study is the first to identify and map riverine vessels at the delta
scale, in an attempt to characterise the human footprint on delta water-
ways. Our study demonstrates that deep learning approaches, in combina-
tion with high spatiotemporal resolution satellite imagery, have high
potential for performing such tasks across large spatial extents. Although
the spatial resolution of satellite imagery employed here (PlanetScope,
~3.7 m at nadir) prevented effective separation of individual vessels
when they were moored together, we were still able to train the Faster R-
CNN model to identify and differentiate individual vessels and clusters of
vessels, achieving high f-scores of 0.84–0.85.Missed detectionswere gener-
ally located at the riverbank, which made them difficult targets due to
visual overlap. Detection of small objects in imagery (relative to pixel
size) is a well-known challenge in the computer vision domain and an
ongoing area of research. Whilst many improvements have been made
over the years, a large disparity in detection performance between small
and medium-to-large objects still exists (Nguyen et al., 2020). Computa-
tionally intensive two-stage approaches, such as Faster R-CNN, are there-
fore still preferable for small objects owing to their superior accuracy
(Nguyen et al., 2020). Employment of ultra-high spatial resolution satellite
imagery (e.g. Worldview) would alleviate this issue by increasing the infor-
mation content; such imagery was previously successfully used as input for
deep learning for detection of a wide range of targets of varying sizes
(Duporge et al., 2021; Froidevaux et al., 2020; Guirado et al., 2019;
Zhang et al., 2019). However, very high costs associated with such imagery
would currently render this solution infeasible for continuous monitoring
across the extensive spatial areas of large deltas.

High spatiotemporal resolution satellite imagery in combination with
deep learning methods offer great promise for monitoring waterborne
anthropogenic activity over large spatial extents. The approach employed
in this study for riverine vessel detection could be extended to other water-
ways, following optimisation for local characteristics with supplementary
training data. Here, for training purposes we utilised imagery acquired in
different seasons to ensure the variability in both vessel type and sediment
conditionswas captured. Suchmonitoring approaches can prove invaluable
for capturing shifts in activity and enable assessment of environmental
impacts of human activities on freshwater ecosystems around the globe.
The main limitation is the use of optical satellite imagery, and specifically
its susceptibility to cloud cover that can significantly limit data availability,
especially during the cloudy monsoon season. Whilst PlanetScope's high
temporal resolution and overlapping of satellite footprints maximises the
chances of obtaining suitable imagery, data gapswere still noticeable, espe-
cially in 2018 when only 73 % of the VMD area was covered by 9 or more
monthly composites (versus 95–99.96 % in 2019–2021). Approaches
utilising Synthetic Aperture Radar (SAR) imagery, which are not affected
by cloud cover, could potentially supplement the analysis by filling these
temporal data gaps. SAR has long been utilised for marine surveillance
with a range of traditional feature-based (Eldhuset, 1996; Iervolino and
Guida, 2017; Yang et al., 2019) and deep learning (Jin et al., 2020; Zhang
et al., 2021; Zhang et al., 2020) approaches developed over the years.
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However, only limited attention has been given to riverine settings, with a
focus on the detection of large vessel clusters (≥70 m in length) with
Sentinel-1 imagery (Gruel et al., 2022; Gruel and Latrubesse, 2021). Simi-
larly as in the optical domain, a trade-off between spatial resolution and im-
agery costs is required, significantly limiting options for implementation of
continuous monitoring. The approaches utilising Sentinel-1 imagery poten-
tially omit a significant proportion of vessels operating on the river, thus
underestimating levels of activity; whilst Gruel et al. (2022) estimated
there were on average approx. 350 active vessels across the VMD in
2020, our workflow identified the presence of approx. 2180 vessels. None-
theless, fusion of the twomodalitieswould beworthy of further exploration
to improve data continuity.

Typically, measures of human impact on landscapes have focussed on
the terrestrial environments, with land use and land cover maps used to as-
sess human activity and changes in the terrestrial biospheres (Fritz et al.,
2017; Sanderson et al., 2002). These products are invaluable for assessing
human alterations to ecosystem service provision (Daily and Ruckelshaus,
2022), protecting andmanaging vital landscapes and in developing sustain-
able management plans. However, they ignore the importance of rivers and
other waterways as a key provider of ecosystem services and as a locus for
anthropogenic impact. Anthropogenic impacts on, and in, global water-
ways are increasingly being recognised (Hackney et al., 2020; Meijer
et al., 2021; Wilkinson et al., 2022), with the reported rapid decline of
freshwater biodiversity among the most concerning (Albert et al., 2021).
Our ability to capture spatiotemporal trends in waterway use is vital for un-
derstanding the role that waterway use plays in driving and propagating
changes in the freshwater environment. The generated HWF layers gave
valuable insights into the changing human pressure levels across the
VMD. At the delta scale we observed that waterborne activity increased
by 25 % from 2018 to 2021 from approx. 1650 active vessels in 2018 to
approx. 2070 in 2021, with most substantial increases in two upstream
provinces: An Giang (72 % from approx. 297 to 510 vessels) and Dong
Thap (30 % from approx. 539 to 701 vessels). The HWF activity hotspots
in these provinces were located away from densely populated areas and
could be related to known in-channel sand mining locations where river
barges with excavators and transport vessels awaiting sand load are located
in close proximity, forming large congregations. Similar increases were also
recorded within the Can Tho city municipality (29 % from approx. 103 to
133 vessels) andHauGiang (54% fromapprox. 8 to 12 vessels). In contrast,
in some downstreamprovinces a slight decrease in riverine traffic occurred,
namely in Tra Vinh (−21% from approx. 48 to 38 vessels), Ben Tre (−4%
from approx. 164 to 158) and Tien Giang (−2 % from approx. 212 to 207
vessels). Such shifts in waterway use that are not directly related to popula-
tion growth and/or movement cannot be fully captured with terrestrial
products. However, it should be noted that we did observe a clear relation-
ship between the generated HWF products and population density esti-
mates at the delta scale (R2 values in the range of 0.59–0.61, p < 0.001).

A greater understanding of waterway use is essential for evaluation of
environmental impacts of anthropogenic activities and development of ap-
propriate remediation measures. For example, inland waterway traffic was
shown to affect species richness and abundance in riverine ecosystems due
to noise pollution (Slabbekoorn et al., 2010;Wang et al., 2020) and transfer
of hydraulic forces into the water column, i.e. vessel-induced waves, cur-
rents and drawdowns (Zajicek and Wolter, 2019). With HWF, specific
areas undergoing high pressure and/or that are key for conservation efforts
can be targeted, e.g. by establishing protected areas. Subsequently, the ef-
fectiveness of introduced measures can be assessed through monitoring of
changes to the anthropogenic activity levels. Here, the HWF is based solely
on identified vessels >20 m, which is an important first step towards the
partitioning out of the HWF by water use or activity type. A HWF that is
able to identify types of activity (e.g. transportation (ferry), shipping, fish-
ing, sand mining) could permit impact assessment of different activities
on the freshwater environment. Further integration with terrestrial
datasets, such as land use/land cover maps, with which information on
e.g. agricultural run-off or industrial/domestic pollution can be derived,
can give the full picture of the extent to which inland waterways are
8

being affected by human activities. This can open up the opportunity for
more synergistic, targeted and sustainable management plans that can
achieve a better balance between nature, agriculture, resource abstraction
and urban development.

5. Conclusions

Our study is the first to identify river vessels at the delta scale to
characterise the human footprint on these vital waterways. We aimed
to tackle the general lack of products addressing anthropogenic impacts
on such waterways and the extremely limited monitoring of riverine
traffic in the Vietnamese Mekong Delta (VMD) in particular. For this
purpose, we employed Faster R-CNN Resnet101 model and PlanetScope
imagery to detect two classes of riverine objects: (i) individual vessels
and (ii) clusters of vessels, and achieved high detection accuracies (f-
score = 0.84–0.85). We subsequently developed monthly, seasonal
and annual HumanWaterway Footprint (HWF) products from vessel de-
tections obtained across the 2018–2021 period. These products provide
an estimation of the average number of vessels per km2 per day over a
given month/year and give an insight into the spatiotemporal variabil-
ity of vessel numbers across the VMD.

The developed annual HWF gave insights into the spatiotemporal vari-
ability of riverine anthropogenic activity, highlighting areas experiencing
continuous heightened pressure from waterborne traffic. At the delta
scale, we observed a clear relationship between the HWF products and pop-
ulation density estimates. Nevertheless, many of the activity hotspots were
located away from densely populated areas, driven by resource extraction
and transportation of goods. We showed how monthly HWF products can
reveal substantial differences in traffic volume and in inter-annual trends
of riverine activity at local level with two-fold (from 15.7 to 33.5 vessels
per km2) and three-fold (from 4.3 to 12.8 vessels per km2) increases over
the 2018–2021 period near the Cambodia-Vietnam border and Long
Xuyen, respectively. At the delta scale we observed the waterborne activity
increase by 25 % over 2018–2021.

Deep learning methods in combination with high spatiotemporal
resolution satellite imagery offer great promise for monitoring water-
borne anthropogenic activity over large spatial extents. Resultant prod-
ucts, such as HWF developed here, can prove invaluable for capturing
shifts in riverine traffic, enabling assessment of environmental impacts
of human activities on freshwater ecosystems around the globe and sub-
sequent development of river management plans that can achieve a bet-
ter balance between nature, agriculture, resource abstraction and urban
development.
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