
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Competitive influence maximisation in
social networks

by

Sukankana Chakraborty
ORCiD: 0000-0002-2115-8531

A thesis for the degree of
Doctor of Philosophy

4th January 2023

http://www.southampton.ac.uk
http://orcid.org/0000-0002-2115-8531




University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

Competitive influence maximisation in social networks

by Sukankana Chakraborty

Network-based interventions have shown immense potential in prompting behaviour
changes in populations. Their implementation in the real world however, is often
difficult and prone to failure as they are typically delivered on limited budgets and in
many instances can be met with resistance in populations. Therefore, utilising
available and limited resources optimally through careful and efficient planning is key
for the successful implementation of any intervention. An important development in
this aspect, is the influence maximisation framework —which lies at the interface of
network science and computer science —and is commonly used to study network-based
interventions in a theoretical setup with the aim of determining best practices that can
optimise intervention outcomes in the real world.

In this thesis, we explore the influence maximisation problem in a competitive setting
(inspired by real-world conditions) where two contenders compete to maximise the
spread of their intervention (or influence) in a social network. In its traditional form,
the influence maximisation process identifies the k most influential nodes in a network
—where k is given by a fixed budget. In this thesis, we propose the influence
maximisation model with continuous distribution of influence where individuals are
targeted heterogeneously based on their role in the influence spread process. This
approach allows policymakers to obtain a detailed plan of the optimal distribution of
budgets which is otherwise abstracted in traditional methods. In the rest of the thesis
we use this approach to study multiple real-world settings.
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We first propose the competitive influence maximisation model with continuous
allocation of resources. We then determine optimal intervention strategies against
known competitor allocations in a network and show that continuous distribution of
resources consistently outperform traditional approaches where influence is
concentrated on a few nodes in the network (i.e. k optimal nodes). We further extend
the model to a game-theoretic framework which helps us examine settings with no
prior information about competitor strategies. We find that the equilibrium solution in
this setting is to uniformly target the network —implying that all nodes, irrespective
of their topological positions, contribute equally to the influence maximisation process.

We extend this model further in two directions.
First, we introduce the notion of adoption barriers to the competitive influence
maximisation model, where an additional cost is paid every time an individual is
approached for intervention. We find that this cost-of-access parameter ties our model
to traditional methods, where only k individuals are discretely targeted. We further
generalise the model to study other real-world settings where the strength of influence
changes nonlinearly with allocations. Here we identify two distinct regimes —one
where optimal strategies offer significant gains, and the other where they do not yield
any gains. The two regimes also vary in their sensitivity to budget availability, and we
find that in some cases, even a tenfold increase in the budget only marginally improves
the outcome of the intervention.
Second, we extend the continuous allocation model to analyse network-based
interventions in the presence of negative ties. Individuals sharing a negative tie
typically influence each other to adopt opposing views, and hence they can be
detrimental to the influence spread process if not considered in the dynamics. We
show that in general it is important to consider negative ties when planning an
intervention, and at the same time we identify settings where the knowledge of
negative ties yields no gains, or leads to less favourable outcomes.
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Chapter 1

Introduction

1.1 Motivation

Interactions with our peers impact decisions and behaviours in our daily lives
(Moreno (1934); Maxwell (2002); Ritzer et al. (2007)) —often shaping our health
practices, voting choices and addiction patterns (Christakis and Fowler (2007, 2008);
Rosenquist et al. (2010); Rogers (2010)). These behaviours that spread through social
contact, collectively lead to global outcomes (or mass behaviours) in populations
(Solovei and van den Putte (2020); Centola (2010)). Because of this, social networks
have attracted considerable attention from policy-makers as a tool for interventions,
used to promote behaviour change at large scales (Valente (2012); Allcott and
Gentzkow (2017); Steinert-Threlkeld et al. (2017)).

Indeed, network-based interventions have shown immense potential as instigators of
social change (Valente (2012); Snyder (2007)). One of the earliest examples of a
successful intervention was the Taichung study of 1964, where the spread of
information through interpersonal ties increased the uptake of family-planning
methods in the population (Rogers (2010)). Several other studies have since been
conducted to show how social connectivity can be exploited to promote interventions
that contribute to, for instance, better health and improved financial planning in
low-income populations with limited access to technology and information (Banerjee
et al. (2013); Oliver-Williams et al. (2017); Abaluck et al. (2021)).

In addition to promoting social reforms, network-based interventions have also
drawn attention as a means to mitigate the harmful spread of misinformation in social
networks (Massey et al. (2020); Young et al. (2021)). Indeed while on one hand, the
internet has improved our quality of life in several aspects (Catarinucci et al. (2015);
Stavropoulos et al. (2020)), in a world where information is predominantly consumed
through social media (Bergström and Jervelycke Belfrage (2018); Boczkowski et al.
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(2017)), it has also precipitated the easy manipulation of masses through the spread of
distorted information (Leopold and Bell (2017); Hillstrom (2018)) —often leading to
catastrophic impacts that have long-lasting effects on societies (Ricard and Medeiros
(2020); Coutts et al. (2013); Flintham et al. (2018)). Consider the many negative effects
that have perpetuated through the unchecked use of social media in the recent years
(Tench and Jones (2015); Moreno and Whitehill (2014); Vishwanath (2015)) —including
protests and uprisings (Guadagno et al. (2010); Scherman et al. (2015); Kharroub and
Bas (2016); Maireder and Schwarzenegger (2012)), threats to public health (Dubé et al.
(2015); Hotez (2016); Roozenbeek et al. (2020); Siani (2019); Tasnim et al. (2020)) and
obstruction of democracy (Allcott and Gentzkow (2017); Pennycook et al. (2018)).
Moreover, given the current challenges of imposing regulations in this sector (Bromell
(2022); Weiser (2009); Leopold and Bell (2017); Hillstrom (2018)), policy-makers are
gradually turning to network-based interventions to immunise populations against
misinformation spread (Zarocostas (2020); van der Linden (2022)).

The implementation of network-based interventions in the real world entails many
challenges (Valente (2012) —some of which can be handled through the meticulous
planning of intervention methods. One way to design efficient and effective
interventions, is to first explore it in a theoretical setup that simulates real-world
conditions (Yadav et al. (2015, 2016, 2018b,a); Wilder et al. (2018b)). This forms the
underlying theme of this thesis where we focus on a theoretical framework, known as
influence maximisation, to study network-based interventions as a means to regulate
collective behaviours in populations. Our goal is to propose efficient algorithms that
optimise intervention outcomes in the real world.

While significant strides have been made in this area, a general limitation of
theoretical models is that they are often too simplistic in their approach (Newman
et al. (2011)). In this thesis, we highlight some of the limitations of existing methods,
and propose extensions that aim to alleviate them —ultimately providing preliminary
results that can help design empirical experiments to progress research in this area.

1.2 Research outline

The tactical spread of influence in social networks is a multi-faceted problem with
attractive applications across many areas (Easley et al. (2010); Jackson (2010)). The
influence maximisation problem, formalised in the seminal paper by Kempe et al. (2003),
aims to exploit interpersonal ties to maximise the adoption of an innovation or a
behaviour in a population (Ferguson (2008); Domingos and Richardson (2001);
De Bruyn and Lilien (2008)) It is typically framed as an optimisation problem, and is
used to identify the most influential individuals in a network —who can maximise the
spread of a desired behaviour in the rest of the population. The concept reflects the
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two-step flow hypothesis where influence in a population spreads by means of a
two-step process (Katz (1957)). In the first step, influential individuals in a population
—also termed as opinion leaders —adopt a new idea or innovation. Following this, the
adoption behaviour propagates from these opinion leaders to the rest of the population.

Influence maximisation has been extensively studied in the past, producing a rich body
of literature that spans across multiple disciplines (Leskovec et al. (2007); Budak et al.
(2011); He et al. (2012)). One way to atomise this exhaustive body of work is to
consider how influence flows in the model. As such, we identify two independent
branches of models - (i) diffusion models championed by Kempe et al. (2003), and (ii)
dynamic models from the field of sociophysics (Sen and Chakrabarti (2014); Galam
(2004)).

Diffusion models have been categorically used in computer science in the past, to study
the spread of influence (or information) in social networks. Some stereotypical
examples of diffusion models are the Independent Cascade model and the Linear
Threshold model (Kempe et al. (2003)). Some epidemiological models that study the
spread of infection in populations consider a similar approach, with the exception
that, individuals may recover from the infection and be either removed from the
network, or become susceptible to being infected again (Kermack and McKendrick
(1927); Hethcote (2000)).

While such models aptly describe how decisions and behaviours virally spread in
social systems, their representation of individual states reflect long-term commitments
such as buying a car. The one-off, immutable nature of decisions in these models make
them unsuitable for studying settings where individual choices (or opinions) are
transient and free of abiding commitments. For example, consider instances where
people switch between mobile networks for affordability reasons (Wu and Wang
(2005)), or discontinue and resume weight-loss programmes based on how motivated
they feel (James (2009)), and in some cases ”unfollow” users on Twitter they once
chose to ”follow”, due to lack of reciprocity and informativeness (Moon (2011)).

In contrast, individuals in dynamic models are at liberty to frequently change their
decisions —based on repeated interactions with their social neighbourhood
(Castellano et al. (2009a); Sen and Chakrabarti (2014)). In this thesis, we consider the
dynamic model known as the voter model to capture influence flow in a population
(Clifford and Sudbury (1973); Holley and Liggett (1975); Sood and Redner (2005)).
This paradigmatic model is characterised by its simple but effective approach to study
reality-based social dynamics (Redner (2019); Braha and de Aguiar (2017)). At large, it
has been used to study the evolution of opinions in populations, where individuals
switch between binary opinion states at a rate proportional to the fraction of opinion
shares in their neighbourhood. In the classical voter model, individuals do not display
any self-beliefs or biases, and form their opinions strictly through social interactions.
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Thus implying an implicit lack of information (or understanding) about the
propagating opinions in the network, which also aptly captures our settings of interest
described in Section 1.1.

Moreover, a noted advantage of the voter model is that the equations of the flow of
influence can be solved analytically for any simplified network structure —however
large —eliminating the need to strictly rely on tedious computational methods.
Although, such analytical solutions can only be obtained in simple network structures,
they are important in their own right as they provide benchmarks for computational
tools, and can help interpret numerical results in more complex settings.

1.3 Research contributions

We study the influence maximisation problem in the voter model under competitive
settings, where two contenders (or controllers) external to the network compete to
maximise their influence in the population. Our work is inspired by the settings
presented in Section 1.1, where network-based interventions are often used to
eradicate undesirable behaviours (e.g. poor health choices, misinformation) in
populations. We apply the problem to many real-world settings and determine
approaches that work well to contend with competing influences in networks, and in
doing so, we make the following contributions to the existing field of research.

1.3.1 Continuous allocation of resources

The voter model has attracted considerable attention within the influence maximisation
research (Masuda (2015); Kuhlman et al. (2013); Yildiz et al. (2013); Brede et al. (2018,
2019)). Most of this work however, mimics the traditional setting where a limited
budget is used to convert (flip or activate) a small number of individuals in the
population —who subsequently influence the rest of the population.

This approach focuses on identifying the most influential individuals in the network
and abstracts all information about the way in which the budget should be used (or
distributed over the network) to maximise influence spread. In the real world,
influence maximisation efforts are predominantly led with resources such as time and
money, and thus a strategy detailing how these resources (and budget) should be
utilised and distributed, would be immensely helpful. With this in mind, we propose
a novel approach to study influence maximisation using continuous allocation of
resources where individuals are targeted with varying intensities (or strengths of
influence) —based on their role in the influence spread process. Given that allocations
are now continuous, it opens up the opportunity for all nodes to be targeted, instead
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of a limited few. Traditional models also assume that selected nodes are activated with
complete certainty at the start of the influence spread process. However, this is not a
straight-forward process in the real world and may involve a lot of uncertainty, which
we capture in our model by assuming that influence is applied in an uninterrupted
manner (as is observed in digital marketing today), and individuals occasionally
interact with this influence to make their decisions.

Furthermore, it has been well-established that dynamics in the voter model either
converge to an ordered consensus, or reach a fragmented state as the population
reaches an equilibrium (Castellano et al. (2009a)). As consensus is rarely ever achieved
in the real world (Garimella et al. (2018); Tucker et al. (2018)), it has motivated
significant efforts to study conditions and properties of fragmentation in networks,
with special attention to competitive settings. Competitive influence maximisation has
been fairly well-studied in the voter model (Masuda (2015); Yildiz et al. (2013);
Kuhlman et al. (2010)), however most of this work notably assumes prior knowledge
of competitor strategies which is not always easy to retrieve in the real world. In our
work, we consider both known and unknown competitor allocations, and
systematically optimise influence maximisation strategies for both instances. Where no
explicit information about the competitor strategy is available, we employ a
game-theoretic framework (Chasparis and Shamma (2010); Fazeli and Jadbabaie
(2012); Masucci and Silva (2014); Fazeli et al. (2016)), to optimise counter-strategies.

1.3.2 Barriers to adoption and nonlinear cost of allocations

Despite our best efforts, network-based interventions may not always yield the
outcome we expect in the real world. In some cases, low adoption of interventions
result from, what are known as, barriers to adoption (Butler and Sellbom (2002);
Vanclay (1992)). Such barriers often result from the lack of financial means to acquire
the product, the lack of access to the product or the lack of information about the
product, which need to be remedied in order for the external interventions to succeed
(Mobarak and Saldanha (2022); Gates (2019)).

With this in mind, we introduce a fixed cost of access parameter in our model. This is
the cost paid by an external controller each time they want to access an individual
with the intent of influencing them. It is analogous to paying a cost to remove existing
barriers of adoption, and consequently priming the network for interventions. For
instance, Gates (2019) showed that distributing free contraceptives at children’s
vaccination centres (that came at an additional cost), increased the uptake of
vaccinations among children. This was because the policy attracted more women to
visit vaccination centres to obtain safe contraception, where they could be educated
about the health benefits of vaccines.
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Assuming that the cost of the intervention is the subsidy provided on a product and
the effect is the probability of adoption, we also observe a nonlinear relation between
the cost and the effect of interventions in many real-world instances. For example,
people are often naturally reluctant to adopt innovations or new technologies, unless
reasonably subsidised to lower the stakes of adoption (Sardianou and Genoudi (2013);
Nicolini and Tavoni (2017)). In this case, smaller subsidies will first have marginal
effects on the probability of adoption. However once the subsidy breaches a certain
threshold (of affordability and risk), the probability of adoption will increase
exponentially. Similarly, when considering interventions that people readily adopt
(such as subscription trials), we find that a small initial subsidy (i.e. offering a trial)
has a significant effect on the probability of adoption, but any subsequent increases in
influence (e.g. increasing the length of the trial period) only marginally increases the
probability of adoption, yielding a nonlinear relation between the cost and the effect of
influence. With the aim of including these real world settings in our work, we modify
our existing model to consider nonlinear costs of allocation —which to the best of our
knowledge has not been considered in influence maximisation research before.

1.3.3 Effect of negative ties on influence maximisation efforts

Finally, it should be noted that a majority of the influence maximisation work is focused
on networks of friendship, where people influence one another strictly positively, i.e.
an adoption of a product or an idea only increases the probability of a subsequent
adoption in a social neighbour. However real-world networks often contain negative
relationships in addition to positive ties (Leskovec et al. (2010)), which if discounted
from the dynamics can erroneously perpetuate undesirable influence in the network
(Guha et al. (2004)). With this in mind, we explore the competitive influence
maximisation problem in the presence of negative edges, to study how negative ties
impact influence maximisation efforts in the competitive setting against both known
and unknown competitor allocations.

1.4 Summary of Results

We now briefly highlight some important results obtained in this thesis.

1.4.1 Continuous allocations of influence

We modify the traditional voter model to study competitive influence maximisation
under continuous allocation of external influence, and subsequently employ it to
characterise optimal strategies against known and unknown competitor allocations.
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We first validate our proposed model by using it to study influence dynamics in a
prototypical leader-follower-based star topology. We do this primarily to gather
intuitions about the research problem from analytical results, that can later be used to
design numerical methods in larger networks. In addition, we illustrate that it is
always favourable to target the network continuously, as opposed to discretely
activating a few nodes (Kuhlman et al. (2010); Masuda (2015)). Finally, we study the
problem in a game-theoretic setting, where we show that the optimal strategy is to
always target everyone in the network uniformly, with the same intensity.

1.4.2 Nonlinear effect of allocations

To generalise our model further, we introduce a new parameter that represents a fixed
cost incurred by the controller to access nodes in a network. We first obtain analytical
results in star networks, and show how analytically derived results can help design
efficient heuristics to optimally maximise influence in larger networks. Moreover, we
find that the cost of access parameter bridges the gap between the traditional influence
maximisation models that allocate resources discretely1, and our proposed continuous
model of allocations. We further study the problem under other, more general,
nonlinear cost functions, where we determine optimal patterns of allocations and
further demonstrate the importance of considering these nonlinear constraints when
maximising influence in networks.

1.4.3 Effect of negative ties

Finally, we propose a novel method to optimally maximise influence spread in
networks with negative edges, and compare our approach to a traditional setup where
all edges are assumed to be positive. We find that the knowledge of negative ties
enhances influence spread in instances where the competitor deliberately avoids these
edges. Conversely, our method yields no gains in certain network topologies, where
the competitor targets all nodes uniformly. Finally, we explore the problem in a
game-theoretic setting and show that knowledge of negative ties can, in some cases,
adversely affect the outcomes of an intervention.

1.5 Publications

Some of the work in this thesis has led to published proceedings. Results discussed in
Chapter 3 have been published in the following papers:

1The top k individuals with the highest number of social connections are targeted.
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1. Chakraborty, S., Stein, S., Brede, M., Swami, A., DeMel, G., Restocchi, V.
Competitive Influence Maximisation using Voting Dynamics (2019). In: The
Social Influence Workshop at the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, Vancouver, Canada.

2. Romero Moreno, G., Chakraborty, S., Brede, M. Shadowing and shielding:
Effective heuristics for continuous influence maximisation in the voting
dynamics (2021). In: Plos one journal.

Below are some of our papers that summarise the results discussed in Chapter 4 and
Chapter 5 respectively:

1. Chakraborty, S., Stein, S. Competitive influence maximisation with nonlinear
costs of allocation. (Accepted at the 11th International Conference on Computational
Data and Social Networks 2022).

2. Chakraborty, S., Stein, S., Brede, M., Swami, A. Competitive influence
maximisation in the presence of negative ties. (Working paper).

1.6 Outline of the thesis

This chapter motivates the work presented in the rest of the thesis by providing a
glimpse of existing gaps in the literature and outlining the research problem and its
real-world impact.

In Chapter 2 we lay out the important theoretical concepts required to study the
current research problem. The chapter provides a detailed account of many network
science concepts and is aimed at readers who have limited expertise in the area. We
first discuss network representations of social systems and describe methods used to
model influence processes in social networks. We then present a review of the
available literature on the competitive influence maximisation problem and highlight
gaps that this thesis intends to fill.

In Chapter 3 we introduce the competitive influence maximisation problem with
continuous allocations of external influence. Optimal counter-strategies against both
known and unknown competitor allocations are derived using algorithmic
approaches as well as analytical methods.

We then extend this model in two directions (as shown in Fig. 1.1). First, we change
the constraints of the optimisation problem presented in Chapter 3 to include more
realistic and complex settings. This work is presented in Chapter 4 where we study the
competitive influence maximisation problem assuming a fixed cost of access and other
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FIGURE 1.1: Figure showing the structure followed in this thesis.

nonlinear costs of allocation. Numerical approaches, and where possible, analytical
methods are proposed to determine optimal allocations under these settings.

Second, we modify the model presented in Chapter 3 to study the competitive
influence maximisation problem in networks with signed edges. More specifically, in
Chapter 5 we study the impact of negative ties on influence maximisation efforts in
competitive settings. We optimise strategies against known and unknown competitor
allocations and highlight settings where knowledge of negative ties result in
significant gain in influence spread, and similarly draw attention to instances where it
yields no gains or results in a loss.

Chapter 6 summarises some important results obtained in Chapters 3 to 5, and
highlights the outcome of the research problem studied in this thesis. Finally, it briefly
outlines future directions in which the current work can be extended.
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Chapter 2

Background

The study of network-based interventions requires careful analysis of real-world
social dynamics. This however can be challenging due to the complex nature of
human interactions, and the scale at which they occur (Barabási (2003)). Devising a
tractable way to study real-world social systems thus requires an approach that can
tame this complexity without losing any important properties of the system. A key
contribution in this aspect was the notion of using networks to capture the structure
and connectivity of complex social settings. This concept —that eventually evolved
into the network science discipline —provides a level of abstraction to deal with the
complexity of social systems, and yields a mathematical framework that can be
ubiquitously applied to study any real-world setting (Barabasi (2019); Vespignani
(2018)).

In the rest of the chapter, we first familiarise the reader with terminologies and
concepts from the field of network science that are fundamental to the study of complex
social networks. This is followed by a discussion on the building blocks of the
research model. Studying the effect of network-based interventions on collective
behaviours in a theoretical setting relies on capturing two important aspects of
real-world social systems: (i) its connectivity, and (ii) the dynamics of social
interactions. Consequently, we provide a comprehensive review of approaches taken
to represent the structure and dynamics of real-world social systems.

We then proceed to describe the influence maximisation problem which is extensively
used to investigate the optimisation of network-based interventions in populations
and is the core theme of this research. The existing literature on influence maximisation
is extensively broad, and we streamline our review of this field to the aspects of the
research problem considered in this work. For a more comprehensive background of
this field, see Li et al. (2018); Banerjee et al. (2020); Azaouzi et al. (2021). Finally, we
highlight gaps in the existing literature that motivate our research aims presented in
Chapter 1, and which have been addressed in the rest of the thesis.
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FIGURE 2.1: Figure (a) shows a schematic of the Könisberg bridge problem, and Figure
(b) shows the graphical representation of the same problem (Figure taken from Bogus-
lawski (2011)). The city of Könisberg was built on the islands A and D, surrounded by
the Pregel river, and connected to the adjacent landmasses B and C by seven bridges.
The aim of the Könisberg bridge problem was to determine if there exists a single path

that traversed each bridge exactly once.

2.1 Network theory

Network science has its origin in graph theory. Graphs typically depict pairwise
associations between objects in a set. In principal, a graph can be used to represent
any collection of objects with connections between them, such as people and the
relationships between them, websites and the links between them, or places and the
transport links connecting them (Newman (2003)).

Using graphs to solve problems is a well-established method in discrete mathematics,
and was initially proposed by the Swiss mathematician Leonhard Euler in 1736, while
attempting to solve the landmark Könisberg bridge problem. The Könisberg problem
shown in Fig. 2.1, is given by the following. The city of Könisberg was built on two
islands situated on the Pregel river, connected to each other as well as to the adjacent
river banks via seven bridges. The challenge of the Könisberg bridge problem was to
find a single path that would traverse all seven bridges exactly once.

Using a graphical representation of the problem (see Fig. 2.1), Euler showed that for
such a path to exist, there can be at most two landmasses with an odd number of
bridges. These points in the graph would serve as entry or exit points for the path,
and since all four landmasses in this instance had odd numbers of bridges, he
conclusively showed that there was no such path that traversed all bridges exactly
once. By representing the problem graphically, Euler devised a method of abstraction
that could effectively remove all irrelevant details from a problem setting to simply
focus on core of the problem —which in this case was the connectivity between the
landmasses. This property of abstraction is what makes graphs such an attractive tool
in the study complex systems —thus conceptualising the field of network theory.
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2.1.1 Some network theory concepts

Before proceeding further, we introduce some common network theory concepts to ease
the reader into terminologies and concepts that have been liberally used in the rest of
the thesis.

1. Vertex: Each item in the set of objects (to be represented as a graph) forms a
node or a vertex.

2. Edge: Relationships between items are depicted as connections or edges
(between nodes).

3. Sub-graph: A smaller graph formed by the subset of the vertices (and the edges
between them).

4. Types of connections: Often connections between nodes are of different types.

(a) Directed: A directed edge represents a one-sided relationship, where an
edge starts from a source node and ends at a target node. Hence, these
edges can be traversed only in one direction (source −→ target).

(b) Undirected: These edges represent two-sided relationships such as
friendships, and can be traversed in both directions.

(c) Weighted: Weighted edges in a network indicate that not all connections
are the same, and some connections are stronger than others (i.e. friends
versus acquaintances).

(d) Unweighted: Unweighted edges on the other hand assume all connections
in the network have the same strength.

5. Degree: The number of connecting links (or edges) a node has (with other nodes
in the network). In a directed graph there are two types of degrees:

(a) in-degree: The number of incoming links of a node (i.e. number of
connections where the node is the target).

(b) out-degree: The number of outgoing links of a node (i.e. number of
connections where the node is the source).

6. Path: The sequence of edges from one node to another.

7. Clique: A clique or a complete graph is one where all nodes are connected to
each other.

8. Centrality: Centrality measure is a topological property of a node that indicates
its importance in a network flow process1. There are different types of centrality

1For example, nodes that are important in the spread of information in a network.
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measures e.g. degree, closeness2 and so on. More such centrality measures can
be found in Barabási and Pósfai (2016).

9. Clustering coefficient: It is the ratio of existing connections between the
neighbours of a node to all possible connections between them.

10. Assortativity: The tendency of nodes to connect to other nodes with similar
properties. Similarly, disassortativity is when nodes connect to dissimilar nodes.

2.2 Representing real-world networks

Drawing meaningful and relevant insights about real-world social dynamics require
analysing real-world data, which may not always be easy to obtain. One way to
generalise theoretical results to real-world settings is to study the problem in synthetic
networks that aptly capture properties of real-world networks. In the remainder of
this section, we provide a comprehensive overview of broadly used network models
that generate synthetic networks used for the theoretical investigation of real-world
dynamics.

2.2.1 The small-world effect

As of 2017, the world is populated by over 7.6 billion people3, and yet, we often claim
that it is a ”small world”. The phrase in general, hints at the overall connectedness in
the world, where often random strangers find themselves separated by a surprisingly
low number of intermediary relationships.

The intuition of short average path length in social networks was first proposed by
Frigyes Karinthy in 1929, and later illustrated through an experiment nearly 40 years
later by Stanley Milgram (Travers and Milgram (1967)). At the time, Milgram showed
that on average there are a maximum of six intermediary relationships between any
two people in the world. A phenomenon commonly known as the ”Six degrees of
separation”4, which given the advancement of technology in the last two decades, and
the internet has been revised to ”Three-and-a-half degrees of separation” as per a
recent study on the Facebook network (Edunov et al. (2016)).

One of the first prominent network models to efficiently capture this small-world
property was the random graph model proposed by mathematicians Erdös and Rényi

2Indicates the average length of the shortest path between the node and all other nodes in the network
3Data obtained from the 2017 UN Report.
4implying that any two disconnected nodes in a social network have at most a path-length of six edges

between them —where path-length is a relational concept (i.e. represents social relationships) and not a
spatial one.

https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2017_world_population_prospects-2017_revision_databooklet.pdf
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(Erdos and Rényi (1960)). To this day, the model is extensively used in network science
research given its simplicity and relevance (Newman (2000)). The random graph
considers a population of N people, connected through (N · p/2) connections, where
p5 is the probability any two randomly chosen vertices have an edge between them.
The degrees of separation in the resulting network is given by log N, which therefore
preserves the small-world property even when N is very large.

However, despite its advantages, the random graph model falls short in capturing two
other commonly observed properties of real-world social networks. One of them is the
clustering property6. The other is the heavy-tailed power-law degree distribution of
real-world networks which is distinctly different from the Poisson-like degree
distribution observed in random graphs (Caldarelli (2007)).

2.2.2 The clustering effect

In 1998, nearly 40 years later, Watts and Strogatz proposed their own small-world
model (Watts and Strogatz (1998)). In the beginning, a lattice is considered where
every node is connected to k of their nearest neighbours. Edges in the network are
then rewired with a probability p7. The relevance of this model was justified in Watts
and Strogatz (1998) by highlighting that people usually form connections with those
in their immediate surroundings (e.g. neighbours, colleagues and so on), while also
occasionally forging ties with people outside of their social neighbourhoods (for
instance, acquaintances formed through chance encounters). The lattice like structure
of the network where people are connected to those in their immediate vicinity, results
in an overlap in social neighbourhoods (’friends of friends’) between neighbouring
nodes, thus capturing the clustering effect observed in real-world social networks
(that is missing in random graphs). The rewiring step on the other hand, randomly
connects distant nodes that reduces the average path length in the network, thus also
capturing the ”small-world” effect.

Although the Watts-Strogatz small-world model is a useful model to study real-world
networks, it has been criticised for its failure to capture the shape of degree
distributions observed in the real world. A widely accepted property of real-world
social networks as determined from empirical investigations is that they display a
heavy-tailed power-law degree distribution (Caldarelli (2007)) where a small number
of nodes (called ’hubs’) are densely connected (with many edges) within the network
while the remaining nodes have sparse connections.

5Also termed as the coordination number of the network
6The tendency of forging friendships with the friends of a friend.
7The connection between two nodes is broken and a new connection is established with a randomly

chosen node in the network.
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FIGURE 2.2: Figure from De Stefano et al. (2010), showing the transition from a regular
lattice, to the small-world network and finally to the random graph as the probability

of randomly rewiring links in the network p is increased.

2.2.3 Preferential attachment

In 1999, Barabási and Albert (1999) proposed a network model that effectively
captured the power-law degree distribution. Known as the preferential attachment
model, it was based on, what is known as the ”rich gets richer” phenomenon. To
explain further, the preferential attachment model is a growth model that describes
how a network expands over time. As a consequence of growth in the network, older
nodes acquire more connections at the expense of newly added nodes, thus growing
”richer” over time.

A regular connected component of size m0 nodes is considered. Newly added nodes
form connections with m existing nodes with a probability p that is directly
proportional to the degree of the existing nodes (see Fig. 2.3). Implying that new
nodes have a higher chance of connecting to older nodes that have formed more
connections over time. Thus enabling the ”rich” nodes to get even ”richer” as the
network expands.

The resulting network is known as a scale-free network that is widely observed in
several biological, financial and social settings (Barabási and Pósfai (2016)). The
degree-distribution in a scale-free network resembles a power-law distribution given
by P(k) ∝ k−γ, where P(k) is the probability distribution of degrees in the network, k
is the degree of nodes in the network and γ is a constant. Empirical studies reveal that
γ is usually between 2 < γ < 3 (Barabási et al. (1999); Caldarelli (2007)).

While the above models provide suitable templates to represent connectivity in the
real world, the structure of the network (known as the network topology) also
influences the dynamical processes in the network. For instance, existence of social
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FIGURE 2.3: Figure from Barabási (2009) showing how the preferential attachment
model works. The top panel illustrates the workings of the preferential attachment (or
the scale-free) model over several time steps. Observe that the model begins with a
connected component of m0 = 3 nodes. As new nodes enter the system, they connect
to existing nodes with a probability proportional to their degree. Thus, older nodes
that were selected for new connections early on tend, to have more connections (or
get richer) over time. The bottom panel shows how a collaboration network among

physicists grows over time.

communities in highly clustered networks can often be detrimental to the spread
process. As a next step, we determine models that effectively capture social processes
observed in the real world, and use the following section to discuss approaches taken
to effectively capture social interactions in a theoretical setting. Due to the nature of
the research problem at hand, we focus our review strictly on methods that capture
the propagation of influence in social networks.

2.3 Modelling influence propagation in social networks

Individual decisions and behaviours are often rooted in peer influence. Thus the key
to understanding social behaviours —their formation and evolution —lies in the
study of how influence flows in a population. Unfortunately, there is no one true
model that can be universally applied to study the spread of influence in social
settings. Instead, models vary based on the research setting being considered. For
instance, infectious diseases propagate in a manner different to how culture spreads in
a population. Hence models that study the spread of diseases starkly vary from
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models that study the formation of languages and culture (Castellano et al. (2009a)).
The challenge is then to choose an appropriate model that closely reflects the
real-world setting being studied.

2.3.1 Social influence models

One of the earliest investigations of contagion8 in social networks was presented by
Moreno (1934), where he studied a running away epidemic among teenage girls at a
reformation school in New York. Moreno captured the relationships between pupils in
the form of sociograms9, and used them to show that the decision to run away,
typically reflected the position of the individual in the network and their relationships
with others, as opposed to individual personalities or personal life events (as one
would otherwise expect).

This study laid the cornerstone for research on social influence —specifically, its
propagation and effects on individual and collective behaviours in populations. Some
other formative works that pioneered this field include Latanè’s social impact theory
that described how individuals influence each other within a peer group (Latané
(1981)). Schelling and Axelrod’s models of cultural dynamics, and Granovetter’s
threshold model to study collective behaviours in society are prominently used to this
day in sociological studies (Schelling (1971); Axelrod (1997); Granovetter (1978)). It is
worth mentioning that none of the above works (in exception of Moreno (1934)) are
based on network representations of populations. Instead, they use agent-based
models (which is a field of research on its own) that simulate individual behaviours in
a multi-agent setting to study macroscopic behaviours and outcomes (see Crooks and
Heppenstall (2012); Janssen (2005) for more details). In this thesis however, we strictly
focus on network-based social processes.

2.3.2 Diffusion models

One of the most established methods to study influence propagation in networks uses
diffusion models. These models rely on word-of-mouth recommendations where only
a few individuals initially adopt an innovation (or intervention), and subsequently
propagate this adoption behaviour to the rest of the network. As information spreads
from one person to another, it creates cascades of influence throughout the network
(and are hence also known as cascade models), increasing the global share of adoption
in the population.

Key examples of cascade models that largely dominate the field are the Independent
Cascade model and the Linear Threshold model, both of which were introduced in the

8The infectious nature of peer influence.
9Graphical representation of relationships between members of a social group.
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paper by Kempe et al. (2003). The two models differ in the way influence propagates in
the network. Influence in the Independent Cascade model spreads by means of simple
contagion where an infected node i activates its neighbouring node j ∈ {1 . . .Ni}10

with a probability pij (through a single contact event). Whereas, nodes in the Linear
Threshold model update their states only when the total influence in their
neighbourhood breaches a certain threshold. This is known as complex contagion and
is reflective of the way in which social norms evolve in a population.

In addition to the Independent Cascade model, simple contagion processes are also
studied in epidemiological models such as the SIR (susceptible-infected-removed)
model and the SIS (susceptible-infected-susceptible) model (Anderson and May
(1992); Prakash et al. (2012); Watkins et al. (2016)). Although these models were
primarily designed to capture processes of disease spread in populations, the
mechanism followed in these models can also be applied to the study diffusion of
influence in social settings.

Infection (or influence) spreads in the SIR model as infected individuals (I) transmit
the disease to their susceptible neighbours (S) at a rate determined by the
transmissibility of the disease (analogous to the probability of activation pij in the
Independent Cascade model). These infected nodes (I) remain in the network for a
duration T, also known as the infection period, during which they infect other
susceptible individuals in their social neighbourhood. At the end of the infection
period, infected nodes (I) are removed (R) from the system assuming death (or
recovery11). The SIS follows a similar model of disease transmission, but applies to
diseases where the infected individuals can become susceptible to re-infections at the
end of the infection period (e.g. flu or common cold).

Determining the optimal set of nodes that maximises influence in a network, when
considering diffusion models, is an NP-hard problem (Kempe et al. (2003)). However,
the collective influence in a diffusion model is a monotonically increasing function
with diminishing returns12 —implying submodularity13, which be leveraged to
design polynomial-time, near-optimal greedy approaches that solve the otherwise
NP-hard problem.

Over the years, many algorithmic approaches have been employed to determine the
optimal solution to the influence maximisation problem in diffusion models, such as: (i)
the simulation-based approach, (ii) the proxy-based approach and (iii) the sketch-based
approach. The simulation-based approach employs Monte-Carlo (MC) simulations to
determine the optimal seed set, where every possible combination of seeds are

10Here Ni is the neighbourhood of node i.
11Once the individual is recovered they can never contract the disease again, e.g. measles
12This is because nodes in the network can only be activated and never deactivated.
13Submodularity states that the marginal value gained from adding an element e to a set S is less than

the marginal gain obtained when e is added to a subset of S (Krause and Golovin (2014); Lovász (1983);
Fujishige (2005)).
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evaluated to determine the set that maximises influence in the network. Although, it
provides theoretical convergence under specific settings, and its simple approach can
be easily incorporated into any diffusion model —this method can rapidly escalate
into an expensive computational task in large networks, even for a reasonable
tolerance of error. The proxy-based approach on the other hand, addresses the
computational inefficiency in the simulation-based approach by reducing complex
influence models into standard proxy models such as Page-Rank. However, despite its
benefits, this method fails to offer any theoretical guarantees for the optimal solution,
and the optimal seed set changes significantly in some cases even for a minor change
in the underlying network. The sketch-based approach is widely known for its
theoretical efficiency as well as low time-complexity. The approach uses Monte-Carlo
simulations to determine the optimal seed set, but significantly reduces the
computation time by using an oracle-based system (that pre-computes the influence
path of each node). Examples of this algorithm include TIM/TIM+ (Tang et al. (2014)),
IMM (Tang et al. (2015)), StaticGreedy (Cheng et al. (2013)) etc.

However, despite their relevance and popularity, the static nature of individual states
in diffusion models (as discussed in Chapter 1) is a limitation when studying dynamic
social behaviours. Although, epidemiological models such as the SIR model and the
SIS model allow node states to be flexible to a certain extent, and are occasionally used
to study dynamical social systems (Romero et al. (2009); Stauffer and Sahimi (2006);
Woo et al. (2011)), they are not suited for exploring instances where individual states
change repeatedly and stochastically.

2.3.3 Dynamic models

Dynamical approaches are effective when studying emerging macroscopic behaviours
(e.g. majority opinion) in populations —where individuals repeatedly switch between
different opinion states (Barrat et al. (2008)). Here nodes update their states each time
they interact with their neighbours. The process of updating the state of a node can be
synchronous, where all nodes update their states simultaneously, or can be
asynchronous, where nodes in the network update their states in a particular order.
Although the stochasticity of the system can appear intimidating to study, a way
forward is often to focus on macroscopic behaviours instead of microscopic
interactions in the population (Castellano et al. (2009a); Sen and Chakrabarti (2014)),
and thus the system is studied when it reaches a steady-state, i.e. global consensus, or
the fraction of opinion states in the network remain static, and no longer change with
time.

A conventional approach to determine collective behaviour in such dynamic systems
uses an assembly of models from sociophysics (Castellano et al. (2009a); Sen and
Chakrabarti (2014)), where individual states are expressed using either discrete
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variables (Clifford and Sudbury (1973); Galam (1999); Holley and Liggett (1975);
Krapivsky and Redner (2003)) or continuous (Deffuant et al. (2000); Hegselmann et al.
(2002)) variables. One of the most prominent dynamic models, widely used to study
opinion dynamics, is the voter model, that assumes discrete opinion states for
individuals in the population(Clifford and Sudbury (1973); Holley and Liggett (1975)).
Despite the abundance of dynamic models used to study social processes, the voter
model stands out for its simplicity and fair representation of real-world social
dynamics (Castellano et al. (2009b); Redner (2019)). Individuals in this model update
their states through imitation behaviour where a node is first picked uniformly at
random from the population to update its state. The selected node then randomly
picks one of its neighbours, and copies their state. This process continues till the entire
population reaches an equilibrium state (or steady-state).

Other variations of the voter model have been also proposed. In the reverse voter
model a node is randomly chosen from the network and its state is copied to one of its
randomly selected neighbours (Castellano (2005)). Other variants include the
constrained voter model, where nodes are assumed to be either centrists or extremists
(leftists, or rightists). Influence propagates in the system as centrists communicate
with extremists, and other centrists. The extremists (leftists and rightists) on the other
hand do not engage with one another as they are on the opposite ends of the opinion
spectrum (Vazquez et al. (2003)). In the noisy voter model, individuals are considered
to spontaneously flip from one state to another at a rate given by q such that when q is
set to zero, we retain the classical voter model (Granovsky and Madras (1995)).

Other dynamic models include the majority rule model where individual states are
given by discrete variables. This model was proposed to illustrate influence
propagation through group discussions and public debates, where individuals —at
the time of updating their states —interact with a fraction of their neighbourhood, and
then adopt the most prevalent opinion state within the group (or randomly in case of
ties Galam (2002)). Other models that assume discrete individual states include the
Naming Game which is primarily used to study language dynamics (Steels (1995)),
and the Sznajd model, where influence propagates through social validation
(Sznajd-Weron (2005)). Alternatively, individual states (or opinions) can be continuous
in nature where individuals rate their preference towards an opinion over a defined
range (e.g. 0 to 1), which starkly contrasts discrete opinions (e.g. binary opinions
given by ±1) Dynamic models which consider continuous opinions are known as
bounded confidence models, where people strictly interact with those who have
opinions similar to them. Examples include the Hegselmann-Krause model
(Hegselmann et al. (2002)) and the Deffuant model (Deffuant et al. (2000)). For a more
comprehensive review on dynamic models see Castellano et al. (2009a).
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2.4 Influence maximisation in competitive settings

The influence maximisation problem has been extensively studied under competitive
settings, especially given its commercial appeal. It has been extensively explored in
diffusion models, as extensions to the Independent Cascade model (Bharathi et al. (2007);
Carnes et al. (2007)), the Linear Threshold model (Borodin et al. (2010); He et al. (2012))
and other two-step diffusion models as well (Goyal et al. (2014)). It has also been
well-studied in dynamic models, particularly in the voter model using zealots
(Mobilia (2003)). Generally, zealots are biased individuals (Masuda et al. (2010);
Mobilia (2003)), or radical agents in the network who are impervious to any
neighbourly influence (Barrat et al. (2008); Kuhlman et al. (2013); Mobilia et al. (2007);
Mobilia (2015)), and are responsible for preventing the population from reaching a
consensus (Acemoğlu et al. (2013); Mobilia et al. (2007); Yildiz et al. (2013)). Thus in a
competitive setting, zealots are used as ”influence blockers” that limit the spread of
any opposing influence in network (Kuhlman et al. (2010); Yildiz et al. (2013)).

In a more recent approach, rooted in control theory, zealots were used as agents
external to the network, that unidirectionally targeted selected individuals in the
network (Masuda (2015)). By controlling an optimal set of nodes in the network, the
external controller maximised their control (or influence) over the rest of the network.
Masuda (2015) showed that under competitive settings, the optimal strategy to
achieve maximum influence spread in network is to preferentially target hub nodes.
However, this was a generic result was further honed by studying the problem in
noisy and dynamic settings (Brede et al. (2018, 2019)). Brede et al. (2018) showed that
while targeting hub nodes is optimal for maintaining long-term control over the
network, targeting low-degree peripheral nodes is more effective for short-term
influence maximisation. In addition, Brede et al. (2019) studied the problem in a noisy
voter model and showed that optimal control shifts from high-degree hub nodes to
low-degree peripheral nodes as noise in the model increases.

We expand this line of investigation in Chapter 3 and extensively compare the roles of
high-degree and low-degree nodes in the influence maximisation process —by
continuously allocating resources (or external influence) to nodes in the network. As
nodes are targeted with varying intensities in this method, it is used to determine
settings where high-degree nodes or low-degree nodes should be preferentially
targeted to maximise influence spread.

Additionally, the influence maximisation problem is typically a constrained optimisation
problem where resources allocated to the network are constrained by a budget14. In
traditional (discrete) methods used to allocate resources to a network, the budget
constrains the number of nodes converted (or ”seeded”) at the start of the dynamics.

14In comparison, the unbudgeted case is a trivial problem.
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Thus in the continuous approach, as resources are heterogeneously spread over the
network and are constrained by an overall budget, we need to define a relationship
between the amount of resources allocated to a node and the influence experienced by
them. As a preliminary step, we consider this relation to be linear in Chapter 3. In
Chapter 4 however, we take a step further in this direction by considering other
nonlinear relations between allocations and influence experienced by nodes. Influence
dynamics in the classical voter model is uniquely linear, and nonlinearity has been
studied in voter dynamics typically in terms of spread dynamics —specifically when
considering majority dynamics where individuals consult and respond to the majority
view in their neighbourhood (Peralta et al. (2018); Schweitzer and Behera (2015)). For
example, we obtain nonlinear spread dynamics in the q-voter model where
individuals either adopt the unanimous view of q neighbours or spontaneously switch
their opinions with a probability ϵ (Castellano et al. (2009b)), or in models with
contrarians where some individuals (or contrarians) consistently oppose the majority
view in their neighbourhood (Tanabe and Masuda (2013)). Nonlinearity however, to
the best of our knowledge has never been considered in the voter model in terms of
allocations to the network and our work is the first to do so.

Finally in Chapter 5 we study competitive influence maximisation in networks with
negative ties —which has received limited attention in the past (see Girdhar and
Bharadwaj (2016) for a detailed review). Many of the works in this area explore the
problem in diffusion models —such as the Independent Cascade model (Ju et al. (2020);
Li et al. (2014); Liu et al. (2019)) and the Linear Threshold model (He et al. (2019); Liang
et al. (2019); Shen et al. (2015)) —where traditional greedy heuristics are principally
employed to determine optimal solutions to the problem. Some other contributions to
this area include using a modified integrated page-rank algorithm (Chen and He
(2015)), or simulated annealing (Li et al. (2017)) to determine the optimal seed set in a
diffusion model, while Srivastava et al. (2015) discusses a comparative analytical
approach to the problem. The problem is studied in the voter model in Li et al. (2013),
and possibly bears the closest resemblance to our work. However, our research
extends this work in several aspects. First as foremost, we consider continuous
allocation of resources, which distinctly contrasts the traditional discrete method
employed in Li et al. (2013) and in general, in this research area. Additionally, we
study the problem in a competitive setting which is starkly different from the
single-controller setting studied in Li et al. (2013).
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Chapter 3

Continuous allocation of resources

3.1 Introduction

The research problem central to this thesis (as described in Chapter 1), is to determine
ways in which the spread of desirable influence can be maximised in populations
through the optimal distribution of limited resources in the presence of competition.
To do this, we employ the paradigmatic voter model (Clifford and Sudbury (1973);
Holley and Liggett (1975); Sood and Redner (2005)), for which our motivations are
highlighted in Section 1.2. The voter model also closely represents real-world
dynamics (Braha and de Aguiar (2017); Redner (2019)), and the simplicity and
tractability of its approach enables analytical examination of influence dynamics in
complex networks, which is rare and useful when drawing insights about aggregate
behaviours in populations (Castellano et al. (2009a)). As discussed in Section 2.4,
despite its rich background most of the historic work using the voter model is
characterised by discrete allocation of external influence on the network —where
nodes are either influenced or not. In contrast, here we consider a continuous
approach where a broad spectrum of nodes are targeted with varying amounts of
influence. Naturally, the resources allocated to the network must also be continuous in
nature, like time and money, which are also commonly used to influence networks in
the real world, thus making our model more realistic in comparison to traditional
models.

As stated earlier, we study the problem in a competitive setting, where two controllers
compete to maximise their influence in a population. Over the years, competitive
influence maximisation has attracted considerable attention, given its commercial value
in many real-world settings (Bharathi et al. (2007); Wilder and Vorobeychik (2018)).
Here we consider two scenarios: (i) where we have prior knowledge of competitor
allocations in the network, and (ii) where we have incomplete knowledge of
competitor allocations. Where competitor allocations are not fixed, game-theory
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provides a viable approach to determine optimal allocations for both controllers.
While cascade models have been abundantly used to study influence maximisation in
game-theoretic settings (Clark and Poovendran (2011)), dynamical models have
received limited attention in this aspect. Some exceptions include Chasparis and
Shamma (2010); Fazeli et al. (2016); Masucci and Silva (2014), of which we find
Masucci and Silva (2014) to bear the closest resemblance to our work. In Masucci and
Silva (2014) however, networks are targeted using the single-injection approach of
cascade models where a set of individuals are flipped (or infected) at the start of the
dynamics. This is starkly different from our approach where instead of fixing the state
of certain nodes, influence is applied externally, and continually to the network.

In this chapter, we first analyse the problem in star networks. Our reasons for this are
three-fold. First, it is an archetypal example of leader-follower structures in social
networks. The bimodal degree distribution in star networks creates a trade-off between
the roles of low-degree follower nodes and high degree leader nodes in the influence spread
process which we can exploit, to compare the traditional discrete method (focused on
the hub (Masuda (2015); Kuhlman et al. (2013))) and the proposed continuous method
of allocating influence. Second, centralised structures such as the star graph are noted
for their efficiency in information propagation and provides a suitable template to test
our model (Leavitt (1951)). Finally, star graphs are largely prevalent in online social
networks (e.g., Twitter (Rathnayake and Suthers (2016))) and organisational networks
(Tichy et al. (1979)), which makes our results relevant in the real world.

3.2 Outline

The chapter is structured as follows:

In Section 3.3 we introduce the competitive influence maximisation model with
continuous allocations for voter dynamics.

We then examine patterns of optimal allocations against a passive competitor in
Section 3.4. We consider several instances of fixed competitor allocations in a star
network, and present closed-form analytical solutions in each case. We also compare
the optimal strategy to other heuristics that are commonly used to maximise influence
social networks. We then show how much vote-share a controller can gain by
optimally allocating resources.

Finally, in Section 3.5, we study the instance where both controllers simultaneously
target the network. We obtain optimal allocations for both controllers first in the star
network using analytical methods, and then in a real-world network using numerical
methods.
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In Section 3.6 we summarise and revisit some of our results. We discuss some
limitations of our current setting and discuss potential future directions to extend the
work.

3.3 The opinion dynamics model

We consider a population of N individuals, connected through a social network. The
structure of the network is given by a graph G(V, E), where each vertex
i ∈ V = {1, 2, . . . , N} represents an individual in the population, connected to their
immediate social neighbourhood {j ∈ V; j ̸= i} through a subset of E1. Edges have
weights associated with them. These weights wij quantify the strength of a connection
between any individual i and their neighbour j, and in turn ascertains the intensity
with which i influences j and vice-versa. We assume the weight of every edge is
pre-determined, and is captured in a non-negative weighted-adjacency matrix
W ∈ RN×N

+ .

We explore a setting where two controllers (A and B) compete to maximise their
influence (or opinions) in the population. At any given point in time, individuals in
the network strictly adhere to one of two opinions (A or B), corresponding to each
controller. Opinions are characterised using binary state variables σA,i(t) ∈ {0, 1},
where σA,i(t) = 1 implies node i is in state A, or in state B (σA,i(t) = 0) at time t. From
here, it is easy to follow that σB,i(t) = 1− σA,i(t).

Controllers maximise opinion shares in the population by influencing the network
externally (shown in Fig. 3.1). For any node i, external influence from controllers A
and B is quantified as pA,i and pB,i respectively, and controller allocations over the
whole network is described using vectors pA and pB. Allocations are non-negative,
pA ∈ RN

+ and pB ∈ RN
+ and linearly constrained by the budget BA and BB available to

each controller, as ∑i pA,i = BA and ∑i pA,i = BB.

Nodes update their opinions using voter dynamics (Holley and Liggett (1975)), at
every time step, a node is selected uniformly at random to update their opinion state
where they copy the state of a neighbouring node j with the probability
wji/(∑j∈Ni

wji + pA,i + pB,i) where Ni is the immediate social neighbourhood of i, or
copy the state of an external controller (say A) with the probability
pA,i/(∑j∈N wji + pA,i + pB,i).

As opinions are stochastic, we approximate the global behaviour in the system by
assuming that xA,i is the probability a node i is in state σA,i = 1, which gives us the

1We ignore self-loops in our model. This is because we assume that individuals have limited knowl-
edge about the propagated opinions and rely purely on social interactions to choose their state of opinion.
However, it is worth noting that self-loops can be easily added in the model without any fundamental
changes to the underlying mathematics, as shown in Masuda (2015).
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FIGURE 3.1: Schematic of the voter model with external controllers. Nodes (circles)
represent individuals in the network. The network here is unweighted and undi-
rected (wij = 1; ∀{i, j} ∈ V; i ̸= j), i.e. all nodes influence each other equally. External
controllers A (square) and B (triangle) unidirectionally influence the network with re-
sources pA,i and pB,i (∀i ∈ V). Note that i experiences external influence from both
controllers, whereas j is targeted only by controller A. Filled green circles correspond
to nodes in state A while filled blue circles represent those in state B. Say node i is ran-
domly picked to update its state (shown by the void circle), and controllers influence
the network with unit resources pA,i = pB,i = 1, (∀i ∈ V). Observe that 1/4 of its
social neighbourhood is in state A, while the rest is in state B. Therefore, node i picks

state A or B with probabilities 1/3 and 2/3 respectively.

rate at which it chooses to remain in opinion state A as,

dxA,i

dt
= (1− xA,i)

∑j wjixA,j + pA,i

∑j wji + pA,i + pB,i
− xA,i

∑j wji(1− xA,j) + pB,i

∑j wji + pA,i + pB,i
. (3.1)

Here the terms ∑j wjixA,j+pA,i

∑j wji+pA,i+pB,i
and ∑j wji(1−xA,j)+pB,i

∑j wji+pA,i+pB,i
quantify the total influence a node i

experiences from their immediate neighbourhood and from external controllers in
favour of opinions A and B respectively.

We estimate the global behaviour of the population by estimating the total share of
opinions2 obtained by each controller at equilibrium. We determine steady-state
conditions by setting dxA,i

dt = 0 in Eq. (3.1), which for an arbitrary network of size N

2Often referred to as vote-shares in the voter-model.
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yields [︂
L + diag(pA + pB)

]︂
xA = pA,

where L is the Laplacian of the network given by a N × N matrix with diagonal
elements representing the total strength of all edges on a node3 (Lii = ∑j wji) and
off-diagonal elements are Lij = −wij. The diag function implies element-wise addition
of allocation vectors pA and pB to the diagonal of the Laplacian matrix L, such that the
i-th diagonal element of [L + diag(pA + pB)] is given by Lii + pA,i + pB,i.

The total vote-share obtained by controller A at equilibrium is then given by

=⇒ XA =
1
N

1⃗
T

xA =
1
N

1⃗
T
[L + diag(pA + pB)]

−1 pA. (3.2)

Here 1⃗
T

is a column-vector with ones in all its positions. The optimisation problem
therefore can be stated as,

p∗A = arg max
pA∈P

X∗A(L, pB), (3.3)

where P is a set of all possible allocations pA such that 0 ≤ pA,i ≤ BA and
N
∑

i=1
pA,i = BA.

Note that, here we have chosen A as our focal controller. Similar expressions can also
be derived for controller B.

3.4 Maximising influence against fixed controller allocations

We begin by examining the optimisation problem in a star graph. Star-like structures
are prevalent in many real-world social networks (Rathnayake and Suthers (2016);
Tichy et al. (1979)), and are an archetypal example of leader-follower networks, where
a leader (hub node) is connected to several followers (peripheral nodes), who do not
have any connections between themselves (as shown in Fig. 3.2). The bimodal degree
distribution facilitates a comparative analysis between the role of the hub and the
periphery in the influence maximisation process, and in doing so, allows us to compare
between discrete allocations (that focus exclusively on the hub), and more flexible
continuous allocations (over several nodes).

In this section, we first explore the problem in a traditional setting where the
competitor is passive (Bharathi et al. (2007); Masuda (2015)), and their allocations to

3Given by the node degree in unweighted graphs.
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FIGURE 3.2: Figure showing a star graph of size N = 10. Node i = 1 is the hub node
with degree 9. All other nodes (2 ≤ i ≤ N) with degree 1 are termed peripheral nodes.

the network are fixed. Later in the section, we extend the model to cope with more
realistic settings, where competitor allocations are not disclosed in advance, and both
controllers simultaneously target the network.

In the rest of the chapter, unless otherwise stated, we obtain our results in star
networks of size N = 1000 and n = (N − 1) peripheral nodes. As we are motivated to
understand how topological properties (i.e. degree centralities) drive influence
maximisation decisions, we restrict our analysis to unweighted and undirected graphs,
where binary weights are used to capture the structure of the network, such that
wij = 1, if i and j have an edge between them, else wij = 0. Additionally, W here is
symmetric as we consider undirected graphs.

We assume controllers A and B have budgets BA and BB assigned to them which they
use to influence the network. For ease of exposition, we use BA = a and BB = b in our
closed-form analytical expressions. Competitor B here is passive, i.e. their allocations
to the network are fixed and known. Inspired by the unique structure of the star
graph, here we examine three natural instances of competitor allocations: (i)
competitor targets the network uniformly, (ii) competitor targets the hub and (iii)
competitor targets the periphery.

3.4.1 Competitor targets the network uniformly

We first consider a setting where the competitor targets the network uniformly. This is
analogous to a generic form of marketing, where companies offer indiscriminate and
uniform discounts on products. A different interpretation of this setting would be to
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think of it as existing resistance in the network to a new idea or opinion, often caused
by factors that uniformly apply to a population, such as socio-economic status
(Devasenapathy et al. (2016); Mobarak and Saldanha (2022); Rogers (2010)).

We now proceed to define the setting mathematically. The allocation vector for the
competitor is given by pB,i = b/(n + 1), ∀i ∈ {1, 2, . . . , n + 1}. We parameterise the
allocation vector for controller A as pA = (α,kA), where α is used to regulate the
fraction of the total budget allocated to the peripheral nodes, and kA controls the
number of targeted peripheral nodes. Thus each peripheral node receives (α/kA)

resources and the hub is targeted with the residual budget (a− α). Note that as all
peripheral nodes are identical in nature in an unweighted, undirected star graph,
there is no need to differentiate between them.

We use Eq. (3.2) to obtain an expression for the total vote-share XA(α, kA). Here
parameterising the allocation vector significantly reduces the degrees of freedom in
the system and makes the analytical set-up easier to handle. We can now obtain
closed-form analytical solutions for optimal allocations (α∗, k∗A) by solving the partial
derivatives ∇pA XA = ( ∂XA

∂α , ∂XA
∂kA

) = 0.

First, we observe4 that ∇kA XA(kA) ≥ 0. This suggests that vote-share monotonically
increases with kA. The optimal k∗A therefore lies on the boundary k∗A = n, implying
that the best response, in the current setting, is to always target all peripheral nodes.
We can now replace kA = n in the earlier vote-share expression and obtain the partial
derivative ∇αXA(α). Solving ∇αXA(α) = 0 gives us two stationary solutions,

α∗ =
{︂ an

n + 1
,

n(a(n + 1) + 2b + 2(n + 1)2)

(n + 1)(n− 1)

}︂
.

By rewriting the second expression as,

α∗ =
n(a(n + 1) + 2b + 2(n + 1)2)

(n + 1)(n− 1)
=

an
n− 1

+
2bn

(n + 1)(n− 1)
+

2n(n + 1)
(n− 1)

,

we can easily show that it violates the budget constraint a. Therefore, our optimal
solution for α in this instance is given by

α∗ =
an

n + 1
. (3.4)

Observe that the optimal strategy mirrors competitor allocations, and distributes
resources uniformly over the network independent of budget availability (a/b). This
also implies that continuous allocation of resources are optimal when the competitor
employs a continuous approach to allocate resources over a network.

4Details of the derivations can be found in Appendix A.1.3
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We now explore if optimal allocations vary when the competitor preferentially targets
the hub or the periphery.

3.4.2 Competitor targets the hub

We consider an alternative allocation strategy for competitor B. In this setting, B
focuses solely on the hub node and allocates the entire budget BB to the hub. This is a
well-established strategy in marketing, where firms commonly rely on “opinion
leaders” (or hub nodes) to maximise the sale of their products in a population
(Haenlein and Libai (2013)). Opinion leaders in social networks resemble hub nodes
with high measures of centrality (e.g. degree, betweenness), such as public figures or
celebrities who are often appointed as brand ambassadors for many companies
(Pringle and Binet (2005)).

Under these settings, the hub node i = 1 receives the entire budget available to the
competitor pB,1 = BB = b, and none of the peripheral nodes receive any influence
pB,i = 0, (2 ≤ i ≤ N). Taking the same approach as before5, we determine the partial
derivatives (∇αXA,∇kA XA) and find that ∇kA XA ≥ 0. Once again we replace kA = n
in XA and proceed to evaluate α∗ from ∇αXA = 0. The optimal allocation is obtained
as α∗ = {(±

√︁
(n + 1)2 + (a + b)− (n + 1))n}. Here the solution with the negative

root violates the non-negativity constraint on pA, and therefore we only accept

α∗ = n(
√︂
(n + 1)2 + (a + b)− (n + 1)), (3.5)

as the solution for optimal allocations, subject to 0 < α∗ ≤ a.

We make the following observations from this result. First, we find that continuous
allocation of resources is preferred over discrete allocations even when the competitor
follows a discrete approach. Second, in contrast to the setting where the competitor
targets the network uniformly, here we observe a correlation between optimal
allocation α∗ and controller budgets a and b.

As a first step, we examine optimal allocations in the limit of large budgets. For large
controller budget (a >> b), allocations to the hub (1− (α∗/a))→ 1, whereas for large
competitor budget b >> a, we find that (1− (α∗/a))→ 0. This implies that the
optimal strategy will regulate between discrete and continuous allocations as the
amount of resources available to the controller varies in comparison to the competitor
budget.

To obtain a richer understanding of how optimal allocations vary with controller
budgets, we plot allocations to the hub as a fraction of the total budget (1− (α∗/a)) in

5Details of the derivations can be found in Appendix A.1.1
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FIGURE 3.3: Figures showing optimal allocations to the hub node in a star network of
size N = 1000. Competitor B discretely targets the hub with BB = b . Figure (a) shows
allocations to the hub node (1− α∗/BA) as a fraction of the budget, when controller
budgets BA and BB are varied. Figure (b) shows allocations to the hub node for specific
instances of controller budget BA ∈ {0.1N, N, 10N} in a semi-log plot as competitor

budget is varied.

Fig. 3.3a, for budgets BA = a and BB = b where 0.1N ≤ BA ≤ 10N and
0.1N ≤ BB ≤ 10N. Observe that allocations to the hub node are positive only when
the budget available to the controller is equal to, or more than the competitor budget,
BA ≥ BB. This implies that the controller competes over the targeted node (here, the
hub node) only when they have sufficient resources. For all other cases where
BA < BB, the controller avoids the hub node completely. We show this more clearly in
Fig. 3.3b, where we plot optimal allocations for specific values of a against varying
competitor budget b. Observe how allocations to the hub node reduces to 0, when the
competitor budget reaches a critical point bc. We obtain an analytical expression for bc

by setting α∗ = a in Eq. (3.5) and solving for b,

bc =
a(n(n + 2) + a)

n2 . (3.6)

Similarly, to determine conditions under which the hub receives the entire budget a,
we set α∗ = 0 in Eq. (3.5), and obtain b = −a, which is not feasible. We can therefore
conclude that irrespective of the budget ratios, the periphery is always targeted in this
setting.

We now proceed to explore the instance where the competitor favourably targets the
periphery.
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3.4.3 Competitor targets the periphery

The influence maximisation literature commonly advocates the importance of hub
nodes, or leaders in the influence maximisation process (Masuda (2015)). However, more
recently, it has been argued that in organisational settings, followers play an equally
important role in the influence spread process, and can often be responsible for
influencing the behaviour of the leaders in the network (Lapierre and Bremner (2010)).

With this in mind, we define the setting where the competitor exclusively targets the
periphery. The allocation to the hub node here is pB,1 = 0, while all other peripheral
nodes receive pB,i = b/n, 2 ≤ i ≤ N. Using the same approach as before6, we obtain
an expression for the total vote-share XA(α, kA) and find that ∇kAXA ≥ 0. Thus we set
kA = n and solve ∇αXA = 0 to obtain the solution for optimal allocations as
α∗ = {(a + n + 1)±

√︁
(n + 1)2 + (a + b)}. Here we discard the solution with the

positive root as it violates the budget constraint. The final solution for optimal
allocation is therefore given by

α∗ = (a + n + 1)−
√︂
(n + 1)2 + (a + b), (3.7)

subject to 0 ≤ α∗ ≤ a.

Once again, we find that optimal allocations are determined by the controller budgets
a and b. Observe that in the limit of large competitor budget b >> a, we get α∗ → 0.
Implying that resources should be diverted away from the periphery, under low
budget conditions. Similarly, for a >> b, we get α∗ → 1. Thus the controller targets
the periphery when more budget is available to them.

Setting α∗ = 0 in Eq. (3.7) yields the critical point when controller A withdraws all its
resources from the periphery as,

bc = a(a + 2n + 1). (3.8)

Setting α∗ = a on the other hand, yields b = −a, implying that the hub is always
targeted when competitor allocations are focused on the periphery.

3.4.4 Comparing optimal allocations to common heuristics

So far we have presented analytical solutions for optimal allocations in a star network.
Next, we examine how effective the optimal strategy is against common heuristics
often employed to target networks. More specifically, we determine how much

6Details of the derivations can be found in Appendix A.1.2
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vote-share a controller can gain from employing the optimal strategy in contrast to
naı̈ve heuristic approaches.

Here we generalise our results by considering a flexible allocation strategy for
competitor B, where they allocate a fraction ϵB of their budget to the peripheral nodes
and the rest (1− ϵB) to the hub. Therefore by varying ϵB, controller B regulates the
fractions of resources allocated to the hub (or the periphery). Observe that, here
ϵB = 0 presents the setting where allocations to the network are discrete, while ϵB > 0
indicates continuous allocations to the network. Given that vote-shares are shown to
increase monotonically with the number of targeted peripheral nodes in a star graph
(against both discrete and continuous competitor allocations), here we assume that the
ϵB fraction of the budget is uniformly distributed over all n peripheral nodes.

Assuming pA(α, kA), we find7 that ∇kA XA ≥ 0. Thus setting k∗A = n yields,

XA =
(((1− ϵB)n− ϵB)b + a(n + 1))α + a(bϵB + n(n + 1))− (n + 1)α2

(((1− 2ϵB)b + a− α2)α + (1− ϵB)b2ϵB + (aϵB + n)b + an)(n + 1)
. (3.9)

Solving the partial derivative ∇αXA = 0 then gives us solutions for optimal
allocations,

α∗ =
1

1− ϵB(n− 1)

(︂
bϵB(ϵB(n + 1)− 1)− n(ϵB(a + b) + n)

±
√︂

n(a + b)((n + 1)2 + (a + b))(n + ϵB(1− ϵB))− n
)︂

.

We ignore the expression with the negative root as it violates the non-negativity
constraint (α∗ < 0), leaving us with one feasible solution for optimal allocations in this
setting,

α∗ = 1
1−ϵB(n−1)

(︂
bϵB(ϵB(n + 1)− 1)− n(ϵB(a + b) + n)

+
√︁

n(a + b)((n + 1)2 + (a + b))(n + ϵB(1− ϵB))− n
)︂

.
(3.10)

Observe that setting ϵB ∈ { n
n+1 , 0, 1} in Eq. (3.10) yield the respective expressions for

optimal allocations obtained in Sections 3.4.1 to 3.4.3.

We now determine the effectiveness of the optimal strategies against heuristics that
are commonly employed to maximise influence in social networks. Inspired by the
structure of the star network we consider four such approaches for controller A: (a)
targeting the hub, (b) targeting the periphery uniformly, (c) targeting all nodes

7We refrain from showing the derivations for this instance as the resulting equations are unwieldy.
However, please note that this case is easily captured in the game-theoretic setting (the derivations for
which are shown in Appendix A.2), where we show that the result ∂XA/∂kA ≥ 0 is true for any arbitrary
competitor strategy.
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uniformly and (d) degree-based targeting. The first three approaches have been
discussed in detail in earlier sections. In degree-based targeting, we assign allocations
to nodes in proportion to their degrees. In the case of star networks with n peripheral
nodes, α = 0.5BA.

(a) (b)

(c) (d)

FIGURE 3.4: Figure showing the gain in vote-shares in a star network of size N =
1000, obtained by employing the optimal allocation strategy, compared to common
heuristics such as (A) targeting the hub, (B) targeting the periphery uniformly, (C)
targeting all nodes uniformly and (D) degree-based targeting. The percentage gain in
vote-share ∆XA(%) = ((X∗A/Xh

A)− 1)× 100, is illustrated for each case as controller
budget BA and fraction of competitor budget to the periphery ϵB are varied.

Fig. 3.4 illustrates the percentage gain in vote-shares ∆XA% = ((X∗A/Xh
A)− 1)× 100,

where X∗A is the vote-share obtained from optimal allocations (determined using
Eq. (3.10)) and Xh

A is the vote-share obtained when using heuristic approaches. We
vary competitor allocations using the parameter ϵB as 0 ≤ ϵB ≤ 1 and the controller
budget between 1 ≤ BA ≤ 10N to determine the effect of controller budget and
competitor allocations on the gain in vote-shares ∆XA%. The effect of competitor
budget on ∆XA% is considered later in the section. For now we set BB = N.

Fig. 3.4a illustrates the gain in vote-shares when a controller switches from (a)
targeting the hub to targeting the network optimally. The gain is maximum
∆XA% ≈ 90.8% when the ϵB = 1, i.e. B targets the periphery and has a large budget
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BA = 10N. The gain in vote-share implies that nodes on average are twice as likely to
adopt state A, which yields a significant advantage to the controller. The minimum
gain in this setting is close to ∆XA% ≈ 7.3%, which is still a considerable increase in
vote-shares.

Figs. 3.4b and 3.4d illustrate the gain in vote-shares when optimal allocations are
compared to other approaches, such as (b) targeting the periphery, or (c) targeting all
nodes uniformly. In both instances we find that the heuristic approaches work
reasonably well compared to the optimal strategy, and yield little to no gain in
vote-shares in most instances. Note that ∆XA = 0 for low budgets 0.1N ≤ BA ≤ N in
Fig. 3.4b, implies that the optimal strategy allocates resources strictly to the periphery,
independent of the competitor strategy. In both Figs. 3.4b and 3.4d, we find that the
optimal strategy is more effective for large budgets for controller A. The maximum
gain is ∆XA% ≈ 2.7% in both instances, obtained under similar settings, BA ≈ 6N and
ϵB = 0 (B targets the hub).

Fig. 3.4c compares the optimal strategy to the degree-dependent heuristic approach.
The optimal strategy measurably outperforms the heuristic and the maximum gain in
vote-shares ∆XA% ≈ 25.9% is obtained when ϵB = 0 and controller budget is
BA = 0.1N.

Overall, we observe that regardless of the competitor strategy, continuous allocations
almost always perform better than the discrete approach. Additionally, contrary to
past work that highlight the significance of hub nodes in the influence maximisation
process (Masuda (2015); Kuhlman et al. (2013)), here we observe that peripheral nodes
are equally important as hub nodes in the spread process, and external controllers can
gain significantly from targeting peripheral nodes.

3.4.5 Effect of competitor budget

We now analyse the impact of competitor budget on the effectiveness of the optimal
strategy. Here we compare optimal allocations to the traditional discrete method
where only the hub is targeted. We focus on two settings: (i) B targets the hub (ϵB = 0)
(ii) B targets the periphery. Both controller budgets are varied as 0.1N ≤ BA ≤ 10N
and 0.1N ≤ BB ≤ 10N. Results are shown in Fig. 3.5, where Fig. 3.5a illustrates the
setting where B targets the hub (ϵB = 0), and B targets the periphery in Fig. 3.5b
(ϵB = 1).

Observe in Fig. 3.5a, that the gain in vote-shares is highly sensitive to the change in
competitor budget BB. In Fig. 3.5a, we find that the maximum gain in vote-shares can
be as high as ∆XA% ≈ 900.8% at BA = 0.1N and BB = 10N, which is 10 times the
vote-share obtained when the controller targets the hub discretely. When competitor B
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targets the periphery, as shown in Fig. 3.5b, the maximum gain is ∆XA% ≈ 494.5% at
BA = BB = 10N.

We also observe that gain in vote-shares is always positively correlated with the
competitor budget BB, whereas correlation to controller budget BA depends on
competitor allocations. Gain in vote-shares is negatively correlated with BA when B
targets the hub, and positively correlated with BA when B targets the periphery. This
implies that it is better to target the hub with increase in BA when B targets the hub.
On the other hand, when B targets the periphery, a controller loses more vote-shares
by targeting the hub as BA increases. Recall that we obtained similar results in
Sections 3.4.2 and 3.4.3, where we observed that it is optimal to avoid nodes targeted
by the competitor unless the controller has sufficient resources.

(a) (b)

FIGURE 3.5: Figure showing the effect of competitor budget on gain in vote-shares in
star network. Here we compare the optimal strategy to a heuristic approach, where
only the hub is targeted. Figure (a) illustrates the percentage gain in vote-shares
∆XA(%), when competitor B targets the hub ϵB = 0. While Figure (b) shows the
percentage gain in vote-shares, when competitor B targets the periphery ϵB = 1. Con-
troller budgets in both cases are varied as 0.1N ≤ BA ≤ 10N and 0.1N ≤ BB ≤ 10N.

In this section, we explore optimal strategies against known competitor allocations in
a star network. We define settings where the competitor targets (i) all nodes uniformly,
(ii) the hub or (iii) the periphery, and we present how budget conditions and
competitor allocations drive optimal allocations in each case. We further highlight the
importance of optimal strategies, even in a simplified network structure such as the
star network, by comparing its performance to common heuristics. We find that
continuous approaches that prioritise peripheral nodes perform better than traditional
discrete approaches that preferentially target the hub node. Finally, we show that in
the some instances, the loss in vote-shares can significantly increase as competitor
budget increases.

We now proceed to examine the problem in game-theoretic settings where no prior
knowledge of competitor allocations is available.
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3.5 Game-theoretic setting

So far we have presented solutions for optimal allocations in the star network against
fixed competitor allocations. However, obtaining prior knowledge of competitor
allocations in the real world is rarely possible. With this is mind, we define the
competitive influence maximisation problem for a more realistic game-theoretic setting,
where both controllers actively and simultaneously target the network. Here the game
has two players, controllers A and B, who maximise their vote-shares (or utilities), by
optimising their strategies over a set of all possible allocations (∑i pA,i = BA and

∑i pB,i = BB). Controllers play the game iteratively, until it converges to an
equilibrium from where neither controller deviates. To better explain the settings
considered in our game, we motivate it with an example.

Consider a scenario where two companies seek to maximise the sale of their product
in a population. Each company has a budget which they distribute over the network
to achieve this. We assume that neither company has any prior knowledge of the
competitor’s allocation on the network, as there is no incentive to disclose this
information in advance. However, companies can gain this knowledge through their
interaction with the network during the marketing process, and can then use this
knowledge to strategise in future campaigns. We implement it in our model by
revealing the allocation vectors (pA and pB) at the end of each round. Each player then
observes the opponent allocation and plays the best response to this strategy in the
following round. We assume multiple iterations of the game are played until an
equilibrium state is achieved. In the real world, this corresponds to a stable outcome,
from where neither company deviates, i.e. companies are no longer motivated to
change their marketing strategies.

To determine the optimal allocations at the equilibrium state, we first parameterise
allocation vectors for both controllers A and B as pA(α, kA) and pB(β, kB), where
allocations are defined by the number of targeted peripheral nodes (kA and kB) and
the total amount of resources allocated to the periphery by each controller (α and β

respectively). We insert the above allocation vectors in Eq. (3.2) to obtain the relevant
vote-share expressions for each controller. Note that, assuming A and B each target kA

and kB peripheral nodes, we get four disjoint classes of peripheral nodes that should
be considered while determining XA and XB. These are: (i) kAkB

n nodes targeted by
both controllers, (ii) kA − kAkB

n nodes targeted exclusively by A, (iii) kB − kAkB
n nodes

targeted exclusively by B and finally, (iv) (n− (kA + kB − kAkB
n )) nodes that are not

targeted by either controller.

We determine the following partial derivatives ∇kAXA and ∇kBXB. We find that the
vote-share for each controller increases monotonically with the number of targeted
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peripheral nodes8 (∇kAXA ≥ 0 and ∇kBXB ≥ 0). We can now eliminate all dominated
strategies from our analysis by replacing kA = n and kB = n in XA and XB, and finally
solve {∇αXA,∇βXB} = 0 simultaneously, to obtain

{︂
α∗, β∗

}︂
=
{︂ an

n + 1
,

bn
n + 1

}︂
. (3.11)

This implies that the optimal strategy for both controllers when targeting the network
simultaneously is to uniformly distribute their influence over the network. However,
this result may be an artefact of the star structure, and thus to determine if the result is
independent of network structure, we explore the problem further in a real-world
network in the following section.

3.5.1 Numerical results on a real-world network

When considering the game-theoretic setting in star networks, we find that the
equilibrium strategy for both controllers is to uniformly target the network,
irrespective of controller budgets. While this is an interesting result, it is important to
determine if this is an artefact of the distinctive structure of a star graph, or if the
results apply equally in real-world networks.

To do this, we first propose a numerical method to deal with the optimisation problem
in large, arbitrary networks. Recall that we determine optimal allocations in the case
of a star graph by solving ∇pA XA = 0. We follow the same approach for arbitrary
networks and obtain an analytical expression for the gradient using Eq. (3.2) as
follows,

∇pA XA =
1
N

1⃗
T
[L + diag(pA + pB)]

−1(I − diag(xA)). (3.12)

Solving ∇pA XA = 0 analytically for larger, arbitrary networks is challenging. Hence
we adopt a local search technique based on gradient ascent, which has been shown to
work well in similar settings (Lynn and Lee (2016)), to determine the optimal
allocations for which vote-share is maximised.

The gradient ascent algorithm (shown in Algorithm 1) iteratively updates the
allocation vector pA by taking incremental steps (determined by step-length η) in the
direction of the gradient of the objective function Eq. (3.2), until the vote-share can no
longer be improved. The algorithm takes as its input the network structure L, the
controller budget BA, the competitor allocation pB, the step-length η and an

8Details of the derivations can be found in Appendix A.2
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approximation factor µ to return a µ−approximated optimal strategy. Note that the
budget constraint is systematically imposed at each step, by projecting the resulting
vector [p(t)A + η∇

p(t)A
XA] onto an N-simplex, by employing the algorithm proposed in

(Chen and Ye (2011)), such that ∑i pA,i = BA. We modify the learning parameter η

using backtracking line search9 to ensure convergence10 (Boyd et al. (2004)).

On taking a better look at Eq. (3.2), we find that the vote-share (XA) for the focal
controller (A) is concave in pA (controller’s allocation) and convex in pB (competitor’s
allocation)11. Note that controllers in this setting are identical and hence
inter-changeable. Thus the concavity result naturally applies to B as well. Moreover,
observe that the constraint sets PA and PB, for allocation vectors pA and pB, are both
compact and concave. Therefore the current game-theoretic setting belongs to the
class of concave-convex games, which characteristically have a unique equilibrium
point that can be reliably found using gradient-based search methods (Rosen (1965)).

9When XA(t + 1) < XA(t), the solution pA(t + 1) at time step (t + 1) is rejected and the allocation
vector is optimised again with an updated step-length η(t + 1) = η(t)

2 .
10The time-complexity to obtain a µ−approximated solution is given by O(N3/µ). This is because each

step in the algorithm involves the inversion of an N × N matrix which has a complexity of O(N3).
11Details of the proof are shown in Appendix A.3.



42 Chapter 3. Continuous allocation of resources

Hence we extend the proposed gradient-ascent algorithm to the game-theoretic
setting (shown in Algorithm 2). Allocation strategies for both controllers are initialised
as random vectors p(0)A and p(0)B . In each step t, allocation vectors are simultaneously
optimised, using the gradient ascent method, for each controller (p∗(t)A and p∗(t)B ),
against the respective competitor’s allocations, p∗(t−1)

B and p∗(t−1)
A .
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FIGURE 3.6: Figures illustrating the equilibrium strategies obtained using numerical
methods in an email network of N = 1133. Figures (A) and (B) illustrate results when
controllers have equal budgets BA = BB = N. Figure (a) shows mean allocations to
nodes from both controllers along with standard deviations over t iterations of the

game. Figure (b) shows the corresponding vote-shares obtained by the controllers.

The modified GA algorithm is then applied to a real-world network. We consider an
email-interaction network that maps communications between employees of a
university (University Rovira i Virgili (Tarragona)) (Guimera et al. (2003); Rossi and
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FIGURE 3.7: Figure showing equilibrium strategies obtained using numerical meth-
ods in an email network of N = 1133. Figures (A) and (B) illustrate results when
controllers have unequal budgets BA = 0.1N and BB = N. Figure (a) shows mean
allocations to nodes from both controllers along with standard deviations over t iter-
ations of the game. Figure (b) shows the corresponding vote-shares obtained by the

controllers.
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Ahmed (2015)). For our experiments, we use the largest connected component of size
N = 1133 nodes, with an average degree of ⟨k⟩ ≈ 9.62. We consider two instances: (i)
where controllers have equal budgets BA = BB = N, and (ii) where controllers have
unequal budgets, BA/BB = 0.1 and BB = N. In each case we initialise the step-length
for the gradient ascent algorithm at η = 10, and keep the approximation factors
µouter = 10−10 and µinner = 10−3. The speed of convergence can be controlled by
tuning the step-length and approximation factors. Our results show that in both cases
the algorithm converges in less than 105 iterations.

Figs. 3.6 and 3.7 illustrate numerical results for equal and unequal controller budgets
respectively. We find that in both cases the algorithm converges to an equilibrium.
Figs. 3.6a and 3.7a show the mean allocations to nodes in the network, and Figs. 3.6b
and 3.7b show the evolution of vote-shares (XA and XB) with time. Observe how the
standard deviation of allocation vectors decreases to 0, as the algorithm reaches
convergence. Here too, we find that the equilibrium strategy is to target the network
with uniform allocations, irrespective of the budget available to the controller, which
generalises our results obtained in the star network to real world settings.

3.6 Summary

In this chapter, we explore the competitive influence maximisation problem with
continuous allocations in the voter model. Contrary to traditional methods, where
nodes are typically targeted in a binary fashion, here we consider continuous
allocation of influence to the network where an array of nodes are targeted with
varying intensities, based on their perceived importance in the influence maximisation
process.

We assume two controllers compete to maximise their vote-shares in the network. Two
instances for competitor allocations are considered. One where competitor allocations
are fixed and known in advance. The other where the competitor is active and both
controllers target the network simultaneously. When competitor allocations are
unknown, we frame the problem in a game-theoretic setting and obtain the optimal
allocation for both controllers by determining the equilibrium point in the game.

For both types of competitor allocations, we obtain analytical closed-form solutions
for optimal allocations in a star network and show how the optimal allocations vary
with controller budgets and competitor allocations. We find that when the competitor
has a large budget, it is better to avoid the nodes targeted by them, and focus instead
on the nodes avoided by the competitor. As controller budget increases, we observe
that more resources are allocated to nodes targeted by the competitor. We also observe
that, irrespective of competitor allocations, allocating influence continuously to the
network consistently outperforms the discrete approach, and we show that a
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controller can nearly double their vote-share by targeting the network continuously, as
opposed to discretely targeting the hub node.

In the game-theoretic setting, we find that the optimal allocation for both controllers in
a star network, irrespective of the controller budgets, is to uniformly target the
network. We further explore the problem in a larger network, and show that the
results for optimal allocations are the same even in a real-world network.

Finally, we recognise that assuming a linear cost function for controllers (i.e. where
allocations are linearly proportional to the strength of influence), may be a naı̈ve
assumption that is not fully representative of real world settings. Therefore, to
generalise our model further, in the following chapter, we consider other nonlinear
cost functions, and systematically examine how optimal allocations vary in each case.
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Chapter 4

Nonlinear cost of allocations

4.1 Introduction

In this thesis, we explore the problem of competitive influence maximisation in social
networks. We consider continuous allocation of resources over a network where
nodes are targeted with varying strengths —based on their role in the influence spread
process. In our work so far, we have assumed that the amount of resources allocated
to a node is equivalent to the strength of influence it experiences (i.e. amount of
resources allocated to an individual is directly proportional to the effect of influence).
As shown in Chapter 3, this yields a convex optimisation problem that can be
effectively solved using search methods such as gradient ascent (Lynn and Lee (2016)).
However, as argued in Section 3.6 of Chapter 3, a linear relationship between the cost
and effect of influence is a naı̈ve assumption, as processes in the real world are rarely
ever linear. With this in mind, in this chapter we extend our work further to study
competitive influence maximisation in the voter model under alternative and more
realistic cost functions1.

First, we consider the instance where a controller pays an additional cost to access
nodes in a network with the intention of influencing them. In the real world, the
additional cost is analogous to removing adoption barriers which are prevalent in
many societies (Mobarak and Saldanha (2022)). For instance, lack of information and
understanding about vaccinations often leads to its poor uptake in certain populations
(Mills et al. (2005); Esposito et al. (2014)), In such instances, removing this barrier by
providing the necessary information to people about vaccinations can improve uptake
rates in populations. For example, it was observed that providing free and safe
contraception to women (that come at an additional cost to health authorities),
particularly in low-income countries, encourage them to visit health centres where
they can be informed about the health benefits of vaccinating their children, often

1These functions define the relationship between cost and effect of influence on individuals.
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leading to a rise in vaccination uptakes in the population (Gates (2019)). Alternatively,
there may be economic barriers (Knapp et al. (2006); Zhu et al. (2014)), in which case,
individuals are unable to adopt a product or lifestyle change due to the lack of
financial means. Thus in these instances, subsidies that come at a cost to the controller
can make people more open to trialing the product. Motivated by this, we extend our
competitive influence maximisation model to include an additional cost of access
parameter, that a controller is subjected to, when targeting an individual in the
network. We explore multiple instances of competitor allocations, and we show that
irrespective of competitor allocations, the cost of access parameter regulates the
optimal configuration of allocations between discrete and continuous approaches.
Thus bridging the gap between our model and the traditional discrete methods of
influence maximisation.

In addition, we consider instances where the effect of influence on individuals vary
nonlinearly with the cost of influence. For instance, studies from marketing research
show that more is not always better, and that the duration and complexity of
advertisements often have a diminishing returns effect on customer engagement and
interest (Fortin and Dholakia (2005); Goldstein et al. (2011)). Alternatively, individuals
may respond to external influence slowly at first and then rapidly, which can occur
due to increased popularity or better understanding of a product or technology, such
as in the case renewable technologies (Zhang et al. (2015)). Thus yielding a convex
relation between the cost and effect of influence (observed as a delayed effect in
influence). We determine optimal allocations against varied competitor allocations in
each case and show that targeting the network optimally is crucial in many settings,
where simple heuristics (such as degree-based targeting or uniform allocation of
resources) can cause the controller to lose a significant share of votes in the population.

4.2 Outline

The rest of the chapter is structured as follows:

In Section 4.3 we modify the model proposed in Chapter 3 to include the cost of access
parameter.

In Section 4.4 we discuss analytical results of optimal allocations for the competitive
influence maximisation problem with fixed cost of access in a star network.

In Section 4.5 we propose heuristics to optimise vote-shares in arbitrary network
structures, and discuss their performance first in a star network for comparison, and
then in a real-world network.
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In Section 4.6 we discuss nonlinear cost functions and their effect on optimal
allocations and vote-shares. We obtain optimal results in both synthetic networks and
a real-world network and compare them using numerical and analytical approaches.

In Section 4.7 we summarise our results and discuss possible future directions to
expand this work.

4.3 Voter dynamics with fixed cost of access

A population of N individuals is considered. The structure of the network is
represented mathematically using a non-negative weighted adjacency matrix W, as
shown in Chapter 3. Here too we consider unweighted, undirected graphs where all
links have the same weight wij = wji = 1. We assume that influence flow in the
network follows traditional voter dynamics (Holley and Liggett (1975)). As before
(shown in Chapter 3), we have two controllers A and B, competing to maximise their
influence in the network. In this chapter, we optimise allocations for the focal
controller A, only against fixed competitor allocations (from controller B), which can
also be perceived as unfavourable bias in the network, against opinion A.

Allocations on the network from both controllers are captured in the vectors pA and
pB, constrained by their respective budgets BA and BB. In addition, here we assume
that the focal controller pays a fixed cost c to access each node in the network, such
that the total cost of targeting a node is given by (pA + c). It is worth noting that the
cost c is only paid when controller A targets the node with positive allocation i.e.
pA > 0. For pA = 0, we assume c = 0. Assuming cost of access c is uniform for all
nodes in the network, we modify the budget constraint as follows,

1⃗
T
(pA + c · 1pA>0) = BA. (4.1)

Here 1pA>0 is an indicator vector, where the ith position is 1 if node i has positive
allocations (pA,i > 0), else the value is 0 for pA,i = 0.

Since competitor allocations are fixed, we do not consider a cost of access for B, as any
additional cost paid by the competitor to access nodes in the network can be directly
accounted for by adjusting the strength of their influence BB on the network.

Observe that, the vote-share function is the same as before. Given by,

=⇒ XA =
1
N

1⃗
T

xA =
1
N

1⃗
T
[L + diag(pA + pB)]

−1 pA. (4.2)
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Finally, the optimisation problem is given by,

p∗A = arg max
pA∈P

X∗A(L, pB), (4.3)

where P is a set of all possible allocations subject to Eq. (4.1).

We begin with an exploratory analysis of the problem in a simplified network
structure, such as the star network. From here we draw insights about optimal
allocation patterns in the given setting, which are then employed to propose heuristics
that examine larger, arbitrary networks —in an effort to generalise our results.

4.4 Analysis of the star topology

Consider an unweighted and undirected star network of size N nodes. We examine a
setting where competitor B uniformly allocates resources to the network, i.e. every
individual in the network is equally opposed to adopting opinion A. In the real world,
this represents uniform resistance to the adoption of new ideas and innovations
(Wiedmann et al. (2011); Heidenreich and Kraemer (2016)), such as, aversion to
vaccinations (Streefland (2001); Hobson-West (2003)), and technology (Huang et al.
(2011)). Some of this is caused through economic, information and other adoption
barriers (Christodoulakis et al. (2017); Vanclay (1992); Butler and Sellbom (2002);
Redpath (2012)). Assuming that controller A has to pay an initial cost to prime each
node for targeting (possibly by removing any existing barriers to adoption), we
determine optimal configurations for which A maximises their opinion share in the
network against B.

Competitor allocations to the network are fixed and constrained by the budget
available to them BB = b. Here we assume that B targets every node in the network
with strength 1, i.e. b = N, and hence the competitor allocation vector in this instance
is given by pB,i = 1 (∀i ∈ {1, . . . , N}). The allocation vector for controller A is defined
using the parameters α and kA, where α is the amount of resources allocated to the
periphery and kA is the number of targeted peripheral nodes. We solve the partial
derivatives ∆αXA = 0 and ∆kA XA = 0 to obtain the optimal allocations p∗A(α

∗, k∗A) as,
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α∗ =
k∗A(b + n + 1)(a− (k∗A + 1)c)

b(k∗A + 1) + (n + 1)2 ,

where k∗A is given by,

k∗A =
1

c(b2 − c(n + 1)(b + n + 1))

(︂
(n + 1)(b + n + 1)c2

− ((ab + 2a + 2b)n + (b + 1)(a + b)))c

+ ((n + 1)2c + ab)
√︂

c(n + 1)(b + n + 1)
)︂

,

(4.4)

subject to 0 ≤ α∗ ≤ a− (k∗A + 1)c and 0 ≤ k∗A ≤ min(n, ( a
c − 1)).

Here we make two observations about optimal allocations in star networks. First, we
find that when k∗A = n, optimal allocation to the periphery is

α∗ =
(a− (n + 1)c)n

(n + 1)
,

implying that the optimal configuration for allocations in this case, is to uniformly
distribute available resources to the network. Observe that, setting c = 0 yields
α∗ = an/(n + 1), which is also the result we obtained in Section 3.4.1 of Chapter 3.

Second, we find that number of targeted peripheral nodes k∗A is a quadratic in cost of
access c. The detailed structure of optimal allocations however, is not immediately
obvious from Eq. (4.4), and further analytical exploration of Eq. (4.4) (e.g. under
boundary conditions) yields lengthy expressions that offer little insight. Thus to better
understand the pattern of optimal allocations, we plot our results in Fig. 4.1 for
varying costs of access c, where the optimal number of targeted peripheral nodes k∗A is
shown in Fig. 4.1a, while Fig. 4.1b shows the allocations to the hub node (i = 1) as a
fraction of total allocations, also given by, pA,1/ ∑ pA = 1− (α∗/a− (k∗A + 1)c).

Our analytical results are complemented with numerical results obtained in a star
network of size N = 1000. Controllers have equal budgets BA = BB = N2 Optimal
allocations p∗A(α

∗, k∗A) are obtained numerically by using a brute-force method where
α is discretised between 0 ≤ α ≤ (a− (kA + 1)c) using ∆α = 0.001, and ∆kA = 1 for
0 ≤ kA ≤ min(n, ( a

c − 1)).

Overall, Fig. 4.1 shows that our analytical results are in good agreement with the
numerical results. In Fig. 4.1a we see that k∗A gradually decreases as the cost of access c
increases. To an extent this makes intuitive sense as fewer nodes are expected to be
targeted when the cost of accessing nodes is expensive. However, when we combine
this result with Fig. 4.1b, an interesting observation emerges. We find that the cost of
access variable c behaves as a parameter that tunes the optimal configuration of

2We assess the impact of controller budgets on optimal allocations later in the section.
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FIGURE 4.1: Figure showing how optimal allocations vary with cost of access c, in a
star network of size N = 1000. Controller budgets are equal BA = BB = N. Analyt-
ical solutions are obtained using Eq. (4.4) and numerical results are obtained using a
brute-force method, where α is discretised as ∆α = 0.001 and kA as ∆kA = 1. Figure (a)
shows how the optimal number of targeted peripheral nodes k∗A changes with cost of
access c on a heatmap showing vote-shares (XA). The blank region corresponds to val-
ues that do not meet the budget constraint, 0 ≤ k∗A ≤ min(n, ( a

c − 1)). Figure (b) shows
how allocations to the hub node vary (as a fraction of total allocations pA,1/ ∑i pA,i),
with change in cost c. The inset shows a closer view of allocation behaviour at low val-
ues of c. The inset shows a closer examination of allocation behaviour at low values of

c.

allocations to oscillate between continuous and discrete distributions on the network.
More specifically, we observe that for low values of c, influence is continuously
distributed over the network, i.e. k∗A = n. However, as c increases, a more discrete
approach is preferred, where resources are diverted away from the periphery to the
hub node.

Additionally, we find that optimal allocations can be divided into three regimes: (i)
k∗A = n, (ii) 0 < k∗A < n and (iii) k∗A = 0. Observe that these regimes surface as the cost
of access varies from (i) c ≤ cn to, (ii) cn < c < c0, and finally (iii) c ≥ c0. We identify cn

and c0 as critical points where k∗A either departs from, or approaches the boundary
solutions, i.e. kA = {n, 0}. The value of the critical points cn and c0 are determined by
setting k∗A = n and k∗A = 0 in Eq. (4.4) respectively and then solving for c. This yields
cn = 0.27 and c0 = 1.99, implying that as cost of access exceeds nearly 30% of the per
node budget, optimal strategies redirect more resources to the hub node, and less to
the periphery, until c is nearly twice the per-node budget —at which point all
resources are focused on the hub node (i.e. k∗A = 0).

We now proceed to determine how controller budgets affect optimal allocations
against uniform competitor allocations. We do this by determining how critical costs
cn and c0 vary with controller budgets (shown in Fig. 4.2).

We find that controller budgets significantly impact optimal allocations. We find that
both cn and c0, shown in Fig. 4.2a and Fig. 4.2b respectively, are positively correlated



4.4. Analysis of the star topology 51

0.1N N 10N

B
B

N

10N

B
A

10
-3

10
-2

10
-1

10
0

(a)

0.1N N 10N

B
B

N

10N

B
A

10
-1

10
0

10
1

10
2

(b)

FIGURE 4.2: Figure showing how optimal allocations against uniform competitor al-
locations respond to change in controller budgets in a star network of size N = 1000.
We plot the values of cn and c0 as budgets are varied between 0.1N ≤ BA ≤ 10N and
0.1N ≤ BB ≤ 10N. Figure (a) plot cn against both controller budgets, while Figure (b)

illustrates the sensitivity of c0 to controller budgets.

with the controller budget BA, implying that, as controller budget increases, it takes
longer to depart from the continuous regime and also takes longer to the arrive at the
discrete regime. On the other hand, we find that cn is negatively correlated with BB

and c0 is positively correlated with competitor budget BB. This means that as
competitor influence on the network increases, optimal allocations depart sooner from
the continuous regime but takes longer to reach the discrete regime.

So far, we observe a shift in optimal allocation of resources from peripheral nodes to
the hub node as the cost of access increases. We now examine if this strategy where
resources are directed to the hub node for high costs of access is the same irrespective
of change in competitor allocations. Specifically, we consider the instance where the
competitor solely targets the hub node, i.e. pB,1 = BB = b and pB,i = 0
(∀i ∈ {2, . . . , N}). This also presents an interesting real world setting, where we
assume only the leader of a social group is biased against opinion A. Considering
there is a cost to access each member of the population and the hub node is inherently
unfavourably biased, here we are determined to find out if it is still reasonable to
focus on the hub node as cost of access increases.

The vote-share expression for controller A in this case is given by,

XA =
kA(n + 1)(a− (kA + 1)c)− (n + 1)α2 + ((b− (n + 1)c)kA + (n + 1)(a− c))α

(n + 1)((a + b− (kA + 1)c)(kA + 1)− 1)α
.

(4.5)



52 Chapter 4. Nonlinear cost of allocations

We solve ∇αXA = 0 to obtain,

α =

(︂
±
√︁
(n + 1)2 + (n + 1− kA)(a + b− c(kA + 1))− (n + 1)

)︂
kA

n + 1− kA
.

Naturally, we discard the negative root, as it violates the non-negativity constraint for
allocations, which leaves us,

α∗ =

(︂√︁
(n + 1)2 + (n + 1− kA)(a + b− c(kA + 1))− (n + 1)

)︂
kA

n + 1− kA
. (4.6)

Observe that, Eq. (4.6) will always yield non-negative, real solutions given that
a > c(kA + 1), i.e. the total budget must always exceed the cost of accessing targeted
nodes.

Now, replacing Eq. (4.6) in Eq. (4.5), and solving ∇kA XA = 0 we obtain,

k∗A = {n + 1,
a + b + n + 1

c− 1
}. (4.7)

Note that neither of these solutions meet our constraint 0 ≤ kA ≤ n. The first solution
is discarded as k∗A cannot exceed the total number of peripheral nodes in the network
n. While considering the second solution, we look at two possible cases, c < 1 and
c > 1. The expression is undefined at c = 1. For c < 1, we find that k∗A < 0 and thus, is
not a feasible solution. When 1 < c ≤ a, the resulting solution breaches the constraint,
k∗A > n. Therefore we argue that the solution for k∗A always lies on the boundary,
kA ∈ {0, n}, implying that optimal allocations follow an all-or-none strategy.

To get a better understanding of how optimal allocations behave with change in c, we
employ numerical methods on a star network of size N = 1000. Controllers have
equal budgets, BA = BB = N and we use the brute-force method (where ∆α = 0.001
and ∆kA = 1) to obtain the optimal allocations. Optimal allocations are illustrated in
Fig. 4.3.

Fig. 4.3a illustrates how the optimal number of targeted peripheral nodes k∗A, changes
with the cost of access c. While Fig. 4.3b illustrates the corresponding allocations to the
hub. Overall, we find that allocation patterns still change from the continuous to the
discrete approach as c increases. However, unlike the gradual diversion of allocations
from the periphery to the hub node, observed in the instance where competitor
allocations are uniform, here we observe a sharp change in strategy from continuous
to discrete allocations. More specifically, for lower values of c, it is optimal to target
the network with continuous allocations, k∗A = n. However when c ≥ cc, where cc is
the critical cost, the optimal solution abruptly switches to the discrete regime k∗A = 0.



4.4. Analysis of the star topology 53

(a)

0 0.5 1 1.5 2 2.5 3

c

0

0.2

0.4

0.6

0.8

1

1
 -

 
 /
 (

a
 -

 (
k

A*
+

1
) 

c
)

Numerical

Analytical

0 0.25 0.5

c

0.0005

0.001

0.0015

(b)

(c)

FIGURE 4.3: Figure showing how optimal allocations vary with cost of access c. All
results are obtained for a star network of size N = 1000. The controller budgets here
are equal BA = BB = N and competitor B targets the hub node discretely. Analytical
solutions for k∗A are obtained by evaluating Eq. (4.5) at the boundary kA =∈ {0, n}
and α∗ is determined using Eq. (4.6). Numerical results are obtained using a brute-
force method, where α is discretised as ∆α = 0.001 and kA as ∆kA = 1. Figure (a)
shows how the optimal number of targeted peripheral nodes k∗A changes with cost of
access c, superimposed on a heatmap illustrating vote-shares (XA). The blank region
corresponds to values that do not meet the constraint budget, 0 ≤ k∗A ≤ min(n, ( a

c −
1)). Figure (b) shows how allocations to the hub node vary (as a fraction of total
allocations pA,1/ ∑i pA,i), with change in cost c. The inset shows a closer examination
of allocation behaviour at low values of c. Figure (c) shows how the critical cost cc

varies with controller budgets BA and BB.

The critical point cc is obtained as,

cc =
a + b + 2(n + 1)− 2

√︁
(n + 1)(a + b + n + 1)

n + 1
. (4.8)

In the current setting, we have N = n + 1 = 1000 and BA = BB = N. Using Eq. (4.8)
we obtain the critical cost as cc ≈ 0.54, also shown in Fig. 4.3. This implies that when
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cost of access exceeds half of the per node budget, it is no longer optimal to target
peripheral nodes and thus the optimal allocation switches to discrete targeting.

We are also interested to see how cc changes with controller budgets. Results are
shown in Section 4.4 for N = 1000 and controller budgets 0.1N ≤ BA ≤ 10N and
0.1N ≤ BB ≤ 10N. We find that cc is positively correlated with both controller budgets
BA and BB, i.e. the optimal allocation strategy takes longer to switch from the
continuous to the discrete regime as budgets for both controllers increase.

4.5 Heuristic approaches for arbitrary network structures

In the previous section we presented optimal solutions for the competitive influence
maximisation problem with cost of access c, using both analytical and numerical
methods, in a simplified network structure such as a star graph. Our results reveal a
shift in allocation strategy - from continuous to discrete allocations focused on the
high-degree hub (irrespective of competitor allocations), as cost of access c is
increased. We now ask ourselves how this result extends to other arbitrary, more
realistic network structures. Observe that, solving ∆pA XA = 0 analytically for large
networks with heterogeneous degree distributions can be very challenging. We
therefore propose and evaluate heuristic approaches to quantify optimal allocations.

For this purpose, the following heuristic approaches are considered:

1. Forward Greedy: We use the traditional greedy method as a benchmark for our
proposed heuristics, and modify it slightly for our purpose. More specifically,
we exploit the gradient of the vote-share function wherever possible to mitigate
the computational challenges of combinatorics used in the traditional greedy
method.

The algorithm begins with an empty set of targeted nodes (i.e. the allocation
vector is a zero vector pA,i = 0, 1 ≤ i ≤ N), and then iteratively allocates positive
influence to the node that yields the maximum marginal gain in vote-shares,
without breaching the total budget BA —until the vote-share can no longer be
improved. It is important to note that, we strictly allocate positive influence to
new nodes, and at no point do we re-evaluate the existing set of targeted nodes
(or remove allocations from a targeted node).

At any given time-step t, the node that improves the vote-share maximally is
determined by iterating through all nodes with zero allocations (∀i where
pA,i = 0). While considering a candidate node i at time step t, a new allocation
vector is initialised where resources are uniformly allocated to node i and all
nodes targeted at time t. The gradient ascent algorithm described in Chapter 3,
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is then used to obtain the optimal allocation configuration p∗A(t) and the
corresponding vote-share X∗A. The allocation vector that improves the
vote-shares maximally is then selected as p∗A(t + 1). This process continues until
the vote-share no longer improves.

2. Backward Greedy: For the Backward-Greedy approach, we begin with
kmax = min(N, (BA/c)− 1) number of nodes targeted at time t = 0. Selecting
kmax nodes to target, where kA < N, is a combinatorial task that can be expensive
even for small networks. We get around this problem by exploiting the gradient
of the vote-share function. We consider the linear unbudgeted case (where
pA = 1⃗) and determine the gradient at this point 3, and subsequently select the
top kmax nodes with the highest gradients to initialise our target set of nodes.
The algorithm then proceeds by iterating through each node in the target set,
and greedily removing one node at every time step, i.e. such that vote-share is
increased maximally —until the vote-share can no longer be improved. When
iterating through each node i in the target set allocations pA,i to the candidate
node i is set to zero. The allocation vector is then normalised to meet the budget
constraint, and ultimately optimised using the gradient ascent method.

3. Lowest vote-share: We begin with positive allocations to kmax nodes in the
network. As in Backward-Greedy, we use the gradient to determine which kmax

nodes to target. Following this, in every iterated step, we remove the node i (set
pA,i = 0), with the lowest XA,i, until the vote-share can no longer be improved.
Once allocations to the node is removed at each time step, we normalise the
allocation vector and use gradient ascent to optimise the allocation vector.

4. Lowest allocation: Following the same approach as in Backward-Greedy and
the lowest vote-share methods, we begin with positive allocations to kmax nodes
and then iteratively remove the node with the lowest allocation min(pA) until
the vote-share can no longer be improved. After removing a node i (setting
pA,i = 0), we normalise the resulting allocation vector and optimise it using
gradient ascent.

5. Degree-based allocations: We pick the top kmax nodes with the highest degrees
in the network and allocate influence in proportion to their degrees, pA,i ∝ degi.
The resulting allocation vector is then normalised to meet the budget constraint.

6. Random: We randomly select kmax nodes from the network and uniformly
allocate the available budget a− (kmax · c) to the selected nodes.

3We note that using a uniform allocation vector (pA = 1⃗) to determine the optimal set of kmax nodes
works better than any other instance of pA.
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We now examine the performance of our heuristics systematically, first in a star
network, then in other synthetic networks such as the random graph and the small
world network, and finally in a real-world network.

4.5.1 Analysis of a star network

We first analyse the heuristics in a star network of size N = 100 and compare their
performance to the analytical solutions obtained in Section 4.4. The size of the
network considered here is comparably small as the complexity of greedy methods
increase rapidly with network size 4. For each heuristic method, we present the mean
results over 10 simulations in Fig. 4.4.

Fig. 4.4a shows the performance of each heuristic, in terms of final vote-shares
obtained. We find that for the most part, sophisticated heuristics like the greedy
methods, lowest allocation and lowest vote-share heuristics, outperform naı̈ve
approaches like the degree-based heuristic and the random approach. The
Forward-Greedy algorithm consistently yields optimal vote-shares, whereas the
Backward-Greedy algorithm performs optimally only in the region c > 1. The lowest
allocation method performs comparably to the Forward-Greedy method, however the
lowest vote-share heuristic yields considerably less vote-shares in comparison. We
further note in Fig. 4.4c that the final vote-shares rely more on the number of
peripheral nodes kA targeted, and less on the resource distribution over the targeted
nodes.

In terms of time-complexity (as shown in Fig. 4.4b), we find that greedy methods are
always more expensive than the lowest vote-share and lowest allocation methods.
This is expected as greedy methods are required to iterate through all possible
candidate nodes when updating the target set of nodes and thus they have a
complexity of O(N5

µ ). The lowest vote-share and lowest allocation methods on the

other hand have a complexity of O(N4

µ ) given that the time complexity for the gradient

ascent method to converge to a µ approximation of the optimal solution is O(N3

µ ) and
the complexity of iteratively removing nodes with the lowest allocation or vote-shares
is O(N).

For completion, we also examine the instance where the competitor allocates all its
budget to the hub node. We explore this setting specifically to determine how change
in competitor allocations affects the performance of our heuristics. Results are
summarised in Fig. 4.5.

4The complexity of the greedy heuristics (forward and backward) in Section 4.5 is given by O( N5

µ ).

The complexity for greedily removing or adding nodes to the solution set is O(N2). Additionally, the
complexity of the gradient ascent method can be derived as O( N3

µ ) (as shown in Section 3.5.1), where µ is
the approximation-factor used to terminate the algorithm



4.5. Heuristic approaches for arbitrary network structures 57

0 0.5 1 1.5 2 2.5 3

c

0

0.1

0.2

0.3

0.4

0.5

0.6

X
A

(a)

0 0.5 1 1.5 2 2.5 3

c

10
-2

10
0

10
2

10
4

t

(b)

0 0.5 1 1.5 2 2.5 3

c

0

20

40

60

80

100

k
A

(c)

0 0.5 1 1.5 2 2.5 3

c

0

0.2

0.4

0.6

0.8

1

p
A

,1
 /
 

 p
A

Analytical

Backward-Greedy

Forward-Greedy

Lowest vote-share

Lowest allocation

Deg-based

Random

(d)

FIGURE 4.4: Figure showing the performance of various heuristics in the star network
with N = 100 nodes. Competitor allocations are uniform across all nodes. Figure
(a) illustrates the final vote-share (XA) obtained by each heuristic as c is varied. The
time complexity of the heuristics (measured in seconds) is shown in Figure (b). Figure
(c) and (d) illustrate the configuration of allocations obtained by the heuristics. The
number of targeted peripheral nodes kA is shown in (C), while the allocations to the
hub node as a fraction of total allocations (pA,1/ ∑i pA,i) is shown in (d). Results are
averaged over 100 realisations of the random heuristic, and errorbars show the 95%
confidence interval. All other heuristic approaches are deterministic and hence we

only plot the mean values.

Fig. 4.5a illustrates the performance of the heuristics. We observe similar trends as
before, i.e. the more advanced methods significantly outperform crude heuristics
(degree-based and random), especially as cost of access increases. However, contrary
to what we observed in Fig. 4.4a, here we find that the lowest-allocation method
performs significantly worse than before, as do the other heuristics (Backward-Greedy
and lowest vote-share) that use the gradient method to initialise their allocation
vectors (with positive allocations to kmax nodes). This happens because peripheral
nodes are prioritised when the competitor focuses on the hub node, and thus
allocations to the hub node are set to 0 when initialising a vector with allocations to
kmax < n nodes. However, analytical results show that, irrespective of controller
allocations, resources should be diverted to the hub node as cost of access is increased.
Therefore methods that do not allocate any resources to the hub node when
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FIGURE 4.5: Figure showing the performance of various heuristics in the star network
with N = 100 nodes. The competitor targets the hub node discretely. Figure (a) il-
lustrates the final vote-share (XA) obtained by each heuristic as c is varied. The time
complexity of the heuristics (measured in seconds) is shown in Figure (b). Figure (c)
and (d) illustrate the configuration of allocations obtained by the heuristics. The num-
ber of targeted peripheral nodes kA is shown in (C), while the allocations to the hub
node as a fraction of total allocations (pA,1/ ∑i pA,i) is shown in (d). For the random
heuristic, results are averaged over 100 realisations and errorbars indicate the 95% con-
fidence interval. All other heuristic approaches are deterministic and hence we only

plot the mean results.

initialising the allocation vector get stuck at a local maxima.

4.5.2 Performance of the heuristics in synthetic networks

To generalise our results further, we examine how the heuristics perform in other
arbitrary network structures. For this purpose, we explore random (ER) graphs and
small-world (SW) graphs that closely resemble several real world networks (Newman
(2000)).

Here networks are of size N = 10 with average degree ⟨k⟩ = 4. We consider small
networks since analytical solutions are difficult to obtain in network structures with
high degree heterogeneity, and thus we rely on combinatorial enumeration to
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determine optimal allocations, which is computationally expensive (Aigner and Axler
(2007)). More specifically, this is a brute-force technique, where optimal allocations are
determined by first enumerating all possible combinations of nodes that can be
targeted without breaching the budget, which is followed by using the gradient ascent
method to determine the optimal distribution of resources over every combination of
nodes. The allocation vector yielding the highest vote-shares is then the optimal
solution.

We present our findings in Fig. 4.6. Here competitor B targets the network uniformly.
Results are averaged over 100 realisations, where each heuristic is run 10 times over 10
instances of random and small-world graphs. Heuristic methods used are the same as
before (as described in Section 4.5).
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FIGURE 4.6: Figure showing the performance of the proposed heuristics in random
(ER) graphs and small-world (SW) graphs. Figure (a) shows the final vote-shares XA
obtained by each heuristic method, and Figure (b) illustrates the optimal number of
nodes targeted kA in the ER networks. Similarly, Figure (c) illustrates the performance
of the heuristics in the SW networks and Figure (d) shows the corresponding optimal
number of targeted nodes kA. The approximation-factor used to terminate the gradient

ascent method is µ = 10−7. Here errorbars show the 95% confidence interval.

Firstly, in Fig. 4.6 we find that the performance of the heuristics are independent of
network structures, i.e. results follow similar trends on both random (ER) graphs as
well as small-world (SW) networks. Observe that, the lowest-allocation heuristic
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consistently yields the highest vote-shares, closely followed by the Forward-Greedy
approach. The Backward-Greedy algorithm and the lowest vote-share method are in
comparison much less effective in optimising vote-shares on each network. We also
find in Figs. 4.6a and 4.6c that vote-shares for the random and degree-based methods
appear noisy in the region c > 1. The decrease in vote-shares coincide with the
plateaus in Figs. 4.6b and 4.6d, where the number of targeted nodes remains fixed,
despite the increase in cost c, and thus vote-share XA sharply decreases in such an
instance.

4.5.3 Performance of heuristics in a real world network

Next, to examine how these heuristics perform in the real world, we explore the
heuristic methods in a real-world network depicting collaboration and co-authorship
among researchers in the field of network science (Rossi and Ahmed (2015); Guimera
et al. (2003)). The nodes represent network scientists and an edge between any two
nodes indicates co-authorship. The network is of size N = 379 with an average degree
of ⟨k⟩ = 4.

Given that the network is quite large, it is infeasible to use methods such as
enumeration to obtain optimal solutions. Thus instead of focusing on how well
heuristics perform in these networks, here we determine how much vote-share a
controller can gain from employing the proposed heuristics in the real world, as
opposed to following naı̈ve approaches such as random or degree-based methods. As
greedy methods are expensive to run on large networks, here we only consider the
Forward-Greedy algorithm. Additionally, for comparison we introduce a new
heuristic lowest-allocation (∆ = 10), which is a modified version of the
lowest-allocation heuristic, where the algorithm removes 10 nodes with lowest
allocations, instead of removing just one node at every time step. This heuristic has a
lower time-complexity, and helps us determine how much vote-share a controller has
to sacrifice for faster results.

From Fig. 4.7, we find that the lowest-allocation method consistently yields the
highest vote-shares, while significantly outperforming the random and degree-based
heuristics. In addition, from Fig. 4.7b, we find that modifying the lowest allocation
heuristic reduces the time complexity considerably while affecting the performance of
the algorithm only marginally, and therefore can be used alternatively for larger
networks.

To gain more insight into our results, we examine the patterns of allocations in more
detail. Recall that in star networks, resources were diverted to the high-degree hub
node with increase in the cost of access. We now examine if this result is still true for
larger, arbitrary networks.
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FIGURE 4.7: Figure showing the performance of the proposed heuristics in a real-
world network of research collaborations within the network science community
(N = 379 and ⟨k⟩ = 4). Results are averaged over 10 simulations for each heuris-
tic. Figure (a) shows the final vote-shares XA obtained, while Figure (b) illustrates the
average time taken (in seconds) by the heuristic approaches. Errorbars indicate the
95% confidence interval. An approximation factor of µ = 10−7 is used to terminate

the gradient ascent algorithm.
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FIGURE 4.8: Figure showing the optimal allocation patterns of heuristics for multiple
costs of access in a real-world network. Figure (a) shows the average degree of targeted
nodes ⟨kA⟩ as per the final optimal allocation vector given by each heuristic when cost
of access c = 0. Figure (b) shows the average degree of targeted nodes ⟨kA⟩ of each

heuristic when cost of access c = 5. Errorbars represent standard errors.

To do this we examine the average degree of targeted nodes in the following two
settings5 (illustrated in Fig. 4.8): (i) no cost of access c = 0, and (ii) high cost of access
c = 5, and we find that heuristics that preferentially allocate resources to high degree
nodes for high cost of access yield higher vote-shares than heuristics that focus on low
degree nodes. Thus generalising our results obtained in star networks to real-world
settings.

5More settings examined in Appendix B.2.
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FIGURE 4.9: Figure showing the various cost functions we consider in our model.
Linear cost here illustrates the setting examined in Chapter 3 where the strength of in-
fluence experienced by an individual is directly proportional to the amount of budget
allocated to them. The piecewise-linear function illustrates the cost of access setting
where individuals experience influence only after a certain threshold c is breached.
The nonlinear cost functions correspond to the diminishing returns setting and the

delayed influence setting (described in the text).

4.6 Nonlinear cost functions

So far in this chapter, we examine the competitive influence maximisation problem
under the assumption of a fixed cost of access paid by the controller to influence any
node in the network. We further extend our work in this direction by generalising the
cost function to include other nonlinear relations between the cost and effect of
influence on individuals. More specifically, we vary the cost of allocation for the
controller nonlinearly (see Fig. 4.9) such that the allocation vector pA is now
constrained as ∑i pγ

A,i = BA.

Following this, the optimisation problem can now be written as,

p∗A = arg max
pA∈P

X∗A(L, pB), (4.9)

where P is a set of all possible allocations subject to the constraint ∑i pγ
A,i = BA.

Depending on the value of γ, the above relation yields two settings: (i) where γ > 1,
we observe a diminishing returns in the strength of influence experienced by nodes
with increase in allocations, and (ii) where 0 < γ < 1, we find that individuals take
longer (or more resources) to respond to external influence and hence this results in a
delayed influence effect.
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4.6.1 Case γ > 1: Diminishing returns

We first consider the instance where γ > 1. The strength of influence experienced by a
node in this case, is given by the γ-th root of allocated resources pγ

A,i. Mathematically,
the allocation vector is constrained by the budget as ∑i pγ

A,i = BA, i.e. the norm of the
allocation vector is constrained by B1/γ

A , which implies that the constraint set here is
convex. Given that the vote-share XA is a concave function of allocations pA (see
Appendix A.3), the problem we have at hand is a convex optimisation problem.

A common approach taken to solve this type of constrained optimisation problem
uses the Lagrange method (Boyd et al. (2004)), where the objective function is
maximised by iteratively stepping in the optimal direction, within the constraint
space. To employ this method in our work we follow the approach discussed in
Tanaka and Aoyagi (2008) which yields the optimal direction as 6,

pA,i(t + 1)← pA,i(t) + η
∇pA(t)XA,i(t)

pγ−2
A,i (t)

, (4.10)

where η is the step-length.

We therefore first initialise a random, feasible allocation vector and then use Eq. (4.10)
to iteratively update the allocations until the total vote-share can no longer be
improved, or alternatively we obtain a µ−approximation of the optimal allocation
configuration. Note that the allocation vector is also normalised at every time step to
satisfy the budget constraint ∑i pγ

A,i = BA. The step-length is adjusted using
backtracking line search to ensure convergence (Boyd et al. (2004)), and given that the
problem at hand is a convex optimisation problem, the algorithm is guaranteed to
converge at the global maximum.

4.6.2 Case 0 < γ < 1: Delayed influence

We now consider the setting where 0 < γ < 1. The constraint set in this case is clearly
nonconvex which makes the optimisation problem more challenging than before. This
also means that the Lagrange method can no longer be applied to solve the
optimisation problem.

In general, nonconvex optimisation problems are difficult to solve. However in some
cases, the structure of the objective function and the constraint function can be
exploited to design polynomial-time algorithms that obtain near-optimal solutions
(Jain et al. (2017)). Given that our objective function is convex and the constraint space

6More details of the method can be found in the Appendix B.3.
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is an ℓp−norm ball where 0 < p < 1, we employ the projected gradient ascent
algorithm discussed in Chapter 3, and modify the projection step to meet the
nonlinear budget constraint. For the projection method, we use the IRBP algorithm
which is an instance of a majorisation-minimisation algorithm (Lange (2016)), where
the algorithm iteratively alternates between a majorisation step and a minimisation
step until it converges (Yang et al. (2021)). In our case, the majorisation step first
relaxes and linearises the ℓp ball to obtain a weighted ℓ1 ball, followed by the
minimisation step which obtains the projection of the point on the ℓ1 ball. As this is a
nonconvex problem, we do not have any theoretical guarantees of reaching the
optimal solution, and therefore we run the algorithm for multiple initialisations of the
allocation vector and consider the mean result obtained over all simulations 7.

4.6.3 Results

We first analyse the problem in synthetic networks where optimal allocations are
determined analytically and compared to the results obtained using the above
numerical approaches. We then examine the problem numerically in a real-world
network and discuss our observations.

4.6.3.1 Mean-field approximation

To obtain a benchmark for our numerical results, we propose an analytical method
that determines optimal allocations in simplified network structures, such as a
core-periphery network. A core-periphery network usually has a core of highly
connected nodes and other sparsely connected peripheral nodes. The bimodal
degree-distribution resembles many real-world leader-follower type networks, and
the simplified network structure limits the degrees of freedom in the problem which
allows us to employ analytical methods to determine optimal solutions.

To determine optimal allocations analytically, here we use a degree-based mean-field
approximation method. The degree-based mean-field approximation assumes that
nodes with the same degree have the same behaviour (or state) and therefore groups
nodes based on their degrees. The behaviour of the population is then approximated
by averaging over the behaviours of each group of nodes. Although such an
approximation is not always effective, it has been observed to work well in networks
where there are no degree correlations (Pastor-Satorras and Vespignani (2001)).

We obtain a degree-based mean-field approximation by following the approach taken
in Romero Moreno et al. (2021.), and modifying it to reflect our budget constraint as
follows,

7For uniformity, we also run multiple simulations for the convex case where γ > 1 and show the
average results
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Here Pk is the degree-distribution of the network and k is the degree of nodes in the
network. Additionally, bk is the competitor’s allocation to the group of nodes with
degree k and ak is the controller’s allocation to the same group of nodes. Therefore, the
influence experienced by the nodes in the group from both controllers are a1/γ

k and
b1/γ

k . Note that as node behaviours are considered to be the same within any group,
allocations from both controllers are also assumed to be uniform across all nodes in
the group. We can now use Eq. (4.11) to determine the optimal allocation patterns in
any large, arbitrary core-periphery network structure.

4.6.3.2 Analysis of synthetic networks

Core-periphery networks of size N = 1000 are considered, with a core formed by
P1 = pr = 0.25 (or 25% of the total nodes in the network). Nodes in the highly
clustered core have a degree of k1 = 30 and the sparsely connected peripheral nodes
have a degree k2 = 3. We examine two settings, one where B targets the hub nodes
and another where they target the peripheral nodes.

Competitor allocations to the core

We first consider the instance where B targets the hub nodes. In this case the
competitor budget is distributed uniformly over all nodes in the core of the network
(bk1 =

BB
pr N and bk2 = 0). We consider ϵA as the fraction of total budget allocated to hub

nodes by controller A. Using Eq. (4.11) we obtain,
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We now use semi-analytical methods to determine the optimal allocation ϵ∗A using the
above expression that maximises vote-shares X∗A. Additionally, we use methods
described in Sections 4.6.1 and 4.6.2 to determine optimal allocations numerically. For
numerical results, we consider 10 instances of core-periphery networks, each of size
N = 1000, pr = 0.25, k1 = 30 and k2 = 3. Networks are generated using the
configuration model (Newman (2018)). We consider three budget scenarios: (i)
insufficient budget BA/BB = 0.1, (ii) equal budget BA/BB = 1 and finally (iii) excess
budget BA/BB = 10. In each case, BB = N. Fig. 4.10 shows optimal allocations and
vote-shares, against competitor allocations to the hub nodes averaged over 10
simulations.

Fig. 4.10a illustrates the fraction of total resources allocated to the hub nodes in the
network, as γ is varied. Fig. 4.10b shows the corresponding vote-shares obtained by
the controller. Immediately, we see a stark difference in optimal allocations and
vote-shares between the two regimes: (i) 0 < γ < 1 and (ii) γ > 1. We find that
allocation strategies are highly sensitive to controller budgets when 0 < γ < 1.
Whereas when γ > 1, optimal strategies are roughly the same even when budgets
differ considerably. A similar phenomenon is also reflected in Fig. 4.10b, where
controller budgets significantly affect vote-shares for 0 < γ < 1, and have little to no
effect on vote-shares when γ > 1. The linear case, γ = 1, clearly acts the transition
point between the two regimes.

Taking a closer look at the region where 0 < γ < 1, we find that optimal allocations
oscillate between discrete and continuous configurations, particularly under limited
budget, as γ changes. These fluctuations are more abrupt in analytical results, which
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FIGURE 4.10: Figure showing analytical and numerical results for optimal configura-
tions of allocations in a core-periphery network of size N = 1000 and average degree
⟨k⟩ = 9.75. Analytical results are obtained using the mean-field approach shown in
Eq. (4.11), while numerical results are obtained using approaches discussed in Sec-
tions 4.6.1 and 4.6.2. Competitor B targets hub nodes with degree k1 = 30, which
make up for 25% of the total nodes. The remaining nodes all have degree k2 = 3.
Figure (a) shows the optimal fraction ϵ∗A of the total budget allocated to hub nodes
as γ is varied. Figure (b) shows the corresponding optimal vote-shares X∗A obtained
by the controller. Numerical results obtained are a µ−approximation of the optimal
solutions where µ = 10−10. Results are averaged over 100 simulations, where algo-
rithms for both the convex and nonconvex optimisation problem are run 10 times with
random initialisations on 10 realisations of core-periphery networks. Errorbars show
the 95% confidence intervals. The result for γ = 0.1 and BA = 10N is missing due to

runtime errors caused by numerical overflows.

maybe due to the all-or-none strategy adopted in the mean-field approximation, i.e. all
nodes with the same degree are uniformly targeted.

This assumption also results in discrepancies in the analytical and the numerical
results. For instance, where BA/BB = 0.1 we find that while the analytical solution
opts for a discrete strategy (targets only the hub nodes) when 0.3 ≤ γ ≤ 0.5, the
numerical solution does not allocate any resources to the hub nodes in these settings
and only targets a fraction of the peripheral nodes. Whereas from Fig. 4.10b we find
that the numerical method yields higher vote-shares than the analytical results in this
region, thus highlighting the limitations of the mean-field approximation in such
instances. Finally, we also observe inconsistencies in Fig. 4.10a for very high values of
γ, i.e. γ > 4 likely caused by numerical instabilities (Barbero and Sra (2014)).

Competitor allocations to the periphery

We now consider the instance where competitor B targets the periphery, i.e. bk1 = 0
and bk2 =

BB
(1−pr)N , and illustrate our results in Fig. 4.11. Once again, we find that

controller budgets heavily impact optimal allocations and vote-shares in the region
where 0 < γ < 1. The variation in allocations decrease as γ crosses over into the
region where γ ≥ 1. We also find that, for the most part numerical results closely
replicate analytical results, with some exceptions. As before, numerical inconsistencies
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FIGURE 4.11: Figure showing analytical and numerical results for optimal configura-
tions of allocations in a core-periphery network of size N = 1000 and average degree
⟨k⟩ = 9.75. Analytical results are obtained using the mean-field approach shown in
Eq. (4.11), while numerical results are obtained using approaches discussed in Sec-
tions 4.6.1 and 4.6.2. Competitor B targets peripheral nodes of degree k2 = 10k1, uni-
formly. Hub nodes here have degree k1 = 30. Figure (a) shows the optimal fraction
ϵ∗A of the total budget allocated to hub nodes as γ is varied. Figure (b) shows the
corresponding optimal vote-shares X∗A obtained by the controller. Numerical results
obtained are a µ−approximation of the optimal solutions where µ = 10−10. Results are
averaged over 100 simulations, where algorithms for both the convex and nonconvex
optimisation problem are run 10 times with random initialisations on 10 realisations
of core-periphery networks. Errorbars show the 95% confidence intervals. The result
for γ = 0.1 and BA = 10N is missing due to runtime errors caused by numerical

overflows.

are observed when γ > 4. We also observe discrepancies between the analytical and
the numerical results in the region 0.4 ≤ γ ≤ 0.6, and argue that such disparities exist
as allocations are artificially constrained in the analytical method, whereas numerical
approaches are more flexible, thus yielding higher vote-shares.

4.6.3.3 Analysis of a real world network

Next, to explore how these results apply to the real world, we explore a collaboration
network among network scientists, also discussed in Section 4.5.3, consisting of
N = 379 scientists connected through coauthorship of papers.

We consider two instances of competitor allocations: (i) B targets hub nodes, and (ii) B
targets peripheral nodes. Identifying hub nodes in a heterogeneous network is not a
straight-forward problem, but here for simplicity, we use the degree centrality
measure to distinguish between hubs and peripheral nodes. Given that the average
degree of the network is ⟨k⟩ = 4.8, we assume nodes with degrees above k > 5 are
hubs, and those with k ≤ 5 form the periphery of the network. We find that this
method classifies nearly 30% of the network as hubs and the rest as the periphery.



4.6. Nonlinear cost functions 69

10
-1

10
0

10
1

10N

N

0.1N

B
A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

10
-1

10
0

10
1

10N

N

0.1N

B
A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

10
-1

10
0

10
1

10N

N

0.1N

B
A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

10
-1

10
0

10
1

10N

N

0.1N

B
A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

FIGURE 4.12: Figure showing optimal allocations and vote-shares in a real-world
network depicting collaborations among network scientists. The network is of size
N = 379 and average degree ⟨k⟩ = 4.8. The top panel (Figures (a) and (b)) shows re-
sults for the instance where the competitor B targets hubs nodes. Figure (a) illustrates
the optimal fraction of total budget that is allocated to the hub nodes, and Figure (b)
shows the corresponding optimal vote-shares for varying γ and BA. The bottom panel
(Figures (c) and (d)) illustrates results for the instance where competitor B targets the
periphery of the network. Figure (c) shows the optimal fraction of budget allocated to
hub nodes and Figure (d) shows the corresponding optimal vote-shares for varying γ
and BA. Numerical results obtained are a µ−approximation of the optimal solutions
where µ = 10−10. Results are averaged over 10 simulations, where algorithms for
both the convex and nonconvex optimisation problems are run 10 times with random
initialisations. The missing values for γ = 0.1 and BA = 10N across all four heatmaps

are due to numerical overflows.

As it is infeasible to apply analytical methods to highly heterogeneous network
structures, here we rely on numerical approaches to determine optimal allocations.
We systematically examine each setting of competitor allocations and determine
optimal allocations, as the nonlinearity constraint of the allocation vector changes
between 0.1 ≤ γ ≤ 10 and the controller budget is varied between 0.1 ≤ BA/BB ≤ 10,
where BB = N. Results are averaged over 10 simulations, and shown in Fig. 4.12.

Figs. 4.12a and 4.12c illustrate the optimal fraction of the total budget allocated to the
hub nodes, against competitor allocations to the hub nodes and to the peripheral
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nodes respectively. Once again, in both instances we observe that optimal allocation
patterns are highly sensitive to change in budget conditions in the region 0 < γ < 1,
whereas optimal allocation patterns are more uniform when γ > 1. Furthermore, we
observe that under low budget conditions, optimal allocation configurations avoid
nodes targeted by the competitor and focus more resources on nodes avoided by the
competitor. This trend changes when the budget increases BA > N, and more
resources are allocated to the nodes targeted by the competitor. For instance, observe
in Fig. 4.12a, where the competitor targets the hub of the network, optimal allocations
under low budget conditions BA ≤ N are focused more on the periphery and less on
the hub nodes. However, as the budget BA increases, more resources are diverted to
the hub nodes. Recall from Chapter 3 that this is the same trend we observed in the
linear case.

Figs. 4.12b and 4.12d illustrate the optimal vote-shares obtained against a competitor
targeting the hub and the periphery respectively. Similar to results in Section 4.6.3.2,
we find that vote-shares vary significantly with budget settings when 0 < γ < 1 for
both competitor allocations, but not as much when γ ≥ 1.

So far we have observed patterns of optimal allocations in settings with nonlinear
budget constraints. We now determine how much vote-share a controller would gain
from optimally targeting a network as opposed to employing a naı̈ve strategy. For
comparison, we consider two simple heuristics: (i) the degree-based approach and (ii)
uniform allocation.

Once again we consider the collaboration network among network scientists for our
simulations. We vary γ and BA, and in each instance determine the optimal allocation
and vote-shares numerically, using approaches defined in Sections 4.6.1 and 4.6.2. For
comparison, we define the allocation vector for the degree-based approach as pA,i ∝ ki,
where ki is the degree of a node i, normalised to meet the budget constraint.
Additionally, the allocation vector for uniform allocation is given by
pA,i = (BA/N)1/γ, 1 ≤ i ≤ N. The corresponding vote-shares are determined for each
case as Xdeg

A and Xuni
A respectively. Gain in vote-shares is then measured as

[X∗A/Xdeg
A − 1] and [X∗A/Xuni

A − 1], and results are shown in Fig. 4.13.

While Figs. 4.13a and 4.13b illustrate gain in vote-shares against competitor allocations
to the hub, Figs. 4.13c and 4.13d show gain in vote-shares against competitor
allocations to the periphery. In both cases, we find that the gain in vote-shares show
similar patterns. The sensitivity of gain in vote-shares to controller budget is more in
the delayed influence setting, as compared to the diminishing returns setting. In
particular, we observe that the controller can gain significantly (≈ 1010 times) by
targeting the network optimally for low values of γ and a low budget BA. This implies
that the effectiveness of the optimal strategy in comparison to other heuristics is
higher when individuals take longer (or more resources) to experience or respond to
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FIGURE 4.13: Figures showing the gain in vote-shares obtained when employing op-
timal allocation strategies in a real-world collaboration network of size N = 379 and
average degree ⟨k⟩ = 4.8, as opposed to simple heuristics such as (i) degree-based
targeting or (ii) uniform allocations. We consider two instances of competitor allo-
cations. The top panel consisting of Figures (a) and (b) illustrate results for the set-
ting where the competitor targets the hub nodes. Figure (a) shows the gain in vote-
shares [X∗A/Xdeg

A − 1] when the optimal strategy is compared to degree-based target-
ing, whereas Figure (b) shows the gain in vote-shares [X∗A/Xuni

A − 1] when the optimal
strategy is compared to uniform allocations. The bottom panel shows results for the
instance where the competitor targets the periphery. Figure (c) compares the optimal
strategy to degree-based targeting [X∗A/Xdeg

A − 1] and Figure (d) compares the opti-
mal strategy to uniform allocations [X∗A/Xuni

A − 1]. Numerical results obtained are a
µ−approximation of the optimal solutions where µ = 10−10. Results shown are mean
values obtained over 10 simulations, where algorithms for both the convex and non-
convex optimisation problems are run 10 times with random initialisations. The miss-
ing values for γ = 0.1 and BA = 10N across all four heatmaps are due to numerical

overflows.
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external influence under low budget conditions. We further observe that for larger
budgets and low γ, the optimal strategy, irrespective of competitor allocations is to
target the network uniformly.

4.7 Summary and conclusions

In this chapter, we explore the competitive influence maximisation problem under
nonlinear cost of influence. Traditionally, the influence maximisation problem has been
studied in a linear setting where the cost of influence (or allocations) is analogous to
the strength of influence experienced by individuals, and thus the relationship
between the cost and effect of influence was expressed using a linear function.
However, assuming a linear cost function may be an over-simplification that may not
apply to all real-world settings. Thus, here we study the competitive influence
maximisation problem for other nonlinear cost functions.

In particular, we consider two settings. First, we consider the setting where the
controller pays a fixed cost of access to positively influence a node in the network. We
explore optimal allocation patterns for this setting against different competitor
allocations and find that the cost of access parameter always regulates the optimal
configuration of allocations between the continuous and the discrete approach. More
specifically, we find that resources are diverted to high-degree hub nodes in the
network as cost of access increases. For low costs of access, low-degree nodes are
preferred. Thus bridging the gap between our proposed continuous approach and the
traditional discrete method of influencing networks where nodes are either targeted or
not.

Second, we consider more general settings where the effect of influence varies
nonlinearly with the cost of influence. Specifically, we consider two scenarios: (i)
where increasing allocations diminishes the marginal strength of influence
experienced by nodes, and (ii) where nodes take longer or more allocations to start
experiencing the effect of influence (observed as the delayed effect of influence). We
find that optimal allocations and vote-shares are highly sensitive to budget conditions
where allocations have a delayed effect on influence experienced by nodes. On the
contrary, when allocations have a diminishing effect on influence experienced by
nodes, optimal allocations and vote-shares show limited sensitivity to budget
conditions. We further show that targeting the network optimally under low budget
conditions and under nonlinear budget constraints can result in significant gain in
vote-shares, when compared to more naı̈ve approaches.

In this chapter, we illustrate examples where allocations do not exhibit a linear
relationship with influence, e.g. adoption barriers and we argue the importance of
considering nonlinear cost functions when studying competitive influence maximisation
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in social networks. Our results discuss optimal allocations only for known competitor
allocations, and an interesting future direction for this work would be to study the
problem assuming incomplete knowledge of competitor strategy, in a game-theoretic
framework.
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Chapter 5

Presence of negative ties

5.1 Introduction

So far in the thesis, we have observed that the modification of collective opinions
through external influence poses an interesting research question that has far-reaching
societal and commercial implications (Wilder et al. (2018a); Ranganath et al. (2016);
Watts et al. (2007); Kiss et al. (2017); Pastor-Satorras et al. (2015); Galam (1999); Easley
et al. (2010); Jackson (2010)). However, the majority of this literature strictly
investigates friendship networks where influence propagates based on positive
recommendations and endorsements (Newman (2003)). Effects of negative
relationships on opinion propagation have received limited attention and have been
historically discounted from network dynamics given their sparse presence (Offer
(2021)) and association with avoidance behaviour (Harrigan and Yap (2017)) i.e.
people who dislike (or distrust) each other are unlikely to communicate (or be
connected within a network).

However, the scope of anonymity and prevalence of fake profiles on social media
platforms have made negative ties increasingly ubiquitous (Bae and Lee (2012); Pfeffer
et al. (2014)), and even typical of many recommendation and trading networks (Guha
et al. (2004); Leskovec et al. (2010)), thus demanding a more robust understanding of
the impact of negative ties on network dynamics. More so, since negative ties are
governed by a unique set of properties that make them distinctly different from
positive ties (Easley et al. (2010)).

Here we take the competitive influence maximisation model proposed in Chapter 3 and
apply it to networks with negative ties. We consider negative ties as antagonistic
relationships that negatively influence social neighbours, and persuade them to adopt
an opposing position (or opinion). Such relationships pose a unique challenge when
trying to maximise influence in a network. For example, relationships of distrust
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(negative reviews) on e-commerce platforms (e.g. eBay) following below-par
experiences, can negatively impact future transactions or communication (Borgs et al.
(2010); Chen et al. (2011)). Therefore requiring effective navigation of such ties when
influencing a network externally. Particularly in competitive environments, as
neglectfully targeting individuals that propagate net negative influence, can in turn,
facilitate the spread of undesirable opinions.

In this chapter, we demonstrate the need for a negative-tie aware approach to
maximise influence in social networks under competitive settings. In doing so, we
make several contributions to the existing field of research. First, we modify the model
presented in Chapter 3 to explore the problem in signed networks, and subsequently
present an algorithm that maximises influence in networks with negative ties under
competitive settings. We also demonstrate the importance of considering negative ties
while maximising influence in real-world networks, and further show how the
effectiveness of a negative-tie aware approach varies with network topology,
availability of budget and competitor allocations. Finally, in addition to examining the
problem for known competitor allocations, we also study the problem in a
game-theoretic framework, where competitor strategies are unknown.

5.2 Outline

The chapter is structured as follows.

We modify the model presented in Chapter 3 to handle signed edges in the network,
which we present in Section 5.3.

In Section 5.4, we investigate the problem in real-world settings to highlight its
relevance and perform robust analyses using numerical methods in Section 5.5.

In Section 5.6, we present analytical support for our numerical results and further
provide analytical expressions for optimal allocations in complex networks.

Finally, in Section 5.7 we explore the problem more deeply in game-theoretic scenarios.

5.3 Voting dynamics in signed networks

As before, we consider a population of N individuals interacting with one another in a
social network, this time through congenial (positive) as well as hostile (negative)
relationships. The structure of the network in this instance is therefore represented
using a signed graph G(V, E, W). Vertices V = {1, 2, . . . , N} denote individuals in the
population connected through a set of edges E, depicting social connections (which
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unlike the models considered in Chapters 3 and 4 can be negative). We therefore
obtain W ∈ RN×N as the corresponding signed weighted adjacency matrix. The weight
of an edge wij here not only determines the strength of influence that flows from
i −→ j, but also the type of influence propagated in that direction (positive or
negative). A negative weight wij < 0 symbolises a negative edge and therefore implies
negative influence from i on j, whereas wij > 0 suggests node j experiences positive
influence from i. Edge weights wij are independent of each other in directed networks
and nodes may experience different strengths and types (positive or negative) of
influence from one another, i.e. wij ̸= wji. In undirected networks, wij = wji.

As shown in Chapter 3, state variables xA,i and xB,i = 1− xA,i, characterise the
propensity of a node i to adopt opinion state A or B, and opinion propagation follows
voter dynamics. In signed graphs, node i copies the opinion state of j if the edge from
j to i is positive (wji > 0). Conversely, i adopts the opposing view if the edge weight is
negative (wji < 0). We assume that external controllers influence the network only
positively. Thus, if a node picks an external controller it strictly copies their opinion
state. We quantify external influence on the network in terms of resource distribution
vectors {pA, pB} ∈ RN

+ , where any element pA,i ≥ 0 (or pB,i ≥ 0) represents the
amount of influence experienced by a node i from controller A (or B). The vectors are
constrained linearly by the respective budgets (BA or BB) available to each controller,
i.e. ∑i pA,i = BA (or ∑i pB,i = BB).

The rate at which a node i adopts opinion A is given by,

dxA,i

dt
= (1− xA,i) · ϕi(A)− xA,i · ϕi(B). (5.1)

The terms ϕi(A) and ϕi(B) represent the fraction of total influence experienced by
node i in favour of opinion A and B respectively, defined as follows,

ϕi(A) =

∑
j∈N+

i

wjixA,j− ∑
j∈N−i

wji(1−xA,j)+pA,i

∑
j∈N+

i

wji− ∑
j∈N−i

wji+pA,i+pB,i
;

ϕi(B) =
∑

j∈N+
i

wji(1−xA,j)− ∑
j∈N−i

wjixA,j+pB,i

∑
j∈N+

i

wji− ∑
j∈N−i

wji+pA,i+pB,i
.

Here, A is chosen as the focal controller. Similar expressions can be derived for
opinion B.

In signed networks, nodes experience both positive and negative influence from their
neighbours. The collective positive influence is given by ∑j∈N+

i
wjixA,j, and the total
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negative influence (from neighbours in state B) is ∑j∈N−i
wji(1− xA,j), where N+

i and

N−i are the sets of positive and negative neighbours of a node i. Edge weights wji

strictly refer to incoming edges, and allocations from external controllers A and B on
node i are pA,i and pB,i respectively.

Given the above, the steady-state equation for the system can be evaluated by
replacing dxA,i

dt = 0 in Eq. (5.1), to obtain

x∗A,i =

pA,i − ∑
j∈N−i

wji + ∑
j∈N+

i

wjixA,j + ∑
j∈N−i

wjixA,j

∑
j∈N+

i

wji − ∑
j∈N−i

wji + pA,i + pB,i
. (5.2)

Here, x∗A,i is the probability a node i has opinion state A at equilibrium. For a network
of size N nodes, we obtain a system of N equations which can be summarised as
follows,

[︂
L + diag(pA + pB)

]︂
xA = pA + 1⃗

T
W−,

=⇒ XA =
1
N

1⃗
T

xA =
1
N

1⃗
T
[L + diag(pA + pB)]

−1(pA + 1⃗
T

W−). (5.3)

XA in Eq. (5.3) denotes the total vote-share obtained by controller A at equilibrium.
Assuming W+ and W− are the weighted adjacency matrices of the positive edges and
negative edges of the network, 1⃗

T
W− captures the total strength of negative influence

on every node in the network. L is an N × N matrix given by
L = diag(1⃗

T
(W+ −W−))− (W+ + W−). Here diagonal elements represent the

absolute sum of all edge weights of a node i, Lii = ∑j∈N+
i

wji −∑j∈N−i
wji and

off-diagonal elements are Lij = −wji. For unweighted graphs, we get
L = diag(D)− (A+ − A−), where D is the degree-vector1. A+ and A− are the
respective adjacency matrices of the positive and negative components. Note that
Eq. (5.3) offers a unique solution for XA as [L + diag(pA + pB)] is
diagonally-dominant, and hence invertible.

The formal optimisation problem can therefore be stated as

p∗A = argmaxpA∈P X∗A(L, pB), (5.4)

1diag(D) is an N× N matrix where the diagonal elements capture the degrees of nodes in the network.
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here P is a set of all possible allocations pA such that 0 ≤ pA,i ≤ BA

(∀i ∈ {1, 2, . . . , N}), and
N
∑

i=1
pA,i = BA.

For a passive opponent B (where pB is fixed and known), controller A maximises its
vote-shares at equilibrium using Eq. (5.4). Closed-form solutions can be readily
obtained in networks with simplified structures (e.g. star networks) by solving the set
of equations in Eq. (5.3). To do this, we first determine the gradient ∇pA XA by
differentiating Eq. (5.3) wrt to the allocation vector pA as

∇pA XA =
1
N

1⃗
T
[L + diag(pA + pB)]

−1(I − diag(xA)), (5.5)

and then solving ∇pA XA = 0 to obtain optimal allocations p∗A that yields maximum
vote-shares X∗A. Obtaining analytical solutions for ∇pA XA = 0 in larger, more complex
networks however can be considerably challenging. We therefore use the gradient
ascent technique, discussed in Chapter 3, to determine optimal allocations in arbitrary
networks. Observe that Eq. (5.5) is the same expression we obtained for the gradient
in Chapter 3. This is because the new additional term 1⃗

T
W− in Eq. (5.3) (which is an

artefact of signed edges in the network), is independent of allocations pA. Thus we
can use the gradient method proposed in Chapter 3 without having to modify it any
further.

Recall that the algorithm works by initialising the allocation vector as a uniformly
distributed random vector p(0)A such that ∑i p(0)A,i = BA, and subsequently updating it
with the help of the gradient ∇pA XA, until a µ-approximated optimal allocation p∗A is
obtained, given a budget BA, opponent strategy pB and network structure L. The
budget constraint is systematically imposed at each step, by projecting the resulting
allocation vector p(t+1)

A onto an N-simplex using the algorithm in (Chen and Ye
(2011)), such that ∑i pA,i = BA. The learning parameter η is adjusted using
backtracking line search to ensure convergence (Boyd et al. (2004)).

To measure the effectiveness of the negative-tie aware method, we compare it to a
mechanism that discounts negative ties from network dynamics. Two commonly used
approaches to achieve this are (Li et al. (2013)): (i) using absolute values of edge
weights (Wij = |wij|), i.e. all edges are assumed to be positive, and (ii) ignoring edges
with negative weights, i.e. Wij = max(0, wij). In the rest of the chapter, we strictly
compare our proposed method to the first approach. This is because considering all
edges to be positive consistently yields equal or higher vote-shares than when
negative ties are removed, in undirected networks and directed network respectively
(See Appendix C.1 for more details).
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Observe that when considering the absolute values of edge weights, the model is
identical to the one proposed in Chapter 3. Recall that the expression for vote-shares
at equilibrium is given by,

x∗(+)
A,i =

pA,i + ∑
j∈

wjix
(+)
A,j

∑
j∈

wji + pA,i + pB,i
, (5.6)

=⇒ X(+)
A =

1
N

1⃗
T

xA
(+) =

1
N

1⃗
T

pA[L(+) + diag(pA + pB)]
−1. (5.7)

Here X(+)
A indicates the final vote-share obtained by a controller to whom all edges

appear strictly positive. L(+) is the N × N Laplacian matrix of the directed graph
given as L = diag(1⃗

T
W)−W, where W is the corresponding weighted adjacency

matrix. Allocation vectors of both controllers remain unchanged and are given by pA

and pB. The optimisation problem in this case can be defined as,

p∗A = argmaxpA
X∗(+)

A (L(+), pB, BA). (5.8)

The budget constraints apply as before.

We find that the gradient ∇X(+)
A in this variant is similar to Eq. (5.5), and can be

written as ∇pA X(+)
A = 1/N1⃗

T
[L(+) + diag(pA + pB)]

−1(I − diag(x(+)
A ). Using this

expression, we can employ gradient ascent steps GA(+) to numerically arrive at a
global optimum p∗A, for any given budget (BA), competitor allocation (pB) and
unsigned network (L(+)).

5.4 Relative gain in opinion shares in real-world networks

We begin by determining the relevance of the problem in the real world. To do this,
we consider a real-world bitcoin trust network (Kumar et al. (2016, 2018)), where
edges are labelled with positive or negative signs. The network is formed by members
of the Bitcoin OTC platform who rate each other based on their interactions or
experience during transactions. Ratings (or votes) exhibit trust and enable members to
form their reputation on the platform for future transactions. Here we examine the
extent to which relationships of distrust, if unobserved, can jeopardise influence
maximisation efforts for an external controller while competing to promote the
adoption of a new idea (e.g. financial product) in the community.



5.4. Relative gain in opinion shares in real-world networks 81

The Bitcoin network is a weighted-directed graph of 5.8K nodes. Edges are weighted
between -10 and +10, where -10 implies complete distrust and +10 demonstrates
ultimate trust. For our experiment, we focus on the single largest connected
component of size 4.7K nodes, containing ≈ 94% of all edges. Within this component,
≈ 8.6% of edges are negatively weighted. In our model, influence flows in the
direction opposite to that of rating, i.e. if a user i gives a score of +10 to user j, we
assume that user i would copy the opinion state of user j with strength 10. In case of a
negative score (-10), user i adopts the opposing state with equal strength.

We then perform optimisation processes GA and GA(+) on the network, and quantify
the advantage gained from awareness of negative ties in terms of relative gain in
vote-shares, given as [X(GA)

A /X(GA+)
A − 1]. Throughout the rest of the chapter, we will

use this metric as a standard to measure the inefficiency of the naı̈ve GA(+) algorithm
in presence of negative ties, and in doing so, determine the fraction of vote-shares a
controller can lose from ignoring negative edges in the network.

We initialise simulations with a uniformly random allocation vector pA (constrained
by the budget BA) and learning rate η = N. An approximation factor of µ = 10−10 is
used to terminate both algorithms. Here controller B naively targets all nodes in the
network with uniform allocations pB,i = 1 such that budget BB = N. Controller A on
the other hand, adopts GA or GA(+), depending on their knowledge of the network
structure, to independently optimise allocations of their budget BA. We summarise
simulation results in Fig. 5.1 for the instance BA = N/4 as it yields the highest gain in
vote-shares (See Appendix C.1).

In Fig. 5.1a we illustrate the final 500 steps of the GA algorithm until convergence. The
allocation vector P(t)

A at time-step t is incremented by stepping η∇
P(t)

A
XA in the

direction of the gradient. Here η scales the step-length. The resulting vector is then
projected back onto the N-simplex to preserve the budget constraint

∑N
i PA,i = BA = N/4. The axes here represent the fraction of resources given to nodes

with negative links ϵA and to the rest of the network with strictly positive edges
(1− ϵA).

In Fig. 5.1b we demonstrate the evolution of vote-shares when using both algorithms
over time t. We find that vote-share monotonically increases when using GA to a final
configuration of X∗(GA)

A = 0.3908. While GA(+) first yields an increase in vote-shares,
it is followed by a steady decline in vote-shares that finally converges to
X∗(GA+)

A = 0.3582, resulting in a gain of ≈ 9.11%. Thus implying that the awareness of
negative edges can critically affect influence maximisation efforts in real-world
networks and needs more robust exploration leading us to the following sections
where we analyse the problem more thoroughly under controlled settings.
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FIGURE 5.1: Simulations are performed on the single-largest connected component
(N = 4734 nodes) of the Bitcoin OTC network. Figures show (a) step-wise allocations
in the gradient ascent algorithm with negative ties (GA) and (b) change in vote-shares
(XA) through several iterations of both algorithms (GA and GA(+)). Controller B pas-
sively targets all nodes in the network, uniformly, with a budget BB = N. Controller
A here has only a quarter of the resources available to B, BA = BB/4 = N/4. Algo-
rithms are terminated using an approximation factor of µ = 10−7. The learning rate is

initialised at η = N.

5.5 Numerical analysis

As per our model, there are three salient factors that can affect the difference in
performance of both algorithms (GA and GA(+)). These are the (a) topology of the
network (L and L(+)), (b) resource conditions (BA/BB) and (c) competitor strategies
(pB). We now systematically explore the effect of each of these factors on the gain in
vote-shares.

5.5.1 Role of network topology

First, we look at the effect of network topology. Specifically, we examine how the
placement and distribution of negative edges in the network can affect the gain in
vote-shares.

Synthetic networks of size N=1000 nodes with an average positive degree

∑N
i ka,i/N = ⟨ka⟩ = 16 and average negative degree ∑N

i kb,i/N = ⟨kb⟩ = 4 are used in
the following experiments where ka,i = ∑

N+
i

wi and kb,i = ∑
N−i

wi respectively represent

the total number of positive and negative edges of any node i. Here ⟨ka⟩ and ⟨kb⟩ are
chosen to ensure that only 20% of all edges in the network are negative. We keep this
fraction relatively low, first and foremost, to imitate real-world networks, as well as to
demonstrate the importance of heeding negative ties even when they are sparingly
present.
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We assume negative relationships in the network are not correlated to positive ties.
Thus we form synthetic signed networks by merging independently generated
positive and negative graphs. The positive component has a size of N=1000 nodes
with ⟨ka⟩ = 16. The size of the negative graph is given by p · N, where p indicates the
fraction of nodes in the network with negative edges. Varying p changes the
assortativity of negative ties, and also allows us to alter the distribution of negative
edges in the network. For lower values of p, negative edges are concentrated on fewer
nodes, whereas for p = 1, every node in the network has at least one negative edge.
Once the negative component is generated, p · N nodes are chosen from the positive
component to combine both subgraphs, i.e. each node from the negative graph is
mapped to a chosen node in the positive component, such that the node retains both
sets of edges (from the positive and negative subgraphs) in the resulting network. The
placement of negative edges is controlled by the way in which nodes are selected from
the positive component for merging2. While combining both components, if there are
multiple edges between two nodes, we keep the positive edge and ignore the negative
tie. We show some examples of how we generate signed networks for for different
values of p, in Fig. 5.2.

We vary the heterogeneity of degree distribution in the subgraphs to generate a broad
spectrum of network structures for analysis. To that effect, subgraphs can either be
homogeneous regular graphs (Newman et al. (2011)) or heterogeneous core-periphery
type networks (Rombach et al. (2017)) with bi-modal degree distributions. Here we
use the configuration model (Newman (2018)) to generate subgraphs.

Reg-Reg : As a benchmark case we use a homogeneous network where both positive
and negative subgraphs are regular graphs (Reg-Reg). The positive component is a
k+-regular graph where k+ = ⟨ka⟩ = 16. For the negative subgraph, we generate
homogeneous networks of size p · N and degree k− = ⟨kb⟩/p, where p is varied
between 0.1 ≤ p ≤ 1. For those values of p where k− /∈ Z+, we first generate a
k−-regular graph and then add ties to a fraction of randomly selected nodes such that
they have (k− + 1) negative edges. This preserves the average degree ⟨kb⟩ ≈ 4 and
consequently the percentage of negative edges in the network. Here subgraphs are
combined by merging randomly chosen nodes from the positive component.

CP-Reg : In this class of networks, the positive graphs have a heterogeneous
core-periphery structure and is split evenly (p1 = p2 = 0.5), where half of all nodes
(N/2) have high-degrees ka,high = 30 and the rest have low-degrees ka,low = 2. The
negative component here has a regular or pseudo-regular structure (as described for
Reg-Reg networks).

We adopt three different approaches while merging the negative and positive
components. This varies the placement of negative ties in the network. For instance,

2Discussed in detail later in the section.
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(a)

(b)

(c)

FIGURE 5.2: Figure showing generation of signed networks for different values of p.
Figures (a), (b) and (c) show the generation of networks for (i) p = 0.25, (ii) p = 0.5 and
(iii) p = 1, respectively. First a positive regular graph is created where ⟨ka⟩=4, shown
in the left panel of each figure ((a), (b) and (c)). We use the same positive graph in
each case to show how varying p changes the distribution and placement of negative

edges.

nodes from the negative component are merged with high-degree nodes from the
positive subgraph such that negative edges are preferentially added to high-degree
nodes (CP-Reg-High). A similar approach is adopted when placing negative edges on
low degree nodes (CP-Reg-Low). Finally, nodes from both subgraphs can be merged
randomly for randomly placement of negative edges in the network (CP-Reg-Rand).

Reg-CP : Next, we have networks with a homogeneous positive component
represented by a k+-regular graph where k+ = ⟨ka⟩ = 16, and a negative component
represented using a core-periphery structure with ⟨kb⟩ = 4. Nodes in the negative
subgraph are split equally into two classes: (i) high-degree nodes
(kb,high = 2(kb/p− 1)) and (ii) low-degree nodes (kb,low = 2). Here p ranges from
0.15 ≤ p ≤ 1 as it is infeasible to form core-periphery structures for p = 0.1.

For each class of networks discussed above, we run simulations over 10 networks and
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FIGURE 5.3: Figure showing relative gain in vote-shares as distribution of negative
edges (p) is varied. Panel (a) shows the effect of heterogeneity of positive (CP-Reg)
and negative edges (Reg-CP), benchmarked against networks where both positive and
negative components are regular (Reg-Reg). Similarly, panel (b) examines role of het-
erogeneity in more generic networks. Heterogeneity of negative edges are varied as
the negative graph is changed from regular (Reg-Reg) to random (Reg-ER), and finally,
scale-free (Reg-SF) network. Heterogeneity of the positive component is achieved by
replacing the regular positive graph (Reg-Reg) with a scale-free network (SF-Reg). For
all simulations, networks of size N = 1000 nodes with ⟨ka⟩ = 16 and ⟨kb⟩ = 4 are used.
Results are averaged over 10 instances and errorbars depict 95% confidence intervals.

summarise the results in Fig. 5.3a. We assume controller B is unaware of negative
edges and passively targets each node with unit resource pB,i = 1 where
∀i ∈ {1, 2, .., N}, and controller A has a budget BA = N.

Scale-free and random networks To generalise our results further, we extend our
study to more realistic Erdös-Rényi (ER) graphs (Erdős and Rényi (1960)) and
Barabási-Albert (BA) networks (Barabási (2013)). Here the positive subgraph is either
a homogeneous regular graph (Reg) or a heterogeneous scale-free network (SF), and
the negative component is varied between a regular graph (Reg), a random graph (ER)
or a scale-free network (SF). We assume heterogeneity is analogous to degree variance
(Bell (1992)), and is gradually increased in negative components by replacing regular
networks (Reg-Reg) with random graphs (Reg-ER) and then finally with scale-free
networks (Reg-SF). In each case, the placement of negative edges is random. Finally,
as before, results are compared against the homogeneous Reg-Reg graphs and present
the results in Fig. 5.3b.

Fig. 5.3 highlights the effect of degree heterogeneity on gain in vote-shares as
distribution of negative edges p is varied. In general, we find that relative gain in
vote-shares first increases and then decreases as negative edges are distributed more
evenly in the network. For networks with a homogeneous negative component the
relative gain reduces to 0. An analytical explanation for this effect is provided in
Appendix C.3.
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In Fig. 5.3a, we find that networks with a positive core-periphery component and a
regular negative subgraph (CP-Reg) yield the highest relative gain in vote-shares.
Furthermore, relative gain is higher when placement of negative ties are
degree-correlated (as in CP-Reg-High and CP-Reg-Low) compared to when randomly
placed in the network (CP-Reg-Rand). A controller achieves maximum relative gain in
vote-shares when negative edges are confined to nodes of a single degree-type
(p = 0.5), high-degree (CP-Reg-High) or low-degree nodes (CP-Reg-Low). The
maximum gain obtained in networks where negative edges are preferentially placed
on high-degree nodes (CP-Reg-High) is ≈ 9.51%, as opposed to a maximum gain of
≈ 9.44% when they are placed on low-degree nodes (CP-Reg-Low).

We observe similar trends in Fig. 5.3b where a maximum gain of ≈ 4.45% is obtained
in networks with a heterogeneous scale-free positive component and a homogeneous
regular graph (SF-Reg). This result is close to the ≈ 6.91% gain observed in
CP-Reg-Rand networks where negative edges are randomly added to nodes (as in
SF-Reg). We also find that substituting negative regular subgraphs with more
heterogeneous components, such as a random graph (ER) or a scale-free network (SF),
progressively decreases gain in vote-shares.

Once we have studied the effect of network topology on the efficiency of the GA
algorithm, we explore the effect of resource conditions and competitor allocations on
the gain in vote-shares.

5.5.2 Role of resource conditions and competitor allocations

We first examine how resource availability (BA/BB) impacts relative gain in
vote-shares. Our preliminary results indicate insignificant gains (≤ 1%) when the
controller has more budget than its competitor BA,i > BB,i, implying that controllers
with sufficient budgets can only marginally gain from exploiting their knowledge of
negative ties. We therefore focus our analysis on lower budgets BA,i ≤ BB,i, which
yields a more interesting case for examination.

To determine if resource conditions can further exacerbate the difference in
vote-shares between GA and GA(+), we limit our investigation to topologies that
yield highest gains in the earlier experiments. To that effect, we choose networks with
heterogeneous positive components and homogeneous negative subgraphs (CP-Reg).
Simulations are performed on a single variant of these networks (CP-Reg-High) for
conciseness.

The budget for controller B is fixed at BB,i = 1 per node for the rest of the experiments
in this section. Controller A has a per node budget 0.05 ≤ BA,i ≤ BB,i.
For simplicity, controller B continues to target the network passively. We assign three
strategies to B where they either (i) avoid nodes with negative edges, (ii) strictly target
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these nodes, or (iii) target all nodes uniformly, where B evenly distributes its resources
over all the targeted nodes. We define these strategies specifically to examine how the
gain in vote-shares depends on the competitor’s knowledge of the network structure
as well as on how they use this information.

Gain in vote-shares for each case is presented in Figs. 5.4a to 5.4c. Here Fig. 5.4a
demonstrates the gain in vote-shares when controller B avoids nodes with negative
edges. In Fig. 5.4b, controller B strictly targets nodes with negative ties and in Fig. 5.4c
they target the network uniformly.

We find that controller A can lose considerable vote-shares by not employing an
informed approach when controller B deliberately avoids targeting negative edges.
On the other hand, as expected, we find that the difference in vote-shares is the least
when controller B targets nodes with negative edges, as then the GA algorithm no
longer has an advantage over the naı̈ve approach GA(+).

Once again, we find that in all three cases, maximum gain is obtained when negative
ties are restricted to high-degree nodes in the network (p = 0.5). We also observe that
gain in vote-shares first increases with p, and then gradually decreases to 0. In
Fig. 5.4a, a maximum gain of ≈ 17.85% is observed when the budget ratio is
BA/BB = BA = 0.3. In Fig. 5.4b, gain is maximum (≈ 5.75%) when controllers have
equal budgets BA = BB = 1, and we note that difference in vote-shares is positively
correlated with the budget BA. Finally in Fig. 5.4c, we find that the gain in vote-shares
reaches a maximum of ≈ 10.32% at BA = 0.6.

Next, we examine the effect of competitor allocations on relative gain in vote-shares.
We fix the available resources for both controllers at BA = BB = N to reduce any
impact of uneven budgets on the results. Once again we consider CP-Reg-High
networks.

We define allocations for controller B, using ϵB, which is the fraction of resources
allocated to nodes with negative links. It is assumed that resources are always
uniformly spread over targeted nodes, where ϵB · BB/p amount of influence is applied
on every node that has a negative link, while (1− ϵB) · BB/(1− p) is given to the rest
of the nodes (with strictly positive edges). We gradually vary 0 ≤ ϵB ≤ 1. Here
boundary conditions correspond to instances where controller B either strictly targets
nodes with negative ties (ϵB = 1) or avoids them completely (ϵB = 0). Results are
shown in Fig. 5.4d.

As before, we observe that for all competitor allocations, the gain in vote-shares first
increases and then decreases with p. The maximum gain of ≈ 10.13% is obtained
when controller B allocates a quarter of its budget pB = 0.25 · BB to all hub-nodes with
negative edges where p = 0.5.
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FIGURE 5.4: Panel showing relative gain in vote-share as p and budget ratios are var-
ied against different competitor strategies. We examine three specific cases, controller
B: (a) targets, or (b) avoids nodes with strictly positive edges and (c) targets all nodes
uniformly. For all cases, controller B has a fixed budget of 1. Lastly, in (d) we quantify
gain in vote-share as controller B changes its strategy by varying the fraction of budget
ϵb used to target nodes with negative edges. Here both controllers have fixed budgets
BA = BB = 1. Results are averaged over 10 CP-Reg-High networks of size N = 1000

nodes and ⟨ka⟩ = 16, ⟨kb⟩ = 4.

5.6 Analytical support

We now propose an analytical framework in support of our numerical results. Note
that, obtaining closed-form analytical solutions for Eqs. (5.3) and (5.7) on networks
with inherent complexities can be challenging. We therefore simplify the problem first
by adopting a degree-based mean-field approach that approximates system dynamics
and helps us obtain analytical expressions for optimal allocations. This approach
works by grouping nodes with the same positive (ka) and negative degrees (kb) (where
ka is not correlated to kb), and further assuming that their opinion state xkakb is
correlated to their overall degree ({ka, kb}). In doing so, we homogenise the effect of a
heterogeneous neighbourhood on the state of a node which increases tractability of
the problem. Additionally, we assume external controllers A and B uniformly target
all nodes within a given class (with akakb and bkakb allocations respectively) which
further reduces the degrees of freedom in our problem.
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We first derive the state of a node, with ka positive and kb negative degrees, from the
steady-state equation Eq. (5.2) as

xkakb =
akakb + kb + ka⟨xa⟩ − kb⟨xb⟩

ka + kb + akakb + bkakb

. (5.9)

Here ⟨xa⟩ and ⟨xb⟩ represent the expected state of a neighbouring node across a
positive and a negative edge, respectively. Assuming that Pa(ka) and Pb(kb) describe
the positive and negative degree distributions of a network, the expected behaviour of
a neighbour at the end of a positive or a negative edge (⟨xa⟩ and ⟨xb⟩) can be obtained
as

⟨xa⟩ = ∑kb
Pb ∑ka

Pa
ka
⟨ka⟩xkakb

⟨xb⟩ = ∑ka
Pa ∑kb

Pb
kb
⟨kb⟩

xkakb.

(5.10)

Note that here the term ka/⟨ka⟩ (or kb/⟨kb⟩) ensures that a node with higher positive
(or negative) degree ka (or kb) has a higher chance of appearing as a neighbour
exerting positive influence.

Now, using Eq. (5.9) and Eq. (5.10) we obtain the following self-consistency relations,

⟨xa⟩ = ⟨ ka
⟨ka⟩

akakb
+kb

∆ ⟩+ ⟨ k2
a
⟨ka⟩

1
∆ ⟩⟨xa⟩ − ⟨ kakb

⟨ka⟩
1
∆ ⟩⟨xb⟩

⟨xb⟩ = ⟨ kb
⟨kb⟩

akakb
+kb

∆ ⟩+ ⟨ kakb
⟨kb⟩

1
∆ ⟩⟨xa⟩ − ⟨

k2
b
⟨kb⟩

1
∆ ⟩⟨xb⟩.

(5.11)

These can be further solved to finally arrive at the mean-field expressions

⟨xa⟩ =
[︄
⟨ ka

⟨ka⟩
aab + kb

∆
⟩ −
⟨ kakb
⟨ka⟩

1
∆ ⟩⟨

kb
⟨kb⟩

aab+kb
∆ ⟩

1 + ⟨ k2
b
⟨kb⟩

1
∆ ⟩

]︄[︄
1− ⟨ k2

a
⟨ka⟩

1
∆
⟩+
⟨ kakb

∆ ⟩2
1

⟨ka⟩⟨kb⟩

1 + ⟨ k2
b
⟨kb⟩

1
∆ ⟩

]︄−1

,

and, ⟨xb⟩ =
[︄
⟨ kb

⟨kb⟩
aab + kb

∆
⟩+
⟨ kb
⟨kb⟩

ka
∆ ⟩⟨

ka
⟨ka⟩
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∆ ⟩

1− ⟨ k2
a
⟨ka⟩

1
∆ ⟩
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1
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⟩+
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∆ ⟩2
1

⟨ka⟩⟨kb⟩

1− ⟨ k2
a
⟨ka⟩

1
∆ ⟩

]︄−1

,

(5.12)

where ∆ = akakb + bkakb + ka + kb.
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Using the above, an approximation for the final configuration of the system at
equilibrium can be obtained as

XA = ⟨xka,kb⟩ = ⟨
aab + kb

∆
⟩+ ⟨ ka

∆
⟩⟨xa⟩ − ⟨

kb

∆
⟩⟨xb⟩, (5.13)

where expressions for ⟨xa⟩ and ⟨xb⟩ come from Eq. (5.12).

Using Eq. (5.13) to derive closed-form analytical expressions for optimal allocations is
still a complex task. Thus, we proceed with two alternative approaches. The first
method uses a semi-analytical approach to obtain optimal allocations in simplified
network structures using Eq. (5.13). Alternatively, we study the problem under
limiting conditions which further streamlines the analytical approach by adding some
additional assumptions to the model.

5.6.1 Semi-analytical approach

We approximate optimal allocations by solving Eq. (5.13) numerically in three types of
networks, (i) Reg-Reg, (ii) CP-Reg-High and (iii) Reg-CP. We assume that networks are
of size N = 1000 nodes ⟨ka⟩ = 16 and ⟨kb⟩ = 4, and p is varied between
0.075 ≤ p ≤ 0.975. In all cases, controller B targets all nodes equally bka,ikb,i = 1,
∀i ∈ [1, 2, . . . , m] where there are m types (or groups) of nodes.

In Reg-Reg networks, we have two types of nodes: (i) p · N nodes with ka,1 = 16
positive edges and kb,1 = 4/p negative edges and the remaining (ii) (1− p) · N nodes
with ka,2 = 16 positive edges and no negative ties kb,2 = 0. We assume controller A
distributes ϵA fraction of its budget equally over all nodes with negative edges, such
that aka,1kb,1 = ϵA · BA/p. The rest of the nodes receive aka,2kb,2 = (1− ϵA) · BA/(1− p)
allocations.

In CP-Reg-High networks, nodes can be segregated in two or three classes depending
on the value of p. The positive component in these networks have a core-periphery
structure with high-degree nodes ka,1 = 30 and low-degree nodes ka,2 = 2. When
p = 0.5, we have two groups of nodes, (i) high-degree nodes with negative links and
(ii) low degree nodes with only positive edges. As described earlier, resources are split
into ϵA which is allocated to the first group of nodes and (1− ϵA) given to low-degree
nodes. For p < 0.5, we have three groups of nodes, (i) high-degree nodes with
negative links (ka,1 + kb,1), (ii) high-degree nodes with only positive links (ka,1) and
(iii) low degree nodes with only positive links (ka,2). The same can be derived for
p > 0.5, where all high-degree nodes, and a fraction of low-degree nodes have
negative links. In each case, the budget is split over three groups as ϵA,1, ϵA,2 and
[1− (ϵA,1 + ϵA,2)]. We simultaneously solve for ϵA,1 and ϵA,2 to determine the optimal
allocation on the network. The amount of budget allocated to nodes with negative
edges is given by ϵA = ϵA,1 when p < 0.5 and by ϵA = ϵA,1 + ϵA,2 when p > 0.5.
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FIGURE 5.5: Figure showing optimal allocations and vote-shares at equilibrium for
values of p ∈ [0.075, 0.975]. Results shown for three types of networks : (i) Reg-Reg,
(ii) CP-Reg and (iii) Reg-CP. Analytical solutions are shown using dashed lines. Nu-
merical results are obtained through simulations on networks of size N=1000 nodes

and averaged over 10 networks. Error bars are shown for 95% confidence intervals.

Optimal allocations are derived in Reg-CP networks using a comparable approach.
Nodes form three clusters for p < 1, (i) p1 nodes with high-negative-degrees
kb,1 = 2(⟨kb⟩/p− 1) and ka positive edges, (ii) p2 nodes with low-negative-degree
kb,2 = 2 and ka positive edges, and finally (iii) nodes with only ka positive edges. Here
all classes of nodes have the same positive degree ka = 16 and the fraction of nodes
with negative edges are given as p = p1 + p2. Budget allocation for each class of nodes
is given as akakb,1 = ϵA,1/p1, akakb,2 = ϵA,2/p2 and akakb,3 = (1− ϵA)/(1− (p1 + p2)),
where nodes with negative edges receive ϵA = (ϵA,1 + ϵA,2) fraction of the budget.

For each type of network, we obtain related expressions using Eq. (5.13), which we
solve semi-analytically to obtain optimal allocations ϵ∗A and maximum vote-shares X∗A.
Results are presented in Fig. 5.5 where they are compared against previously obtained
numerical results.

From initial observations, we find that our numerical results are in good agreement
with the theoretical solutions in both Figs. 5.5a and 5.5b. There is however, some
discrepancy in vote-share results (Fig. 5.5b), which can be attributed to uniform
allocations to each group of nodes in the analytical approach. The numerical method
in contrast allows more sophisticated, flexible allocations to nodes of the same type,
thereby realising higher vote-shares. In Fig. 5.5a, we note that when negative edges
are more clustered (i.e. p < 0.3), nodes with negative edges are strictly avoided in
Reg-Reg and CP-Reg-High networks. However, as p increases and negative edges are
more dispersed over the network, allocations to these nodes increase. This behaviour
contrasts Reg-CP graphs, where we find positive allocations to nodes with negative
ties even at low values of p. We further observe that, these allocations are to nodes
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with low-negative-degrees, hinting that allocations to a node are correlated to its
negative degree.

5.6.2 In the limit of large ⟨ka⟩

As an alternate approach, we apply a limiting condition to simplify the mean-field
approximation in Eq. (5.13). Here, we study influence dynamics in the limit of large
average positive degree, in comparison to controller budgets and average negative
degree, i.e. ⟨ka⟩ ≫ ⟨akakb⟩+ ⟨bkakb⟩+ ⟨kb⟩. We are motivated observations of
real-world networks where negative edges are often sparingly present among densely
connected positive edges (Leskovec et al. (2010)). We begin by performing a series
expansion on Eq. (5.13) in the above limit to obtain,

XA ≈ ⟨
akakb

ka
⟩+ ⟨ kb

ka
⟩+

akakb + ⟨kb⟩
akakb + bkakb + 2⟨kb⟩

−
⟨ (akakb

+kb)(akakb
+bkakb

+2kb)

ka
⟩

akakb + bkakb + 2⟨kb⟩

+
akakb + ⟨kb⟩

(akakb + bkakb + 2⟨kb⟩)2

(︄
⟨

k2
b

ka
⟩+ ⟨

(akakb + bkakb + kb)(akakb + bkakb + 3kb)

ka
⟩

−⟨
akakb + bkakb + kb

ka
⟩

akakb + ⟨kb⟩
akakb + bkakb + 2⟨kb⟩

− ⟨ kb

ka
⟩

akakb + ⟨kb⟩
akakb + bkakb + ⟨kb⟩

)︄
,

(5.14)

and use it to derive optimal allocations a∗kakb
, obtained as

a∗kakb
=

1
2

(︄
⟨akakb⟩ − ⟨bkakb⟩
⟨bkakb⟩+ ⟨kb⟩

bkakb +
⟨akakb⟩ − 3⟨bkakb⟩ − 2⟨kb⟩

⟨bkakb⟩+ ⟨kb⟩
kb + ⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩

)︄
.

(5.15)
Details of the derivation can be found in Appendix C.2.

From Eq. (5.15) we can see that optimal allocation a∗kakb
to a node characteristically

depends on its negative degree kb and the competitor allocations bkakb to it. We verify
these findings in the rest of the section using numerical simulations.

We first validate the dependence of optimal allocations a∗kakb
on competitor allocations

bkakb , where controller B has a ka-dependent strategy. SF-Reg networks are used to test
this relation, as the scale-free positive component can then be exploited to generate
multiple data points for comparison between numerical and analytical results. Note
that there is a negative-degree dependent term in Eq. (5.15) that contributes to optimal
allocations. We reduce the effect of this term in our analysis by first setting the per
node budget for controller A to ⟨akakb⟩ = 3⟨bkakb⟩+ 2⟨kb⟩. However, this condition
constrains the analysis to positive correlations between allocations from both
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(a)

(b)

FIGURE 5.6: Figures showing mean allocations to nodes as a function of competitor
allocations bkakb

in SF-Reg networks of size N = 1000 nodes where ⟨ka⟩ = 50 and
⟨kb⟩ = 2. We examine three instances of negative tie distributions p ∈ [0.4, 0.6, 0.8]
(left to right). We show (a) positive and (b) negative correlations between optimal
allocations and competitor allocations. Controllers have the following budgets: (a)
⟨akakb

⟩ = 5.5 and ⟨bkakb
⟩ = 0.5, and (b) ⟨akakb

⟩ = 4.5 and ⟨bkakb
⟩ = 5. Controller B here

follows a ka−dependent strategy. Numerical results are averaged over 10 networks.
Errorbars show a 95% confidence interval.

controllers, as now ⟨akakb⟩ > ⟨bkakb⟩ (see the first term in Eq. (5.15)). When analysing
the negative relation between the optimal allocations and the competitor allocations,
the budget is set such that ⟨akakb⟩ < ⟨bkakb⟩. In this case however, the
negative-degree-dependent term contributes to the optimal allocation result, and the
regular structure of the negative component in the networks is chosen to limit the
variation in optimal allocation a∗kakb

caused by negative degrees.

For our simulations we consider networks where ⟨ka⟩ = 50, is sufficiently large
compared to ⟨kb⟩ = 2. Controller B distributes its budget in proportion to the positive
degree of nodes (pB,i ∝ ka,i). When analysing the positive relation between allocations
a∗kakb

and bkakb , the budget for controllers A and B are fixed as ⟨akakb⟩ = 5.5 and
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FIGURE 5.7: Figures showing mean allocations to nodes as a function of negative de-
grees kb in networks of size N = 1000 nodes. We examine three instances of negative
tie distributions p ∈ [0.4, 0.6, 0.8] (left to right). Figure (a) demonstrates a positive
correlations between optimal allocations and negative degrees kb in Reg-ER networks
where ⟨ka⟩ = 50 and ⟨kb⟩ = 2. Similarly, Figure (b) shows a negative relation between
the two, in Reg-SF networks where ⟨ka⟩ = 16 and ⟨kb⟩ = 4. Controllers have the fol-
lowing budgets: (a) ⟨akakb

⟩ = 7 and ⟨bkakb
⟩ = 0.5, and (b) ⟨akakb

⟩ = 1 and ⟨bkakb
⟩ = 1.

Controller B targets the network uniformly. Numerical results are averaged over 10
networks. Errorbars show a 95% confidence interval.

⟨bkakb⟩ = 0.5 respectively. For negative correlations we carefully choose ⟨akakb⟩ = 4.5
and ⟨bkakb⟩ = 5 to avoid defying the positivity constraint on optimal allocations. We
summarise results from the simulations in Figs. 5.6a and 5.6b, where for the sake of
brevity, we demonstrate results in only three instances of p ∈ [0.4, 0.6, 0.8].

Next, we explore the dependence of optimal allocations a∗kakb
on the negative degree kb

of nodes. We study positive regular graphs with negative heterogeneous components
(to ensure multiple data-points of comparison between analytical and numerical
results). Note that the correlation is positive when ⟨akakb⟩ > 3⟨bkakb⟩+ 2⟨kb⟩, and
negative when ⟨akakb⟩ < 3⟨bkakb⟩ − 2⟨kb⟩. We conduct simulations to test each relation
and present the results in Figs. 5.7a and 5.7b. To analyse the positive correlation, we
run simulations in Reg-ER networks where ⟨ka⟩ = 50 and ⟨kb⟩ = 2. Here we assume
that controller B has a budget of BB = ⟨bkakb⟩ · N = 0.5 · N, which they distribute
uniformly across the network. Uniform allocation from the competitor limits the effect
of the corresponding bkakb -dependent term on optimal allocations. We assume
controller A has a budget of ⟨akakb⟩ = 7 which satisfies the necessary condition to
study the positive correlation between optimal allocations and negative degree of
nodes. In the second instance, we use a Reg-SF network with ⟨ka⟩ = 16 and ⟨kb⟩ = 4.
Controllers have equal budgets ⟨akakb⟩ = ⟨bkakb⟩ = 1, which eliminates the effect of the
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bkakb -dependent term in Eq. (5.15). As before, controller B targets the network
uniformly.

As shown in Figs. 5.6 and 5.7, we find that analytical results approximate numerical
simulations reasonably well under the limiting condition. Fig. 5.6a shows a positive
linear relation between optimal allocations a∗kakb

and competitor allocation bkakb under
conditions of excess budget. We also observe that agreeability between numerical and
analytical results increases with homogeneity of negative edges in the network
(p = 0.8). Fig. 5.6b verifies a negative relation between a∗kakb

and bkakb when resources
are scarce. However, in this instance, we find that optimal allocations are grouped,
based on the negative degree of nodes, as the kb−dependent term is not 0.

In Figs. 5.7a and 5.7b, we demonstrate correlations between optimal allocations and
negative degree of nodes kb. Fig. 5.7a shows a positive linear relation with negative
degree kb for larger budgets ⟨akakb⟩ > 3⟨bkakb⟩+ 2⟨kb⟩. Contrarily, an inverse
relationship is observed between the optimal allocations and the kb, in Fig. 5.7b, when
budget ⟨akakb⟩ < 3⟨bkakb⟩ − 2⟨kb⟩.

The above results show that despite the additional assumptions, the proposed
analytical framework provides a good estimate of the system dynamics in
heterogeneous signed networks. We further show that in the limit of large average
positive degree, optimal allocations depend on the negative degree of nodes and the
competitor allocations on nodes —and not on the positive degree of nodes. The type
of correlation, positive or negative, relies on the budget available to the focal
controller. When resources are in excess, allocations increase linearly with competitor
allocation and negative degree, whereas under low budget conditions this relation
becomes inversely proportional.

5.7 Game-theoretic scenario

So far we optimise allocations for controller A against a passive competitor B. In this
section, we explore the problem under game-theoretic settings where both controllers
A and B actively optimise budget distribution over signed networks. In our game,
controllers represent players who optimise their respective strategies (pA and pB), to
maximise their utilities or vote-shares (XA and XB).

Our motive here, as before, is to determine if the controller A receives a more
favourable outcome against an active controller B, when they are fully informed of the
network structure. For this reason, we explore and compare two cases that emerge
from varying awareness of negative ties in controller A. In the first case, we assume A
has complete knowledge of the network structure and in the second, we assume that
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they are unaware of polarised edges and can only observe the network as a strictly
unsigned (positive) graph. Controller B in both cases is unaware of signed edges.

We first define the problem analytically and then compare it to numerical results in
Fig. 5.8. To begin, we derive an analytical expression for the instance where controllers
have imperfect knowledge of the network. We use the degree-based mean-field
approach discussed in Section 5.6 to classify nodes based on their degrees, where node
behaviour ⟨xk⟩ strongly correlates with their degree k. Since controllers cannot discern
between positive and negative edges, they consider a node i has degree ki where
ki = ka,i + kb,i.

First, we use the steady-state equation (Eq. (5.2)) to obtain the state of a node with
degree k,

xk =
k⟨x⟩+ ak

k + ak + bk
, (5.16)

where ak and bk are allocations from controllers A and B for the given class of nodes,
and ⟨x⟩ is the average behaviour of a node in the network. Here too controllers are
assumed to distribute allocations uniformly within each class.

Given a degree distribution Pk, the expected behaviour of a node in the network is,

⟨x⟩ = ∑k Pkkxk

⟨k⟩ =
∑k Pkkxk

∑k Pkk
. (5.17)

Using Eq. (5.16) and Eq. (5.17), we obtain

⟨x⟩ =
∑k

Pkkak
k+ak+bk

∑k
Pkk(ak+bk)
k+ak+bk

. (5.18)

This leads us to an expression for the total vote-share at steady-state as,

X(+)
A = ∑

k
Pkxk =

(∑k
Pkk

k+ak+bk
)(∑k

Pkkak
k+ak+bk

)

(∑k
Pkk(ak+bk)
k+ak+bk

)
+ (∑

k

Pkk
k + ak + bk

). (5.19)

Although we show the above derivations for A, the same process can be repeated to
determine the utility function for controller B,

X(+)
B =

(∑k
Pkk

k+ak+bk
)(∑k

Pkkbk
k+ak+bk

)

(∑k
Pkk(ak+bk)
k+ak+bk

)
+ (∑

k

Pkk
k + ak + bk

). (5.20)
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Note that, Eq. (5.19) is the utility function we use for controller A when they are
unaware of negative edges in the network and hence they target the network
indiscriminately, while Eq. (5.13) guides a negative-tie sensitive approach. To
determine how much controller A gains from exploiting their knowledge of the
network in the game-theoretic setting, we compare vote-shares obtained using both
approaches.

We optimise the utility functions of both controllers simultaneously (as shown in
Section 3.5) to obtain the game equilibrium in each case. We determine the pair of
optimal strategies at the equilibrium for both games (one where A is aware of negative
ties and another where they are not, both times against an imperceptive competitor B).
In the instance where both controllers are unaware of negative ties in the network, the
utility functions Eq. (5.19) and Eq. (5.20) are simultaneously solved to arrive at the
equilibrium state [X∗A, X∗B]. The corresponding strategies at this point are given by
[p∗A, p∗B]. Note that here the true vote-shares [ ˆ︁X∗A, ˆ︁X∗B] differ from their observed
utilities [X∗A, X∗B], and can be obtained by inserting p∗A and p∗B in Eq. (5.3). In the other
instance, controller A (using Eq. (5.13) as their utility function) has access to their true
utility at all times. Once an equilibrium state is reached, [p∗A, p∗B] are used the
determine the true vote-share for B, ˆ︁X∗B. Here it is important to note that both
controllers assume the network structure to be common knowledge at all times.
Therefore, from both their perspectives, the game always appears to be a zero-sum
game (Fudenberg and Tirole (1991)).

While solving the problem semi-analytically, we express strategies using ϵA (or ϵB),
which represents the fraction of resources allocated by a controller to nodes with
negative ties. Solving their vote-share functions simultaneously, we obtain the
equilibrium state [ϵ∗A, ϵ∗B], and finally measure the difference in vote-shares.

For our simulations, we explore three types of networks: (i) Reg-Reg, (ii) CP-Reg-High
and (iii) Reg-CP, where ⟨ka⟩ = 16 and ⟨kb⟩ = 4. For brevity, we examine only one
instance of negative tie distribution p = 0.5. Note that for Reg-Reg and CP-Reg-High
networks, resources are split between two node classes as ϵA and 1− ϵA. For Reg-Reg
networks the two classes of nodes are (i) {ka,1, kb,1} = {16, 8} and (ii)
{ka,2, kb,2} = {16, 0}. For CP-Reg-High networks they are (i) {ka,1, kb,1} = {30, 8} and
(ii) {ka,2, kb,2} = {2, 0}. In Reg-CP networks, we have three classes of nodes, where p
nodes with negative edges are split even between p1 and p2 such that (i) p1 = 0.25,
{ka,1, kb,1} = {16, 14}, (ii) p2 = 0.25, {ka,2, kb,2} = {16, 2} and finally the rest of the
nodes (iii) p3 = 0.5, {ka,3, kb,3} = {16, 0}. Consequently the budget is split three-ways
into ϵ1, ϵ2 and ϵ3 = 1− (ϵ1 + ϵ2). Here ϵ = ϵ1 + ϵ2. In all cases, the necessary
boundary conditions are imposed. Fig. 5.8 demonstrates how equilibrium strategies
and gain in vote-shares depend on budget ratios. Analytical results are complemented
with numerical simulations. GA is used as an optimiser when controller A has
complete knowledge of the network and conversely GA(+) is used when they cannot
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discern the polarity of the edges. In both cases, controller B uses GA(+) to determine
best response.

We find that simulations always converge to a pure equilibrium in all cases. When
controllers cannot observe negative edges, the equilibrium strategy is identical for
both controllers, and uniformly targets the network (ϵA = ϵB = p = 0.5) (shown in
Chapter 3). On the other hand, we find that controller A avoids nodes with negative
ties when they have full knowledge of the network under conditions of limited
resources. This strategy influences the allocation patterns of competitor B, who now
diverts less resources to nodes with negative edges. We see that by avoiding negative
edges in the network, controller A inadvertently shares information about their own
prioritisation of nodes in the network, which then results in a loss in vote-shares as
shown in Fig. 5.8.

As the budget ratio increases, controller A starts redirecting some resources to nodes
with negative edges. When this occurs, controller B increases their allocations to these
nodes. As the budget ratio increases to BA/BB ≈ 5, controller B stops competing over
nodes with negative ties and begins to gradually reduce their allocation (ϵB) to them.
Around BA/BB = 10, both controllers target the network uniformly
(ϵA = ϵB = p = 0.5), and beyond this point, ϵB continues to decrease as ϵA increases
steadily. Once again, we observe a region where controller A loses vote-shares from
implementing their knowledge of negative edges in the network. This happens as
they start pursuing nodes with negative edges, with more than half of their budget
ϵA > 0.5. However, as budget ratio increases to BA/BB ≈ 102, controller A once again
starts gaining from the knowledge of the network structure.

We also note that the results are similar across all three types of networks, and
numerical simulations closely approximate analytical results in all cases. Gain in
vote-shares is significant in CP-Reg networks compared to the other networks, and we
find early allocations to nodes with negative edges in Reg-CP networks, which is
consistent with results in Fig. 5.5.

5.8 Summary and conclusions

The study of opinion dynamics has been conventionally focused on networks with
strictly positive edges. In the real-world however, networks often contain negative
social connections, which can spread negative or opposing influence, thus creating a
pressing need to understand how these edges affect influence maximisation efforts in
networks.

To address this concern, we presented a model for competitive spread of opinions in
signed networks under voter dynamics with continuous distribution of influence in
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FIGURE 5.8: Figures compare analytical and numerical results of equilibrium states.
Figures on the left depict change in strategies (ϵ) for both players as the budget ra-
tio changes. Here ϵ is the fraction of resource given to nodes with negative edges.
Figures on the right show gain in true vote-shares at equilibrium [X∗(GA)

A − X∗(GA+)
A ].

Simulations are conducted in networks of size N=200, ⟨ka⟩ = 16, ⟨kb⟩ = 4 where
negative ties are distributed only over half the network (p = 0.5). We consider three
network types (a) Reg-Reg, (b) CP-Reg-High and (c) Reg-CP networks. In Reg-CP net-
works, ϵ = ϵ1 + ϵ2, where ϵ1 and ϵ2 are fractions of resources given to high-negative
degree and low-negative degree nodes in the negative core-periphery component re-
spectively. Numerical simulations are run with a step-size η = 5 and terminated using
a µ = 10−7 approximation factor. Results are averaged over 10 networks and show

errorbars with 95% confidence intervals.
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this chapter. For comparison, we propose a complementary approach where
controllers observe only the absolute weights of all edges i.e. they consider all edges
to be positive. In both instances we present gradient ascent algorithms to numerically
solve the problem in large-scale arbitrary networks. We test the robustness of our
results in networks of varied structures under diverse budget conditions and
competitor allocations.

We find that in networks where 20% of edges are negative, controllers gain maximally
(nearly 18%) from awareness of negative edges, under low budget conditions, and
against competitors who deliberately avoid nodes with negative connections. We also
propose a supporting analytical approach to verify the accuracy of our algorithms.
Additionally, the analytical method yields closed-form solutions in simplified network
structures that provide valuable insights to the problem. We draw key observations
and intuitions about optimal allocations from these analytical solutions and show that
in networks with highly concentrated positive links, allocations on nodes are driven
by their negative degrees and the competitor’s allocation on these nodes. Finally, we
demonstrate the problem under game-theoretic settings, where we highlight
conditions under which a controller could lose vote-shares by implementing strategies
that exploit the knowledge of negative ties in the network. Specifically, we show that
when controllers have considerably less resources (or in some cases, excess budget),
the way they prioritise nodes to target, may inadvertently disclose additional
information about the network structure to a competitor, thus compromising the
controller’s position of advantage.

The results in this chapter, some of which are unexpected and others more intuitive,
present compelling evidence for heeding negative ties in any influence maximisation
exercise, which fundamentally contributes to the literature on competitive opinion
dynamics in signed networks. Possible extensions to this work would include
studying the problem under different constraint functions. For instance, controllers
may have to pay an additional cost to identify negative ties in the network, in which
case the optimisation problem not only determines optimal allocations to the network
but also determines how much of the budget should be optimally spent on
determining negative edges in the network. Furthermore, going forward, this work
could also serve as a foundation to guide empirical investigation on maximising
opinion spread in the presence of negative edges in the real world.
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Chapter 6

Conclusions and Future Directions

The work in this thesis explores the influence maximisation problem as a means to study
network-based interventions in social networks. We focus on competitive settings
where interventions aim to maximise the spread of a desirable behaviour by
minimising the spread of competing (and undesirable) behaviours. In this work, we
propose algorithms, that combine with network theory concepts, to determine the
optimal distribution of resources that can successfully promote desired collective
outcomes in populations in the presence of competition.

In the rest of the chapter, we summarise the work presented in this thesis by
highlighting our results, and our contributions to the field. Finally, we close with a
brief discussion on some open questions that can further research along this line of
investigation.

6.1 Continuous allocation of resources

The influence maximisation problem in its traditional setup assumes that influence
propagates in the network by means of a two-step process —a set of nodes are first
”seeded” with a desired behaviour, which then spreads to the rest of the population
through interpersonal interactions.

The traditional influence maximisation problem offers a black-box solution which only
presents the most influential nodes in the network, without revealing any information
about how the budget should be utilised to maximise the effect of the intervention. In
this thesis, we extend this approach further by proposing a model where resources are
continuously distributed. Nodes are targeted with varying intensities, based on their
role in the influence spread process, therefore yielding a richer solution to the influence
maximisation problem that explicitly shows how resources should be allocated for the
maximum effect, which is a result that could be highly beneficial to policy-makers.
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Additionally, the two-step spread process implicitly assumes that the network is
always successfully seeded at the start of the influence maximisation process. The act of
influencing people however, is significantly more complicated, and involves ample
uncertainty. To address this concern, we modify the approach where instead of
assuming that seed nodes are flipped to the desired state at the start of the process we
let the dynamics evolve under a continuous application of influence on the network.
The approach closely reflects many real-world settings where constant sources of
information are used to inform, educate and influence people (Sela et al. (2018)).

In Chapter 3 we examine the competitive influence maximisation problem with
continuous allocation of resources. The problem is first studied in a simplified star
topology to obtain closed-form analytical expressions for optimal allocations in
real-world settings. A key result obtained here shows that the optimal configurations
of allocations are defined by the ratio of controller budgets. More specifically, we
observe that when the focal controller has less budget in comparison to their
competitor, it is optimal to avoid nodes targeted by the competitor. Whereas when the
focal controller has more budget, more resources are diverted to the nodes targeted by
the competitor. More importantly, we show that continuous allocation of resources
consistently outperform discrete allocations to the network, irrespective of competitor
allocations and budget conditions. Finally, we study the problem in a game-theoretic
setting where both controllers actively target the network. We propose an algorithm to
determine the optimal allocation strategy for both controllers, and we find that the
equilibrium strategy is to target the network uniformly.

6.2 Nonlinear cost of influence

As highlighted earlier, the continuous distribution of resources in our model
addresses the limitation of the traditional discrete setup where only the most
influential nodes in the network are identified. However distributing resources
heterogeneously yields a related concern —how do we quantify the effect of allocated
resources to a node in terms of the strength of influence experienced by them?

As a first step (in Chapter 3), we assume that the amount of resources allocated is
directly proportional to the strength of influence. However this assumption may not
consistently apply to all real-world settings. For instance, some interventions take
longer to be understood or adopted (e.g. adoption of green technologies). Therefore in
Chapter 4 we further generalise our model by considering other nonlinear costs of
allocations, i.e. we consider nonlinear relations between the cost of influence and its
effect on the node.

In the first setting, we assume that a controller pays a fixed cost to prime any node in
the network for influence. In the real world, this may reflect the removal of adoption
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barriers in a population to facilitate the spread of a behaviour (Mobarak and Saldanha
(2022); Gates (2019)). We explore this problem analytically in star networks to obtain
preliminary insights about the optimal configurations of allocations and further
employ these results to design heuristics for larger networks. Principally, our results
show that the configuration of optimal allocations always shift from continuous to
discrete allocations as the cost of access increases. Thus bridging the gap between past
work, that typically considers discrete allocations, and our current model that assumes
continuous distribution of resources. We further present a simple heuristic method
that uses this result and show that it significantly outperforms many traditional
centrality-based heuristics (including greedy methods) in real-world networks.

In addition to the above setting, we consider other instances where the effect of
influence on a node increases nonlinearly with allocations. We focus on two particular
instances, one which exhibits a diminishing returns effect on influence as allocations
increase, and the other demonstrates a delayed effect on influence. We propose
analytical and numerical methods to handle both settings in the competitive influence
maximisation setup, and further show that our numerical results closely match our
analytical results in synthetic core-periphery networks. We then employ the numerical
approach to analyse a real-world network, where we illustrate the significance of
employing optimal strategies as opposed to common heuristic approaches. Our main
observation in both synthetic and real-world networks is that while the optimal
strategy is driven by budget availability in the delayed effect setting, the availability of
resources has limited effect on the optimal allocation pattern in the diminishing returns
setting. The vote-share yields from optimal allocations also differ significantly across
both regimes, i.e. optimal strategies offer significant increases in vote-shares in the
delayed effect region when compared to degree-based or uniform targeting. While
optimal strategies in the diminishing returns setting yield little to no improvement in
vote-shares when compared to naı̈ve approaches.

6.3 Presence of negative ties

In Chapter 5 we explore the competitive influence maximisation problem in networks
with negative edges (known as signed networks). Where most prior work has focused
on networks with strictly positive edges, we investigate the need to navigate
antagonistic relationships in influence maximisation efforts under competitive
conditions.

For this purpose, we propose a method that maximises influence spread in signed
networks, and compare it to a traditional approach where all edges are assumed to be
positive (naı̈ve approach). We first explore the problem in a real-world signed
network and show that by considering negative ties in the influence maximisation



104 Chapter 6. Conclusions and Future Directions

process, a controller can gain nearly 9% in vote-shares. We further examine the impact
of network topology, resource conditions and competitor strategies on the difference
in vote-shares obtained by both methods (i.e. the negative-tie sensitive approach and
the naı̈ve approach). We show that the knowledge of negative ties in the network is
highly beneficial when the competitor also has access to this information and
deliberately avoids negative ties in their influence maximisation strategy. Conversely,
we show that the controller does not gain any vote-shares when the competitor targets
a network (with homogeneously distributed negative ties) uniformly. We further
demonstrate that optimal allocations to nodes can be explained by their negative
degrees and the competitor allocations to them, and we show that the correlation
between them depends on the budget available to the controller. We finally explore
the problem in a game-theoretic setting, and illustrate how the knowledge of negative
ties affects outcomes in the game.

6.4 Future directions

We propose extensions to existing work in the field of competitive influence
maximisation in this thesis. By doing so we also open up new avenues of research that
can be explored beyond the scope of this thesis.

Our work here focuses on the voter model for reasons highlighted in Chapter 1. Our
results therefore strictly apply to the voter dynamics and are not transferable to other
dynamic models. An interesting way forward would be to apply the model proposed
in this work, and its extensions to other models, such as majority dynamics,
bounded-confidence models and so on, to study how results vary across other
real-world instances.

Additionally, in Chapter 4, we introduced a cost of access parameter in our model to
simulate the notion of adoption barriers in social intervention processes. As a first
step, we assumed a fixed cost of access for all nodes in the network. While this setting
gives us some interesting results, a way to take this work forward would be to
consider other cost functions. For example, considering a heterogeneous cost where
the cost of accessing a node is driven by its topological properties (for example, a
leader node with high degree-centrality may not be open to external influence and
therefore will be less accessible or have a high cost of access). It would also be
interesting to study the models proposed in Chapter 4 under game-theoretic settings
where apriori information about competitor allocations is not available.

In Chapter 5 we study the competitive influence maximisation problem in the presence
of negative ties, where we show that prior knowledge of negative edges can
significantly improve the outcome of network-based interventions in most settings.
We assume that where controllers are aware of negative edges, they are given this
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information apriori. However, it has been shown that negative ties are often difficult
to observe in the real world, and often require additional exploration of the network.
An interesting extension to this model would be to analyse settings where controllers
have no prior information of the network structure and have to use a portion of their
budget to determine the presence of negative ties. The question then becomes —how
does a controller optimally divide their budget between exploration and influence
maximisation?

Finally, the work presented in this thesis is theoretical. As pointed out in Chapter 1,
research in social sciences require a balance between theory and empirical results, and
thus we hope that the results in this thesis can be built upon further and used to
advance empirical investigations in this field.
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Appendix A

Continuous allocation of resources

A.1 Determining optimal allocations in star networks using
analytical methods

A.1.1 Competitor B targets the hub

Assuming competitor B targets the hub with b, we employ Eq. (3.2) to obtain the total
vote-share for controller A as

XA =

(n−kA+1)((a−α)α+akA)
(a−α)α+(a+b)kA+αb +

kA(
α

kA
+

(a−α)α+akA
(a−α)α+(a+b)kA+αb )

1+ α
kA

n + 1
, (A.1)

where a is the budget available to controller A. A fraction of this budget α is given to
kA peripheral nodes, i.e. each peripheral node is targeted with α

kA
. The remaining

budget (a− α) is given to the hub. Here n is the number of peripheral nodes.

Now, differentiating Eq. (A.1) wrt to kA yields

∂XA

∂kA
=

(a− α + b + n + 1)α2b
(n + 1)((a + b− α)α + (a + b)n)2 . (A.2)

Observe that ∂XA
∂kA

> 0 for any 0 < α ≤ a, implying that the optimal solution k∗A lies on
the boundary.

Replacing kA = n we solve ∂XA
∂α = 0 to obtain
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α∗ = (±
√︂
(n + 1)2 + (a + b)− (n + 1))n. (A.3)

A.1.2 Competitor B targets the periphery

Here competitor B targets the periphery with budget b, i.e. each peripheral node
receives b

n allocations. Assuming controller A targets kA peripheral nodes with a
fraction α of the total budget a (where (a− α) is allocated to the hub) in a star network
with n peripheral nodes, Eq. (3.2) yields a system of N-equations that give the
vote-share for each node in the network. Now, given the competitor’s allocation on
the network is fixed, and controller A’s strategy is parameterised using (α, kA) we
obtain three groups of nodes: (i) the hub node with pA = a− α and pB = 0, (ii) kA

peripheral nodes targeted with pA = α
kA

and pB = b
n , and finally (iii) (n− kA)

peripheral nodes targeted with pA = 0 and pB = b
n . The behaviour of all nodes within

each group are identical and given by

xA,1 =
(n + b)(((a− α)α + akA)n + bkA(a− α))

((α + kA)b + akA + (a− α)α)n2 + (bkA + (a− α)(2kA + α))bn + (a− α)b2kA
,

xA,2 =
α
k + xA,1

1 + α
kA

+ b
n

,

xA,3 =
xA,1

1 + b
n

,

respectively.

The total vote-share is then given by

XA =
xA,1 + kAxA, 2 + (n− kA)xA,3

n + 1
. (A.4)

Differentiating Eq. (A.4) wrt to kA yields,

∂XA

∂kA
=

1
n + 1

(︂∂xA,1

∂kA
+ kA

∂xA,2

∂kA
+ xA,2 + (n− kA)

∂xA,3

∂kA
− xA,3

)︂
.

We know that xA,3 =
xA,1

1+ b
n

. Therefore, replacing ∂xA,3
∂kA

= 1
1+ b

n

∂xA,1
∂kA

in the above
expression gives us
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∂XA

∂kA
=

1
n + 1

(︂(︂n− kA

1 + b
n

+ 1
)︂∂xA,1

∂kA
+ kA

∂xA,2

∂kA
+ xA,2 − xA,3

)︂
. (A.5)

We now look at each term individually to show that the overall expression ∂XA
∂kA
≥ 0.

We evaluate the terms under the conditions that a, b, n > 0, 0 ≤ α ≤ a and 0 ≤ kA ≤ n.

∂xA,1

∂kA
=

(b + n)(a− α + n)α2n2b(︂
((α + kA)b + akA + (a− α)α)n2 + (bkA + (a− α)(2kA + α))bn + (a− α)b2kA

)︂2

≥ 0;

∂xA,2

∂kA
=

((a− α + b)n + (a− α)b)(a− α + n)(b + n)(︂
((α + kA)b + akA + (a− α)α)n2 + (bkA + (a− α)(2kA + α))bn + (a− α)b2kA

)︂2

> 0;

xA,2 − xA,3 =
((1− xA,1)n + b)nα

(n + b)((α + kA)n + bkA)

≥ 0.

Therefore we show that XA is monotonically increasing in kA. Replacing kA = n we
solve ∂XA

∂α = 0 to obtain

α∗ = a + n + 1±
√︂
(a + b) + (n + 1)2. (A.6)

A.1.3 Competitor B targets uniformly

Following a similar approach as above (in Appendix A.1.2) and assuming B targets all
nodes with b

n+1 , we obtain three groups of nodes: (i) the hub node (xA,1) with
pA = a− α and pB = b

n+1 allocations, (ii) kA peripheral nodes (xA,2) targeted with
pA = α

kA
and pB = b

n+1 , and finally (iii) (n− kA) peripheral nodes (xA,3) targeted with
pA = 0 and pB = b

n+1 .

The expression for total vote-share is then given by

XA =
xA,1 + kAxA, 2 + (n− kA)xA,3

n + 1
. (A.7)
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where

xA,1 =

(1 + β)((a− α)(a + kAβ) + akA)

β3kA + ((n + a− α + 2)kA + α)β2 + ((a− α)(2kA + 1) + (n + 1)(kA + 1))β + akA + (a− α)α

xA,2 =

αβ2 + ((a− α + n + 1− kA)α + akA)β + akA + (a− α)α

β3kA + ((n + a− α + 2)kA + α)β2 + ((a− α)(2kA + 1) + (n + 1)(kA + 1))β + akA + (a− α)α
,

and finally xA,3 = xA,1.

We assume β = b
n+1 and differentiate ∂XA

∂kA
. Note that as competitor strategy is

independent of kA it should have no effect on our results.

We obtain

∂XA

∂kA
=

1
n + 1

(︂(︂n− kA

1 + β
+ 1
)︂∂xA,1

∂kA
+ kA

∂xA,2

∂kA
+ xA,2 − xA,3

)︂
,

where

∂xA,1

∂kA
=

(1 + β)(a− α + n + 1 + β)α2β(︂
β3kA + ((n + a− α + 2)kA + α)β2 + ((a− α)(2kA + 1) + (n + 1)(kA + 1))β + akA + (a− α)α

)︂2

≥ 0;

∂xA,2

∂kA
=

(1 + β)(a− α + n + 1 + β)((a− α + n + 1)(β) + a− α + (β)2)(β)α(︂
β3kA + ((n + a− α + 2)kA + α)β2 + ((a− α)(2kA + 1) + (n + 1)(kA + 1))β + akA + (a− α)α

)︂2

≥ 0;

xA,2 − xA,3 =
(n + 1)((1− xA,1)n + b + (1− xA,1))α

(b + n + 1)((n + 1)α + (b + n + 1)kA)

≥ 0.
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Given that a, b, n > 0, 0 ≤ α ≤ a and 0 ≤ kA ≤ n, we obtain ∂XA
∂kA
≥ 0 from the above.

Thus we replace kA = n and solve ∂XA
∂α = 0 to obtain

α∗ =
an

n + 1
. (A.8)

A.2 Game-theoretic analysis

To analyse the game-theoretic scenario in a star network, we begin by parameterising
the allocation vectors for both controllers A and B, such that their vote-shares are
given by XA(α, kA) and XB(β, kB) respectively, where α and β are the amounts of
resources allocated to kA and kB peripheral nodes. When controller strategies are not
fixed, and A targets kA peripheral nodes and B targets kB peripheral nodes, we get (i)
kAkB

n peripheral nodes targeted by both controllers, (ii) kA − kAkB
n peripheral nodes

targeted only by A, (iii) kB − kAkB
n peripheral nodes targeted only by B, and (iv)

n− (kA + kB− kAkB
n ) untargeted peripheral nodes. Based on this, we obtain the total

vote-share function for A as

XA =

((1 + bp)
2(ah + α)n2 − (((kB − bh − 1)bp − bh − 1)α + ah(−1 + (kB − 1)bp))(1 + bp)n

+ α((−bh − 1)bp + ah − bh − 1)kBbp)k2
A + α((1 + bp)(α + ah(bp + 2))n2

+ ((1 + bp)(bh + 1)α− (bp + 2)ah(−1 + (kB − 1)bp))n + kBahbpα)kA

+ ah(n(1 + bp) + 1 + (−kB + 1)bp)α
2n

((((1 + bp)α + (kB + ah + bh)bp + ah + bh)kA + ((kB + ah + bh)bp + ah + bh)α)

((1 + bp)kA + α)n− αkBbpkA((bp + 2)kA + α))(n + 1)

where ah = a− α, bh = b− β and bp = β
kB

are replaced to make the expressions more
presentable. Note that a similar expression can be obtained for the vote-share XB for
controller B.

We obtain the partial differential as ∂XA
∂kA

follows,

∂XA

∂kA
=

(n− kB)(b3
pk2

An(bh + kB) + b2
pkAn(2h + 3bhkA + 2kAkB) + αb2

pkAkB(2n− kA))

+ α2n(bpkB(ah + n) + bhn(bp + 1)) + ahbpkAkBn(2α + kA) + 2αbpkAn2(2bh + kB)

+ bpk2
An2(3bh + kB) + bhkAn2(2α + kA)− 2bhbpkAkBn(α + kA)

(n + 1)((((1 + bp)α + (kB + ah + bh)bp + ah + bh)kA + ((kB + ah + bh)bp + ah + bh)α)

((1 + bp)kA + α)n− αkBbpkA((bp + 2)kA + α))2.
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Observe that here ∂XA
∂kA
≥ 0, given that 0 < kA ≤ n; 0 < kB ≤ n; {ah, bh, bp} ≥ 0 and

n > 0. A similar approach can be used to show that ∂XB
∂kB
≥ 0 (as players are

inter-changeable in this game).

Replacing kA = n and kB = n in XA and XB, and finally solving {∇αXA,∇βXB} = 0
simultaneously, gives us

{︂
α∗, β∗

}︂
=
{︂ an

n + 1
,

bn
n + 1

}︂
. (A.9)

A.3 Convexity proof

Here we prove that the vote-share function is convex in competitor allocations and
concave in controller allocations. To begin, we consider the vote-share function of, say
competitor B, which is given by,

XB = [L + diag(pA + pB)]
−1 pB. (A.10)

Considering Eq. (A.10) is a function of pA, we restrict the vote-share function to an
arbitrary line g(t) = XB(pA + tV) such that

g(t) = [L + diag(pA + tV + pB)]
−1 pB. (A.11)

where (pA + tV) ∈ RN
+ ; t ∈ R and V ∈ RN .

To check convexity, we need to obtain the second derivative, ∂2g(t)
∂t2 . We begin by

differentiating Eq. (A.11) wrt t to obtain,

[L + diag(pA + tV + pB)]
∂g(t)

∂t
+ diag(V)g(t) = 0. (A.12)

Now, replacing Eq. (A.11) in Eq. (A.12), and differentiating the resulting expression
wrt t, we get

[L + diag(pA + tV + pB)]
∂2g(t)

∂t2 + diag(V)
∂g(t)

∂t
− [L + diag(pA + tV + pB)]−1diag(V)2[L + diag(pA + tV + pB)]−1 pB = 0.

(A.13)

Replacing Eqs. (A.11) and (A.12) in Eq. (A.13) and solving for ∂2g(t)
∂t2 we get,

∂2g(t)
∂t2 = 2[L + diag(pA + tV + pB)]

−3diag(V2)pB. (A.14)
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Note that the expression on the right yields a N × N Hessian matrix with strictly
positive elements1, thus proving that g(t) is a convex function of t, and in extension
XB is a convex function of pA (Boyd et al. (2004)). Moreover, as XB = (1− XA), we can
conclude that XA is a concave function of pA, with a global maximum.

1Note that, [L + diag(pA + tV + pB)] here is a class of M-matrices (Plemmons (1977)). The inverse of
such a matrix is entity-wise nonnegative (Johnson (1982)).
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Appendix B

Nonlinear costs of allocation

B.1 Analysis of the star topology

Here we illustrate results of the competitive influence maximisation problem —under a
fixed cost of access —in the star topology for unequal budgets.

(a) (b)

(c) (d)

FIGURE B.1: Figure showing how optimal allocations vary with cost of access c, in a
star network of size N = 1000. Figure (a) and (b) illustrate the instance where com-
petitor B targets the network uniformly. Controller budget in Figure (a) is BA = 0.1BB,
while in Figure (b) BA = 10BB. Competitor B targets the hub node in Figures (c) and
(d). Controller has less budget BA = 0.1BB in Figure (c), and BA = 10BB in Figure (d).

The blank regions corresponds to values that do not meet the budget constraint.
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B.2 Patterns of optimal allocations in a real-world
collaboration network for varying costs of access
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FIGURE B.2: Figure showing the optimal allocation patterns of heuristics —in terms
of the average degree of targeted nodes ⟨kA⟩—for increasing costs of access, in a real-
world collaboration network (Rossi and Ahmed (2015); Guimera et al. (2003)). Error-

bars represent standard errors.
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B.3 Algorithm for the diminishing returns setting

Assuming that allocation vector is incrementally changed with ρA, the second-order
Taylor expansion of the constraint function yields,

∑
i
(pA,i + ρA,i)

γ ≈
N

∑
i

pγ
A,i + γ ∑

i
p(γ−1)

A,i ρA,i +
γ(γ− 1)

2
pγ−2

A,i ρ2
A,i. (B.1)

As ρA,i ≪ pA,i, from Eq. (B.1) we get

γ ∑
i

p(γ−1)
A,i ρA,i +

γ(γ− 1)
2

pγ−2
A,i ρ2

A,i = 0, (B.2)

which yields the dual problem as,

UA = XA + ηγ ∑
i

p(γ−1)
A,i ρA,i +

γ(γ− 1)
2

pγ−2
A,i ρ2

A,i, (B.3)

where η is the step-size.

Differentiating UA with respect to ρA,i we get,

ρA,i + ηγ
[︂

pγ−1
A,i + (γ− 1)pγ−2

A,i ρA,i

]︂
= 0, (B.4)

which can be rearranged to obtain the optimal direction ∆pA,i,

∆pA,i = ρA,i = −
1

γ− 1

(︄
ρA,i

ηγpγ−2
A,i

+ pA,i

)︄
(B.5)

As the second term in Eq. (B.5) does not affect the direction, we obtain

∆pA,i =
ρA,i

ηγ(γ− 1)pγ−2
A,i

, (B.6)

and therefore we update the allocation vector pA,i as

pA,i ← pA,i +
ρA,i

ηpγ−2
A,i

, (B.7)
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normalised at every time step to satisfy the budget constraint.
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Appendix C

In the presence of negative ties

C.1 A comparative approach: removing negative ties

When controllers are unable to detect or observe negative edges in the network, i.e.
wij = max(0, wij), the optimisation problem reduces to

p∗A = argmaxpA
X∗(ϕ)A (L(ϕ), pB, BA). (C.1)

where L(ϕ) is the updated Laplacian. Following the same process as before we use the
gradient ∇pA X(ϕ)

A = 1/N1⃗
T
[L(ϕ) + diag(pA + pB)]

−1(I − diag(x(ϕ)A ) to optimise
allocations p∗A in a gradient ascent algorithm GA(ϕ). Here

x∗(ϕ)A,i = (pA,i +
ka

∑
j

wjix
(ϕ)
A,j )/(

ka

∑
j

wji + pA,i + pB,i).

We then run GA, GA(+) and GA(ϕ) on the Bitcoin network and present the respective
gains in vote-shares in Fig. C.1.

We find that the method assuming negative edges in the network to be positive GA(+)

consistently outperforms GA(ϕ), where negative edges are not considered at all. To
further show that the vote-shares obtained through both methods are identical in
undirected networks (and that comparing our results to only GA(+) is sufficient), we
look at the allocation expression in Eq. (C.9). Here we find that the optimal allocation,
in the absence of any knowledge of negative edges, depends solely on the individual
budgets of the controllers and the adversarial allocations on the nodes, but not on the
degrees of the nodes.
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FIGURE C.1: Figure showing gain in vote-shares when comparing the negative-tie
sensitive optimisation approach GA, to traditional approaches, GA(+) and GA(ϕ) for

budget ratios BA/BB ∈ [0.05, 1]. Controller B here targets the network uniformly.

C.2 Limiting case

We begin with the series expansion of the steady-state equation in Eq. (5.13) to obtain,

XA = ⟨
akakb

ka
⟩+ ⟨ kb

ka
⟩+ ⟨1−

akakb + bkakb + kb

ka
⟩⟨xa⟩ − ⟨

kb

ka
⟩⟨xb⟩, (C.2)

where a second-order expansion for ⟨xa⟩ gives us,

⟨xa⟩ =
a + ⟨kb⟩ − ⟨ (a+kb)(a+b+2kb)

ka
⟩

a + b + 2⟨kb⟩
+

a + ⟨kb⟩
(a + b + 2kb)2

(︄
⟨

k2
b

ka
⟩+ ⟨ (a + b + kb)(a + b + 3kb)

ka
⟩
)︄

,

(C.3)

and a zero-order expansion for ⟨xb⟩ gives us

⟨xb⟩ =
a + ⟨kb⟩

a + b + ⟨kb⟩
. (C.4)
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Finally, replacing Eqs. (C.3) and (C.4) in Eq. (C.2) and ignoring higher-order terms, we
obtain

XA ≈ ⟨
akakb

ka
⟩+ ⟨ kb

ka
⟩+

akakb + ⟨kb⟩
akakb + bkakb + 2⟨kb⟩

−
⟨ (akakb

+kb)(akakb
+bkakb

+2kb)

ka
⟩

akakb + bkakb + 2⟨kb⟩

+
akakb + ⟨kb⟩

(akakb + bkakb + 2⟨kb⟩)2

(︄
⟨

k2
b

ka
⟩+ ⟨

(akakb + bkakb + kb)(akakb + bkakb + 3kb)

ka
⟩

−⟨
akakb + bkakb + kb

ka
⟩

akakb + ⟨kb⟩
akakb + bkakb + 2⟨kb⟩

− ⟨ kb

ka
⟩

akakb + ⟨kb⟩
akakb + bkakb + ⟨kb⟩

)︄
.

(C.5)

Note that all terms in Eq. (C.5) are averaged over the joint positive and negative
degree distribution Pkakb .

We can now apply the Lagrange method to maximise vote-shares XA against a passive
controller B. The Lagrangian is derived as L = XA + λ(∑kakb Pkakb akakb − ⟨akakb⟩N),
where λ is the Lagrangian multiplier. Differentiating L wrt allocations akakb we obtain

∂L
∂akakb

=
1
ka
−

2akakb + bkakb + 3kb

⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩
1
ka

+ 2
⟨akakb⟩ + ⟨kb⟩

(⟨akakb⟩+ ⟨bkakb⟩ + 2⟨kb⟩)2

akakb + bkakb + 2kb

ka

−
⟨akakb⟩+ 2⟨kb⟩

⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩
1
ka

+ λ = 0.

(C.6)

Solving for akakb gives us,

=⇒ akakb =
1
2

(︄
⟨akakb⟩ − ⟨bkakb⟩
⟨bkakb⟩+ ⟨kb⟩

bkakb +
⟨akakb⟩ − 3⟨bkakb⟩ − 2⟨kb⟩

⟨bkakb⟩+ ⟨kb⟩
kb

+⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩+ ⟨ka⟩
λ(⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩)2

⟨bkakb⟩+⟨kb⟩

)︄
,

(C.7)

which still contains the Lagrangian multiplier λ. To appropriately deal with λ we
average over Eq. (C.7) and assume the budget per node ⟨akakb⟩ is sufficiently large.

Therefore
λ(⟨akakb

⟩+⟨bkakb
⟩+2⟨kb⟩)2

⟨bkakb⟩+⟨kb⟩
→ 0, which finally gives us the expression for the

optimal allocation,

a∗kakb
=

1
2

(︄
⟨akakb⟩ − ⟨bkakb⟩
⟨bkakb⟩+ ⟨kb⟩

bkakb +
⟨akakb⟩ − 3⟨bkakb⟩ − 2⟨kb⟩

⟨bkakb⟩+ ⟨kb⟩
kb + ⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩

)︄
.

(C.8)
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C.3 Uniformly distributed negative edges and uniform
competitor allocations

When a controller cannot observe negative edges, the expression for optimal
allocation is given as,

ak =
1
2

(︄
⟨ak⟩ − ⟨bk⟩
⟨bk⟩

bk + ⟨ak⟩+ ⟨bk⟩
)︄

. (C.9)

where k = ka + kb.

The final vote-share in this case X(+)
A is obtained by replacing Eq. (C.9) in Eq. (C.5).

Gain in vote-shares can therefore be quantified as,

XA − X(+)
A =

1
⟨akakb⟩+ ⟨bkakb⟩+ 2⟨kb⟩

(︂
(⟨bkakb⟩+ ⟨kb⟩)⟨

akakb − ak

ka
⟩

+
⟨akakb⟩+ ⟨kb⟩

⟨akakb⟩+ ⟨akakb⟩+ 2⟨kb⟩
⟨
(akakb − ak)(akakb + ak + 2⟨bkakb⟩+ 4kb)

ka
⟩

− ⟨
(akakb − ak)(akakb + ak + ⟨bkakb⟩+ 3kb)

ka
⟩
)︂

.

Furthermore, the term akakb − ak in the above expression can be derived using
Eqs. (C.8) and (C.9) as,

akakb − ak =
(︂

1−
⟨akakb⟩ − ⟨bkakb⟩

2⟨bkakb⟩
bkakb

⟨bkakb⟩+ ⟨kb⟩

)︂
⟨kb⟩+

⟨akakb⟩ − 3⟨bkakb⟩ − 2⟨kb⟩
2(⟨bkakb⟩+ ⟨kb⟩)

kb.

(C.10)

We consider networks with regular negative graphs, kb = ⟨kb⟩ where an adversary
uniformly targets the network, bkakb = ⟨bkakb⟩. The above relations further simplify
Eq. (C.10) as,

akakb − ak =

(︄(︂
1−
⟨akakb⟩ − ⟨bkakb⟩
2(⟨bkakb⟩+ ⟨kb⟩)

)︂
+
⟨akakb⟩ − 3⟨bkakb⟩ − 2⟨kb⟩

2(⟨bkakb⟩+ ⟨kb⟩)

)︄
⟨kb⟩ = 0.

Therefore, it follows that gain XA − X(+)
A = 0, against an adversary targeting all nodes

uniformly, in networks with regular negative components.
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