
THE SUSPENSION OF A 4-MANIFOLD AND ITS APPLICATIONS

TSELEUNG SO AND STEPHEN THERIAULT

Abstract. Let M be a smooth, orientable, closed, connected 4-manifold and suppose
that H1(M ;Z) is finitely generated and has no 2-torsion. We give a homotopy decomposition
of the suspension of M in terms of spheres, Moore spaces and ΣCP 2. This is used to calculate
any reduced generalized cohomology theory of M as a group and to determine the homotopy
types of certain current groups and gauge groups.

1. Introduction

LetM be a smooth, orientable, closed, connected 4-manifold. This implies by Morse theory
that M has a CW -structure with one 4-cell. Suppose that H1(M ;Z) is finitely generated
and has no 2-torsion. Specifically, assume that:

• H1(M ;Z) ∼= Zm ⊕
n⊕
j=1

Z/bjZ;

• each bj is a prime power, where the prime is odd.

(1)

From (1), by Poincaré Duality, the integral homology of M is:

(2)

i Hi(M ;Z)
0 Z
1 Zm ⊕

⊕n
j=1 Z/bjZ

2 Zd ⊕
⊕n

j=1 Z/bjZ
3 Zm

4 Z
≥ 5 0

where d ≥ 0 can be any integer. Our main theorem identifies the homotopy type of ΣM .

Theorem 1.1. Let M be a smooth, orientable, closed, connected 4-manifold and suppose
that H1(M ;Z) is finitely generated and has no 2-torsion. If M is Spin then there is a
homotopy equivalence

ΣM '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨
k=1

S3

)
∨ S5.

If M is non-Spin then there is a homotopy equivalence

ΣM '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d−1∨
k=1

S3

)
∨ ΣCP 2.
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In fact, Theorem 1.1 is a special case of a more general result about the suspension
of 4-dimensional CW -complexes whose cohomology satisfies Poincaré Duality and has no
2-torsion (see Theorem 5.9). Such a classification fits into a long history of classifying
CW -compexes with cells occurring in a small number of consecutive dimensions, with con-
tributions, for example, by Whitehead [32, 33], Chang [4], Baues and Hennes [3], Baues and
Drozd [2] and Pan and Zhu [21]. Apart from [33], these classifications occur in the stable
range; the classification in Theorem 5.9 notably occurs unstably.

A key aspect of Theorem 1.1 is that the suspension of M involves only three types of
spaces: spheres, Moore spaces and ΣCP 2. Each is simple and characterizes a cohomological
property: a sphere corresponds to an isolated Z summand, a Moore space corresponds
to a torsion summand, and a ΣCP 2 corresponds to two Z summands connected by the
Steenrod operation Sq2. The hypothesis that only odd torsion in cohomology is allowed is
necessary to achieve this. For example, the suspension of S1 × RP3 is homotopy equivalent
to S2∨ΣRP3∨Σ2RP3 which does not split as in Theorem 1.1 since ΣRP3 is indecomposable.
The list of indecomposable wedge summands at the prime 2 would therefore be much more
complex.

The simple description of ΣM in Theorem 1.1 is advantageous. It implies that the homo-
topy type of ΣM is completely determined by only two properties: (i) whether M is Spin or
not and (ii) H∗(M ;Z) (or equivalently, H∗(M ;Z)).

Interestingly, while suspending a manifold loses all the geometry, it does give access to
many other properties. Theorem 1.1 is applied in three different contexts: to determine any
reduced generalized cohomology theory of M , to determine the homotopy type of certain
current groups associated to M , and to determine the homotopy type of certain gauge groups
associated to M . These applications are discussed in detail in Section 6.

To prove Theorem 1.1 new methods are developed that use homology and cohomology
to detect whether certain maps are null homotopic. This generalizes Neisendorfer’s work in
defining and determining the mod-pr Hopf invariant [20].

2. Preliminary information on Moore spaces

This section records some information on the homotopy groups of Moore spaces which will
be needed later. For m ≥ 2 and k ≥ 2, the mod-k Moore space Pm(k) of dimension m is the
homotopy cofibre of the degree k map on Sm−1. Notice that ΣPm(k) ' Pm+1(k).

Lemma 2.1. If p is an odd prime and r ≥ 1 then π3(P 3(pr)) ∼= Z/prZ.

Proof. Consider the homotopy fibration F 3(pr) −→ P 3(pr)
q−→ S3 where q is the pinch map

to the top cell. This induces an exact sequence

[S3,ΩS3] −→ [S3, F 3(pr)] −→ [S3, P 3(pr)]
q∗−→ [S3, S3].

At odd primes, π3(ΩS3) ∼= 0. Since P 3(pr) is rationally trivial and π3(S3) → π3(S3) ⊗ Q is

injective, any composite S3 f−→ P 3(pr)
q−→ S3 must have degree zero. Hence q∗ = 0. Thus,

by exactness, π3(F 3(pr)) ∼= π3(P 3(pr)).
To complete the proof it is now equivalent to show that π2(ΩF 3(pr)) ∼= Z/prZ. For m ≥ 1,

let S2m+1{pr} be the homotopy fibre of the degree pr map on S2m+1. In particular, S2m+1{pr}
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is (2m− 1)-connected. By [19, Proposition 14.2] there is a homotopy equivalence

ΩF 3(pr) ' S1 ×
( ∞∏
j=1

S2pj−1{pr+1}
)
× ΩR3(pr)

where R3(pr) is a wedge of mod-pr Moore spaces consisting of a single copy of P 4(pr) and
all other wedge summands being at least 3-connected. In particular, for R3(pr), by the
Hilton-Milnor Theorem there is an isomorphism π3(R3(pr)) ∼= π3(P 4(pr)). Further, the
Hurewicz homomorphism implies that π3(P 4(pr)) ∼= H3(P 4(pr)) ∼= Z/prZ. Returning to

the decomposition of ΩF 3(pr), since each space S2pj−1{pr+1} is at least 3-connected, we
obtain π2(ΩF 3(pr)) ∼= π2(ΩR3(pr)) and we have just seen that π2(ΩR3(pr)) ∼= Z/prZ. �

Lemma 2.2. [23, Lemma 3.3] If p is an odd prime and r ≥ 1 then π4(P 3(pr)) ∼= 0
and π4(P 4(pr)) ∼= 0. �

Lemma 2.3. [19, Corollary 6.6] Let p be an odd prime, s, t ≥ 1 and m,n ≥ 2. Then there
is a homotopy equivalence

Pm(ps) ∧ P n(pt) ' Pm+n−1(pmin(s,t)) ∨ Pm+n(pmin(s,t)). �

Lemma 2.4. Let p be an odd prime and s, t ≥ 1. Then π3(ΣP 2(ps)∧P 2(pt)) ∼= Z/pmin(s,t)Z.

Proof. By Lemma 2.3 and for dimensional reasons there are isomorphisms

π3(ΣP 2(ps) ∧ P 2(pt)) ∼= π3(P 4(pmin(s,t)) ∨ P 5(pmin(s,t)) ∼= π3(P 4(pmin(s,t))).

Since P 4(pmin(s,t)) is 2-connected, by the Hurewicz Theorem there are isomorphisms

π3(P 4(pmin(s,t))) ∼= H3(P 4(pmin(s,t));Z) ∼= Z/pmin(s,t)Z.
�

3. A homological test for a null homotopy I

In the next two sections we give homological and cohomological criteria determining when
certain maps are null homotopic. These maps are from S3 or P 3(pr) into a wedge

∨m
i=1 P

3(pri).
So the material in this section and the next focus on 3-dimensional Moore spaces.

In what follows we will use the terms “homotopy fibration diagram” and “homotopy
cofibration diagram”. To explain these, recall that there is a standard construction that
turns any continuous, pointed map f : X −→ Y that is a surjection on path-components
into a fibration, in the sense that f factors as p ◦ φ where φ : X −→ X ′ is a homotopy
equivalence and p : X ′ −→ Y is a fibration (see, for example, [25, Theorem 7.1.14]). The
homotopy fibre of f is the fibre of p. As in [25, Section 7.6], a homotopy commutative square

(3)

W
g′ //

f ′

��

X

f
��

Y
g // Z

is equivalent up to homotopy to a strictly commutative square in which the horizontal maps
are fibrations. This induces a map between fibres, that is, a map between the homotopy
fibres of g′ and g. It is notable that while the homotopy types of the fibres are determined by
the homotopy classes of g′ and g, the homotopy class of the induced map is not determined
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by the homotopy classes of f and f ′. However, the induced map γ can be chosen via the
standard construction above so that there is a homotopy commutative diagram of fibration
sequences

ΩX
∂′ //

Ωf
��

F ′ //

γ

��

W
g //

f ′

��

X

f
��

ΩY
∂ // F // Y

g // Z.

Further, this diagram could be extended vertically as well, as in [25, Thoerem 7.6.2], to pro-
duce a homotopy commutative diagram in which each consecutive pair of horizontal maps
and each consecutive pair of vertical maps is a homotopy fibration. Any such diagram orig-
inating from the square (3) and extending via homotopy fibrations horizontally or vertically
in this manner is called a homotopy fibration diagram. A homotopy cofibration diagram is
defined dually.

In general, let i1 : ΣX −→ ΣX ∨ ΣY and i2 : ΣY −→ ΣX ∨ ΣY be the inclusions of the
left and right wedge summands respectively. Let

[i1, i2] : ΣX ∧ Y −→ ΣX ∨ ΣY

be the Whitehead product of i1 and i2.
Let r, s, t be positive integers such that s, t ≥ r. Then

H2(P 3(ps);Z/prZ) ∼= H2(P 3(pt);Z/prZ) ∼= Z/prZ.
Let us and ut be the generators of H2(P 3(ps);Z/prZ) and H2(P 3(pt);Z/prZ) respectively.
Then H2(P 3(ps)× P 3(pt);Z/prZ) is generated by us ⊗ 1 and 1⊗ ut.

Lemma 3.1. Let p be a prime and let s and t be integers such that s, t ≥ 1. Then there is
an isomorphism

H4(P 2(ps)× P 2(pt);Z/pmin(s,t)Z) ∼= Z/pmin(s,t)Z
and us ∪ ut is a generator.

Proof. One case of the Künneth Theorem (see, for example, [10, Theorem 3.15]) is as follows.
If X and Y are CW -complexes, R is a ring, and Hk(Y ;R) is a finitely generated R-module for
all k then the cross product H∗(X;R)⊗RH∗(Y ;R) −→ H∗(X×Y ;R) is a ring isomorphism.
In our case, if r = min(s, t) then both H∗(P 2(ps);Z/prZ) and H∗(P 2)(pt);Z/prZ) are finitely
generated free Z/prZ-modules. Therefore, by the Künneth Theorem, there are isomorphisms

H4(P 2(ps)× P 2(pt);Z/prZ) ∼= H2(P 2(ps);Z/prZ)⊗H2(P 2(pt);Z/prZ)
∼= Z/prZ⊗ Z/prZ ∼= Z/prZ

and us ∪ ut is a generator. �

Propositions 3.2 and 3.3 give useful tests for when a certain map is null homotopic.

Proposition 3.2. Let p be an odd prime and s, t ≥ 1. Let f : S3 → ΣP 2(ps) ∧ P 2(pt) be a
map and let C be the homotopy cofiber of the composite

S3 f−→ ΣP 2(ps) ∧ P 2(pt)
[ı1,ı2]−→ P 3(ps) ∨ P 3(pt).

The following are equivalent:

(a) the map f is null homotopic;

(b) H3(ΣP 2(ps) ∧ P 2(pt);Z/pmin(s,t)Z)
f∗−→ H3(S3;Z/pmin(s,t)Z) is the zero map;
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(c) all cup products in H̃∗(C;Z/pmin(s,t)Z) are zero.

Proof. (a) ⇔ (b). Let u = min(s, t) and consider the following string of isomorphisms:

π3(ΣP 2(ps) ∧ P 2(pt)) ∼= H3(ΣP 2(ps) ∧ P 2(pt);Z)

∼= H3(P 4(pu) ∨ P 5(pu);Z)

∼= H3(P 4(pu) ∨ P 5(pu);Z/puZ)

∼= H3(P 4(pu) ∨ P 5(pu);Z/puZ)

∼= H3(ΣP 2(ps) ∧ P 2(pr);Z/puZ)

The first isomorphism is due to the Hurewicz Theorem because ΣP 2(ps) ∧ P 2(pt) is 2-
connected. The second isomorphism holds by Lemma 2.3. The third isomorphism holds
since H3(P 4(pu) ∨ P 5(pu);Z) ∼= H3(P 4(pu);Z) ∼= Z/puZ and changing homology coefficients
from Z to Z/puZ induces an isomorphism here. The fourth isomorphism holds by the Uni-
versal Coefficient Theorem. The fifth isomorphism holds by Lemma 2.3. Observe that under

these isomorphisms the map S3 f−→ ΣP 2(ps) ∧ P 2(pt) is sent to

H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ)
f∗−→ H3(S3;Z/puZ).

Thus f is null homotopic if and only if f ∗ = 0 in degree 3 mod-pu cohomology.

(a) ⇒ (c). If f is null homotopic then C ' P 3(ps) ∨ P 3(pt) ∨ S4 is a suspension, so all cup

products in H̃∗(C;Z/puZ) are zero.

(c) ⇒ (b). Consider the homotopy cofibration diagram

(4) S3 f // ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]

��

// Cf

��
S3

��

[ı1,ı2]◦f
// P 3(ps) ∨ P 3(pt)

��

// C

d

��
∗ // P 3(ps)× P 3(pt) P 3(ps)× P 3(pt)

where Cf is the homotopy cofibre of f and d is an induced map. As Cf is 2-connected, there
is an isomorphism

d∗ : H2(P 3(ps)× P 3(pt);Z/puZ)→ H2(C;Z/puZ).

Therefore H2(C;Z/puZ) is generated by d∗(us ⊗ 1) and d∗(1⊗ ut).
The right column of (4) induces the exact sequence

(5) H3(C;Z/puZ)→ H3(Cf ;Z/puZ)
b→ H4(P 3(ps)× P 3(pt);Z/puZ)

d∗→ H4(C;Z/puZ).

By Lemma 3.1, H4(P 3(ps)×P 3(pt);Z/puZ) ∼= Z/puZ is generated by the cup product us ∪ ut.
The naturality of the cup product implies that d∗(us ∪ ut) = d∗(us) ∪ d∗(ut). But by as-

sumption, cup products in H̃∗(C;Z/puZ) are zero. Therefore d∗ = 0 in (5), implying that b
is onto. Hence the order of H3(Cf ;Z/puZ) is at least pu.

On the other hand, the top row of (4) induces the exact sequence

(6) H2(S3;Z/puZ)→ H3(Cf ;Z/puZ)
a→ H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ)

f∗→ H3(S3;Z/puZ).
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Since H2(S3;Z/puZ) = 0, the map a is an injection, and by Lemma 2.3,

H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ) ∼= Z/puZ.

Hence the order of H3(Cf ;Z/puZ) is at most pu.
Thus H3(Cf ;Z/puZ) has order pu. But this implies that a is a monomorphism between

finite groups of the same order and so must be an isomorphism. Therefore f ∗ in (6) is the
zero map. �

A similar argument to Proposition 3.2, but with variations, gives the following.

Proposition 3.3. Let p be an odd prime and r, s, t ≥ 1. Let f : P 3(pr)→ ΣP 2(ps)∧ P 2(pt)
be a map and let C be the homotopy cofiber of the composite

P 3(pr)
f−→ ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]−→ P 3(ps) ∨ P 3(pt).

Let v = min(r, s, t). Then the following are equivalent:

(a) the map f is null homotopic;

(b) H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ)
f∗−→ H3(P 3(pr);Z/pvZ) is the zero map;

(c) all cup products in H̃∗(C;Z/pvZ) are zero.

Proof. (a)⇔ (b): Let u = min(s, t) and consider the following string of isomorphisms

[P 3(pr),ΣP 2(ps) ∧ P 2(pt)] ∼= H3(ΣP 2(ps) ∧ P 2(pt);Z/prZ)

∼= H3(ΣP 2(ps) ∧ P 2(pt);Z/prZ)

∼= H3(P 4(pu) ∨ P 5(pu);Z/prZ)

∼=
{

Z/prZ if r < u
Z/puZ if r ≥ u

∼= Z/pvZ
∼= H3(P 4(pu) ∨ P 5(pu);Z/pvZ)

∼= H3(ΣP 2(pr ∧ P 2(ps);Z/pvZ)

The first isomorphism is due to the mod-pr Hurewicz isomorphism since ΣP 2(ps) ∧ P 2(pt)
is 2-connected. The second isomorphism holds by the Universal Coefficient Theorem and the
third holds by Lemma 2.3. The fourth isomorphism is the calculation of degree 3 cohomology,
the fifth holds since v = min(r, s, t) = min(r, u), the sixth is calculation again, and the
seventh holds by Lemma 2.3. The transition from the second to the seventh is induced by
the map of coefficient rings induced by the epimorphism Z/prZ −→ Z/pvZ. Thus, under
these isomorphisms, a map f : P 3(pr) −→ ΣP 2(ps) ∧ P (pt) is sent to the map it induces in
mod-pv cohomology. Thus f is null homotopic if and only if f ∗ = 0 in mod-pv cohomology.
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(b)⇔ (c): Consider the homotopy cofibration diagram

P 3(pr)
f // ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]

��

// Cf

��
P 3(pr)

��

[ı1,ı2]◦f
// P 3(ps) ∨ P 3(pt)

��

// C

d

��
∗ // P 3(ps)× P 3(pt) P 3(ps)× P 3(pt)

where Cf is the homotopy cofibre of f and d is an induced map. As Cf is 2-connected,

d∗ : H2(P 3(ps)× P 3(pt);Z/pvZ)→ H2(C;Z/pvZ)

is an isomorphism. Therefore H2(C;Z/pvZ) is generated by d∗(us ⊗ 1) and d∗(1⊗ ut). The
diagram also induces a diagram of exact sequences

H3(Cf ;Z/pvZ)
a //

b
��

H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ)
f∗ //

c

��

H3(P 3(pr);Z/pvZ)

H4(P 3(ps)× P 3(pt);Z/pvZ)

d∗

��

H4(P 3(ps)× P 3(pt);Z/pvZ)

��
H4(C;Z/pvZ) // H4(P 3(ps) ∨ P 3(ps);Z/pvZ) = 0

where a, b and c are names for the maps induced in cohomology. Observe that, in the middle
column, s, t ≥ v so

H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ) ∼= H4(P 3(ps)× P 3(pt);Z/pvZ) ∼= Z/pvZ,
implying that c is an isomorphism. Therefore, the commutativity of the top square im-
plies that a is surjective if and only if b is. On the other hand, the top row implies
that a is surjective if and only if f ∗ is the zero map, while the left column implies that b
is surjective if and only if d∗ is the zero map. Thus f ∗ = 0 if and only in d∗ = 0.
Since H4(P 3(ps)× P 3(pt);Z/pvZ) is generated by us∪ut, d∗ = 0 if and only if H4(C;Z/pvZ)
has no cup products. Hence f ∗ = 0 if and only if H4(C;Z/pvZ) has no cup products. �

4. A homological test for a null homotopy II

In this section we aim towards Proposition 4.4, which gives homological and cohomological
criteria for when certain maps are null homotopic, and which is applicable much more widely
than Propositions 3.2 and 3.3. It also generalizes a result of Neisendorfer [20, Corollary 11.12]
on the mod-pr Hopf invariant. We rephrase that result in weaker form for a better comparison
to Proposition 4.4.

Lemma 4.1. Let p be an odd prime and r, s ≥ 1. Let f : P 3(pr) −→ P 3(ps) be a map and
let Cf be its cofibre. If

• f∗ : H̃∗(P 3(pr);Z) −→ H̃∗(P
3(ps);Z) is the zero map, and

• all cup products in H̃∗(Cf ;Z/pmin(r,s)Z) are zero,

then f is null homotopic. �
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Lemma 4.1 will be generalized to maps f : X −→
∨m
i=1 P

3(pri) for X = S3 or X = P 3(pr).
This requires some initial work, the first aspect of which is a general lemma concerning trivial
cup products related to maps of wedges.

Lemma 4.2. Let f :
∨m
i=1 Ai −→

∨n
j=1Bj be a map with homotopy cofibre Cf and suppose

that f ∗ = 0 for cohomology with coefficient group G and all cup products in H̃∗(Cf ;G) are
zero. For 1 ≤ ı ≤ m and 1 ≤  ≤ n, let fı, be the composite

fı, : Aı ↪→
m∨
i=1

Ai
f−→

n∨
j=1

Bj −→ B

where the left map is the inclusion of the ıth wedge summand and the right map is the pinch
onto the th wedge summand. If Cfı, is the homotopy cofibre of fı, then all cup products

in H̃∗(Cfı, ;G) are zero.

Proof. We use an intermediate map. Let f be the composite

(7) f :
m∨
i=1

Ai
f−→

n∨
j=1

Bj −→ B

and let Cf be the homotopy cofibre of f. Consider the homotopy cofibration diagram

∨m
i=1 Ai

f //
∨n
j=1Bj

//

��

Cf

d

��∨m
i=1 Ai

f // B
// Cf

where d is an induced map of cofibres. Take cohomology with coefficient group G. The
homotopy cofibration diagram induces a map between long exact sequences in cohomology.
By hypothesis, f ∗ = 0 so the definition of f implies that f ∗ = 0 as well. Therefore, for
every k ≥ 1, there is a commutative diagram of exact sequences

0 // Hk(
∨m
i=1 ΣA;G) // Hk(Cf : G) //

d∗

��

Hk(B;G) //

��

0

0 // Hk(
∨m
i=1 ΣA;G) // Hk(Cf ;G) // Hk(

∨n
i=1 Bi;G) // 0.

A diagram chase shows that d∗ is injective, and this is true for all k ≥ 1. Thus, by the

naturality of the cup product, the vanishing of cup products in H̃∗(Cf ;G) implies their

vanishing in H̃∗(Cf ;G).
Next, notice that the definition of fı, in the statement of the lemma and f in (7) imply

that fı, is the composite Aı ↪→
∨m
i=1 Ai

f−→ B. This factorization induces a homotopy
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cofibration diagram

Aı //
∨m
i=1Ai

h //

f

��

∨m
i=1
i 6=ı

Ai

g

��
Aı

fı, //

��

B
//

��

Cfı,

d′

��
∗ // Cf Cf

where h is the pinch map, and g and d′ are induced maps. Since f ∗ = 0 and

h∗ : H∗(
m∨
i=1
i 6=ı

Ai;G)→ H∗(
m∨
i=1

Ai;G)

is an injection, the top right square implies that g∗ = 0. Therefore, from the right vertical
cofibration in the preceding diagram we obtain a surjection

(d′)∗ : H∗(Cf ;G)→ H∗(Cfı, ;G).

As cup products in H̃∗(Cf ;G) are zero and (d′)∗ is a surjection, cup products in H̃∗(Cfı, ;G)
are also zero. �

Next, we make a transition from a hypothesis that a map is zero in cohomology as
in Lemma 4.2 to a map being zero in homology. In general, if the coefficient group G
in Lemma 4.2 is a field then the Universal Coefficient Theorem immediately implies that
if f∗ = 0 then f ∗ = 0. The coefficient ring we care about is Z/prZ, so we need to be more
cautious. Perhaps overdoing it, we focus on the 3-dimensional Moore space case again.

Lemma 4.3. Let p be an odd prime and let r ≥ 1. Let X = P 3(pr) or S3 and let f : X →∨m
i=1 P

3(pri) be a map. If f∗ : H̃∗(X;Z)→ H̃∗(
∨m
i=1 P

3(pri);Z) is trivial then for any abelian

group G the map f ∗ : H̃∗(
∨m
i=1 P

3(pri);G)→ H̃∗(X;G) is trivial.

Proof. It suffices to prove the lemma in the m = 1 case. For X = P 3(pr) it is obvious
that f ∗ : H̃j(P 3(pr1);G) → H̃j(P 3(pr);G) is trivial except possibly for j ∈ {2, 3}. By the
Universal Coefficient Theorem, there are natural isomorphisms

H2(P 3(pr);G) ∼= Hom(H2(P 3(pr);Z), G))

and

H3(P 3(pr);G) ∼= Ext(H2(P 3(pr);Z), G)).

By hypothesis, f∗ : H2(P 3(pr);Z)→ H2(P 3(pr1);Z) is the zero map, so the naturality of the
Universal Coefficient Theorem implies that f ∗ : Hj(P 3(pr1);G)→ Hj(P 3(pr);G) is the zero
map for j ∈ {2, 3}.

For X = S3, it suffices to show that f ∗ : H3(P 3(pr1);G) → H3(S3;G) is trivial. Let
ρ : P 3(pr1)→ S3 be the pinch map to the top cell and consider the composite

(8) H3(S3;G)
ρ∗−→ H3(P 3(pr1);G)

f∗−→ H3(S3;G).

Observe that the long exact sequence in cohomology determined by the homotopy cofibra-

tion S2 → P 3(pr1)
ρ−→ S3 implies that ρ∗ in (8) is an epimorphism. Therefore, in (8), f ∗ = 0
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if and only if f ∗ ◦ ρ∗ = 0. But ρ ◦ f is a self-map of S3 which factors through a rationally
contractible space, implying that it is null homotopic. Hence f ∗ ◦ ρ∗ = 0, and so f ∗ = 0. �

In general, the Hilton-Milnor Theorem states that there is a homotopy equivalence

(9) Ω(
m∨
i=1

ΣYi) '
∏
α∈I

ΩΣ(Y ∧α1
1 ∧ · · · ∧ Y ∧αm

m )

where I runs over a module basis for the free Lie algebra L〈v1, . . . , vm〉, and if α ∈ L〈v1, . . . , vm〉
is a module basis element then for 1 ≤ i ≤ m the integer αi records the number of instances
of vi in α. Here, if αi = 0 for some i then the smash product Y ∧α1

1 ∧· · ·∧Y ∧αm
m is regarded as

omitting Yi rather than being a point; for example, Y ∧2
1 ∧Y ∧0

2 ∧Y ∧3
3 is regarded as Y ∧2

1 ∧Y ∧3
3 .

Moreover, for 1 ≤ k ≤ m let

ιk : ΣYk −→
m∨
i=1

ΣYi

be the inclusion of the kth wedge summand. For α ∈ I, let

wα : Σ(Y ∧α1
1 ∧ · · · ∧ Y ∧αm

m ) −→
m∨
i=1

ΣYi

be the iterated Whitehead product formed from the maps ιk where each instance of vk in α
is represented by the map ιk. Then the homotopy equivalence (9) is realized by multiplying
together the maps Ωwα using the loop structure on Ω(

∨m
i=1 ΣYi).

In our case, we have

Ω(
m∨
i=1

P 3(pri)) '
∏
α∈I

ΩΣP 2(pr1)∧α1 ∧ · · · ∧ P 2(prm)∧αm .

Observe that P 2(pr1)∧α1∧· · ·∧P 2(prm)∧αm is ((α1+· · ·+αm)−1)-connected. Suppose that X ′

is 2-dimensional. Then [X ′,ΩΣP 2(pr1)∧α1 ∧ · · · ∧ P 2(prm)∧αm ] ∼= 0 if (α1 + · · · + αm) ≥ 3.
Observe also that there are m cases for which (α1 + · · · + αm) = 1 and

(
m
2

)
cases for

which (α1 + · · ·+ αm) = 2. So if X = ΣX ′ then

[X,
m∨
i=1

P 3(pri)] ∼= [X ′,Ω(
m∨
i=1

P 3(pri))]

∼= [X ′,
m∏
j=1

ΩP 3(prj)×
∏
k 6=l

ΩΣP 2(prk) ∧ P 2(prl)]

∼=
m∏
j=1

[X,P 3(prj)]×
∏
k 6=l

[X,ΣP 2(prk) ∧ P 2(prl)].

Further, the jth factor [X,P 3(prj)] is mapped to [X,
∨m
i=1 P

3(pri)] by the inclusion ιj and
the

(
m
2

)
factors [X,ΣP 2(prk)∧P 2(prl)] may be arranged so that they map to [X,

∨m
i=1 P

3(pri)]
by the Whitehead products

ΣP 2(prk) ∧ P 2(prl)
[ιk,ιl]−→ P 3(prk) ∨ P 3(prl) ↪→

m∨
i=1

P 3(pri)
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where 1 ≤ k < l ≤ m. Hence if f : X −→
∨m
i=1 P

3(pri) then we may write

(10) f '
m∑
j=1

ιj ◦ gj +
∑

1≤k<l≤m

[ιk, ιl] ◦ hk,l

for maps X
gj−→ P 3(prj) and X

hk,l−→ ΣP 2(prk) ∧ P 2(prl).

Proposition 4.4. Let X = P 3(pr) where p is an odd prime and r ≥ 1 or let X = S3 and
set r =∞. Let f : X →

∨m
i=1 P

3(pri) be a map and let Cf be its cofiber. If

• f∗ : H̃∗(X;Z)→ H̃∗(
∨m
i=1 P

3(pri);Z) is the zero map and

• all cup products in H̃∗(Cf ;Z/pmin(r,ri)Z) are zero for all 1 ≤ i ≤ m,

then f is null homotopic.

Proof. Since X is S3 or P 3(pr) we have X ' ΣX ′ where X ′ is 2-dimensional. Therefore,

by (10), we have f '
∑m

j=1 ιj ◦ gj +
∑

1≤k<l≤m[ιk, ιl] ◦ hk,l for maps X
gj−→ P 3(prj) and

X
hk,l−→ ΣP 2(prk)∧P 2(prl). To show that f is null homotopic it suffices to show that each gj

and hk,l is null homotopic.
First consider the map gj when X = P 3(pr). Notice that gj is the composite

gj : P 3(pr)
f−→

m∨
i=1

P 3(pri)
q−→ P 3(prj)

where q is the pinch map onto the jth wedge summand. Since f induces the zero map
in integral homology, so does gj. The spaces involved let us apply Lemma 4.3, showing
that gj induces the zero map in mod-pmin(r,rj) cohomology. By hypothesis, all cup products

in H̃∗(Cf ;Z/pmin(r,rj)Z) are zero, so by Lemma 4.2, all cup products in H̃∗(Cgj ;Z/pmin(r,rj)Z)
are also zero. Thus, by Lemma 4.1, gj is null homotopic.

Next, consider the map gj when X = S3. Now gj is the composite S3 f−→
∨m
i=1 P

3(pri)
q−→

P 3(prj). Consider the composite

gj : P 3(prj)
π−→ S3 gj−→ P 3(prj)

where π is the pinch map to the top cell. The argument in the previous paragraph implies
that gj is null homotopic. Therefore gk extends across the cofibre of π, implying that gk

factors as a composite S3 prj−→ S3 γj−→ P 3(prj) for some map γj. By Lemma 2.1, π3(P 3(prj)) ∼=
Z/prjZ, so gj ' prj · γj is null homotopic.

At this point, we have shown that for either X = S3 or P 3(pr) we have gj null homotopic
for 1 ≤ j ≤ m. Thus (10) implies that f '

∑
1≤k<l≤m[ιk, ιl] ◦ hk,l. Let

qk,l :
m∨
i=1

P 3(pri) −→ P 3(prk) ∨ P 3(prl)

be the pinch map onto the kth and lth wedge summands. Observe that every Whitehead
product [ιs, ιt] for 1 ≤ s < t ≤ m composes trivially with qk,l except [ιk, ιl]. There-
fore qk,l ◦ f ' qk,l ◦ (

∑
1≤s<t≤m[ιs, ιt] ◦ hs,t) ' [ιk, ιl] ◦ hk,l. That is, qk,l ◦ f is homotopic to

the composite

hk,l : X
hk,l−→ ΣP 2(prk) ∧ P 2(prl)

[ιk,ιl]−→ P 3(prk) ∨ P 3(prl).
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Since f induces the zero map in integral homology, so does hk,l. Let Chk,l be the homotopy

cofibre of hk,l. By hypothesis, cup products in H̃∗(Cf ;Z/pmin(r,ri)Z) are zero for 1 ≤ i ≤ m so

cup products in H̃∗(Cf ;Z/pmin(r,rk,rl)Z) are zero. By Lemma 4.2 (withB = P 3(prk) ∨ P 3(prl)),

cup products in H̃∗(Chk,l ;Z/p
min(r,rk,rl)Z) are also zero. Therefore, by Proposition 3.2 in the

case X = S3 and Proposition 3.3 in the case X = P 3(pr), the map hk,l is null homotopic.
As this is true for all 1 ≤ k < l ≤ m we obtain f ' ∗. �

5. The homotopy type of the suspension of certain CW -complexes

In this section we assume M to be a 4-dimensional finite CW -complex that has one 4-cell
and homology as follows:

(11)

i Hi(M ;Z)
0 Z
1 Z` ⊕

⊕n
j=1 Z/bjZ

2 Zd ⊕
⊕n̄

j̄=1 Z/b̄j̄Z
3 Zm

4 Z
≥ 5 0

Here each bj and b̄j̄ is a power of an odd prime.
First consider the integer summands of H1(M ;Z). Since the Hurewicz homomorphism

π1(M) → H1(M ;Z) is an epimorphism, each direct summand Z of H1(M ;Z) is generated
by the Hurewicz image of some map αi : S

1 −→M . Let

a :
∨̀
i=1

S1 −→M

be the wedge sum of the maps αi and let W be the homotopy cofibre of a.

Lemma 5.1. The map Σa has a left homotopy inverse and there is a homotopy equivalence

ΣM ' (
∨̀
i=1

S2) ∨ ΣW.

Proof. The Hurewicz Theorem implies that the image of a∗ is H1(M ;Z)free ∼= Z`. The Uni-
versal Coefficient Theorem implies that H1(M ;Z)free ∼= H1(M ;Z)free. Let ai ∈ H1(M ;Z)
be the image of (αi)∗ and āi ∈ H1(M ;Z) be the dual of ai. Then āi is represented by

a map εi : M −→ K(Z, 1) ' S1 and the composite S1 αi−→ M
εi−→ S1 is the identity

map. After suspending one may use the co-H structure to give a map ε : ΣM −→
∨`
i=1 S

2

which is a left homotopy inverse for Σa. Therefore, with respect to the homotopy cofi-

bration,
∨`
i=1 S

2 Σa−→ ΣM
Σw−→ ΣW where w : M → W is the quotient map, if σ is the

comultiplication on ΣM , the composite

e : ΣM
σ−−→ ΣM ∨ ΣM

ε∨Σw−−→ (
∨̀
i=1

S2) ∨ ΣW
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induces an isomorphism in homology. As the domain and range of e are simply-connected,
Whitehead’s Theorem implies that e is a homotopy equivalence. �

The description of H∗(M ;Z) in (11) implies that the homology of W is as follows:

i Hi(W ;Z)
0 Z
1

⊕n
j=1 Z/bjZ

2 Zd ⊕
⊕n̄

j̄=1 Z/b̄j̄Z
3 Zm

4 Z
≥ 5 0

We wish to give a homotopy decomposition of ΣW as a wedge of spheres and Moore spaces.
To do so we analyze the homology decomposition of ΣW .

Define M(Z/kZ, n) = P n+1(k) and M(Z, n) = Sn, and for any finitely generated abelian
groups A and B define M(A ⊕ B, n) = M(A, n) ∨ M(B, n). Then H̃i(M(A, n);Z) is A
for i = n and zero otherwise. The following lemma describes the homology decomposition
of a simply-connected CW-complex.

Lemma 5.2 (Theorem 4H.3, [10]). Let X be an n-dimensional simply-connected CW-
complex and let Hi = Hi(X;Z). Then there is a sequence of subcomplexes {Xi}ni=1 such
that

(1) Hi(Xm;Z) ∼= Hi(X;Z) for i ≤ m and Hi(Xm;Z) = 0 for i > m;
(2) X2 = M(H2, 2) and X ' Xn;
(3) Xm+1 is the mapping cone of a map fm : M(Hm+1,m) → Xm that induces a trivial

homomorphism (fm)∗ : Hm(M(Hm+1,m);Z)→ Hm(Xm;Z).

In our case, to describe the homology decomposition of ΣW we need some notation. Let

P =
n∨
j=1

P 3(bj) P =
n̄∨
j̄=1

P 3(b̄j̄) and S =
d∨

k=1

S2.

Starting with W2 = P , Lemma 5.2 implies that there are homotopy cofibrations

S ∨ P f2−→ W2 −→ W3

m∨
i=1

S3 f3−→ W3 −→ W4

S4 f4−→ W4 −→ ΣW

(12)

where f2, f3 and f4 induce the zero map in integral homology. In Lemmas 5.5 and 5.7 we will
show that the maps f2 and f3 are null homotopic, and in Lemma 5.8 we will show that the
map f4 is either null homotopic or factors is an entirely controllable way. As this will involve
analyzing maps between Moore spaces of different torsion orders, a preliminary lemma is
required.
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Lemma 5.3. Let X be a finite CW-complex. If p and q are distinct primes and m,n ≥ 3,
then any map f : Pm(pr)→ ΣX ∨ P n(qt) is homotopic to the composite

Pm(pr)
f ′−→ ΣX ↪→ ΣX ∨ P n(qt)

where f ′ is the composite Pm(pr)
f−−→ ΣC ∨ P n(qt)

pinch−−→ ΣX.

Proof. First we show that [Pm(pr), Z ∧ Pm(qt)] is trivial for any finite path-connected CW-
complex Z. By the Künneth Theorem there is an exact sequence

0→
n⊕
i=1

H̃i(Z)⊗ H̃n−i(P
n(qt))→ H̃n(Z ∧ P n(qt))→

n⊕
i=1

Tor(H̃i(Z), H̃n−i−1(P n(qt)))→ 0.

This implies that the groups H̃∗(Z ∧ P n(qt)) are finite abelian and consist only of q-torsion.
Therefore, by Serre’s Theorem, the homotopy groups πi(Z ∧ P n(qt)) are also finite abelian
and consist only of q-torsion. The homotopy cofibration

Sm−1 pr−→ Sm−1 −→ Pm(pr)

induces an exact sequence

πm(Z ∧ P n(qt))
pr−→ πm(Z ∧ P n(qt)) −→ [Pm(pr), Z ∧ P n(qt)] −→

πm−1(Z ∧ P n(qt))
pr−→ πm−1(Z ∧ P n(qt)).

Since multiplying πi(Z ∧ P n(qt)) by pr is an isomorphism for i ≥ 1, by exactness we obtain
[Pm(pr), Z ∧ P n(qt)] ∼= 0.

Next, the homotopy class of f is in [Pm(pr),ΣX ∨ P n(qt)]. Noting that both Pm(pr) and
P n(qt) are suspensions since m,n ≥ 3, the Hilton-Milnor Theorem implies that

[Pm(pr),ΣX ∨ P n(qt)] ∼=
∏
α∈I

[Pm(pr),ΣX∧α1 ∧ (P n−1(qt))∧α2 ]

where I runs over a Hall basis for the free Lie algebra L〈u, v〉 and α1, α2 count the number
of instances of u, v respectively in the bracket corresponding to α. The argument in the first
paragraph implies that if α2 ≥ 1 then each factor [Pm(pr),ΣX∧α1 ∧ (P n−1(qt))∧α2 ], which is
isomorphic to [Pm(pr), Z ∧ P n(qt)] for Z = X∧α1 ∧ (P n−1(qt))∧α2−1, equals zero. The Hall
basis for L〈u, v〉 only has one term with α2 = 0, and that is u (when α1 = 1). Thus

[Pm(pr),ΣX ∨ P n(qt)] ∼= [Pm(pr),ΣX].

Hence f factors through f ′ up to homotopy. �

We also need a lemma concerning cup products in W3.

Lemma 5.4. Cup products vanish in H̃∗(W3;Z/prZ).

Proof. Recall that W is a 4-dimensional CW -complex with a single 4-cell. Let Y be the
3-skeleton of W . Then by cellular approximation and the definition of W3 the inclusion
W3 ↪→ ΣW factors as a composite

W3
g→ ΣY ↪→ ΣW.

Suppose that there are elements x, y ∈ H̃∗(W3;Z/prZ) such that x ∪ y 6= 0. Since W3 is
simply-connected and of dimension 4, it must be the case that |x| = |y| = 2. By Lemma 5.2

g∗ : H2(ΣY ;Z/prZ)→ H2(W3;Z/prZ)
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is an isomorphism. Let x̄, ȳ ∈ H2(ΣY ;Z/prZ) be elements such that x = g∗(x̄) and y = g∗(ȳ).

Since ΣY is a suspension, all cup products in H̃∗(ΣY ;Z/prZ) are zero. In particular, we
have x̄ ∪ ȳ = 0. The naturality of the cup product therefore implies that

x ∪ y = g∗(x̄) ∪ g∗(ȳ) = g∗(x̄ ∪ ȳ) = 0,

a contradiction. Hence it must be the case that all cup products in H̃∗(W3;Z/prZ) are
zero. �

Lemma 5.5. There is a homotopy equivalence W3 ' P ∨ ΣS ∨ ΣP .

Proof. We will show that the map S ∨ P f2−→ W2 in (12) is null homotopic, implying the
statement of the lemma. It will be helpful to partition the Moore spaces in P by primes.
Recall that P =

∨n̄
j̄=1 P

3(b̄j̄) where each b̄j̄ is an odd prime power. List the primes appearing

as {p1, . . . , pt}. Write

P =
t∨

s=1

P s where P s =
n̄s∨
`=1

P 3(p
rs,`
s ).

Note that n̄ = n̄1 + · · ·+ n̄t. Isolating P 1, let

Q =
t∨

s=2

P s

so that P = P 1 ∨ Q. For convenience, write p1 as p and r1,` as r` for 1 ≤ ` ≤ n1 so
that P 1 =

∨n1

`=1 P
3(pr`). Correspondingly, write P = P1 ∨ Q where P1 is the wedge of

all the mod-pt Moore spaces in P for some t ≥ 1, and Q is the wedge of mod-qs Moore
spaces for all primes q 6= p. Note that as the torsion in P and P may be different, it is
possible that for the given prime p the wedge P1 is trivial. Taking n1 = 0 in the trivial case,

write P1 =
∨n1

k=1 P
3(prk). The homotopy cofibration S ∨ P f2−→ W2 = P −→ W3 may then

be rewritten as

S ∨ P 1 ∨Q
f2−→ P1 ∨Q −→ W3.

To show that f2 is null homotopic it is equivalent to show that each of the composites

fS : S ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q

fP : P 1 ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q

fQ : Q ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q

is null homotopic. Since f2 induces the trivial map in integral homology, so do each of fP , fQ
and fS.

First, consider fS. Since S is 2-dimensional, P1 ∨ Q is 1-connected, and fS induces the
trivial map in degree two integral homology, the Hurewicz homomorphism implies that fS
is null homotopic.

Next, consider fP . Since P 1 =
∨n̄1

`=1 P
3(pr`), to show that fP is null homotopic it suffices

to show that the restriction

f `P : P 3(pr`) ↪→ P 1
fP−→ P1 ∨Q
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of fP to the `th wedge summand is null homotopic. Since Q consists of mod-qs Moore spaces
for primes q 6= p, Lemma 5.3 implies that f `P factors as a composite

P 3(pr`)
g`P−→ P1 ↪→ P1 ∨Q

for some map g`P . We will show that g`P is null homotopic, thereby implying that f `P is null
homotopic.

Observe that as fP induces the zero map in homology, so does f `P and therefore so does g`P .
Let Cg`P be the homotopy cofibre of g`P and recall that P1 =

∨n1

k=1 P
3(prk). If cup products

vanish in H̃∗(C`
gP

;Z/pmin(r`,rk)Z) for 1 ≤ k ≤ n1 then Proposition 4.4 implies that g`P is null
homotopic.

It remains to show that cup products vanish in H̃∗(C`
gP

;Z/pmin(r`,rk)Z). First, as g`P
induces the zero map in integral homology, by Lemma 4.3 it also induces the zero map in
mod-pmin(r`,rk) cohomology. Second, notice that g`P is homotopic to the composite

P 3(pr`)
f`P−→ P1 ∨Q

pinch−→ P1.

The definitions of f `P and fP then imply that g`P is homotopic to the composite

P 3(pr`) −→ P 1 −→ S ∨ P ∨Q f2−→ P1 ∨Q
pinch−→ P1.

As W3 is the homotopy cofibre of f2 and cup products vanish in H̃∗(W3;Z/pmin(r`,rk)Z) by
Lemma 5.4, the factorization of g`P through f2 and Lemma 4.2 imply that cup products

vanish in H̃∗(C`
gP

;Z/pmin(r`,rk)Z).
Finally, consider fQ. Separating out the mod-prss Moore spaces in Q one prime at a time

as was done for p1 and P 1, the same argument as for fP can be used iteratively. Thus fQ is
null homotopic and the proof is complete. �

Observe that the space W4 in (12) is the same as the suspension of the 3-skeleton of W .
That is, W4 ' ΣY for Y the 3-skeleton of W . Our approach to dealing with the maps f3

and f4 in (12) will be to use the fact that both W4 and ΣW are suspensions. This requires
a general lemma.

Lemma 5.6. Let Ai be simply connected for 1 ≤ i ≤ m. Suppose that there is a map
g :
∨m
i=1Ai −→ ΣX and a sequence {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ m such that,

for 1 ≤ j ≤ k, the pinch map qj :
∨m
i=1Ai −→ Aij extends across g to a map rj : ΣX −→ Aij .

Then the composite b :
∨k
j=1Aij ↪→

∨m
i=1Ai

g−→ ΣX has a left homotopy inverse.

Proof. Let r be the composite

r : ΣX
σ−−−−→

k∨
j=1

ΣX

∨k
j=1 rj−−−−→

k∨
j=1

Aij

where σ is defined using the comultiplication on ΣX. We claim that r◦b is homotopic to a ho-
motopy equivalence. Observe that for 1 ≤ j ≤ k we have q̃j◦r ' rj where q̃j :

∨k
j=1 Aij → Aij

is the pinch map. By hypothesis, rj ◦ g ' qj, so by definition of b we also have rj ◦ b ' q̃j.
Therefore q̃j ◦ r ◦ b ' rj ◦ b ' q̃j. In homology, the direct sum of finitely many Z-modules is
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the same as the direct product, so the map

H̃∗(
k∨
j=1

Ai;Z)
r∗◦b∗−→ H̃∗(

k∨
j=1

Ai;Z) ∼=
k⊕
j=1

H̃∗(Aj;Z)

is determined by the projection to each H̃∗(Aj;Z). This projection is given by (q̃j)∗. Thus
the fact that (q̃j)∗ = (q̃j)∗ ◦ r∗ ◦ b∗ implies that r∗ ◦ b∗ is the identity map. Hence, by
Whitehead’s Theorem, r ◦ b is a homotopy equivalence. �

Lemma 5.7. There is a homotopy equivalence W4 ' P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4.

Proof. By (12) and Lemma 5.5 there is a homotopy cofibration

m∨
i=1

S3 f3−→ P ∨ ΣS ∨ ΣP −→ W4

where f3 induces the trivial map in integral homology. We will show that f3 is null homotopic
and then the statement of the lemma follows.

Consider the composites

(13)

S3 ↪→
∨m
i=1 S

3 f3−→ P ∨ ΣS ∨ ΣP −→ P −→ P 3(bj)

S3 ↪→
∨m
i=1 S

3 f3−→ P ∨ ΣS ∨ ΣP −→ ΣS −→ S3

S3 ↪→
∨m
i=1 S

3 f3−→ P ∨ ΣS ∨ ΣP −→ ΣP −→ P 4(bj̄)

where the three right-hand maps pinch onto a single wedge summand. Let g be the first
composite in (13) and let Cg be its cofiber. Since the cofiber of f3 is W4 which is the

suspension of the 3-skeleton of W , all cup products in H̃∗(W4;Z/prjj Z) are zero. Therefore,

by Lemma 4.2, all cup products in H̃∗(Cg;Z/p
rj
j Z) are zero. Hence, by Proposition 4.4, g is

null homotopic.
Since f3 induces the zero map in integral homology, the second and third composites in (13)

are null homotopic by the Hurewicz Theorem. These null homotopies hold for the inclusion of
each S3 into

∨m
i=1 S

3, so f3 composes trivially with each of the pinch maps P∨ΣS∨ΣP −→ X
for X = P 3(bj), S

3 or P 4(b̄j̄). Thus each of these pinch maps extends to a map W4 −→ X.

Since W4 is a suspension, Lemma 5.6 implies that the map P ∨ ΣS ∨ ΣP −→ W4 has a left
homotopy inverse. Hence f3 is null homotopic. �

Lemma 5.8. Suppose that H∗(W ;Z) has no 2-torsion. If the Steenrod operation Sq2 acts
trivially on H∗(W ;Z/2Z) then there is a homotopy equivalence

ΣW ' P ∨ ΣS ∨ ΣP ∨
( m∨
i=1

S4

)
∨ S5.

If Sq2 acts nontrivially on H∗(W ;Z/2Z) then there is a homotopy equivalence

ΣW ' P ∨
d∨

k=2

S3 ∨ ΣP ∨
( m∨
i=1

S4

)
∨ ΣCP 2.
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Proof. By (12) and Lemma 5.7 there is a homotopy cofibration

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→ ΣW

where f4 induces the trivial map in integral homology. Consider the composites

(14)

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4 −→ P −→ P 3(bj)

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4 −→ ΣS −→ S3

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4 −→ ΣP −→ P 4(b̄j̄)

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4 −→
∨m
i=1 S

4 −→ S4

where the middle and right maps pinch onto a single wedge summand.
Suppose that Sq2 acts trivially on H∗(W ;Z/2Z). Since each bj and b̄j̄ is a power of an

odd prime, by Lemma 2.2, π4(P 3(bj)) ∼= π4(P 3(b̄j̄)) ∼= 0 and π4(P 4(bj)) ∼= π4(P 4(b̄j̄)) ∼= 0,
implying the first and third composites in (14) are null homotopic. Since π4(S3) ∼= Z/2Z
is generated by a map η which is detected by Sq2, the assumption that Sq2 acts trivially
on H∗(W ;Z/2Z) implies that the second composite in (14) is null homotopic. Since f4 in-
duces the zero map in homology, the Hurewicz homomorphism implies that the fourth com-
posite in (14) is null homotopic. Thus each of the pinch maps P ∨ ΣS ∨ ΣP ∨

∨m
i=1 S

4 −→ X
for X = P 3(bj), S

3, P 4(b̄j̄) or S4 extends to a map ΣW −→ X. Therefore, by Lemma 5.6,

the map P ∨ ΣS ∨ ΣP ∨
∨m
i=1 S

4 −→ ΣW has a left homotopy inverse. Hence f4 is null
homotopic, implying that

ΣW ' P ∨ ΣS ∨ ΣP ∨
( m∨
i=1

S4

)
∨ S5.

Next, suppose that Sq2 acts nontrivially on H∗(W ;Z/2Z). Arguing as before, the first,
third and fourth composites in (14) are null homotopic. As Sq2 detects the generator η
of π4(S3) ∼= Z/2Z, the nontrivial action of Sq2 on H∗(W ;Z/2Z) implies that the second

composite in (14) is nontrivial for at least one of the pinch maps ΣS =
∨d
k=1 S

3 −→ S3.
Possibly the second composite in (14) could be nontrivial for several such pinch maps. How-

ever, by [23], any map h : S4
∨d

k=1 εkη−−−−→
∨d
k=1 S

3 with εk ∈ {0, 1} for all 1 ≤ k ≤ d, and having

at least one εk = 1, can be composed with a self-equivalence e of
∨d
k=1 S

3 so that e ◦ h is

homotopic to the composite S4 η−→ S3 ↪→
∨d
k=1 S

3 where the inclusion can be assumed to

be the first wedge summand. Altering the copy of ΣS in P ∨ΣS∨ΣP ∨
∨m
i=1 S

4 by the same

self-equivalence e, we obtain that each of the pinch maps P ∨
∨d
k=2 S

3∨ΣP ∨
∨m
i=1 S

4 −→ X
for X = P 3(bj), S

3 for 2 ≤ k ≤ d, P 4(b̄j̄) or S4 extends to a map ΣW −→ X. Therefore,

by Lemma 5.6, the map P ∨
∨d
k=2 S

3 ∨ ΣP ∨
∨m
i=1 S

4 −→ ΣW has a left homotopy inverse.
Therefore f4 factors as the composite

S4 η−→ S3 ↪→ P ∨
d∨

k=1

S3 ∨ ΣP ∨
m∨
i=1

S4
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implying that ΣW ' P ∨
∨d
k=2 S

3 ∨ΣP ∨
(∨m

i=1 S
4

)
∨ΣCP 2 since ΣCP 2 is the homotopy

cofibre of η. �

Combining the homotopy decomposition ΣM '
(∨m

i=1 S
2

)
∨ ΣW in Lemma 5.1 with

that of ΣW in Lemma 5.8, we obtain a homotopy decomposition for ΣM .

Theorem 5.9. Let M be a 4-dimensional CW -complex that has one 4-cell and has homology
as in (11). If Sq2 acts trivially on H∗(M ;Z/2Z) then there is a homotopy equivalence

ΣM '
(∨̀
i=1

S2

)
∨
( d∨
k=1

S3

)
∨
( m∨
l=1

S4

)
∨
( n∨
j=1

P 3(bj)

)
∨
( n̄∨
j̄=1

P 4(b̄j̄)

)
∨ S5.

If Sq2 acts non-trivially on H∗(M ;Z/2Z) then there is a homotopy equivalence

ΣM '
(∨̀
i=1

S2

)
∨
( d−1∨
k=1

S3

)
∨
( m∨
l=1

S4

)
∨
( n∨
j=1

P 3(bj)

)
∨
( n̄∨
j̄=1

P 4(b̄j̄)

)
∨ ΣCP 2.

As a special case we prove Theorem 1.1.

Proof of Theorem 1.1. By assumptionM is a smooth, orientable, closed, compact 4-manifold.
Then, by Morse Theory, M has a CW -structure with one 4-cell. Since H1(M ;Z) is finitely
generated and has no 2-torsion, (1) holds and so H∗(M ;Z) is as in (2). Since (2) is a special
case of (11), Theorem 5.9 applies to decompose ΣM . Observe that if M is Spin then the
Steenrod operation Sq2 acts trivially on H∗(M ;Z/2Z), so Theorem 5.9 implies that there is
a homotopy equivalence

ΣM '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨
k=1

S3

)
∨ S5,

while if M is non-Spin then Sq2 acts nontrivially, so Theorem 5.9 implies that there is a
homotopy equivalence

ΣM '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d−1∨
k=1

S3

)
∨ ΣCP 2.

�

6. Applications

Suppose that M is a 4-dimensional manifold satisfying the hypotheses of Theorem 1.1. In
this section we give three applications of the homotopy decomposition of ΣM .

The first application is to calculate E∗(M) as a group for any reduced generalized coho-
mology theory E∗. Examples include complex and real K-theory and cobordism.

Proposition 6.1. Let M be a smooth, orientable, closed, connected 4-manifold satisfying
the hypotheses of Theorem 1.1 and let E∗ be a reduced generalized cohomology theory. If M
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is Spin there is a group isomorphism

En(M) ∼=
m⊕
i=1

(En(S1)⊕ En(S3))⊕
n⊕
j=1

(En(P 2(bj))⊕ En(P 3(bj))⊕
d⊕

k=1

En(S2)⊕ En(S4).

If M is non-Spin there is a group isomorphism

En(M) ∼=
m⊕
i=1

(En(S1)⊕En(S3))⊕
n⊕
j=1

(En(P 2(bj))⊕En(P 3(bj))⊕
d⊕

k=2

En(S2)⊕En(CP 2).

Proof. Let X,A and B be CW-complexes such that ΣX ' ΣA ∨ ΣB. Using the axioms of
reduced generalized cohomology theories, we obtain a string of group isomorphisms

En(X) ∼= En+1(ΣX)
∼= En+1(ΣA ∨ ΣB)
∼= En+1(ΣA)⊕ En+1(ΣB)
∼= En(A)⊕ En(B)

In our case, the asserted group isomorphisms for En(M) follow immediately from the above
group isomorphisms and the homotopy decomposition of ΣM in Theorem 1.1. �

The second application is to current groups. Let X be a smooth manifold and let G be
a connected Lie group. The current group associated to X and G is the space of smooth
maps from X to G, which is homotopy equivalent to Map(X,G). The most famous example
is the loop group Map(S1, G). Current groups have received considerable attention, notably
in [5, 17, 22].

In our case, consider Map(M,G). There is a fibration Map∗(M,G) −→ Map(M,G)
ev−→ G

where ev evaluates a map at the basepoint of M . The multiplication on G induces one
on Map(M,G) so the right inverse of ev induced by projecting M to the constant map
implies that there is a homotopy equivalence

(15) Map(M,G) ' G×Map∗(M,G).

Note that Map∗(Sn, G) = ΩnG. For k ∈ Z, let G
k−→ G be the kth-power map and let G{k}

be its homotopy fibre. Applying Map∗( , G) to the homotopy cofibration

Sn
k−→ Sn −→ P n+1(k)

gives a homotopy fibration

Map∗(P n+1(k), G) −→ ΩnG
k−→ ΩnG,

implying that Map∗(P n+1(k), G) ' ΩnG{k}.

Proposition 6.2. Let M be a smooth, orientable, closed, connected 4-manifold satisfying
the hypotheses of Theorem 1.1 and let G be a connected topological group. If M is Spin there
is a homotopy equivalence

Map(M,G) ' G×
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏

k=1

Ω2G)× Ω4G.
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If M is non-Spin there is a homotopy equivalence

Map(M,G) ' G×
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏

k=2

Ω2G)×Map∗(CP 2, G).

Proof. In general, if ΣX ' ΣA ∨ ΣB then

Map∗(X,G) ' Map∗(ΣX,BG)

' Map∗(ΣA,BG)×Map∗(ΣB,BG)

' Map∗(A,G)×Map∗(B,BG).

In our case, the homotopy decomposition of ΣM in Lemma 1.1 implies that if M is Spin
there is a homotopy equivalence

Map∗(M,G) '
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏

k=1

Ω2G)× Ω4G

and if M is non-Spin there is a homotopy equivalence

Map∗(M,G) '
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏

k=2

Ω2G)×Map∗(CP 2, G).

The asserted homotopy decompositions for Map(M,G) now follow from (15). �

The third application is to gauge groups. Let G be a simply-connected, simple compact
Lie group and let M be an orientable, closed, compact 4-manifold. Then [M,BG] ∼= Z so
for each k ∈ Z there is a principal G-bundle Pk with second Chern class k. The gauge
group Gk(M) of Pk is the group of G-equivariant automorphisms of Pk that fix M . Gauge
groups are of paramount importance in mathematical physics and geoemetry, and recently
their homotopy theory has received a great deal of attention [8, 9, 13, 14, 15, 16, 23, 24, 26,
27, 28, 29, 30, 31].

By [1, 7] there is a homotopy equivalence BGk(M) ' Mapk(M,BG) where the right side
is the component of the space of continuous (not necessarily pointed) maps from M to BG
containing the map inducing Pk. From the mapping space point of view there is an evaluation
fibration sequence

G
∂k−→ Map∗k(M,BG) −→ Mapk(M,BG)

ev−→ BG

where ev evaluates a map at the basepoint of M and ∂k is the fibration connecting map.
Notice that the homotopy fibre of ∂k is Gk(M).

In Propositions 6.3 and 6.4 the Spin and non-Spin cases of smooth, orientable, closed,
connected 4-manifolds are considered separately due to some additional delicacy in the non-
Spin case.

Proposition 6.3. Let M be a smooth, orientable, closed, connected 4-manifold and let G be
a simply-connected, compact, simple Lie group. If M is Spin and satisfies the hypotheses of
Theorem 1.1 then there is a homotopy equivalence

Gk(M) ' Gk(S4)×
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏
l=1

Ω2G).
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Proof. The pinch map q : M −→ S4 to the top cell induces an isomorphism [S4, BG] −→
[M,BG], so by the naturality of the evaluation fibration there is a homotopy fibration dia-
gram

(16)

G // Map∗k(S
4, BG) //

��

Mapk(S
4, BG)

ev //

��

BG

G // Map∗k(M,BG) // Mapk(M,BG)
ev // BG.

Consider the homotopy cofibration sequence S3 f−→ M3 −→ M
q−→ S4 where M3 is the

3-skeleton of M and f is the attaching map for the top cell. This induces a homotopy
fibration Map∗(S4, BG) −→ Map∗(M,BG) −→ Map∗(M3, BG). Since Map∗(M3, BG) has
one component, restricting to the kth component of Map∗(M,BG) we obtain a homotopy
fibration Map∗k(S

4, BG) −→ Map∗k(M,BG) −→ Map∗(M3, BG). Notice that the connecting
map for this homotopy cofibration is Σf , which is null homotopic by Theorem 1.1 since it is
assumed that M is Spin.

From the left square in (16) we therefore obtain a homotopy fibration diagram

∗ //

��

ΩMap∗k(M,BG)

��

ΩMap∗k(M,BG)

b
��

Gk(S4) // Gk(M)
a //

��

Map∗(ΣM3, BG)

(Σf)∗

��
Gk(S4) //

��

G //

��

Map∗k(S
4, BG)

��
∗ // Map∗k(M,BG) Map∗k(M,BG)

where a and b are induced maps. Since (Σf)∗ is null homotopic, b has a right homotopy
inverse. The homotopy commutativity of the top right square then implies that a has a right
homotopy inverse. Therefore, using the multiplication on Gk(M) we obtain a homotopy
equivalence

Gk(M) ' Gk(S4)×Map∗(ΣM3, BG).

As M is Spin, the homotopy decomposition of ΣM in Theorem 1.1 implies that

ΣM3 '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨
l=1

S3

)
.

Substituting this into Map∗(ΣM3, BG) then gives the homotopy equivalence asserted in the
statement of the Proposition. �

Next, consider the non-Spin case. We aim for an argument mirroring the Spin case, but
using a map M −→ CP2 instead of the pinch map M −→ S4. However, the existence of
such a map is not obvious. We produce a near substitute using the approach in [23]. To do
so an extra hypothesis is introduced on π1(M) involving the graph product of groups.

Let Γ = (V,E) be a finite undirected graph with vertex set V and edge set E, and

let Ĝ = {Gv|v ∈ V } be a collection of groups associated to the vertices of Γ. The graph
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product ΓĜ of Ĝ over Γ is the quotient group F/R, where F = ∗v∈VGv is the free product
of Gv’s and R is the normal subgroup generated by commutator groups [Gu, Gv] wher-

ever (u, v) is in E. For example, if Γ is a complete graph then ΓĜ =
⊕

v∈V Gv or if Γ is a

graph of discrete points then ΓĜ = ∗v∈VGv.
If each Gv is cyclic then the abelianization of ΓĜ is ⊕v∈VGv. It is known that if a

group H is finitely presented then there is a smooth, orientable, closed, connected 4-manifold
whose fundamental group is H (see, for example, [6, Theorem 1.2]). For example, if ΓĜ
is a graph product of cyclic groups {Gv}v∈V then there is a smooth, orientable, closed,

connected 4-manifold with π1(M) ∼= ΓĜ and H1(M ;Z) ∼= ⊕v∈VGv. A specific interesting
case is when M = M ′ × S1 where M ′ is a smooth, orientable, closed, connected 3-manifold
with π1(M ′) the graph product of copies of Z (a right-angled Artin group) or copies of Z/2Z
(a right-angled Coxeter group).

Proposition 6.4. Let M be a smooth, orientable, closed, connected 4-manifold and let G
be a simply-connected, compact, simple Lie group. Let ΓĜ be a graph product of {Gi}m+n

i=1

where Gi = Z for 1 ≤ i ≤ m, Gj+m = Z/bjZ for 1 ≤ j ≤ n, and each bj is odd. If M is

non-Spin and π1(M) ∼= ΓĜ then there is a homotopy equivalence

Gk(M) ' Gk(CP 2)×
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏
l=2

Ω2G).

Proof. For 1 ≤ i ≤ m, denote the generator of Gi = Z by αi. For 1 ≤ j ≤ n, denote the gen-
erator of Gj+m = Z/bjZ by βj. Then each αi has infinite order and each βj has finite order bj.
Since the Hurewicz homomorphism h : π1(M) → H1(M ;Z) is the abelianization, h(αi) has
infinite order and h(βj) has order bj. They generate the direct summands of

H1(M) ∼=
m⊕
i=1

Z⊕
n⊕
j=1

Z/bjZ.

In particular, M satisfies the hypotheses of Theorem 1.1.
For 1 ≤ i ≤ m, each αi is represented by a map xi : S1 −→ M of infinite order and

for 1 ≤ j ≤ n, each βj is represented by a map yj : S1 −→ M of order bj. Since βj has

order bj, it extends to a map β̃j : P 2(bj)→M . Let

ξ :

( m∨
i=1

S1

)
∨
( n∨
j=1

P 2(bj)

)
−→M

be the wedge sum of the maps αi and β̃j. The graph product hypothesis on π1(M) implies
that ξ induces an epimorphism on π1. By (1), ξ∗ is an isomorphism in degree 1 integral ho-
mology, and the description of H∗(M ;Z) in (11) together with the homotopy decomposition
of ΣM in Theorem 1.1 implies that Σξ has a left homotopy inverse. Define the space C and
the map g by the homotopy cofibration( m∨

i=1

S1

)
∨
( n∨
j=1

P 2(bj)

)
ξ−→M

g−→ C.

Since ξ induces an epimorphism on π1, C is simply-connected. This implies that C can
be given a minimal CW -structure with one cell corresponding to each homology class, and
H∗(C;Z) is determined by H∗(M ;Z) since ζ∗ has a left inverse. Since Σξ has a left homotopy
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inverse, Σg has a right homotopy inverse. Explicitly, the homotopy equivalence for ΣM in
Theorem 1.1 implies that

ΣC '
( m∨
i=1

S4

)
∨
( n∨
j=1

P 4(bj)

)
∨
( d−1∨

l=1

S3

)
∨ ΣCP 2.

This homotopy equivalence may not desuspend but observe that if C3 is the 3-skeleton of C
then

ΣC3 '
( m∨
i=1

S4

)
∨
( n∨
j=1

P 4(bj)

)
∨
( d−1∨

l=1

S3

)
∨ S3.

Because C3 has cells only in dimensions 2 and 3, the attaching maps for the 3-cells are in
the stable range, so this homotopy equivalence desuspends and we have

C3 '
( m∨
i=1

S3

)
∨
( n∨
j=1

P 3(bj)

)
∨
( d−1∨

l=1

S2

)
∨ S2.

Let D be the subwedge of C3 given by

D =

( m∨
i=1

S3

)
∨
( n∨
j=1

P 3(bj)

)
∨
( d−1∨

l=1

S2

)
.

Then the composite of inclusionsD −→ C3 −→ C has homotopy cofibreX, where ΣX ' ΣCP2.

Define the map q′ by the composite q′ : M
g−→ C −→ X and define the space Y and the

maps f ′ and δ by the homotopy cofibration sequence

M
q′−→ X

f ′−→ Y
δ−→ ΣM

Σq′−→ ΣX.

As Σq′ has a right homotopy inverse s : ΣX −→ ΣM , the composite

Y ∨ ΣX
δ∨s−→ ΣM ∨ ΣM

∇−→ ΣM

is a homotopy equivalence, where ∇ is the fold map. This implies that δ has a left homo-
topy inverse and hence f ′ is null homotopic. Further, when combined with the homotopy
equivalence for ΣM in Theorem 1.1, it implies that there is a homotopy equivalence

(17) Y '
( m∨
i=1

(S2 ∨ S4)

)
∨
( n∨
j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d−1∨

l=1

S3

)
.

Now replace the homotopy cofibration M
q−→ S4 Σf−→ ΣM3 and the null homotopy for Σf

in the argument for the Spin case with the homotopy cofibration M −→ X
f ′−→ Y and the

null homotopy for f ′ to obtain a homotopy equivalence

Gk(M) ' Gk(X)×Map∗(Y,BG).

Substituting the homotopy equivalence for Y in (17) into Map∗(Y,BG) then gives a homo-
topy equivalence

(18) Gk(M) ' Gk(X)×
m∏
i=1

(ΩG× Ω3G)×
n∏
j=1

(ΩG{bj} × Ω2G{bj})× (
d∏
l=2

Ω2G).
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Notice that X only contains one 2-cell and one 4-cell, so it is the cofiber of aη for some
odd number a. While X may not be homotopy equivalent to CP2, and while Gk(X) may
not be homotopy equivalent to Gk(CP2), by [23, Lemma 2.12] there is a homotopy equiv-
alence Gk(X)× Ω2G ' Gk(CP2)× Ω2G for d ≥ 2. If d = 1, by the construction of X, the
map M → X induces isomorphisms H2

free(M ;Z) ∼= H2
free(X;Z) and H4(M : Z) ∼= H4(X;Z).

Furthermore, the cup products of degree 2 free elements are preserved under these identifi-
cations. So X is a Poincaré complex and must be CP2. Consequently, Gk(X) ' Gk(CP2).
Thus, in all cases, from (18) we obtain the asserted homotopy decomposition of Gk(M). �

Propositions 6.3 and 6.4 greatly generalize the results in [23], which considered the special
cases when π1(M) is: (i) free, (ii) isomorphic to Z/prZ, or (iii) a free product of groups in (i)
and (ii). It is worth emphasizing that the decomposition of Gk(M) can be simply read off
from H∗(M ;Z).

Further, Huang and Wu [11] proved a cancellation result in p-local homotopy theory. From
this we obtain the following.

Corollary 6.5. Let M be a manifold as in Propositions 6.3 or 6.4 and let p be a prime.
If M is Spin there is a p-local homotopy equivalence Gk(M) ' Gl(M) if and only if there
is a p-local homotopy equivalence Gk(S4) ' Gl(S4). If M is non-Spin there is a p-local
homotopy equivalence Gk(M) ' Gl(M) if and only if there is a p-local homotopy equiva-
lence Gk(CP2) ' Gl(CP2). �

A classification of when there is a p-local homotopy equivalence Gk(S4) ' Gl(S4) for
any prime p has been determined for G = SU(2) [15], G = SU(3) [8], G = SU(5) [30],
and G = Sp(2) [28]. For example, when G = SU(3) there is a p-local homotopy equiva-
lence Gk(S4) ' Gl(S4) if and only if (k, 12) = (l, 12), where (a, b) is the greatest common
denominator of integers a and b. Partial classifications have been determined in many other
cases [9, 13, 14, 16, 24, 29, 31].
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