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Abstract

The dynamics and the performance of a novel multibody wave energy con-
verter is investigated, which is based on inclined single modules connected
to a frame. The frame floats on the sea surface and the modules each move
translationally along inclined guidance rods. Direct-drive linear generators
or rotation based generators convert the relative translational motion be-
tween the frame and the modules into electrical power. This paper studies
the conditions which influence the performance of the converters in regular
and irregular waves. Different design layouts are investigated numerically,
whereby the wave excitation is modelled by a random non-white Gaussian
stochastic process.

Keywords: wave energy converter, fluid structure interaction, random
waves, nonlinear dynamics, energy conversion

1. Introduction

In the view of increasing global energy demand and advancing climate
change, it is necessary to explore new sustainable alternatives for energy
generation that replace fossil fuels. In the course of the energy transition,

∗Corresponding authors
Email address: marten.hollm@tuhh.de (Marten Hollm )

Preprint submitted to Journal of LATEX Templates November 14, 2022



renewable energies from wind, sun and water are becoming increasingly im-
portant and are already being used commercially in a variety of ways. In
addition to these well-known examples of renewable energy generation, en-
ergy can also be obtained from ocean waves. Because of its high power density
compared to solar and wind energy, wave energy is also promising for power
generation [1]. Therefore, several new wave energy converter (WEC) con-
cepts have been investigated in the last years, cf. [2, 3, 4, 5, 6, 7]. Moreover,
many ways to harvest energy from water waves are summarized in [8]. How-
ever, since water waves are irregular and most of the wave energy is contained
in low-frequency waves, only a small amount of energy has been extracted
from ocean waves so far.

A well-known type of wave energy converters (WEC) are the so-called
point absorbers, which possess small dimensions compared to the wavelength
of the incoming waves. There are different kinds of point absorbers. For ex-
ample, they can move along the sea surface [6] or be submerged under the
water waves, excited by pressure difference [7]. Thereby, point absorbers dif-
fer in the number of components from whose motion energy can be extracted.

In the first generation, point absorbers have been developed using a single-
body, which oscillates in heave. Examples for these constructions can be
found in [6, 9]. However, it has been found that these systems can only
harvest an optimal amount of energy if the natural frequency of these sys-
tems and the frequency of the incoming waves correspond to each other
[10, 11, 12]. As the frequencies of the incoming waves are typically very
low (0.1Hz− 0.2Hz), the dimensions of the mechanical system have to be
impractically large, cf. [13].

In order to enhance the magnitude of harvested wave energy, in [14] it
has been studied the behavior of a guided inclined point absorber in regular
waves. It has been shown that by varying the inclination angle, the gained
power can be enlarged significantly. Moreover, the magnitude of wave energy
has been increased by developing two-body WECs, where energy is harvested
through the relative motion between the components, cf. [15, 16]. Further-
more, multibody WECs exist, which consist of several moving components.
One example for such a multibody WEC has been developed by SINN-Power
[17]. It consists of generators mounted on a frame, which each are excited by
a moving cylindrical floating body (CFB). Thereby, all CFBs are vertically
mounted to the frame.

In this study, the mechanical system of SINN-Power type is generalized
by introducing varying inclination angles. The influence of inclination angles
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and number of CFBs on power performance of the device is investigated.
The CFBs move along the guidances attached on the frame and thereby
harvest energy, resulting in additional damping. Since the relative motion
between the CFBs and the frame is linear, a direct-drive linear generator can
be used for energy harvesting, cf. [18, 19]. But also the use of rotation based
generators for energy harvesting is possible. The results presented in this
paper for the multibody WEC consider thereby the case of excitation by a
regular and non-white Gaussian random process, which can for example be
encountered in real sea states.

It has to be noted that the considered multibody WEC can freely float on
the sea surface. This is an advantage, since no connection to the environment
is needed to harvest energy, in contrast to the system shown in [14]. The
multibody WEC presented in this study does not need this connection, since
energy is harvested from the relative motion between the frame and the
CFBs. Therefore, the location of operation of the WEC is not limited to
coastal regions or the neighborhood of offshore systems, but the WEC can
operate everywhere at the surface of the ocean. With the WEC presented
in this study, the idea of introducing an inclination angle, which greatly
increased the amount of harvested energy in [14], can also be used on the
open sea surface.

The content of this work is as follows: First, the investigated mechanical
system is introduced and the generalized equations of motion are presented.
Thereby, the fluid structure interaction and the involved hydrodynamic forces
are considered for the case of regular waves. Then, the modeling of irreg-
ular waves and the corresponding modeling of response of the mechanical
structure are presented. Afterwards, the harvested energy is computed for
different inclination angles and numbers of CFBs in order to analyze the
corresponding energy harvesting performance. Thereby, regular as well as
irregular seas are considered. Finally, this work ends with a conclusion.

2. Mechanical System

In this section, the mechanical system is introduced and the general equa-
tion of motion is presented. Thereby, the applied forces are described and the
hydrodynamic forces are calculated for the case of an excitation by regular
waves.
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2.1. Description of the mechanical system

The mechanical system consists of a frame and N CFBs. Figure 1 shows
the side view of the structure for the case of N = 4 in still water and in
the presence of water waves. In this work, the motion of the system in the
xy-plane is considered, whereby x denotes the horizontal and y the vertical
coordinates, respectively. Each CFB moves between the upper and lower
beam of the frame along guidance rods with corresponding displacement ξi
in a plane, which is inclined to the frame by the corresponding adjustable
inclination angle εi, i ∈ {1, . . . , N}. The frame can freely move in the xy-
plane, whereby the angle of rotation is denoted by β. The horizontal and
vertical displacements of the geometric center C of the frame are denoted by
xF and yF, respectively. Thereby, all displacements refer to the equilibrium
position in still water, at which xF, yF, β and ξi are zero.

In the direction of ξi, the CFBs and the frame are connected by springs.
Mechanical friction acting between the frame and the CFBs is accounted for
by a velocity dependent damping force. In order to simplify the problem, it
is assumed that the motion of the CFBs is not limited by the geometry of
the frame, i.e. the CFBs can move without colliding with the frame.

Direct-drive linear generators or rotation based generators can then con-
vert the relative motion between the CFBs and the frame to electrical energy.

2.2. General equations of motion

Let
z = [xF, yF, β, ξ1, . . . , ξN ]

T (1)

be the vector consisting of all generalized coordinates of the multibody WEC.
The general equations of motion of the mechanical system can then be written
as

M(z, t)z̈+ k(z, ż, t) = q(z, ż, t), (2)

whereby t is the time, M is the generalized mass matrix, k is the vector of
Coriolis, centrifugal and gyroscopic forces and q is the vector of the applied
forces. Thereby, q includes the stiffness and mechanical damping force Fsd,i,
which acts on the CFB i ∈ {1, . . . , N} in the direction of ξi. In this study, it
is computed by

Fsd,i = ks(l0,i − li + ξi) + dm ξ̇. (3)

Here, ks is the linear stiffness coefficient and dm is the linear damping coeffi-
cients due to mechanical friction. The term ks(l0,i− li) represents the preload
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Figure 1: Sketch of the mechanical system in still water position (a) and in the presence
of harmonic water waves (b).

force of the spring, whereby l0,i is the unloaded and li the preloaded length
of the spring, respectively.

2.3. Hydrodynamic forces in regular waves

In order to compute the hydrodynamic forces acting on each CFB, the
water pressure p has to be integrated over the corresponding wetted sur-
faces. Assuming an irrotational, unsteady flow, the water pressure p can be
computed using potential flow theory and Bernoulli’s equation,

p(x, y, z, t) = −ρ∂Φ(x, y, z, t)
∂t

− ρwgy, (4)

where Φ is the velocity potential, ρw is the density of water and g is the
gravity constant. In Eq. (4), a linearisation in Φ has been carried out.
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For incoming harmonic water waves with wave frequency ω and wave
amplitude A, the corresponding sea surface displacement is given by

η(x, t) = Re{A exp(i(κx− ωt))} with ω2 = κg tanh(κh), (5)

whereby κ denotes the wave number and h the water depth.
Following [20] the corresponding velocity potential Φ acting on the i−th

CFB can be computed by

Φi(x, y, z, t) =Re{A[ϕi,0(x, y, z) + ϕi,7(x, y, z)]e
−iωt (6)

+ (−iω)

(
6∑
j=1

ζ̂jϕi,j(x, y, z)

)
e−iωt}.

Here, ϕi,0 denotes the incident potential of the incoming waves acting
on the i−th CFB. The reflections of the incident waves with respect to a
non-moving CFB are represented by the corresponding scattering potential
ϕi,7. Furthermore, ϕi,j denotes the radiation potentials and ζ̂i,j the respective
complex amplitudes of the motion of the i−th CFB in the j-th direction.
Thereby, j = 1, 2, 3 represent the translational motion of the CFB in the
x-,y- and z-direction and j = 4, 5, 6 the rotational motion about the x-,y-
and z-axis.

It should be noted that in real applications, the motion of each CFB
results in hydrodynamic forces that can affect other CFBs. However, as
the distance between CFBs increases, the hydrodynamic interaction forces
between the different CFBs become small compared to the forces resulting
from the incident waves, radiation potential, and scattering potential. In
order to simplify the study, it is assumed that the distance between CFBs is
large enough, such that the hydrodynamic interaction forces between differ-
ent CFBs can be neglected.

The hydrodynamic forces FHyd,i and torques MHyd,i acting on the i−th
CFB are given by

FHyd,i =

∫∫
SB,i

pn dS, MHyd,i =

∫∫
SB,i

p(r× n) dS. (7)

Thereby, SB,i denotes the wetted surface of the i−th CFB and n is the
normal vector taken to be positive when pointing into the body. Moreover,
r denotes the position vector between the reference point of the torque and
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the points on the wetted surface of the CFB. In the following, the index i
is dropped to simplify the notation. Inserting Eq. (6) into (7), the hydro-
dynamic forces Fj

Hyd and torques Mj
Hydin the direction j acting on the i−th

CFB result into

Fj
Hyd = −

6∑
k=1

(
µj,kζ̈k + λj,kζ̇k

)
+ F j

B +Re
{
AXje

i(κxc−ωt)
}
, j ∈ {1, 2, 3},

(8)

Mj
Hyd = −

6∑
k=1

(
µj,kζ̈k + λj,kζ̇k

)
+M j

B +Re
{
AXje

i(κxc−ωt)
}
, j ∈ {4, 5, 6}.

(9)

Thereby, ζk represents the motion of the CFB in direction k with am-
plitude ζ̂k and xc is the x-coordinate of the center point of the CFB with
respect to the inertial coordinate system. Moreover, µj,k and λj,k are the
added mass and hydrodynamic damping coefficient acting in direction j due
to the motion in direction k, respectively. The buoyancy force as well as the
corresponding torque in direction j are represented by F j

B and M j
B, respec-

tively. Finally, the excitation force in direction j is represented by Xj. More
details about the corresponding terms can be found in [20].

This work considers a planar motion of the mechanical system, therefore,
the forces, torques and motions in j-th direction are zero for j = 3, 4, 5. In
order to compute the added mass and hydrodynamic damping coefficients
as well as the excitation forces in regular waves, the matched eigenfunc-
tion method is used. The way of computing these values is presented by
Yeung [21] and Garrett [22] for the case of a single truncated cylinder, re-
spectively. Thereby, it is noted that the values of µj,k, λj,k and Xj depend on
the geometry of the corresponding CFB, the immersion depth of the CFB,
the water depth h and the wave frequency ω.

3. Mechanical behavior in irregular sea

Since real ocean sea is irregular, any WEC has to be constructed in such
a way that a large amount of energy is harvested in random sea. This section
describes the modeling of the irregular sea and the modeling of the corre-
sponding system response.
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3.1. Modeling of irregular sea

Realistic ocean sea is simulated here by using the superposition principle
of harmonic waves. Thereby, water waves with wave frequencies ω and corre-
sponding wave numbers κ(ω) are superposed. With this, the wave amplitudes
of each harmonic wave component depends on the underlying sea state. This
is given by the corresponding one-sided spectral density S(ω), cf. [23, 24].
Common sea states are described by the Pierson-Moskowitz spectrum for
deep water and the Joint North Sea Wave Project (JONSWAP) spectrum
for shallow water waves. Then, a one dimensional irregular long-crested wave
surface Z(x, t) can be determined by

Z(x, t) =

Ncomp∑
n=1

cos(ωnt− κ(ωn)x+ ψ(ωn))
√

2S(ωn)∆ωn. (10)

Here, the sea spectrum is divided in Ncomp components with respective fre-
quencies ωn ∈ [ωmin, ωmax] and widths ∆ωn, which do not need to be of same
size. Moreover, ψ(ωn) is a randomly distributed phase shift in the inter-
val [0, 2π]. Such a modeling results in a linear random sea with Gaussian
distributed wave elevation and Rayleigh distributed wave amplitude.

In the following, the obtained results are presented for the Pierson-Moskowitz
spectrum, which can be described by the peak frequency ωP and significant
wave height Hs.

3.2. System response in irregular sea

The behavior of the mechanical system can be computed by solving
Eq. (2). For a harmonic wave of frequency ω and amplitude A, the ap-
plied hydrodynamic forces and torques can be computed using the Eqs. (8)
and (9), respectively. However, irregular sea are described by a sum of har-
monic waves, cf. Eq. (10). The question arises how to compute the corre-
sponding hydrodynamic forces acting on the mechanical system.

The hydrodynamic forces due to irregular sea are computed using the
approach described in [14]. Therefore, average values for all µj,k and λj,k are
used by determining the corresponding values at the peak frequency ω = ωP.
In this way, the response for waves with peak frequency ωP is accurate. Using

µ̄j,k := µj,k(ωP), λ̄j,k := λj,k(ωP) for j, k ∈ {1, ..., 6}, (11)
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the hydrodynamic forces Fj
Hyd and torques Mj

Hyd in direction j acting on a
CFB, which is excited by an irregular sea determined by Eq. (10), are given
by

Fj
Hyd =−

6∑
k=1

(
µ̄j,kζ̈k + λ̄j,kζ̇k

)
+ F j

B (12)

+

Ncomp∑
n=1

Re
{√

2S(ωn)∆ωnXj(ωn)e
i(κ(ωn)xc−ωt+ψ(ωn))

}
, j ∈ {1, 2, 3},

Mj
Hyd =−

6∑
k=1

(
µ̄j,kζ̈k + λ̄j,kζ̇k

)
+M j

B (13)

+

Ncomp∑
n=1

Re
{√

2S(ωn)∆ωnXj(ωn)e
i(κ(ωn)xc−ωt+ψ(ωn))

}
, j ∈ {4, 5, 6}.

Thereby, the values of µ̄j,k, λ̄j,k and Xj(ωn) are determined for the equi-
librium position of each cylinder. Here, it is assumed that the CFBs do not
perform large amplitude motions in the vertical direction.

3.3. Modeling of power take off system
If energy is harvested from the motion of the CFBs, an additional elec-

trical damping Force Fel will be introduced, which acts on the mechanical
system. In this work it is assumed that the electrical damping force acting
on the i-th CFB depends linearly on the velocity of the CFB, i.e.

Fel,i = del,iξ̇i, i ∈ {1, . . . , N}. (14)

Thereby, del,i is the corresponding electrical damping constant.
The damping force leads to the mechanical power Pmech,i = Fel,iξ̇. This

power is related to the electrical power Pel,i by means of the efficiency factor
ηeff,i, i.e. Pel,i = ηeff,i Pmech. Therefore, the electrical power harvested from
the motion of the i-th CFB can be computed by

Pel,i = ηeff,idel,iξ̇
2
i , i ∈ {1, . . . , N}. (15)

Using this, the electrical energy harvested from the i−th CFB and from the
whole system during a time interval [tstart, tend] is given by

Eel,i =

∫ tend

tstart

ηeff,idel,iξ̇
2
i dt, Eel,total =

N∑
i=1

Eel,i, (16)
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respectively. The corresponding time averaged power P̄el,i of the i−th CFB,
the time averaged total power P̄el,total of the system as well as the time aver-
aged total power normalized by the number of CFBs P̄el,mean is given by

P̄el,i =
Eel,i

tend − tstart
, P̄el,total =

Eel,total

tend − tstart
, P̄el,mean =

P̄el,total

N
, (17)

respectively.

4. Numerical results

In this section, the dynamics of the system in regular and irregular sea
states are analyzed. Furthermore, the harvested energy of the system is
studied for different inclination angles and numbers of CFBs. In order to
simplify the study, other system parameters like the masses of the CFBs, the
height of the frame, the stiffness and damping coefficients are kept constant.

In the following, results are presented for a frame with a length of 100m,
mass per length of 60 kg/m and a height of 7m. All CFBs are assumed to
have the same geometry and mass. Furthermore, they are equally distributed
along the length of the frame and have a diameter of 2m, a height of 7.5m
and a mean density of 72 kg/m3. The center of gravity of each CFB is located
1.25m below the corresponding geometric center point. The remaining used
parameters, which have already been introduced in this work, are summarized
in Tab. 1. Thereby, the stiffness, damping and efficiency coefficients are the
same for all CFBs. In all simulations, the effect of viscous drag forces of
the water are neglected. Since these forces are neglected for all considered
simulations, the results are still comparable.

In order to further simplify the study of the effects of different inclination
angles on the overall performance of the system, only the CFBs at the ends of
the frame are inclined. They are inclined by the same angle ε to the outside
of the frame. In this way, the system becomes also symmetric. Thereby, an
angle is positive if the rotation is anticlockwise. An example for a system
with N = 4 CFBs is shown in Fig. 1a with ε1 = −ε, ε4 = ε, ε2 = ε3 = 0.

In all numerical simulations, Eq. (2) is solved with zero displacements
and velocities initial conditions, i.e. z(t = 0) = 0, ż(t = 0) = 0.

4.1. Results for regular waves

In order to get a first impression of the system behavior in regular waves,
Fig. 2 shows the response for regular waves with amplitude A = 0.5m
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Table 1: Parameters used in all simulations.
g ρw h ks dm del ηeff

[m/s2] [kg/m3] [m] [N/m] [Ns/m] [Ns/m] [−]
9.81 1023 20 2000 2000 1000 0.8

and wave frequency ω = 1 rad/s for the time period of 5000 s. Thereby, an
inclination angle of ε = 30◦ and N = 5 CFBs are used with ε1 = −ε, ε5 = ε,
ε2 = ε3 = ε4 = 0.

Figures 2a-e present the temporal behavior of the frame. As it is shown
in Fig. 2a, the frame moves in the positive x-direction. Moreover, Figs. 2b
and c show the temporal behavior of the response in the y-direction and the
rotation angle β in blue. In order to better visualize the temporal behavior
of the respective amplitudes, the corresponding envelopes of the responses
are shown in orange. It can be seen that the amplitude of both responses
increases in the first 2000 s. After this time, the corresponding response
amplitudes converge to constant values. In order to get a better insight into
the temporal behavior of yF and β, the values of yF and β are shown in
Fig. 2d and e for the time interval [3970 s, 4030 s], respectively. Again, it can
be seen that the amplitude of yF and β becomes constant after 2000 s. This
shows that the overall dynamic behavior of the frame for the used sea and
system parameters is represented in a time interval with a duration of 5000 s.

The corresponding displacements of all CFBs are presented in Fig. 2f for
the time interval [3970 s, 4030 s]. It can be seen that in this time interval,
where the amplitudes of yF and β are constant, each of the CFBs also moves
with a constant amplitude. However, different CFBs show different ampli-
tudes in their motions, which results from the corresponding motion of the
frame with respect to the water wave. At this point it is recalled that only
the CFBs with the corresponding displacements ξ1 and ξ5 are inclined by the
angle ε1 = −ε and ε5 = ε with ε = 30◦, respectively. The other CFBs with
the respective displacements ξ2, ξ3 and ξ4 are oriented vertically with respect
to the frame, i.e. by ε2 = ε3 = ε4 = 0◦. Moreover, Fig. 2f shows that all
CFBs have the same frequency, which is the same as for yF and β. However,
this frequency is different from the wave frequency, which results from the
forward motion of the frame.

Since the motions of the CFBs have the same frequency but differ in their
amplitude, the corresponding velocities differ also in their amplitude. This
can be seen in Fig. 2g, where the velocities of all CFBs are depicted for
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Figure 2: Temporal behavior of the mechanical system. The system is excited by a regular
wave with amplitude A = 0.5m and frequency ω = 1 rad/s. The motion of the frame is
represented by the corresponding displacement xF in x-direction (a), yF in y-direction
(b) and rotation angle β (c). In (d) and (e), the corresponding values of yF and β are
shown for the time interval [3970 s, 4030 s]. The displacement and velocities of all CFB are
depicted in (f) and (g), respectively.

the time interval [3970 s, 4030 s]. Resulting from this and Eq. (15), the CFBs
harvest different amounts of energy. This is presented in Fig. 3a, which shows
the corresponding harvested energy Pel,i(t) of each CFB with respect to time.
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The resulting time averaged power P̄el,i of each CFB is shown in Fig. 3b.
Since all CFBs move with the same frequency, a higher amplitude of motion
of the CFB results in a higher amount of harvested energy. The harvested
time averaged total energy of the whole system is P̄el,total = 1275W, whereby
in average each cylinder harvests P̄el,mean = 255W. For time averaging, the
time interval [tstart, tend] = [2000 s, 5000 s] is taken into account. Here, the
system moves in a steady state.

Next, the influence of the inclination angle and the number of CFBs on
the harvested energy is investigated. Thereby, the system moves in regular
waves. Figure 4 presents the power P̄el,mean at the frequency ω of the incoming
waves and the inclination angle ε. Thereby, different numbers of CFBs are
taken into account. Here, only odd values for N are taken into account, since
then one of the CFBs is located near the center of the frame. Therefore, this
CFB introduces only a small inertia into the system. As a result, the system
performs larger rotations β. In order to give an overview of the different
setups of the investigated systems, the angles of inclination of the CFBs and
the distances between the evenly spaced CFBs are summarized in Tab. 2.

It can be seen that for all considered numbers of CFBs, a high amount
of energy can be harvested for frequencies around 3 rad/s. However, waves
with frequencies lower than 2 rad/s generally occur in real oceans. For these
low frequencies, it is shown that more energy can be harvested from the
system if a higher number of CFBs is used. Therefore, more CFBs can
increase the chance of harvesting a higher amount of energy. However, a
higher number of CFBs also leads to an increasing inertia of the system and
costs for construction. Therefore, the number of CFBs must be chosen wisely.

Figure 3: Harvested power of the mechanical system. The system is excited by a reg-
ular wave with amplitude A = 0.5m and frequency ω = 1 rad/s. For the time interval
[3970 s, 4030 s], the harvested power of each of the CFBs is depicted in (a). The resulting
time averaged total power related to each CFB is shown in (b).
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Table 2: Inclination angles and distances between the evenly spaced CFBs.

Number ε1 ε2 ε3 ε4 ε5 ε6 ε7 equal space
of CFBs [−] [−] [−] [−] [−] [−] [−] between CFBs [m]

3 −ε 0 ε − − − − 33.33
5 −ε 0 0 0 ε − − 20.00
7 −ε 0 0 0 0 0 ε 14.29

Studying the effect of the inclination angle, it can be seen that an angle
of 0◦ leads in general to the highest amounts of energy. However, increasing
the inclination angle leads to local maxima in the harvested energy. One of
these local maxima is found for the parameter combination N = 5, ε = 20◦,
ω = 3 rad/s, cf. Fig. 4b. In this case more energy can be harvested as
for N = 5, ε = 0◦, ω = 3 rad/s. This indicates that the introduction of
an inclination angle can increase the amount of harvested energy in special
cases.

It has to be noted that a study on the influence of inclination angles
has been performed in [14] for the case of just one CFB. There, the authors
conclude that the highest amount of power can be harvested at an inclination
angle of about ε = 45◦. This seems to contradict the results of this study, in
which the largest amount of power is harvested at small inclination angles.
However, the system studied in [14] is fixed, i.e. the CFB is moving with
respect to a fixed guidance. The position of the frame in the horizontal
direction and the corresponding position of the water wave crest affect the
displacements of the CFBs, see Fig. 2f. This also influences the amount of
harvested power.

Moreover, it has to be noted that these simulation results are all related
to the considered mechanical system. No optimization process has been per-
formed to increase the amount of harvested energy. However, a large amount
of energy is actually only harvested for frequencies higher than 2 rad/s, which
occur in the open sea only with a small amplitude and energy. In order to
increase the harvested energy for waves occurring in real seas, an optimiza-
tion process should be performed. As has been indicated, inclined CFBs can
increase the amount of harvested energy and should therefore be taken into
account in the optimization process.
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Figure 4: Harvested time averaged total power normalized by the number of CFBs,
P̄el,mean. The power is presented against the wave frequency ω of the harmonic waves
and the inclination angle ε of the CFBs positioned at the ends of the frame. The results
are shown for (a) N = 3, (b) N = 5 and (c) N = 7 CFBs, respectively. All incoming
regular waves have an amplitude of A = 0.5m.

4.2. Results for irregular waves

In the following, the amount of harvested energy from the mechanical
system moving in random seas is studied. Irregular ocean waves are generated
using Eq, (10), whereby the amplitude of the waves are computed using the
Pierson-Moskowitz spectrum with a corresponding significant wave height
of Hs = 2 rad/s and peak frequencies ωP ∈ [0.25 rad/s, 4 rad/s]. Irregular
seas are generated by superposing Ncomp = 100 harmonic wave components
with respective wave frequencies ωn and phase shifts ψ(ωn) ∈ [0, 2π], n ∈
{1, . . . , Ncomp}.

The temporal behavior of the mechanical system is simulated for differ-
ent numbers of CFBs and peak frequencies ωP over a duration of 100000 s.
For time averaging of the corresponding harvested energy, the time interval
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Figure 5: Harvested time averaged total power normalized by the number of CFBs,
P̄el,mean. The power is presented against the peak frequency ωP of the irregular waves
and the inclination angle ε of the CFBs positioned at the ends of the frame. The results
are shown for (a) N = 3, (b) N = 5 and (c) N = 7 CFBs, respectively. In order to
generate the irregular seas, a significant wave height of Hs = 2m is used and Ncomp = 100
harmonic waves are superposed.

[tstart, tend] = [2000 s, 100000 s] is used.
The corresponding results for the harvested time averaged total power

normalized by the number of CFBs, P̄el,mean, are presented in Fig. 5. Thereby,
N = 3, N = 5 and N = 7 CFBs are used, respectively. Information about
the setups of the three different mechanical systems can be found in Tab. 2.
For all considered numbers of CFBs it is shown that a large amount of en-
ergy can be harvested for sea states consisting of harmonic waves with high
frequencies, i.e. for large values of ωP, e.g. ωP = 3, rad/s. For smaller values
of ωP, energy can only be harvested for a high number of CFBs, cf. Fig. 5c.

Regarding the inclination angle ε, it is shown that in general a smaller
value of ε leads to a larger amount of energy. However, as can also be seen for
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the case of regular wave excitation, a variation of the inclination angle leads
to local maxima in the harvested energy. Thereby, in the irregular waves,
one maximum is dominating, see for example Fig. 5a.

Again, it has to be noted that these simulation results are all related to the
considered mechanical system. No optimization process has been performed
to increase the amount of harvested energy, especially not for smaller peak
frequencies ωP. It has already been indicated that the inclined CFBs can
increase the amount of harvested energy and should therefore be taken into
account in an optimization process.

Comparing Fig. 4 and Fig. 5, it is noticed that smaller maximal amounts
of power can be harvested from irregular seas than from regular seas. This
can also be seen in Tab. 3, which summarizes the maximal amounts of powers
harvested from the mechanical systems with N = 3, N = 5, and N = 7
CFBs, respectively. However, for most combinations of inclination angles
and excitation frequencies, the mechanical system is able to harvest more
energy from irregular seas than from regular seas. This can be seen in Fig. 6,
where the harvested energies are compared for all considered cases. The much
bigger blue regions in Figs. 6b, d and f indicate that for most combinations
of inclination angles and excitation frequencies, larger amounts of energy
are harvested from irregular seas than from regular waves. Moreover, Fig. 6
shows that the corresponding value of P̄el,mean harvested from irregular sea
is not as sensitive against changing sea and system conditions as for regular
waves. This means that for changing parameters, the value of P̄el,mean does
not have as big fluctuations in irregular seas as in regular seas.

Regarding the results in the current study, the setup with 7 CFBs shows
the best results, since energy can be harvested for smaller values of ωP. That
energy can be harvested for smaller values of ωP is fundamental for a wave
energy converter. In the real ocean only sea states with smaller values of
ωP occur with high amplitudes, from which high amounts of energy can be

Table 3: Maximal values of harvested power P̄el,mean from regular and irregular seas for
different numbers of CFBs.

Number max{P̄el,mean} in max{P̄el,mean} in
of CFBs regular waves [W] irregular waves [W]

3 30663 18569
5 14591 9940
7 12178 9811
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Figure 6: Comparison of the results shown in Figs. 4 and 5. The power is presented
against the wave frequency ω for regular and peak frequency ωP for irregular waves. The
respected results are shown for (a-b) N = 3, (c-d) N = 5 and (e-f) N = 7 CFBs from two
different points of view.

harvested
In order to increase the harvested power in the presence of waves with low
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wave frequencies, an optimization process has to be carried out in irregular
seas in a future work. Thereby, the system parameters have to be optimized
in such a way that the harvested power gets high for different peak frequen-
cies, which are present in real open seas. This can be done, for example, by
simulating the behavior of the mechanical system in different irregular seas
with different peak frequencies and checking at which system parameters the
sum of all harvested powers becomes high. Such an optimization process has
been performed in [19] for a drifting sensor platform. Since only a few system
parameters have to be optimized in this study, the gradient can be calculated
via finite difference methods. However, other gradient-based algorithms can
also be used for the optimization of this nonlinear problem.

Moreover, required future work is the determination of an optimal damp-
ing strategy in order to adapt to the change of the dominant frequency of
encounter waves.

Limitations of this work are the 2d analysis of the system and the missing
hydrodynamic interaction forces between different CFBs. This can also be
addressed in a future work by a 3D analysis using more sophisticated nu-
merical tools, which however will lead to considerably higher computational
costs.

5. Conclusions

In this work, a multibody wave energy converter consisting of a frame
and several inclined modules is investigated. For this system, novel general
equations of motion for an arbitrary number of involved CFBs are presented
and the involved hydrodynamic forces are computed for regular and irregular
waves. The harvested energy is studied for different numbers of CFBs and
inclination angles. Since the harvested energy directly depends on the relative
velocities between the CFBs and the frame, large and fast motions of the
CFBs result in large amounts of harvested energy.

For the used system parameters, it has been found that a large amount
of energy can be harvested in the presence of waves with corresponding
high wave frequencies. However, in waves with low wave frequencies, a use-
ful amount of energy can be harvested for a larger number of CFBs only.
Thereby, a small inclination of the CFBs leads in general to more harvested
energy than larger inclination angles. However, a varying angle leads to lo-
cal maxima in the energy. This indicates that the inclination angle can have
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an effect on the maximum amount of energy which can be harvested from
regular and irregular waves.

Comparing the results for both cases of excitations, it is shown that a
larger amount of power can be harvested from regular waves than from ir-
regular waves. However, the harvested energy from irregular waves is less
sensitive against changes in the system and wave parameters.

It can be summarized that large amounts of energy can be harvested from
the multibody wave energy converter for higher wave frequencies. However,
since in the real ocean waves with low frequencies occur, an optimization
process has to be performed in order to increase the harvested energy in real
seas. Thereby, inclination angles should be taken into account, as they can
have an effect on the maximum amount of energy which can be harvested. In
the optimization process, the inclination angle and the size of the CFBs have
to be optimized together, as different inclination angles can lead to different
optimal cylinder sizes. Here, irregular sea has to be considered, as it is the
relevant realistic case and leads to different amount of harvested power as in
regular sea.
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