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A B S T R A C T   

In the extant road safety literature, estimating safety-in-numbers is dominated by conventional cross-sectional 
methods in which active mode (pedestrian or cyclist) volume together with motorised traffic volume are pre
sent in regression models explaining active mode safety directly. There is “direct” evidence for safety-in-numbers 
when the coefficient associated with active mode volume is negative (safety improves as volume increases) or 
when it is smaller than one (safety decreases at a lower rate compared to the rate of increase in active mode 
volume). In this article we extend the concept of safety-in-numbers in the traffic safety field, introducing “in
direct” safety-in-numbers, which constitutes a new form of evidence for this phenomenon. We provide empirical 
evidence to support this, discussing that using an approach based on heterogeneity in mean modelling–a form of 
random parameters (slopes) models–it is possible to reveal “indirect” safety-in-numbers effects. Therefore, such 
models can reveal further compelling evidence for safety-in-numbers. Accurate knowledge of safety-in-numbers 
effects (both direct and indirect) and their underlying mechanisms can help provide robust motives for pro
moting active travel and will have valuable implications for the design of road safety interventions.   

1. Introduction 

Promoting walking and cycling is considered an important step in 
achieving healthier population and cleaner environment in urban areas 
(de Hartog et al., 2010). In this regard, increasing the safety of active 
modes of travel (walking and cycling) plays a key role (Braun et al., 
2016; Khattak and Rodriguez, 2005). Some previous studies indicated 
that pedestrians and cyclists are safer in locations with higher preva
lence of walking and cycling (Jacobsen, 2015), confirming the so-called 
safety-in-numbers effect. This is perhaps partly because in such locations 
various road users (e.g., pedestrians, cyclist, and drivers) are well aware 
of the fact that the road network is shared between different road user 
types. For example, car drivers expect frequent interactions with pe
destrians or cyclists and are thus more cautious, increasing traffic safety. 
Also, in pedestrian- and cycle-friendly areas, since many drivers or their 
family members may walk or cycle occasionally, hostile attitudes to
wards active travel is less pronounced, resulting in an improved safety 
condition for vulnerable road users (Aldred, 2016). 

The concept of safety-in-numbers relates to the idea that the higher 
the number of pedestrians and/or cyclists, the safer the road network for 

walking and/or cycling (Elvik and Bjørnskau, 2017; Fyhri et al., 2017; 
Heydari et al., 2020). Specifically, a safety-in-numbers effect indicates 
that as the volume of pedestrians or cyclists increases, the safety of these 
modes of travel decreases at a lower rate compared to that of their 
respective exposures (Elvik and Bjørnskau, 2017). For example, a value 
of 0.8, which is smaller than one, for the coefficient associated with 
pedestrian volume (in a model that explains pedestrian crash frequency) 
indicates a safety-in-numbers effect although this estimated coefficient 
implies that pedestrian volume and the number of crashes are positively 
associated. A negative association, however, indicates a strong safety-in- 
numbers effect, meaning that the safety of active modes increases (e.g., 
crash frequency decreases) as pedestrian and/or cyclist activity (vol
ume) increases (Elvik and Goel, 2019). Literature provides evidence for 
both safety-in-numbers and strong safety-in-numbers effects at both 
micro (e.g., intersection) and macro (area) levels (Aldred et al., 2019; 
Aldred et al., 2018; Elvik, 2016; Heydari et al., 2017; Lee et al., 2019; 
Murphy et al., 2017; Tasic et al., 2017; Xu et al., 2019). While reviewing 
the safety-in-numbers literature is beyond the scope of this paper, for a 
comprehensive systematic review, see Elvik and Goel (2019). 
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1.1. The current paper 

In this article we discuss a new form of safety-in-numbers that can be 
inferred indirectly from certain statistical models and explain how such 
an indirect safety-in-numbers effect can be revealed. We briefly revisit 
issues of endogeneity in the context of safety-in-numbers since this 
serves to identify the strength of the evidence for safety-in-numbers. We 
compare different statistical models with respect to the strength and 
form of evidence (direct and/or indirect) they provide for safety-in- 
numbers, introducing the safety-in-numbers triangle. We conclude 
with a summary and provide some recommendations for future research 
in this specific area, with the overarching aim of promoting walking and 
cycling. 

2. Strength of evidence for safety-in-numbers: moderate versus 
strong evidence 

The strength of evidence for safety-in-numbers is under question as 
previous studies mostly analysed cross-sectional data using traditional 
statistical models (e.g., negative binomial regression), revealing the 
magnitude of the association between active modes traffic volume and 
their safety (Elvik and Bjørnskau, 2017). In fact, such traditional models 
are unable to account for endogeneity of explanatory variables (Elvik, 
2021; Mannering et al., 2020). This may be exacerbated by unobserved 
heterogeneity (Heydari, 2018; Mannering et al., 2016), which if not 
addressed properly, would result in bias in estimation. 

Ideally, stronger evidence for safety-in-numbers can be shown using 
approaches that can address endogeneity in the effect of pedestrian or 
cyclist flow on the safety of pedestrians or cyclists. However, the use of 
endogeneity models in the context of safety-in-numbers is rare, if not 
non-existent, in the extant road safety literature. We believe endoge
neity is particularly important in this context where the focus is on 
interpreting the estimated coefficients associated with pedestrian and/ 
or cyclist volumes. Therefore, the reliability of such interpretations 
matters particularly. Some claim that safety-in-numbers really is 
numbers-in-safety, i.e., people walk or cycle more once a safe infra
structure is provided. It is therefore not unlikely that pedestrian or cycle 
volume is endogenous. So, if the analysis does not accommodate endo
geneity, statistical inferences would be biased, the extent of which is 
unclear and depends on the application and data. 

Selectivity bias can arise easily here; for example, less safety- 
conscious drivers (e.g., those who often engage in risk-taking behav
iours such as speeding) may avoid locations (intersections, road seg
ments, neighbourhoods, etc.) with higher prevalence of walking and 
cycling to avoid lower operating speeds. Therefore, the crash data 
collected at such locations may not be a truly random and representative 
sample of the driving population. Consequently, an estimated parameter 
for traffic exposure (pedestrian/cyclist and traffic volumes) may be 
biased if selectivity is not accommodated. 

3. Further compelling evidence for safety-in-numbers: direct 
versus indirect evidence 

Previous research mostly employed traditional statistical models that 
only allow the analyst to examine the “direct” association between 
pedestrian or cyclist volume and their respective safety conditions. That 
is, active modes volume appears in count regression models as an 
explanatory variable explaining pedestrian or cyclist crash frequencies 
directly. For example, consider the generic random parameters (slopes) 
count regression model specified in Eq. (1). The regression coefficient β, 
associated with active mode volume, being smaller than one indicates 
the presence of a safety-in-numbers effect. 

yj ∼ Poisson
(
λj
)

log
(
λj
)
= α0 + αln(AADTj) + βln(activemodevolumej)+ γXj + ηjZj +∊j  

Zj ∼ normal
(
μz, vz

)
(1)  

where y is the observed number of crashes involving pedestrian or cy
clists for sites j; λ is the expected crash frequency and is a function of 
traffic volume (AADT), active mode (pedestrian or cyclist) volume, and 
some other site characteristics X and Z. α is the regression coefficient 
associated with motorised traffic volume; X represents the vector of 
other contributory factors with their respective parameters γ; and α0 is 
an intercept. For simplicity, we assume only the effect of one contrib
utory factor, Z, varies across the sample with its associated random 
parameter η; μz and vz are respectively the mean and variance of the 
random parameter Z. And ∊ is a random term, which captures over
dispersion in crash datasets. Under both conventional cross-sectional 
and endogeneity approaches, the model reveals only “direct” evidence 
for safety-in-numbers as the analyst can directly investigate the associ
ation between active mode volume and safety. 

3.1. Indirect evidence via heterogeneity in mean models 

Recently, heterogeneity in mean models have been employed in the 
crash literature when using random parameters (slopes) models. Besides 
addressing unobserved heterogeneity more fully, these models can 
explain the source of heterogeneity in the data better than conventional 
random parameters models (Heydari et al., 2018; Seraneeprakarn et al., 
2017). Note that the heterogeneity in means approach is known to add 
robustness to random parameters models, leading to more reliable sta
tistical inferences. Specifically, heterogeneity in mean models can 
explain the variability in the effect of random regression parameters (i. 
e., within covariate variability) based on explanatory variables W, 
which are available in the data; i.e., Zj = f(Wj). The vector of covariates 
W can include any set of explanatory variables that are available in the 
data. For simplicity, let’s assume W includes only active mode volume; a 
generic heterogeneity in mean specification can be written as in Eq. (2). 

yj ∼ Poisson
(
λj
)

log
(
λj
)
= α0 + αln(AADTj) + βln(activemodevolumej)+ γXj + ηjZj + ∊j  

Zj ∼ normal
(
μzj, vz

)

μzj = a0 + a1(active mode volumej) (2) 

In the above formulation, let’s assume Z is a risk factor, having an 
undesirable impact on safety. Since its mean depends on active mode 
volume, as specified in Eq. (2), an “indirect” safety-in-numbers effect 
can be revealed by identifying the indirect association through Z be
tween active mode volume and its safety. A negative sign for a1 implies 
that an increase in active mode volume decreases the adverse effect of 
this risk factor on safety; and consequently, it indicates a “strong” in
direct safety-in-numbers effect. Also, a1 being positive with a value 
smaller than one (i.e., when the adverse effect of a risk factor increases 
less than in proportion to pedestrian or cyclist volume) indicates an 
indirect safety-in-numbers effect. Similarly, in case Z, instead of being a 
risk factor, has a protective effect on safety, an indirect safety-in- 
numbers effect is revealed when pedestrian or cyclist counts have a 
positive sign in the function explaining Z. 

If the coefficient associated with active mode volume (β in Eq. (1)) is 
a random parameter, its mean will indicate whether a conventional 
direct safety-in-numbers effect exists overall. The mean being smaller 
than zero indicates a strong direct safety-in-numbers effect and the mean 
being positive but smaller than one indicates a direct safety in numbers 
effect. Its variance will then indicate the uncertainty around this effect. 
A study conducted by (Xu et al., 2021) discusses how the variance of a 
random parameter affects the accuracy of out-of-sample crash pre
dictions; however, in the context of safety-in-numbers usually prediction 
is not of interest. Alternatively, if a heterogeneity in mean specification 
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is considered for this parameter (β in Eq. (2)), the presence (and 
magnitude) of a safety-in-numbers effect dependents on other explana
tory variable(s) affecting the variation in β. In the latter scenario, the 
heterogeneity in mean specification for β can reveal a direct safety-in- 
numbers effect as the analyst can observe the direct effect of active 
mode volume on pedestrian/cyclist safety. 

3.2. Empirical evidence for an “indirect” safety-in-numbers effect 

A study conducted by Heydari et al., 2020 is the first and only 
example that reveals and discusses “indirect” evidence for safety-in- 
numbers based on a heterogeneity in mean model. They investigated 
the varying effect of proximity to school on pedestrian injury fre
quencies at signalised intersections in Montreal. They found that the 
adverse effect of proximity to school, a major risk factor, decreased as 
pedestrian volume increased at intersections in proximity to schools 
(intersection located in a 400 m buffer around schools). In other words, a 
higher prevalence of pedestrians at intersections around schools resulted 
in a lower rate of increase in pedestrian injury frequencies at these in
tersections. Considering the above notation, in Heydari et al., 2020 
pedestrian volume was among W, capturing the variability in the effect 
of proximity to school on pedestrian safety. This indicated a strong 
“indirect” safety-in-numbers effect since the sign of the coefficient 
associated with pedestrian volume, explaining the effect of proximity to 
school, was found to be negative, − 0.152 (see Table 4 in Heydari et al., 
2020). With respect to the direct (conventional) safety-in-numbers ef
fect, the same study found direct evidence for safety-in-numbers as well. 
This is implied since the coefficient associated with pedestrian volume 
(being an explanatory variable among others in explaining pedestrian 
injury frequency as in Eq. (1)) was 0.417. That is, a value smaller than 
one, indicating that safety decreases less than in proportion to pedes
trian volume. 

To better clarify the above discussion, Fig. 1 displays a schematic 
view of both direct and indirect evidence for safety-in-numbers ac
cording to Heydari et al., 2020. The discussion above and the evidence 
provided by the authors indicate that safety-in-numbers is not only what 
has been revealed in previous research (direct evidence), but it can also 
manifest in other forms, providing indirect evidence for safety-in- 
numbers. That is, higher levels of pedestrian and cyclist activity may 
improve safety indirectly while affecting other factors that have a 
bearing on the safety of active modes; for example, by hampering their 
adverse effects. 

3.3. Heterogeneity in variance specification 

Note that a further extension of the heterogeneity in mean 

specification allows the variance of the random parameter Z to be 
modelled as a function of other explanatory variables in the data, indi
cating that uncertainty around the effect of Z varies systematically 
across the data. Pedestrian or cyclist volume having a bearing on the 
variance of Z means they govern the variance of the effect of Z on 
pedestrian or cyclist safety. A positive sign will indicate the effect of Z 
becomes more dispersed (uncertain) as pedestrian or cyclist counts in
crease and vice versa. While in this case, active mode volume provides 
insights into the precision of the effect of Z on safety, it does not imply a 
safety-in-numbers effect although it might be considered favourable 
when precision is increased. Therefore, we do not discuss heterogeneity 
in variance models further. 

3.4. Models with interaction terms 

Note that indirect safety-in-numbers effects can be inferred from 
models that include interaction terms as well. For example, consider the 
model defined in Eq. (3), where there is an interaction term between 
active mode volume and the explanatory variable X. Also, let’s assume X 
is a continuous variable. 

yj ∼ Poisson
(
λj
)

log
(
λj
)
= α0 + αlog(AADTj) + βlog(active mode volumej) + γ1Xj

+ γ2Xjlog(active mode volumej)+ ∊j (3)  

where γ1 and γ2 are regression coefficients associated with X and the 
interaction variable. In the above specification, the effect of X on log(λ), 
for any fixed value of log(active mode volume) such as log(active mode 
volume0), can be obtained from (4) 

γ1 + γ2log(activemodevolume0) (4) 

Therefore, the effect of X depends on active mode volume. This im
plies that if γ2 is smaller than one, the effect of X on log(λ) increases less 
than in proportion to active mode volume, indicating an “indirect” 
safety-in-numbers effect. This is indirect since active mode volume 
comes into play indirectly by affecting the impact of another variable on 
safety. However, we do not discuss models with interaction terms 
further as their use is very limited in the crash literature. This is perhaps 
partly due to the fact that correlation between the explanatory variables, 
in particular, with interaction terms can be very high, causing serious 
collinearity issues. 

4. Safety-in-numbers triangle 

To better clarify how different statistical models differ from each 
other in terms of form and strength of evidence for safety-in-numbers, 
we introduce the “safety-in-numbers triangle” in Fig. 2. Given the 
focus of our study, we group statistical models into four main categories: 
traditional cross-sectional models, traditional endogeneity models (see 
Mannering et al. (2020) for further details), heterogeneity in means 
models, and heterogeneity in means endogeneity models. Here, in the 
context of safety-in-numbers, both traditional and heterogeneity in 
mean endogeneity models refer to those models that account for the 
endogeneity of pedestrian and cyclist volume. Note, however, that any 
form of model specification that improves the reliability of statistical 
inferences contributes favourably to the strength of evidence for safety- 
in-numbers. This said, a heterogeneity in means endogeneity models in 
its most ideal form in this context not only can reveal both direct and 
indirect safety-in-numbers effects, but it can also address the potential 
endogeneity of active mode volume in Eq. (2). This would allow for a 
more reliable estimation of β (see Eq. (2)) which in turn will increase the 
strength of evidence for a safety-in-numbers effect. 

Fig. 2 displays different types of statistical models in terms of their 
capability in revealing differing forms of evidence (direct vs indirect) for 
safety-in-numbers and the strength of evidence they are able to provide. 

Fig. 1. Example of direct and indirect evidence for safety-in-numbers. Note 
that pedestrian volume does not affect the presence of school, but it affects its 
effect on pedestrian safety. 

S. Heydari and R. Elvik                                                                                                                                                                                                                       



Accident Analysis and Prevention 179 (2023) 106902

4

Both categories of traditional cross-sectional and endogeneity models 
can reveal only direct evidence while their heterogeneity in means 
counterparts can reveal both direct and indirect evidence. Therefore, the 
latter approaches are superior to traditional models, being able to draw 
a fuller picture. Besides requiring more detailed data and more in-depth 
investigation, heterogeneity in means and endogeneity models are often 
more cumbersome computationally and more time consuming 
compared to traditional cross-sectional models. Therefore, the analyst 
must trade-off between model complexity, revealing indirect/direct ef
fects, and the strength of evidence for safety-in-numbers. As can be seen 
in Fig. 2, endogeneity models provide stronger evidence for safety-in- 
numbers effects compared to traditional cross-sectional models. Based 
on the four categories of models considered in Fig. 2, heterogeneity in 
mean endogeneity models are the most comprehensive ones. 

5. Summary and recommendations 

In general, a safety-in-numbers effect is observed when the safety of 
active modes of travel decreases at a lower rate compared to the rate of 
increase in active modes volume. A strong safety-in-numbers effect is 
observed when the safety of active modes increases as active modes 
exposure increases. The safety-in-numbers effect in its traditional defi
nition investigates the “direct” impact of pedestrian or cyclist volumes 
on pedestrian or cyclist safety, respectively. However, this definition 
does not fully appreciate the potential safety benefits of higher levels of 
walking and cycling. In this paper, we introduced and discussed a new 
form of safety-in-numbers based on “indirect” evidence, while discus
sing other important concerns such as endogeneity in this context. 

Conventional safety-in-numbers studies often employ cross-sectional 
statistical models with the aim of revealing “direct” safety-in-numbers 
effects. In such studies pedestrian or cyclist volumes are present in 
regression models as explanatory variables. Conclusions are then drawn 
regarding the presence of safety-in-numbers effects by estimating the 
association between these exposure terms and safety. However, an ideal 
study of safety-in-numbers would aim at revealing both direct and in
direct evidence for safety-in-numbers while addressing possible 
selection-bias and endogeneity in all explanatory variables, especially, 
those relating to active modes exposure variables. While providing 

further compelling evidence, revealing both direct and indirect evidence 
for safety-in-numbers provides a fuller picture, assisting the analyst in 
extracting more meaningful information that can in turn lend itself to 
safety and urban planning policy. In this regard, further research is thus 
needed in the traffic safety field. 

In addition to the capability of heterogeneity in mean models in 
better addressing unobserved heterogeneity (and therefore, improving 
statistical inference), their applications should be further investigated in 
the context of safety-in-numbers. Also, if the focus of a study is on 
revealing safety-in-numbers, we strongly recommend employing endo
geneity models to avoid bias induced by selectivity and endogeneity. 
Obviously, this necessitates the data being collected in a way that allows 
for accommodating endogeneity, an important factor to consider at an 
early stage of a study. This said, depending on research question(s) to be 
answered in a study, the analyst can decide on trade-offs associated with 
various statistical models regarding model complexity, data availability, 
and the strength and form (direct vs indirect) of evidence for safety-in- 
numbers effects. To conclude, safety-in-numbers, whether in its direct or 
indirect form as we discussed in this paper, can have important impli
cations for road safety policy, especially where strong evidence seems to 
exist. This is because by promoting and increasing walking and cycling 
activities, authorities can achieve safer road networks for vulnerable 
road users particularly in urban areas, provided other adequate infra
structure and countermeasures are in place. 
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Fig. 2. Safety-in-numbers triangle, comparing different models with respect to the strength and form of evidence. Note that here endogeneity models primarily is 
intended to refer to those that address endogeneity of pedestrian or cyclist volume. 
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