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Extreme Specific Stiffness Through Interactive Cellular
Networks in Bi-Level Micro-Topology Architected

Metamaterials

Diptiman Kundu, Sushanta Ghuku, Susmita Naskar,* and Tanmoy Mukhopadhyay*

Architected lattice materials, realized through artificial micro-structuring, have
drawn tremendous attention lately due to their enhanced mechanical perform-
ances in multifunctional applications. However, the research area on the design
of artificial microstructures for the modulation of mechanical properties is
increasingly becoming saturated due to extensive investigations considering
different possibilities of lattice geometry and beam-like network design. Thus,
there exists a strong rationale for innovative design at a more elementary level. It
can enhance and grow the microstructural space laterally for exploiting the
potential of geometries and patterns in multiple length scales, and the mutual
interactions thereof. A bi-level design is proposed, where besides having the
architected cellular networks at an upper scale, the constituting beam-like
members at a lower scale are further topology-engineered for most optimum
material utilization. The coupled interaction of beam-level and lattice-level
architectures can enhance the specific elastic properties to an extreme extent
(up to ~25 and 20 times, depending on normal and shear modes, respectively),
leading to ultra-lightweight multifunctional materials for critical applications

under static and dynamic environments.

1. Introduction

Engineering structures featuring lattice materials"™” have tre-
mendous potential applications in the field of defense, aerospace,
biomedical, mechanical, and civil engineering due to an unprec-
edented level of tolerability, the capability of achieving extreme
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mechanical properties and multifunction-
ality. In many technologically demanding
applications like aerospace structures,
one of the key requirements is extreme
minimization of weight while maintaining
the other mechanical properties at an
adequate level under complex loading condi-
tions. The performance of these light
weight structures is mainly dependent upon
the topological configuration, arrangement
of unit cells, and relative density. This article
aims to propose a radical measure of bi-level
topology optimization for achieving an
unprecedented enhancement of specific
stiffness in such lattice materials.

The unit cell-based approach to analyz-
ing periodic lattices has been widely
adopted in the literature.® % These mate-
rials have tunable mechanical properties as
the global-level physical behavior is not
only dependent upon the intrinsic material,
but the microstructural geometry of the
periodic units also. The macro-scale lattice
properties like Young’s moduli,****
Poisson’s ratio,”! and shear moduli®® are largely dependent
upon the geometric configurations of the periodic unit cells.!”*#!
In most cases, the unit cells can be imagined as a network of
beam-like solid elements. Thus, in turn, the global physical
properties of a lattice material depend on the deformation
physics of the beam-like elements and the microstructural
topology of lattices, describing how the beams are connected
to form the unit cell. These lattice materials have an open cell
structure and have a relatively lower density providing enhanced
mechanical properties®?% compared to conventional materials.
Intense research has been performed recently on multi-physical
and multi-material property modulation,*'**) nanoscale
multifunctional properties,**™®) far-field actuation dependent
local shape and stiffness modulation®®>% and auxetic meta-
materials.”*?* Tremendous progress in 3D printing and other
manufacturing technologies®>=”) over the past decade has
boosted the physical realization of complex metamaterial designs
and experimental investigation for such lattices.

The concept of topological periodic network design for lattice
microstructures has become rather saturated lately due to exten-
sive investigations over the past decade.®**3% Thus, there exists
a strong rationale for more innovative design at the elementary
level*®*3] that can bring about a radical expansion in the avail-
able design space to have significant improvement by pushing
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the boundaries of mechanical characteristics such as specific
stiffness under normal and shear modes. In this article, we pro-
pose to exploit more elementary-level topology optimized beams
in place of the conventional solid cell walls besides having unit
cell level architecture. The expanded microstructural design
space would lead to a unique interaction between the beam level
and unit cell level topological architecture for the most optimum
utilization of material.** This would be the first attempt to cou-
ple the concept of topology optimization with microstructural
periodic lattice network design.

The research on topology optimization of structural
elements* 8 has drawn increasing attention from the
engineering and scientific community in the past few years to
use natural resources optimally. Topology optimization has
expanded itself in areas of continuum structures!**=* to nonlin-
ear structural applications.®” The field has developed rapidly
with many new contributions to theory, computational methods,
and their applications in aerospace structures.”* Topology opti-
mization of continuum and discrete solid structures involves the
determination of features such as the number, location, and

www.aem-journal.com

shape of voids along with connectivity of the domain that builds
up the structure. The method includes both sizing and shape
optimization. Sizing optimization focuses on optimal thickness
distribution using minimization or maximization of any quanti-
tative element like stress or deflection such that the constraints
and equilibrium conditions are satisfied at the same time. As the
name suggests, shape optimization deals with removing material
from non-vulnerable places resulting in differently shaped voids.
The density-based approach?®*® used in topology optimization
distributes the material over the domain such that the raster
representation of the domain constitutes elements either with
the unit or null density. Finally, we get a lightweight structure
with efficient use of the intrinsic material. The overarching objec-
tive of this article is to infuse the exciting capabilities of topology
optimization for minimizing material utilization in novel micro-
structural design and further expand the scope of mechanical
metamaterials following a seamless bottom-up bi-level computa-
tional framework (refer to Figure 1).

We would first analyze the beams that constitute a unit cell of
the lattice and contribute to the lattice-level mechanical behavior
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Figure 1. Bi-level design of topology-optimized lattice materials. A,C) General non-auxetic and auxetic hexagonal lattices. Such microstructures can be
used for novel material development using unit cell-level geometries. These multifunctional materials can find applications in technologically demanding
structural systems such as aerospace structures. B) A topology-optimized beam element with any arbitrary solid volume fraction representing the con-
stituent member of the lattice. Proper representation of the degree of freedom (DOF) is shown at the two end nodes. Uy and U, show the local DOF along
the horizontal direction, V; and V, show the local DOF along the vertical direction and 6, and 6, show the rotational DOF. Note that the adoption of
topology-optimized beams allows the proposed bi-level design at the unit cell level and at the beam level. D,G) Non-auxetic and auxetic lattices with
topology optimization applied on both vertical and inclined members. These lattices can be typically used against normal loading along directions 1 and 2.
E,H) Non-auxetic and auxetic lattices with topology optimization applied only on inclined members. These lattices can be typically used against normal
loading along directions 1 and 2. F,I) Non-auxetic and auxetic lattices with topology optimization applied on both vertical and inclined members. These
lattices can be typically used against the shear mode of in-plane loading. The nature of topology optimization in the slant and vertical members subjected
to bending and axial deformations depends on the normal and shear stresses applied remotely.
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depending on the applied lattice-level far-field (i.e., remote)
stresses and beam orientation within the unit cell. At this stage,
a computational framework of topology optimization will be
exploited to minimize the material utilization of the beams con-
sidering appropriate boundary conditions and the normal or
shear mode of far-field stresses.”® The axial and transverse
deformation of such topology-optimized beams would be seam-
lessly integrated with the unit-cell level lattice architecture sub-
sequently to obtain the effective elastic properties of the periodic
lattices. Typical configurations of the proposed novel lattices with
optimized cell walls under different modes of applied
far-field stress are shown in Figure 1D-I. It may be noted in this
context that the proposed lattices show different beam-level opti-
mized topologies depending on the stress resultants and the
boundary conditions, which in turn depend on the unit cell
geometry and normal or shear modes of applied far-field
stresses. While in this article we would concentrate on hexagonal
lattices with auxetic and non-auxetic configurations (as shown in
Figure 1), the bi-level bottom-up framework would be applicable
for any other forms of bending and stretching dominated lattices
in the 2D and 3D spaces. Our focus here is on the full spectrum
of effective in-plane elastic moduli such as (longitudinal
and transverse) Young’s modulus, shear modulus, and two
Poisson’s ratios, which can capture the entire constitutive matrix
for 2D materials®” to demonstrate the enhancement of specific
stiffness of the proposed lattice metamaterial under the applica-
tion of far-field normal and shear stresses. The basic underlying
mechanics of the proposed bi-level micro-topology architected
lattice materials being scale-independent, this novel class of
materials can be adopted in a range of milli-, micro-, and
nanometer-level engineering applications.

2. Bi-Level Bottom-Up Computational Framework
for Microstructural Analysis

In this section, we will provide the theoretical background of a
seamless semi-analytical bi-level computational framework based
on coupling the topology optimization with finite element analy-
sis®® to achieve beam-level topology-optimized lattices with aux-
etic and non-auxetic configurations. We propose to integrate the
concept of topology optimization with the design of periodic
lattice networks under normal and shear modes following a unit
cell based efficient computational approach. The effect of axial
rigidity of the cell walls on the effective lattice-level elastic prop-
erties will be studied through two different models within the
present framework by excluding and including the beam-level
axial deformation components, while considering the bending
deformation in both cases. Note that both of these models can
be useful depending on the necessary level of computational
efficiency and axial rigidity of the beams under consideration.
In essence, we aim to investigate the effects of the volume frac-
tion of the topology-optimized cell walls along with other conven-
tional microstructural parameters on the macro-scale effective
elastic moduli. Here we will start with optimizing only the
inclined members of the lattice (refer to Figure 1 for detailed lat-
tice geometry and unit cell) and later extend the application
toward the vertical members (note that for normal far-field
stresses, if the axial deformation is neglected, only the slant

Adv. Eng. Mater. 2022, 2201407 2201407 (3 of 14)

www.aem-journal.com

members of a hexagonal honeycomb contribute to the in-plane
effective Young’s moduli and Poisson’s ratios). Under normal
stress along direction-1, the vertical members do not deform
even if the beams are not considered to be axially rigid, and hence
they can be designed with a minimal amount of material distri-
bution when only Young’s modulus along direction-1 is of con-
cern. However, for the multifunctional design of such lattices,
where Young’s modulus along direction-2 and shear modulus
are also of interest, the vertical members also need to be designed
optimally as proposed in this article.

Here we provide a brief explanation of the topology optimiza-
tion scheme®® we have implemented at the beam level. Then we
move to computations of effective elastic moduli of honeycomb
lattices with topology-optimized cell walls (i.e., beams). The com-
mon parameters with which we deal with are the element dimen-
sions, i.e., the height of the vertical member, the length of the
inclined member, and the member thickness which are repre-
sented by h, I, and t, respectively. The cell angle is defined as
0 (refer to Figure 1). The volume fraction of each member is
represented by V. The Young’s modulus and Poisson’s ratio
of the material used to prepare the lattice elements are E, and
vo (i.e., intrinsic material properties). The area and moment of
inertia of the geometrical cross-section are defined as A and I.
Under the applications of normal stress along direction-1 and
-2 (refer to Figure 1 for the directions), and shear stress in
the 12-plane, the topology-optimized beam-like cell walls
undergo in-plane deformations which are computed using a
finite element-based topology optimization code. The beam-level
definitions including appropriate boundary conditions and
the topology optimization concepts are explained in the supple-
mentary sections SM1 and SM2, Supporting Information. We
have proposed two separate beam models here (refer to
Figure 2A-H), wherein we show that the half-length beam model
is more generic (both axial and bending deformation can be con-
sidered) compared to the full-length beam model (only bending
deformation can be considered).

Figure 2 gives a clear idea about the beam-level problem-
solving approach that we deal with. As we have discussed earlier,
our main objective is to enhance the specific lattice-level effective
in-plane mechanical properties, like Young’s moduli, Poisson’s
ratio, and shear modulus using topology-optimized members in
addition to conventional unit cell based designs. The beam-level
topology optimization must be carried out under proper bound-
ary conditions and loading to the cell walls (i.e., beams).
Generally beams with t/l<0.2 do not show significant axial
and shear deformation compared to bending®®); hence these com-
ponents can be neglected in such cases. Here we have accounted
for the cases of beam-level deformations both considering and
neglecting axial deformations (while bending deformation con-
sidered in both cases). The shear deformation effect will be neg-
ligible in the current analysis as the cross-sections of the
topology-optimized structural elements within a beam element
will have very less transverse thickness compared to their
lengths. Since, for topology-optimized beams, closed-form ana-
Iytical formulae are not possible to be derived for the effective
elastic properties of lattices like traditional literature (that consid-
ers solid beams),® we resort to a semianalytical approach. First,
we find out the transverse and axial deformations of topology
optimized beams numerically (finite element analysis (FEA)
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Figure 2. Beam models for optimized elementary level topologies and free body diagrams of the tri-member unit cells subjected to normal and shear
stresses. A) Typical representation of a topology optimized beam that can be used in a full-length beam problem (one end clamped, the other end
rotationally restrained, but free to have translations; subjected to a transverse point load at the end where the translation is allowed). B) Topology-
optimized beam that can be used in a half-length beam problem (one end clamped and the other end free; subjected to a transverse point load at
the free end). C) Topology-optimized beam that can be used in a half-length beam problem subjected to axial load only at the free end.
D) Topology-optimized beam that can be used in a half-length beam problem subjected to both transverse and axial load at the free end. Along with
this half-length beam, a full-length beam that can be generated by symmetrical replication is shown below. E) 2D beam element represented through
square finite elements. A succession of nodes from (1, 2) is marked on the beam. F) Representation of a typical full-length beam problem with proper
boundary and loading conditions. G) Representation of two symmetrically opposite typical half-length beam problems with proper boundary and loading
conditions such that the overall analysis becomes equivalent to a full-length beam problem (only under transverse loading). H) Representation of two
symmetrically opposite typical half-length beam problems with both transverse and axial loading. Note that such topology-optimized half-length and full-
length beams are used for further lattice-level analyses. The half-length beam model can account for the effect of both bending and axial deformations,
while the full-length beam model can account for only bending deformation. I-]) A typical unit cell under normal loading in directions 1 and 2, respectively.
xandy in strain (longitudinal: x =y, lateral: x # y) &, in these two free body diagram (FBD) indicate loading direction and deflection direction. K) A typical
unit cell under shear loading. The first subscript (1 or 2) in the shear strain represents the loading direction and the second subscript is the member, i.e., i
for the inclined member and v for the vertical member.

model developed in the framework of the density optimization  distribution by V. The way material is distributed within the spa-
method with an overlay of the level set method), which are used  tial domain of the beam is taken care of by the topology optimi-
thereby in an analytical framework to obtain the effective elastic ~ zation algorithm. Figure 2A-D shows typical topology-optimized
properties at the lattice level. beams for example. The value of V¢ decides how much of the

In this context, it can be noted that once a member becomes  rectangular cross-section will be filled by the intrinsic material
topology optimized, we can only define the overall material at different locations along the length of the beam. Under
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supplementary section SM1, Supporting Information, the finite
element framework for topology optimization®® is explained that
has been used to compute load-deformation behaviors of topol-
ogy-optimized beams here. After discussing the topology optimi-
zation concepts, we have focused on two different boundary
conditions of the beams with half and full lengths (refer to sup-
plementary section SM2, Supporting Information) that would be
necessary for subsequent lattice-level property characterization.
The beams are further utilized for analyzing unit cell level defor-
mations and strains (refer to supplementary section SM3,
Supporting Information). The free-body diagrams for the tri-
member unit cells (continuous red) subjected to normal and
shear loading of p are shown in Figure 2I-K in a domain of size
I(h/1+4 sin@) x 2lcos@. The deformed cells (dashed green) are
correspondingly represented and the final deformed lengths
in directions 1 and 2 are shown using longitudinal, lateral, or
shear strains. Within the framework of the unit cell approach
(refer to Figure 21-K), the beam-level deformations are utilized
subsequently to compute the lattice-level effective elastic moduli
as (scaled and nondimensionalized)

14
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A detailed derivation of the aforementioned formulae along
with the expressions for strain components (under the application
of far-field stress p) is given in supplementary section SM3,
Supporting Information. The results of specific elastic moduli
are obtained here in a nondimensional form, by dividing the
respective values with a factor Ey(p)® as per standard literature.®!
Relative density p; in the denominator gives an understanding of
the increase or decrease in the elastic moduli along with the cor-
responding change in relative density. Poisson’s ratios, being the
ratio of strains, are already normalized.

Relative densities of lattices with topology-optimized inclined
members only (p15) and topology-optimized inclined and vertical
members both (p,5) are given by the following two equations,
respectively.

(1+2vp)i

_ 6

P1s = 5 cos 0(4+ sing) (©)
Ve(h+2)

— 7

P2 = cos 0(4 + sing) )

In the current article, we use pg in general equations, wherein
depending on the type of optimization we can input the values
of either p; or p,. For a detailed discussion on relative densities,
refer to the supplementary section SM3.1, Supporting Information.
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2.1. Summary

This section proposes a unit cell based semianalytical computational
approach for evaluating the elastic properties of topology-optimized
architected materials. The detailed derivation of each stage of
the bottom-up algorithm is provided in the supplementary material.
Supplementary section SM1, Supporting Information, provides the
computational and theoretical backgrounds of finite element based
topology optimization, while SM2, Supporting Information, pro-
vides a comprehensive description of the loading and boundary con-
ditions of half-length and full-length beam models, which constitute
the lattice. Subsequently, SM3, Supporting Information, shows the
computational framework for obtaining the lattice-level effective
elastic properties through the deformation behavior of the
topology-optimized beam elements.

3. Results and Discussion

3.1. Twofold Validation of the Computational Framework

As computations of the lattice-level effective elastic moduli depend
on deformation characteristics of the topology-optimized cell walls
(i.e., beams), the topology optimization based beam model of the
present framework is validated first with a commercial finite ele-
ment tool in terms of deformation characteristics of topology-
optimized beam. Subsequently, before investigations of the effect
of volume fraction in the topology-optimized cell walls at the lattice
level, the effective elastic moduli of lattices are also validated with
analytical solutions considering the special cases with fully solid
cell walls.®! The twofold validation study (beam-level and lattice-
level) will provide adequate confidence in the present framework
for estimating the effective elastic moduli of lattices with topology-
optimized cell walls. Following that, the effects of the volume frac-
tion of topology-optimized cell walls along with other conventional
microstructural parameters on the effective elastic moduli would
be presented. Due to the requirement of high computational time,
we were unable to collect more data points for each of the curves
while presenting a detailed investigation accounting for a range of
design parameters. However, we have made sure that the trends
are unaltered and a representation of the actual behavior.

3.1.1. Beam-Level Validation

As described in supplementary sections SM2 and SM3,
Supporting Information, our framework has three different
models at the elementary beam level, namely, the full-length
beam problem under transverse loading, the cantilever model
problem under transverse load only, and the half-length beam
problem under combined transverse-axial loading. The three-
beam problems are solved through the FEA-based topology opti-
mization framework (refer to supplementary section SM1,
Supporting Information) for different volume fractions V; and
thickness ratio t/I, and the deformation characteristics along with
the topology-optimized shapes are obtained. For numerical dem-
onstration, the intrinsic material is chosen as structural steel with
Young’s modulus value of 200 GPa and Poisson’s ratio value of
0.3. The beam-level load is taken as the load under a lattice-level
stress value of 0.05MPa. Variations of the specific stiffness

© 2022 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH
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Figure 3. Beam-level and lattice-level validations. Variations of specific transverse stiffness (P/8V;) (in N m™") is plotted with change in volume fraction V¢
for different t// ratios. The solid lines represent the results from the topology optimization code within the present framework whereas the markers show the
results using a commercial FEA tool. A,D) Full-length beam level results with optimum topology using support settlement boundary condition under trans-
verse load only. B,E) Half-length beam level results with optimum topology using cantilever boundary conditions under transverse load only. C,F) Half-length
beam level results with optimum topology using cantilever boundary conditions under combined axial and transverse load. Figures D—F) give a general idea
regarding the resulting typical topology-optimized beams and their deflections when subjected to the prescribed loading and boundary conditions.
G-K) Validation of lattice level nondimensional specific elastic properties (Ey, E3, 012, 021 and Gy3) with cell angle 6 (in radian), h/l and t/, taking volume
fraction as 1. The Young’s moduli and shear modulus are normalized by Eq(p,)?. The solid lines represent analytical resultst® whereas the markers represent
the results from the present framework.

sv with the volume fraction Vi are shown through solid lines in ~ The figure clearly shows that specific stiffness 2- - increases with

Figure 3A—C for the three beam problems, where P is the trans-  the decrease in volume fraction Vyand such 1ncrement depend
verse loading in N and & is the transverse deformation in m unit.  upon ¢t/ ratio. The topology-optimized beam configurations as
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obtained from the FEA-based topology optimization framework
are presented in Figure 3D-F, respectively, corresponding to the
three types of problems. The topology-optimized beam configu-
rations for different volume fractions are modeled in the frame-
work of a commercial FE tool®® and the corresponding
deflections are computed, which in turn give specific stiffness
&. The specific stiffness values obtained from the FE tool are

plotted against the volume fraction and shown through markers
in Figure 3A—C. An excellent agreement can be noticed between
the results of the FEA code and that of the commercial FE tool,
corroborating further confidence in the numerical results.

As observed in Figure 3A,B, the transverse stiffness values for
the half-length beam problem are double for those of the full-
length beam problem when the only transverse load is considered.
The deformation characteristics are further reinforced as dis-
cussed in Figure 2 (refer to supplementary section SM2,
Supporting Information) that for application of the same trans-
verse load, a full-length beam when solved using support settle-
ment boundary condition shows two times the deformation
shown by a half-length beam solved as a half-length beam problem
for a particular value of V¢ (note that it has already been shown
analytically in supplementary section SM2, Supporting
Information for solid beams with V= 1; here we show that this
statement is true of any V¢). However, as the effect of axial load is
comparably less, we can get almost similar stiffness values under
the combined transverse and axial load as observed in Figure 3C.
As observed from Figure 3A-C, the results from the FEA tool
match with the FEA-based topology optimization framework for
a higher volume fraction V. But with the decrease in volume frac-
tion Vj, the difference between them increases. Such variations in
the results are due to the accuracy in modeling the complicated
beam topology in the FEA tool from the raster image the optimi-
zation code gives. Due to the huge time requirement, we have
restricted the ne, value to 60 units (defined in SI units) which
is the beam thickness, t. The length of the inclined and vertical
members is controlled by ¢/l and h/l ratio. A clear raster image
with more elements (pixels) will help to extract the edges for
the topology-optimized beam in a more efficient manner.
However, within the scope of the article, the comparison studies
presented in Figure 3A—C can be considered satisfactory. Our aim
to increase the specific stiffness at lower V¢ is achieved through
topology optimization of the beam as shown in the figures.

Two scales involved in the proposed lattices are at: 1) unit-cell-
level geometry, and 2) beam-level topology. At the unit cell level,
we have specific dimensions of the beam lengths, thickness, and
angles of the hexagon. However, at the beam level, the micro-
structural topology is primarily defined by volume fraction (refer
to Figure S7, Supporting Information) and pixel size. Depending
on the volume fraction and pixel size, the spatially varying beam-
level architecture is obtained following topology optimization. It
is possible to define a scale ratio by taking a ratio of the dimen-
sion of the pixels and the thickness of a beam. Note that knowing
the thickness, and dimension of the vertical and slant members
can be evaluated from t/l and h/l ratios. As per the proposed def-
inition, we have used a scale ratio of 1/60 in the present study.
Reducing the scale ratio further will lead to a better topology-
optimized structure with smoother boundaries, but at the cost
of more computational intensiveness. In the following
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subsections, we use the beam-level deformation with topology-
optimized configurations for evaluation of the lattice-level
effective mechanical properties, wherein the unit cell geometries
play additional interactive roles along with the beam topologies.

3.1.2. Lattice-Level Validation

Followed by the beam-level validation, the lattice-level effective
elastic moduli computed by the present framework are compared
with the analytical results from the literature.”® For this purpose,
we use the cantilever half-beam model to evaluate the effective
elastic moduli in the current approach. However, such validation
can be only carried out for solid members in the lattice, i.e., tak-
ing Vras 1 since this case is only available in the existing litera-
ture. Variations of the effective elastic moduli concerning
different configurations of cell angle 6 along with h/l and t/I
ratios are shown in Figure 3G—K. It is to be noted that geometric
feasibility should be taken care of while designing the lattices
with negative cell wall angle. For example in the current article,
when auxetic cases are considered with h/l=1.5 and cell wall
angle, = 60°, the geometrical feasibility condition, h/l > 2sinf
is not fulfilled. Hence we have not shown the corresponding
plots. The solid lines represent the analytical results® whereas
the markers show the results computed by the present frame-
work. For the cases when 0 is close to zero, the effective elastic
moduli obtained under loading in direction 1 become completely
dependent on the axial deformation. Since axial rigidity is much
higher compared to bending rigidity, the values of such effective
elastic moduli shoot up near 6= 0. For higher 0 values both on
the positive and negative side, the differences in the curves
become almost negligible; hence zoomed views are shown
through insets in the plots for all the cases. The insets show
the variations in the effective elastic moduli results with h/I
and t/I ratios.

Variations of E; and E, with cell angle # as shown in
Figure 3G,] indicate that the plot for E; is similar to a
Gaussian peak, while the nature of E, is likely to have a sigmoid
curvature if we observe using best fit for the range we have used.
As observed in Figure 3H,K, a plot for vy, is similar to two log-
normal curves at both signs of 6, while v,; shows an inflection
point near the origin which increases and decreases exponen-
tially for higher 6 values on both sides of the origin. From
Figure 31, we observe that Gy, increases up to 0 equal 0 for aux-
etic configurations. But for the non-auxetic cases, a peak is
observed at 0.65 radians. In general, the lattice level results con-
sidering volume fraction 1 show satisfactory alignment with
respect to the results from established literature, corroborating
the validity of the proposed semi-analytical framework.

This is a computational and semianalytical paper, where exten-
sive computational validation is provided at two different levels
with separate finite element analyses and the available literature:
1) at the beam level and 2) at the lattice level. It can be noted here
that the effective elastic properties of hexagonal lattices with solid
beam-like members (Vy=1) have been experimentally validated
in the literature.®! Since we have also compared the current
results for Vp=1 with the closed-form formulae given in
ref. [8], it gives us adequate confidence in the lattice-level compu-
tational framework. In the following subsections, we present
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numerical results demonstrating the capability of beam-level
topology optimization for maximizing lattice stiffness under nor-
mal and shear modes of loading. Comprehensive numerical
results would be discussed critically covering the entire spectrum
of possibilities concerning the auxetic and non-auxetic behavior
of the lattices in an expanded design space, demonstrating mul-
tifunctional property enhancement and programmability.

3.2. Mechanical Characterization of Lattices with
Micro-Architected Inclined Beams Only

The results presented in this subsection are concerning the cases
when we apply topology optimization only to the inclined mem-
bers of the unit cell comprising the lattices. Note that this case is
relevant considering the fact that the inclined members mostly
contribute to the lattice-level deformation through bending.
When axial deformations are neglected, there is almost no role
in the lattice-level strains for the vertical members under normal
remote stresses, except for forming the geometry of the unit
cells. However, it should be noted that the vertical members con-
tribute to bending deformation significantly under remote shear
stress, for which the vertical members also become crucial. For
this particular set of simulations, the vertical members are kept
fully solid to avoid any extra computational cost of topology opti-
mization. Hence to calculate the specific lattice properties, we
will use the specific density, p;s as given in Equation (6). The
effective elastic moduli are computed using the full-length beam
model and half-length cantilever beam model of the proposed
framework as presented in the following subsections.

3.2.1. Effective Young's Moduli and Poisson’s Ratios Based on
Full-Length Beam Problem

In this subsection, we investigate the variation of specific
Young’s moduli E; and E, with decreasing volume fraction V¢
from 1. We aim to make sure that by performing topology opti-
mization on the solid beam, we can enhance E; and E, signifi-
cantly. The parametric study has been performed by changing
the geometrical properties like h/l, t/l and cell angle, 6.
Figure 4A-F gives a clear picture that for the non-auxetic lattice,
and how both the specific Young’s moduli show a steep rise
while we decrease the volume fraction performing topology opti-
mization on the inclined cell walls. When h/I ratio equals 1.5 for
the non-auxetic lattice, we find the steepness of the plot decreases
after V¢ reaches 0.4. Similar behavior is observed for the auxetic
lattices in Figure 4G-F where h/l is 1.5. For h/I the ratio increas-
ing up to 2 in Figure 4H-L, a decrement of E; and E, is observed
when V¢ is reduced from 0.4. This indicates high deflection that
may deform the overall lattice significantly. Hence, we can opti-
mize the beams up to a higher V¢ like 0.5 keeping this in mind.
Also, for all the cases, we observe that by lowering /! ratio, the
specific Young’s moduli increase. It is also observed that for both
the auxetic and non-auxetic cases, the magnitude of E, is always
on the higher side than E; for any value of t/l, h/l or 6.

Figure S1A-L, Supporting Information, shows the variation of
Poisson’s ratios (vq, and v,;) with decreasing volume fraction. v,
remains constant with change in Vrand t/l whereas magnitude-
wise, 0,1 increases marginally from a lower rate to higher rate as
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we reduce V. The marginal variation (or invariance) of Poisson’s
ratios when considering only the bending deformation of the
hexagonal lattices is consistent with the established litera-
ture.®*!! This indicates that the Poisson’s ratios in this case
are dependent on only the unit cell level geometries rather than
the beam-level topology and beam-level physics. However, the
inclusion of the effect of axial deformation would change this
inference slightly, as discussed later in this article. For all the
cases, we observe that by lowering the t/l ratio, the Poisson’s ratio
increases, while there also exists a definite dependence on the
cell angle as well. The negative cell angles lead to an auxetic
behavior, i.e., negative Poisson’s ratio. We have confirmed that
for any particular case, E,vy, = Eqv,,°” is satisfied. This pro-
vides further confidence to the numerical results presented here.

3.2.2. Effective Shear Modulus G, Based on Full-Length Beam
Problem

Effect of volume fraction Vron specific shear moduli Gy, is inves-
tigated in this subsection to enhance Gy,. Variations of G, with
volume fraction Vi for the considered microstructural parame-
ters (h/l, t/l and 6) are shown in Figure 5A-C. The figure gives
a clear picture that for the non-auxetic lattice, the specific shear
modulus shows a rise with a decreasing rate while we decrease
the volume fraction through topology optimization on the
inclined cell walls. For h/l ratio increasing up to 2 in
Figure 5D-F, a decrement of Gy, is observed when V¢is reduced
beyond 0.4. Also, for all the cases, we observe that by lowering the
t/l ratio, the specific shear modulus increases. It is also observed
that for both the auxetic and non-auxetic cases, the magnitude of
G, increases for a greater value of h/l.

3.2.3. Effective Young's Moduli and Poisson’s Ratios Based on
Half-Length Beam Problem

The line plots in Figure S2, Supporting Information represent
the case when we solve the problem using a cantilever boundary
condition considering both the transverse and axial deformations
at the beam level. The markers in the figures represent the effec-
tive elastic moduli results for the case when we consider trans-
verse loading only for the cantilever boundary condition (these
results are provided to give a clear sense of the individual con-
tribution of axial deformations). Up to V¢= 0.6, the difference is
negligible and the marker positions are slightly higher indicating
that accounting for the axial force, reduces the value of specific
Young’s moduli. But this trend is not similar at Vy=0.2. The
complex topology optimization process leads to a result for which
accounting for the axial loading reduces the moduli values.
For the Poisson’s ratios (v;, and v,;) as shown in Figure S3,
Supporting Information, we can identify the difference between
considering and neglecting axial deformations more clearly as
the values lie within a very small range. The nature of plots
for the cases are similar but there is no regular trend as the
results are dependent upon the topology optimization concern-
ing a range of parameters. But we find the markers to be present
at a slightly lower magnitude and this difference is more at
higher Vf, which indicates accounting axial load lowers the
Poisson’s ratio magnitude. Note that the observation concerning
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Figure 4. Specific Young's moduli for lattices with different unit cell geometries considering topology-optimized inclined cell walls (with only bending
deformation). Variations of specific Young’s moduli E; and E, with change in volume fraction V; of the topology optimized cell walls constituting the
overall lattice. The parametric study includes variation in the values of 6, h/I and t/I. The results are plotted considering only the transverse loading on the
beam elements. A-F) 0 ranging in the positive domain indicating non-auxetic properties. G-L) @ ranging in the negative domain indicating auxetic
properties. Here the topology optimization has been carried out only for the inclined members of the unit cell. Nondimensional schemes are adopted

as per Equation (1) and (2).

the dependence of Poisson’s ratio on the beam-level topology and
mechanics when the axial deformation is considered along with
bending deformation is consistent with established literature on
hexagonal lattices.”® For obtaining this set of results we have
considered the topology optimization in the slant beams only;
however, when we will consider the topology optimization in
both slant and vertical beams including both the bending and
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axial deformations (as presented later in this article), the effect
of V¢ on vy; would be much more prominent.

For practical purposes, the difference that we get for either
Young’s moduli or Poisson’s ratio is rather minor. Hence, if
we use Figure 2A,D as topology-optimized cell walls, we will
not encounter any significant difference in results. It could, how-
ever, be kept in mind that consideration of axial deformations
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Figure 5. Specific shear modulus for lattices with different unit cell geometries considering topology-optimized inclined cell walls (with only bending
deformation). Variations of specific shear modulus G, with change in volume fraction V; of the topology optimized cell walls constituting the overall
lattice. The parametric study includes variation in the values of 6, h/l and t/I. The results are plotted considering only the transverse loading on the beam
elements. A-C) 6 ranging in the positive domain indicating non-auxetic properties. D-F) 6 ranging in the negative domain indicating auxetic properties.
Here the topology optimization has been carried out only for the inclined members of the unit cell. Nondimensional schemes are adopted as per

Equation (4).

provides more accurate results at the cost of more computational
expenses. As per the proposed models, the effect of axial defor-
mation can only be considered in the half-beam analysis, while
the transverse bending analysis can be carried out by both the
half- and full-beam models. In general, the full-beam analysis
is more expensive than the half-beam analysis, while combined
bending and axial analysis in the half-beam model is more expen-
sive than the analysis considering only bending deformation.
Such comments are valid for all the elastic moduli under
consideration in this work and appropriate decisions regarding
the analysis approach that should be taken based on justifiable
engineering judgments.

3.2.4. Effective Shear Modulus G, Based on Half-Length Beam
Problem

Variations of specific shear modulus G, with volume fraction
for the considered geometric parameters are shown in
Figure S4, Supporting Information. The solid or dashed lines
represent the case when we solve the problem using cantilever
boundary conditions but the beam is subjected to both transverse
and axial loading. The markers in the figures represent the coor-
dinates for the case when we solve the problem using cantilever
boundary conditions but the beam is subjected only to transverse
loading. The trends of variations of specific shear modulus
captured by the model including axial deformation are similar
to those of excluding axial deformation. As the magnitude of
specific shear modulus, Gj, values as shown in Figure S4,
Supporting Information, lie within a higher range, it is difficult
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to identify the minor differences in the values, which can be only
seen at lower volume fractions. However, the comments made in
the preceding subsection regarding half- and full-length beams
(and considering or neglecting axial deformations) for Young’s
moduli and Poisson’s ratios remain valid for the shear modulus
as well.

3.3. Mechanical Characterization of Lattices with
Micro-Architected Inclined and Vertical Beams

So far in this article, we have presented results where we consid-
ered topology optimization in the slant beams only. However, a
design considering topology optimization in the vertical beams,
in addition, would lead to improvement of the mechanical prop-
erties further. The results presented in this subsection consider
the cases when we apply topology optimization to both the
inclined and vertical members of the unit cell comprising the
lattice. Hence to calculate the specific lattice properties, we will
use the specific density, p, as given in Equation (7). As the ver-
tical members deform only under normal stress along direction-2
and shear mode of applied remote stress, we only deal with spe-
cific Young’s modulus E,, vp; and specific shear modulus G,
here. Under normal stress along direction-1, the vertical mem-
bers do not deform, and hence the vertical cell walls correspond-
ing to E; and vy, are kept solid as of the previous subsection. As
we are optimizing the members for both axial and transverse
loading here, we are bound to use the cantilever boundary
conditions. Variations of specific Young’s modulus E,, vy,
and specific shear modulus G;, with volume fraction of the
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topology-optimized cell walls are shown in Figure 6 and S5, significant increment in the magnitudes of the specific moduli,
Supporting Information. From the figures, we can find a  which shows further reinforces the hypothesis of improving the
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Figure 6. Specific Young’'s moduli and shear modulus for lattices with different unit cell geometries considering topology-optimized vertical and inclined
cell walls (with both bending and axial deformations). Variations of specific Young’s modulus E; and specific shear modulus Gy, are plotted with a change
in volume fraction V¢ of the topology-optimized cell walls constituting the overall lattice. The parametric study includes variation in the values of 6, h/I, and
t/l. The results are plotted using cantilever boundary conditions (half-length beam model) considering both transverse and axial loading on the beam
elements. A-C) E; for @ ranging in the positive domain indicating non-auxetic properties. D-F) E; for @ ranging in the negative domain indicating auxetic
properties. G—1) Gy, for @ ranging in the positive domain indicating non-auxetic properties. J-L) Gy, for  ranging in the negative domain indicating auxetic
properties. Here the topology optimization has been carried out both for the inclined and vertical members of the unit cell. The adopted nondimensional
schemes are as per Equation (2) and (4).
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specific mechanical properties by optimizing both the vertical
and slant members.

3.3.1. Effective Young's Moduli and Poisson’s Ratios Based on
Half-Length Beam Problem

The parametric study on the effects of volume fraction Vrand
lattice parameters 6, h/l, and t/I as shown in Figure 6A-F gives
a clear picture for non-auxetic lattices as to how the specific
young’s modulus, E, shows a rise with an increasing rate while
we decrease the volume fraction for topology optimization in
both the inclined and vertical members. It is also observed that
for both the auxetic and non-auxetic cases, the magnitude of E,
increases more for the higher value of h/l. While at higher vol-
ume fractions the rate of increment is low, after V¢ decreases
beyond 0.4, we get an exceptional rise in E,.

We have further investigated the variation of Poisson’s ratio
0,1 with decreasing volume fraction, Vi The parametric study
has been performed by changing the geometrical properties like
h/l, t/l, and cell angle, 6. Figure S5, Supporting Information gives
a clear picture of the lattices (both auxetic and non-auxetic) as to
how v,; shows a rise in magnitude with an increasing rate while
we decrease the volume fraction considering topology optimiza-
tion of both the inclined and vertical members. It is also observed
that for both the auxetic and non-auxetic cases, the magnitude of
0,1 increases for a greater value of h/l. After decreasing V¢ beyond
0.4, we get a significant rise for v,; on further decreasing the
volume fraction. Note that the observation concerning the strong
dependence of Poisson’s ratio on the beam-level topology and
mechanics when the axial deformation is considered along with
bending deformation is consistent with the established literature
on hexagonal lattices.””’

3.3.2. Effective Shear Modulus G, Based on Half-Length Beam
Problem

In this subsection, we have investigated the enhancement of spe-
cific shear moduli, G;, with decreasing volume fraction, V. The
parametric study has been performed by changing the geomet-
rical properties like h/l, t/l and cell angle, 0. Figure S5G-L,
Supporting Information gives a clear picture of the non-auxetic
lattices as to how the specific shear modulus shows a rise with an
increasing rate while we decrease the volume fraction consider-
ing topology optimization of both the inclined and vertical mem-
bers. It is also observed that for both the auxetic and non-auxetic
cases, the magnitude of Gy, increases for a greater value of h/I.
After decreasing V¢ beyond 0.4, we get a significant rise for Gy,
on further decreasing the volume fraction.

3.4. Specific Density of Bi-Level Micro-Architected Lattices

Since we focus on the specific lattice properties as functions of
the volume fraction of topology-optimized cell walls, it is crucial
to investigate how the volume fraction influences the lattice den-
sity. We have already discussed earlier the formulations for p;¢
and p,, in Equation (6) and (7). The value for p; is greater than
p2s as optimization of the vertical members reduces the solid
volume further for the latter, reducing the magnitude of p,.
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Variations of the relative lattice density with the volume fraction
of the cell walls in association with the other conventional micro-
structural parameters are shown in Figure S6, Supporting
Information. The numerical results reveal that specific density
linearly increases with an increase in volume fraction V¢ for a
certain set of values of 6, h/l, and t/l. The slope of the lines
increases with a rise in cell angle 0. Moreover, the increments
in the slopes of the curves with t/] ratio indicate that the values
of specific density are on the higher side for thicker beams.
The numerical results presented in Figure S6, Supporting
Information would allow the readers to find out the exact values
of the elastic moduli furnished throughout the paper readily for
different configurations.

4. Conclusions and Perspective

This article proposes a bilevel architecture for innovating
extreme materials where besides having the conventional peri-
odic lattice at an upper scale, the constituting beams at a lower
scale are also topology optimized for most optimum material uti-
lization. The coupled interaction of beam-level and lattice-level
architectures enhances the specific elastic properties to a signifi-
cant extent compared to the conventional lattices with solid beam
networks, leading to ultra-lightweight multifunctional structural
materials. Essentially, we integrate the concept of topology
optimization with the design of periodic lattice networks under
normal and shear modes following a unit cell-based efficient
semi-analytical computational framework.

A systematic bottom-up approach has been undertaken here
for the development of bi-level topology-optimized lattices. At the
beam level, we propose the possibility of using two beam models
with full-length and half-length along with appropriate boundary
conditions to conform with the unit cell level periodic deforma-
tion behavior. The half-length beam model is capable of account-
ing for both the transverse and axial deformations (or only the
bending deformation, if necessary), while the full-length beam
model does not consider the effect of axial deformation. In
general, the halfllength beam model is less computationally
expensive compared to the full-length beam model. However,
consideration of axial deformation, even though it makes the
predictions more accurate, adds up the computational cost
due to additional axial topology optimization at the beam level.
Normally the slant members are quite crucial in the deformation
mechanics of hexagonal lattices. Thus, initially, we start with
topology optimization of the slant members only to improve
the mechanical behavior. However, the inclusion of the vertical
members along with the slant members in the subsequent
designs, leads to significantly higher transverse specific
Young’s modulus and shear modulus.

To garner adequate confidence in the outcome of this study, a
two-level validation approach is adopted. At the beam level, we
validate the responses of both half and full-length beams consid-
ering different volume fractions. It is established that the
response of a half-length beam with appropriate boundary con-
ditions can be tantamount to the response of a full-length beam.
The half-beam model analysis leads to achieving a significant
extent of computational efficiency due to a reduction in the phys-
ical optimization domain. At the lattice level, we validate the
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elastic moduli with available literature for the case of volume
fraction 1. After having adequate confidence in the proposed
computational models through the beam- and lattice-level valida-
tions, we investigate the expanded coupled microstructural space
exhaustively for enhancing the specific mechanical properties.

Insightful numerical results are presented covering the entire
spectrum of possibilities concerning the auxetic and non-auxetic
behaviour of the lattices in an expanded design space (interaction
of optimum beam-level topology with intrinsic material proper-
ties and the unit cell level geometric parameters like thickness to
length ratio (t/]), the ratio of the length of the vertical cell wall to
the length of inclined member (h/l), and cell angle (6)), demon-
strating the capability of multifunctional property enhancement
and programmability. The specific mechanical properties
(Young’s and shear moduli) can be enhanced up to 3 times
for Ej, 12.5 times for E;, and 10 times for G;,, when we perform
topology optimization in both the inclined and vertical members
of the unit cell comprising an overall non-auxetic lattice while
reducing volume fraction to 0.5 from 1. For an auxetic lattice,
the enhancement is up to 2.5 times for E;, 25 times for E,,
and 20 times for G, (note that we have presented results as a
ratio of the elastic moduli and relative density to capture the
net enhancement of mechanical properties normalized by
weight). The numerical results further reveal an interesting inter-
play among the unit cell geometries and volume fraction,
wherein a wide range of auxeticity (and Poisson’s ratio, in gen-
eral) can be achieved without changing the unit cell level
geometry.

In general, the stiffness of a structure is controlled by the
effective elastic moduli of structural materials. Recently archi-
tected lattice materials have drawn tremendous attention due
to their enhanced mechanical performances in multifunctional
applications (such as direction and mode-dependent static and
dynamic behavior, impact resistance and energy absorption, sta-
bility control, and actuation) that can be realized through artificial
micro-structuring. Since most of these multifunctional proper-
ties are linked to elastic moduli, enhancing the elastic moduli
would have a significant impact on the structural behavior.
Rapidly evolving capabilities of additively manufacturing com-
plex microstructures have made the physical realization of lattice
materials possible. However, the research area on the design of
artificial microstructural configurations for the modulation of
mechanical properties has become saturated lately due to exten-
sive investigations in the field considering different possibilities
of lattice geometry and beam-like network design. In this article,
we have presented an innovative avenue at a more elementary
level that can grow the microstructural space laterally for enhanc-
ing the effective elastic moduli. Seamlessly coupling the idea of
topology optimization with unit cell design of periodic lattices
has been the foundation to develop this new class of architected
materials. The rich multifunctional properties of the proposed
2D microstructures make them ideal for the creation of
innovative high-performance lightweight structural systems with
multiobjective goals in a wide range of milli-, micro-, and
nanometer-scale advanced applications. The conceptual develop-
ment of bi-level microstructural design as proposed here, being
generic in nature, can further be extended to other forms of
lattices in 2D and 3D spaces.
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